9
1
mirror of https://github.com/QuantumPackage/qp2.git synced 2024-12-21 11:03:29 +01:00

Merge branch 'dev-stable-tc-scf' of https://github.com/AbdAmmar/qp2 into dev-stable-tc-scf

This commit is contained in:
AbdAmmar 2023-06-21 10:44:45 +02:00
commit 45f7d69e70
116 changed files with 10545 additions and 2657 deletions

2
configure vendored
View File

@ -215,7 +215,6 @@ EOF
cd trexio-${VERSION}
./configure --prefix=\${QP_ROOT} --without-hdf5
make -j 8 && make -j 8 check && make -j 8 install
cp ${QP_ROOT}/include/trexio_f.f90 ${QP_ROOT}/src/ezfio_files
tar -zxvf "\${QP_ROOT}"/external/qp2-dependencies/${ARCHITECTURE}/ninja.tar.gz
mv ninja "\${QP_ROOT}"/bin/
EOF
@ -229,7 +228,6 @@ EOF
cd trexio-${VERSION}
./configure --prefix=\${QP_ROOT}
make -j 8 && make -j 8 check && make -j 8 install
cp ${QP_ROOT}/include/trexio_f.f90 ${QP_ROOT}/src/ezfio_files
EOF

View File

@ -44,8 +44,12 @@ end = struct
let get_default = Qpackage.get_ezfio_default "ao_basis";;
let read_ao_basis () =
Ezfio.get_ao_basis_ao_basis ()
|> AO_basis_name.of_string
let result =
Ezfio.get_ao_basis_ao_basis ()
in
if result <> "None" then
AO_basis_name.of_string result
else failwith "No basis"
;;
let read_ao_num () =
@ -267,7 +271,10 @@ end = struct
|> Ezfio.set_ao_basis_ao_md5 ;
Some result
with
| _ -> (Ezfio.set_ao_basis_ao_md5 "None" ; None)
| _ -> ( "None"
|> Digest.string
|> Digest.to_hex
|> Ezfio.set_ao_basis_ao_md5 ; None)
;;

View File

@ -56,7 +56,10 @@ end = struct
let read_ao_md5 () =
let ao_md5 =
match (Input_ao_basis.Ao_basis.read ()) with
| None -> failwith "Unable to read AO basis"
| None -> ("None"
|> Digest.string
|> Digest.to_hex
|> MD5.of_string)
| Some result -> Input_ao_basis.Ao_basis.to_md5 result
in
let result =

View File

@ -38,7 +38,8 @@ let run slave ?prefix exe ezfio_file =
| Unix.Unix_error _ -> try_new_port (port_number+100)
in
let result =
try_new_port 41279
let port = 10*(Unix.getpid () mod 2823) + 32_769 in
try_new_port port
in
Zmq.Socket.close dummy_socket;
Zmq.Context.terminate zmq_context;

View File

@ -1,7 +1,7 @@
#!/usr/bin/env python3
"""
Save the .o from a .f90
and is the .o is asked a second time, retur it
and is the .o is asked a second time, return it
Take in argv command like:
ifort -g -openmp -I IRPF90_temp/Ezfio_files/ -c IRPF90_temp/Integrals_Monoelec/kin_ao_ints.irp.module.F90 -o IRPF90_temp/Integrals_Monoelec/kin_ao_ints.irp.module.o
"""

View File

@ -13,11 +13,17 @@ Options:
import sys
import os
import trexio
import numpy as np
from functools import reduce
from ezfio import ezfio
from docopt import docopt
import qp_bitmasks
try:
import trexio
except ImportError:
print("Error: trexio python module is not found. Try python3 -m pip install trexio")
sys.exit(1)
try:
@ -90,14 +96,15 @@ def write_ezfio(trexio_filename, filename):
p = re.compile(r'(\d*)$')
label = [p.sub("", x).capitalize() for x in label]
ezfio.set_nuclei_nucl_label(label)
print("OK")
else:
ezfio.set_nuclei_nucl_num(1)
ezfio.set_nuclei_nucl_charge([0.])
ezfio.set_nuclei_nucl_coord([0.,0.,0.])
ezfio.set_nuclei_nucl_label(["X"])
print("None")
print("OK")
print("Electrons\t...\t", end=' ')
@ -105,12 +112,12 @@ def write_ezfio(trexio_filename, filename):
try:
num_beta = trexio.read_electron_dn_num(trexio_file)
except:
num_beta = sum(charge)//2
num_beta = int(sum(charge))//2
try:
num_alpha = trexio.read_electron_up_num(trexio_file)
except:
num_alpha = sum(charge) - num_beta
num_alpha = int(sum(charge)) - num_beta
if num_alpha == 0:
print("\n\nError: There are zero electrons in the TREXIO file.\n\n")
@ -118,7 +125,7 @@ def write_ezfio(trexio_filename, filename):
ezfio.set_electrons_elec_alpha_num(num_alpha)
ezfio.set_electrons_elec_beta_num(num_beta)
print("OK")
print(f"{num_alpha} {num_beta}")
print("Basis\t\t...\t", end=' ')
@ -126,60 +133,113 @@ def write_ezfio(trexio_filename, filename):
try:
basis_type = trexio.read_basis_type(trexio_file)
if basis_type.lower() not in ["gaussian", "slater"]:
raise TypeError
if basis_type.lower() in ["gaussian", "slater"]:
shell_num = trexio.read_basis_shell_num(trexio_file)
prim_num = trexio.read_basis_prim_num(trexio_file)
ang_mom = trexio.read_basis_shell_ang_mom(trexio_file)
nucl_index = trexio.read_basis_nucleus_index(trexio_file)
exponent = trexio.read_basis_exponent(trexio_file)
coefficient = trexio.read_basis_coefficient(trexio_file)
shell_index = trexio.read_basis_shell_index(trexio_file)
ao_shell = trexio.read_ao_shell(trexio_file)
shell_num = trexio.read_basis_shell_num(trexio_file)
prim_num = trexio.read_basis_prim_num(trexio_file)
ang_mom = trexio.read_basis_shell_ang_mom(trexio_file)
nucl_index = trexio.read_basis_nucleus_index(trexio_file)
exponent = trexio.read_basis_exponent(trexio_file)
coefficient = trexio.read_basis_coefficient(trexio_file)
shell_index = trexio.read_basis_shell_index(trexio_file)
ao_shell = trexio.read_ao_shell(trexio_file)
ezfio.set_basis_basis("Read from TREXIO")
ezfio.set_ao_basis_ao_basis("Read from TREXIO")
ezfio.set_basis_shell_num(shell_num)
ezfio.set_basis_prim_num(prim_num)
ezfio.set_basis_shell_ang_mom(ang_mom)
ezfio.set_basis_basis_nucleus_index([ x+1 for x in nucl_index ])
ezfio.set_basis_prim_expo(exponent)
ezfio.set_basis_prim_coef(coefficient)
ezfio.set_basis_basis("Read from TREXIO")
ezfio.set_basis_shell_num(shell_num)
ezfio.set_basis_prim_num(prim_num)
ezfio.set_basis_shell_ang_mom(ang_mom)
ezfio.set_basis_basis_nucleus_index([ x+1 for x in nucl_index ])
ezfio.set_basis_prim_expo(exponent)
ezfio.set_basis_prim_coef(coefficient)
nucl_shell_num = []
prev = None
m = 0
for i in ao_shell:
if i != prev:
m += 1
if prev is None or nucl_index[i] != nucl_index[prev]:
nucl_shell_num.append(m)
m = 0
prev = i
assert (len(nucl_shell_num) == nucl_num)
nucl_shell_num = []
prev = None
m = 0
for i in ao_shell:
if i != prev:
m += 1
if prev is None or nucl_index[i] != nucl_index[prev]:
nucl_shell_num.append(m)
m = 0
prev = i
assert (len(nucl_shell_num) == nucl_num)
shell_prim_num = []
prev = shell_index[0]
count = 0
for i in shell_index:
if i != prev:
shell_prim_num.append(count)
count = 0
count += 1
prev = i
shell_prim_num.append(count)
shell_prim_num = []
prev = shell_index[0]
count = 0
for i in shell_index:
if i != prev:
shell_prim_num.append(count)
count = 0
count += 1
prev = i
shell_prim_num.append(count)
assert (len(shell_prim_num) == shell_num)
assert (len(shell_prim_num) == shell_num)
ezfio.set_basis_shell_prim_num(shell_prim_num)
ezfio.set_basis_shell_index([x+1 for x in shell_index])
ezfio.set_basis_nucleus_shell_num(nucl_shell_num)
ezfio.set_basis_shell_prim_num(shell_prim_num)
ezfio.set_basis_shell_index([x+1 for x in shell_index])
ezfio.set_basis_nucleus_shell_num(nucl_shell_num)
shell_factor = trexio.read_basis_shell_factor(trexio_file)
prim_factor = trexio.read_basis_prim_factor(trexio_file)
shell_factor = trexio.read_basis_shell_factor(trexio_file)
prim_factor = trexio.read_basis_prim_factor(trexio_file)
print("OK")
elif basis_type.lower() == "numerical":
shell_num = trexio.read_basis_shell_num(trexio_file)
prim_num = shell_num
ang_mom = trexio.read_basis_shell_ang_mom(trexio_file)
nucl_index = trexio.read_basis_nucleus_index(trexio_file)
exponent = [1.]*prim_num
coefficient = [1.]*prim_num
shell_index = [i for i in range(shell_num)]
ao_shell = trexio.read_ao_shell(trexio_file)
ezfio.set_basis_basis("None")
ezfio.set_ao_basis_ao_basis("None")
ezfio.set_basis_shell_num(shell_num)
ezfio.set_basis_prim_num(prim_num)
ezfio.set_basis_shell_ang_mom(ang_mom)
ezfio.set_basis_basis_nucleus_index([ x+1 for x in nucl_index ])
ezfio.set_basis_prim_expo(exponent)
ezfio.set_basis_prim_coef(coefficient)
nucl_shell_num = []
prev = None
m = 0
for i in ao_shell:
if i != prev:
m += 1
if prev is None or nucl_index[i] != nucl_index[prev]:
nucl_shell_num.append(m)
m = 0
prev = i
assert (len(nucl_shell_num) == nucl_num)
shell_prim_num = []
prev = shell_index[0]
count = 0
for i in shell_index:
if i != prev:
shell_prim_num.append(count)
count = 0
count += 1
prev = i
shell_prim_num.append(count)
assert (len(shell_prim_num) == shell_num)
ezfio.set_basis_shell_prim_num(shell_prim_num)
ezfio.set_basis_shell_index([x+1 for x in shell_index])
ezfio.set_basis_nucleus_shell_num(nucl_shell_num)
shell_factor = trexio.read_basis_shell_factor(trexio_file)
prim_factor = [1.]*prim_num
else:
raise TypeError
print(basis_type)
except:
print("None")
ezfio.set_ao_basis_ao_cartesian(True)
@ -256,9 +316,11 @@ def write_ezfio(trexio_filename, filename):
# ezfio.set_ao_basis_ao_prim_num_max(prim_num_max)
ezfio.set_ao_basis_ao_coef(coef)
ezfio.set_ao_basis_ao_expo(expo)
ezfio.set_ao_basis_ao_basis("Read from TREXIO")
print("OK")
print("OK")
else:
print("None")
# _
@ -279,6 +341,7 @@ def write_ezfio(trexio_filename, filename):
except:
label = "None"
ezfio.set_mo_basis_mo_label(label)
ezfio.set_determinants_mo_label(label)
try:
clss = trexio.read_mo_class(trexio_file)
@ -303,10 +366,10 @@ def write_ezfio(trexio_filename, filename):
for i in range(num_beta):
mo_occ[i] += 1.
ezfio.set_mo_basis_mo_occ(mo_occ)
print("OK")
except:
pass
print("None")
print("OK")
print("Pseudos\t\t...\t", end=' ')
@ -386,8 +449,23 @@ def write_ezfio(trexio_filename, filename):
ezfio.set_pseudo_pseudo_n_kl(pseudo_n_kl)
ezfio.set_pseudo_pseudo_v_kl(pseudo_v_kl)
ezfio.set_pseudo_pseudo_dz_kl(pseudo_dz_kl)
print("OK")
else:
print("None")
print("Determinant\t\t...\t", end=' ')
alpha = [ i for i in range(num_alpha) ]
beta = [ i for i in range(num_beta) ]
if trexio.has_mo_spin(trexio_file):
spin = trexio.read_mo_spin(trexio_file)
beta = [ i for i in range(mo_num) if spin[i] == 1 ]
beta = [ beta[i] for i in range(num_beta) ]
alpha = qp_bitmasks.BitMask(alpha)
beta = qp_bitmasks.BitMask(beta )
print(alpha)
print(beta)
print("OK")

View File

@ -22,7 +22,7 @@ def int_to_string(s):
assert s>=0
AssertionError
"""
assert type(s) in (int, long)
assert type(s) == int
assert s>=0
return '{s:0b}'.format(s=s)
@ -62,7 +62,7 @@ def int_to_bitmask(s,bit_kind_size=BIT_KIND_SIZE):
['1111111111111111111111111111111111111111111111111111111111110110']
>>>
"""
assert type(s) in (int, long)
assert type(s) == int
if s < 0:
s = s + (1 << bit_kind_size)
return ['{s:0{width}b}'.format(s=s,width=bit_kind_size)]
@ -104,7 +104,7 @@ class BitMask(object):
return self._data_int[i]
def __setitem__(self,i,value):
if type(value) in (int,long):
if type(value) == int :
self._data_int[i] = value
elif type(value) == str:
s = string_to_bitmask(value,bit_kind_size=self.bit_kind_size)[0]

View File

@ -67,3 +67,15 @@ doc: Use normalized primitive functions
interface: ezfio, provider
default: true
[ao_expoim_cosgtos]
type: double precision
doc: imag part for Exponents for each primitive of each cosGTOs |AO|
size: (ao_basis.ao_num,ao_basis.ao_prim_num_max)
interface: ezfio, provider
[use_cosgtos]
type: logical
doc: If true, use cosgtos for AO integrals
interface: ezfio
default: False

View File

@ -0,0 +1,34 @@
BEGIN_PROVIDER [ logical, use_cosgtos ]
implicit none
BEGIN_DOC
! If true, use cosgtos for AO integrals
END_DOC
logical :: has
PROVIDE ezfio_filename
use_cosgtos = .False.
if (mpi_master) then
call ezfio_has_ao_basis_use_cosgtos(has)
if (has) then
! write(6,'(A)') '.. >>>>> [ IO READ: use_cosgtos ] <<<<< ..'
call ezfio_get_ao_basis_use_cosgtos(use_cosgtos)
else
call ezfio_set_ao_basis_use_cosgtos(use_cosgtos)
endif
endif
IRP_IF MPI_DEBUG
print *, irp_here, mpi_rank
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
IRP_ENDIF
IRP_IF MPI
include 'mpif.h'
integer :: ierr
call MPI_BCAST( use_cosgtos, 1, MPI_LOGICAL, 0, MPI_COMM_WORLD, ierr)
if (ierr /= MPI_SUCCESS) then
stop 'Unable to read use_cosgtos with MPI'
endif
IRP_ENDIF
! call write_time(6)
END_PROVIDER

View File

@ -62,6 +62,7 @@ END_PROVIDER
double precision :: tmp_cent_x, tmp_cent_y, tmp_cent_z
provide j1b_pen
provide j1b_pen_coef
List_all_comb_b2_coef = 0.d0
List_all_comb_b2_expo = 0.d0
@ -127,8 +128,8 @@ END_PROVIDER
List_all_comb_b2_expo( 1) = 0.d0
List_all_comb_b2_cent(1:3,1) = 0.d0
do i = 1, nucl_num
List_all_comb_b2_coef( i+1) = -1.d0
List_all_comb_b2_expo( i+1) = j1b_pen( i)
List_all_comb_b2_coef( i+1) = -1.d0 * j1b_pen_coef(i)
List_all_comb_b2_expo( i+1) = j1b_pen(i)
List_all_comb_b2_cent(1,i+1) = nucl_coord(i,1)
List_all_comb_b2_cent(2,i+1) = nucl_coord(i,2)
List_all_comb_b2_cent(3,i+1) = nucl_coord(i,3)
@ -225,6 +226,7 @@ END_PROVIDER
double precision :: dx, dy, dz, r2
provide j1b_pen
provide j1b_pen_coef
List_all_comb_b3_coef = 0.d0
List_all_comb_b3_expo = 0.d0
@ -296,8 +298,8 @@ END_PROVIDER
do i = 1, nucl_num
ii = ii + 1
List_all_comb_b3_coef( ii) = -2.d0
List_all_comb_b3_expo( ii) = j1b_pen( i)
List_all_comb_b3_coef( ii) = -2.d0 * j1b_pen_coef(i)
List_all_comb_b3_expo( ii) = j1b_pen(i)
List_all_comb_b3_cent(1,ii) = nucl_coord(i,1)
List_all_comb_b3_cent(2,ii) = nucl_coord(i,2)
List_all_comb_b3_cent(3,ii) = nucl_coord(i,3)
@ -305,7 +307,7 @@ END_PROVIDER
do i = 1, nucl_num
ii = ii + 1
List_all_comb_b3_coef( ii) = 1.d0
List_all_comb_b3_coef( ii) = 1.d0 * j1b_pen_coef(i) * j1b_pen_coef(i)
List_all_comb_b3_expo( ii) = 2.d0 * j1b_pen(i)
List_all_comb_b3_cent(1,ii) = nucl_coord(i,1)
List_all_comb_b3_cent(2,ii) = nucl_coord(i,2)
@ -337,7 +339,7 @@ END_PROVIDER
ii = ii + 1
! x 2 to avoid doing integrals twice
List_all_comb_b3_coef( ii) = 2.d0 * dexp(-tmp1*tmp2*tmp4*r2)
List_all_comb_b3_coef( ii) = 2.d0 * dexp(-tmp1*tmp2*tmp4*r2) * j1b_pen_coef(i) * j1b_pen_coef(j)
List_all_comb_b3_expo( ii) = tmp3
List_all_comb_b3_cent(1,ii) = tmp4 * (tmp1 * xi + tmp2 * xj)
List_all_comb_b3_cent(2,ii) = tmp4 * (tmp1 * yi + tmp2 * yj)

View File

@ -1,3 +1,2 @@
ao_basis
pseudo
cosgtos_ao_int

View File

@ -104,6 +104,9 @@ BEGIN_PROVIDER [ double precision, ao_integrals_n_e, (ao_num,ao_num)]
IF(do_pseudo) THEN
ao_integrals_n_e += ao_pseudo_integrals
ENDIF
IF(point_charges) THEN
ao_integrals_n_e += ao_integrals_pt_chrg
ENDIF
endif
@ -455,10 +458,12 @@ recursive subroutine I_x1_pol_mult_one_e(a,c,R1x,R1xp,R2x,d,nd,n_pt_in)
do ix=0,nx
X(ix) *= dble(c)
enddo
call multiply_poly(X,nx,R2x,2,d,nd)
! call multiply_poly(X,nx,R2x,2,d,nd)
call multiply_poly_c2(X,nx,R2x,d,nd)
ny=0
call I_x2_pol_mult_one_e(c,R1x,R1xp,R2x,Y,ny,n_pt_in)
call multiply_poly(Y,ny,R1x,2,d,nd)
! call multiply_poly(Y,ny,R1x,2,d,nd)
call multiply_poly_c2(Y,ny,R1x,d,nd)
else
do ix=0,n_pt_in
X(ix) = 0.d0
@ -469,7 +474,8 @@ recursive subroutine I_x1_pol_mult_one_e(a,c,R1x,R1xp,R2x,d,nd,n_pt_in)
do ix=0,nx
X(ix) *= dble(a-1)
enddo
call multiply_poly(X,nx,R2x,2,d,nd)
! call multiply_poly(X,nx,R2x,2,d,nd)
call multiply_poly_c2(X,nx,R2x,d,nd)
nx = nd
do ix=0,n_pt_in
@ -479,10 +485,12 @@ recursive subroutine I_x1_pol_mult_one_e(a,c,R1x,R1xp,R2x,d,nd,n_pt_in)
do ix=0,nx
X(ix) *= dble(c)
enddo
call multiply_poly(X,nx,R2x,2,d,nd)
! call multiply_poly(X,nx,R2x,2,d,nd)
call multiply_poly_c2(X,nx,R2x,d,nd)
ny=0
call I_x1_pol_mult_one_e(a-1,c,R1x,R1xp,R2x,Y,ny,n_pt_in)
call multiply_poly(Y,ny,R1x,2,d,nd)
! call multiply_poly(Y,ny,R1x,2,d,nd)
call multiply_poly_c2(Y,ny,R1x,d,nd)
endif
end
@ -519,7 +527,8 @@ recursive subroutine I_x2_pol_mult_one_e(c,R1x,R1xp,R2x,d,nd,dim)
do ix=0,nx
X(ix) *= dble(c-1)
enddo
call multiply_poly(X,nx,R2x,2,d,nd)
! call multiply_poly(X,nx,R2x,2,d,nd)
call multiply_poly_c2(X,nx,R2x,d,nd)
ny = 0
do ix=0,dim
Y(ix) = 0.d0
@ -527,7 +536,8 @@ recursive subroutine I_x2_pol_mult_one_e(c,R1x,R1xp,R2x,d,nd,dim)
call I_x1_pol_mult_one_e(0,c-1,R1x,R1xp,R2x,Y,ny,dim)
if(ny.ge.0)then
call multiply_poly(Y,ny,R1xp,2,d,nd)
! call multiply_poly(Y,ny,R1xp,2,d,nd)
call multiply_poly_c2(Y,ny,R1xp,d,nd)
endif
endif
end

View File

@ -4,6 +4,19 @@ doc: Read/Write |AO| integrals from/to disk [ Write | Read | None ]
interface: ezfio,provider,ocaml
default: None
[ao_integrals_threshold]
type: Threshold
doc: If | (pq|rs) | < `ao_integrals_threshold` then (pq|rs) is zero
interface: ezfio,provider,ocaml
default: 1.e-15
ezfio_name: threshold_ao
[ao_cholesky_threshold]
type: Threshold
doc: If | (ii|jj) | < `ao_cholesky_threshold` then (ii|jj) is zero
interface: ezfio,provider,ocaml
default: 1.e-12
[do_direct_integrals]
type: logical
doc: Compute integrals on the fly (very slow, only for debugging)

View File

@ -4,29 +4,7 @@ BEGIN_PROVIDER [ integer, cholesky_ao_num_guess ]
! Number of Cholesky vectors in AO basis
END_DOC
integer :: i,j,k,l
double precision :: xnorm0, x, integral
double precision, external :: ao_two_e_integral
cholesky_ao_num_guess = 0
xnorm0 = 0.d0
x = 0.d0
do j=1,ao_num
do i=1,ao_num
integral = ao_two_e_integral(i,i,j,j)
if (integral > ao_integrals_threshold) then
cholesky_ao_num_guess += 1
else
x += integral
endif
enddo
enddo
print *, 'Cholesky decomposition of AO integrals'
print *, '--------------------------------------'
print *, ''
print *, 'Estimated Error: ', x
print *, 'Guess size: ', cholesky_ao_num_guess, '(', 100.d0*dble(cholesky_ao_num_guess)/dble(ao_num*ao_num), ' %)'
cholesky_ao_num_guess = ao_num*ao_num
END_PROVIDER
BEGIN_PROVIDER [ integer, cholesky_ao_num ]
@ -39,7 +17,7 @@ END_PROVIDER
END_DOC
type(c_ptr) :: ptr
integer :: fd, i,j,k,l, rank
integer :: fd, i,j,k,l,m,rank
double precision, pointer :: ao_integrals(:,:,:,:)
double precision, external :: ao_two_e_integral
@ -49,28 +27,83 @@ END_PROVIDER
8, fd, .False., ptr)
call c_f_pointer(ptr, ao_integrals, (/ao_num, ao_num, ao_num, ao_num/))
double precision :: integral
print*, 'Providing the AO integrals (Cholesky)'
call wall_time(wall_1)
call cpu_time(cpu_1)
ao_integrals = 0.d0
double precision :: integral, cpu_1, cpu_2, wall_1, wall_2
logical, external :: ao_two_e_integral_zero
!$OMP PARALLEL DO DEFAULT(SHARED) PRIVATE(i,j,k,l, integral) SCHEDULE(dynamic)
do l=1,ao_num
do j=1,l
do k=1,ao_num
do i=1,k
if (ao_two_e_integral_zero(i,j,k,l)) cycle
integral = ao_two_e_integral(i,k,j,l)
ao_integrals(i,k,j,l) = integral
ao_integrals(k,i,j,l) = integral
ao_integrals(i,k,l,j) = integral
ao_integrals(k,i,l,j) = integral
enddo
double precision, external :: get_ao_two_e_integral
if (read_ao_two_e_integrals) then
PROVIDE ao_two_e_integrals_in_map
!$OMP PARALLEL DEFAULT(SHARED) PRIVATE(i,j,k,l, integral, wall_2)
do m=0,9
do l=1+m,ao_num,10
!$OMP DO SCHEDULE(dynamic)
do j=1,ao_num
do k=1,ao_num
do i=1,ao_num
if (ao_two_e_integral_zero(i,j,k,l)) cycle
integral = get_ao_two_e_integral(i,j,k,l, ao_integrals_map)
ao_integrals(i,k,j,l) = integral
enddo
enddo
enddo
!$OMP END DO NOWAIT
enddo
!$OMP MASTER
call wall_time(wall_2)
print '(I10,'' % in'', 4X, F10.2, '' s.'')', (m+1) * 10, wall_2-wall_1
!$OMP END MASTER
enddo
enddo
enddo
!$OMP END PARALLEL DO
!$OMP END PARALLEL
else
!$OMP PARALLEL DEFAULT(SHARED) PRIVATE(i,j,k,l, integral, wall_2)
do m=0,9
do l=1+m,ao_num,10
!$OMP DO SCHEDULE(dynamic)
do j=1,l
do k=1,ao_num
do i=1,min(k,j)
if (ao_two_e_integral_zero(i,j,k,l)) cycle
integral = ao_two_e_integral(i,k,j,l)
ao_integrals(i,k,j,l) = integral
ao_integrals(k,i,j,l) = integral
ao_integrals(i,k,l,j) = integral
ao_integrals(k,i,l,j) = integral
ao_integrals(j,l,i,k) = integral
ao_integrals(j,l,k,i) = integral
ao_integrals(l,j,i,k) = integral
ao_integrals(l,j,k,i) = integral
enddo
enddo
enddo
!$OMP END DO NOWAIT
enddo
!$OMP MASTER
call wall_time(wall_2)
print '(I10,'' % in'', 4X, F10.2, '' s.'')', (m+1) * 10, wall_2-wall_1
!$OMP END MASTER
enddo
!$OMP END PARALLEL
call wall_time(wall_2)
call cpu_time(cpu_2)
print*, 'AO integrals provided:'
print*, ' cpu time :',cpu_2 - cpu_1, 's'
print*, ' wall time :',wall_2 - wall_1, 's ( x ', (cpu_2-cpu_1)/(wall_2-wall_1+tiny(1.d0)), ' )'
endif
! Call Lapack
cholesky_ao_num = cholesky_ao_num_guess
call pivoted_cholesky(ao_integrals, cholesky_ao_num, ao_integrals_threshold, ao_num*ao_num, cholesky_ao)
call pivoted_cholesky(ao_integrals, cholesky_ao_num, ao_cholesky_threshold, ao_num*ao_num, cholesky_ao)
print *, 'Rank: ', cholesky_ao_num, '(', 100.d0*dble(cholesky_ao_num)/dble(ao_num*ao_num), ' %)'
! Remove mmap

View File

@ -29,14 +29,14 @@ double precision function ao_two_e_integral_cosgtos(i, j, k, l)
complex*16 :: integral5, integral6, integral7, integral8
complex*16 :: integral_tot
double precision :: ao_two_e_integral_cosgtos_schwartz_accel
double precision :: ao_2e_cosgtos_schwartz_accel
complex*16 :: ERI_cosgtos
complex*16 :: general_primitive_integral_cosgtos
if(ao_prim_num(i) * ao_prim_num(j) * ao_prim_num(k) * ao_prim_num(l) > 1024) then
!print *, ' with shwartz acc '
ao_two_e_integral_cosgtos = ao_two_e_integral_cosgtos_schwartz_accel(i, j, k, l)
ao_two_e_integral_cosgtos = ao_2e_cosgtos_schwartz_accel(i, j, k, l)
else
!print *, ' without shwartz acc '
@ -294,7 +294,7 @@ end function ao_two_e_integral_cosgtos
! ---
double precision function ao_two_e_integral_cosgtos_schwartz_accel(i, j, k, l)
double precision function ao_2e_cosgtos_schwartz_accel(i, j, k, l)
BEGIN_DOC
! integral of the AO basis <ik|jl> or (ij|kl)
@ -329,7 +329,7 @@ double precision function ao_two_e_integral_cosgtos_schwartz_accel(i, j, k, l)
complex*16 :: ERI_cosgtos
complex*16 :: general_primitive_integral_cosgtos
ao_two_e_integral_cosgtos_schwartz_accel = 0.d0
ao_2e_cosgtos_schwartz_accel = 0.d0
dim1 = n_pt_max_integrals
@ -519,8 +519,7 @@ double precision function ao_two_e_integral_cosgtos_schwartz_accel(i, j, k, l)
integral_tot = integral1 + integral2 + integral3 + integral4 + integral5 + integral6 + integral7 + integral8
ao_two_e_integral_cosgtos_schwartz_accel = ao_two_e_integral_cosgtos_schwartz_accel &
+ coef4 * 2.d0 * real(integral_tot)
ao_2e_cosgtos_schwartz_accel = ao_2e_cosgtos_schwartz_accel + coef4 * 2.d0 * real(integral_tot)
enddo ! s
enddo ! r
enddo ! q
@ -698,8 +697,7 @@ double precision function ao_two_e_integral_cosgtos_schwartz_accel(i, j, k, l)
integral_tot = integral1 + integral2 + integral3 + integral4 + integral5 + integral6 + integral7 + integral8
ao_two_e_integral_cosgtos_schwartz_accel = ao_two_e_integral_cosgtos_schwartz_accel &
+ coef4 * 2.d0 * real(integral_tot)
ao_2e_cosgtos_schwartz_accel = ao_2e_cosgtos_schwartz_accel + coef4 * 2.d0 * real(integral_tot)
enddo ! s
enddo ! r
enddo ! q
@ -709,11 +707,11 @@ double precision function ao_two_e_integral_cosgtos_schwartz_accel(i, j, k, l)
deallocate(schwartz_kl)
end function ao_two_e_integral_cosgtos_schwartz_accel
end function ao_2e_cosgtos_schwartz_accel
! ---
BEGIN_PROVIDER [ double precision, ao_two_e_integral_cosgtos_schwartz, (ao_num,ao_num) ]
BEGIN_PROVIDER [ double precision, ao_2e_cosgtos_schwartz, (ao_num,ao_num)]
BEGIN_DOC
! Needed to compute Schwartz inequalities
@ -723,16 +721,16 @@ BEGIN_PROVIDER [ double precision, ao_two_e_integral_cosgtos_schwartz, (ao_num,a
integer :: i, k
double precision :: ao_two_e_integral_cosgtos
ao_two_e_integral_cosgtos_schwartz(1,1) = ao_two_e_integral_cosgtos(1, 1, 1, 1)
ao_2e_cosgtos_schwartz(1,1) = ao_two_e_integral_cosgtos(1, 1, 1, 1)
!$OMP PARALLEL DO PRIVATE(i,k) &
!$OMP DEFAULT(NONE) &
!$OMP SHARED(ao_num, ao_two_e_integral_cosgtos_schwartz) &
!$OMP PARALLEL DO PRIVATE(i,k) &
!$OMP DEFAULT(NONE) &
!$OMP SHARED(ao_num, ao_2e_cosgtos_schwartz) &
!$OMP SCHEDULE(dynamic)
do i = 1, ao_num
do k = 1, i
ao_two_e_integral_cosgtos_schwartz(i,k) = dsqrt(ao_two_e_integral_cosgtos(i, i, k, k))
ao_two_e_integral_cosgtos_schwartz(k,i) = ao_two_e_integral_cosgtos_schwartz(i,k)
ao_2e_cosgtos_schwartz(i,k) = dsqrt(ao_two_e_integral_cosgtos(i, i, k, k))
ao_2e_cosgtos_schwartz(k,i) = ao_2e_cosgtos_schwartz(i,k)
enddo
enddo
!$OMP END PARALLEL DO

View File

@ -590,8 +590,20 @@ double precision function general_primitive_integral(dim, &
d_poly(i)=0.d0
enddo
!DIR$ FORCEINLINE
call multiply_poly(Ix_pol,n_Ix,Iy_pol,n_Iy,d_poly,n_pt_tmp)
! call multiply_poly(Ix_pol,n_Ix,Iy_pol,n_Iy,d_poly,n_pt_tmp)
integer :: ib, ic
if (ior(n_Ix,n_Iy) >= 0) then
do ib=0,n_Ix
do ic = 0,n_Iy
d_poly(ib+ic) = d_poly(ib+ic) + Iy_pol(ic) * Ix_pol(ib)
enddo
enddo
do n_pt_tmp = n_Ix+n_Iy, 0, -1
if (d_poly(n_pt_tmp) /= 0.d0) exit
enddo
endif
if (n_pt_tmp == -1) then
return
endif
@ -600,8 +612,21 @@ double precision function general_primitive_integral(dim, &
d1(i)=0.d0
enddo
!DIR$ FORCEINLINE
call multiply_poly(d_poly ,n_pt_tmp ,Iz_pol,n_Iz,d1,n_pt_out)
! call multiply_poly(d_poly ,n_pt_tmp ,Iz_pol,n_Iz,d1,n_pt_out)
if (ior(n_pt_tmp,n_Iz) >= 0) then
! Bottleneck here
do ib=0,n_pt_tmp
do ic = 0,n_Iz
d1(ib+ic) = d1(ib+ic) + Iz_pol(ic) * d_poly(ib)
enddo
enddo
do n_pt_out = n_pt_tmp+n_Iz, 0, -1
if (d1(n_pt_out) /= 0.d0) exit
enddo
endif
double precision :: rint_sum
accu = accu + rint_sum(n_pt_out,const,d1)
@ -948,8 +973,9 @@ recursive subroutine I_x1_pol_mult_recurs(a,c,B_10,B_01,B_00,C_00,D_00,d,nd,n_pt
X(ix) *= dble(a-1)
enddo
!DIR$ FORCEINLINE
call multiply_poly(X,nx,B_10,2,d,nd)
! !DIR$ FORCEINLINE
! call multiply_poly(X,nx,B_10,2,d,nd)
call multiply_poly_c2(X,nx,B_10,d,nd)
nx = nd
!DIR$ LOOP COUNT(8)
@ -970,8 +996,9 @@ recursive subroutine I_x1_pol_mult_recurs(a,c,B_10,B_01,B_00,C_00,D_00,d,nd,n_pt
X(ix) *= c
enddo
endif
!DIR$ FORCEINLINE
call multiply_poly(X,nx,B_00,2,d,nd)
! !DIR$ FORCEINLINE
! call multiply_poly(X,nx,B_00,2,d,nd)
call multiply_poly_c2(X,nx,B_00,d,nd)
endif
ny=0
@ -988,9 +1015,9 @@ recursive subroutine I_x1_pol_mult_recurs(a,c,B_10,B_01,B_00,C_00,D_00,d,nd,n_pt
call I_x1_pol_mult_recurs(a-1,c,B_10,B_01,B_00,C_00,D_00,Y,ny,n_pt_in)
endif
!DIR$ FORCEINLINE
call multiply_poly(Y,ny,C_00,2,d,nd)
! !DIR$ FORCEINLINE
! call multiply_poly(Y,ny,C_00,2,d,nd)
call multiply_poly_c2(Y,ny,C_00,d,nd)
end
recursive subroutine I_x1_pol_mult_a1(c,B_10,B_01,B_00,C_00,D_00,d,nd,n_pt_in)
@ -1028,8 +1055,9 @@ recursive subroutine I_x1_pol_mult_a1(c,B_10,B_01,B_00,C_00,D_00,d,nd,n_pt_in)
enddo
endif
!DIR$ FORCEINLINE
call multiply_poly(X,nx,B_00,2,d,nd)
! !DIR$ FORCEINLINE
! call multiply_poly(X,nx,B_00,2,d,nd)
call multiply_poly_c2(X,nx,B_00,d,nd)
ny=0
@ -1039,8 +1067,9 @@ recursive subroutine I_x1_pol_mult_a1(c,B_10,B_01,B_00,C_00,D_00,d,nd,n_pt_in)
enddo
call I_x2_pol_mult(c,B_10,B_01,B_00,C_00,D_00,Y,ny,n_pt_in)
!DIR$ FORCEINLINE
call multiply_poly(Y,ny,C_00,2,d,nd)
! !DIR$ FORCEINLINE
! call multiply_poly(Y,ny,C_00,2,d,nd)
call multiply_poly_c2(Y,ny,C_00,d,nd)
end
@ -1067,8 +1096,9 @@ recursive subroutine I_x1_pol_mult_a2(c,B_10,B_01,B_00,C_00,D_00,d,nd,n_pt_in)
nx = 0
call I_x2_pol_mult(c,B_10,B_01,B_00,C_00,D_00,X,nx,n_pt_in)
!DIR$ FORCEINLINE
call multiply_poly(X,nx,B_10,2,d,nd)
! !DIR$ FORCEINLINE
! call multiply_poly(X,nx,B_10,2,d,nd)
call multiply_poly_c2(X,nx,B_10,d,nd)
nx = nd
!DIR$ LOOP COUNT(8)
@ -1086,8 +1116,9 @@ recursive subroutine I_x1_pol_mult_a2(c,B_10,B_01,B_00,C_00,D_00,d,nd,n_pt_in)
enddo
endif
!DIR$ FORCEINLINE
call multiply_poly(X,nx,B_00,2,d,nd)
! !DIR$ FORCEINLINE
! call multiply_poly(X,nx,B_00,2,d,nd)
call multiply_poly_c2(X,nx,B_00,d,nd)
ny=0
!DIR$ LOOP COUNT(8)
@ -1097,9 +1128,9 @@ recursive subroutine I_x1_pol_mult_a2(c,B_10,B_01,B_00,C_00,D_00,d,nd,n_pt_in)
!DIR$ FORCEINLINE
call I_x1_pol_mult_a1(c,B_10,B_01,B_00,C_00,D_00,Y,ny,n_pt_in)
!DIR$ FORCEINLINE
call multiply_poly(Y,ny,C_00,2,d,nd)
! !DIR$ FORCEINLINE
! call multiply_poly(Y,ny,C_00,2,d,nd)
call multiply_poly_c2(Y,ny,C_00,d,nd)
end
recursive subroutine I_x2_pol_mult(c,B_10,B_01,B_00,C_00,D_00,d,nd,dim)
@ -1146,8 +1177,10 @@ recursive subroutine I_x2_pol_mult(c,B_10,B_01,B_00,C_00,D_00,d,nd,dim)
Y(1) = D_00(1)
Y(2) = D_00(2)
!DIR$ FORCEINLINE
call multiply_poly(Y,ny,D_00,2,d,nd)
! !DIR$ FORCEINLINE
! call multiply_poly(Y,ny,D_00,2,d,nd)
call multiply_poly_c2(Y,ny,D_00,d,nd)
return
case default
@ -1164,8 +1197,9 @@ recursive subroutine I_x2_pol_mult(c,B_10,B_01,B_00,C_00,D_00,d,nd,dim)
X(ix) *= dble(c-1)
enddo
!DIR$ FORCEINLINE
call multiply_poly(X,nx,B_01,2,d,nd)
! !DIR$ FORCEINLINE
! call multiply_poly(X,nx,B_01,2,d,nd)
call multiply_poly_c2(X,nx,B_01,d,nd)
ny = 0
!DIR$ LOOP COUNT(6)
@ -1174,8 +1208,9 @@ recursive subroutine I_x2_pol_mult(c,B_10,B_01,B_00,C_00,D_00,d,nd,dim)
enddo
call I_x2_pol_mult(c-1,B_10,B_01,B_00,C_00,D_00,Y,ny,dim)
!DIR$ FORCEINLINE
call multiply_poly(Y,ny,D_00,2,d,nd)
! !DIR$ FORCEINLINE
! call multiply_poly(Y,ny,D_00,2,d,nd)
call multiply_poly_c2(Y,ny,D_00,d,nd)
end select
end
@ -1233,3 +1268,34 @@ subroutine compute_ao_integrals_jl(j,l,n_integrals,buffer_i,buffer_value)
enddo
end
subroutine multiply_poly_local(b,nb,c,nc,d,nd)
implicit none
BEGIN_DOC
! Multiply two polynomials
! D(t) += B(t)*C(t)
END_DOC
integer, intent(in) :: nb, nc
integer, intent(out) :: nd
double precision, intent(in) :: b(0:nb), c(0:nc)
double precision, intent(inout) :: d(0:nb+nc)
integer :: ndtmp
integer :: ib, ic, id, k
if(ior(nc,nb) < 0) return !False if nc>=0 and nb>=0
do ib=0,nb
do ic = 0,nc
d(ib+ic) = d(ib+ic) + c(ic) * b(ib)
enddo
enddo
do nd = nb+nc,0,-1
if (d(nd) /= 0.d0) exit
enddo
end

