9
1
mirror of https://github.com/QuantumPackage/qp2.git synced 2025-01-05 01:48:34 +01:00

separate jk terms for debugging

This commit is contained in:
Kevin Gasperich 2022-09-28 10:54:01 -05:00
parent 807a781276
commit 4b4235d161
3 changed files with 296 additions and 19 deletions

View File

@ -13,19 +13,22 @@ END_PROVIDER
BEGIN_PROVIDER [ double precision, hf_energy]
&BEGIN_PROVIDER [ double precision, hf_two_electron_energy]
&BEGIN_PROVIDER [ double precision, hf_two_electron_energy_jk, (2)]
&BEGIN_PROVIDER [ double precision, hf_one_electron_energy]
implicit none
BEGIN_DOC
! Hartree-Fock energy containing the nuclear repulsion, and its one- and two-body components.
END_DOC
integer :: i,j,k
integer :: i,j,k,jk
hf_energy = nuclear_repulsion
hf_two_electron_energy = 0.d0
hf_two_electron_energy_jk = 0.d0
hf_one_electron_energy = 0.d0
if (is_complex) then
complex*16 :: hf_1e_tmp, hf_2e_tmp
complex*16 :: hf_1e_tmp, hf_2e_tmp, hf_2e_tmp_jk(2)
hf_1e_tmp = (0.d0,0.d0)
hf_2e_tmp = (0.d0,0.d0)
hf_2e_tmp_jk = (0.d0,0.d0)
do k=1,kpt_num
do j=1,ao_num_per_kpt
do i=1,ao_num_per_kpt
@ -33,9 +36,21 @@ END_PROVIDER
+ao_two_e_integral_beta_kpts(i,j,k) * scf_density_matrix_ao_beta_kpts(j,i,k) )
hf_1e_tmp += ao_one_e_integrals_kpts(i,j,k) * (scf_density_matrix_ao_alpha_kpts(j,i,k) &
+ scf_density_matrix_ao_beta_kpts (j,i,k) )
do jk=1,2
hf_2e_tmp_jk(jk) += 0.5d0 * ( ao_two_e_integral_alpha_kpts_jk(i,j,k,jk) * scf_density_matrix_ao_alpha_kpts(j,i,k) &
+ao_two_e_integral_beta_kpts_jk(i,j,k,jk) * scf_density_matrix_ao_beta_kpts(j,i,k) )
enddo
enddo
enddo
enddo
do jk=1,2
if (dabs(dimag(hf_2e_tmp_jk(jk))).gt.1.d-10) then
print*,'HF_2e energy (jk) should be real:',jk,irp_here
stop -1
else
hf_two_electron_energy_jk(jk) = dble(hf_2e_tmp_jk(jk))
endif
enddo
if (dabs(dimag(hf_2e_tmp)).gt.1.d-10) then
print*,'HF_2e energy should be real:',irp_here
stop -1

View File

@ -15,6 +15,9 @@ subroutine run
print*,hf_one_electron_energy
print*,hf_two_electron_energy
print*,hf_energy
print*,'hf 2e J,K energy'
print*,hf_two_electron_energy_jk(1)
print*,hf_two_electron_energy_jk(2)
end

View File

@ -542,27 +542,26 @@ BEGIN_PROVIDER [ complex*16, Fock_matrix_ao_kpts, (ao_num_per_kpt, ao_num_per_kp
endif
END_PROVIDER
BEGIN_PROVIDER [ complex*16, ao_two_e_integral_alpha_kpts, (ao_num_per_kpt, ao_num_per_kpt, kpt_num) ]
&BEGIN_PROVIDER [ complex*16, ao_two_e_integral_beta_kpts , (ao_num_per_kpt, ao_num_per_kpt, kpt_num) ]
BEGIN_PROVIDER [ complex*16, ao_two_e_integral_alpha_kpts_jk, (ao_num_per_kpt, ao_num_per_kpt, kpt_num, 2) ]
&BEGIN_PROVIDER [ complex*16, ao_two_e_integral_beta_kpts_jk , (ao_num_per_kpt, ao_num_per_kpt, kpt_num, 2) ]
use map_module
implicit none
BEGIN_DOC
! Alpha and Beta Fock matrices in AO basis set
! Alpha and Beta Fock matrices in AO basis set separated into j/k
END_DOC
!TODO: finish implementing this: see complex qp1 (different mapping)
