mirror of
https://github.com/QuantumPackage/qp2.git
synced 2025-01-03 09:05:39 +01:00
fixed bug in cGTOS overlaps
This commit is contained in:
parent
ff63afa797
commit
4da6a2aea0
@ -75,10 +75,6 @@ END_PROVIDER
|
|||||||
enddo
|
enddo
|
||||||
endif
|
endif
|
||||||
|
|
||||||
powA(1) = ao_power(i,1)
|
|
||||||
powA(2) = ao_power(i,2)
|
|
||||||
powA(3) = ao_power(i,3)
|
|
||||||
|
|
||||||
! Normalization of the contracted basis functions
|
! Normalization of the contracted basis functions
|
||||||
if (ao_normalized) then
|
if (ao_normalized) then
|
||||||
norm = 0.d0
|
norm = 0.d0
|
||||||
|
@ -4,6 +4,7 @@
|
|||||||
BEGIN_PROVIDER [double precision, ao_coef_cgtos_norm_ord_transp, (ao_prim_num_max, ao_num)]
|
BEGIN_PROVIDER [double precision, ao_coef_cgtos_norm_ord_transp, (ao_prim_num_max, ao_num)]
|
||||||
|
|
||||||
implicit none
|
implicit none
|
||||||
|
|
||||||
integer :: i, j
|
integer :: i, j
|
||||||
|
|
||||||
do j = 1, ao_num
|
do j = 1, ao_num
|
||||||
@ -62,9 +63,9 @@ BEGIN_PROVIDER [double precision, ao_coef_norm_cgtos, (ao_num, ao_prim_num_max)]
|
|||||||
powA(2) = ao_power(i,2)
|
powA(2) = ao_power(i,2)
|
||||||
powA(3) = ao_power(i,3)
|
powA(3) = ao_power(i,3)
|
||||||
|
|
||||||
! Normalization of the primitives
|
|
||||||
if(primitives_normalized) then
|
if(primitives_normalized) then
|
||||||
|
|
||||||
|
! Normalization of the primitives
|
||||||
do j = 1, ao_prim_num(i)
|
do j = 1, ao_prim_num(i)
|
||||||
|
|
||||||
expo = ao_expo(i,j) + (0.d0, 1.d0) * ao_expo_im(i,j)
|
expo = ao_expo(i,j) + (0.d0, 1.d0) * ao_expo_im(i,j)
|
||||||
@ -81,11 +82,15 @@ BEGIN_PROVIDER [double precision, ao_coef_norm_cgtos, (ao_num, ao_prim_num_max)]
|
|||||||
C1 = zexp(-(0.d0, 2.d0) * phiA - 0.5d0 * expo_inv * KA2)
|
C1 = zexp(-(0.d0, 2.d0) * phiA - 0.5d0 * expo_inv * KA2)
|
||||||
C2 = zexp(-(0.5d0, 0.d0) * real(expo_inv) * KA2)
|
C2 = zexp(-(0.5d0, 0.d0) * real(expo_inv) * KA2)
|
||||||
|
|
||||||
call overlap_cgaussian_xyz(C_Ae, C_Ae, expo, expo, powA, powA, C_Ap, C_Ap, overlap_x, overlap_y, overlap_z, integ1, nz)
|
call overlap_cgaussian_xyz(C_Ae, C_Ae, expo, expo, powA, powA, &
|
||||||
call overlap_cgaussian_xyz(conjg(C_Ae), C_Ae, conjg(expo), expo, powA, powA, conjg(C_Ap), C_Ap, overlap_x, overlap_y, overlap_z, integ2, nz)
|
C_Ap, C_Ap, overlap_x, overlap_y, overlap_z, integ1, nz)
|
||||||
|
|
||||||
|
call overlap_cgaussian_xyz(conjg(C_Ae), C_Ae, conjg(expo), expo, powA, powA, &
|
||||||
|
conjg(C_Ap), C_Ap, overlap_x, overlap_y, overlap_z, integ2, nz)
|
||||||
|
|
||||||
norm = 2.d0 * real(C1 * integ1 + C2 * integ2)
|
norm = 2.d0 * real(C1 * integ1 + C2 * integ2)
|
||||||
|
|
||||||
|
!ao_coef_norm_cgtos(i,j) = 1.d0 / dsqrt(norm)
|
||||||
ao_coef_norm_cgtos(i,j) = ao_coef(i,j) / dsqrt(norm)
|
ao_coef_norm_cgtos(i,j) = ao_coef(i,j) / dsqrt(norm)
|
||||||
enddo
|
enddo
|
||||||
|
|
||||||
@ -95,7 +100,7 @@ BEGIN_PROVIDER [double precision, ao_coef_norm_cgtos, (ao_num, ao_prim_num_max)]
|
|||||||
ao_coef_norm_cgtos(i,j) = ao_coef(i,j)
|
ao_coef_norm_cgtos(i,j) = ao_coef(i,j)
|
||||||
enddo
|
enddo
|
||||||
|
|
||||||
endif
|
endif ! primitives_normalized
|
||||||
|
|
||||||
enddo
|
enddo
|
||||||
|
|
||||||
|
@ -46,12 +46,13 @@ end
|
|||||||
|
|
||||||
! ---
|
! ---
|
||||||
|
|
||||||
subroutine overlap_cgaussian_xyz(Ae_center, Be_center, alpha, beta, power_A, power_B, Ap_center, Bp_center, &
|
subroutine overlap_cgaussian_xyz(Ae_center, Be_center, alpha, beta, power_A, power_B, &
|
||||||
overlap_x, overlap_y, overlap_z, overlap, dim)
|
Ap_center, Bp_center, overlap_x, overlap_y, overlap_z, overlap, dim)
|
||||||
|
|
||||||
BEGIN_DOC
|
BEGIN_DOC
|
||||||
!