View File

@ -1,10 +1,13 @@
BEGIN_PROVIDER [integer, n_points_final_grid]
implicit none
BEGIN_DOC
! Number of points which are non zero
END_DOC
integer :: i,j,k,l
implicit none
integer :: i, j, k, l
n_points_final_grid = 0
do j = 1, nucl_num
do i = 1, n_points_radial_grid -1
@ -16,9 +19,11 @@ BEGIN_PROVIDER [integer, n_points_final_grid]
enddo
enddo
enddo
print*,'n_points_final_grid = ',n_points_final_grid
print*,'n max point = ',n_points_integration_angular*(n_points_radial_grid*nucl_num - 1)
print*,' n_points_final_grid = ', n_points_final_grid
print*,' n max point = ', n_points_integration_angular*(n_points_radial_grid*nucl_num - 1)
call ezfio_set_becke_numerical_grid_n_points_final_grid(n_points_final_grid)
END_PROVIDER
! ---
@ -41,6 +46,10 @@ END_PROVIDER
implicit none
integer :: i, j, k, l, i_count
double precision :: r(3)
double precision :: wall0, wall1
call wall_time(wall0)
print *, ' Providing final_grid_points ...'
i_count = 0
do j = 1, nucl_num
@ -62,20 +71,34 @@ END_PROVIDER
enddo
enddo
FREE grid_points_per_atom
FREE final_weight_at_r
call wall_time(wall1)
print *, ' wall time for final_grid_points,', wall1 - wall0
call print_memory_usage()
END_PROVIDER
! ---
BEGIN_PROVIDER [double precision, final_grid_points_transp, (n_points_final_grid,3)]
implicit none
BEGIN_DOC
! Transposed final_grid_points
! Transposed final_grid_points
END_DOC
implicit none
integer :: i,j
do j=1,3
do i=1,n_points_final_grid
do j = 1, 3
do i = 1, n_points_final_grid
final_grid_points_transp(i,j) = final_grid_points(j,i)
enddo
enddo
END_PROVIDER
! ---

View File

@ -1,13 +1,37 @@
! ---
program bi_ort_ints
implicit none
BEGIN_DOC
! TODO : Put the documentation of the program here
! TODO : Put the documentation of the program here
END_DOC
implicit none
my_grid_becke = .True.
my_n_pt_r_grid = 10
my_n_pt_a_grid = 14
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
call test_3e
!my_n_pt_r_grid = 10
!my_n_pt_a_grid = 14
my_n_pt_r_grid = 30
my_n_pt_a_grid = 50
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
! call test_3e
! call test_5idx
! call test_5idx2
call test_4idx()
call test_4idx_n4()
!call test_4idx2()
!call test_5idx2
!call test_5idx
end
subroutine test_5idx2
PROVIDE three_e_5_idx_cycle_2_bi_ort
end
subroutine test_4idx2()
!PROVIDE three_e_4_idx_direct_bi_ort
PROVIDE three_e_4_idx_exch23_bi_ort
end
subroutine test_3e
@ -16,6 +40,7 @@ subroutine test_3e
double precision :: accu, contrib,new,ref
i = 1
k = 1
n = 0
accu = 0.d0
do i = 1, mo_num
do k = 1, mo_num
@ -31,6 +56,7 @@ subroutine test_3e
print*,'pb !!'
print*,i,k,j,l,m,n
print*,ref,new,contrib
stop
endif
enddo
enddo
@ -42,3 +68,394 @@ subroutine test_3e
end
subroutine test_5idx
implicit none
integer :: i,k,j,l,m,n,ipoint
double precision :: accu, contrib,new,ref
double precision, external :: three_e_5_idx_exch12_bi_ort
i = 1
k = 1
n = 0
accu = 0.d0
PROVIDE three_e_5_idx_direct_bi_ort_old
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do l = 1, mo_num
do m = 1, mo_num
! if (dabs(three_e_5_idx_direct_bi_ort(m,l,j,k,i) - three_e_5_idx_exch12_bi_ort(m,l,i,k,j)) > 1.d-10) then
! stop
! endif
new = three_e_5_idx_direct_bi_ort(m,l,j,k,i)
ref = three_e_5_idx_direct_bi_ort_old(m,l,j,k,i)
contrib = dabs(new - ref)
accu += contrib
if(contrib .gt. 1.d-10)then
print*,'direct'
print*,i,k,j,l,m
print*,ref,new,contrib
stop
endif
!
! new = three_e_5_idx_exch12_bi_ort(m,l,j,k,i)
! ref = three_e_5_idx_exch12_bi_ort_old(m,l,j,k,i)
! contrib = dabs(new - ref)
! accu += contrib
! if(contrib .gt. 1.d-10)then
! print*,'exch12'
! print*,i,k,j,l,m
! print*,ref,new,contrib
! stop
! endif
!
!
! new = three_e_5_idx_cycle_1_bi_ort(m,l,j,k,i)
! ref = three_e_5_idx_cycle_1_bi_ort_old(m,l,j,k,i)
! contrib = dabs(new - ref)
! accu += contrib
! if(contrib .gt. 1.d-10)then
! print*,'cycle1'
! print*,i,k,j,l,m
! print*,ref,new,contrib
! stop
! endif
!
! new = three_e_5_idx_cycle_2_bi_ort(m,l,j,k,i)
! ref = three_e_5_idx_cycle_2_bi_ort_old(m,l,j,k,i)
! contrib = dabs(new - ref)
! accu += contrib
! if(contrib .gt. 1.d-10)then
! print*,'cycle2'
! print*,i,k,j,l,m
! print*,ref,new,contrib
! stop
! endif
!
! new = three_e_5_idx_exch23_bi_ort(m,l,j,k,i)
! ref = three_e_5_idx_exch23_bi_ort_old(m,l,j,k,i)
! contrib = dabs(new - ref)
! accu += contrib
! if(contrib .gt. 1.d-10)then
! print*,'exch23'
! print*,i,k,j,l,m
! print*,ref,new,contrib
! stop
! endif
!
! new = three_e_5_idx_exch13_bi_ort(m,l,j,k,i)
! ref = three_e_5_idx_exch13_bi_ort_old(m,l,j,k,i)
! contrib = dabs(new - ref)
! accu += contrib
! if(contrib .gt. 1.d-10)then
! print*,'exch13'
! print*,i,k,j,l,m
! print*,ref,new,contrib
! stop
! endif
!
! new = three_e_5_idx_cycle_1_bi_ort(m,l,j,k,i)
! ref = three_e_5_idx_cycle_1_bi_ort_old(m,l,j,k,i)
! contrib = dabs(new - ref)
! accu += contrib
! if(contrib .gt. 1.d-10)then
! print*,'cycle1'
! print*,i,k,j,l,m
! print*,ref,new,contrib
! stop
! endif
!
! new = three_e_5_idx_cycle_2_bi_ort(m,l,j,k,i)
! ref = three_e_5_idx_cycle_2_bi_ort_old(m,l,j,k,i)
! contrib = dabs(new - ref)
! accu += contrib
! if(contrib .gt. 1.d-10)then
! print*,'cycle2'
! print*,i,k,j,l,m
! print*,ref,new,contrib
! stop
! endif
!
! new = three_e_5_idx_exch23_bi_ort(m,l,j,k,i)
! ref = three_e_5_idx_exch23_bi_ort_old(m,l,j,k,i)
! contrib = dabs(new - ref)
! accu += contrib
! if(contrib .gt. 1.d-10)then
! print*,'exch23'
! print*,i,k,j,l,m
! print*,ref,new,contrib
! stop
! endif
!
! new = three_e_5_idx_exch13_bi_ort(m,l,j,k,i)
! ref = three_e_5_idx_exch13_bi_ort_old(m,l,j,k,i)
! contrib = dabs(new - ref)
! accu += contrib
! if(contrib .gt. 1.d-10)then
! print*,'exch13'
! print*,i,k,j,l,m
! print*,ref,new,contrib
! stop
! endif
!
enddo
enddo
enddo
enddo
enddo
print*,'accu = ',accu/dble(mo_num)**5
end
! ---
subroutine test_4idx_n4()
implicit none
integer :: i, j, k, l
double precision :: accu, contrib, new, ref, thr
thr = 1d-10
PROVIDE three_e_4_idx_direct_bi_ort_old
PROVIDE three_e_4_idx_direct_bi_ort_n4
accu = 0.d0
do i = 1, mo_num
do j = 1, mo_num
do k = 1, mo_num
do l = 1, mo_num
new = three_e_4_idx_direct_bi_ort_n4 (l,k,j,i)
ref = three_e_4_idx_direct_bi_ort_old(l,k,j,i)
contrib = dabs(new - ref)
accu += contrib
if(contrib .gt. thr) then
print*, ' problem in three_e_4_idx_direct_bi_ort_n4'
print*, l, k, j, i
print*, ref, new, contrib
stop
endif
enddo
enddo
enddo
enddo
print*, ' accu on three_e_4_idx_direct_bi_ort_n4 = ', accu / dble(mo_num)**4
! ---
PROVIDE three_e_4_idx_exch13_bi_ort_old
PROVIDE three_e_4_idx_exch13_bi_ort_n4
accu = 0.d0
do i = 1, mo_num
do j = 1, mo_num
do k = 1, mo_num
do l = 1, mo_num
new = three_e_4_idx_exch13_bi_ort_n4 (l,k,j,i)
ref = three_e_4_idx_exch13_bi_ort_old(l,k,j,i)
contrib = dabs(new - ref)
accu += contrib
if(contrib .gt. thr) then
print*, ' problem in three_e_4_idx_exch13_bi_ort_n4'
print*, l, k, j, i
print*, ref, new, contrib
stop
endif
enddo
enddo
enddo
enddo
print*, ' accu on three_e_4_idx_exch13_bi_ort_n4 = ', accu / dble(mo_num)**4
! ---
PROVIDE three_e_4_idx_cycle_1_bi_ort_old
PROVIDE three_e_4_idx_cycle_1_bi_ort_n4
accu = 0.d0
do i = 1, mo_num
do j = 1, mo_num
do k = 1, mo_num
do l = 1, mo_num
new = three_e_4_idx_cycle_1_bi_ort_n4 (l,k,j,i)
ref = three_e_4_idx_cycle_1_bi_ort_old(l,k,j,i)
contrib = dabs(new - ref)
accu += contrib
if(contrib .gt. thr) then
print*, ' problem in three_e_4_idx_cycle_1_bi_ort_n4'
print*, l, k, j, i
print*, ref, new, contrib
stop
endif
enddo
enddo
enddo
enddo
print*, ' accu on three_e_4_idx_cycle_1_bi_ort_n4 = ', accu / dble(mo_num)**4
! ---
PROVIDE three_e_4_idx_exch23_bi_ort_old
PROVIDE three_e_4_idx_exch23_bi_ort_n4
accu = 0.d0
do i = 1, mo_num
do j = 1, mo_num
do k = 1, mo_num
do l = 1, mo_num
new = three_e_4_idx_exch23_bi_ort_n4 (l,k,j,i)
ref = three_e_4_idx_exch23_bi_ort_old(l,k,j,i)
contrib = dabs(new - ref)
accu += contrib
if(contrib .gt. thr) then
print*, ' problem in three_e_4_idx_exch23_bi_ort_n4'
print*, l, k, j, i
print*, ref, new, contrib
stop
endif
enddo
enddo
enddo
enddo
print*, ' accu on three_e_4_idx_exch23_bi_ort_n4 = ', accu / dble(mo_num)**4
! ---
return
end
! ---
subroutine test_4idx()
implicit none
integer :: i, j, k, l
double precision :: accu, contrib, new, ref, thr
thr = 1d-10
PROVIDE three_e_4_idx_direct_bi_ort_old
PROVIDE three_e_4_idx_direct_bi_ort
accu = 0.d0
do i = 1, mo_num
do j = 1, mo_num
do k = 1, mo_num
do l = 1, mo_num
new = three_e_4_idx_direct_bi_ort (l,k,j,i)
ref = three_e_4_idx_direct_bi_ort_old(l,k,j,i)
contrib = dabs(new - ref)
accu += contrib
if(contrib .gt. thr) then
print*, ' problem in three_e_4_idx_direct_bi_ort'
print*, l, k, j, i
print*, ref, new, contrib
stop
endif
enddo
enddo
enddo
enddo
print*, ' accu on three_e_4_idx_direct_bi_ort = ', accu / dble(mo_num)**4
! ---
PROVIDE three_e_4_idx_exch13_bi_ort_old
PROVIDE three_e_4_idx_exch13_bi_ort
accu = 0.d0
do i = 1, mo_num
do j = 1, mo_num
do k = 1, mo_num
do l = 1, mo_num
new = three_e_4_idx_exch13_bi_ort (l,k,j,i)
ref = three_e_4_idx_exch13_bi_ort_old(l,k,j,i)
contrib = dabs(new - ref)
accu += contrib
if(contrib .gt. thr) then
print*, ' problem in three_e_4_idx_exch13_bi_ort'
print*, l, k, j, i
print*, ref, new, contrib
stop
endif
enddo
enddo
enddo
enddo
print*, ' accu on three_e_4_idx_exch13_bi_ort = ', accu / dble(mo_num)**4
! ---
PROVIDE three_e_4_idx_cycle_1_bi_ort_old
PROVIDE three_e_4_idx_cycle_1_bi_ort
accu = 0.d0
do i = 1, mo_num
do j = 1, mo_num
do k = 1, mo_num
do l = 1, mo_num
new = three_e_4_idx_cycle_1_bi_ort (l,k,j,i)
ref = three_e_4_idx_cycle_1_bi_ort_old(l,k,j,i)
contrib = dabs(new - ref)
accu += contrib
if(contrib .gt. thr) then
print*, ' problem in three_e_4_idx_cycle_1_bi_ort'
print*, l, k, j, i
print*, ref, new, contrib
stop
endif
enddo
enddo
enddo
enddo
print*, ' accu on three_e_4_idx_cycle_1_bi_ort = ', accu / dble(mo_num)**4
! ---
PROVIDE three_e_4_idx_exch23_bi_ort_old
PROVIDE three_e_4_idx_exch23_bi_ort
accu = 0.d0
do i = 1, mo_num
do j = 1, mo_num
do k = 1, mo_num
do l = 1, mo_num
new = three_e_4_idx_exch23_bi_ort (l,k,j,i)
ref = three_e_4_idx_exch23_bi_ort_old(l,k,j,i)
contrib = dabs(new - ref)
accu += contrib
if(contrib .gt. thr) then
print*, ' problem in three_e_4_idx_exch23_bi_ort'
print*, l, k, j, i
print*, ref, new, contrib
stop
endif
enddo
enddo
enddo
enddo
print*, ' accu on three_e_4_idx_exch23_bi_ort = ', accu / dble(mo_num)**4
! ---
return
end

View File

@ -54,7 +54,7 @@ BEGIN_PROVIDER [ double precision, mo_v_ki_bi_ortho_erf_rk_cst_mu_transp, (n_poi
enddo
enddo
! FREE mo_v_ki_bi_ortho_erf_rk_cst_mu
!FREE mo_v_ki_bi_ortho_erf_rk_cst_mu
END_PROVIDER
@ -124,6 +124,8 @@ BEGIN_PROVIDER [ double precision, int2_grad1_u12_ao_transp, (ao_num, ao_num, 3,
enddo
enddo
FREE int2_grad1_u12_ao_test
else
PROVIDE int2_grad1_u12_ao
@ -138,10 +140,13 @@ BEGIN_PROVIDER [ double precision, int2_grad1_u12_ao_transp, (ao_num, ao_num, 3,
enddo
enddo
FREE int2_grad1_u12_ao
endif
call wall_time(wall1)
print *, ' wall time for int2_grad1_u12_ao_transp ', wall1 - wall0
call print_memory_usage()
END_PROVIDER
@ -150,7 +155,7 @@ END_PROVIDER
BEGIN_PROVIDER [ double precision, int2_grad1_u12_bimo_transp, (mo_num, mo_num, 3, n_points_final_grid)]
implicit none
integer :: ipoint
integer :: ipoint
double precision :: wall0, wall1
PROVIDE mo_l_coef mo_r_coef
@ -177,6 +182,7 @@ BEGIN_PROVIDER [ double precision, int2_grad1_u12_bimo_transp, (mo_num, mo_num,
!call wall_time(wall1)
!print *, ' Wall time for providing int2_grad1_u12_bimo_transp',wall1 - wall0
!call print_memory_usage()
END_PROVIDER
@ -185,7 +191,11 @@ END_PROVIDER
BEGIN_PROVIDER [ double precision, int2_grad1_u12_bimo_t, (n_points_final_grid, 3, mo_num, mo_num)]
implicit none
integer :: i, j, ipoint
integer :: i, j, ipoint
double precision :: wall0, wall1
!call wall_time(wall0)
!print *, ' Providing int2_grad1_u12_bimo_t ...'
PROVIDE mo_l_coef mo_r_coef
PROVIDE int2_grad1_u12_bimo_transp
@ -200,6 +210,12 @@ BEGIN_PROVIDER [ double precision, int2_grad1_u12_bimo_t, (n_points_final_grid,
enddo
enddo
FREE int2_grad1_u12_bimo_transp
!call wall_time(wall1)
!print *, ' wall time for int2_grad1_u12_bimo_t,', wall1 - wall0
!call print_memory_usage()
END_PROVIDER
! ---

View File

@ -23,11 +23,11 @@ BEGIN_PROVIDER [ double precision, three_e_3_idx_direct_bi_ort, (mo_num, mo_num,
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i,j,m,integral) &
!$OMP SHARED (mo_num,three_e_3_idx_direct_bi_ort)
!$OMP DO SCHEDULE (dynamic)
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i,j,m,integral) &
!$OMP SHARED (mo_num,three_e_3_idx_direct_bi_ort)
!$OMP DO SCHEDULE (dynamic)
do i = 1, mo_num
do j = 1, mo_num
do m = j, mo_num
@ -36,8 +36,8 @@ BEGIN_PROVIDER [ double precision, three_e_3_idx_direct_bi_ort, (mo_num, mo_num,
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
!$OMP END DO
!$OMP END PARALLEL
do i = 1, mo_num
do j = 1, mo_num
@ -49,6 +49,7 @@ BEGIN_PROVIDER [ double precision, three_e_3_idx_direct_bi_ort, (mo_num, mo_num,
call wall_time(wall1)
print *, ' wall time for three_e_3_idx_direct_bi_ort', wall1 - wall0
call print_memory_usage()
END_PROVIDER
@ -102,6 +103,7 @@ BEGIN_PROVIDER [ double precision, three_e_3_idx_cycle_1_bi_ort, (mo_num, mo_num
call wall_time(wall1)
print *, ' wall time for three_e_3_idx_cycle_1_bi_ort', wall1 - wall0
call print_memory_usage()
END_PROVIDER
@ -155,6 +157,7 @@ BEGIN_PROVIDER [ double precision, three_e_3_idx_cycle_2_bi_ort, (mo_num, mo_num
call wall_time(wall1)
print *, ' wall time for three_e_3_idx_cycle_2_bi_ort', wall1 - wall0
call print_memory_usage()
END_PROVIDER
@ -208,6 +211,7 @@ BEGIN_PROVIDER [ double precision, three_e_3_idx_exch23_bi_ort, (mo_num, mo_num,
call wall_time(wall1)
print *, ' wall time for three_e_3_idx_exch23_bi_ort', wall1 - wall0
call print_memory_usage()
END_PROVIDER
@ -261,6 +265,7 @@ BEGIN_PROVIDER [ double precision, three_e_3_idx_exch13_bi_ort, (mo_num, mo_num,
call wall_time(wall1)
print *, ' wall time for three_e_3_idx_exch13_bi_ort', wall1 - wall0
call print_memory_usage()
END_PROVIDER
@ -306,6 +311,7 @@ BEGIN_PROVIDER [ double precision, three_e_3_idx_exch12_bi_ort, (mo_num, mo_num,
call wall_time(wall1)
print *, ' wall time for three_e_3_idx_exch12_bi_ort', wall1 - wall0
call print_memory_usage()
END_PROVIDER
@ -359,6 +365,7 @@ BEGIN_PROVIDER [ double precision, three_e_3_idx_exch12_bi_ort_new, (mo_num, mo_
call wall_time(wall1)
print *, ' wall time for three_e_3_idx_exch12_bi_ort_new', wall1 - wall0
call print_memory_usage()
END_PROVIDER

View File

@ -1,282 +1,230 @@
! ---
BEGIN_PROVIDER [ double precision, three_e_4_idx_direct_bi_ort, (mo_num, mo_num, mo_num, mo_num)]
BEGIN_PROVIDER [ double precision, three_e_4_idx_direct_bi_ort , (mo_num, mo_num, mo_num, mo_num)]
&BEGIN_PROVIDER [ double precision, three_e_4_idx_exch13_bi_ort , (mo_num, mo_num, mo_num, mo_num)]
&BEGIN_PROVIDER [ double precision, three_e_4_idx_exch23_bi_ort , (mo_num, mo_num, mo_num, mo_num)]
&BEGIN_PROVIDER [ double precision, three_e_4_idx_cycle_1_bi_ort, (mo_num, mo_num, mo_num, mo_num)]
BEGIN_DOC
!
! matrix element of the -L three-body operator FOR THE DIRECT TERMS OF SINGLE EXCITATIONS AND BI ORTHO MOs
!
! three_e_4_idx_direct_bi_ort(m,j,k,i) = <mjk|-L|mji> ::: notice that i is the RIGHT MO and k is the LEFT MO
! three_e_4_idx_direct_bi_ort (m,j,k,i) = < m j k | -L | m j i > ::: notice that i is the RIGHT MO and k is the LEFT MO
! three_e_4_idx_exch13_bi_ort (m,j,k,i) = < m j k | -L | i j m > ::: notice that i is the RIGHT MO and k is the LEFT MO
! three_e_4_idx_exch23_bi_ort (m,j,k,i) = < m j k | -L | j m i > ::: notice that i is the RIGHT MO and k is the LEFT MO
! three_e_4_idx_cycle_1_bi_ort(m,j,k,i) = < m j k | -L | j i m > ::: notice that i is the RIGHT MO and k is the LEFT MO
!
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
! notice the -1 sign: in this way three_e_4_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
!
END_DOC
implicit none
integer :: i, j, k, m
double precision :: integral, wall1, wall0
three_e_4_idx_direct_bi_ort = 0.d0
print *, ' Providing the three_e_4_idx_direct_bi_ort ...'
call wall_time(wall0)
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i,j,k,m,integral) &
!$OMP SHARED (mo_num,three_e_4_idx_direct_bi_ort)
!$OMP DO SCHEDULE (dynamic) COLLAPSE(2)
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do m = 1, mo_num
call give_integrals_3_body_bi_ort(m, j, k, m, j, i, integral)
three_e_4_idx_direct_bi_ort(m,j,k,i) = -1.d0 * integral
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call wall_time(wall1)
print *, ' wall time for three_e_4_idx_direct_bi_ort', wall1 - wall0
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, three_e_4_idx_cycle_1_bi_ort, (mo_num, mo_num, mo_num, mo_num)]
BEGIN_DOC
!
! matrix element of the -L three-body operator FOR THE FIRST CYCLIC PERMUTATION TERMS OF SINGLE EXCITATIONS AND BI ORTHO MOs
!
! three_e_4_idx_cycle_1_bi_ort(m,j,k,i) = <mjk|-L|jim> ::: notice that i is the RIGHT MO and k is the LEFT MO
!
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
! three_e_4_idx_direct_bi_ort (m,j,k,i) : Lk Ri Imm Ijj + Lj Rj Imm Iki + Lm Rm Ijj Iki
! three_e_4_idx_exch13_bi_ort (m,j,k,i) : Lk Rm Imi Ijj + Lj Rj Imi Ikm + Lm Ri Ijj Ikm
! three_e_4_idx_exch23_bi_ort (m,j,k,i) : Lk Ri Imj Ijm + Lj Rm Imj Iki + Lm Rj Ijm Iki
! three_e_4_idx_cycle_1_bi_ort(m,j,k,i) : Lk Rm Imj Iji + Lj Ri Imj Ikm + Lm Rj Iji Ikm
!
END_DOC
implicit none
integer :: i, j, k, m
double precision :: integral, wall1, wall0
integer :: ipoint, i, j, k, m, n
double precision :: wall1, wall0
double precision :: tmp_loc_1, tmp_loc_2
double precision, allocatable :: tmp1(:,:,:), tmp2(:,:,:)
double precision, allocatable :: tmp_2d(:,:)
double precision, allocatable :: tmp_aux_1(:,:,:), tmp_aux_2(:,:)
three_e_4_idx_cycle_1_bi_ort = 0.d0
print *, ' Providing the three_e_4_idx_cycle_1_bi_ort ...'
print *, ' Providing the three_e_4_idx_bi_ort ...'
call wall_time(wall0)
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i,j,k,m,integral) &
!$OMP SHARED (mo_num,three_e_4_idx_cycle_1_bi_ort)
!$OMP DO SCHEDULE (dynamic) COLLAPSE(2)
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do m = 1, mo_num
call give_integrals_3_body_bi_ort(m, j, k, j, i, m, integral)
three_e_4_idx_cycle_1_bi_ort(m,j,k,i) = -1.d0 * integral
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call wall_time(wall1)
print *, ' wall time for three_e_4_idx_cycle_1_bi_ort', wall1 - wall0
! to reduce the number of operations
allocate(tmp_aux_1(n_points_final_grid,4,mo_num))
allocate(tmp_aux_2(n_points_final_grid,mo_num))
END_PROVIDER
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (n, ipoint) &
!$OMP SHARED (mo_num, n_points_final_grid, &
!$OMP mos_l_in_r_array_transp, mos_r_in_r_array_transp, &
!$OMP int2_grad1_u12_bimo_t, final_weight_at_r_vector, &
!$OMP tmp_aux_1, tmp_aux_2)
!$OMP DO
do n = 1, mo_num
do ipoint = 1, n_points_final_grid
! --
tmp_aux_1(ipoint,1,n) = int2_grad1_u12_bimo_t(ipoint,1,n,n) * final_weight_at_r_vector(ipoint)
tmp_aux_1(ipoint,2,n) = int2_grad1_u12_bimo_t(ipoint,2,n,n) * final_weight_at_r_vector(ipoint)
tmp_aux_1(ipoint,3,n) = int2_grad1_u12_bimo_t(ipoint,3,n,n) * final_weight_at_r_vector(ipoint)
tmp_aux_1(ipoint,4,n) = mos_l_in_r_array_transp(ipoint,n) * mos_r_in_r_array_transp(ipoint,n) * final_weight_at_r_vector(ipoint)
BEGIN_PROVIDER [ double precision, three_e_4_idx_cycle_2_bi_ort, (mo_num, mo_num, mo_num, mo_num)]
BEGIN_DOC
!
! matrix element of the -L three-body operator FOR THE FIRST CYCLIC PERMUTATION TERMS OF SINGLE EXCITATIONS AND BI ORTHO MOs
!
! three_e_4_idx_cycle_2_bi_ort(m,j,k,i) = <mjk|-L|imj> ::: notice that i is the RIGHT MO and k is the LEFT MO
!
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
!
END_DOC
implicit none
integer :: i, j, k, m
double precision :: integral, wall1, wall0
three_e_4_idx_cycle_2_bi_ort = 0.d0
print *, ' Providing the three_e_4_idx_cycle_2_bi_ort ...'
call wall_time(wall0)
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i,j,k,m,integral) &
!$OMP SHARED (mo_num,three_e_4_idx_cycle_2_bi_ort)
!$OMP DO SCHEDULE (dynamic) COLLAPSE(2)
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do m = 1, mo_num
call give_integrals_3_body_bi_ort(m, j, k, i, m, j, integral)
three_e_4_idx_cycle_2_bi_ort(m,j,k,i) = -1.d0 * integral
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call wall_time(wall1)
print *, ' wall time for three_e_4_idx_cycle_2_bi_ort', wall1 - wall0
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, three_e_4_idx_exch23_bi_ort, (mo_num, mo_num, mo_num, mo_num)]
BEGIN_DOC
!
! matrix element of the -L three-body operator FOR THE DIRECT TERMS OF SINGLE EXCITATIONS AND BI ORTHO MOs
!
! three_e_4_idx_exch23_bi_ort(m,j,k,i) = <mjk|-L|jmi> ::: notice that i is the RIGHT MO and k is the LEFT MO
!
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
!
END_DOC
implicit none
integer :: i, j, k, m
double precision :: integral, wall1, wall0
three_e_4_idx_exch23_bi_ort = 0.d0
print *, ' Providing the three_e_4_idx_exch23_bi_ort ...'
call wall_time(wall0)
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i,j,k,m,integral) &
!$OMP SHARED (mo_num,three_e_4_idx_exch23_bi_ort)
!$OMP DO SCHEDULE (dynamic) COLLAPSE(2)
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do m = 1, mo_num
call give_integrals_3_body_bi_ort(m, j, k, j, m, i, integral)
three_e_4_idx_exch23_bi_ort(m,j,k,i) = -1.d0 * integral
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call wall_time(wall1)
print *, ' wall time for three_e_4_idx_exch23_bi_ort', wall1 - wall0
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, three_e_4_idx_exch13_bi_ort, (mo_num, mo_num, mo_num, mo_num)]
BEGIN_DOC
!
! matrix element of the -L three-body operator FOR THE DIRECT TERMS OF SINGLE EXCITATIONS AND BI ORTHO MOs
!
! three_e_4_idx_exch13_bi_ort(m,j,k,i) = <mjk|-L|ijm> ::: notice that i is the RIGHT MO and k is the LEFT MO
!
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
END_DOC
implicit none
integer :: i, j, k, m
double precision :: integral, wall1, wall0
three_e_4_idx_exch13_bi_ort = 0.d0
print *, ' Providing the three_e_4_idx_exch13_bi_ort ...'
call wall_time(wall0)
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i,j,k,m,integral) &
!$OMP SHARED (mo_num,three_e_4_idx_exch13_bi_ort)
!$OMP DO SCHEDULE (dynamic) COLLAPSE(2)
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do m = 1, mo_num
call give_integrals_3_body_bi_ort(m, j, k, i, j, m, integral)
three_e_4_idx_exch13_bi_ort(m,j,k,i) = -1.d0 * integral
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call wall_time(wall1)
print *, ' wall time for three_e_4_idx_exch13_bi_ort', wall1 - wall0
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, three_e_4_idx_exch12_bi_ort, (mo_num, mo_num, mo_num, mo_num)]
BEGIN_DOC
!
! matrix element of the -L three-body operator FOR THE DIRECT TERMS OF SINGLE EXCITATIONS AND BI ORTHO MOs
!
! three_e_4_idx_exch12_bi_ort(m,j,k,i) = <mjk|-L|mij> ::: notice that i is the RIGHT MO and k is the LEFT MO
!
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
!
END_DOC
implicit none
integer :: i, j, k, m
double precision :: integral, wall1, wall0
three_e_4_idx_exch12_bi_ort = 0.d0
print *, ' Providing the three_e_4_idx_exch12_bi_ort ...'
call wall_time(wall0)
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i,j,k,m,integral) &
!$OMP SHARED (mo_num,three_e_4_idx_exch12_bi_ort)
!$OMP DO SCHEDULE (dynamic) COLLAPSE(2)
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do m = 1, mo_num
call give_integrals_3_body_bi_ort(m, j, k, m, i, j, integral)
three_e_4_idx_exch12_bi_ort(m,j,k,i) = -1.d0 * integral
enddo
enddo
tmp_aux_2(ipoint,n) = mos_l_in_r_array_transp(ipoint,n) * mos_r_in_r_array_transp(ipoint,n)
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
allocate(tmp_2d(mo_num,mo_num))
allocate(tmp1(n_points_final_grid,4,mo_num))
allocate(tmp2(n_points_final_grid,4,mo_num))
! loops approach to break the O(N^4) scaling in memory
do k = 1, mo_num
do i = 1, mo_num
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (n, ipoint, tmp_loc_1, tmp_loc_2) &
!$OMP SHARED (mo_num, n_points_final_grid, i, k, &
!$OMP mos_l_in_r_array_transp, mos_r_in_r_array_transp, &
!$OMP int2_grad1_u12_bimo_t, final_weight_at_r_vector, &
!$OMP tmp_aux_2, tmp1)
!$OMP DO
do n = 1, mo_num
do ipoint = 1, n_points_final_grid
tmp_loc_1 = mos_l_in_r_array_transp(ipoint,k) * mos_r_in_r_array_transp(ipoint,i)
tmp_loc_2 = tmp_aux_2(ipoint,n)
tmp1(ipoint,1,n) = int2_grad1_u12_bimo_t(ipoint,1,n,n) * tmp_loc_1 + int2_grad1_u12_bimo_t(ipoint,1,k,i) * tmp_loc_2
tmp1(ipoint,2,n) = int2_grad1_u12_bimo_t(ipoint,2,n,n) * tmp_loc_1 + int2_grad1_u12_bimo_t(ipoint,2,k,i) * tmp_loc_2
tmp1(ipoint,3,n) = int2_grad1_u12_bimo_t(ipoint,3,n,n) * tmp_loc_1 + int2_grad1_u12_bimo_t(ipoint,3,k,i) * tmp_loc_2
tmp1(ipoint,4,n) = int2_grad1_u12_bimo_t(ipoint,1,n,n) * int2_grad1_u12_bimo_t(ipoint,1,k,i) &
+ int2_grad1_u12_bimo_t(ipoint,2,n,n) * int2_grad1_u12_bimo_t(ipoint,2,k,i) &
+ int2_grad1_u12_bimo_t(ipoint,3,n,n) * int2_grad1_u12_bimo_t(ipoint,3,k,i)
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call dgemm( 'T', 'N', mo_num, mo_num, 4*n_points_final_grid, 1.d0 &
, tmp_aux_1(1,1,1), 4*n_points_final_grid, tmp1(1,1,1), 4*n_points_final_grid &
, 0.d0, tmp_2d(1,1), mo_num)
!$OMP PARALLEL DO PRIVATE(j,m)
do j = 1, mo_num
do m = 1, mo_num
three_e_4_idx_direct_bi_ort(m,j,k,i) = -tmp_2d(m,j)
enddo
enddo
!$OMP END PARALLEL DO
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (n, ipoint, tmp_loc_1, tmp_loc_2) &
!$OMP SHARED (mo_num, n_points_final_grid, i, k, &
!$OMP mos_l_in_r_array_transp, mos_r_in_r_array_transp, &
!$OMP int2_grad1_u12_bimo_t, final_weight_at_r_vector, &
!$OMP tmp1, tmp2)
!$OMP DO
do n = 1, mo_num
do ipoint = 1, n_points_final_grid
tmp_loc_1 = mos_l_in_r_array_transp(ipoint,k) * mos_r_in_r_array_transp(ipoint,n)
tmp_loc_2 = mos_l_in_r_array_transp(ipoint,n) * mos_r_in_r_array_transp(ipoint,i)
tmp1(ipoint,1,n) = int2_grad1_u12_bimo_t(ipoint,1,n,i) * tmp_loc_1 + int2_grad1_u12_bimo_t(ipoint,1,k,n) * tmp_loc_2
tmp1(ipoint,2,n) = int2_grad1_u12_bimo_t(ipoint,2,n,i) * tmp_loc_1 + int2_grad1_u12_bimo_t(ipoint,2,k,n) * tmp_loc_2
tmp1(ipoint,3,n) = int2_grad1_u12_bimo_t(ipoint,3,n,i) * tmp_loc_1 + int2_grad1_u12_bimo_t(ipoint,3,k,n) * tmp_loc_2
tmp1(ipoint,4,n) = int2_grad1_u12_bimo_t(ipoint,1,n,i) * int2_grad1_u12_bimo_t(ipoint,1,k,n) &
+ int2_grad1_u12_bimo_t(ipoint,2,n,i) * int2_grad1_u12_bimo_t(ipoint,2,k,n) &
+ int2_grad1_u12_bimo_t(ipoint,3,n,i) * int2_grad1_u12_bimo_t(ipoint,3,k,n)
tmp2(ipoint,1,n) = final_weight_at_r_vector(ipoint) * int2_grad1_u12_bimo_t(ipoint,1,i,n)
tmp2(ipoint,2,n) = final_weight_at_r_vector(ipoint) * int2_grad1_u12_bimo_t(ipoint,2,i,n)
tmp2(ipoint,3,n) = final_weight_at_r_vector(ipoint) * int2_grad1_u12_bimo_t(ipoint,3,i,n)
tmp2(ipoint,4,n) = final_weight_at_r_vector(ipoint) * mos_l_in_r_array_transp(ipoint,i) * mos_r_in_r_array_transp(ipoint,n)
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call dgemm( 'T', 'N', mo_num, mo_num, 4*n_points_final_grid, 1.d0 &
, tmp1(1,1,1), 4*n_points_final_grid, tmp_aux_1(1,1,1), 4*n_points_final_grid &
, 0.d0, tmp_2d(1,1), mo_num)
!$OMP PARALLEL DO PRIVATE(j,m)
do j = 1, mo_num
do m = 1, mo_num
three_e_4_idx_exch13_bi_ort(m,j,k,i) = -tmp_2d(m,j)
enddo
enddo
!$OMP END PARALLEL DO
call dgemm( 'T', 'N', mo_num, mo_num, 4*n_points_final_grid, 1.d0 &
, tmp1(1,1,1), 4*n_points_final_grid, tmp2(1,1,1), 4*n_points_final_grid &
, 0.d0, tmp_2d(1,1), mo_num)
!$OMP PARALLEL DO PRIVATE(j,m)
do j = 1, mo_num
do m = 1, mo_num
three_e_4_idx_cycle_1_bi_ort(m,i,k,j) = -tmp_2d(m,j)
enddo
enddo
!$OMP END PARALLEL DO
enddo ! i
do j = 1, mo_num
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (n, ipoint, tmp_loc_1, tmp_loc_2) &
!$OMP SHARED (mo_num, n_points_final_grid, j, k, &
!$OMP mos_l_in_r_array_transp, mos_r_in_r_array_transp, &
!$OMP int2_grad1_u12_bimo_t, final_weight_at_r_vector, &
!$OMP tmp1, tmp2)
!$OMP DO
do n = 1, mo_num
do ipoint = 1, n_points_final_grid
tmp_loc_1 = final_weight_at_r_vector(ipoint) * mos_l_in_r_array_transp(ipoint,j) * mos_r_in_r_array_transp(ipoint,n)
tmp_loc_2 = final_weight_at_r_vector(ipoint) * mos_l_in_r_array_transp(ipoint,n) * mos_r_in_r_array_transp(ipoint,j)
tmp1(ipoint,1,n) = int2_grad1_u12_bimo_t(ipoint,1,n,j) * tmp_loc_1 + int2_grad1_u12_bimo_t(ipoint,1,j,n) * tmp_loc_2
tmp1(ipoint,2,n) = int2_grad1_u12_bimo_t(ipoint,2,n,j) * tmp_loc_1 + int2_grad1_u12_bimo_t(ipoint,2,j,n) * tmp_loc_2
tmp1(ipoint,3,n) = int2_grad1_u12_bimo_t(ipoint,3,n,j) * tmp_loc_1 + int2_grad1_u12_bimo_t(ipoint,3,j,n) * tmp_loc_2
tmp1(ipoint,4,n) = int2_grad1_u12_bimo_t(ipoint,1,n,j) * int2_grad1_u12_bimo_t(ipoint,1,j,n) &
+ int2_grad1_u12_bimo_t(ipoint,2,n,j) * int2_grad1_u12_bimo_t(ipoint,2,j,n) &
+ int2_grad1_u12_bimo_t(ipoint,3,n,j) * int2_grad1_u12_bimo_t(ipoint,3,j,n)
tmp2(ipoint,1,n) = int2_grad1_u12_bimo_t(ipoint,1,k,n)
tmp2(ipoint,2,n) = int2_grad1_u12_bimo_t(ipoint,2,k,n)
tmp2(ipoint,3,n) = int2_grad1_u12_bimo_t(ipoint,3,k,n)
tmp2(ipoint,4,n) = final_weight_at_r_vector(ipoint) * mos_l_in_r_array_transp(ipoint,k) * mos_r_in_r_array_transp(ipoint,n)
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call dgemm( 'T', 'N', mo_num, mo_num, 4*n_points_final_grid, 1.d0 &
, tmp1(1,1,1), 4*n_points_final_grid, tmp2(1,1,1), 4*n_points_final_grid &
, 0.d0, tmp_2d(1,1), mo_num)
!$OMP PARALLEL DO PRIVATE(i,m)
do i = 1, mo_num
do m = 1, mo_num
three_e_4_idx_exch23_bi_ort(m,j,k,i) = -tmp_2d(m,i)
enddo
enddo
!$OMP END PARALLEL DO
enddo ! j
enddo !k
deallocate(tmp_2d)
deallocate(tmp1)
deallocate(tmp2)
deallocate(tmp_aux_1)
deallocate(tmp_aux_2)
call wall_time(wall1)
print *, ' wall time for three_e_4_idx_exch12_bi_ort', wall1 - wall0
print *, ' wall time for three_e_4_idx_bi_ort', wall1 - wall0
call print_memory_usage()
END_PROVIDER