integer :: i,j,k,l,k1,r,s
integer :: i0,j0,k0,l0
integer*8 :: p,q
complex*16 :: integral, c0
complex*16, allocatable :: ao_two_e_integral_alpha_tmp(:,:,:)
complex*16, allocatable :: ao_two_e_integral_beta_tmp(:,:,:)
ao_two_e_integral_alpha_kpts = (0.d0,0.d0)
ao_two_e_integral_beta_kpts = (0.d0,0.d0)
complex*16, allocatable :: ao_two_e_integral_alpha_tmp(:,:,:,:)
complex*16, allocatable :: ao_two_e_integral_beta_tmp(:,:,:,:)
ao_two_e_integral_alpha_kpts_jk = (0.d0,0.d0)
ao_two_e_integral_beta_kpts_jk = (0.d0,0.d0)
PROVIDE ao_two_e_integrals_in_map scf_density_matrix_ao_alpha_kpts scf_density_matrix_ao_beta_kpts
integer(omp_lock_kind) :: lck(ao_num)
integer(map_size_kind) :: i8
integer :: ii(4), jj(4), kk(4), ll(4), k2
@ -572,7 +571,267 @@ END_PROVIDER
complex*16, parameter :: i_sign(4) = (/(0.d0,1.d0),(0.d0,1.d0),(0.d0,-1.d0),(0.d0,-1.d0)/)
integer(key_kind) :: key1
integer :: kpt_i,kpt_j,kpt_k,kpt_l,idx_i,idx_j,idx_k,idx_l
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP PRIVATE(i,j,l,k1,k,integral,ii,jj,kk,ll,i8,keys,values,n_elements_max, &
!$OMP n_elements,ao_two_e_integral_alpha_tmp,ao_two_e_integral_beta_tmp, &
!$OMP kpt_i,kpt_j,kpt_k,kpt_l,idx_i,idx_j,idx_k,idx_l, &
!$OMP c0,key1)&
!$OMP SHARED(ao_num_per_kpt,SCF_density_matrix_ao_alpha_kpts, kpt_num, irp_here, &
!$OMP SCF_density_matrix_ao_beta_kpts, &
!$OMP ao_integrals_map, ao_two_e_integral_alpha_kpts_jk, ao_two_e_integral_beta_kpts_jk)
call get_cache_map_n_elements_max(ao_integrals_map,n_elements_max)
allocate(keys(n_elements_max), values(n_elements_max))
allocate(ao_two_e_integral_alpha_tmp(ao_num_per_kpt,ao_num_per_kpt,kpt_num,2), &
ao_two_e_integral_beta_tmp(ao_num_per_kpt,ao_num_per_kpt,kpt_num,2))
ao_two_e_integral_alpha_tmp = (0.d0,0.d0)
ao_two_e_integral_beta_tmp = (0.d0,0.d0)
!$OMP DO SCHEDULE(static,1)
do i8=0_8,ao_integrals_map%map_size
n_elements = n_elements_max
call get_cache_map(ao_integrals_map,i8,keys,values,n_elements)
do k1=1,n_elements
! get original key
! reverse of 2*key (imag part) and 2*key-1 (real part)
key1 = shiftr(keys(k1)+1,1)
call two_e_integrals_index_reverse_complex_1(ii,jj,kk,ll,key1)
! i<=k, j<=l, ik<=jl
! ijkl, jilk, klij*, lkji*
if (shiftl(key1,1)==keys(k1)) then !imaginary part (even)
do k2=1,4
if (ii(k2)==0) then
cycle
endif
i = ii(k2)
j = jj(k2)
k = kk(k2)
l = ll(k2)
call get_kpt_idx_ao(i,kpt_i,idx_i)
call get_kpt_idx_ao(j,kpt_j,idx_j)
call get_kpt_idx_ao(k,kpt_k,idx_k)
call get_kpt_idx_ao(l,kpt_l,idx_l)
integral = i_sign(k2)*values(k1) !for klij and lkji, take complex conjugate
!G_a(i,k) += D_{ab}(l,j)*(<ij|kl>)
!G_b(i,k) += D_{ab}(l,j)*(<ij|kl>)
!G_a(i,l) -= D_a (k,j)*(<ij|kl>)
!G_b(i,l) -= D_b (k,j)*(<ij|kl>)
if (kpt_l.eq.kpt_j) then
c0 = (scf_density_matrix_ao_alpha_kpts(idx_l,idx_j,kpt_j)+scf_density_matrix_ao_beta_kpts(idx_l,idx_j,kpt_j))*integral
if(kpt_i.ne.kpt_k) then
print*,'problem in ',irp_here,' ikjl: ',kpt_i,kpt_k,kpt_j,kpt_l