|
!
|
||||||
! S_x = \int (x - Ap_x)^{a_x} exp(-\alpha (x - Ae_x)^2) (x - Bp_x)^{b_x} exp(-beta (x - Be_x)^2) dx
|
! S_x = \int (x - Ap_x)^{a_x} exp(-\alpha (x - Ae_x)^2)
|
||||||
|
! (x - Bp_x)^{b_x} exp(-\beta (x - Be_x)^2) dx
|
||||||
!
|
!
|
||||||
! S = S_x S_y S_z
|
! S = S_x S_y S_z
|
||||||
!
|
!
|
||||||
@ -70,8 +71,9 @@ subroutine overlap_cgaussian_xyz(Ae_center, Be_center, alpha, beta, power_A, pow
|
|||||||
integer :: i, nmax, iorder_p(3)
|
integer :: i, nmax, iorder_p(3)
|
||||||
complex*16 :: P_new(0:max_dim,3), P_center(3), fact_p, p, inv_sq_p
|
complex*16 :: P_new(0:max_dim,3), P_center(3), fact_p, p, inv_sq_p
|
||||||
complex*16 :: F_integral_tab(0:max_dim)
|
complex*16 :: F_integral_tab(0:max_dim)
|
||||||
|
complex*16 :: ab, arg
|
||||||
|
|
||||||
complex*16 :: Fc_integral
|
complex*16, external :: Fc_integral
|
||||||
|
|
||||||
call give_explicit_cpoly_and_cgaussian(P_new, P_center, p, fact_p, iorder_p, &
|
call give_explicit_cpoly_and_cgaussian(P_new, P_center, p, fact_p, iorder_p, &
|
||||||
alpha, beta, power_A, power_B, Ae_center, Be_center, Ap_center, Bp_center, dim)
|
alpha, beta, power_A, power_B, Ae_center, Be_center, Ap_center, Bp_center, dim)
|
||||||
@ -85,36 +87,52 @@ subroutine overlap_cgaussian_xyz(Ae_center, Be_center, alpha, beta, power_A, pow
|
|||||||
endif
|
endif
|
||||||
|
|
||||||
nmax = maxval(iorder_p)
|
nmax = maxval(iorder_p)
|
||||||
|
|
||||||
inv_sq_p = (1.d0, 0.d0) / zsqrt(p)
|
inv_sq_p = (1.d0, 0.d0) / zsqrt(p)
|
||||||
do i = 0, nmax
|
do i = 0, nmax
|
||||||
F_integral_tab(i) = Fc_integral(i, inv_sq_p)
|
F_integral_tab(i) = Fc_integral(i, inv_sq_p)
|
||||||
enddo
|
enddo
|
||||||
|
|
||||||
overlap_x = P_new(0,1) * F_integral_tab(0)
|
ab = alpha * beta * inv_sq_p
|
||||||
overlap_y = P_new(0,2) * F_integral_tab(0)
|
|
||||||
overlap_z = P_new(0,3) * F_integral_tab(0)
|
|
||||||
|
|
||||||
|
arg = ab * (Ae_center(1) - Be_center(1)) &
|
||||||
|
* (Ae_center(1) - Be_center(1))
|
||||||
|
if(real(arg) > 40.d0) then
|
||||||
|
overlap_x = (0.d0, 0.d0)
|
||||||
|
else
|
||||||
|
overlap_x = P_new(0,1) * F_integral_tab(0)
|
||||||
do i = 1, iorder_p(1)
|
do i = 1, iorder_p(1)
|
||||||
overlap_x = overlap_x + P_new(i,1) * F_integral_tab(i)
|
overlap_x = overlap_x + P_new(i,1) * F_integral_tab(i)
|
||||||
enddo
|
enddo
|
||||||
call cgaussian_product_x(alpha, Ap_center(1), beta, Bp_center(1), fact_p, p, P_center(1))
|
overlap_x = overlap_x * zexp(-arg)
|
||||||
overlap_x *= fact_p
|
endif
|
||||||
|
|
||||||
|
arg = ab * (Ae_center(2) - Be_center(2)) &
|
||||||
|
* (Ae_center(2) - Be_center(2))
|
||||||
|
if(real(arg) > 40.d0) then
|
||||||
|
overlap_y = (0.d0, 0.d0)
|
||||||
|
else
|