View File

@ -0,0 +1,486 @@
! ---
BEGIN_PROVIDER [ double precision, three_e_4_idx_direct_bi_ort_n4 , (mo_num, mo_num, mo_num, mo_num)]
&BEGIN_PROVIDER [ double precision, three_e_4_idx_exch13_bi_ort_n4 , (mo_num, mo_num, mo_num, mo_num)]
&BEGIN_PROVIDER [ double precision, three_e_4_idx_cycle_1_bi_ort_n4, (mo_num, mo_num, mo_num, mo_num)]
!&BEGIN_PROVIDER [ double precision, three_e_4_idx_exch12_bi_ort_n4, (mo_num, mo_num, mo_num, mo_num)]
!&BEGIN_PROVIDER [ double precision, three_e_4_idx_cycle_2_bi_ort_n4, (mo_num, mo_num, mo_num, mo_num)]
BEGIN_DOC
!
! matrix element of the -L three-body operator FOR THE DIRECT TERMS OF SINGLE EXCITATIONS AND BI ORTHO MOs
!
! three_e_4_idx_direct_bi_ort_n4 (m,j,k,i) = < m j k | -L | m j i > ::: notice that i is the RIGHT MO and k is the LEFT MO
! three_e_4_idx_exch13_bi_ort_n4 (m,j,k,i) = < m j k | -L | i j m > ::: notice that i is the RIGHT MO and k is the LEFT MO
! three_e_4_idx_exch12_bi_ort_n4 (m,j,k,i) = < m j k | -L | m i j > ::: notice that i is the RIGHT MO and k is the LEFT MO
! = three_e_4_idx_exch13_bi_ort_n4 (j,m,k,i)
! three_e_4_idx_cycle_1_bi_ort_n4(m,j,k,i) = < m j k | -L | j i m > ::: notice that i is the RIGHT MO and k is the LEFT MO
! three_e_4_idx_cycle_2_bi_ort_n4(m,j,k,i) = < m j k | -L | i m j > ::: notice that i is the RIGHT MO and k is the LEFT MO
! = three_e_4_idx_cycle_1_bi_ort_n4(j,m,k,i)
!
! notice the -1 sign: in this way three_e_4_idx_direct_bi_ort_n4 can be directly used to compute Slater rules with a + sign
!
! three_e_4_idx_direct_bi_ort_n4 (m,j,k,i) : Lk Ri Imm Ijj + Lj Rj Imm Iki + Lm Rm Ijj Iki
! three_e_4_idx_exch13_bi_ort_n4 (m,j,k,i) : Lk Rm Imi Ijj + Lj Rj Imi Ikm + Lm Ri Ijj Ikm
! three_e_4_idx_cycle_1_bi_ort_n4(m,j,k,i) : Lk Rm Imj Iji + Lj Ri Imj Ikm + Lm Rj Iji Ikm
!
END_DOC
implicit none
integer :: ipoint, i, j, k, l, m
double precision :: wall1, wall0
double precision, allocatable :: tmp1(:,:,:,:), tmp2(:,:,:,:), tmp3(:,:,:,:)
double precision, allocatable :: tmp_4d(:,:,:,:)
double precision, allocatable :: tmp4(:,:,:)
double precision, allocatable :: tmp5(:,:)
double precision, allocatable :: tmp_3d(:,:,:)
print *, ' Providing the O(N^4) three_e_4_idx_bi_ort ...'
call wall_time(wall0)
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
allocate(tmp_4d(mo_num,mo_num,mo_num,mo_num))
allocate(tmp1(n_points_final_grid,3,mo_num,mo_num))
allocate(tmp2(n_points_final_grid,3,mo_num,mo_num))
allocate(tmp3(n_points_final_grid,3,mo_num,mo_num))
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i, l, ipoint) &
!$OMP SHARED (mo_num, n_points_final_grid, &
!$OMP mos_l_in_r_array_transp, mos_r_in_r_array_transp, &
!$OMP int2_grad1_u12_bimo_t, final_weight_at_r_vector, &
!$OMP tmp1, tmp2, tmp3)
!$OMP DO COLLAPSE(2)
do i = 1, mo_num
do l = 1, mo_num
do ipoint = 1, n_points_final_grid
tmp1(ipoint,1,l,i) = int2_grad1_u12_bimo_t(ipoint,1,l,l) * mos_l_in_r_array_transp(ipoint,i) * final_weight_at_r_vector(ipoint)
tmp1(ipoint,2,l,i) = int2_grad1_u12_bimo_t(ipoint,2,l,l) * mos_l_in_r_array_transp(ipoint,i) * final_weight_at_r_vector(ipoint)
tmp1(ipoint,3,l,i) = int2_grad1_u12_bimo_t(ipoint,3,l,l) * mos_l_in_r_array_transp(ipoint,i) * final_weight_at_r_vector(ipoint)
tmp2(ipoint,1,l,i) = int2_grad1_u12_bimo_t(ipoint,1,l,l) * mos_r_in_r_array_transp(ipoint,i)
tmp2(ipoint,2,l,i) = int2_grad1_u12_bimo_t(ipoint,2,l,l) * mos_r_in_r_array_transp(ipoint,i)
tmp2(ipoint,3,l,i) = int2_grad1_u12_bimo_t(ipoint,3,l,l) * mos_r_in_r_array_transp(ipoint,i)
tmp3(ipoint,1,l,i) = int2_grad1_u12_bimo_t(ipoint,1,l,i) * mos_r_in_r_array_transp(ipoint,l)
tmp3(ipoint,2,l,i) = int2_grad1_u12_bimo_t(ipoint,2,l,i) * mos_r_in_r_array_transp(ipoint,l)
tmp3(ipoint,3,l,i) = int2_grad1_u12_bimo_t(ipoint,3,l,i) * mos_r_in_r_array_transp(ipoint,l)
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call dgemm( 'T', 'N', mo_num*mo_num, mo_num*mo_num, 3*n_points_final_grid, 1.d0 &
, tmp1(1,1,1,1), 3*n_points_final_grid, tmp2(1,1,1,1), 3*n_points_final_grid &
, 0.d0, tmp_4d(1,1,1,1), mo_num*mo_num)
!$OMP PARALLEL DO PRIVATE(i,j,k,m)
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do m = 1, mo_num
three_e_4_idx_direct_bi_ort_n4(m,j,k,i) = -tmp_4d(m,k,j,i)
enddo
enddo
enddo
enddo
!$OMP END PARALLEL DO
call dgemm( 'T', 'N', mo_num*mo_num, mo_num*mo_num, 3*n_points_final_grid, 1.d0 &
, tmp3(1,1,1,1), 3*n_points_final_grid, tmp1(1,1,1,1), 3*n_points_final_grid &
, 0.d0, tmp_4d(1,1,1,1), mo_num*mo_num)
!$OMP PARALLEL DO PRIVATE(i,j,k,m)
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do m = 1, mo_num
three_e_4_idx_exch13_bi_ort_n4(m,j,k,i) = -tmp_4d(m,i,j,k)
enddo
enddo
enddo
enddo
!$OMP END PARALLEL DO
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i, l, ipoint) &
!$OMP SHARED (mo_num, n_points_final_grid, &
!$OMP mos_l_in_r_array_transp, mos_r_in_r_array_transp, &
!$OMP int2_grad1_u12_bimo_t, final_weight_at_r_vector, &
!$OMP tmp1)
!$OMP DO COLLAPSE(2)
do i = 1, mo_num
do l = 1, mo_num
do ipoint = 1, n_points_final_grid
tmp1(ipoint,1,l,i) = int2_grad1_u12_bimo_t(ipoint,1,i,l) * mos_l_in_r_array_transp(ipoint,l) * final_weight_at_r_vector(ipoint)
tmp1(ipoint,2,l,i) = int2_grad1_u12_bimo_t(ipoint,2,i,l) * mos_l_in_r_array_transp(ipoint,l) * final_weight_at_r_vector(ipoint)
tmp1(ipoint,3,l,i) = int2_grad1_u12_bimo_t(ipoint,3,i,l) * mos_l_in_r_array_transp(ipoint,l) * final_weight_at_r_vector(ipoint)
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call dgemm( 'T', 'N', mo_num*mo_num, mo_num*mo_num, 3*n_points_final_grid, 1.d0 &
, tmp1(1,1,1,1), 3*n_points_final_grid, tmp2(1,1,1,1), 3*n_points_final_grid &
, 0.d0, tmp_4d(1,1,1,1), mo_num*mo_num)
deallocate(tmp2)
!$OMP PARALLEL DO PRIVATE(i,j,k,m)
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do m = 1, mo_num
three_e_4_idx_exch13_bi_ort_n4(m,j,k,i) = three_e_4_idx_exch13_bi_ort_n4(m,j,k,i) - tmp_4d(m,k,j,i)
enddo
enddo
enddo
enddo
!$OMP END PARALLEL DO
call dgemm( 'T', 'N', mo_num*mo_num, mo_num*mo_num, 3*n_points_final_grid, 1.d0 &
, tmp1(1,1,1,1), 3*n_points_final_grid, tmp3(1,1,1,1), 3*n_points_final_grid &
, 0.d0, tmp_4d(1,1,1,1), mo_num*mo_num)
deallocate(tmp3)
!$OMP PARALLEL DO PRIVATE(i,j,k,m)
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do m = 1, mo_num
three_e_4_idx_cycle_1_bi_ort_n4(m,j,k,i) = -tmp_4d(m,k,j,i)
enddo
enddo
enddo
enddo
!$OMP END PARALLEL DO
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i, l, ipoint) &
!$OMP SHARED (mo_num, n_points_final_grid, &
!$OMP mos_l_in_r_array_transp, mos_r_in_r_array_transp, &
!$OMP int2_grad1_u12_bimo_t, final_weight_at_r_vector, &
!$OMP tmp1)
!$OMP DO COLLAPSE(2)
do i = 1, mo_num
do l = 1, mo_num
do ipoint = 1, n_points_final_grid
tmp1(ipoint,1,l,i) = final_weight_at_r_vector(ipoint) * int2_grad1_u12_bimo_t(ipoint,1,l,l) * mos_l_in_r_array_transp(ipoint,i) * mos_r_in_r_array_transp(ipoint,i)
tmp1(ipoint,2,l,i) = final_weight_at_r_vector(ipoint) * int2_grad1_u12_bimo_t(ipoint,2,l,l) * mos_l_in_r_array_transp(ipoint,i) * mos_r_in_r_array_transp(ipoint,i)
tmp1(ipoint,3,l,i) = final_weight_at_r_vector(ipoint) * int2_grad1_u12_bimo_t(ipoint,3,l,l) * mos_l_in_r_array_transp(ipoint,i) * mos_r_in_r_array_transp(ipoint,i)
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call dgemm( 'T', 'N', mo_num*mo_num, mo_num*mo_num, 3*n_points_final_grid, 1.d0 &
, tmp1(1,1,1,1), 3*n_points_final_grid, int2_grad1_u12_bimo_t(1,1,1,1), 3*n_points_final_grid &
, 0.d0, tmp_4d(1,1,1,1), mo_num*mo_num)
deallocate(tmp1)
!$OMP PARALLEL DO PRIVATE(i,j,k,m)
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do m = 1, mo_num
three_e_4_idx_direct_bi_ort_n4(m,j,k,i) = three_e_4_idx_direct_bi_ort_n4(m,j,k,i) - tmp_4d(m,j,k,i) - tmp_4d(j,m,k,i)
enddo
enddo
enddo
enddo
!$OMP END PARALLEL DO
deallocate(tmp_4d)
allocate(tmp_3d(mo_num,mo_num,mo_num))
allocate(tmp5(n_points_final_grid,mo_num))
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i, ipoint) &
!$OMP SHARED (mo_num, n_points_final_grid, &
!$OMP mos_l_in_r_array_transp, mos_r_in_r_array_transp, &
!$OMP final_weight_at_r_vector, &
!$OMP tmp5)
!$OMP DO
do i = 1, mo_num
do ipoint = 1, n_points_final_grid
tmp5(ipoint,i) = final_weight_at_r_vector(ipoint) * mos_l_in_r_array_transp(ipoint,i) * mos_r_in_r_array_transp(ipoint,i)
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
allocate(tmp4(n_points_final_grid,mo_num,mo_num))
do m = 1, mo_num
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i, k, ipoint) &
!$OMP SHARED (mo_num, n_points_final_grid, m, &
!$OMP int2_grad1_u12_bimo_t, &
!$OMP tmp4)
!$OMP DO COLLAPSE(2)
do i = 1, mo_num
do k = 1, mo_num
do ipoint = 1, n_points_final_grid
tmp4(ipoint,k,i) = int2_grad1_u12_bimo_t(ipoint,1,k,m) * int2_grad1_u12_bimo_t(ipoint,1,m,i) &
+ int2_grad1_u12_bimo_t(ipoint,2,k,m) * int2_grad1_u12_bimo_t(ipoint,2,m,i) &
+ int2_grad1_u12_bimo_t(ipoint,3,k,m) * int2_grad1_u12_bimo_t(ipoint,3,m,i)
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call dgemm( 'T', 'N', mo_num, mo_num*mo_num, n_points_final_grid, 1.d0 &
, tmp5(1,1), n_points_final_grid, tmp4(1,1,1), n_points_final_grid &
, 0.d0, tmp_3d(1,1,1), mo_num)
!$OMP PARALLEL DO PRIVATE(i,j,k)
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
three_e_4_idx_exch13_bi_ort_n4(m,j,k,i) = three_e_4_idx_exch13_bi_ort_n4(m,j,k,i) - tmp_3d(j,k,i)
enddo
enddo
enddo
!$OMP END PARALLEL DO
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (j, k, ipoint) &
!$OMP SHARED (mo_num, n_points_final_grid, m, &
!$OMP mos_l_in_r_array_transp, &
!$OMP int2_grad1_u12_bimo_t, final_weight_at_r_vector, &
!$OMP tmp4)
!$OMP DO COLLAPSE(2)
do k = 1, mo_num
do j = 1, mo_num
do ipoint = 1, n_points_final_grid
tmp4(ipoint,j,k) = final_weight_at_r_vector(ipoint) * mos_l_in_r_array_transp(ipoint,j) &
* ( int2_grad1_u12_bimo_t(ipoint,1,m,j) * int2_grad1_u12_bimo_t(ipoint,1,k,m) &
+ int2_grad1_u12_bimo_t(ipoint,2,m,j) * int2_grad1_u12_bimo_t(ipoint,2,k,m) &
+ int2_grad1_u12_bimo_t(ipoint,3,m,j) * int2_grad1_u12_bimo_t(ipoint,3,k,m) )
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call dgemm( 'T', 'N', mo_num*mo_num, mo_num, n_points_final_grid, 1.d0 &
, tmp4(1,1,1), n_points_final_grid, mos_r_in_r_array_transp(1,1), n_points_final_grid &
, 0.d0, tmp_3d(1,1,1), mo_num*mo_num)
!$OMP PARALLEL DO PRIVATE(i,j,k)
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
three_e_4_idx_cycle_1_bi_ort_n4(m,j,k,i) = three_e_4_idx_cycle_1_bi_ort_n4(m,j,k,i) - tmp_3d(j,k,i)
enddo
enddo
enddo
!$OMP END PARALLEL DO
enddo
deallocate(tmp5)
deallocate(tmp_3d)
do i = 1, mo_num
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (m, j, ipoint) &
!$OMP SHARED (mo_num, n_points_final_grid, i, &
!$OMP mos_r_in_r_array_transp, &
!$OMP int2_grad1_u12_bimo_t, final_weight_at_r_vector, &
!$OMP tmp4)
!$OMP DO COLLAPSE(2)
do j = 1, mo_num
do m = 1, mo_num
do ipoint = 1, n_points_final_grid
tmp4(ipoint,m,j) = final_weight_at_r_vector(ipoint) * mos_r_in_r_array_transp(ipoint,m) &
* ( int2_grad1_u12_bimo_t(ipoint,1,m,j) * int2_grad1_u12_bimo_t(ipoint,1,j,i) &
+ int2_grad1_u12_bimo_t(ipoint,2,m,j) * int2_grad1_u12_bimo_t(ipoint,2,j,i) &
+ int2_grad1_u12_bimo_t(ipoint,3,m,j) * int2_grad1_u12_bimo_t(ipoint,3,j,i) )
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call dgemm( 'T', 'N', mo_num*mo_num, mo_num, n_points_final_grid, -1.d0 &
, tmp4(1,1,1), n_points_final_grid, mos_l_in_r_array_transp(1,1), n_points_final_grid &
, 1.d0, three_e_4_idx_cycle_1_bi_ort_n4(1,1,1,i), mo_num*mo_num)
enddo
deallocate(tmp4)
! !$OMP PARALLEL DO PRIVATE(i,j,k,m)
! do i = 1, mo_num
! do k = 1, mo_num
! do j = 1, mo_num
! do m = 1, mo_num
! three_e_4_idx_exch12_bi_ort_n4 (m,j,k,i) = three_e_4_idx_exch13_bi_ort_n4 (j,m,k,i)
! three_e_4_idx_cycle_2_bi_ort_n4(m,j,k,i) = three_e_4_idx_cycle_1_bi_ort_n4(j,m,k,i)
! enddo
! enddo
! enddo
! enddo
! !$OMP END PARALLEL DO
call wall_time(wall1)
print *, ' wall time for O(N^4) three_e_4_idx_bi_ort', wall1 - wall0
call print_memory_usage()
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, three_e_4_idx_exch23_bi_ort_n4 , (mo_num, mo_num, mo_num, mo_num)]
BEGIN_DOC
!
! matrix element of the -L three-body operator FOR THE DIRECT TERMS OF SINGLE EXCITATIONS AND BI ORTHO MOs
!
! three_e_4_idx_exch23_bi_ort_n4 (m,j,k,i) = < m j k | -L | j m i > ::: notice that i is the RIGHT MO and k is the LEFT MO
!
! notice the -1 sign: in this way three_e_4_idx_direct_bi_ort_n4 can be directly used to compute Slater rules with a + sign
!
! three_e_4_idx_exch23_bi_ort_n4 (m,j,k,i) : Lk Ri Imj Ijm + Lj Rm Imj Iki + Lm Rj Ijm Iki
!
END_DOC
implicit none
integer :: i, j, k, l, m, ipoint
double precision :: wall1, wall0
double precision, allocatable :: tmp1(:,:,:,:), tmp_4d(:,:,:,:)
double precision, allocatable :: tmp5(:,:,:), tmp6(:,:,:)
print *, ' Providing the O(N^4) three_e_4_idx_exch23_bi_ort_n4 ...'
call wall_time(wall0)
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
allocate(tmp5(n_points_final_grid,mo_num,mo_num))
allocate(tmp6(n_points_final_grid,mo_num,mo_num))
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i, l, ipoint) &
!$OMP SHARED (mo_num, n_points_final_grid, &
!$OMP mos_l_in_r_array_transp, mos_r_in_r_array_transp, &
!$OMP int2_grad1_u12_bimo_t, final_weight_at_r_vector, &
!$OMP tmp5, tmp6)
!$OMP DO COLLAPSE(2)
do i = 1, mo_num
do l = 1, mo_num
do ipoint = 1, n_points_final_grid
tmp5(ipoint,l,i) = int2_grad1_u12_bimo_t(ipoint,1,l,i) * int2_grad1_u12_bimo_t(ipoint,1,i,l) &
+ int2_grad1_u12_bimo_t(ipoint,2,l,i) * int2_grad1_u12_bimo_t(ipoint,2,i,l) &
+ int2_grad1_u12_bimo_t(ipoint,3,l,i) * int2_grad1_u12_bimo_t(ipoint,3,i,l)
tmp6(ipoint,l,i) = final_weight_at_r_vector(ipoint) * mos_l_in_r_array_transp(ipoint,l) * mos_r_in_r_array_transp(ipoint,i)
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call dgemm( 'T', 'N', mo_num*mo_num, mo_num*mo_num, n_points_final_grid, -1.d0 &
, tmp5(1,1,1), n_points_final_grid, tmp6(1,1,1), n_points_final_grid &
, 0.d0, three_e_4_idx_exch23_bi_ort_n4(1,1,1,1), mo_num*mo_num)
deallocate(tmp5)
deallocate(tmp6)
allocate(tmp_4d(mo_num,mo_num,mo_num,mo_num))
allocate(tmp1(n_points_final_grid,3,mo_num,mo_num))
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i, l, ipoint) &
!$OMP SHARED (mo_num, n_points_final_grid, &
!$OMP mos_l_in_r_array_transp, mos_r_in_r_array_transp, &
!$OMP int2_grad1_u12_bimo_t, final_weight_at_r_vector, &
!$OMP tmp1)
!$OMP DO COLLAPSE(2)
do i = 1, mo_num
do l = 1, mo_num
do ipoint = 1, n_points_final_grid
tmp1(ipoint,1,l,i) = final_weight_at_r_vector(ipoint) * int2_grad1_u12_bimo_t(ipoint,1,l,i) * mos_l_in_r_array_transp(ipoint,i) * mos_r_in_r_array_transp(ipoint,l)
tmp1(ipoint,2,l,i) = final_weight_at_r_vector(ipoint) * int2_grad1_u12_bimo_t(ipoint,2,l,i) * mos_l_in_r_array_transp(ipoint,i) * mos_r_in_r_array_transp(ipoint,l)
tmp1(ipoint,3,l,i) = final_weight_at_r_vector(ipoint) * int2_grad1_u12_bimo_t(ipoint,3,l,i) * mos_l_in_r_array_transp(ipoint,i) * mos_r_in_r_array_transp(ipoint,l)
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call dgemm( 'T', 'N', mo_num*mo_num, mo_num*mo_num, 3*n_points_final_grid, 1.d0 &
, tmp1(1,1,1,1), 3*n_points_final_grid, int2_grad1_u12_bimo_t(1,1,1,1), 3*n_points_final_grid &
, 0.d0, tmp_4d(1,1,1,1), mo_num*mo_num)
deallocate(tmp1)
!$OMP PARALLEL DO PRIVATE(i,j,k,m)
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do m = 1, mo_num
three_e_4_idx_exch23_bi_ort_n4(m,j,k,i) = three_e_4_idx_exch23_bi_ort_n4(m,j,k,i) - tmp_4d(m,j,k,i) - tmp_4d(j,m,k,i)
enddo
enddo
enddo
enddo
!$OMP END PARALLEL DO
deallocate(tmp_4d)
call wall_time(wall1)
print *, ' wall time for O(N^4) three_e_4_idx_exch23_bi_ort_n4', wall1 - wall0
call print_memory_usage()
END_PROVIDER
! ---

View File

@ -0,0 +1,290 @@
! ---
BEGIN_PROVIDER [ double precision, three_e_4_idx_direct_bi_ort_old, (mo_num, mo_num, mo_num, mo_num)]
BEGIN_DOC
!
! matrix element of the -L three-body operator FOR THE DIRECT TERMS OF SINGLE EXCITATIONS AND BI ORTHO MOs
!
! three_e_4_idx_direct_bi_ort_old(m,j,k,i) = <mjk|-L|mji> ::: notice that i is the RIGHT MO and k is the LEFT MO
!
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
!
END_DOC
implicit none
integer :: i, j, k, m
double precision :: integral, wall1, wall0
three_e_4_idx_direct_bi_ort_old = 0.d0
print *, ' Providing the three_e_4_idx_direct_bi_ort_old ...'
call wall_time(wall0)
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i,j,k,m,integral) &
!$OMP SHARED (mo_num,three_e_4_idx_direct_bi_ort_old)
!$OMP DO SCHEDULE (dynamic) COLLAPSE(2)
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do m = 1, mo_num
call give_integrals_3_body_bi_ort(m, j, k, m, j, i, integral)
three_e_4_idx_direct_bi_ort_old(m,j,k,i) = -1.d0 * integral
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call wall_time(wall1)
print *, ' wall time for three_e_4_idx_direct_bi_ort_old', wall1 - wall0
call print_memory_usage()
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, three_e_4_idx_cycle_1_bi_ort_old, (mo_num, mo_num, mo_num, mo_num)]
BEGIN_DOC
!
! matrix element of the -L three-body operator FOR THE FIRST CYCLIC PERMUTATION TERMS OF SINGLE EXCITATIONS AND BI ORTHO MOs
!
! three_e_4_idx_cycle_1_bi_ort_old(m,j,k,i) = <mjk|-L|jim> ::: notice that i is the RIGHT MO and k is the LEFT MO
!
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
!
END_DOC
implicit none
integer :: i, j, k, m
double precision :: integral, wall1, wall0
three_e_4_idx_cycle_1_bi_ort_old = 0.d0
print *, ' Providing the three_e_4_idx_cycle_1_bi_ort_old ...'
call wall_time(wall0)
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i,j,k,m,integral) &
!$OMP SHARED (mo_num,three_e_4_idx_cycle_1_bi_ort_old)
!$OMP DO SCHEDULE (dynamic) COLLAPSE(2)
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do m = 1, mo_num
call give_integrals_3_body_bi_ort(m, j, k, j, i, m, integral)
three_e_4_idx_cycle_1_bi_ort_old(m,j,k,i) = -1.d0 * integral
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call wall_time(wall1)
print *, ' wall time for three_e_4_idx_cycle_1_bi_ort_old', wall1 - wall0
call print_memory_usage()
END_PROVIDER
! --
BEGIN_PROVIDER [ double precision, three_e_4_idx_cycle_2_bi_ort_old, (mo_num, mo_num, mo_num, mo_num)]
BEGIN_DOC
!
! matrix element of the -L three-body operator FOR THE FIRST CYCLIC PERMUTATION TERMS OF SINGLE EXCITATIONS AND BI ORTHO MOs
!
! three_e_4_idx_cycle_2_bi_ort_old(m,j,k,i) = <mjk|-L|imj> ::: notice that i is the RIGHT MO and k is the LEFT MO
!
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
!
END_DOC
implicit none
integer :: i, j, k, m
double precision :: integral, wall1, wall0
three_e_4_idx_cycle_2_bi_ort_old = 0.d0
print *, ' Providing the three_e_4_idx_cycle_2_bi_ort_old ...'
call wall_time(wall0)
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i,j,k,m,integral) &
!$OMP SHARED (mo_num,three_e_4_idx_cycle_2_bi_ort_old)
!$OMP DO SCHEDULE (dynamic) COLLAPSE(2)
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do m = 1, mo_num
call give_integrals_3_body_bi_ort(m, j, k, i, m, j, integral)
three_e_4_idx_cycle_2_bi_ort_old(m,j,k,i) = -1.d0 * integral
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call wall_time(wall1)
print *, ' wall time for three_e_4_idx_cycle_2_bi_ort_old', wall1 - wall0
call print_memory_usage()
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, three_e_4_idx_exch23_bi_ort_old, (mo_num, mo_num, mo_num, mo_num)]
BEGIN_DOC
!
! matrix element of the -L three-body operator FOR THE DIRECT TERMS OF SINGLE EXCITATIONS AND BI ORTHO MOs
!
! three_e_4_idx_exch23_bi_ort_old(m,j,k,i) = <mjk|-L|jmi> ::: notice that i is the RIGHT MO and k is the LEFT MO
!
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
!
END_DOC
implicit none
integer :: i, j, k, m
double precision :: integral, wall1, wall0
three_e_4_idx_exch23_bi_ort_old = 0.d0
print *, ' Providing the three_e_4_idx_exch23_bi_ort_old ...'
call wall_time(wall0)
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i,j,k,m,integral) &
!$OMP SHARED (mo_num,three_e_4_idx_exch23_bi_ort_old)
!$OMP DO SCHEDULE (dynamic) COLLAPSE(2)
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do m = 1, mo_num
call give_integrals_3_body_bi_ort(m, j, k, j, m, i, integral)
three_e_4_idx_exch23_bi_ort_old(m,j,k,i) = -1.d0 * integral
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call wall_time(wall1)
print *, ' wall time for three_e_4_idx_exch23_bi_ort_old', wall1 - wall0
call print_memory_usage()
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, three_e_4_idx_exch13_bi_ort_old, (mo_num, mo_num, mo_num, mo_num)]
BEGIN_DOC
!
! matrix element of the -L three-body operator FOR THE DIRECT TERMS OF SINGLE EXCITATIONS AND BI ORTHO MOs
!
! three_e_4_idx_exch13_bi_ort_old(m,j,k,i) = <mjk|-L|ijm> ::: notice that i is the RIGHT MO and k is the LEFT MO
!
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
END_DOC
implicit none
integer :: i, j, k, m
double precision :: integral, wall1, wall0
three_e_4_idx_exch13_bi_ort_old = 0.d0
print *, ' Providing the three_e_4_idx_exch13_bi_ort_old ...'
call wall_time(wall0)
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i,j,k,m,integral) &
!$OMP SHARED (mo_num,three_e_4_idx_exch13_bi_ort_old)
!$OMP DO SCHEDULE (dynamic) COLLAPSE(2)
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do m = 1, mo_num
call give_integrals_3_body_bi_ort(m, j, k, i, j, m, integral)
three_e_4_idx_exch13_bi_ort_old(m,j,k,i) = -1.d0 * integral
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call wall_time(wall1)
print *, ' wall time for three_e_4_idx_exch13_bi_ort_old', wall1 - wall0
call print_memory_usage()
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, three_e_4_idx_exch12_bi_ort_old, (mo_num, mo_num, mo_num, mo_num)]
BEGIN_DOC
!
! matrix element of the -L three-body operator FOR THE DIRECT TERMS OF SINGLE EXCITATIONS AND BI ORTHO MOs
!
! three_e_4_idx_exch12_bi_ort_old(m,j,k,i) = <mjk|-L|mij> ::: notice that i is the RIGHT MO and k is the LEFT MO
!
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
!
END_DOC
implicit none
integer :: i, j, k, m
double precision :: integral, wall1, wall0
three_e_4_idx_exch12_bi_ort_old = 0.d0
print *, ' Providing the three_e_4_idx_exch12_bi_ort_old ...'
call wall_time(wall0)
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i,j,k,m,integral) &
!$OMP SHARED (mo_num,three_e_4_idx_exch12_bi_ort_old)
!$OMP DO SCHEDULE (dynamic) COLLAPSE(2)
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do m = 1, mo_num
call give_integrals_3_body_bi_ort(m, j, k, m, i, j, integral)
three_e_4_idx_exch12_bi_ort_old(m,j,k,i) = -1.d0 * integral
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call wall_time(wall1)
print *, ' wall time for three_e_4_idx_exch12_bi_ort_old', wall1 - wall0
call print_memory_usage()
END_PROVIDER
! ---