stop 1
endif
ao_two_e_integral_alpha_tmp(idx_i,idx_k,kpt_i,1) += c0
ao_two_e_integral_beta_tmp (idx_i,idx_k,kpt_i,1) += c0
endif
if (kpt_l.eq.kpt_i) then
if(kpt_j.ne.kpt_k) then
print*,'problem in ',irp_here,' ikjl: ',kpt_i,kpt_k,kpt_j,kpt_l
stop 1
endif
ao_two_e_integral_alpha_tmp(idx_i,idx_l,kpt_i,2) -= SCF_density_matrix_ao_alpha_kpts(idx_k,idx_j,kpt_j) * integral
ao_two_e_integral_beta_tmp (idx_i,idx_l,kpt_i,2) -= scf_density_matrix_ao_beta_kpts (idx_k,idx_j,kpt_j) * integral
endif
enddo
else ! real part
do k2=1,4
if (ii(k2)==0) then
cycle
endif
i = ii(k2)
j = jj(k2)
k = kk(k2)
l = ll(k2)
call get_kpt_idx_ao(i,kpt_i,idx_i)
call get_kpt_idx_ao(j,kpt_j,idx_j)
call get_kpt_idx_ao(k,kpt_k,idx_k)
call get_kpt_idx_ao(l,kpt_l,idx_l)
integral = values(k1)
if (kpt_l.eq.kpt_j) then
c0 = (scf_density_matrix_ao_alpha_kpts(idx_l,idx_j,kpt_j)+scf_density_matrix_ao_beta_kpts(idx_l,idx_j,kpt_j))*integral
if(kpt_i.ne.kpt_k) then
print*,'problem in ',irp_here,' ikjl: ',kpt_i,kpt_k,kpt_j,kpt_l
stop 1
endif
ao_two_e_integral_alpha_tmp(idx_i,idx_k,kpt_i,1) += c0
ao_two_e_integral_beta_tmp (idx_i,idx_k,kpt_i,1) += c0
endif
if (kpt_l.eq.kpt_i) then
if(kpt_j.ne.kpt_k) then
print*,'problem in ',irp_here,' ikjl: ',kpt_i,kpt_k,kpt_j,kpt_l
stop 1
endif
ao_two_e_integral_alpha_tmp(idx_i,idx_l,kpt_i,2) -= SCF_density_matrix_ao_alpha_kpts(idx_k,idx_j,kpt_j) * integral
ao_two_e_integral_beta_tmp (idx_i,idx_l,kpt_i,2) -= scf_density_matrix_ao_beta_kpts (idx_k,idx_j,kpt_j) * integral
endif
enddo
endif
enddo
enddo
!$OMP END DO NOWAIT
!$OMP CRITICAL
ao_two_e_integral_alpha_kpts_jk += ao_two_e_integral_alpha_tmp
ao_two_e_integral_beta_kpts_jk += ao_two_e_integral_beta_tmp
!$OMP END CRITICAL
deallocate(keys,values,ao_two_e_integral_alpha_tmp,ao_two_e_integral_beta_tmp)
!$OMP END PARALLEL
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP PRIVATE(i,j,l,k1,k,integral,ii,jj,kk,ll,i8,keys,values,n_elements_max, &
!$OMP n_elements,ao_two_e_integral_alpha_tmp,ao_two_e_integral_beta_tmp, &
!$OMP kpt_i,kpt_j,kpt_k,kpt_l,idx_i,idx_j,idx_k,idx_l, &
!$OMP c0,key1)&
!$OMP SHARED(ao_num_per_kpt,SCF_density_matrix_ao_alpha_kpts,kpt_num, irp_here, &
!$OMP SCF_density_matrix_ao_beta_kpts, &
!$OMP ao_integrals_map_2, ao_two_e_integral_alpha_kpts_jk, ao_two_e_integral_beta_kpts_jk)
call get_cache_map_n_elements_max(ao_integrals_map_2,n_elements_max)
allocate(keys(n_elements_max), values(n_elements_max))
allocate(ao_two_e_integral_alpha_tmp(ao_num_per_kpt,ao_num_per_kpt,kpt_num,2), &
ao_two_e_integral_beta_tmp(ao_num_per_kpt,ao_num_per_kpt,kpt_num,2))
ao_two_e_integral_alpha_tmp = (0.d0,0.d0)
ao_two_e_integral_beta_tmp = (0.d0,0.d0)
!$OMP DO SCHEDULE(static,1)
do i8=0_8,ao_integrals_map_2%map_size
n_elements = n_elements_max
call get_cache_map(ao_integrals_map_2,i8,keys,values,n_elements)
do k1=1,n_elements
! get original key
! reverse of 2*key (imag part) and 2*key-1 (real part)