||||||
|
overlap_y = P_new(0,2) * F_integral_tab(0)
|
||||||
do i = 1, iorder_p(2)
|
do i = 1, iorder_p(2)
|
||||||
overlap_y = overlap_y + P_new(i,2) * F_integral_tab(i)
|
overlap_y = overlap_y + P_new(i,2) * F_integral_tab(i)
|
||||||
enddo
|
enddo
|
||||||
call cgaussian_product_x(alpha, Ap_center(2), beta, Bp_center(2), fact_p, p, P_center(2))
|
overlap_y = overlap_y * zexp(-arg)
|
||||||
overlap_y *= fact_p
|
endif
|
||||||
|
|
||||||
|
arg = ab * (Ae_center(3) - Be_center(3)) &
|
||||||
|
* (Ae_center(3) - Be_center(3))
|
||||||
|
if(real(arg) > 40.d0) then
|
||||||
|
overlap_z = (0.d0, 0.d0)
|
||||||
|
else
|
||||||
|
overlap_z = P_new(0,3) * F_integral_tab(0)
|
||||||
do i = 1, iorder_p(3)
|
do i = 1, iorder_p(3)
|
||||||
overlap_z = overlap_z + P_new(i,3) * F_integral_tab(i)
|
overlap_z = overlap_z + P_new(i,3) * F_integral_tab(i)
|
||||||
enddo
|
enddo
|
||||||
call cgaussian_product_x(alpha, Ap_center(3), beta, Bp_center(3), fact_p, p, P_center(3))
|
overlap_z = overlap_z * zexp(-arg)
|
||||||
overlap_z *= fact_p
|
endif
|
||||||
|
|
||||||
overlap = overlap_x * overlap_y * overlap_z
|
overlap = overlap_x * overlap_y * overlap_z
|
||||||
|
|
||||||
|
return
|
||||||
end
|
end
|
||||||
|
|
||||||
! ---
|
! ---
|
||||||
|
@ -91,8 +91,8 @@ subroutine give_explicit_cpoly_and_cgaussian(P_new, P_center, p, fact_k, iorder,
|
|||||||
include 'constants.include.F'
|
include 'constants.include.F'
|
||||||
|
|
||||||
integer, intent(in) :: dim, a(3), b(3)
|
integer, intent(in) :: dim, a(3), b(3)
|
||||||
complex*16, intent(in) :: alpha, Ap_center(3), Ae_center(3)
|
complex*16, intent(in) :: alpha, Ae_center(3), Ap_center(3)
|
||||||
complex*16, intent(in) :: beta, Bp_center(3), Be_center(3)
|
complex*16, intent(in) :: beta, Be_center(3), Bp_center(3)
|
||||||
integer, intent(out) :: iorder(3)
|
integer, intent(out) :: iorder(3)
|
||||||
complex*16, intent(out) :: p, P_center(3), fact_k, P_new(0:max_dim,3)
|
complex*16, intent(out) :: p, P_center(3), fact_k, P_new(0:max_dim,3)
|
||||||
|
|
||||||
@ -167,13 +167,12 @@ subroutine cgaussian_product(a, xa, b, xb, k, p, xp)
|
|||||||
complex*16, intent(in) :: a, b, xa(3), xb(3)
|
complex*16, intent(in) :: a, b, xa(3), xb(3)
|
||||||
complex*16, intent(out) :: p, k, xp(3)
|
complex*16, intent(out) :: p, k, xp(3)
|
||||||
|
|
||||||
double precision :: tmp_mod
|
|
||||||
complex*16 :: p_inv, xab(3), ab
|
complex*16 :: p_inv, xab(3), ab
|
||||||
|
|
||||||
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: xab
|
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: xab
|
||||||
|
|
||||||
ASSERT (REAL(a) > 0.)
|
ASSERT (real(a) > 0.)
|
||||||
ASSERT (REAL(b) > 0.)
|
ASSERT (real(b) > 0.)