View File

@ -1,296 +1,245 @@
! ---
double precision function three_e_5_idx_exch12_bi_ort(m,l,i,k,j) result(integral)
implicit none
integer, intent(in) :: m,l,j,k,i
integral = three_e_5_idx_direct_bi_ort(m,l,j,k,i)
end
BEGIN_PROVIDER [ double precision, three_e_5_idx_direct_bi_ort, (mo_num, mo_num, mo_num, mo_num, mo_num)]
BEGIN_PROVIDER [ double precision, three_e_5_idx_direct_bi_ort , (mo_num, mo_num, mo_num, mo_num, mo_num)]
&BEGIN_PROVIDER [ double precision, three_e_5_idx_exch23_bi_ort , (mo_num, mo_num, mo_num, mo_num, mo_num)]
&BEGIN_PROVIDER [ double precision, three_e_5_idx_exch13_bi_ort , (mo_num, mo_num, mo_num, mo_num, mo_num)]
&BEGIN_PROVIDER [ double precision, three_e_5_idx_cycle_1_bi_ort, (mo_num, mo_num, mo_num, mo_num, mo_num)]
&BEGIN_PROVIDER [ double precision, three_e_5_idx_cycle_2_bi_ort, (mo_num, mo_num, mo_num, mo_num, mo_num)]
BEGIN_DOC
!
! matrix element of the -L three-body operator FOR THE DIRECT TERMS OF DOUBLE EXCITATIONS AND BI ORTHO MOs
!
! three_e_5_idx_direct_bi_ort(m,l,j,k,i) = <mlk|-L|mji> ::: notice that i is the RIGHT MO and k is the LEFT MO
! three_e_5_idx_direct_bi_ort(m,l,j,k,i) = <mlk|-L|mji> :: : notice that i is the RIGHT MO and k is the LEFT MO
!
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
!
END_DOC
implicit none
integer :: i, j, k, m, l
double precision :: integral, wall1, wall0
three_e_5_idx_direct_bi_ort = 0.d0
print *, ' Providing the three_e_5_idx_direct_bi_ort ...'
call wall_time(wall0)
integer :: i, j, k, m, l
double precision :: wall1, wall0
integer :: ipoint
double precision, allocatable :: grad_mli(:,:), orb_mat(:,:,:)
double precision, allocatable :: lk_grad_mi(:,:,:,:), rk_grad_im(:,:,:)
double precision, allocatable :: lm_grad_ik(:,:,:,:), rm_grad_ik(:,:,:)
double precision, allocatable :: tmp_mat(:,:,:)
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
PROVIDE mo_l_coef mo_r_coef int2_grad1_u12_bimo_t
call print_memory_usage
print *, ' Providing the three_e_5_idx_bi_ort ...'
call wall_time(wall0)
three_e_5_idx_direct_bi_ort (:,:,:,:,:) = 0.d0
three_e_5_idx_cycle_1_bi_ort(:,:,:,:,:) = 0.d0
three_e_5_idx_cycle_2_bi_ort(:,:,:,:,:) = 0.d0
three_e_5_idx_exch23_bi_ort (:,:,:,:,:) = 0.d0
three_e_5_idx_exch13_bi_ort (:,:,:,:,:) = 0.d0
call print_memory_usage
allocate(tmp_mat(mo_num,mo_num,mo_num))
allocate(orb_mat(n_points_final_grid,mo_num,mo_num))
!$OMP PARALLEL DO PRIVATE (i,l,ipoint)
do i=1,mo_num
do l=1,mo_num
do ipoint=1, n_points_final_grid
orb_mat(ipoint,l,i) = final_weight_at_r_vector(ipoint) &
* mos_l_in_r_array_transp(ipoint,l) &
* mos_r_in_r_array_transp(ipoint,i)
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i,j,k,m,l,integral) &
!$OMP SHARED (mo_num,three_e_5_idx_direct_bi_ort)
!$OMP DO SCHEDULE (dynamic) COLLAPSE(2)
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do l = 1, mo_num
do m = 1, mo_num
call give_integrals_3_body_bi_ort(m, l, k, m, j, i, integral)
three_e_5_idx_direct_bi_ort(m,l,j,k,i) = -1.d0 * integral
enddo
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
!$OMP END PARALLEL DO
call wall_time(wall1)
print *, ' wall time for three_e_5_idx_direct_bi_ort', wall1 - wall0
tmp_mat = 0.d0
call print_memory_usage
END_PROVIDER
do m = 1, mo_num
! ---
allocate(grad_mli(n_points_final_grid,mo_num))
BEGIN_PROVIDER [ double precision, three_e_5_idx_cycle_1_bi_ort, (mo_num, mo_num, mo_num, mo_num, mo_num)]
do i=1,mo_num
!$OMP PARALLEL DO PRIVATE (l,ipoint)
do l=1,mo_num
do ipoint=1, n_points_final_grid
BEGIN_DOC
!
! matrix element of the -L three-body operator FOR THE FIRST CYCLIC PERMUTATION TERMS OF DOUBLE EXCITATIONS AND BI ORTHO MOs
!
! three_e_5_idx_cycle_1_bi_ort(m,l,j,k,i) = <mlk|-L|jim> ::: notice that i is the RIGHT MO and k is the LEFT MO
!
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
!
END_DOC
grad_mli(ipoint,l) = &
int2_grad1_u12_bimo_t(ipoint,1,m,m) * int2_grad1_u12_bimo_t(ipoint,1,l,i) +&
int2_grad1_u12_bimo_t(ipoint,2,m,m) * int2_grad1_u12_bimo_t(ipoint,2,l,i) +&
int2_grad1_u12_bimo_t(ipoint,3,m,m) * int2_grad1_u12_bimo_t(ipoint,3,l,i)
implicit none
integer :: i, j, k, m, l
double precision :: integral, wall1, wall0
three_e_5_idx_cycle_1_bi_ort = 0.d0
print *, ' Providing the three_e_5_idx_cycle_1_bi_ort ...'
call wall_time(wall0)
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i,j,k,m,l,integral) &
!$OMP SHARED (mo_num,three_e_5_idx_cycle_1_bi_ort)
!$OMP DO SCHEDULE (dynamic) COLLAPSE(2)
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do l = 1, mo_num
do m = 1, mo_num
call give_integrals_3_body_bi_ort(m, l, k, j, i, m, integral)
three_e_5_idx_cycle_1_bi_ort(m,l,j,k,i) = -1.d0 * integral
enddo
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
!$OMP END PARALLEL DO
call wall_time(wall1)
print *, ' wall time for three_e_5_idx_cycle_1_bi_ort', wall1 - wall0
call dgemm('T','N', mo_num*mo_num, mo_num, n_points_final_grid, 1.d0,&
orb_mat, n_points_final_grid, &
grad_mli, n_points_final_grid, 0.d0, &
tmp_mat, mo_num*mo_num)
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, three_e_5_idx_cycle_2_bi_ort, (mo_num, mo_num, mo_num, mo_num, mo_num)]
BEGIN_DOC
!
! matrix element of the -L three-body operator FOR THE FIRST CYCLIC PERMUTATION TERMS OF DOUBLE EXCITATIONS AND BI ORTHO MOs
!
! three_e_5_idx_cycle_2_bi_ort(m,l,j,k,i) = <mlk|-L|imj> ::: notice that i is the RIGHT MO and k is the LEFT MO
!
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
!
END_DOC
implicit none
integer :: i, j, k, m, l
double precision :: integral, wall1, wall0
three_e_5_idx_cycle_2_bi_ort = 0.d0
print *, ' Providing the three_e_5_idx_cycle_2_bi_ort ...'
call wall_time(wall0)
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i,j,k,m,l,integral) &
!$OMP SHARED (mo_num,three_e_5_idx_cycle_2_bi_ort)
!$OMP DO SCHEDULE (dynamic) COLLAPSE(2)
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do m = 1, mo_num
!$OMP PARALLEL PRIVATE(j,k,l)
!$OMP DO
do k = 1, mo_num
do j = 1, mo_num
do l = 1, mo_num
call give_integrals_3_body_bi_ort(m, l, k, i, m, j, integral)
three_e_5_idx_cycle_2_bi_ort(m,l,j,k,i) = -1.d0 * integral
three_e_5_idx_direct_bi_ort(m,l,j,k,i) = three_e_5_idx_direct_bi_ort(m,l,j,k,i) - tmp_mat(l,j,k)
enddo
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call wall_time(wall1)
print *, ' wall time for three_e_5_idx_cycle_2_bi_ort', wall1 - wall0
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, three_e_5_idx_exch23_bi_ort, (mo_num, mo_num, mo_num, mo_num, mo_num)]
BEGIN_DOC
!
! matrix element of the -L three-body operator FOR THE DIRECT TERMS OF DOUBLE EXCITATIONS AND BI ORTHO MOs
!
! three_e_5_idx_exch23_bi_ort(m,l,j,k,i) = <mlk|-L|jmi> ::: notice that i is the RIGHT MO and k is the LEFT MO
!
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
!
END_DOC
implicit none
integer :: i, j, k, m, l
double precision :: integral, wall1, wall0
three_e_5_idx_exch23_bi_ort = 0.d0
print *, ' Providing the three_e_5_idx_exch23_bi_ort ...'
call wall_time(wall0)
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i,j,k,m,l,integral) &
!$OMP SHARED (mo_num,three_e_5_idx_exch23_bi_ort)
!$OMP DO SCHEDULE (dynamic) COLLAPSE(2)
do i = 1, mo_num
do k = 1, mo_num
!$OMP END DO
!$OMP DO
do j = 1, mo_num
do l = 1, mo_num
do m = 1, mo_num
call give_integrals_3_body_bi_ort(m, l, k, j, m, i, integral)
three_e_5_idx_exch23_bi_ort(m,l,j,k,i) = -1.d0 * integral
do k = 1, mo_num
three_e_5_idx_direct_bi_ort(m,k,i,l,j) = three_e_5_idx_direct_bi_ort(m,k,i,l,j) - tmp_mat(l,j,k)
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call wall_time(wall1)
print *, ' wall time for three_e_5_idx_exch23_bi_ort', wall1 - wall0
deallocate(grad_mli)
END_PROVIDER
allocate(lm_grad_ik(n_points_final_grid,3,mo_num,mo_num))
allocate(lk_grad_mi(n_points_final_grid,3,mo_num,mo_num))
! ---
!$OMP PARALLEL DO PRIVATE (i,l,ipoint)
do i=1,mo_num
do l=1,mo_num
do ipoint=1, n_points_final_grid
BEGIN_PROVIDER [ double precision, three_e_5_idx_exch13_bi_ort, (mo_num, mo_num, mo_num, mo_num, mo_num)]
lm_grad_ik(ipoint,1,l,i) = mos_l_in_r_array_transp(ipoint,m) * int2_grad1_u12_bimo_t(ipoint,1,l,i) * final_weight_at_r_vector(ipoint)
lm_grad_ik(ipoint,2,l,i) = mos_l_in_r_array_transp(ipoint,m) * int2_grad1_u12_bimo_t(ipoint,2,l,i) * final_weight_at_r_vector(ipoint)
lm_grad_ik(ipoint,3,l,i) = mos_l_in_r_array_transp(ipoint,m) * int2_grad1_u12_bimo_t(ipoint,3,l,i) * final_weight_at_r_vector(ipoint)
BEGIN_DOC
!
! matrix element of the -L three-body operator FOR THE DIRECT TERMS OF DOUBLE EXCITATIONS AND BI ORTHO MOs
!
! three_e_5_idx_exch13_bi_ort(m,l,j,k,i) = <mlk|-L|ijm> ::: notice that i is the RIGHT MO and k is the LEFT MO
!
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
!
END_DOC
lk_grad_mi(ipoint,1,l,i) = mos_l_in_r_array_transp(ipoint,l) * int2_grad1_u12_bimo_t(ipoint,1,m,i) * final_weight_at_r_vector(ipoint)
lk_grad_mi(ipoint,2,l,i) = mos_l_in_r_array_transp(ipoint,l) * int2_grad1_u12_bimo_t(ipoint,2,m,i) * final_weight_at_r_vector(ipoint)
lk_grad_mi(ipoint,3,l,i) = mos_l_in_r_array_transp(ipoint,l) * int2_grad1_u12_bimo_t(ipoint,3,m,i) * final_weight_at_r_vector(ipoint)
implicit none
integer :: i, j, k, m, l
double precision :: integral, wall1, wall0
three_e_5_idx_exch13_bi_ort = 0.d0
print *, ' Providing the three_e_5_idx_exch13_bi_ort ...'
call wall_time(wall0)
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i,j,k,m,l,integral) &
!$OMP SHARED (mo_num,three_e_5_idx_exch13_bi_ort)
!$OMP DO SCHEDULE (dynamic) COLLAPSE(2)
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do l = 1, mo_num
do m = 1, mo_num
call give_integrals_3_body_bi_ort(m, l, k, i, j, m, integral)
three_e_5_idx_exch13_bi_ort(m,l,j,k,i) = -1.d0 * integral
enddo
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
!$OMP END PARALLEL DO
call wall_time(wall1)
print *, ' wall time for three_e_5_idx_exch13_bi_ort', wall1 - wall0
allocate(rm_grad_ik(n_points_final_grid,3,mo_num))
allocate(rk_grad_im(n_points_final_grid,3,mo_num))
END_PROVIDER
do i=1,mo_num
!$OMP PARALLEL DO PRIVATE (l,ipoint)
do l=1,mo_num
do ipoint=1, n_points_final_grid
! ---
rm_grad_ik(ipoint,1,l) = mos_r_in_r_array_transp(ipoint,m) * int2_grad1_u12_bimo_t(ipoint,1,l,i)
rm_grad_ik(ipoint,2,l) = mos_r_in_r_array_transp(ipoint,m) * int2_grad1_u12_bimo_t(ipoint,2,l,i)
rm_grad_ik(ipoint,3,l) = mos_r_in_r_array_transp(ipoint,m) * int2_grad1_u12_bimo_t(ipoint,3,l,i)
BEGIN_PROVIDER [ double precision, three_e_5_idx_exch12_bi_ort, (mo_num, mo_num, mo_num, mo_num, mo_num)]
rk_grad_im(ipoint,1,l) = mos_r_in_r_array_transp(ipoint,l) * int2_grad1_u12_bimo_t(ipoint,1,i,m)
rk_grad_im(ipoint,2,l) = mos_r_in_r_array_transp(ipoint,l) * int2_grad1_u12_bimo_t(ipoint,2,i,m)
rk_grad_im(ipoint,3,l) = mos_r_in_r_array_transp(ipoint,l) * int2_grad1_u12_bimo_t(ipoint,3,i,m)
BEGIN_DOC
!
! matrix element of the -L three-body operator FOR THE DIRECT TERMS OF DOUBLE EXCITATIONS AND BI ORTHO MOs
!
! three_e_5_idx_exch12_bi_ort(m,l,j,k,i) = <mlk|-L|mij> ::: notice that i is the RIGHT MO and k is the LEFT MO
!
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
!
END_DOC
enddo
enddo
!$OMP END PARALLEL DO
implicit none
integer :: i, j, k, m, l
double precision :: integral, wall1, wall0
call dgemm('T','N', mo_num*mo_num, mo_num, 3*n_points_final_grid, 1.d0,&
lm_grad_ik, 3*n_points_final_grid, &
rm_grad_ik, 3*n_points_final_grid, 0.d0, &
tmp_mat, mo_num*mo_num)
three_e_5_idx_exch12_bi_ort = 0.d0
print *, ' Providing the three_e_5_idx_exch12_bi_ort ...'
call wall_time(wall0)
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i,j,k,m,l,integral) &
!$OMP SHARED (mo_num,three_e_5_idx_exch12_bi_ort)
!$OMP DO SCHEDULE (dynamic) COLLAPSE(2)
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do l = 1, mo_num
do m = 1, mo_num
call give_integrals_3_body_bi_ort(m, l, k, m, i, j, integral)
three_e_5_idx_exch12_bi_ort(m,l,j,k,i) = -1.d0 * integral
!$OMP PARALLEL DO PRIVATE(j,k,l)
do k = 1, mo_num
do j = 1, mo_num
do l = 1, mo_num
three_e_5_idx_direct_bi_ort(m,l,j,k,i) = three_e_5_idx_direct_bi_ort(m,l,j,k,i) - tmp_mat(l,j,k)
enddo
enddo
enddo
!$OMP END PARALLEL DO
call dgemm('T','N', mo_num*mo_num, mo_num, 3*n_points_final_grid, 1.d0,&
lm_grad_ik, 3*n_points_final_grid, &
rk_grad_im, 3*n_points_final_grid, 0.d0, &
tmp_mat, mo_num*mo_num)
!$OMP PARALLEL DO PRIVATE(j,k,l)
do k = 1, mo_num
do j = 1, mo_num
do l = 1, mo_num
three_e_5_idx_cycle_1_bi_ort(m,l,j,i,k) = three_e_5_idx_cycle_1_bi_ort(m,l,j,i,k) - tmp_mat(l,k,j)
three_e_5_idx_cycle_2_bi_ort(m,i,j,k,l) = three_e_5_idx_cycle_2_bi_ort(m,i,j,k,l) - tmp_mat(k,j,l)
three_e_5_idx_exch23_bi_ort (m,i,j,k,l) = three_e_5_idx_exch23_bi_ort (m,i,j,k,l) - tmp_mat(k,l,j)
three_e_5_idx_exch13_bi_ort (m,l,j,i,k) = three_e_5_idx_exch13_bi_ort (m,l,j,i,k) - tmp_mat(l,j,k)
enddo
enddo
enddo
!$OMP END PARALLEL DO
call dgemm('T','N', mo_num*mo_num, mo_num, 3*n_points_final_grid, 1.d0,&
lk_grad_mi, 3*n_points_final_grid, &
rm_grad_ik, 3*n_points_final_grid, 0.d0, &
tmp_mat, mo_num*mo_num)
!$OMP PARALLEL DO PRIVATE(j,k,l)
do k = 1, mo_num
do j = 1, mo_num
do l = 1, mo_num
three_e_5_idx_cycle_1_bi_ort(m,l,j,k,i) = three_e_5_idx_cycle_1_bi_ort(m,l,j,k,i) - tmp_mat(k,j,l)
three_e_5_idx_cycle_2_bi_ort(m,l,i,k,j) = three_e_5_idx_cycle_2_bi_ort(m,l,i,k,j) - tmp_mat(l,j,k)
three_e_5_idx_exch23_bi_ort (m,l,j,k,i) = three_e_5_idx_exch23_bi_ort (m,l,j,k,i) - tmp_mat(l,j,k)
three_e_5_idx_exch13_bi_ort (m,l,i,k,j) = three_e_5_idx_exch13_bi_ort (m,l,i,k,j) - tmp_mat(k,j,l)
enddo
enddo
enddo
!$OMP END PARALLEL DO
call dgemm('T','N', mo_num*mo_num, mo_num, 3*n_points_final_grid, 1.d0,&
lk_grad_mi, 3*n_points_final_grid, &
rk_grad_im, 3*n_points_final_grid, 0.d0, &
tmp_mat, mo_num*mo_num)
!$OMP PARALLEL DO PRIVATE(j,k,l)
do k = 1, mo_num
do j = 1, mo_num
do l = 1, mo_num
three_e_5_idx_cycle_1_bi_ort(m,l,j,i,k) = three_e_5_idx_cycle_1_bi_ort(m,l,j,i,k) - tmp_mat(l,j,k)
three_e_5_idx_cycle_2_bi_ort(m,i,j,k,l) = three_e_5_idx_cycle_2_bi_ort(m,i,j,k,l) - tmp_mat(k,l,j)
three_e_5_idx_exch23_bi_ort (m,i,j,k,l) = three_e_5_idx_exch23_bi_ort (m,i,j,k,l) - tmp_mat(k,j,l)
three_e_5_idx_exch13_bi_ort (m,l,j,i,k) = three_e_5_idx_exch13_bi_ort (m,l,j,i,k) - tmp_mat(l,k,j)
enddo
enddo
enddo
!$OMP END PARALLEL DO
enddo
deallocate(rm_grad_ik)
deallocate(rk_grad_im)
deallocate(lk_grad_mi)
deallocate(lm_grad_ik)
enddo
!$OMP END DO
!$OMP END PARALLEL
deallocate(tmp_mat)
deallocate(orb_mat)
call wall_time(wall1)
print *, ' wall time for three_e_5_idx_exch12_bi_ort', wall1 - wall0
print *, ' wall time for three_e_5_idx_bi_ort', wall1 - wall0
call print_memory_usage()
END_PROVIDER
! ---

View File

@ -0,0 +1,295 @@
! ---
BEGIN_PROVIDER [ double precision, three_e_5_idx_direct_bi_ort_old, (mo_num, mo_num, mo_num, mo_num, mo_num)]
BEGIN_DOC
!
! matrix element of the -L three-body operator FOR THE DIRECT TERMS OF DOUBLE EXCITATIONS AND BI ORTHO MOs
!
! three_e_5_idx_direct_bi_ort_old(m,l,j,k,i) = <mlk|-L|mji> ::: notice that i is the RIGHT MO and k is the LEFT MO
!
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
END_DOC
implicit none
integer :: i, j, k, m, l
double precision :: integral, wall1, wall0
three_e_5_idx_direct_bi_ort_old = 0.d0
print *, ' Providing the three_e_5_idx_direct_bi_ort_old ...'
call wall_time(wall0)
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i,j,k,m,l,integral) &
!$OMP SHARED (mo_num,three_e_5_idx_direct_bi_ort_old)
!$OMP DO SCHEDULE (dynamic) COLLAPSE(2)
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do l = 1, mo_num
do m = 1, mo_num
call give_integrals_3_body_bi_ort(m, l, k, m, j, i, integral)
three_e_5_idx_direct_bi_ort_old(m,l,j,k,i) = -1.d0 * integral
enddo
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call wall_time(wall1)
print *, ' wall time for three_e_5_idx_direct_bi_ort_old', wall1 - wall0
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, three_e_5_idx_cycle_1_bi_ort_old, (mo_num, mo_num, mo_num, mo_num, mo_num)]
BEGIN_DOC
!
! matrix element of the -L three-body operator FOR THE FIRST CYCLIC PERMUTATION TERMS OF DOUBLE EXCITATIONS AND BI ORTHO MOs
!
! three_e_5_idx_cycle_1_bi_ort_old(m,l,j,k,i) = <mlk|-L|jim> ::: notice that i is the RIGHT MO and k is the LEFT MO
!
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
!
END_DOC
implicit none
integer :: i, j, k, m, l
double precision :: integral, wall1, wall0
three_e_5_idx_cycle_1_bi_ort_old = 0.d0
print *, ' Providing the three_e_5_idx_cycle_1_bi_ort_old ...'
call wall_time(wall0)
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i,j,k,m,l,integral) &
!$OMP SHARED (mo_num,three_e_5_idx_cycle_1_bi_ort_old)
!$OMP DO SCHEDULE (dynamic) COLLAPSE(2)
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do l = 1, mo_num
do m = 1, mo_num
call give_integrals_3_body_bi_ort(m, l, k, j, i, m, integral)
three_e_5_idx_cycle_1_bi_ort_old(m,l,j,k,i) = -1.d0 * integral
enddo
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call wall_time(wall1)
print *, ' wall time for three_e_5_idx_cycle_1_bi_ort_old', wall1 - wall0
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, three_e_5_idx_cycle_2_bi_ort_old, (mo_num, mo_num, mo_num, mo_num, mo_num)]
BEGIN_DOC
!
! matrix element of the -L three-body operator FOR THE FIRST CYCLIC PERMUTATION TERMS OF DOUBLE EXCITATIONS AND BI ORTHO MOs
!
! three_e_5_idx_cycle_2_bi_ort_old(m,l,j,k,i) = <mlk|-L|imj> ::: notice that i is the RIGHT MO and k is the LEFT MO
!
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
!
END_DOC
implicit none
integer :: i, j, k, m, l
double precision :: integral, wall1, wall0
three_e_5_idx_cycle_2_bi_ort_old = 0.d0
print *, ' Providing the three_e_5_idx_cycle_2_bi_ort_old ...'
call wall_time(wall0)
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i,j,k,m,l,integral) &
!$OMP SHARED (mo_num,three_e_5_idx_cycle_2_bi_ort_old)
!$OMP DO SCHEDULE (dynamic) COLLAPSE(2)
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do m = 1, mo_num
do l = 1, mo_num
call give_integrals_3_body_bi_ort(m, l, k, i, m, j, integral)
three_e_5_idx_cycle_2_bi_ort_old(m,l,j,k,i) = -1.d0 * integral
enddo
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call wall_time(wall1)
print *, ' wall time for three_e_5_idx_cycle_2_bi_ort_old', wall1 - wall0
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, three_e_5_idx_exch23_bi_ort_old, (mo_num, mo_num, mo_num, mo_num, mo_num)]
BEGIN_DOC
!
! matrix element of the -L three-body operator FOR THE DIRECT TERMS OF DOUBLE EXCITATIONS AND BI ORTHO MOs
!
! three_e_5_idx_exch23_bi_ort_old(m,l,j,k,i) = <mlk|-L|jmi> ::: notice that i is the RIGHT MO and k is the LEFT MO
!
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
!
END_DOC
implicit none
integer :: i, j, k, m, l
double precision :: integral, wall1, wall0
three_e_5_idx_exch23_bi_ort_old = 0.d0
print *, ' Providing the three_e_5_idx_exch23_bi_ort_old ...'
call wall_time(wall0)
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i,j,k,m,l,integral) &
!$OMP SHARED (mo_num,three_e_5_idx_exch23_bi_ort_old)
!$OMP DO SCHEDULE (dynamic) COLLAPSE(2)
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do l = 1, mo_num
do m = 1, mo_num
call give_integrals_3_body_bi_ort(m, l, k, j, m, i, integral)
three_e_5_idx_exch23_bi_ort_old(m,l,j,k,i) = -1.d0 * integral
enddo
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call wall_time(wall1)
print *, ' wall time for three_e_5_idx_exch23_bi_ort_old', wall1 - wall0
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, three_e_5_idx_exch13_bi_ort_old, (mo_num, mo_num, mo_num, mo_num, mo_num)]
BEGIN_DOC
!
! matrix element of the -L three-body operator FOR THE DIRECT TERMS OF DOUBLE EXCITATIONS AND BI ORTHO MOs
!
! three_e_5_idx_exch13_bi_ort_old(m,l,j,k,i) = <mlk|-L|ijm> ::: notice that i is the RIGHT MO and k is the LEFT MO
!
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
!
END_DOC
implicit none
integer :: i, j, k, m, l
double precision :: integral, wall1, wall0
three_e_5_idx_exch13_bi_ort_old = 0.d0
print *, ' Providing the three_e_5_idx_exch13_bi_ort_old ...'
call wall_time(wall0)
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i,j,k,m,l,integral) &
!$OMP SHARED (mo_num,three_e_5_idx_exch13_bi_ort_old)
!$OMP DO SCHEDULE (dynamic) COLLAPSE(2)
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do l = 1, mo_num
do m = 1, mo_num
call give_integrals_3_body_bi_ort(m, l, k, i, j, m, integral)
three_e_5_idx_exch13_bi_ort_old(m,l,j,k,i) = -1.d0 * integral
enddo
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call wall_time(wall1)
print *, ' wall time for three_e_5_idx_exch13_bi_ort_old', wall1 - wall0
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, three_e_5_idx_exch12_bi_ort_old, (mo_num, mo_num, mo_num, mo_num, mo_num)]
BEGIN_DOC
!
! matrix element of the -L three-body operator FOR THE DIRECT TERMS OF DOUBLE EXCITATIONS AND BI ORTHO MOs
!
! three_e_5_idx_exch12_bi_ort_old(m,l,j,k,i) = <mlk|-L|mij> ::: notice that i is the RIGHT MO and k is the LEFT MO
!
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
!
END_DOC
implicit none
integer :: i, j, k, m, l
double precision :: integral, wall1, wall0
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
PROVIDE mo_l_coef mo_r_coef int2_grad1_u12_bimo_t
three_e_5_idx_exch12_bi_ort_old = 0.d0
print *, ' Providing the three_e_5_idx_exch12_bi_ort_old ...'
call wall_time(wall0)
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i,j,k,m,l,integral) &
!$OMP SHARED (mo_num,three_e_5_idx_exch12_bi_ort_old)
!$OMP DO SCHEDULE (dynamic) COLLAPSE(2)
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do l = 1, mo_num
do m = 1, mo_num
call give_integrals_3_body_bi_ort(m, l, k, m, i, j, integral)
three_e_5_idx_exch12_bi_ort_old(m,l,j,k,i) = -1.d0 * integral
enddo
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call wall_time(wall1)
print *, ' wall time for three_e_5_idx_exch12_bi_ort_old', wall1 - wall0
END_PROVIDER

View File

@ -57,6 +57,7 @@ BEGIN_PROVIDER [ double precision, three_body_ints_bi_ort, (mo_num, mo_num, mo_n
call wall_time(wall1)
print *, ' wall time for three_body_ints_bi_ort', wall1 - wall0
call print_memory_usage()
! if(write_three_body_ints_bi_ort)then
! print*,'Writing three_body_ints_bi_ort on disk ...'
! call write_array_6_index_tensor(mo_num,three_body_ints_bi_ort,name_file)
@ -79,28 +80,31 @@ subroutine give_integrals_3_body_bi_ort(n, l, k, m, j, i, integral)
integer, intent(in) :: n, l, k, m, j, i
double precision, intent(out) :: integral
integer :: ipoint
double precision :: weight
double precision :: weight, tmp
PROVIDE mo_l_coef mo_r_coef
PROVIDE int2_grad1_u12_bimo_t
integral = 0.d0
! (n, l, k, m, j, i)
do ipoint = 1, n_points_final_grid
weight = final_weight_at_r_vector(ipoint)
integral += weight * mos_l_in_r_array_transp(ipoint,k) * mos_r_in_r_array_transp(ipoint,i) &
tmp = mos_l_in_r_array_transp(ipoint,k) * mos_r_in_r_array_transp(ipoint,i) &
* ( int2_grad1_u12_bimo_t(ipoint,1,n,m) * int2_grad1_u12_bimo_t(ipoint,1,l,j) &
+ int2_grad1_u12_bimo_t(ipoint,2,n,m) * int2_grad1_u12_bimo_t(ipoint,2,l,j) &
+ int2_grad1_u12_bimo_t(ipoint,3,n,m) * int2_grad1_u12_bimo_t(ipoint,3,l,j) )
integral += weight * mos_l_in_r_array_transp(ipoint,l) * mos_r_in_r_array_transp(ipoint,j) &
tmp = tmp + mos_l_in_r_array_transp(ipoint,l) * mos_r_in_r_array_transp(ipoint,j) &
* ( int2_grad1_u12_bimo_t(ipoint,1,n,m) * int2_grad1_u12_bimo_t(ipoint,1,k,i) &
+ int2_grad1_u12_bimo_t(ipoint,2,n,m) * int2_grad1_u12_bimo_t(ipoint,2,k,i) &
+ int2_grad1_u12_bimo_t(ipoint,3,n,m) * int2_grad1_u12_bimo_t(ipoint,3,k,i) )
integral += weight * mos_l_in_r_array_transp(ipoint,n) * mos_r_in_r_array_transp(ipoint,m) &
tmp = tmp + mos_l_in_r_array_transp(ipoint,n) * mos_r_in_r_array_transp(ipoint,m) &
* ( int2_grad1_u12_bimo_t(ipoint,1,l,j) * int2_grad1_u12_bimo_t(ipoint,1,k,i) &
+ int2_grad1_u12_bimo_t(ipoint,2,l,j) * int2_grad1_u12_bimo_t(ipoint,2,k,i) &
+ int2_grad1_u12_bimo_t(ipoint,3,l,j) * int2_grad1_u12_bimo_t(ipoint,3,k,i) )
integral = integral + tmp * final_weight_at_r_vector(ipoint)
enddo
end subroutine give_integrals_3_body_bi_ort

View File

@ -116,7 +116,7 @@ end subroutine give_all_mos_l_at_r
! ---
BEGIN_PROVIDER[double precision, mos_l_in_r_array_transp,(n_points_final_grid,mo_num)]
BEGIN_PROVIDER[double precision, mos_l_in_r_array_transp, (n_points_final_grid,mo_num)]
BEGIN_DOC
! mos_l_in_r_array_transp(i,j) = value of the jth mo on the ith grid point

11
src/ccsd/EZFIO.cfg Normal file
View File

@ -0,0 +1,11 @@
[energy]
type: double precision
doc: CCSD energy
interface: ezfio
[energy_t]
type: double precision
doc: CCSD(T) energy
interface: ezfio