key1 = shiftr(keys(k1)+1,1)
call two_e_integrals_index_reverse_complex_2(ii,jj,kk,ll,key1)
! i>=k, j<=l, ik<=jl
! ijkl, jilk, klij*, lkji*
if (shiftl(key1,1)==keys(k1)) then !imaginary part
do k2=1,4
if (ii(k2)==0) then
cycle
endif
i = ii(k2)
j = jj(k2)
k = kk(k2)
l = ll(k2)
call get_kpt_idx_ao(i,kpt_i,idx_i)
call get_kpt_idx_ao(j,kpt_j,idx_j)
call get_kpt_idx_ao(k,kpt_k,idx_k)
call get_kpt_idx_ao(l,kpt_l,idx_l)
integral = i_sign(k2)*values(k1) ! for klij and lkji, take conjugate
!G_a(i,k) += D_{ab}(l,j)*(<ij|kl>)
!G_b(i,k) += D_{ab}(l,j)*(<ij|kl>)
!G_a(i,l) -= D_a (k,j)*(<ij|kl>)
!G_b(i,l) -= D_b (k,j)*(<ij|kl>)
if (kpt_l.eq.kpt_j) then
c0 = (scf_density_matrix_ao_alpha_kpts(idx_l,idx_j,kpt_j)+scf_density_matrix_ao_beta_kpts(idx_l,idx_j,kpt_j))*integral
if(kpt_i.ne.kpt_k) then
print*,'problem in ',irp_here,' ikjl: ',kpt_i,kpt_k,kpt_j,kpt_l
stop 1
endif
ao_two_e_integral_alpha_tmp(idx_i,idx_k,kpt_i,1) += c0
ao_two_e_integral_beta_tmp (idx_i,idx_k,kpt_i,1) += c0
endif
if (kpt_l.eq.kpt_i) then
if(kpt_j.ne.kpt_k) then
print*,'problem in ',irp_here,' ikjl: ',kpt_i,kpt_k,kpt_j,kpt_l
stop 1
endif
ao_two_e_integral_alpha_tmp(idx_i,idx_l,kpt_i,2) -= SCF_density_matrix_ao_alpha_kpts(idx_k,idx_j,kpt_j) * integral
ao_two_e_integral_beta_tmp (idx_i,idx_l,kpt_i,2) -= scf_density_matrix_ao_beta_kpts (idx_k,idx_j,kpt_j) * integral
endif
enddo
else ! real part
do k2=1,4
if (ii(k2)==0) then
cycle
endif
i = ii(k2)
j = jj(k2)
k = kk(k2)
l = ll(k2)
call get_kpt_idx_ao(i,kpt_i,idx_i)
call get_kpt_idx_ao(j,kpt_j,idx_j)
call get_kpt_idx_ao(k,kpt_k,idx_k)
call get_kpt_idx_ao(l,kpt_l,idx_l)
integral = values(k1)
if (kpt_l.eq.kpt_j) then
c0 = (scf_density_matrix_ao_alpha_kpts(idx_l,idx_j,kpt_j)+scf_density_matrix_ao_beta_kpts(idx_l,idx_j,kpt_j))*integral
if(kpt_i.ne.kpt_k) then
print*,'problem in ',irp_here,' ikjl: ',kpt_i,kpt_k,kpt_j,kpt_l
stop 1
endif
ao_two_e_integral_alpha_tmp(idx_i,idx_k,kpt_i,1) += c0
ao_two_e_integral_beta_tmp (idx_i,idx_k,kpt_i,1) += c0
endif
if (kpt_l.eq.kpt_i) then
if(kpt_j.ne.kpt_k) then
print*,'problem in ',irp_here,' ikjl: ',kpt_i,kpt_k,kpt_j,kpt_l
stop 1
endif
ao_two_e_integral_alpha_tmp(idx_i,idx_l,kpt_i,2) -= SCF_density_matrix_ao_alpha_kpts(idx_k,idx_j,kpt_j) * integral
ao_two_e_integral_beta_tmp (idx_i,idx_l,kpt_i,2) -= scf_density_matrix_ao_beta_kpts (idx_k,idx_j,kpt_j) * integral
endif
enddo
endif
enddo
enddo
!$OMP END DO NOWAIT
!$OMP CRITICAL
ao_two_e_integral_alpha_kpts_jk += ao_two_e_integral_alpha_tmp
ao_two_e_integral_beta_kpts_jk += ao_two_e_integral_beta_tmp
!$OMP END CRITICAL
deallocate(keys,values,ao_two_e_integral_alpha_tmp,ao_two_e_integral_beta_tmp)
!$OMP END PARALLEL
END_PROVIDER
BEGIN_PROVIDER [ complex*16, ao_two_e_integral_alpha_kpts, (ao_num_per_kpt, ao_num_per_kpt, kpt_num) ]
&BEGIN_PROVIDER [ complex*16, ao_two_e_integral_beta_kpts , (ao_num_per_kpt, ao_num_per_kpt, kpt_num) ]
use map_module