|
||||||
|
|
||||||
! new exponent
|
! new exponent
|
||||||
p = a + b
|
p = a + b
|
||||||
@ -186,8 +185,7 @@ subroutine cgaussian_product(a, xa, b, xb, k, p, xp)
|
|||||||
ab = a * b * p_inv
|
ab = a * b * p_inv
|
||||||
|
|
||||||
k = ab * (xab(1)*xab(1) + xab(2)*xab(2) + xab(3)*xab(3))
|
k = ab * (xab(1)*xab(1) + xab(2)*xab(2) + xab(3)*xab(3))
|
||||||
tmp_mod = dsqrt(real(k)*real(k) + aimag(k)*aimag(k))
|
if(real(k) .gt. 40.d0) then
|
||||||
if(tmp_mod .gt. 40.d0) then
|
|
||||||
k = (0.d0, 0.d0)
|
k = (0.d0, 0.d0)
|
||||||
xp(1:3) = (0.d0, 0.d0)
|
xp(1:3) = (0.d0, 0.d0)
|
||||||
return
|
return
|
||||||
@ -228,8 +226,8 @@ subroutine cgaussian_product_x(a, xa, b, xb, k, p, xp)
|
|||||||
p_inv = (1.d0, 0.d0) / p
|
p_inv = (1.d0, 0.d0) / p
|
||||||
ab = a * b * p_inv
|
ab = a * b * p_inv
|
||||||
|
|
||||||
k = ab * xab*xab
|
k = ab * xab * xab
|
||||||
if(zabs(k) > 40.d0) then
|
if(real(k) > 40.d0) then
|
||||||
k = (0.d0, 0.d0)
|
k = (0.d0, 0.d0)
|
||||||
xp = (0.d0, 0.d0)
|
xp = (0.d0, 0.d0)
|
||||||
return
|
return
|
||||||
@ -300,7 +298,6 @@ subroutine add_cpoly(b, nb, c, nc, d, nd)
|
|||||||
complex*16, intent(out) :: d(0:nb+nc)
|
complex*16, intent(out) :: d(0:nb+nc)
|
||||||
|
|
||||||
integer :: ib
|
integer :: ib
|
||||||
double precision :: tmp_mod
|
|
||||||
complex*16 :: tmp
|
complex*16 :: tmp
|
||||||
|
|
||||||
nd = nb + nc
|
nd = nb + nc
|
||||||
@ -309,11 +306,9 @@ subroutine add_cpoly(b, nb, c, nc, d, nd)
|
|||||||
enddo
|
enddo
|
||||||
|
|
||||||
tmp = d(nd)
|
tmp = d(nd)
|
||||||
tmp_mod = dsqrt(REAL(tmp)*REAL(tmp) + AIMAG(tmp)*AIMAG(tmp))
|
do while( (zabs(tmp) .lt. 1.d-15) .and. (nd >= 0) )
|
||||||
do while( (tmp_mod .lt. 1.d-15) .and. (nd >= 0) )
|
|
||||||
nd -= 1
|
nd -= 1
|
||||||
tmp = d(nd)
|
tmp = d(nd)
|
||||||
tmp_mod = dsqrt(REAL(tmp)*REAL(tmp) + AIMAG(tmp)*AIMAG(tmp))
|
|
||||||
if(nd < 0) exit
|
if(nd < 0) exit
|
||||||
enddo
|
enddo
|
||||||
|
|
||||||
@ -336,7 +331,6 @@ subroutine add_cpoly_multiply(b, nb, cst, d, nd)
|
|||||||
complex*16, intent(inout) :: d(0:max(nb, nd))
|
complex*16, intent(inout) :: d(0:max(nb, nd))
|
||||||
|
|
||||||
integer :: ib
|
integer :: ib
|
||||||
double precision :: tmp_mod
|
|
||||||
complex*16 :: tmp
|
complex*16 :: tmp
|
||||||
|
|
||||||
nd = max(nd, nb)
|
nd = max(nd, nb)
|
||||||
@ -347,12 +341,10 @@ subroutine add_cpoly_multiply(b, nb, cst, d, nd)
|
|||||||
enddo
|
enddo
|
||||||
|
|
||||||
tmp = d(nd)
|
tmp = d(nd)
|
||||||
tmp_mod = dsqrt(real(tmp)*real(tmp) + aimag(tmp)*aimag(tmp))
|
do while(zabs(tmp) .lt. 1.d-15)
|
||||||
do while(tmp_mod .lt. 1.d-15)
|
|
||||||
nd -= 1
|
nd -= 1
|
||||||
if(nd < 0) exit
|
if(nd < 0) exit
|
||||||
tmp = d(nd)
|
tmp = d(nd)
|
||||||
tmp_mod = dsqrt(REAL(tmp)*REAL(tmp) + AIMAG(tmp)*AIMAG(tmp))
|
|
||||||
enddo
|
enddo
|
||||||
|
|
||||||
endif
|
endif
|
||||||
|
Loading…
Reference in New Issue
Block a user