View File

@ -16,20 +16,16 @@ subroutine run_ccsd_space_orb
double precision, allocatable :: all_err(:,:), all_t(:,:)
integer, allocatable :: list_occ(:), list_vir(:)
integer(bit_kind) :: det(N_int,2)
integer :: nO, nV, nOa, nOb, nVa, nVb, n_spin(4)
integer :: nO, nV, nOa, nVa
PROVIDE mo_two_e_integrals_in_map
! PROVIDE mo_two_e_integrals_in_map
det = psi_det(:,:,cc_ref)
print*,'Reference determinant:'
call print_det(det,N_int)
! Extract number of occ/vir alpha/beta spin orbitals
!call extract_n_spin(det,n_spin)
nOa = cc_nOa !n_spin(1)
nOb = cc_nOb !n_spin(2)
nVa = cc_nVa !n_spin(3)
nVb = cc_nVb !n_spin(4)
nOa = cc_nOa
nVa = cc_nVa
! Check that the reference is a closed shell determinant
if (cc_ref_is_open_shell) then
@ -109,7 +105,7 @@ subroutine run_ccsd_space_orb
call update_t1(nO,nV,cc_space_f_o,cc_space_f_v,r1,t1)
call update_t2(nO,nV,cc_space_f_o,cc_space_f_v,r2,t2)
else
print*,'Unkonw cc_method_method: '//cc_update_method
print*,'Unkown cc_method_method: '//cc_update_method
endif
call update_tau_space(nO,nV,t1,t2,tau)
@ -139,8 +135,11 @@ subroutine run_ccsd_space_orb
write(*,'(A15,1pE10.2,A3)')' Conv = ', max_r
print*,''
call write_t1(nO,nV,t1)
call write_t2(nO,nV,t2)
if (write_amplitudes) then
call write_t1(nO,nV,t1)
call write_t2(nO,nV,t2)
call ezfio_set_utils_cc_io_amplitudes('Read')
endif
! Deallocation
if (cc_update_method == 'diis') then
@ -151,6 +150,7 @@ subroutine run_ccsd_space_orb
! CCSD(T)
double precision :: e_t
e_t = 0.d0
if (cc_par_t .and. elec_alpha_num + elec_beta_num > 2) then
@ -169,8 +169,13 @@ subroutine run_ccsd_space_orb
! New
print*,'Computing (T) correction...'
call wall_time(ta)
call ccsd_par_t_space_v2(nO,nV,t1,t2,cc_space_f_o,cc_space_f_v &
! call ccsd_par_t_space_v3(nO,nV,t1,t2,cc_space_f_o,cc_space_f_v &
! ,cc_space_v_vvvo,cc_space_v_vvoo,cc_space_v_vooo,e_t)
e_t = uncorr_energy + energy ! For print in next call
call ccsd_par_t_space_stoch(nO,nV,t1,t2,cc_space_f_o,cc_space_f_v &
,cc_space_v_vvvo,cc_space_v_vvoo,cc_space_v_vooo,e_t)
call wall_time(tb)
print*,'Time: ',tb-ta, ' s'
@ -181,8 +186,7 @@ subroutine run_ccsd_space_orb
print*,''
endif
print*,'Reference determinant:'
call print_det(det,N_int)
call save_energy(uncorr_energy + energy, e_t)
deallocate(t1,t2)
@ -211,8 +215,8 @@ subroutine ccsd_energy_space(nO,nV,tau,t1,energy)
!$omp default(none)
e = 0d0
!$omp do
do i = 1, nO
do a = 1, nV
do a = 1, nV
do i = 1, nO
e = e + 2d0 * cc_space_f_vo(a,i) * t1(i,a)
enddo
enddo
@ -255,7 +259,7 @@ subroutine update_tau_space(nO,nV,t1,t2,tau)
!$OMP SHARED(nO,nV,tau,t2,t1) &
!$OMP PRIVATE(i,j,a,b) &
!$OMP DEFAULT(NONE)
!$OMP DO collapse(3)
!$OMP DO
do b = 1, nV
do a = 1, nV
do j = 1, nO
@ -373,7 +377,7 @@ subroutine compute_r1_space(nO,nV,t1,t2,tau,H_oo,H_vv,H_vo,r1,max_r1)
!$omp shared(nO,nV,X_voov,t2,t1) &
!$omp private(u,beta,i,a) &
!$omp default(none)
!$omp do collapse(3)
!$omp do
do beta = 1, nV
do u = 1, nO
do i = 1, nO
@ -412,7 +416,7 @@ subroutine compute_r1_space(nO,nV,t1,t2,tau,H_oo,H_vv,H_vo,r1,max_r1)
!$omp shared(nO,nV,cc_space_v_ovov,cc_space_v_voov,X_ovov) &
!$omp private(u,beta,i,a) &
!$omp default(none)
!$omp do collapse(3)
!$omp do
do beta = 1, nV
do u = 1, nO
do a = 1, nv
@ -452,7 +456,7 @@ subroutine compute_r1_space(nO,nV,t1,t2,tau,H_oo,H_vv,H_vo,r1,max_r1)
!$omp shared(nO,nV,cc_space_v_vvov,W_vvov,T_vvoo,tau) &
!$omp private(b,beta,i,a) &
!$omp default(none)
!$omp do collapse(3)
!$omp do
do beta = 1, nV
do i = 1, nO
do b = 1, nV
@ -464,11 +468,11 @@ subroutine compute_r1_space(nO,nV,t1,t2,tau,H_oo,H_vv,H_vo,r1,max_r1)
enddo
!$omp end do nowait
!$omp do collapse(3)
do i = 1, nO
do b = 1, nV
do a = 1, nV
do u = 1, nO
!$omp do
do u = 1, nO
do i = 1, nO
do b = 1, nV
do a = 1, nV
T_vvoo(a,b,i,u) = tau(i,u,a,b)
enddo
enddo
@ -504,8 +508,8 @@ subroutine compute_r1_space(nO,nV,t1,t2,tau,H_oo,H_vv,H_vo,r1,max_r1)
!$omp shared(nO,nV,cc_space_v_vooo,W_oovo) &
!$omp private(u,a,i,j) &
!$omp default(none)
!$omp do collapse(3)
do u = 1, nO
!$omp do
do a = 1, nV
do j = 1, nO
do i = 1, nO
@ -513,8 +517,8 @@ subroutine compute_r1_space(nO,nV,t1,t2,tau,H_oo,H_vv,H_vo,r1,max_r1)
enddo
enddo
enddo
!$omp end do nowait
enddo
!$omp end do
!$omp end parallel
call dgemm('T','N', nO, nV, nO*nO*nV, &
@ -527,9 +531,7 @@ subroutine compute_r1_space(nO,nV,t1,t2,tau,H_oo,H_vv,H_vo,r1,max_r1)
max_r1 = 0d0
do a = 1, nV
do i = 1, nO
if (dabs(r1(i,a)) > max_r1) then
max_r1 = dabs(r1(i,a))
endif
max_r1 = max(dabs(r1(i,a)), max_r1)
enddo
enddo
@ -657,7 +659,7 @@ subroutine compute_H_vv(nO,nV,t1,t2,tau,H_vv)
! H_vv(a,beta) = H_vv(a,beta) - cc_space_w_vvoo(a,b,i,j) * tau(i,j,beta,b)
! H_vv(a,beta) = H_vv(a,beta) - cc_space_w_vvoo(a,b,i,j) * tmp_tau(b,i,j,beta)
!$omp do collapse(3)
!$omp do
do beta = 1, nV
do j = 1, nO
do i = 1, nO
@ -727,7 +729,7 @@ subroutine compute_H_vo(nO,nV,t1,t2,H_vo)
! H_vo(a,i) = H_vo(a,i) + cc_space_w_vvoo(a,b,i,j) * t1(j,b)
! H_vo(a,i) = H_vo(a,i) + w(a,i,j,b) * t1(j,b)
!$omp do collapse(3)
!$omp do
do b = 1, nV
do j = 1, nO
do i = 1, nO
@ -765,7 +767,7 @@ subroutine compute_r2_space(nO,nV,t1,t2,tau,H_oo,H_vv,H_vo,r2,max_r2)
! internal
double precision, allocatable :: g_occ(:,:), g_vir(:,:), J1(:,:,:,:), K1(:,:,:,:)
double precision, allocatable :: A1(:,:,:,:), B1(:,:,:,:)
double precision, allocatable :: A1(:,:,:,:), B1_gam(:,:,:)
integer :: u,v,i,j,beta,gam,a,b
allocate(g_occ(nO,nO), g_vir(nV,nV))
@ -787,7 +789,7 @@ subroutine compute_r2_space(nO,nV,t1,t2,tau,H_oo,H_vv,H_vo,r2,max_r2)
!$omp shared(nO,nV,r2,cc_space_v_oovv) &
!$omp private(u,v,gam,beta) &
!$omp default(none)
!$omp do collapse(3)
!$omp do
do gam = 1, nV
do beta = 1, nV
do v = 1, nO
@ -835,13 +837,18 @@ subroutine compute_r2_space(nO,nV,t1,t2,tau,H_oo,H_vv,H_vo,r2,max_r2)
! enddo
!enddo
allocate(B1(nV,nV,nV,nV))
call compute_B1(nO,nV,t1,t2,B1)
call dgemm('N','N',nO*nO,nV*nV,nV*nV, &
1d0, tau, size(tau,1) * size(tau,2), &
B1 , size(B1,1) * size(B1,2), &
1d0, r2, size(r2,1) * size(r2,2))
deallocate(B1)
! allocate(B1(nV,nV,nV,nV))
! call compute_B1(nO,nV,t1,t2,B1)
allocate(B1_gam(nV,nV,nV))
do gam=1,nV
call compute_B1_gam(nO,nV,t1,t2,B1_gam,gam)
call dgemm('N','N',nO*nO,nV,nV*nV, &
1d0, tau, size(tau,1) * size(tau,2), &
B1_gam , size(B1_gam,1) * size(B1_gam,2), &
1d0, r2(1,1,1,gam), size(r2,1) * size(r2,2))
enddo
deallocate(B1_gam)
!do gam = 1, nV
! do beta = 1, nV
@ -863,7 +870,7 @@ subroutine compute_r2_space(nO,nV,t1,t2,tau,H_oo,H_vv,H_vo,r2,max_r2)
!$omp shared(nO,nV,t2,X_oovv) &
!$omp private(u,v,gam,a) &
!$omp default(none)
!$omp do collapse(3)
!$omp do
do a = 1, nV
do gam = 1, nV
do v = 1, nO
@ -885,7 +892,7 @@ subroutine compute_r2_space(nO,nV,t1,t2,tau,H_oo,H_vv,H_vo,r2,max_r2)
!$omp shared(nO,nV,r2,Y_oovv) &
!$omp private(u,v,gam,beta) &
!$omp default(none)
!$omp do collapse(3)
!$omp do
do gam = 1, nV
do beta = 1, nV
do v = 1, nO
@ -921,7 +928,7 @@ subroutine compute_r2_space(nO,nV,t1,t2,tau,H_oo,H_vv,H_vo,r2,max_r2)
!$omp shared(nO,nV,r2,X_oovv) &
!$omp private(u,v,gam,beta) &
!$omp default(none)
!$omp do collapse(3)
!$omp do
do gam = 1, nV
do beta = 1, nV
do v = 1, nO
@ -957,7 +964,7 @@ subroutine compute_r2_space(nO,nV,t1,t2,tau,H_oo,H_vv,H_vo,r2,max_r2)
!$omp shared(nO,nV,X_vovv,cc_space_v_ovvv) &
!$omp private(u,a,gam,beta) &
!$omp default(none)
!$omp do collapse(3)
!$omp do
do gam = 1, nV
do beta = 1, nV
do u = 1, nO
@ -979,7 +986,7 @@ subroutine compute_r2_space(nO,nV,t1,t2,tau,H_oo,H_vv,H_vo,r2,max_r2)
!$omp shared(nO,nV,r2,Y_oovv) &
!$omp private(u,v,gam,beta) &
!$omp default(none)
!$omp do collapse(3)
!$omp do
do gam = 1, nV
do beta = 1, nV
do v = 1, nO
@ -1014,8 +1021,8 @@ subroutine compute_r2_space(nO,nV,t1,t2,tau,H_oo,H_vv,H_vo,r2,max_r2)
!$omp shared(nO,nV,X_vovo,cc_space_v_ovov) &
!$omp private(u,v,gam,i) &
!$omp default(none)
!$omp do collapse(3)
do i = 1, nO
!$omp do
do gam = 1, nV
do u = 1, nO
do a = 1, nV
@ -1023,8 +1030,8 @@ subroutine compute_r2_space(nO,nV,t1,t2,tau,H_oo,H_vv,H_vo,r2,max_r2)
enddo
enddo
enddo
!$omp end do nowait
enddo
!$omp end do
!$omp end parallel
call dgemm('N','N',nV*nO*nV,nV,nO, &
@ -1041,7 +1048,7 @@ subroutine compute_r2_space(nO,nV,t1,t2,tau,H_oo,H_vv,H_vo,r2,max_r2)
!$omp shared(nO,nV,r2,X_oovv) &
!$omp private(u,v,gam,beta) &
!$omp default(none)
!$omp do collapse(3)
!$omp do
do gam = 1, nV
do beta = 1, nV
do v = 1, nO
@ -1079,7 +1086,7 @@ subroutine compute_r2_space(nO,nV,t1,t2,tau,H_oo,H_vv,H_vo,r2,max_r2)
!$omp shared(nO,nV,r2,X_oovv) &
!$omp private(u,v,gam,beta) &
!$omp default(none)
!$omp do collapse(3)
!$omp do
do gam = 1, nV
do beta = 1, nV
do v = 1, nO
@ -1116,8 +1123,8 @@ subroutine compute_r2_space(nO,nV,t1,t2,tau,H_oo,H_vv,H_vo,r2,max_r2)
!$omp shared(nO,nV,X_vovo,cc_space_v_ovvo) &
!$omp private(a,v,gam,i) &
!$omp default(none)
!$omp do collapse(3)
do i = 1, nO
!$omp do
do gam = 1, nV
do v = 1, nO
do a = 1, nV
@ -1125,8 +1132,8 @@ subroutine compute_r2_space(nO,nV,t1,t2,tau,H_oo,H_vv,H_vo,r2,max_r2)
enddo
enddo
enddo
!$omp end do nowait
enddo
!$omp end do
!$omp end parallel
call dgemm('N','N',nO,nO*nV*nO,nV, &
@ -1143,7 +1150,7 @@ subroutine compute_r2_space(nO,nV,t1,t2,tau,H_oo,H_vv,H_vo,r2,max_r2)
!$omp shared(nO,nV,r2,X_oovv) &
!$omp private(u,v,gam,beta) &
!$omp default(none)
!$omp do collapse(3)
!$omp do
do gam = 1, nV
do beta = 1, nV
do v = 1, nO
@ -1182,19 +1189,19 @@ subroutine compute_r2_space(nO,nV,t1,t2,tau,H_oo,H_vv,H_vo,r2,max_r2)
!$omp shared(nO,nV,X_ovvo,Y_voov,K1,J1,t2) &
!$omp private(u,v,gam,beta,i,a) &
!$omp default(none)
!$omp do collapse(3)
do i = 1, nO
!$omp do
do a = 1, nV
do beta = 1, nV
do u = 1, nO
X_ovvo(u,beta,a,i) = 0.5d0 * (2d0 * J1(u,a,beta,i) - K1(u,a,i,beta))
X_ovvo(u,beta,a,i) = (J1(u,a,beta,i) - 0.5d0 * K1(u,a,i,beta))
enddo
enddo
enddo
!$omp end do nowait
enddo
!$omp end do nowait
!$omp do collapse(3)
!$omp do
do gam = 1, nV
do v = 1, nO
do i = 1, nO
@ -1216,7 +1223,7 @@ subroutine compute_r2_space(nO,nV,t1,t2,tau,H_oo,H_vv,H_vo,r2,max_r2)
!$omp shared(nO,nV,r2,Z_ovov) &
!$omp private(u,v,gam,beta) &
!$omp default(none)
!$omp do collapse(3)
!$omp do
do gam = 1, nV
do beta = 1, nV
do v = 1, nO
@ -1252,7 +1259,7 @@ subroutine compute_r2_space(nO,nV,t1,t2,tau,H_oo,H_vv,H_vo,r2,max_r2)
!$omp shared(nO,nV,r2,K1,X_ovov,Y_ovov,t2) &
!$omp private(u,a,i,beta,gam) &
!$omp default(none)
!$omp do collapse(3)
!$omp do
do beta = 1, nV
do u = 1, nO
do a = 1, nV
@ -1264,7 +1271,7 @@ subroutine compute_r2_space(nO,nV,t1,t2,tau,H_oo,H_vv,H_vo,r2,max_r2)
enddo
!$omp end do nowait
!$omp do collapse(3)
!$omp do
do gam = 1, nV
do v = 1, nO
do a = 1, nV
@ -1286,7 +1293,7 @@ subroutine compute_r2_space(nO,nV,t1,t2,tau,H_oo,H_vv,H_vo,r2,max_r2)
!$omp shared(nO,nV,r2,Z_ovov) &
!$omp private(u,v,gam,beta) &
!$omp default(none)
!$omp do collapse(3)
!$omp do
do gam = 1, nV
do beta = 1, nV
do v = 1, nO
@ -1319,7 +1326,7 @@ subroutine compute_r2_space(nO,nV,t1,t2,tau,H_oo,H_vv,H_vo,r2,max_r2)
!$omp shared(nO,nV,K1,X_ovov,Z_ovov,t2) &
!$omp private(u,v,gam,beta,i,a) &
!$omp default(none)
!$omp do collapse(3)
!$omp do
do a = 1, nV
do i = 1, nO
do gam = 1, nV
@ -1331,7 +1338,7 @@ subroutine compute_r2_space(nO,nV,t1,t2,tau,H_oo,H_vv,H_vo,r2,max_r2)
enddo
!$omp end do nowait
!$omp do collapse(3)
!$omp do
do beta = 1, nV
do v = 1, nO
do a = 1, nV
@ -1353,7 +1360,7 @@ subroutine compute_r2_space(nO,nV,t1,t2,tau,H_oo,H_vv,H_vo,r2,max_r2)
!$omp shared(nO,nV,r2,Z_ovov) &
!$omp private(u,v,gam,beta) &
!$omp default(none)
!$omp do collapse(3)
!$omp do
do gam = 1, nV
do beta = 1, nV
do v = 1, nO
@ -1373,7 +1380,7 @@ subroutine compute_r2_space(nO,nV,t1,t2,tau,H_oo,H_vv,H_vo,r2,max_r2)
!$omp shared(nO,nV,r2) &
!$omp private(i,j,a,b) &
!$omp default(none)
!$omp do collapse(3)
!$omp do
do b = 1, nV
do a = 1, nV
do j = 1, nO
@ -1391,9 +1398,7 @@ subroutine compute_r2_space(nO,nV,t1,t2,tau,H_oo,H_vv,H_vo,r2,max_r2)
do a = 1, nV
do j = 1, nO
do i = 1, nO
if (dabs(r2(i,j,a,b)) > max_r2) then
max_r2 = dabs(r2(i,j,a,b))
endif
max_r2 = max(r2(i,j,a,b), max_r2)
enddo
enddo
enddo
@ -1448,7 +1453,7 @@ subroutine compute_A1(nO,nV,t1,t2,tau,A1)
!$omp shared(nO,nV,A1,cc_space_v_oooo,cc_space_v_ovoo,X_vooo) &
!$omp private(u,v,i,j) &
!$omp default(none)
!$omp do collapse(3)
!$omp do collapse(2)
do j = 1, nO
do i = 1, nO
do v = 1, nO
@ -1462,7 +1467,7 @@ subroutine compute_A1(nO,nV,t1,t2,tau,A1)
! A1(u,v,i,j) += cc_space_v_ovoo(u,a,i,j) * t1(v,a) &
!$omp do collapse(3)
!$omp do collapse(2)
do j = 1, nO
do i = 1, nO
do u = 1, nO
@ -1484,7 +1489,7 @@ subroutine compute_A1(nO,nV,t1,t2,tau,A1)
!$omp shared(nO,nV,A1,Y_oooo) &
!$omp private(u,v,i,j) &
!$omp default(none)
!$omp do collapse(3)
!$omp do collapse(2)
do j = 1, nO
do i = 1, nO
do v = 1, nO
@ -1515,6 +1520,90 @@ end
! B1
subroutine compute_B1_gam(nO,nV,t1,t2,B1,gam)
implicit none
integer, intent(in) :: nO,nV,gam
double precision, intent(in) :: t1(nO, nV)
double precision, intent(in) :: t2(nO, nO, nV, nV)
double precision, intent(out) :: B1(nV, nV, nV)
integer :: a,tmp_a,b,k,l,c,d,tmp_c,tmp_d,i,j,u,v, beta
! do beta = 1, nV
! do b = 1, nV
! do a = 1, nV
! B1(a,b,beta) = cc_space_v_vvvv(a,b,beta,gam)
!
! do i = 1, nO
! B1(a,b,beta) = B1(a,b,beta) &
! - cc_space_v_vvvo(a,b,beta,i) * t1(i,gam) &
! - cc_space_v_vvov(a,b,i,gam) * t1(i,beta)
! enddo
!
! enddo
! enddo
! enddo
double precision, allocatable :: X_vvvo(:,:,:), Y_vvvv(:,:,:)
allocate(X_vvvo(nV,nV,nO), Y_vvvv(nV,nV,nV))
! ! B1(a,b,beta,gam) = cc_space_v_vvvv(a,b,beta,gam)
!$omp parallel &
!$omp shared(nO,nV,B1,cc_space_v_vvvv,cc_space_v_vvov,X_vvvo,gam) &
!$omp private(a,b,beta) &
!$omp default(none)
!$omp do
do beta = 1, nV
do b = 1, nV
do a = 1, nV
B1(a,b,beta) = cc_space_v_vvvv(a,b,beta,gam)
enddo
enddo
enddo
!$omp end do nowait
do i = 1, nO
!$omp do
do b = 1, nV
do a = 1, nV
X_vvvo(a,b,i) = cc_space_v_vvov(a,b,i,gam)
enddo
enddo
!$omp end do nowait
enddo
!$omp end parallel
! ! B1(a,b,beta) -= cc_space_v_vvvo(a,b,beta,i) * t1(i,gam) &
call dgemm('N','N', nV*nV*nV, 1, nO, &
-1d0, cc_space_v_vvvo, size(cc_space_v_vvvo,1) * size(cc_space_v_vvvo,2) * size(cc_space_v_vvvo,3), &
t1(1,gam), size(t1,1), &
1d0, B1 , size(B1,1) * size(B1,2) * size(B1,3))
! B1(a,b,beta,gam) -= cc_space_v_vvov(a,b,i,gam) * t1(i,beta)
call dgemm('N','N', nV*nV, nV, nO, &
-1d0, X_vvvo, size(X_vvvo,1) * size(X_vvvo,2), &
t1 , size(t1,1), &
0d0, Y_vvvv, size(Y_vvvv,1) * size(Y_vvvv,2))
!$omp parallel &
!$omp shared(nV,B1,Y_vvvv,gam) &
!$omp private(a,b,beta) &
!$omp default(none)
!$omp do
do beta = 1, nV
do b = 1, nV
do a = 1, nV
B1(a,b,beta) = B1(a,b,beta) + Y_vvvv(a,b,beta)
enddo
enddo
enddo
!$omp end do
!$omp end parallel
deallocate(X_vvvo,Y_vvvv)
end
subroutine compute_B1(nO,nV,t1,t2,B1)
implicit none
@ -1553,7 +1642,7 @@ subroutine compute_B1(nO,nV,t1,t2,B1)
!$omp shared(nO,nV,B1,cc_space_v_vvvv,cc_space_v_vvov,X_vvvo) &
!$omp private(a,b,beta,gam) &
!$omp default(none)
!$omp do collapse(3)
!$omp do
do gam = 1, nV
do beta = 1, nV
do b = 1, nV
@ -1564,8 +1653,8 @@ subroutine compute_B1(nO,nV,t1,t2,B1)
enddo
enddo
!$omp end do nowait
!$omp do collapse(3)
do i = 1, nO
!$omp do
do gam = 1, nV
do b = 1, nV
do a = 1, nV
@ -1573,8 +1662,8 @@ subroutine compute_B1(nO,nV,t1,t2,B1)
enddo
enddo
enddo
!$omp end do nowait
enddo
!$omp end do
!$omp end parallel
! B1(a,b,beta,gam) -= cc_space_v_vvvo(a,b,beta,i) * t1(i,gam) &
@ -1594,7 +1683,7 @@ subroutine compute_B1(nO,nV,t1,t2,B1)
!$omp shared(nV,B1,Y_vvvv) &
!$omp private(a,b,beta,gam) &
!$omp default(none)
!$omp do collapse(3)
!$omp do
do gam = 1, nV
do beta = 1, nV
do b = 1, nV
@ -1658,7 +1747,7 @@ subroutine compute_g_occ(nO,nV,t1,t2,H_oo,g_occ)
enddo
!$omp end do
!$omp do collapse(1)
!$omp do
do i = 1, nO
do j = 1, nO
do a = 1, nV
@ -1720,7 +1809,7 @@ subroutine compute_g_vir(nO,nV,t1,t2,H_vv,g_vir)
enddo
!$omp end do
!$omp do collapse(1)
!$omp do
do beta = 1, nV
do i = 1, nO
do b = 1, nV
@ -1788,8 +1877,8 @@ subroutine compute_J1(nO,nV,t1,t2,v_ovvo,v_ovoo,v_vvvo,v_vvoo,J1)
!$omp shared(nO,nV,J1,v_ovvo,v_ovoo,X_ovoo) &
!$omp private(i,j,a,u,beta) &
!$omp default(none)
!$omp do collapse(3)
do i = 1, nO
!$omp do
do beta = 1, nV
do a = 1, nV
do u = 1, nO
@ -1797,10 +1886,10 @@ subroutine compute_J1(nO,nV,t1,t2,v_ovvo,v_ovoo,v_vvvo,v_vvoo,J1)
enddo
enddo
enddo
!$omp end do nowait
enddo
!$omp end do nowait
!$omp do collapse(3)
!$omp do collapse(2)
do j = 1, nO
do i = 1, nO
do a = 1, nV
@ -1822,8 +1911,8 @@ subroutine compute_J1(nO,nV,t1,t2,v_ovvo,v_ovoo,v_vvvo,v_vvoo,J1)
!$omp shared(nO,nV,J1,Y_ovov) &
!$omp private(i,beta,a,u) &
!$omp default(none)
!$omp do collapse(3)
do i = 1, nO
!$omp do
do beta = 1, nV
do a = 1, nV
do u = 1, nO
@ -1831,8 +1920,8 @@ subroutine compute_J1(nO,nV,t1,t2,v_ovvo,v_ovoo,v_vvvo,v_vvoo,J1)
enddo
enddo
enddo
!$omp end do nowait
enddo
!$omp end do
!$omp end parallel
deallocate(X_ovoo)
@ -1849,7 +1938,7 @@ subroutine compute_J1(nO,nV,t1,t2,v_ovvo,v_ovoo,v_vvvo,v_vvoo,J1)
!$omp shared(nO,nV,t2,t1,Y_ovov,X_voov,v_vvoo) &
!$omp private(i,beta,a,u,b,j) &
!$omp default(none)
!$omp do collapse(3)
!$omp do
do b = 1, nV
do j = 1, nO
do beta = 1, nV
@ -1861,7 +1950,7 @@ subroutine compute_J1(nO,nV,t1,t2,v_ovvo,v_ovoo,v_vvvo,v_vvoo,J1)
enddo
!$omp end do nowait
!$omp do collapse(3)
!$omp do
do b = 1, nV
do j = 1, nO
do i = 1, nO
@ -1886,8 +1975,8 @@ subroutine compute_J1(nO,nV,t1,t2,v_ovvo,v_ovoo,v_vvvo,v_vvoo,J1)
!$omp shared(nO,nV,J1,Z_ovvo,t2,Y_vovo,v_vvoo,X_ovvo) &
!$omp private(i,beta,a,u,j,b) &
!$omp default(none)
!$omp do collapse(3)
do i = 1, nO
!$omp do
do beta = 1, nV
do a = 1, nV
do u = 1, nO
@ -1895,12 +1984,12 @@ subroutine compute_J1(nO,nV,t1,t2,v_ovvo,v_ovoo,v_vvvo,v_vvoo,J1)
enddo
enddo
enddo
!$omp end do nowait
enddo
!$omp end do nowait
!+ 0.5d0 * (2d0 * cc_space_v_vvoo(a,b,i,j) - cc_space_v_vvoo(b,a,i,j)) * t2(u,j,beta,b)
!$omp do collapse(3)
do j = 1, nO
!$omp do
do b = 1, nV
do i = 1, nO
do a = 1, nV
@ -1908,11 +1997,11 @@ subroutine compute_J1(nO,nV,t1,t2,v_ovvo,v_ovoo,v_vvvo,v_vvoo,J1)
enddo
enddo
enddo
!$omp end do nowait
enddo
!$omp end do nowait
!$omp do collapse(3)
do j = 1, nO
!$omp do
do b = 1, nV
do beta = 1, nV
do u = 1, nO
@ -1920,8 +2009,8 @@ subroutine compute_J1(nO,nV,t1,t2,v_ovvo,v_ovoo,v_vvvo,v_vvoo,J1)
enddo
enddo
enddo
!$omp end do nowait
enddo
!$omp end do
!$omp end parallel
call dgemm('N','T',nO*nV,nV*nO,nV*nO, &
@ -1933,8 +2022,8 @@ subroutine compute_J1(nO,nV,t1,t2,v_ovvo,v_ovoo,v_vvvo,v_vvoo,J1)
!$omp shared(nO,nV,J1,Z_ovvo) &
!$omp private(i,beta,a,u) &
!$omp default(none)
!$omp do collapse(3)
do i = 1, nO
!$omp do
do beta = 1, nV
do a = 1, nV
do u = 1, nO
@ -1942,8 +2031,8 @@ subroutine compute_J1(nO,nV,t1,t2,v_ovvo,v_ovoo,v_vvvo,v_vvoo,J1)
enddo
enddo
enddo
!$omp end do nowait
enddo
!$omp end do
!$omp end parallel
deallocate(X_ovvo,Z_ovvo,Y_ovov)
@ -2003,7 +2092,7 @@ subroutine compute_K1(nO,nV,t1,t2,v_ovoo,v_vvoo,v_ovov,v_vvov,K1)
!$omp shared(nO,nV,K1,X,Y,v_vvoo,v_ovov,t1,t2) &
!$omp private(i,beta,a,u,j,b) &
!$omp default(none)
!$omp do collapse(3)
!$omp do
do beta = 1, nV
do i = 1, nO
do a = 1, nV
@ -2015,8 +2104,8 @@ subroutine compute_K1(nO,nV,t1,t2,v_ovoo,v_vvoo,v_ovov,v_vvov,K1)
enddo
!$omp end do nowait
!$omp do collapse(3)
do i = 1, nO
!$omp do
do a = 1, nV
do j = 1, nO
do b = 1, nV
@ -2024,11 +2113,11 @@ subroutine compute_K1(nO,nV,t1,t2,v_ovoo,v_vvoo,v_ovov,v_vvov,K1)
enddo
enddo
enddo
!$omp end do nowait
enddo
!$omp end do nowait
!$omp do collapse(3)
do j = 1, nO
!$omp do
do b = 1, nV
do beta = 1, nV
do u = 1, nO
@ -2036,8 +2125,8 @@ subroutine compute_K1(nO,nV,t1,t2,v_ovoo,v_vvoo,v_ovov,v_vvov,K1)
enddo
enddo
enddo
!$omp end do
enddo
!$omp end do
!$omp end parallel
call dgemm('N','N',nO*nV*nO,nV,nO, &
@ -2060,7 +2149,7 @@ subroutine compute_K1(nO,nV,t1,t2,v_ovoo,v_vvoo,v_ovov,v_vvov,K1)
!$omp shared(nO,nV,K1,Z) &
!$omp private(i,beta,a,u) &
!$omp default(none)
!$omp do collapse(3)
!$omp do
do beta = 1, nV
do i = 1, nO
do a = 1, nV

View File

@ -269,8 +269,11 @@ subroutine run_ccsd_spin_orb
write(*,'(A15,1pE10.2,A3)')' Conv = ', max_r
print*,''
call write_t1(nO,nV,t1)
call write_t2(nO,nV,t2)
if (write_amplitudes) then
call write_t1(nO,nV,t1)
call write_t2(nO,nV,t2)
call ezfio_set_utils_cc_io_amplitudes('Read')
endif
! Deallocate
if (cc_update_method == 'diis') then
@ -284,8 +287,9 @@ subroutine run_ccsd_spin_orb
deallocate(v_ovoo,v_oovo)
deallocate(v_ovvo,v_ovov,v_oovv)
double precision :: t_corr
t_corr = 0.d0
if (cc_par_t .and. elec_alpha_num +elec_beta_num > 2) then
double precision :: t_corr
print*,'CCSD(T) calculation...'
call wall_time(ta)
!allocate(v_vvvo(nV,nV,nV,nO))
@ -307,8 +311,8 @@ subroutine run_ccsd_spin_orb
write(*,'(A15,F18.12,A3)') ' Correlation = ', energy + t_corr, ' Ha'
print*,''
endif
print*,'Reference determinant:'
call print_det(det,N_int)
call save_energy(uncorr_energy + energy, t_corr)
deallocate(f_oo,f_ov,f_vv,f_o,f_v)
deallocate(v_ooov,v_vvoo,t1,t2)