implicit none
BEGIN_DOC
! Alpha and Beta Fock matrices in AO basis set
END_DOC
!TODO: finish implementing this: see complex qp1 (different mapping)
integer :: i,j,k,l,k1,r,s
integer :: i0,j0,k0,l0
integer*8 :: p,q
complex*16 :: integral, c0
complex*16, allocatable :: ao_two_e_integral_alpha_tmp(:,:,:)
complex*16, allocatable :: ao_two_e_integral_beta_tmp(:,:,:)
ao_two_e_integral_alpha_kpts = (0.d0,0.d0)
ao_two_e_integral_beta_kpts = (0.d0,0.d0)
PROVIDE ao_two_e_integrals_in_map scf_density_matrix_ao_alpha_kpts scf_density_matrix_ao_beta_kpts
integer(omp_lock_kind) :: lck(ao_num)
integer(map_size_kind) :: i8
integer :: ii(4), jj(4), kk(4), ll(4), k2
integer(cache_map_size_kind) :: n_elements_max, n_elements
integer(key_kind), allocatable :: keys(:)
double precision, allocatable :: values(:)
complex*16, parameter :: i_sign(4) = (/(0.d0,1.d0),(0.d0,1.d0),(0.d0,-1.d0),(0.d0,-1.d0)/)
integer(key_kind) :: key1
integer :: kpt_i,kpt_j,kpt_k,kpt_l,idx_i,idx_j,idx_k,idx_l
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP PRIVATE(i,j,l,k1,k,integral,ii,jj,kk,ll,i8,keys,values,n_elements_max, &
!$OMP n_elements,ao_two_e_integral_alpha_tmp,ao_two_e_integral_beta_tmp, &
@ -581,14 +840,14 @@ END_PROVIDER
!$OMP SHARED(ao_num_per_kpt,SCF_density_matrix_ao_alpha_kpts, kpt_num, irp_here, &
!$OMP SCF_density_matrix_ao_beta_kpts, &
!$OMP ao_integrals_map, ao_two_e_integral_alpha_kpts, ao_two_e_integral_beta_kpts)
call get_cache_map_n_elements_max(ao_integrals_map,n_elements_max)
allocate(keys(n_elements_max), values(n_elements_max))
allocate(ao_two_e_integral_alpha_tmp(ao_num_per_kpt,ao_num_per_kpt,kpt_num), &
ao_two_e_integral_beta_tmp(ao_num_per_kpt,ao_num_per_kpt,kpt_num))
ao_two_e_integral_alpha_tmp = (0.d0,0.d0)
ao_two_e_integral_beta_tmp = (0.d0,0.d0)
!$OMP DO SCHEDULE(static,1)
do i8=0_8,ao_integrals_map%map_size
n_elements = n_elements_max
@ -686,7 +945,7 @@ END_PROVIDER
deallocate(keys,values,ao_two_e_integral_alpha_tmp,ao_two_e_integral_beta_tmp)
!$OMP END PARALLEL
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP PRIVATE(i,j,l,k1,k,integral,ii,jj,kk,ll,i8,keys,values,n_elements_max, &
!$OMP n_elements,ao_two_e_integral_alpha_tmp,ao_two_e_integral_beta_tmp, &
@ -695,14 +954,14 @@ END_PROVIDER
!$OMP SHARED(ao_num_per_kpt,SCF_density_matrix_ao_alpha_kpts,kpt_num, irp_here, &
!$OMP SCF_density_matrix_ao_beta_kpts, &
!$OMP ao_integrals_map_2, ao_two_e_integral_alpha_kpts, ao_two_e_integral_beta_kpts)
call get_cache_map_n_elements_max(ao_integrals_map_2,n_elements_max)
allocate(keys(n_elements_max), values(n_elements_max))
allocate(ao_two_e_integral_alpha_tmp(ao_num_per_kpt,ao_num_per_kpt,kpt_num), &
ao_two_e_integral_beta_tmp(ao_num_per_kpt,ao_num_per_kpt,kpt_num))
ao_two_e_integral_alpha_tmp = (0.d0,0.d0)
ao_two_e_integral_beta_tmp = (0.d0,0.d0)
!$OMP DO SCHEDULE(static,1)
do i8=0_8,ao_integrals_map_2%map_size
n_elements = n_elements_max