View File

@ -10,51 +10,43 @@ subroutine ccsd_par_t_space_v3(nO,nV,t1,t2,f_o,f_v,v_vvvo,v_vvoo,v_vooo,energy)
double precision, intent(in) :: v_vvvo(nV,nV,nV,nO), v_vvoo(nV,nV,nO,nO), v_vooo(nV,nO,nO,nO)
double precision, intent(out) :: energy
double precision, allocatable :: W(:,:,:,:,:,:)
double precision, allocatable :: V(:,:,:,:,:,:)
double precision, allocatable :: W_abc(:,:,:), V_abc(:,:,:)
double precision, allocatable :: W_cab(:,:,:), W_cba(:,:,:)
double precision, allocatable :: W_bca(:,:,:), V_cba(:,:,:)
double precision, allocatable :: X_vvvo(:,:,:,:), X_ovoo(:,:,:,:), X_vvoo(:,:,:,:)
double precision, allocatable :: T_vvoo(:,:,:,:), T_ovvo(:,:,:,:), T_vo(:,:)
double precision, allocatable :: X_vovv(:,:,:,:), X_ooov(:,:,:,:), X_oovv(:,:,:,:)
double precision, allocatable :: T_voov(:,:,:,:), T_oovv(:,:,:,:)
integer :: i,j,k,l,a,b,c,d
double precision :: e,ta,tb, delta, delta_abc
double precision :: e,ta,tb
!allocate(W(nV,nV,nV,nO,nO,nO))
!allocate(V(nV,nV,nV,nO,nO,nO))
allocate(W_abc(nO,nO,nO), V_abc(nO,nO,nO), W_cab(nO,nO,nO))
allocate(W_bca(nO,nO,nO), V_cba(nO,nO,nO), W_cba(nO,nO,nO))
allocate(X_vvvo(nV,nV,nV,nO), X_ovoo(nO,nV,nO,nO), X_vvoo(nV,nV,nO,nO))
allocate(T_vvoo(nV,nV,nO,nO), T_ovvo(nO,nV,nV,nO), T_vo(nV,nO))
call set_multiple_levels_omp(.False.)
allocate(X_vovv(nV,nO,nV,nV), X_ooov(nO,nO,nO,nV), X_oovv(nO,nO,nV,nV))
allocate(T_voov(nV,nO,nO,nV),T_oovv(nO,nO,nV,nV))
! Temporary arrays
!$OMP PARALLEL &
!$OMP SHARED(nO,nV,T_vvoo,T_ovvo,T_vo,X_vvvo,X_ovoo,X_vvoo, &
!$OMP SHARED(nO,nV,T_voov,T_oovv,X_vovv,X_ooov,X_oovv, &
!$OMP t1,t2,v_vvvo,v_vooo,v_vvoo) &
!$OMP PRIVATE(a,b,c,d,i,j,k,l) &
!$OMP DEFAULT(NONE)
!v_vvvo(b,a,d,i) * t2(k,j,c,d) &
!X_vvvo(d,b,a,i) * T_vvoo(d,c,k,j)
!X_vovv(d,i,b,a,i) * T_voov(d,j,c,k)
!$OMP DO collapse(3)
do i = 1, nO
do a = 1, nV
do b = 1, nV
!$OMP DO
do a = 1, nV
do b = 1, nV
do i = 1, nO
do d = 1, nV
X_vvvo(d,b,a,i) = v_vvvo(b,a,d,i)
X_vovv(d,i,b,a) = v_vvvo(b,a,d,i)
enddo
enddo
enddo
enddo
!$OMP END DO nowait
!$OMP DO collapse(3)
do j = 1, nO
do k = 1, nO
do c = 1, nV
!$OMP DO
do c = 1, nV
do j = 1, nO
do k = 1, nO
do d = 1, nV
T_vvoo(d,c,k,j) = t2(k,j,c,d)
T_voov(d,k,j,c) = t2(k,j,c,d)
enddo
enddo
enddo
@ -62,191 +54,399 @@ subroutine ccsd_par_t_space_v3(nO,nV,t1,t2,f_o,f_v,v_vvvo,v_vvoo,v_vooo,energy)
!$OMP END DO nowait
!v_vooo(c,j,k,l) * t2(i,l,a,b) &
!X_ovoo(l,c,j,k) * T_ovvo(l,a,b,i) &
!X_ooov(l,j,k,c) * T_oovv(l,i,a,b) &
!$OMP DO collapse(3)
do k = 1, nO
do j = 1, nO
do c = 1, nV
do l = 1, nO
X_ovoo(l,c,j,k) = v_vooo(c,j,k,l)
enddo
enddo
enddo
enddo
!$OMP END DO nowait
!$OMP DO collapse(3)
do i = 1, nO
do b = 1, nV
do a = 1, nV
do l = 1, nO
T_ovvo(l,a,b,i) = t2(i,l,a,b)
enddo
enddo
enddo
enddo
!$OMP END DO nowait
!v_vvoo(b,c,j,k) * t1(i,a) &
!X_vvoo(b,c,k,j) * T1_vo(a,i) &
!$OMP DO collapse(3)
do j = 1, nO
!$OMP DO
do c = 1, nV
do k = 1, nO
do c = 1, nV
do b = 1, nV
X_vvoo(b,c,k,j) = v_vvoo(b,c,j,k)
do j = 1, nO
do l = 1, nO
X_ooov(l,j,k,c) = v_vooo(c,j,k,l)
enddo
enddo
enddo
enddo
!$OMP END DO nowait
!$OMP DO collapse(1)
do i = 1, nO
!$OMP DO
do b = 1, nV
do a = 1, nV
T_vo(a,i) = t1(i,a)
do i = 1, nO
do l = 1, nO
T_oovv(l,i,a,b) = t2(i,l,a,b)
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
!$OMP END DO nowait
call wall_time(ta)
energy = 0d0
!X_oovv(j,k,b,c) * T1_vo(a,i) &
!$OMP DO
do c = 1, nV
do b = 1, nV
do a = 1, nV
delta_abc = f_v(a) + f_v(b) + f_v(c)
call form_w_abc(nO,nV,a,b,c,T_vvoo,T_ovvo,X_vvvo,X_ovoo,W_abc)
call form_w_abc(nO,nV,b,c,a,T_vvoo,T_ovvo,X_vvvo,X_ovoo,W_bca)
call form_w_abc(nO,nV,c,a,b,T_vvoo,T_ovvo,X_vvvo,X_ovoo,W_cab)
call form_w_abc(nO,nV,c,b,a,T_vvoo,T_ovvo,X_vvvo,X_ovoo,W_cba)
call form_v_abc(nO,nV,a,b,c,T_vo,X_vvoo,W_abc,V_abc)
call form_v_abc(nO,nV,c,b,a,T_vo,X_vvoo,W_cba,V_cba)
!$OMP PARALLEL &
!$OMP SHARED(energy,nO,a,b,c,W_abc,W_cab,W_bca,V_abc,V_cba,f_o,f_v,delta_abc)&
!$OMP PRIVATE(i,j,k,e,delta) &
!$OMP DEFAULT(NONE)
e = 0d0
!$OMP DO
do i = 1, nO
do j = 1, nO
do k = 1, nO
delta = 1d0 / (f_o(i) + f_o(j) + f_o(k) - delta_abc)
!energy = energy + (4d0 * W(i,j,k,a,b,c) + W(i,j,k,b,c,a) + W(i,j,k,c,a,b)) * (V(i,j,k,a,b,c) - V(i,j,k,c,b,a)) / (cc_space_f_o(i) + cc_space_f_o(j) + cc_space_f_o(k) - cc_space_f_v(a) - cc_space_f_v(b) - cc_space_f_v(c)) !delta_ooovvv(i,j,k,a,b,c)
e = e + (4d0 * W_abc(i,j,k) + W_bca(i,j,k) + W_cab(i,j,k))&
* (V_abc(i,j,k) - V_cba(i,j,k)) * delta
enddo
enddo
do k = 1, nO
do j = 1, nO
X_oovv(j,k,b,c) = v_vvoo(b,c,j,k)
enddo
!$OMP END DO NOWAIT
!$OMP CRITICAL
energy = energy + e
!$OMP END CRITICAL
!$OMP END PARALLEL
enddo
enddo
call wall_time(tb)
write(*,'(F12.2,A5,F12.2,A2)') dble(i)/dble(nO)*100d0, '% in ', tb - ta, ' s'
enddo
!$OMP END DO nowait
energy = energy / 3d0
!$OMP END PARALLEL
deallocate(W_abc,V_abc,W_cab,V_cba,W_bca,X_vvvo,X_ovoo,T_vvoo,T_ovvo,T_vo)
!deallocate(V,W)
double precision, external :: ccsd_t_task_aba
double precision, external :: ccsd_t_task_abc
!$OMP PARALLEL PRIVATE(a,b,c,e) DEFAULT(SHARED)
e = 0d0
!$OMP DO SCHEDULE(dynamic)
do a = 1, nV
do b = a+1, nV
do c = b+1, nV
e = e + ccsd_t_task_abc(a,b,c,nO,nV,t1,T_oovv,T_voov, &
X_ooov,X_oovv,X_vovv,f_o,f_v)
enddo
e = e + ccsd_t_task_aba(a,b,nO,nV,t1,T_oovv,T_voov, &
X_ooov,X_oovv,X_vovv,f_o,f_v)
e = e + ccsd_t_task_aba(b,a,nO,nV,t1,T_oovv,T_voov, &
X_ooov,X_oovv,X_vovv,f_o,f_v)
enddo
enddo
!$OMP END DO NOWAIT
!$OMP CRITICAL
energy = energy + e
!$OMP END CRITICAL
!$OMP END PARALLEL
energy = energy / 3.d0
deallocate(X_vovv,X_ooov,T_voov,T_oovv)
end
subroutine form_w_abc(nO,nV,a,b,c,T_vvoo,T_ovvo,X_vvvo,X_ovoo,W_abc)
double precision function ccsd_t_task_abc(a,b,c,nO,nV,t1,T_oovv,T_voov,&
X_ooov,X_oovv,X_vovv,f_o,f_v) result(e)
implicit none
integer, intent(in) :: nO,nV,a,b,c
double precision, intent(in) :: t1(nO,nV), f_o(nO), f_v(nV)
double precision, intent(in) :: X_oovv(nO,nO,nV,nV)
double precision, intent(in) :: T_voov(nV,nO,nO,nV), T_oovv(nO,nO,nV,nV)
double precision, intent(in) :: X_vovv(nV,nO,nV,nV), X_ooov(nO,nO,nO,nV)
double precision :: delta, delta_abc
integer :: i,j,k
double precision, allocatable :: W_abc(:,:,:), W_cab(:,:,:), W_bca(:,:,:)
double precision, allocatable :: W_bac(:,:,:), W_cba(:,:,:), W_acb(:,:,:)
double precision, allocatable :: V_abc(:,:,:), V_cab(:,:,:), V_bca(:,:,:)
double precision, allocatable :: V_bac(:,:,:), V_cba(:,:,:), V_acb(:,:,:)
allocate( W_abc(nO,nO,nO), W_cab(nO,nO,nO), W_bca(nO,nO,nO), &
W_bac(nO,nO,nO), W_cba(nO,nO,nO), W_acb(nO,nO,nO), &
V_abc(nO,nO,nO), V_cab(nO,nO,nO), V_bca(nO,nO,nO), &
V_bac(nO,nO,nO), V_cba(nO,nO,nO), V_acb(nO,nO,nO) )
call form_w_abc(nO,nV,a,b,c,T_voov,T_oovv,X_vovv,X_ooov,W_abc,W_cba,W_bca,W_cab,W_bac,W_acb)
call form_v_abc(nO,nV,a,b,c,t1,X_oovv,W_abc,V_abc,W_cba,V_cba,W_bca,V_bca,W_cab,V_cab,W_bac,V_bac,W_acb,V_acb)
delta_abc = f_v(a) + f_v(b) + f_v(c)
e = 0.d0
do k = 1, nO
do j = 1, nO
do i = 1, nO
delta = 1.d0 / (f_o(i) + f_o(j) + f_o(k) - delta_abc)
e = e + delta * ( &
(4d0 * (W_abc(i,j,k) - W_cba(i,j,k)) + &
W_bca(i,j,k) - W_bac(i,j,k) + &
W_cab(i,j,k) - W_acb(i,j,k) ) * (V_abc(i,j,k) - V_cba(i,j,k)) +&
(4d0 * (W_acb(i,j,k) - W_bca(i,j,k)) + &
W_cba(i,j,k) - W_cab(i,j,k) + &
W_bac(i,j,k) - W_abc(i,j,k) ) * (V_acb(i,j,k) - V_bca(i,j,k)) +&
(4d0 * (W_bac(i,j,k) - W_cab(i,j,k)) + &
W_acb(i,j,k) - W_abc(i,j,k) + &
W_cba(i,j,k) - W_bca(i,j,k) ) * (V_bac(i,j,k) - V_cab(i,j,k)) )
enddo
enddo
enddo
deallocate(W_abc, W_cab, W_bca, W_bac, W_cba, W_acb, &
V_abc, V_cab, V_bca, V_bac, V_cba, V_acb )
end
double precision function ccsd_t_task_aba(a,b,nO,nV,t1,T_oovv,T_voov,&
X_ooov,X_oovv,X_vovv,f_o,f_v) result(e)
implicit none
integer, intent(in) :: nO,nV,a,b
double precision, intent(in) :: t1(nO,nV), f_o(nO), f_v(nV)
double precision, intent(in) :: X_oovv(nO,nO,nV,nV)
double precision, intent(in) :: T_voov(nV,nO,nO,nV), T_oovv(nO,nO,nV,nV)
double precision, intent(in) :: X_vovv(nV,nO,nV,nV), X_ooov(nO,nO,nO,nV)
double precision :: delta, delta_abc
integer :: i,j,k
double precision, allocatable :: W_abc(:,:,:), W_cab(:,:,:), W_bca(:,:,:)
double precision, allocatable :: W_bac(:,:,:), W_cba(:,:,:), W_acb(:,:,:)
double precision, allocatable :: V_abc(:,:,:), V_cab(:,:,:), V_bca(:,:,:)
double precision, allocatable :: V_bac(:,:,:), V_cba(:,:,:), V_acb(:,:,:)
allocate( W_abc(nO,nO,nO), W_cab(nO,nO,nO), W_bca(nO,nO,nO), &
W_bac(nO,nO,nO), W_cba(nO,nO,nO), W_acb(nO,nO,nO), &
V_abc(nO,nO,nO), V_cab(nO,nO,nO), V_bca(nO,nO,nO), &
V_bac(nO,nO,nO), V_cba(nO,nO,nO), V_acb(nO,nO,nO) )
call form_w_abc(nO,nV,a,b,a,T_voov,T_oovv,X_vovv,X_ooov,W_abc,W_cba,W_bca,W_cab,W_bac,W_acb)
call form_v_abc(nO,nV,a,b,a,t1,X_oovv,W_abc,V_abc,W_cba,V_cba,W_bca,V_bca,W_cab,V_cab,W_bac,V_bac,W_acb,V_acb)
delta_abc = f_v(a) + f_v(b) + f_v(a)
e = 0.d0
do k = 1, nO
do j = 1, nO
do i = 1, nO
delta = 1.d0 / (f_o(i) + f_o(j) + f_o(k) - delta_abc)
e = e + delta * ( &
(4d0 * W_abc(i,j,k) + W_bca(i,j,k) + W_cab(i,j,k)) * (V_abc(i,j,k) - V_cba(i,j,k)) + &
(4d0 * W_acb(i,j,k) + W_cba(i,j,k) + W_bac(i,j,k)) * (V_acb(i,j,k) - V_bca(i,j,k)) + &
(4d0 * W_bac(i,j,k) + W_acb(i,j,k) + W_cba(i,j,k)) * (V_bac(i,j,k) - V_cab(i,j,k)) )
enddo
enddo
enddo
deallocate(W_abc, W_cab, W_bca, W_bac, W_cba, W_acb, &
V_abc, V_cab, V_bca, V_bac, V_cba, V_acb )
end
subroutine form_w_abc(nO,nV,a,b,c,T_voov,T_oovv,X_vovv,X_ooov,W_abc,W_cba,W_bca,W_cab,W_bac,W_acb)
implicit none
integer, intent(in) :: nO,nV,a,b,c
!double precision, intent(in) :: t2(nO,nO,nV,nV)
double precision, intent(in) :: T_vvoo(nV,nV,nO,nO), T_ovvo(nO,nV,nV,nO)
double precision, intent(in) :: X_vvvo(nV,nV,nV,nO), X_ovoo(nO,nV,nO,nO)
double precision, intent(in) :: T_voov(nV,nO,nO,nV), T_oovv(nO,nO,nV,nV)
double precision, intent(in) :: X_vovv(nV,nO,nV,nV), X_ooov(nO,nO,nO,nV)
double precision, intent(out) :: W_abc(nO,nO,nO)
double precision, intent(out) :: W_cba(nO,nO,nO)
double precision, intent(out) :: W_bca(nO,nO,nO)
double precision, intent(out) :: W_cab(nO,nO,nO)
double precision, intent(out) :: W_bac(nO,nO,nO)
double precision, intent(out) :: W_acb(nO,nO,nO)
integer :: l,i,j,k,d
double precision, allocatable, dimension(:,:,:,:) :: W_ikj
double precision, allocatable :: X(:,:,:,:)
allocate(W_ikj(nO,nO,nO,6))
allocate(X(nV,nO,nO,3))
!$OMP PARALLEL &
!$OMP SHARED(nO,nV,a,b,c,T_vvoo,T_ovvo,X_vvvo,X_ovoo,W_abc) &
!$OMP PRIVATE(i,j,k,d,l) &
!$OMP DEFAULT(NONE)
!$OMP DO collapse(3)
do k = 1, nO
do j = 1, nO
do i = 1, nO
W_abc(i,j,k) = 0.d0
do d = 1, nV
W_abc(i,j,k) = W_abc(i,j,k) &
+ X_vvvo(d,b,a,i) * T_vvoo(d,c,k,j) &
+ X_vvvo(d,c,a,i) * T_vvoo(d,b,j,k) &
+ X_vvvo(d,a,c,k) * T_vvoo(d,b,j,i) &
+ X_vvvo(d,b,c,k) * T_vvoo(d,a,i,j) &
+ X_vvvo(d,c,b,j) * T_vvoo(d,a,i,k) &
+ X_vvvo(d,a,b,j) * T_vvoo(d,c,k,i)
enddo
do l = 1, nO
W_abc(i,j,k) = W_abc(i,j,k) &
- T_ovvo(l,a,b,i) * X_ovoo(l,c,j,k) &
- T_ovvo(l,a,c,i) * X_ovoo(l,b,k,j) & ! bc kj
- T_ovvo(l,c,a,k) * X_ovoo(l,b,i,j) & ! prev ac ik
- T_ovvo(l,c,b,k) * X_ovoo(l,a,j,i) & ! prev ab ij
- T_ovvo(l,b,c,j) * X_ovoo(l,a,k,i) & ! prev bc kj
- T_ovvo(l,b,a,j) * X_ovoo(l,c,i,k) ! prev ac ik
enddo
do k=1,nO
do i=1,nO
do d=1,nV
X(d,i,k,1) = T_voov(d,k,i,a)
X(d,i,k,2) = T_voov(d,k,i,b)
X(d,i,k,3) = T_voov(d,k,i,c)
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
! X_vovv(d,i,c,a) * T_voov(d,j,k,b) : i jk
call dgemm('T','N', nO, nO*nO, nV, 1.d0, X_vovv(1,1,c,a), nV, T_voov(1,1,1,b), nV, 0.d0, W_abc, nO)
call dgemm('T','N', nO, nO*nO, nV, 1.d0, X_vovv(1,1,c,b), nV, T_voov(1,1,1,a), nV, 0.d0, W_bac, nO)
call dgemm('T','N', nO, nO*nO, nV, 1.d0, X_vovv(1,1,a,c), nV, T_voov(1,1,1,b), nV, 0.d0, W_cba, nO)
call dgemm('T','N', nO, nO*nO, nV, 1.d0, X_vovv(1,1,a,b), nV, T_voov(1,1,1,c), nV, 0.d0, W_bca, nO)
call dgemm('T','N', nO, nO*nO, nV, 1.d0, X_vovv(1,1,b,c), nV, T_voov(1,1,1,a), nV, 0.d0, W_cab, nO)
call dgemm('T','N', nO, nO*nO, nV, 1.d0, X_vovv(1,1,b,a), nV, T_voov(1,1,1,c), nV, 0.d0, W_acb, nO)
! T_voov(d,i,j,a) * X_vovv(d,k,b,c) : ij k
call dgemm('T','N', nO*nO, nO, nV, 1.d0, T_voov(1,1,1,a), nV, X_vovv(1,1,b,c), nV, 1.d0, W_abc, nO*nO)
call dgemm('T','N', nO*nO, nO, nV, 1.d0, T_voov(1,1,1,b), nV, X_vovv(1,1,a,c), nV, 1.d0, W_bac, nO*nO)
call dgemm('T','N', nO*nO, nO, nV, 1.d0, T_voov(1,1,1,c), nV, X_vovv(1,1,b,a), nV, 1.d0, W_cba, nO*nO)
call dgemm('T','N', nO*nO, nO, nV, 1.d0, T_voov(1,1,1,b), nV, X_vovv(1,1,c,a), nV, 1.d0, W_bca, nO*nO)
call dgemm('T','N', nO*nO, nO, nV, 1.d0, T_voov(1,1,1,c), nV, X_vovv(1,1,a,b), nV, 1.d0, W_cab, nO*nO)
call dgemm('T','N', nO*nO, nO, nV, 1.d0, T_voov(1,1,1,a), nV, X_vovv(1,1,c,b), nV, 1.d0, W_acb, nO*nO)
! X_vovv(d,k,a,c) * T_voov(d,j,i,b) : k ji
call dgemm('T','N', nO*nO, nO, nV, 1.d0, X(1,1,1,2), nV, X_vovv(1,1,a,c), nV, 1.d0, W_abc, nO*nO)
call dgemm('T','N', nO*nO, nO, nV, 1.d0, X(1,1,1,1), nV, X_vovv(1,1,b,c), nV, 1.d0, W_bac, nO*nO)
call dgemm('T','N', nO*nO, nO, nV, 1.d0, X(1,1,1,2), nV, X_vovv(1,1,c,a), nV, 1.d0, W_cba, nO*nO)
call dgemm('T','N', nO*nO, nO, nV, 1.d0, X(1,1,1,3), nV, X_vovv(1,1,b,a), nV, 1.d0, W_bca, nO*nO)
call dgemm('T','N', nO*nO, nO, nV, 1.d0, X(1,1,1,1), nV, X_vovv(1,1,c,b), nV, 1.d0, W_cab, nO*nO)
call dgemm('T','N', nO*nO, nO, nV, 1.d0, X(1,1,1,3), nV, X_vovv(1,1,a,b), nV, 1.d0, W_acb, nO*nO)
! X_vovv(d,i,b,a) * T_voov(d,k,j,c) : i kj
call dgemm('T','N', nO, nO*nO, nV, 1.d0, X_vovv(1,1,b,a), nV, X(1,1,1,3), nV, 1.d0, W_abc, nO)
call dgemm('T','N', nO, nO*nO, nV, 1.d0, X_vovv(1,1,a,b), nV, X(1,1,1,3), nV, 1.d0, W_bac, nO)
call dgemm('T','N', nO, nO*nO, nV, 1.d0, X_vovv(1,1,b,c), nV, X(1,1,1,1), nV, 1.d0, W_cba, nO)
call dgemm('T','N', nO, nO*nO, nV, 1.d0, X_vovv(1,1,c,b), nV, X(1,1,1,1), nV, 1.d0, W_bca, nO)
call dgemm('T','N', nO, nO*nO, nV, 1.d0, X_vovv(1,1,a,c), nV, X(1,1,1,2), nV, 1.d0, W_cab, nO)
call dgemm('T','N', nO, nO*nO, nV, 1.d0, X_vovv(1,1,c,a), nV, X(1,1,1,2), nV, 1.d0, W_acb, nO)
! T_voov(d,k,i,c) * X_vovv(d,j,a,b) : ki j
call dgemm('T','N', nO*nO, nO, nV, 1.d0, X(1,1,1,3), nV, X_vovv(1,1,a,b), nV, 0.d0, W_ikj(1,1,1,1), nO*nO)
call dgemm('T','N', nO*nO, nO, nV, 1.d0, X(1,1,1,3), nV, X_vovv(1,1,b,a), nV, 0.d0, W_ikj(1,1,1,2), nO*nO)
call dgemm('T','N', nO*nO, nO, nV, 1.d0, X(1,1,1,1), nV, X_vovv(1,1,c,b), nV, 0.d0, W_ikj(1,1,1,3), nO*nO)
call dgemm('T','N', nO*nO, nO, nV, 1.d0, X(1,1,1,1), nV, X_vovv(1,1,b,c), nV, 0.d0, W_ikj(1,1,1,4), nO*nO)
call dgemm('T','N', nO*nO, nO, nV, 1.d0, X(1,1,1,2), nV, X_vovv(1,1,c,a), nV, 0.d0, W_ikj(1,1,1,5), nO*nO)
call dgemm('T','N', nO*nO, nO, nV, 1.d0, X(1,1,1,2), nV, X_vovv(1,1,a,c), nV, 0.d0, W_ikj(1,1,1,6), nO*nO)
! T_voov(d,i,k,a) * X_vovv(d,j,c,b) : ik j
call dgemm('T','N', nO*nO, nO, nV, 1.d0, T_voov(1,1,1,a), nV, X_vovv(1,1,c,b), nV, 1.d0, W_ikj(1,1,1,1), nO*nO)
call dgemm('T','N', nO*nO, nO, nV, 1.d0, T_voov(1,1,1,b), nV, X_vovv(1,1,c,a), nV, 1.d0, W_ikj(1,1,1,2), nO*nO)
call dgemm('T','N', nO*nO, nO, nV, 1.d0, T_voov(1,1,1,c), nV, X_vovv(1,1,a,b), nV, 1.d0, W_ikj(1,1,1,3), nO*nO)
call dgemm('T','N', nO*nO, nO, nV, 1.d0, T_voov(1,1,1,b), nV, X_vovv(1,1,a,c), nV, 1.d0, W_ikj(1,1,1,4), nO*nO)
call dgemm('T','N', nO*nO, nO, nV, 1.d0, T_voov(1,1,1,c), nV, X_vovv(1,1,b,a), nV, 1.d0, W_ikj(1,1,1,5), nO*nO)
call dgemm('T','N', nO*nO, nO, nV, 1.d0, T_voov(1,1,1,a), nV, X_vovv(1,1,b,c), nV, 1.d0, W_ikj(1,1,1,6), nO*nO)
deallocate(X)
allocate(X(nO,nO,nO,3))
do k=1,nO
do j=1,nO
do l=1,nO
X(l,j,k,1) = X_ooov(l,k,j,a)
X(l,j,k,2) = X_ooov(l,k,j,b)
X(l,j,k,3) = X_ooov(l,k,j,c)
enddo
enddo
enddo
! - T_oovv(l,i,a,b) * X_ooov(l,j,k,c) : i jk
call dgemm('T','N', nO, nO*nO, nO, -1.d0, T_oovv(1,1,a,b), nO, X_ooov(1,1,1,c), nO, 1.d0, W_abc, nO)
call dgemm('T','N', nO, nO*nO, nO, -1.d0, T_oovv(1,1,b,a), nO, X_ooov(1,1,1,c), nO, 1.d0, W_bac, nO)
call dgemm('T','N', nO, nO*nO, nO, -1.d0, T_oovv(1,1,c,b), nO, X_ooov(1,1,1,a), nO, 1.d0, W_cba, nO)
call dgemm('T','N', nO, nO*nO, nO, -1.d0, T_oovv(1,1,b,c), nO, X_ooov(1,1,1,a), nO, 1.d0, W_bca, nO)
call dgemm('T','N', nO, nO*nO, nO, -1.d0, T_oovv(1,1,c,a), nO, X_ooov(1,1,1,b), nO, 1.d0, W_cab, nO)
call dgemm('T','N', nO, nO*nO, nO, -1.d0, T_oovv(1,1,a,c), nO, X_ooov(1,1,1,b), nO, 1.d0, W_acb, nO)
! - T_oovv(l,i,a,c) * X_ooov(l,k,j,b) : i kj
call dgemm('T','N', nO, nO*nO, nO, -1.d0, T_oovv(1,1,a,c), nO, X(1,1,1,2), nO, 1.d0, W_abc, nO)
call dgemm('T','N', nO, nO*nO, nO, -1.d0, T_oovv(1,1,b,c), nO, X(1,1,1,1), nO, 1.d0, W_bac, nO)
call dgemm('T','N', nO, nO*nO, nO, -1.d0, T_oovv(1,1,c,a), nO, X(1,1,1,2), nO, 1.d0, W_cba, nO)
call dgemm('T','N', nO, nO*nO, nO, -1.d0, T_oovv(1,1,b,a), nO, X(1,1,1,3), nO, 1.d0, W_bca, nO)
call dgemm('T','N', nO, nO*nO, nO, -1.d0, T_oovv(1,1,c,b), nO, X(1,1,1,1), nO, 1.d0, W_cab, nO)
call dgemm('T','N', nO, nO*nO, nO, -1.d0, T_oovv(1,1,a,b), nO, X(1,1,1,3), nO, 1.d0, W_acb, nO)
! - X_ooov(l,i,j,b) * T_oovv(l,k,c,a) : ij k
call dgemm('T','N', nO*nO, nO, nO, -1.d0, X_ooov(1,1,1,b), nO, T_oovv(1,1,c,a), nO, 1.d0, W_abc, nO*nO)
call dgemm('T','N', nO*nO, nO, nO, -1.d0, X_ooov(1,1,1,a), nO, T_oovv(1,1,c,b), nO, 1.d0, W_bac, nO*nO)
call dgemm('T','N', nO*nO, nO, nO, -1.d0, X_ooov(1,1,1,b), nO, T_oovv(1,1,a,c), nO, 1.d0, W_cba, nO*nO)
call dgemm('T','N', nO*nO, nO, nO, -1.d0, X_ooov(1,1,1,c), nO, T_oovv(1,1,a,b), nO, 1.d0, W_bca, nO*nO)
call dgemm('T','N', nO*nO, nO, nO, -1.d0, X_ooov(1,1,1,a), nO, T_oovv(1,1,b,c), nO, 1.d0, W_cab, nO*nO)
call dgemm('T','N', nO*nO, nO, nO, -1.d0, X_ooov(1,1,1,c), nO, T_oovv(1,1,b,a), nO, 1.d0, W_acb, nO*nO)
! - X_ooov(l,j,i,a) * T_oovv(l,k,c,b) : ji k
call dgemm('T','N', nO*nO, nO, nO, -1.d0, X(1,1,1,1), nO, T_oovv(1,1,c,b), nO, 1.d0, W_abc, nO*nO)
call dgemm('T','N', nO*nO, nO, nO, -1.d0, X(1,1,1,2), nO, T_oovv(1,1,c,a), nO, 1.d0, W_bac, nO*nO)
call dgemm('T','N', nO*nO, nO, nO, -1.d0, X(1,1,1,3), nO, T_oovv(1,1,a,b), nO, 1.d0, W_cba, nO*nO)
call dgemm('T','N', nO*nO, nO, nO, -1.d0, X(1,1,1,2), nO, T_oovv(1,1,a,c), nO, 1.d0, W_bca, nO*nO)
call dgemm('T','N', nO*nO, nO, nO, -1.d0, X(1,1,1,3), nO, T_oovv(1,1,b,a), nO, 1.d0, W_cab, nO*nO)
call dgemm('T','N', nO*nO, nO, nO, -1.d0, X(1,1,1,1), nO, T_oovv(1,1,b,c), nO, 1.d0, W_acb, nO*nO)
! - X_ooov(l,k,i,a) * T_oovv(l,j,b,c) : ki j
call dgemm('T','N', nO*nO, nO, nO, -1.d0, X(1,1,1,1), nO, T_oovv(1,1,b,c), nO, 1.d0, W_ikj(1,1,1,1), nO*nO)
call dgemm('T','N', nO*nO, nO, nO, -1.d0, X(1,1,1,2), nO, T_oovv(1,1,a,c), nO, 1.d0, W_ikj(1,1,1,2), nO*nO)
call dgemm('T','N', nO*nO, nO, nO, -1.d0, X(1,1,1,3), nO, T_oovv(1,1,b,a), nO, 1.d0, W_ikj(1,1,1,3), nO*nO)
call dgemm('T','N', nO*nO, nO, nO, -1.d0, X(1,1,1,2), nO, T_oovv(1,1,c,a), nO, 1.d0, W_ikj(1,1,1,4), nO*nO)
call dgemm('T','N', nO*nO, nO, nO, -1.d0, X(1,1,1,3), nO, T_oovv(1,1,a,b), nO, 1.d0, W_ikj(1,1,1,5), nO*nO)
call dgemm('T','N', nO*nO, nO, nO, -1.d0, X(1,1,1,1), nO, T_oovv(1,1,c,b), nO, 1.d0, W_ikj(1,1,1,6), nO*nO)
! - X_ooov(l,i,k,c) * T_oovv(l,j,b,a) : ik j
call dgemm('T','N', nO*nO, nO, nO, -1.d0, X_ooov(1,1,1,c), nO, T_oovv(1,1,b,a), nO, 1.d0, W_ikj(1,1,1,1), nO*nO)
call dgemm('T','N', nO*nO, nO, nO, -1.d0, X_ooov(1,1,1,c), nO, T_oovv(1,1,a,b), nO, 1.d0, W_ikj(1,1,1,2), nO*nO)
call dgemm('T','N', nO*nO, nO, nO, -1.d0, X_ooov(1,1,1,a), nO, T_oovv(1,1,b,c), nO, 1.d0, W_ikj(1,1,1,3), nO*nO)
call dgemm('T','N', nO*nO, nO, nO, -1.d0, X_ooov(1,1,1,a), nO, T_oovv(1,1,c,b), nO, 1.d0, W_ikj(1,1,1,4), nO*nO)
call dgemm('T','N', nO*nO, nO, nO, -1.d0, X_ooov(1,1,1,b), nO, T_oovv(1,1,a,c), nO, 1.d0, W_ikj(1,1,1,5), nO*nO)
call dgemm('T','N', nO*nO, nO, nO, -1.d0, X_ooov(1,1,1,b), nO, T_oovv(1,1,c,a), nO, 1.d0, W_ikj(1,1,1,6), nO*nO)
do k=1,nO
do j=1,nO
do i=1,nO
W_abc(i,j,k) = W_abc(i,j,k) + W_ikj(i,k,j,1)
W_bac(i,j,k) = W_bac(i,j,k) + W_ikj(i,k,j,2)
W_cba(i,j,k) = W_cba(i,j,k) + W_ikj(i,k,j,3)
W_bca(i,j,k) = W_bca(i,j,k) + W_ikj(i,k,j,4)
W_cab(i,j,k) = W_cab(i,j,k) + W_ikj(i,k,j,5)
W_acb(i,j,k) = W_acb(i,j,k) + W_ikj(i,k,j,6)
enddo
enddo
enddo
deallocate(X,W_ikj)
end
! V_abc
subroutine form_v_abc(nO,nV,a,b,c,T_vo,X_vvoo,W,V)
subroutine form_v_abc(nO,nV,a,b,c,T_ov,X_oovv,W_abc,V_abc,W_cba,V_cba,W_bca,V_bca,W_cab,V_cab,W_bac,V_bac,W_acb,V_acb)
implicit none
integer, intent(in) :: nO,nV,a,b,c
!double precision, intent(in) :: t1(nO,nV)
double precision, intent(in) :: T_vo(nV,nO)
double precision, intent(in) :: X_vvoo(nV,nV,nO,nO)
double precision, intent(in) :: W(nO,nO,nO)
double precision, intent(out) :: V(nO,nO,nO)
double precision, intent(in) :: T_ov(nO,nV)
double precision, intent(in) :: X_oovv(nO,nO,nV,nV)
double precision, intent(in) :: W_abc(nO,nO,nO), W_cab(nO,nO,nO), W_bca(nO,nO,nO)
double precision, intent(in) :: W_bac(nO,nO,nO), W_cba(nO,nO,nO), W_acb(nO,nO,nO)
double precision, intent(out) :: V_abc(nO,nO,nO), V_cab(nO,nO,nO), V_bca(nO,nO,nO)
double precision, intent(out) :: V_bac(nO,nO,nO), V_cba(nO,nO,nO), V_acb(nO,nO,nO)
integer :: i,j,k
!$OMP PARALLEL &
!$OMP SHARED(nO,nV,a,b,c,T_vo,X_vvoo,W,V) &
!$OMP PRIVATE(i,j,k) &
!$OMP DEFAULT(NONE)
!$OMP DO collapse(2)
do k = 1, nO
do j = 1, nO
do i = 1, nO
!V(i,j,k,a,b,c) = V(i,j,k,a,b,c) + W(i,j,k,a,b,c) &
V(i,j,k) = W(i,j,k) &
+ X_vvoo(b,c,k,j) * T_vo(a,i) &
+ X_vvoo(a,c,k,i) * T_vo(b,j) &
+ X_vvoo(a,b,j,i) * T_vo(c,k)
V_abc(i,j,k) = W_abc(i,j,k) &
+ X_oovv(j,k,b,c) * T_ov(i,a) &
+ X_oovv(i,k,a,c) * T_ov(j,b) &
+ X_oovv(i,j,a,b) * T_ov(k,c)
V_cba(i,j,k) = W_cba(i,j,k) &
+ X_oovv(j,k,b,a) * T_ov(i,c) &
+ X_oovv(i,k,c,a) * T_ov(j,b) &
+ X_oovv(i,j,c,b) * T_ov(k,a)
V_bca(i,j,k) = W_bca(i,j,k) &
+ X_oovv(j,k,c,a) * T_ov(i,b) &
+ X_oovv(i,k,b,a) * T_ov(j,c) &
+ X_oovv(i,j,b,c) * T_ov(k,a)
V_cab(i,j,k) = W_cab(i,j,k) &
+ X_oovv(j,k,a,b) * T_ov(i,c) &
+ X_oovv(i,k,c,b) * T_ov(j,a) &
+ X_oovv(i,j,c,a) * T_ov(k,b)
V_bac(i,j,k) = W_bac(i,j,k) &
+ X_oovv(j,k,a,c) * T_ov(i,b) &
+ X_oovv(i,k,b,c) * T_ov(j,a) &
+ X_oovv(i,j,b,a) * T_ov(k,c)
V_acb(i,j,k) = W_acb(i,j,k) &
+ X_oovv(j,k,c,b) * T_ov(i,a) &
+ X_oovv(i,k,a,b) * T_ov(j,c) &
+ X_oovv(i,j,a,c) * T_ov(k,b)
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
end

View File

@ -0,0 +1,375 @@
! Main
subroutine ccsd_par_t_space_stoch(nO,nV,t1,t2,f_o,f_v,v_vvvo,v_vvoo,v_vooo,energy)
implicit none
integer, intent(in) :: nO,nV
double precision, intent(in) :: t1(nO,nV), f_o(nO), f_v(nV)
double precision, intent(in) :: t2(nO,nO,nV,nV)
double precision, intent(in) :: v_vvvo(nV,nV,nV,nO), v_vvoo(nV,nV,nO,nO), v_vooo(nV,nO,nO,nO)
double precision, intent(inout) :: energy
double precision, allocatable :: X_vovv(:,:,:,:), X_ooov(:,:,:,:), X_oovv(:,:,:,:)
double precision, allocatable :: T_voov(:,:,:,:), T_oovv(:,:,:,:)
integer :: i,j,k,l,a,b,c,d
double precision :: e,ta,tb,eccsd
eccsd = energy
call set_multiple_levels_omp(.False.)
allocate(X_vovv(nV,nO,nV,nV), X_ooov(nO,nO,nO,nV), X_oovv(nO,nO,nV,nV))
allocate(T_voov(nV,nO,nO,nV),T_oovv(nO,nO,nV,nV))
!$OMP PARALLEL &
!$OMP SHARED(nO,nV,T_voov,T_oovv,X_vovv,X_ooov,X_oovv, &
!$OMP t1,t2,v_vvvo,v_vooo,v_vvoo) &
!$OMP PRIVATE(a,b,c,d,i,j,k,l) &
!$OMP DEFAULT(NONE)
!v_vvvo(b,a,d,i) * t2(k,j,c,d) &
!X_vovv(d,i,b,a,i) * T_voov(d,j,c,k)
!$OMP DO
do a = 1, nV
do b = 1, nV
do i = 1, nO
do d = 1, nV
X_vovv(d,i,b,a) = v_vvvo(b,a,d,i)
enddo
enddo
enddo
enddo
!$OMP END DO nowait
!$OMP DO
do c = 1, nV
do j = 1, nO
do k = 1, nO
do d = 1, nV
T_voov(d,k,j,c) = t2(k,j,c,d)
enddo
enddo
enddo
enddo
!$OMP END DO nowait
!v_vooo(c,j,k,l) * t2(i,l,a,b) &
!X_ooov(l,j,k,c) * T_oovv(l,i,a,b) &
!$OMP DO
do c = 1, nV
do k = 1, nO
do j = 1, nO
do l = 1, nO
X_ooov(l,j,k,c) = v_vooo(c,j,k,l)
enddo
enddo
enddo
enddo
!$OMP END DO nowait
!$OMP DO
do b = 1, nV
do a = 1, nV
do i = 1, nO
do l = 1, nO
T_oovv(l,i,a,b) = t2(i,l,a,b)
enddo
enddo
enddo
enddo
!$OMP END DO nowait
!X_oovv(j,k,b,c) * T1_vo(a,i) &
!$OMP DO
do c = 1, nV
do b = 1, nV
do k = 1, nO
do j = 1, nO
X_oovv(j,k,b,c) = v_vvoo(b,c,j,k)
enddo
enddo
enddo
enddo
!$OMP END DO nowait
!$OMP END PARALLEL
double precision, external :: ccsd_t_task_aba
double precision, external :: ccsd_t_task_abc
! logical, external :: omp_test_lock
double precision, allocatable :: memo(:), Pabc(:), waccu(:)
integer*8, allocatable :: sampled(:)
! integer(omp_lock_kind), allocatable :: lock(:)
integer*2 , allocatable :: abc(:,:)
integer*8 :: Nabc, i8,kiter
integer*8, allocatable :: iorder(:)
double precision :: eocc
double precision :: norm
integer :: isample
! Prepare table of triplets (a,b,c)
Nabc = (int(nV,8) * int(nV+1,8) * int(nV+2,8))/6_8 - nV
allocate (memo(Nabc), sampled(Nabc), Pabc(Nabc), waccu(0:Nabc))
allocate (abc(4,Nabc), iorder(Nabc)) !, lock(Nabc))
! eocc = 3.d0/dble(nO) * sum(f_o(1:nO))
Nabc = 0_8
do a = 1, nV
do b = a+1, nV
do c = b+1, nV
Nabc = Nabc + 1_8
Pabc(Nabc) = -1.d0/(f_v(a) + f_v(b) + f_v(c))
abc(1,Nabc) = int(a,2)
abc(2,Nabc) = int(b,2)
abc(3,Nabc) = int(c,2)
enddo
Nabc = Nabc + 1_8
abc(1,Nabc) = int(a,2)
abc(2,Nabc) = int(b,2)
abc(3,Nabc) = int(a,2)
Pabc(Nabc) = -1.d0/(2.d0*f_v(a) + f_v(b))
Nabc = Nabc + 1_8
abc(1,Nabc) = int(b,2)
abc(2,Nabc) = int(a,2)
abc(3,Nabc) = int(b,2)
Pabc(Nabc) = -1.d0/(f_v(a) + 2.d0*f_v(b))
enddo
enddo
do i8=1,Nabc
iorder(i8) = i8
enddo
! Sort triplets in decreasing Pabc
call dsort_big(Pabc, iorder, Nabc)
! Normalize
norm = 0.d0
do i8=Nabc,1,-1
norm = norm + Pabc(i8)
enddo
norm = 1.d0/norm
do i8=1,Nabc
Pabc(i8) = Pabc(i8) * norm
enddo
call i8set_order_big(abc, iorder, Nabc)
! Cumulative distribution for sampling
waccu(Nabc) = 0.d0
do i8=Nabc-1,1,-1
waccu(i8) = waccu(i8+1) - Pabc(i8+1)
enddo
waccu(:) = waccu(:) + 1.d0
waccu(0) = 0.d0
logical :: converged, do_comp
double precision :: eta, variance, error, sample
double precision :: t00, t01
integer*8 :: ieta, Ncomputed
integer*8, external :: binary_search
integer :: nbuckets
nbuckets = 100
double precision, allocatable :: wsum(:)
allocate(wsum(nbuckets))
converged = .False.
Ncomputed = 0_8
energy = 0.d0
variance = 0.d0
memo(:) = 0.d0
sampled(:) = -1_8
integer*8 :: ileft, iright, imin
ileft = 1_8
iright = Nabc
integer*8, allocatable :: bounds(:,:)
allocate (bounds(2,nbuckets))
do isample=1,nbuckets
eta = 1.d0/dble(nbuckets) * dble(isample)
ieta = binary_search(waccu,eta,Nabc)
bounds(1,isample) = ileft
bounds(2,isample) = ieta
ileft = ieta+1
wsum(isample) = sum( Pabc(bounds(1,isample):bounds(2,isample) ) )
enddo
Pabc(:) = 1.d0/Pabc(:)
print '(A)', ''
print '(A)', ' +----------------------+--------------+----------+'
print '(A)', ' | E(CCSD(T)) | Error | % |'
print '(A)', ' +----------------------+--------------+----------+'
call wall_time(t00)
imin = 1_8
!$OMP PARALLEL &
!$OMP PRIVATE(ieta,eta,a,b,c,kiter,isample) &
!$OMP DEFAULT(SHARED)
do kiter=1,Nabc
!$OMP MASTER
do while (imin <= Nabc)
if (sampled(imin)>-1_8) then
imin = imin+1
else
exit
endif
enddo
! Deterministic part
if (imin < Nabc) then
ieta=imin
sampled(ieta) = 0_8
a = abc(1,ieta)
b = abc(2,ieta)
c = abc(3,ieta)
Ncomputed += 1_8
!$OMP TASK DEFAULT(SHARED) FIRSTPRIVATE(a,b,c,ieta)
if (a/=c) then
memo(ieta) = ccsd_t_task_abc(a,b,c,nO,nV,t1,T_oovv,T_voov, &
X_ooov,X_oovv,X_vovv,f_o,f_v) / 3.d0
else
memo(ieta) = ccsd_t_task_aba(a,b,nO,nV,t1,T_oovv,T_voov, &
X_ooov,X_oovv,X_vovv,f_o,f_v) / 3.d0
endif
!$OMP END TASK
endif
! Stochastic part
call random_number(eta)
do isample=1,nbuckets
if (imin >= bounds(2,isample)) then
cycle
endif
ieta = binary_search(waccu,(eta + dble(isample-1))/dble(nbuckets),Nabc)
if (sampled(ieta) == -1_8) then
sampled(ieta) = 0_8
a = abc(1,ieta)
b = abc(2,ieta)
c = abc(3,ieta)
Ncomputed += 1_8
!$OMP TASK DEFAULT(SHARED) FIRSTPRIVATE(a,b,c,ieta)
if (a/=c) then
memo(ieta) = ccsd_t_task_abc(a,b,c,nO,nV,t1,T_oovv,T_voov, &
X_ooov,X_oovv,X_vovv,f_o,f_v) / 3.d0
else
memo(ieta) = ccsd_t_task_aba(a,b,nO,nV,t1,T_oovv,T_voov, &
X_ooov,X_oovv,X_vovv,f_o,f_v) / 3.d0
endif
!$OMP END TASK
endif
sampled(ieta) = sampled(ieta)+1_8
enddo
call wall_time(t01)
if ((t01-t00 > 1.0d0).or.(imin >= Nabc)) then
t00 = t01
!$OMP TASKWAIT
double precision :: ET, ET2
double precision :: energy_stoch, energy_det
double precision :: scale
double precision :: w
double precision :: tmp
energy_stoch = 0.d0
energy_det = 0.d0
norm = 0.d0
scale = 1.d0
ET = 0.d0
ET2 = 0.d0
do isample=1,nbuckets
if (imin >= bounds(2,isample)) then
energy_det = energy_det + sum(memo(bounds(1,isample):bounds(2,isample)))
scale = scale - wsum(isample)
else
exit
endif
enddo
isample = min(isample,nbuckets)
do ieta=bounds(1,isample), Nabc
w = dble(max(sampled(ieta),0_8))
tmp = w * memo(ieta) * Pabc(ieta)
ET = ET + tmp
ET2 = ET2 + tmp * memo(ieta) * Pabc(ieta)
norm = norm + w
enddo
norm = norm/scale
if (norm > 0.d0) then
energy_stoch = ET / norm
variance = ET2 / norm - energy_stoch*energy_stoch
endif
energy = energy_det + energy_stoch
print '('' | '',F20.8, '' | '', E12.4,'' | '', F8.2,'' |'')', eccsd+energy, dsqrt(variance/(norm-1.d0)), 100.*real(Ncomputed)/real(Nabc)
endif
!$OMP END MASTER
if (imin >= Nabc) exit
enddo
!$OMP END PARALLEL
print '(A)', ' +----------------------+--------------+----------+'
print '(A)', ''
deallocate(X_vovv,X_ooov,T_voov,T_oovv)
end
integer*8 function binary_search(arr, key, sze)
implicit none
BEGIN_DOC
! Searches the key in array arr(1:sze) between l_in and r_in, and returns its index
END_DOC
integer*8 :: sze, i, j, mid
double precision :: arr(0:sze)
double precision :: key
if ( key < arr(1) ) then
binary_search = 0_8
return
end if
if ( key >= arr(sze) ) then
binary_search = sze
return
end if
i = 0_8
j = sze + 1_8
do while (.True.)
mid = (i + j) / 2_8
if ( key >= arr(mid) ) then
i = mid
else
j = mid
end if
if (j-i <= 1_8) then
binary_search = i
return
endif
end do
end function binary_search

View File

@ -0,0 +1,13 @@
subroutine save_energy(E,ET)
implicit none
BEGIN_DOC
! Saves the energy in |EZFIO|.
END_DOC
double precision, intent(in) :: E, ET
call ezfio_set_ccsd_energy(E)
if (ET /= 0.d0) then
call ezfio_set_ccsd_energy_t(E+ET)
endif
end

View File

@ -76,6 +76,8 @@ subroutine select_connected(i_generator,E0,pt2_data,b,subset,csubset)
double precision, allocatable :: fock_diag_tmp(:,:)
if (csubset == 0) return
allocate(fock_diag_tmp(2,mo_num+1))
call build_fock_tmp(fock_diag_tmp,psi_det_generators(1,1,i_generator),N_int)
@ -86,6 +88,10 @@ subroutine select_connected(i_generator,E0,pt2_data,b,subset,csubset)
particle_mask(k,1) = iand(generators_bitmask(k,1,s_part), not(psi_det_generators(k,1,i_generator)) )
particle_mask(k,2) = iand(generators_bitmask(k,2,s_part), not(psi_det_generators(k,2,i_generator)) )
enddo
if ((subset == 1).and.(sum(hole_mask(:,2)) == 0_bit_kind)) then
! No beta electron to excite
call select_singles(i_generator,hole_mask,particle_mask,fock_diag_tmp,E0,pt2_data,b)
endif
call select_singles_and_doubles(i_generator,hole_mask,particle_mask,fock_diag_tmp,E0,pt2_data,b,subset,csubset)
deallocate(fock_diag_tmp)
end subroutine
@ -140,7 +146,7 @@ subroutine select_singles_and_doubles(i_generator,hole_mask,particle_mask,fock_d
use selection_types
implicit none
BEGIN_DOC
! WARNING /!\ : It is assumed that the generators and selectors are psi_det_sorted
! WARNING /!\ : It is assumed that the generators and selectors are psi_det_sorted
END_DOC
integer, intent(in) :: i_generator, subset, csubset
@ -177,6 +183,7 @@ subroutine select_singles_and_doubles(i_generator,hole_mask,particle_mask,fock_d
monoAdo = .true.
monoBdo = .true.
if (csubset == 0) return
do k=1,N_int
hole (k,1) = iand(psi_det_generators(k,1,i_generator), hole_mask(k,1))
@ -234,7 +241,6 @@ subroutine select_singles_and_doubles(i_generator,hole_mask,particle_mask,fock_d
enddo
! Iterate on 0S alpha, and find betas TQ such that exc_degree <= 4
! Remove also contributions < 1.d-20)
do j=1,N_det_alpha_unique
call get_excitation_degree_spin(psi_det_alpha_unique(1,j), &
psi_det_generators(1,1,i_generator), nt, N_int)
@ -477,7 +483,9 @@ subroutine select_singles_and_doubles(i_generator,hole_mask,particle_mask,fock_d
do s2=s1,2
sp = s1
if(s1 /= s2) sp = 3
if(s1 /= s2) then
sp = 3
endif
ib = 1
if(s1 == s2) ib = i1+1
@ -525,7 +533,10 @@ subroutine select_singles_and_doubles(i_generator,hole_mask,particle_mask,fock_d
deallocate(preinteresting, prefullinteresting, interesting, fullinteresting)
deallocate(banned, bannedOrb,mat)
end subroutine
subroutine fill_buffer_double(i_generator, sp, h1, h2, bannedOrb, banned, fock_diag_tmp, E0, pt2_data, mat, buf)
BEGIN_TEMPLATE
subroutine fill_buffer_$DOUBLE(i_generator, sp, h1, h2, bannedOrb, banned, fock_diag_tmp, E0, pt2_data, mat, buf)
use bitmasks
use selection_types
implicit none
@ -559,7 +570,20 @@ subroutine fill_buffer_double(i_generator, sp, h1, h2, bannedOrb, banned, fock_d
s1 = sp
s2 = sp
end if
call apply_holes(psi_det_generators(1,1,i_generator), s1, h1, s2, h2, mask, ok, N_int)
if ($IS_DOUBLE) then
if (h2 == 0) then
print *, 'h2=0 in '//trim(irp_here)
stop
endif
call apply_holes(psi_det_generators(1,1,i_generator), s1, h1, s2, h2, mask, ok, N_int)
else
if (h2 /= 0) then
print *, 'h2 /= in '//trim(irp_here)
stop
endif
call apply_hole(psi_det_generators(1,1,i_generator), s1, h1, mask, ok, N_int)
endif
E_shift = 0.d0
if (h0_type == 'CFG') then
@ -567,12 +591,15 @@ subroutine fill_buffer_double(i_generator, sp, h1, h2, bannedOrb, banned, fock_d
E_shift = psi_det_Hii(i_generator) - psi_configuration_Hii(j)
endif
do p1=1,mo_num
if(bannedOrb(p1, s1)) cycle
$DO_p1
! do p1=1,mo_num
if (bannedOrb(p1, s1)) cycle
ib = 1
if(sp /= 3) ib = p1+1
do p2=ib,mo_num
$DO_p2
! do p2=ib,mo_num
! -----
! /!\ Generating only single excited determinants doesn't work because a
@ -581,9 +608,10 @@ subroutine fill_buffer_double(i_generator, sp, h1, h2, bannedOrb, banned, fock_d
! detected as already generated when generating in the future with a
! double excitation.
! -----
if(bannedOrb(p2, s2)) cycle
if(banned(p1,p2)) cycle
if ($IS_DOUBLE) then
if(bannedOrb(p2, s2)) cycle
if(banned(p1,p2)) cycle
endif
if(pseudo_sym)then
if(dabs(mat(1, p1, p2)).lt.thresh_sym)then
@ -593,7 +621,11 @@ subroutine fill_buffer_double(i_generator, sp, h1, h2, bannedOrb, banned, fock_d
val = maxval(abs(mat(1:N_states, p1, p2)))
if( val == 0d0) cycle
call apply_particles(mask, s1, p1, s2, p2, det, ok, N_int)
if ($IS_DOUBLE) then
call apply_particles(mask, s1, p1, s2, p2, det, ok, N_int)
else
call apply_particle(mask, s1, p1, det, ok, N_int)
endif
if (do_only_cas) then
integer, external :: number_of_holes, number_of_particles
@ -854,10 +886,19 @@ subroutine fill_buffer_double(i_generator, sp, h1, h2, bannedOrb, banned, fock_d
if(w <= buf%mini) then
call add_to_selection_buffer(buf, det, w)
end if
end do
end do
! enddo
$ENDDO_p1
! enddo
$ENDDO_p2
end
SUBST [ DOUBLE , DO_p1 , ENDDO_p1 , DO_p2 , ENDDO_p2 , IS_DOUBLE ]
double ; do p1=1,mo_num ; enddo ; do p2=ib,mo_num ; enddo ; .True. ;;
single ; do p1=1,mo_num ; enddo ; p2=1 ; ; .False. ;;
END_TEMPLATE
subroutine splash_pq(mask, sp, det, i_gen, N_sel, bannedOrb, banned, mat, interesting)
use bitmasks
implicit none
@ -879,6 +920,7 @@ subroutine splash_pq(mask, sp, det, i_gen, N_sel, bannedOrb, banned, mat, intere
PROVIDE psi_selectors_coef_transp psi_det_sorted
mat = 0d0
p=0
do i=1,N_int
negMask(i,1) = not(mask(i,1))
@ -1432,7 +1474,7 @@ subroutine get_d0(gen, phasemask, bannedOrb, banned, mat, mask, h, p, sp, coefs)
p1 = p(1,sp)
p2 = p(2,sp)
do puti=1, mo_num
if(bannedOrb(puti, sp)) cycle
if (bannedOrb(puti, sp)) cycle
call get_mo_two_e_integrals(puti,p2,p1,mo_num,hij_cache1,mo_integrals_map)
call get_mo_two_e_integrals(puti,p1,p2,mo_num,hij_cache2,mo_integrals_map)
do putj=puti+1, mo_num
@ -1443,7 +1485,7 @@ subroutine get_d0(gen, phasemask, bannedOrb, banned, mat, mask, h, p, sp, coefs)
call i_h_j(gen, det, N_int, hij)
if (hij == 0.d0) cycle
else
hij = (mo_two_e_integral(p1, p2, puti, putj) - mo_two_e_integral(p2, p1, puti, putj))
hij = hij_cache1(putj) - hij_cache2(putj)
if (hij == 0.d0) cycle
hij = hij * get_phase_bi(phasemask, sp, sp, puti, p1 , putj, p2, N_int)
end if
@ -1503,7 +1545,7 @@ subroutine spot_isinwf(mask, det, i_gen, N, banned, fullMatch, interesting)
use bitmasks
implicit none
BEGIN_DOC
! Identify the determinants in det which are in the internal space. These are
! Identify the determinants in det that are in the internal space. These are
! the determinants that can be produced by creating two particles on the mask.
END_DOC
@ -1531,7 +1573,7 @@ subroutine spot_isinwf(mask, det, i_gen, N, banned, fullMatch, interesting)
if(iand(det(j,2,i), mask(j,2)) /= mask(j, 2)) cycle genl
end do
! If det(i) < det(i_gen), it hs already been considered
! If det(i) < det(i_gen), it has already been considered
if(interesting(i) < i_gen) then
fullMatch = .true.
return
@ -1582,352 +1624,4 @@ end
! OLD unoptimized routines for debugging
! ======================================
subroutine get_d0_reference(gen, phasemask, bannedOrb, banned, mat, mask, h, p, sp, coefs)
use bitmasks
implicit none
integer(bit_kind), intent(in) :: gen(N_int, 2), mask(N_int, 2)
integer(bit_kind), intent(in) :: phasemask(N_int,2)
logical, intent(in) :: bannedOrb(mo_num, 2), banned(mo_num, mo_num,2)
integer(bit_kind) :: det(N_int, 2)
double precision, intent(in) :: coefs(N_states)
double precision, intent(inout) :: mat(N_states, mo_num, mo_num)
integer, intent(in) :: h(0:2,2), p(0:4,2), sp
integer :: i, j, s, h1, h2, p1, p2, puti, putj
double precision :: hij, phase
double precision, external :: get_phase_bi, mo_two_e_integral
logical :: ok
integer :: bant
bant = 1
if(sp == 3) then ! AB
h1 = p(1,1)
h2 = p(1,2)
do p1=1, mo_num
if(bannedOrb(p1, 1)) cycle
do p2=1, mo_num
if(bannedOrb(p2,2)) cycle
if(banned(p1, p2, bant)) cycle ! rentable?
if(p1 == h1 .or. p2 == h2) then
call apply_particles(mask, 1,p1,2,p2, det, ok, N_int)
call i_h_j(gen, det, N_int, hij)
else
phase = get_phase_bi(phasemask, 1, 2, h1, p1, h2, p2, N_int)
hij = mo_two_e_integral(p1, p2, h1, h2) * phase
end if
mat(:, p1, p2) = mat(:, p1, p2) + coefs(:) * hij
end do
end do
else ! AA BB
p1 = p(1,sp)
p2 = p(2,sp)
do puti=1, mo_num
if(bannedOrb(puti, sp)) cycle
do putj=puti+1, mo_num
if(bannedOrb(putj, sp)) cycle
if(banned(puti, putj, bant)) cycle ! rentable?
if(puti == p1 .or. putj == p2 .or. puti == p2 .or. putj == p1) then
call apply_particles(mask, sp,puti,sp,putj, det, ok, N_int)
call i_h_j(gen, det, N_int, hij)
else
hij = (mo_two_e_integral(p1, p2, puti, putj) - mo_two_e_integral(p2, p1, puti, putj))* get_phase_bi(phasemask, sp, sp, puti, p1 , putj, p2, N_int)
end if
mat(:, puti, putj) = mat(:, puti, putj) + coefs(:) * hij
end do
end do
end if
end
subroutine get_d1_reference(gen, phasemask, bannedOrb, banned, mat, mask, h, p, sp, coefs)
use bitmasks
implicit none
integer(bit_kind), intent(in) :: mask(N_int, 2), gen(N_int, 2)
integer(bit_kind), intent(in) :: phasemask(N_int,2)
logical, intent(in) :: bannedOrb(mo_num, 2), banned(mo_num, mo_num,2)
integer(bit_kind) :: det(N_int, 2)
double precision, intent(in) :: coefs(N_states)
double precision, intent(inout) :: mat(N_states, mo_num, mo_num)
integer, intent(in) :: h(0:2,2), p(0:4,2), sp
double precision :: hij, tmp_row(N_states, mo_num), tmp_row2(N_states, mo_num)
double precision, external :: get_phase_bi, mo_two_e_integral
logical :: ok
logical, allocatable :: lbanned(:,:)
integer :: puti, putj, ma, mi, s1, s2, i, i1, i2, j
integer :: hfix, pfix, h1, h2, p1, p2, ib
integer, parameter :: turn2(2) = (/2,1/)
integer, parameter :: turn3(2,3) = reshape((/2,3, 1,3, 1,2/), (/2,3/))
integer :: bant
allocate (lbanned(mo_num, 2))
lbanned = bannedOrb
do i=1, p(0,1)
lbanned(p(i,1), 1) = .true.
end do
do i=1, p(0,2)
lbanned(p(i,2), 2) = .true.
end do
ma = 1
if(p(0,2) >= 2) ma = 2
mi = turn2(ma)
bant = 1
if(sp == 3) then
!move MA
if(ma == 2) bant = 2
puti = p(1,mi)
hfix = h(1,ma)
p1 = p(1,ma)
p2 = p(2,ma)
if(.not. bannedOrb(puti, mi)) then
tmp_row = 0d0
do putj=1, hfix-1
if(lbanned(putj, ma) .or. banned(putj, puti,bant)) cycle
hij = (mo_two_e_integral(p1, p2, putj, hfix)-mo_two_e_integral(p2,p1,putj,hfix)) * get_phase_bi(phasemask, ma, ma, putj, p1, hfix, p2, N_int)
tmp_row(1:N_states,putj) = tmp_row(1:N_states,putj) + hij * coefs(1:N_states)
end do
do putj=hfix+1, mo_num
if(lbanned(putj, ma) .or. banned(putj, puti,bant)) cycle
hij = (mo_two_e_integral(p1, p2, hfix, putj)-mo_two_e_integral(p2,p1,hfix,putj)) * get_phase_bi(phasemask, ma, ma, hfix, p1, putj, p2, N_int)
tmp_row(1:N_states,putj) = tmp_row(1:N_states,putj) + hij * coefs(1:N_states)
end do
if(ma == 1) then
mat(1:N_states,1:mo_num,puti) = mat(1:N_states,1:mo_num,puti) + tmp_row(1:N_states,1:mo_num)
else
mat(1:N_states,puti,1:mo_num) = mat(1:N_states,puti,1:mo_num) + tmp_row(1:N_states,1:mo_num)
end if
end if
!MOVE MI
pfix = p(1,mi)
tmp_row = 0d0
tmp_row2 = 0d0
do puti=1,mo_num
if(lbanned(puti,mi)) cycle
!p1 fixed
putj = p1
if(.not. banned(putj,puti,bant)) then
hij = mo_two_e_integral(p2,pfix,hfix,puti) * get_phase_bi(phasemask, ma, mi, hfix, p2, puti, pfix, N_int)
tmp_row(:,puti) = tmp_row(:,puti) + hij * coefs(:)
end if
putj = p2
if(.not. banned(putj,puti,bant)) then
hij = mo_two_e_integral(p1,pfix,hfix,puti) * get_phase_bi(phasemask, ma, mi, hfix, p1, puti, pfix, N_int)
tmp_row2(:,puti) = tmp_row2(:,puti) + hij * coefs(:)
end if
end do
if(mi == 1) then
mat(:,:,p1) = mat(:,:,p1) + tmp_row(:,:)
mat(:,:,p2) = mat(:,:,p2) + tmp_row2(:,:)
else
mat(:,p1,:) = mat(:,p1,:) + tmp_row(:,:)
mat(:,p2,:) = mat(:,p2,:) + tmp_row2(:,:)
end if
else
if(p(0,ma) == 3) then
do i=1,3
hfix = h(1,ma)
puti = p(i, ma)
p1 = p(turn3(1,i), ma)
p2 = p(turn3(2,i), ma)
tmp_row = 0d0
do putj=1,hfix-1
if(lbanned(putj,ma) .or. banned(puti,putj,1)) cycle
hij = (mo_two_e_integral(p1, p2, putj, hfix)-mo_two_e_integral(p2,p1,putj,hfix)) * get_phase_bi(phasemask, ma, ma, putj, p1, hfix, p2, N_int)
tmp_row(:,putj) = tmp_row(:,putj) + hij * coefs(:)
end do
do putj=hfix+1,mo_num
if(lbanned(putj,ma) .or. banned(puti,putj,1)) cycle
hij = (mo_two_e_integral(p1, p2, hfix, putj)-mo_two_e_integral(p2,p1,hfix,putj)) * get_phase_bi(phasemask, ma, ma, hfix, p1, putj, p2, N_int)
tmp_row(:,putj) = tmp_row(:,putj) + hij * coefs(:)
end do
mat(:, :puti-1, puti) = mat(:, :puti-1, puti) + tmp_row(:,:puti-1)
mat(:, puti, puti:) = mat(:, puti, puti:) + tmp_row(:,puti:)
end do
else
hfix = h(1,mi)
pfix = p(1,mi)
p1 = p(1,ma)
p2 = p(2,ma)
tmp_row = 0d0
tmp_row2 = 0d0
do puti=1,mo_num
if(lbanned(puti,ma)) cycle
putj = p2
if(.not. banned(puti,putj,1)) then
hij = mo_two_e_integral(pfix, p1, hfix, puti) * get_phase_bi(phasemask, mi, ma, hfix, pfix, puti, p1, N_int)
tmp_row(:,puti) = tmp_row(:,puti) + hij * coefs(:)
end if
putj = p1
if(.not. banned(puti,putj,1)) then
hij = mo_two_e_integral(pfix, p2, hfix, puti) * get_phase_bi(phasemask, mi, ma, hfix, pfix, puti, p2, N_int)
tmp_row2(:,puti) = tmp_row2(:,puti) + hij * coefs(:)
end if
end do
mat(:,:p2-1,p2) = mat(:,:p2-1,p2) + tmp_row(:,:p2-1)
mat(:,p2,p2:) = mat(:,p2,p2:) + tmp_row(:,p2:)
mat(:,:p1-1,p1) = mat(:,:p1-1,p1) + tmp_row2(:,:p1-1)
mat(:,p1,p1:) = mat(:,p1,p1:) + tmp_row2(:,p1:)
end if
end if
deallocate(lbanned)
!! MONO
if(sp == 3) then
s1 = 1
s2 = 2
else
s1 = sp
s2 = sp
end if
do i1=1,p(0,s1)
ib = 1
if(s1 == s2) ib = i1+1
do i2=ib,p(0,s2)
p1 = p(i1,s1)
p2 = p(i2,s2)
if(bannedOrb(p1, s1) .or. bannedOrb(p2, s2) .or. banned(p1, p2, 1)) cycle
call apply_particles(mask, s1, p1, s2, p2, det, ok, N_int)
call i_h_j(gen, det, N_int, hij)
mat(:, p1, p2) = mat(:, p1, p2) + coefs(:) * hij
end do
end do
end
subroutine get_d2_reference(gen, phasemask, bannedOrb, banned, mat, mask, h, p, sp, coefs)
use bitmasks
implicit none
integer(bit_kind), intent(in) :: mask(N_int, 2), gen(N_int, 2)
integer(bit_kind), intent(in) :: phasemask(2,N_int)
logical, intent(in) :: bannedOrb(mo_num, 2), banned(mo_num, mo_num,2)
double precision, intent(in) :: coefs(N_states)
double precision, intent(inout) :: mat(N_states, mo_num, mo_num)
integer, intent(in) :: h(0:2,2), p(0:4,2), sp
double precision, external :: get_phase_bi, mo_two_e_integral
integer :: i, j, tip, ma, mi, puti, putj
integer :: h1, h2, p1, p2, i1, i2
double precision :: hij, phase
integer, parameter:: turn2d(2,3,4) = reshape((/0,0, 0,0, 0,0, 3,4, 0,0, 0,0, 2,4, 1,4, 0,0, 2,3, 1,3, 1,2 /), (/2,3,4/))
integer, parameter :: turn2(2) = (/2, 1/)
integer, parameter :: turn3(2,3) = reshape((/2,3, 1,3, 1,2/), (/2,3/))
integer :: bant
bant = 1
tip = p(0,1) * p(0,2)
ma = sp
if(p(0,1) > p(0,2)) ma = 1
if(p(0,1) < p(0,2)) ma = 2
mi = mod(ma, 2) + 1
if(sp == 3) then
if(ma == 2) bant = 2
if(tip == 3) then
puti = p(1, mi)
do i = 1, 3
putj = p(i, ma)
if(banned(putj,puti,bant)) cycle
i1 = turn3(1,i)
i2 = turn3(2,i)
p1 = p(i1, ma)
p2 = p(i2, ma)
h1 = h(1, ma)
h2 = h(2, ma)
hij = (mo_two_e_integral(p1, p2, h1, h2) - mo_two_e_integral(p2,p1, h1, h2)) * get_phase_bi(phasemask, ma, ma, h1, p1, h2, p2, N_int)
if(ma == 1) then
mat(:, putj, puti) = mat(:, putj, puti) + coefs(:) * hij
else
mat(:, puti, putj) = mat(:, puti, putj) + coefs(:) * hij
end if
end do
else
h1 = h(1,1)
h2 = h(1,2)
do j = 1,2
putj = p(j, 2)
p2 = p(turn2(j), 2)
do i = 1,2
puti = p(i, 1)
if(banned(puti,putj,bant)) cycle
p1 = p(turn2(i), 1)
hij = mo_two_e_integral(p1, p2, h1, h2) * get_phase_bi(phasemask, 1, 2, h1, p1, h2, p2,N_int)
mat(:, puti, putj) = mat(:, puti, putj) + coefs(:) * hij
end do
end do
end if
else
if(tip == 0) then
h1 = h(1, ma)
h2 = h(2, ma)
do i=1,3
puti = p(i, ma)
do j=i+1,4
putj = p(j, ma)
if(banned(puti,putj,1)) cycle
i1 = turn2d(1, i, j)
i2 = turn2d(2, i, j)
p1 = p(i1, ma)
p2 = p(i2, ma)
hij = (mo_two_e_integral(p1, p2, h1, h2) - mo_two_e_integral(p2,p1, h1, h2)) * get_phase_bi(phasemask, ma, ma, h1, p1, h2, p2,N_int)
mat(:, puti, putj) = mat(:, puti, putj) + coefs(:) * hij
end do
end do
else if(tip == 3) then
h1 = h(1, mi)
h2 = h(1, ma)
p1 = p(1, mi)
do i=1,3
puti = p(turn3(1,i), ma)
putj = p(turn3(2,i), ma)
if(banned(puti,putj,1)) cycle
p2 = p(i, ma)
hij = mo_two_e_integral(p1, p2, h1, h2) * get_phase_bi(phasemask, mi, ma, h1, p1, h2, p2,N_int)
mat(:, min(puti, putj), max(puti, putj)) = mat(:, min(puti, putj), max(puti, putj)) + coefs(:) * hij
end do
else ! tip == 4
puti = p(1, sp)
putj = p(2, sp)
if(.not. banned(puti,putj,1)) then
p1 = p(1, mi)
p2 = p(2, mi)
h1 = h(1, mi)
h2 = h(2, mi)
hij = (mo_two_e_integral(p1, p2, h1, h2) - mo_two_e_integral(p2,p1, h1, h2)) * get_phase_bi(phasemask, mi, mi, h1, p1, h2, p2,N_int)
mat(:, puti, putj) = mat(:, puti, putj) + coefs(:) * hij
end if
end if
end if
end

View File

@ -0,0 +1,350 @@
! OLD unoptimized routines for debugging
! ======================================
subroutine get_d0_reference(gen, phasemask, bannedOrb, banned, mat, mask, h, p, sp, coefs)
use bitmasks
implicit none
integer(bit_kind), intent(in) :: gen(N_int, 2), mask(N_int, 2)
integer(bit_kind), intent(in) :: phasemask(N_int,2)
logical, intent(in) :: bannedOrb(mo_num, 2), banned(mo_num, mo_num,2)
integer(bit_kind) :: det(N_int, 2)
double precision, intent(in) :: coefs(N_states)
double precision, intent(inout) :: mat(N_states, mo_num, mo_num)
integer, intent(in) :: h(0:2,2), p(0:4,2), sp
integer :: i, j, s, h1, h2, p1, p2, puti, putj
double precision :: hij, phase
double precision, external :: get_phase_bi, mo_two_e_integral
logical :: ok
integer :: bant
bant = 1
if(sp == 3) then ! AB
h1 = p(1,1)
h2 = p(1,2)
do p1=1, mo_num
if(bannedOrb(p1, 1)) cycle
do p2=1, mo_num
if(bannedOrb(p2,2)) cycle
if(banned(p1, p2, bant)) cycle ! rentable?
if(p1 == h1 .or. p2 == h2) then
call apply_particles(mask, 1,p1,2,p2, det, ok, N_int)
call i_h_j(gen, det, N_int, hij)
else
phase = get_phase_bi(phasemask, 1, 2, h1, p1, h2, p2, N_int)
hij = mo_two_e_integral(p1, p2, h1, h2) * phase
end if
mat(:, p1, p2) = mat(:, p1, p2) + coefs(:) * hij
end do
end do
else ! AA BB
p1 = p(1,sp)
p2 = p(2,sp)
do puti=1, mo_num
! do not cycle here? otherwise singles will be missed??
if(bannedOrb(puti, sp)) cycle
do putj=puti+1, mo_num
if(bannedOrb(putj, sp)) cycle
if(banned(puti, putj, bant)) cycle ! rentable?
if(puti == p1 .or. putj == p2 .or. puti == p2 .or. putj == p1) then
call apply_particles(mask, sp,puti,sp,putj, det, ok, N_int)
call i_h_j(gen, det, N_int, hij)
else
hij = (mo_two_e_integral(p1, p2, puti, putj) - mo_two_e_integral(p2, p1, puti, putj))* get_phase_bi(phasemask, sp, sp, puti, p1 , putj, p2, N_int)
end if
mat(:, puti, putj) = mat(:, puti, putj) + coefs(:) * hij
end do
end do
end if
end
subroutine get_d1_reference(gen, phasemask, bannedOrb, banned, mat, mask, h, p, sp, coefs)
use bitmasks
implicit none
integer(bit_kind), intent(in) :: mask(N_int, 2), gen(N_int, 2)
integer(bit_kind), intent(in) :: phasemask(N_int,2)
logical, intent(in) :: bannedOrb(mo_num, 2), banned(mo_num, mo_num,2)
integer(bit_kind) :: det(N_int, 2)
double precision, intent(in) :: coefs(N_states)
double precision, intent(inout) :: mat(N_states, mo_num, mo_num)
integer, intent(in) :: h(0:2,2), p(0:4,2), sp
double precision :: hij, tmp_row(N_states, mo_num), tmp_row2(N_states, mo_num)
double precision, external :: get_phase_bi, mo_two_e_integral
logical :: ok
logical, allocatable :: lbanned(:,:)
integer :: puti, putj, ma, mi, s1, s2, i, i1, i2, j
integer :: hfix, pfix, h1, h2, p1, p2, ib
integer, parameter :: turn2(2) = (/2,1/)
integer, parameter :: turn3(2,3) = reshape((/2,3, 1,3, 1,2/), (/2,3/))
integer :: bant
allocate (lbanned(mo_num, 2))
lbanned = bannedOrb
do i=1, p(0,1)
lbanned(p(i,1), 1) = .true.
end do
do i=1, p(0,2)
lbanned(p(i,2), 2) = .true.
end do
ma = 1
if(p(0,2) >= 2) ma = 2
mi = turn2(ma)
bant = 1
if(sp == 3) then
!move MA
if(ma == 2) bant = 2
puti = p(1,mi)
hfix = h(1,ma)
p1 = p(1,ma)
p2 = p(2,ma)
if(.not. bannedOrb(puti, mi)) then
tmp_row = 0d0
do putj=1, hfix-1
if(lbanned(putj, ma) .or. banned(putj, puti,bant)) cycle
hij = (mo_two_e_integral(p1, p2, putj, hfix)-mo_two_e_integral(p2,p1,putj,hfix)) * get_phase_bi(phasemask, ma, ma, putj, p1, hfix, p2, N_int)
tmp_row(1:N_states,putj) = tmp_row(1:N_states,putj) + hij * coefs(1:N_states)
end do
do putj=hfix+1, mo_num
if(lbanned(putj, ma) .or. banned(putj, puti,bant)) cycle
hij = (mo_two_e_integral(p1, p2, hfix, putj)-mo_two_e_integral(p2,p1,hfix,putj)) * get_phase_bi(phasemask, ma, ma, hfix, p1, putj, p2, N_int)
tmp_row(1:N_states,putj) = tmp_row(1:N_states,putj) + hij * coefs(1:N_states)
end do
if(ma == 1) then
mat(1:N_states,1:mo_num,puti) = mat(1:N_states,1:mo_num,puti) + tmp_row(1:N_states,1:mo_num)
else
mat(1:N_states,puti,1:mo_num) = mat(1:N_states,puti,1:mo_num) + tmp_row(1:N_states,1:mo_num)
end if
end if
!MOVE MI
pfix = p(1,mi)
tmp_row = 0d0
tmp_row2 = 0d0
do puti=1,mo_num
if(lbanned(puti,mi)) cycle
!p1 fixed
putj = p1
if(.not. banned(putj,puti,bant)) then
hij = mo_two_e_integral(p2,pfix,hfix,puti) * get_phase_bi(phasemask, ma, mi, hfix, p2, puti, pfix, N_int)
tmp_row(:,puti) = tmp_row(:,puti) + hij * coefs(:)
end if
putj = p2
if(.not. banned(putj,puti,bant)) then
hij = mo_two_e_integral(p1,pfix,hfix,puti) * get_phase_bi(phasemask, ma, mi, hfix, p1, puti, pfix, N_int)
tmp_row2(:,puti) = tmp_row2(:,puti) + hij * coefs(:)
end if
end do
if(mi == 1) then
mat(:,:,p1) = mat(:,:,p1) + tmp_row(:,:)
mat(:,:,p2) = mat(:,:,p2) + tmp_row2(:,:)
else
mat(:,p1,:) = mat(:,p1,:) + tmp_row(:,:)
mat(:,p2,:) = mat(:,p2,:) + tmp_row2(:,:)
end if
else
if(p(0,ma) == 3) then
do i=1,3
hfix = h(1,ma)
puti = p(i, ma)
p1 = p(turn3(1,i), ma)
p2 = p(turn3(2,i), ma)
tmp_row = 0d0
do putj=1,hfix-1
if(lbanned(putj,ma) .or. banned(puti,putj,1)) cycle
hij = (mo_two_e_integral(p1, p2, putj, hfix)-mo_two_e_integral(p2,p1,putj,hfix)) * get_phase_bi(phasemask, ma, ma, putj, p1, hfix, p2, N_int)
tmp_row(:,putj) = tmp_row(:,putj) + hij * coefs(:)
end do
do putj=hfix+1,mo_num
if(lbanned(putj,ma) .or. banned(puti,putj,1)) cycle
hij = (mo_two_e_integral(p1, p2, hfix, putj)-mo_two_e_integral(p2,p1,hfix,putj)) * get_phase_bi(phasemask, ma, ma, hfix, p1, putj, p2, N_int)
tmp_row(:,putj) = tmp_row(:,putj) + hij * coefs(:)
end do
mat(:, :puti-1, puti) = mat(:, :puti-1, puti) + tmp_row(:,:puti-1)
mat(:, puti, puti:) = mat(:, puti, puti:) + tmp_row(:,puti:)
end do
else
hfix = h(1,mi)
pfix = p(1,mi)
p1 = p(1,ma)
p2 = p(2,ma)
tmp_row = 0d0
tmp_row2 = 0d0
do puti=1,mo_num
if(lbanned(puti,ma)) cycle
putj = p2
if(.not. banned(puti,putj,1)) then
hij = mo_two_e_integral(pfix, p1, hfix, puti) * get_phase_bi(phasemask, mi, ma, hfix, pfix, puti, p1, N_int)
tmp_row(:,puti) = tmp_row(:,puti) + hij * coefs(:)
end if
putj = p1
if(.not. banned(puti,putj,1)) then
hij = mo_two_e_integral(pfix, p2, hfix, puti) * get_phase_bi(phasemask, mi, ma, hfix, pfix, puti, p2, N_int)
tmp_row2(:,puti) = tmp_row2(:,puti) + hij * coefs(:)
end if
end do
mat(:,:p2-1,p2) = mat(:,:p2-1,p2) + tmp_row(:,:p2-1)
mat(:,p2,p2:) = mat(:,p2,p2:) + tmp_row(:,p2:)
mat(:,:p1-1,p1) = mat(:,:p1-1,p1) + tmp_row2(:,:p1-1)
mat(:,p1,p1:) = mat(:,p1,p1:) + tmp_row2(:,p1:)
end if
end if
deallocate(lbanned)
!! MONO
if(sp == 3) then
s1 = 1
s2 = 2
else
s1 = sp
s2 = sp
end if
do i1=1,p(0,s1)
ib = 1
if(s1 == s2) ib = i1+1
do i2=ib,p(0,s2)
p1 = p(i1,s1)
p2 = p(i2,s2)
if(bannedOrb(p1, s1) .or. bannedOrb(p2, s2) .or. banned(p1, p2, 1)) cycle
call apply_particles(mask, s1, p1, s2, p2, det, ok, N_int)
call i_h_j(gen, det, N_int, hij)
mat(:, p1, p2) = mat(:, p1, p2) + coefs(:) * hij
end do
end do
end
subroutine get_d2_reference(gen, phasemask, bannedOrb, banned, mat, mask, h, p, sp, coefs)
use bitmasks
implicit none
integer(bit_kind), intent(in) :: mask(N_int, 2), gen(N_int, 2)
integer(bit_kind), intent(in) :: phasemask(2,N_int)
logical, intent(in) :: bannedOrb(mo_num, 2), banned(mo_num, mo_num,2)
double precision, intent(in) :: coefs(N_states)
double precision, intent(inout) :: mat(N_states, mo_num, mo_num)
integer, intent(in) :: h(0:2,2), p(0:4,2), sp
double precision, external :: get_phase_bi, mo_two_e_integral
integer :: i, j, tip, ma, mi, puti, putj
integer :: h1, h2, p1, p2, i1, i2
double precision :: hij, phase
integer, parameter:: turn2d(2,3,4) = reshape((/0,0, 0,0, 0,0, 3,4, 0,0, 0,0, 2,4, 1,4, 0,0, 2,3, 1,3, 1,2 /), (/2,3,4/))
integer, parameter :: turn2(2) = (/2, 1/)
integer, parameter :: turn3(2,3) = reshape((/2,3, 1,3, 1,2/), (/2,3/))
integer :: bant
bant = 1
tip = p(0,1) * p(0,2)
ma = sp
if(p(0,1) > p(0,2)) ma = 1
if(p(0,1) < p(0,2)) ma = 2
mi = mod(ma, 2) + 1
if(sp == 3) then
if(ma == 2) bant = 2
if(tip == 3) then
puti = p(1, mi)
do i = 1, 3
putj = p(i, ma)
if(banned(putj,puti,bant)) cycle
i1 = turn3(1,i)
i2 = turn3(2,i)
p1 = p(i1, ma)
p2 = p(i2, ma)
h1 = h(1, ma)
h2 = h(2, ma)
hij = (mo_two_e_integral(p1, p2, h1, h2) - mo_two_e_integral(p2,p1, h1, h2)) * get_phase_bi(phasemask, ma, ma, h1, p1, h2, p2, N_int)
if(ma == 1) then
mat(:, putj, puti) = mat(:, putj, puti) + coefs(:) * hij
else
mat(:, puti, putj) = mat(:, puti, putj) + coefs(:) * hij
end if
end do
else
h1 = h(1,1)
h2 = h(1,2)
do j = 1,2
putj = p(j, 2)
p2 = p(turn2(j), 2)
do i = 1,2
puti = p(i, 1)
if(banned(puti,putj,bant)) cycle
p1 = p(turn2(i), 1)
hij = mo_two_e_integral(p1, p2, h1, h2) * get_phase_bi(phasemask, 1, 2, h1, p1, h2, p2,N_int)
mat(:, puti, putj) = mat(:, puti, putj) + coefs(:) * hij
end do
end do
end if
else
if(tip == 0) then
h1 = h(1, ma)
h2 = h(2, ma)
do i=1,3
puti = p(i, ma)
do j=i+1,4
putj = p(j, ma)
if(banned(puti,putj,1)) cycle
i1 = turn2d(1, i, j)
i2 = turn2d(2, i, j)
p1 = p(i1, ma)
p2 = p(i2, ma)
hij = (mo_two_e_integral(p1, p2, h1, h2) - mo_two_e_integral(p2,p1, h1, h2)) * get_phase_bi(phasemask, ma, ma, h1, p1, h2, p2,N_int)
mat(:, puti, putj) = mat(:, puti, putj) + coefs(:) * hij
end do
end do
else if(tip == 3) then
h1 = h(1, mi)
h2 = h(1, ma)
p1 = p(1, mi)
do i=1,3
puti = p(turn3(1,i), ma)
putj = p(turn3(2,i), ma)
if(banned(puti,putj,1)) cycle
p2 = p(i, ma)
hij = mo_two_e_integral(p1, p2, h1, h2) * get_phase_bi(phasemask, mi, ma, h1, p1, h2, p2,N_int)
mat(:, min(puti, putj), max(puti, putj)) = mat(:, min(puti, putj), max(puti, putj)) + coefs(:) * hij
end do
else ! tip == 4
puti = p(1, sp)
putj = p(2, sp)
if(.not. banned(puti,putj,1)) then
p1 = p(1, mi)
p2 = p(2, mi)
h1 = h(1, mi)
h2 = h(2, mi)
hij = (mo_two_e_integral(p1, p2, h1, h2) - mo_two_e_integral(p2,p1, h1, h2)) * get_phase_bi(phasemask, mi, mi, h1, p1, h2, p2,N_int)
mat(:, puti, putj) = mat(:, puti, putj) + coefs(:) * hij
end if
end if
end if
end

View File

@ -0,0 +1,356 @@
use bitmasks
subroutine select_singles(i_gen,hole_mask,particle_mask,fock_diag_tmp,E0,pt2_data,buf)
use bitmasks
use selection_types
implicit none
BEGIN_DOC
! Select determinants connected to i_det by H
END_DOC
integer, intent(in) :: i_gen
integer(bit_kind), intent(in) :: hole_mask(N_int,2), particle_mask(N_int,2)
double precision, intent(in) :: fock_diag_tmp(mo_num)
double precision, intent(in) :: E0(N_states)
type(pt2_type), intent(inout) :: pt2_data
type(selection_buffer), intent(inout) :: buf
logical, allocatable :: banned(:,:), bannedOrb(:)
double precision, allocatable :: mat(:,:,:)
integer :: i, j, k
integer :: h1,h2,s1,s2,i1,i2,ib,sp
integer(bit_kind) :: hole(N_int,2), particle(N_int,2), mask(N_int, 2)
logical :: fullMatch, ok
do k=1,N_int
hole (k,1) = iand(psi_det_generators(k,1,i_gen), hole_mask(k,1))
hole (k,2) = iand(psi_det_generators(k,2,i_gen), hole_mask(k,2))
particle(k,1) = iand(not(psi_det_generators(k,1,i_gen)), particle_mask(k,1))
particle(k,2) = iand(not(psi_det_generators(k,2,i_gen)), particle_mask(k,2))
enddo
allocate(banned(mo_num,mo_num), bannedOrb(mo_num), mat(N_states, mo_num, 1))
banned = .False.
! Create lists of holes and particles
! -----------------------------------
integer :: N_holes(2), N_particles(2)
integer :: hole_list(N_int*bit_kind_size,2)
integer :: particle_list(N_int*bit_kind_size,2)
call bitstring_to_list_ab(hole , hole_list , N_holes , N_int)
call bitstring_to_list_ab(particle, particle_list, N_particles, N_int)
do sp=1,2
do i=1, N_holes(sp)
h1 = hole_list(i,sp)
call apply_hole(psi_det_generators(1,1,i_gen), sp, h1, mask, ok, N_int)
bannedOrb = .true.
do j=1,N_particles(sp)
bannedOrb(particle_list(j, sp)) = .false.
end do
call spot_hasBeen(mask, sp, psi_det_sorted, i_gen, N_det, bannedOrb, fullMatch)
if(fullMatch) cycle
mat = 0d0
call splash_p(mask, sp, psi_selectors(1,1,i_gen), psi_selectors_coef_transp(1,i_gen), N_det_selectors - i_gen + 1, bannedOrb, mat(1,1,1))
call fill_buffer_single(i_gen, sp, h1, 0, bannedOrb, banned, fock_diag_tmp, E0, pt2_data, mat, buf)
end do
enddo
end subroutine
subroutine spot_hasBeen(mask, sp, det, i_gen, N, banned, fullMatch)
use bitmasks
implicit none
integer(bit_kind),intent(in) :: mask(N_int, 2), det(N_int, 2, N)
integer, intent(in) :: i_gen, N, sp
logical, intent(inout) :: banned(mo_num)
logical, intent(out) :: fullMatch
integer :: i, j, na, nb, list(3), nt
integer(bit_kind) :: myMask(N_int, 2), negMask(N_int, 2)
fullMatch = .false.
do i=1,N_int
negMask(i,1) = not(mask(i,1))
negMask(i,2) = not(mask(i,2))
end do
genl : do i=1, N
nt = 0
do j=1, N_int
myMask(j, 1) = iand(det(j, 1, i), negMask(j, 1))
myMask(j, 2) = iand(det(j, 2, i), negMask(j, 2))
nt += popcnt(myMask(j, 1)) + popcnt(myMask(j, 2))
end do
if(nt > 3) cycle
if(nt <= 2 .and. i < i_gen) then
fullMatch = .true.
return
end if
call bitstring_to_list(myMask(1,sp), list(1), na, N_int)
if(nt == 3 .and. i < i_gen) then
do j=1,na
banned(list(j)) = .true.
end do
else if(nt == 1 .and. na == 1) then
banned(list(1)) = .true.
end if
end do genl
end subroutine
subroutine splash_p(mask, sp, det, coefs, N_sel, bannedOrb, vect)
use bitmasks
implicit none
integer(bit_kind),intent(in) :: mask(N_int, 2), det(N_int,2,N_sel)
double precision, intent(in) :: coefs(N_states, N_sel)
integer, intent(in) :: sp, N_sel
logical, intent(inout) :: bannedOrb(mo_num)
double precision, intent(inout) :: vect(N_states, mo_num)
integer :: i, j, h(0:2,2), p(0:3,2), nt
integer(bit_kind) :: perMask(N_int, 2), mobMask(N_int, 2), negMask(N_int, 2)
integer(bit_kind) :: phasemask(N_int, 2)
do i=1,N_int
negMask(i,1) = not(mask(i,1))
negMask(i,2) = not(mask(i,2))
end do
do i=1, N_sel
nt = 0
do j=1,N_int
mobMask(j,1) = iand(negMask(j,1), det(j,1,i))
mobMask(j,2) = iand(negMask(j,2), det(j,2,i))
nt += popcnt(mobMask(j, 1)) + popcnt(mobMask(j, 2))
end do
if(nt > 3) cycle
do j=1,N_int
perMask(j,1) = iand(mask(j,1), not(det(j,1,i)))
perMask(j,2) = iand(mask(j,2), not(det(j,2,i)))
end do
call bitstring_to_list(perMask(1,1), h(1,1), h(0,1), N_int)
call bitstring_to_list(perMask(1,2), h(1,2), h(0,2), N_int)
call bitstring_to_list(mobMask(1,1), p(1,1), p(0,1), N_int)
call bitstring_to_list(mobMask(1,2), p(1,2), p(0,2), N_int)
call get_mask_phase(psi_det_sorted(1,1,i), phasemask, N_int)
if(nt == 3) then
call get_m2(det(1,1,i), phasemask, bannedOrb, vect, mask, h, p, sp, coefs(1, i))
else if(nt == 2) then
call get_m1(det(1,1,i), phasemask, bannedOrb, vect, mask, h, p, sp, coefs(1, i))
else
call get_m0(det(1,1,i), phasemask, bannedOrb, vect, mask, h, p, sp, coefs(1, i))
end if
end do
end subroutine
subroutine get_m2(gen, phasemask, bannedOrb, vect, mask, h, p, sp, coefs)
use bitmasks
implicit none
integer(bit_kind), intent(in) :: gen(N_int, 2), mask(N_int, 2)
integer(bit_kind), intent(in) :: phasemask(N_int, 2)
logical, intent(in) :: bannedOrb(mo_num)
double precision, intent(in) :: coefs(N_states)
double precision, intent(inout) :: vect(N_states, mo_num)
integer, intent(in) :: sp, h(0:2, 2), p(0:3, 2)
integer :: i, j, h1, h2, p1, p2, sfix, hfix, pfix, hmob, pmob, puti
double precision :: hij
double precision, external :: get_phase_bi, mo_two_e_integral
integer, parameter :: turn3_2(2,3) = reshape((/2,3, 1,3, 1,2/), (/2,3/))
integer, parameter :: turn2(2) = (/2,1/)
if(h(0,sp) == 2) then
h1 = h(1, sp)
h2 = h(2, sp)
do i=1,3
puti = p(i, sp)
if(bannedOrb(puti)) cycle
p1 = p(turn3_2(1,i), sp)
p2 = p(turn3_2(2,i), sp)
hij = mo_two_e_integral(p1, p2, h1, h2) - mo_two_e_integral(p2, p1, h1, h2)
hij *= get_phase_bi(phasemask, sp, sp, h1, p1, h2, p2)
vect(:, puti) += hij * coefs
end do
else if(h(0,sp) == 1) then
sfix = turn2(sp)
hfix = h(1,sfix)
pfix = p(1,sfix)
hmob = h(1,sp)
do j=1,2
puti = p(j, sp)
if(bannedOrb(puti)) cycle
pmob = p(turn2(j), sp)
hij = mo_two_e_integral(pfix, pmob, hfix, hmob)
hij *= get_phase_bi(phasemask, sp, sfix, hmob, pmob, hfix, pfix)
vect(:, puti) += hij * coefs
end do
else
puti = p(1,sp)
if(.not. bannedOrb(puti)) then
sfix = turn2(sp)
p1 = p(1,sfix)
p2 = p(2,sfix)
h1 = h(1,sfix)
h2 = h(2,sfix)
hij = (mo_two_e_integral(p1,p2,h1,h2) - mo_two_e_integral(p2,p1,h1,h2))
hij *= get_phase_bi(phasemask, sfix, sfix, h1, p1, h2, p2)
vect(:, puti) += hij * coefs
end if
end if
end subroutine
subroutine get_m1(gen, phasemask, bannedOrb, vect, mask, h, p, sp, coefs)
use bitmasks
implicit none
integer(bit_kind), intent(in) :: gen(N_int, 2), mask(N_int, 2)
integer(bit_kind), intent(in) :: phasemask(N_int, 2)
logical, intent(in) :: bannedOrb(mo_num)
double precision, intent(in) :: coefs(N_states)
double precision, intent(inout) :: vect(N_states, mo_num)
integer, intent(in) :: sp, h(0:2, 2), p(0:3, 2)
integer :: i, hole, p1, p2, sh
logical :: ok, lbanned(mo_num)
integer(bit_kind) :: det(N_int, 2)
double precision :: hij
double precision, external :: get_phase_bi,mo_two_e_integral
lbanned = bannedOrb
sh = 1
if(h(0,2) == 1) sh = 2
hole = h(1, sh)
lbanned(p(1,sp)) = .true.
if(p(0,sp) == 2) lbanned(p(2,sp)) = .true.
!print *, "SPm1", sp, sh
p1 = p(1, sp)
if(sp == sh) then
p2 = p(2, sp)
lbanned(p2) = .true.
do i=1,hole-1
if(lbanned(i)) cycle
hij = (mo_two_e_integral(p1, p2, i, hole) - mo_two_e_integral(p2, p1, i, hole))
hij *= get_phase_bi(phasemask, sp, sp, i, p1, hole, p2)
vect(:,i) += hij * coefs
end do
do i=hole+1,mo_num
if(lbanned(i)) cycle
hij = (mo_two_e_integral(p1, p2, hole, i) - mo_two_e_integral(p2, p1, hole, i))
hij *= get_phase_bi(phasemask, sp, sp, hole, p1, i, p2)
vect(:,i) += hij * coefs
end do
call apply_particle(mask, sp, p2, det, ok, N_int)
call i_h_j(gen, det, N_int, hij)
vect(:, p2) += hij * coefs
else
p2 = p(1, sh)
do i=1,mo_num
if(lbanned(i)) cycle
hij = mo_two_e_integral(p1, p2, i, hole)
hij *= get_phase_bi(phasemask, sp, sh, i, p1, hole, p2)
vect(:,i) += hij * coefs
end do
end if
call apply_particle(mask, sp, p1, det, ok, N_int)
call i_h_j(gen, det, N_int, hij)
vect(:, p1) += hij * coefs
end subroutine
subroutine get_m0(gen, phasemask, bannedOrb, vect, mask, h, p, sp, coefs)
use bitmasks
implicit none
integer(bit_kind), intent(in) :: gen(N_int, 2), mask(N_int, 2)
integer(bit_kind), intent(in) :: phasemask(N_int, 2)
logical, intent(in) :: bannedOrb(mo_num)
double precision, intent(in) :: coefs(N_states)
double precision, intent(inout) :: vect(N_states, mo_num)
integer, intent(in) :: sp, h(0:2, 2), p(0:3, 2)
integer :: i
logical :: ok, lbanned(mo_num)
integer(bit_kind) :: det(N_int, 2)
double precision :: hij
lbanned = bannedOrb
lbanned(p(1,sp)) = .true.
do i=1,mo_num
if(lbanned(i)) cycle
call apply_particle(mask, sp, i, det, ok, N_int)
call i_h_j(gen, det, N_int, hij)
vect(:, i) += hij * coefs
end do
end subroutine
!
!subroutine fill_buffer_single(i_generator, sp, h1, bannedOrb, fock_diag_tmp, E0, pt2, vect, buf)
! use bitmasks
! use selection_types
! implicit none
!
! integer, intent(in) :: i_generator, sp, h1
! double precision, intent(in) :: vect(N_states, mo_num)
! logical, intent(in) :: bannedOrb(mo_num)
! double precision, intent(in) :: fock_diag_tmp(mo_num)
! double precision, intent(in) :: E0(N_states)
! double precision, intent(inout) :: pt2(N_states)
! type(selection_buffer), intent(inout) :: buf
! logical :: ok
! integer :: s1, s2, p1, p2, ib, istate
! integer(bit_kind) :: mask(N_int, 2), det(N_int, 2)
! double precision :: e_pert, delta_E, val, Hii, max_e_pert, tmp
! double precision, external :: diag_H_mat_elem_fock
!
!
! call apply_hole(psi_det_generators(1,1,i_generator), sp, h1, mask, ok, N_int)
!
! do p1=1,mo_num
! if(bannedOrb(p1)) cycle
! if(vect(1, p1) == 0d0) cycle
! call apply_particle(mask, sp, p1, det, ok, N_int)
!
!
! Hii = diag_H_mat_elem_fock(psi_det_generators(1,1,i_generator),det,fock_diag_tmp,N_int)
! max_e_pert = 0d0
!
! do istate=1,N_states
! val = vect(istate, p1) + vect(istate, p1)
! delta_E = E0(istate) - Hii
! tmp = dsqrt(delta_E * delta_E + val * val)
! if (delta_E < 0.d0) then
! tmp = -tmp
! endif
! e_pert = 0.5d0 * ( tmp - delta_E)
! pt2(istate) += e_pert
! if(dabs(e_pert) > dabs(max_e_pert)) max_e_pert = e_pert
! end do
!
! if(dabs(max_e_pert) > buf%mini) call add_to_selection_buffer(buf, det, max_e_pert)
! end do
!end subroutine
!

View File

@ -868,7 +868,6 @@ subroutine fill_buffer_double(i_generator, sp, h1, h2, bannedOrb, banned, fock_d
! <det|H(j)|psi_0> and transpose
! -------------------------------------------
! call htilde_mu_mat_bi_ortho_tot(det, det, N_int, Hii)
double precision :: hmono, htwoe, hthree
call diag_htilde_mu_mat_fock_bi_ortho(N_int, det, hmono, htwoe, hthree, hii)
do istate = 1,N_states
@ -878,8 +877,8 @@ subroutine fill_buffer_double(i_generator, sp, h1, h2, bannedOrb, banned, fock_d
psi_h_alpha = 0.d0
alpha_h_psi = 0.d0
do iii = 1, N_det_selectors
call htilde_mu_mat_bi_ortho_tot(psi_selectors(1,1,iii), det, N_int, i_h_alpha)
call htilde_mu_mat_bi_ortho_tot(det, psi_selectors(1,1,iii), N_int, alpha_h_i)
call htilde_mu_mat_bi_ortho_tot_slow(psi_selectors(1,1,iii), det, N_int, i_h_alpha)
call htilde_mu_mat_bi_ortho_tot_slow(det, psi_selectors(1,1,iii), N_int, alpha_h_i)
call get_excitation_degree(psi_selectors(1,1,iii), det,degree,N_int)
if(degree == 0)then
print*,'problem !!!'

View File

@ -1,19 +0,0 @@
[ao_expoim_cosgtos]
type: double precision
doc: imag part for Exponents for each primitive of each cosGTOs |AO|
size: (ao_basis.ao_num,ao_basis.ao_prim_num_max)
interface: ezfio, provider
[use_cosgtos]
type: logical
doc: If true, use cosgtos for AO integrals
interface: ezfio,provider,ocaml
default: False
[ao_integrals_threshold]
type: Threshold
doc: If | (pq|rs) | < `ao_integrals_threshold` then (pq|rs) is zero
interface: ezfio,provider,ocaml
default: 1.e-15
ezfio_name: threshold_ao

View File

@ -1,2 +0,0 @@
ezfio_files
ao_basis

View File

@ -1,4 +0,0 @@
==============
cosgtos_ao_int
==============

View File

@ -1,7 +0,0 @@
program cosgtos_ao_int
implicit none
BEGIN_DOC
! TODO : Put the documentation of the program here
END_DOC
print *, 'Hello world'
end

View File

@ -545,11 +545,6 @@ end
integer function zmq_put_N_states_diag(zmq_to_qp_run_socket,worker_id)
use f77_zmq
implicit none

View File

@ -23,6 +23,34 @@ function run {
qp set mo_two_e_ints io_mo_two_e_integrals "Write"
}
@test "H2_1" {
run h2_1.xyz 1 0 cc-pvdz
}
@test "H2_3" {
run h2_3.xyz 3 0 cc-pvdz
}
@test "H3_2" {
run h3_2.xyz 2 0 cc-pvdz
}
@test "H3_4" {
run h3_4.xyz 4 0 cc-pvdz
}
@test "H4_1" {
run h4_1.xyz 1 0 cc-pvdz
}
@test "H4_3" {
run h4_3.xyz 3 0 cc-pvdz
}
@test "H4_5" {
run h4_5.xyz 5 0 cc-pvdz
}
@test "B-B" {
qp set_file b2_stretched.ezfio

View File

@ -10,8 +10,8 @@ function run() {
qp set perturbation do_pt2 False
qp set determinants n_det_max 8000
qp set determinants n_states 1
qp set davidson threshold_davidson 1.e-10
qp set davidson n_states_diag 8
qp set davidson_keywords threshold_davidson 1.e-10
qp set davidson_keywords n_states_diag 8
qp run fci
energy1="$(ezfio get fci energy | tr '[]' ' ' | cut -d ',' -f 1)"
eq $energy1 $1 $thresh
@ -24,99 +24,134 @@ function run_stoch() {
qp set perturbation do_pt2 True
qp set determinants n_det_max $3
qp set determinants n_states 1
qp set davidson threshold_davidson 1.e-10
qp set davidson n_states_diag 1
qp set davidson_keywords threshold_davidson 1.e-10
qp set davidson_keywords n_states_diag 1
qp run fci
energy1="$(ezfio get fci energy_pt2 | tr '[]' ' ' | cut -d ',' -f 1)"
eq $energy1 $1 $thresh
}
@test "B-B" {
@test "H2_1" { # 1s
qp set_file h2_1.ezfio
qp set perturbation pt2_max 0.
run_stoch -1.06415255 1.e-8 10000
}
@test "H2_3" { # 1s
qp set_file h2_3.ezfio
qp set perturbation pt2_max 0.
run_stoch -0.96029881 1.e-8 10000
}
@test "H3_2" { # 3s
qp set_file h3_2.ezfio
qp set perturbation pt2_max 0.
run_stoch -1.61003132 1.e-8 10000
}
@test "H3_4" { # 2s
qp set_file h3_4.ezfio
qp set perturbation pt2_max 0.
run_stoch -1.02434843 1.e-8 10000
}
@test "H4_1" { # 13s
qp set_file h4_1.ezfio
qp set perturbation pt2_max 0.
run_stoch -2.01675062 1.e-8 10000
}
@test "H4_3" { # 10s
qp set_file h4_3.ezfio
qp set perturbation pt2_max 0.
run_stoch -1.95927626 1.e-8 10000
}
@test "H4_5" { # 3s
qp set_file h4_5.ezfio
qp set perturbation pt2_max 0.
run_stoch -1.25852765 1.e-8 10000
}
@test "B-B" { # 10s
qp set_file b2_stretched.ezfio
qp set determinants n_det_max 10000
qp set_frozen_core
run_stoch -49.14103054419 3.e-4 10000
}
@test "F2" { # 4.07m
[[ -n $TRAVIS ]] && skip
qp set_file f2.ezfio
qp set_frozen_core
run_stoch -199.304922384814 3.e-3 100000
}
@test "NH3" { # 10.6657s
@test "NH3" { # 8s
qp set_file nh3.ezfio
qp set_mo_class --core="[1-4]" --act="[5-72]"
run -56.244753429144986 3.e-4 100000
}
@test "DHNO" { # 11.4721s
@test "DHNO" { # 8s
qp set_file dhno.ezfio
qp set_mo_class --core="[1-7]" --act="[8-64]"
run -130.459020029816 3.e-4 100000
run -130.466208113547 3.e-4 100000
}
@test "HCO" { # 12.2868s
@test "HCO" { # 32s
qp set_file hco.ezfio
run -113.393356604085 1.e-3 100000
run -113.395751656985 1.e-3 100000
}
@test "H2O2" { # 12.9214s
@test "H2O2" { # 21s
qp set_file h2o2.ezfio
qp set_mo_class --core="[1-2]" --act="[3-24]" --del="[25-38]"
run -151.005848404095 1.e-3 100000
}
@test "HBO" { # 13.3144s
@test "HBO" { # 18s
[[ -n $TRAVIS ]] && skip
qp set_file hbo.ezfio
run -100.213 1.5e-3 100000
run -100.214 1.5e-3 100000
}
@test "H2O" { # 11.3727s
@test "H2O" { # 16s
[[ -n $TRAVIS ]] && skip
qp set_file h2o.ezfio
run -76.2361605151999 5.e-4 100000
run -76.238051555276 5.e-4 100000
}
@test "ClO" { # 13.3755s
@test "ClO" { # 47s
[[ -n $TRAVIS ]] && skip
qp set_file clo.ezfio
run -534.546453546852 1.e-3 100000
run -534.548529710256 1.e-3 100000
}
@test "SO" { # 13.4952s
@test "SO" { # 23s
[[ -n $TRAVIS ]] && skip
qp set_file so.ezfio
run -26.015 3.e-3 100000
}
@test "H2S" { # 13.6745s
@test "H2S" { # 37s
[[ -n $TRAVIS ]] && skip
qp set_file h2s.ezfio
run -398.859577605891 5.e-4 100000
run -398.864853669111 5.e-4 100000
}
@test "OH" { # 13.865s
@test "OH" { # 12s
[[ -n $TRAVIS ]] && skip
qp set_file oh.ezfio
run -75.6121856748294 3.e-4 100000
run -75.615 1.5e-3 100000
}
@test "SiH2_3B1" { # 13.938ss
@test "SiH2_3B1" { # 10s
[[ -n $TRAVIS ]] && skip
qp set_file sih2_3b1.ezfio
run -290.0175411299477 3.e-4 100000
run -290.0206626734517 3.e-4 100000
}
@test "H3COH" { # 14.7299s
@test "H3COH" { # 33s
[[ -n $TRAVIS ]] && skip
qp set_file h3coh.ezfio
run -115.205632960026 1.e-3 100000
run -115.206784386204 1.e-3 100000
}
@test "SiH3" { # 15.99s
@test "SiH3" { # 15s
[[ -n $TRAVIS ]] && skip
qp set_file sih3.ezfio
run -5.572 1.e-3 100000
@ -132,7 +167,7 @@ function run_stoch() {
@test "ClF" { # 16.8864s
[[ -n $TRAVIS ]] && skip
qp set_file clf.ezfio
run -559.169748890031 1.5e-3 100000
run -559.174371468224 1.5e-3 100000
}
@test "SO2" { # 17.5645s
@ -170,12 +205,11 @@ function run_stoch() {
run -187.970184372047 1.6e-3 100000
}
@test "[Cu(NH3)4]2+" { # 25.0417s
[[ -n $TRAVIS ]] && skip
qp set_file cu_nh3_4_2plus.ezfio
qp set_mo_class --core="[1-24]" --act="[25-45]" --del="[46-87]"
run -1862.9869374387192 3.e-04 100000
run -1862.98320066637 3.e-04 100000
}
@test "HCN" { # 20.3273s
@ -185,3 +219,10 @@ function run_stoch() {
run -93.078 2.e-3 100000
}
@test "F2" { # 4.07m
[[ -n $TRAVIS ]] && skip
qp set_file f2.ezfio
qp set_frozen_core
run_stoch -199.304922384814 3.e-3 100000
}

View File

@ -39,7 +39,7 @@ subroutine diagonalize_CI_tc_bi_ortho(ndet, E_tc,norm,pt2_data,print_pt2)
write(*,'(A28,X,I10,X,100(F16.8,X))')'Ndet,E,E+PT2,E+RPT2,|PT2|=',ndet,E_tc ,E_tc + pt2_tmp/norm,E_tc + rpt2_tmp/norm,abs_pt2
print*,'*****'
endif
psi_energy(1:N_states) = eigval_right_tc_bi_orth(1:N_states)
psi_energy(1:N_states) = eigval_right_tc_bi_orth(1:N_states) - nuclear_repulsion
psi_s2(1:N_states) = s2_eigvec_tc_bi_orth(1:N_states)
E_tc = eigval_right_tc_bi_orth(1)

View File

@ -54,14 +54,18 @@ subroutine run_cipsi_tc
implicit none
if (.not.is_zmq_slave) then
if (.not. is_zmq_slave) then
PROVIDE psi_det psi_coef mo_bi_ortho_tc_two_e mo_bi_ortho_tc_one_e
if(elec_alpha_num+elec_beta_num.ge.3)then
if(elec_alpha_num+elec_beta_num .ge. 3) then
if(three_body_h_tc)then
call provide_all_three_ints_bi_ortho
call provide_all_three_ints_bi_ortho()
endif
endif
! ---
FREE int2_grad1_u12_bimo_transp int2_grad1_u12_ao_transp
write(json_unit,json_array_open_fmt) 'fci_tc'
if (do_pt2) then
@ -76,13 +80,16 @@ subroutine run_cipsi_tc
call json_close
else
PROVIDE mo_bi_ortho_tc_one_e mo_bi_ortho_tc_two_e pt2_min_parallel_tasks
if(elec_alpha_num+elec_beta_num.ge.3)then
if(three_body_h_tc)then
call provide_all_three_ints_bi_ortho
endif
endif
! ---
FREE int2_grad1_u12_bimo_transp int2_grad1_u12_ao_transp
call run_slave_cipsi

View File

@ -43,11 +43,39 @@ python write_pt_charges.py ${EZFIO}
qp set nuclei point_charges True
qp run scf | tee ${EZFIO}.pt_charges.out
energy="$(ezfio get hartree_fock energy)"
good=-92.76613324421798
good=-92.79920682236470
eq $energy $good $thresh
rm -rf $EZFIO
}
@test "H2_1" { # 1s
run h2_1.ezfio -1.005924963288527
}
@test "H2_3" { # 1s
run h2_3.ezfio -0.9591011604845440
}
@test "H3_2" { # 1s
run h3_2.ezfio -1.558273529860488
}
@test "H3_4" { # 1s
run h3_4.ezfio -1.0158684760025190
}
@test "H4_1" { # 1s
run h4_1.ezfio -1.932022805374405
}
@test "H4_3" { # 1s
run h4_3.ezfio -1.8948449927787350
}
@test "H4_5" { # 1s
run h4_5.ezfio -1.2408338805496990
}
@test "point charges" {
run_pt_charges
}
@ -56,6 +84,8 @@ rm -rf $EZFIO
run hcn.ezfio -92.88717500035233
}
@test "B-B" { # 3s
run b2_stretched.ezfio -48.9950585434279
}

View File

@ -1,141 +0,0 @@
! Dimensions of MOs
BEGIN_PROVIDER [ integer, n_mo_dim ]
implicit none
BEGIN_DOC
! Number of different pairs (i,j) of MOs we can build,
! with i>j
END_DOC
n_mo_dim = mo_num*(mo_num-1)/2
END_PROVIDER
BEGIN_PROVIDER [ integer, n_mo_dim_core ]
implicit none
BEGIN_DOC
! Number of different pairs (i,j) of core MOs we can build,
! with i>j
END_DOC
n_mo_dim_core = dim_list_core_orb*(dim_list_core_orb-1)/2
END_PROVIDER
BEGIN_PROVIDER [ integer, n_mo_dim_act ]
implicit none
BEGIN_DOC
! Number of different pairs (i,j) of active MOs we can build,
! with i>j
END_DOC
n_mo_dim_act = dim_list_act_orb*(dim_list_act_orb-1)/2
END_PROVIDER
BEGIN_PROVIDER [ integer, n_mo_dim_inact ]
implicit none
BEGIN_DOC
! Number of different pairs (i,j) of inactive MOs we can build,
! with i>j
END_DOC
n_mo_dim_inact = dim_list_inact_orb*(dim_list_inact_orb-1)/2
END_PROVIDER
BEGIN_PROVIDER [ integer, n_mo_dim_virt ]
implicit none
BEGIN_DOC
! Number of different pairs (i,j) of virtual MOs we can build,
! with i>j
END_DOC
n_mo_dim_virt = dim_list_virt_orb*(dim_list_virt_orb-1)/2
END_PROVIDER
! Energies/criterions
BEGIN_PROVIDER [ double precision, my_st_av_energy ]
implicit none
BEGIN_DOC
! State average CI energy
END_DOC
!call update_st_av_ci_energy(my_st_av_energy)
call state_average_energy(my_st_av_energy)
END_PROVIDER
! With all the MOs
BEGIN_PROVIDER [ double precision, my_gradient_opt, (n_mo_dim) ]
&BEGIN_PROVIDER [ double precision, my_CC1_opt ]
implicit none
BEGIN_DOC
! - Gradient of the energy with respect to the MO rotations, for all the MOs.
! - Maximal element of the gradient in absolute value
END_DOC
double precision :: norm_grad
PROVIDE mo_two_e_integrals_in_map
call gradient_opt(n_mo_dim, my_gradient_opt, my_CC1_opt, norm_grad)
END_PROVIDER
BEGIN_PROVIDER [ double precision, my_hessian_opt, (n_mo_dim, n_mo_dim) ]
implicit none
BEGIN_DOC
! - Gradient of the energy with respect to the MO rotations, for all the MOs.
! - Maximal element of the gradient in absolute value
END_DOC
double precision, allocatable :: h_f(:,:,:,:)
PROVIDE mo_two_e_integrals_in_map
allocate(h_f(mo_num, mo_num, mo_num, mo_num))
call hessian_list_opt(n_mo_dim, my_hessian_opt, h_f)
END_PROVIDER
! With the list of active MOs
! Can be generalized to any mo_class by changing the list/dimension
BEGIN_PROVIDER [ double precision, my_gradient_list_opt, (n_mo_dim_act) ]
&BEGIN_PROVIDER [ double precision, my_CC2_opt ]
implicit none
BEGIN_DOC
! - Gradient of the energy with respect to the MO rotations, only for the active MOs !
! - Maximal element of the gradient in absolute value
END_DOC
double precision :: norm_grad
PROVIDE mo_two_e_integrals_in_map !one_e_dm_mo two_e_dm_mo mo_one_e_integrals
call gradient_list_opt(n_mo_dim_act, dim_list_act_orb, list_act, my_gradient_list_opt, my_CC2_opt, norm_grad)
END_PROVIDER
BEGIN_PROVIDER [ double precision, my_hessian_list_opt, (n_mo_dim_act, n_mo_dim_act) ]
implicit none
BEGIN_DOC
! - Gradient of the energy with respect to the MO rotations, only for the active MOs !
! - Maximal element of the gradient in absolute value
END_DOC
double precision, allocatable :: h_f(:,:,:,:)
PROVIDE mo_two_e_integrals_in_map
allocate(h_f(dim_list_act_orb, dim_list_act_orb, dim_list_act_orb, dim_list_act_orb))
call hessian_list_opt(n_mo_dim_act, dim_list_act_orb, list_act, my_hessian_list_opt, h_f)
END_PROVIDER

View File

@ -6,11 +6,44 @@ BEGIN_PROVIDER [ double precision, cholesky_mo, (mo_num, mo_num, cholesky_ao_num
integer :: k
call set_multiple_levels_omp(.False.)
print *, 'AO->MO Transformation of Cholesky vectors'
!$OMP PARALLEL DO PRIVATE(k)
do k=1,cholesky_ao_num
call ao_to_mo(cholesky_ao(1,1,k),ao_num,cholesky_mo(1,1,k),mo_num)
enddo
!$OMP END PARALLEL DO
print *, ''
END_PROVIDER
BEGIN_PROVIDER [ double precision, cholesky_mo_transp, (cholesky_ao_num, mo_num, mo_num) ]
implicit none
BEGIN_DOC
! Cholesky vectors in MO basis
END_DOC
integer :: i,j,k
double precision, allocatable :: buffer(:,:)
print *, 'AO->MO Transformation of Cholesky vectors .'
call set_multiple_levels_omp(.False.)
!$OMP PARALLEL PRIVATE(i,j,k,buffer)
allocate(buffer(mo_num,mo_num))
!$OMP DO SCHEDULE(static)
do k=1,cholesky_ao_num
call ao_to_mo(cholesky_ao(1,1,k),ao_num,buffer,mo_num)
do j=1,mo_num
do i=1,mo_num
cholesky_mo_transp(k,i,j) = buffer(i,j)
enddo
enddo
enddo
!$OMP END DO
deallocate(buffer)
!$OMP END PARALLEL
print *, ''
END_PROVIDER

View File

@ -4,24 +4,68 @@
BEGIN_DOC
! big_array_coulomb_integrals(j,i,k) = <ij|kj> = (ik|jj)
!
! big_array_exchange_integrals(i,j,k) = <ij|jk> = (ij|kj)
! big_array_exchange_integrals(j,i,k) = <ij|jk> = (ij|kj)
END_DOC
integer :: i,j,k,l
integer :: i,j,k,l,a
double precision :: get_two_e_integral
double precision :: integral
do k = 1, mo_num
do i = 1, mo_num
do j = 1, mo_num
l = j
integral = get_two_e_integral(i,j,k,l,mo_integrals_map)
big_array_coulomb_integrals(j,i,k) = integral
l = j
integral = get_two_e_integral(i,j,l,k,mo_integrals_map)
big_array_exchange_integrals(j,i,k) = integral
if (do_ao_cholesky) then
double precision, allocatable :: buffer_jj(:,:), buffer(:,:,:)
allocate(buffer_jj(cholesky_ao_num,mo_num), buffer(mo_num,mo_num,mo_num))
do j=1,mo_num
buffer_jj(:,j) = cholesky_mo_transp(:,j,j)
enddo
call dgemm('T','N', mo_num*mo_num,mo_num,cholesky_ao_num, 1.d0, &
cholesky_mo_transp, cholesky_ao_num, &
buffer_jj, cholesky_ao_num, 0.d0, &
buffer, mo_num*mo_num)
do k = 1, mo_num
do i = 1, mo_num
do j = 1, mo_num
big_array_coulomb_integrals(j,i,k) = buffer(i,k,j)
enddo
enddo
enddo
deallocate(buffer_jj)
allocate(buffer_jj(mo_num,mo_num))
do j = 1, mo_num
call dgemm('T','N',mo_num,mo_num,cholesky_ao_num, 1.d0, &
cholesky_mo_transp(1,1,j), cholesky_ao_num, &
cholesky_mo_transp(1,1,j), cholesky_ao_num, 0.d0, &
buffer_jj, mo_num)
do k=1,mo_num
do i=1,mo_num
big_array_exchange_integrals(j,i,k) = buffer_jj(i,k)
enddo
enddo
enddo
deallocate(buffer_jj)
else
do k = 1, mo_num
do i = 1, mo_num
do j = 1, mo_num
l = j
integral = get_two_e_integral(i,j,k,l,mo_integrals_map)
big_array_coulomb_integrals(j,i,k) = integral
l = j
integral = get_two_e_integral(i,j,l,k,mo_integrals_map)
big_array_exchange_integrals(j,i,k) = integral
enddo
enddo
enddo
enddo
enddo
endif
END_PROVIDER

View File

@ -1353,15 +1353,30 @@ END_PROVIDER
integer :: i,j
double precision :: get_two_e_integral
PROVIDE mo_two_e_integrals_in_map
mo_two_e_integrals_jj = 0.d0
mo_two_e_integrals_jj_exchange = 0.d0
if (do_ao_cholesky) then
do j=1,mo_num
do i=1,mo_num
!TODO: use dgemm
mo_two_e_integrals_jj(i,j) = sum(cholesky_mo_transp(:,i,i)*cholesky_mo_transp(:,j,j))
mo_two_e_integrals_jj_exchange(i,j) = sum(cholesky_mo_transp(:,i,j)*cholesky_mo_transp(:,j,i))
enddo
enddo
else
do j=1,mo_num
do i=1,mo_num
mo_two_e_integrals_jj(i,j) = get_two_e_integral(i,j,i,j,mo_integrals_map)
mo_two_e_integrals_jj_exchange(i,j) = get_two_e_integral(i,j,j,i,mo_integrals_map)
enddo
enddo
endif
do j=1,mo_num
do i=1,mo_num
mo_two_e_integrals_jj(i,j) = get_two_e_integral(i,j,i,j,mo_integrals_map)
mo_two_e_integrals_jj_exchange(i,j) = get_two_e_integral(i,j,j,i,mo_integrals_map)
mo_two_e_integrals_jj_anti(i,j) = mo_two_e_integrals_jj(i,j) - mo_two_e_integrals_jj_exchange(i,j)
mo_two_e_integrals_jj_anti(i,j) = mo_two_e_integrals_jj(i,j) - mo_two_e_integrals_jj_exchange(i,j)
enddo
enddo

View File

@ -231,6 +231,7 @@ BEGIN_PROVIDER [ double precision, grad12_j12, (ao_num, ao_num, n_points_final_g
call wall_time(time0)
PROVIDE j1b_type
PROVIDE int2_grad1u2_grad2u2_j1b2
do ipoint = 1, n_points_final_grid
tmp1 = v_1b(ipoint)
@ -242,6 +243,8 @@ BEGIN_PROVIDER [ double precision, grad12_j12, (ao_num, ao_num, n_points_final_g
enddo
enddo
FREE int2_grad1u2_grad2u2_j1b2
!if(j1b_type .eq. 0) then
! grad12_j12 = 0.d0
! do ipoint = 1, n_points_final_grid
@ -262,6 +265,7 @@ BEGIN_PROVIDER [ double precision, grad12_j12, (ao_num, ao_num, n_points_final_g
call wall_time(time1)
print*, ' Wall time for grad12_j12 = ', time1 - time0
call print_memory_usage()
END_PROVIDER
@ -278,6 +282,9 @@ BEGIN_PROVIDER [double precision, u12sq_j1bsq, (ao_num, ao_num, n_points_final_g
print*, ' providing u12sq_j1bsq ...'
call wall_time(time0)
! do not free here
PROVIDE int2_u2_j1b2
do ipoint = 1, n_points_final_grid
tmp_x = v_1b_grad(1,ipoint)
tmp_y = v_1b_grad(2,ipoint)
@ -292,6 +299,7 @@ BEGIN_PROVIDER [double precision, u12sq_j1bsq, (ao_num, ao_num, n_points_final_g
call wall_time(time1)
print*, ' Wall time for u12sq_j1bsq = ', time1 - time0
call print_memory_usage()
END_PROVIDER
@ -310,6 +318,9 @@ BEGIN_PROVIDER [ double precision, u12_grad1_u12_j1b_grad1_j1b, (ao_num, ao_num,
print*, ' providing u12_grad1_u12_j1b_grad1_j1b ...'
call wall_time(time0)
PROVIDE int2_u_grad1u_j1b2
PROVIDE int2_u_grad1u_x_j1b2
do ipoint = 1, n_points_final_grid
x = final_grid_points(1,ipoint)
@ -340,14 +351,17 @@ BEGIN_PROVIDER [ double precision, u12_grad1_u12_j1b_grad1_j1b, (ao_num, ao_num,
enddo
enddo
FREE int2_u_grad1u_j1b2
FREE int2_u_grad1u_x_j1b2
call wall_time(time1)
print*, ' Wall time for u12_grad1_u12_j1b_grad1_j1b = ', time1 - time0
call print_memory_usage()
END_PROVIDER
! ---
BEGIN_PROVIDER [double precision, tc_grad_square_ao, (ao_num, ao_num, ao_num, ao_num)]
BEGIN_DOC
@ -401,6 +415,8 @@ BEGIN_PROVIDER [double precision, tc_grad_square_ao, (ao_num, ao_num, ao_num, ao
, int2_grad1_u12_square_ao(1,1,1), ao_num*ao_num, b_mat(1,1,1), n_points_final_grid &
, 0.d0, tc_grad_square_ao, ao_num*ao_num)
FREE int2_grad1_u12_square_ao
! ---
if(((j1b_type .eq. 3) .or. (j1b_type .eq. 4)) .and. use_ipp) then
@ -442,6 +458,8 @@ BEGIN_PROVIDER [double precision, tc_grad_square_ao, (ao_num, ao_num, ao_num, ao
call dgemm( "N", "N", ao_num*ao_num, ao_num*ao_num, n_points_final_grid, 1.d0 &
, int2_u2_j1b2(1,1,1), ao_num*ao_num, b_mat(1,1,1), n_points_final_grid &
, 1.d0, tc_grad_square_ao, ao_num*ao_num)
FREE int2_u2_j1b2
endif
! ---
@ -478,6 +496,7 @@ BEGIN_PROVIDER [double precision, tc_grad_square_ao, (ao_num, ao_num, ao_num, ao
call wall_time(time1)
print*, ' Wall time for tc_grad_square_ao = ', time1 - time0
call print_memory_usage()
END_PROVIDER

View File

@ -35,7 +35,7 @@ BEGIN_PROVIDER [ double precision, v_1b, (n_points_final_grid)]
elseif(j1b_type .eq. 4) then
! v(r) = 1 - \sum_{a} \exp(-\alpha_a (r - r_a)^2)
! v(r) = 1 - \sum_{a} \beta_a \exp(-\alpha_a (r - r_a)^2)
do ipoint = 1, n_points_final_grid
@ -51,7 +51,7 @@ BEGIN_PROVIDER [ double precision, v_1b, (n_points_final_grid)]
dz = z - nucl_coord(j,3)
d = dx*dx + dy*dy + dz*dz
fact_r = fact_r - dexp(-a*d)
fact_r = fact_r - j1b_pen_coef(j) * dexp(-a*d)
enddo
v_1b(ipoint) = fact_r
@ -125,7 +125,7 @@ BEGIN_PROVIDER [double precision, v_1b_grad, (3, n_points_final_grid)]
elseif(j1b_type .eq. 4) then
! v(r) = 1 - \sum_{a} \exp(-\alpha_a (r - r_a)^2)
! v(r) = 1 - \sum_{a} \beta_a \exp(-\alpha_a (r - r_a)^2)
do ipoint = 1, n_points_final_grid
@ -144,7 +144,7 @@ BEGIN_PROVIDER [double precision, v_1b_grad, (3, n_points_final_grid)]
r2 = dx*dx + dy*dy + dz*dz
a = j1b_pen(j)
e = a * dexp(-a * r2)
e = a * j1b_pen_coef(j) * dexp(-a * r2)
ax_der += e * dx
ay_der += e * dy

View File

@ -187,6 +187,19 @@ end function j12_mu
subroutine grad1_j12_mu(r1, r2, grad)
BEGIN_DOC
! gradient of j(mu(r1,r2),r12) form of jastrow.
!
! if mu(r1,r2) = cst ---> j1b_type < 200 and
!
! d/dx1 j(mu,r12) = 0.5 * (1 - erf(mu *r12))/r12 * (x1 - x2)
!
! if mu(r1,r2) /= cst ---> 200 < j1b_type < 300 and
!
! d/dx1 j(mu(r1,r2),r12) = exp(-(mu(r1,r2)*r12)**2) /(2 *sqrt(pi) * mu(r1,r2)**2 ) d/dx1 mu(r1,r2)
!
! + 0.5 * (1 - erf(mu(r1,r2) *r12))/r12 * (x1 - x2)
END_DOC
include 'constants.include.F'
implicit none
@ -283,7 +296,7 @@ double precision function j1b_nucl(r)
d = ( (r(1) - nucl_coord(i,1)) * (r(1) - nucl_coord(i,1)) &
+ (r(2) - nucl_coord(i,2)) * (r(2) - nucl_coord(i,2)) &
+ (r(3) - nucl_coord(i,3)) * (r(3) - nucl_coord(i,3)) )
j1b_nucl = j1b_nucl - dexp(-a*d)
j1b_nucl = j1b_nucl - j1b_pen_coef(i) * dexp(-a*d)
enddo
elseif((j1b_type .eq. 5) .or. (j1b_type .eq. 105)) then
@ -350,7 +363,7 @@ double precision function j1b_nucl_square(r)
d = ( (r(1) - nucl_coord(i,1)) * (r(1) - nucl_coord(i,1)) &
+ (r(2) - nucl_coord(i,2)) * (r(2) - nucl_coord(i,2)) &
+ (r(3) - nucl_coord(i,3)) * (r(3) - nucl_coord(i,3)) )
j1b_nucl_square = j1b_nucl_square - dexp(-a*d)
j1b_nucl_square = j1b_nucl_square - j1b_pen_coef(i) * dexp(-a*d)
enddo
j1b_nucl_square = j1b_nucl_square * j1b_nucl_square
@ -462,7 +475,7 @@ subroutine grad1_j1b_nucl(r, grad)
y = r(2) - nucl_coord(i,2)
z = r(3) - nucl_coord(i,3)
d = x*x + y*y + z*z
e = a * dexp(-a*d)
e = a * j1b_pen_coef(i) * dexp(-a*d)
fact_x += e * x
fact_y += e * y
@ -515,6 +528,9 @@ subroutine mu_r_val_and_grad(r1, r2, mu_val, mu_der)
double precision :: r(3)
double precision :: dm_a(1), dm_b(1), grad_dm_a(3,1), grad_dm_b(3,1)
double precision :: dm_tot, tmp1, tmp2, tmp3
double precision :: rho1, grad_rho1(3),rho2,rho_tot,inv_rho_tot
double precision :: f_rho1, f_rho2, d_drho_f_rho1
double precision :: d_dx1_f_rho1(3),d_dx_rho_f_rho(3),nume
if(j1b_type .eq. 200) then
@ -578,8 +594,84 @@ subroutine mu_r_val_and_grad(r1, r2, mu_val, mu_der)
mu_der(2) = tmp3 * (grad_dm_a(2,1) + grad_dm_b(2,1))
mu_der(3) = tmp3 * (grad_dm_a(3,1) + grad_dm_b(3,1))
else
elseif(j1b_type .eq. 202) then
! mu(r1,r2) = {rho(r1) f[rho(r1)] + rho(r2) f[rho(r2)]} / RHO
!
! RHO = rho(r1) + rho(r2)
!
! f[rho] = alpha rho^beta + mu0 exp(-rho)
!
! d/dx1 mu(r1,r2) = 1/RHO^2 * {RHO * d/dx1 (rho(r1) f[rho(r1)])
! - d/dx1 rho(r1) * [rho(r1) f[rho(r1)] + rho(r2) f[rho(r2)]] }
!
! d/dx1 f[rho(r1)] = [0.5 alpha / sqrt(rho(r1)) - mu0 exp(-rho(r1))] (d rho(r1) / dx1)
!
! d/dx1 (rho(r1) f[rho(r1)] = rho(r1) * d/dx1 f[rho(r1)] + f[rho(r1)] * d/dx1 rho(r1)
!!!!!!!!! rho1,rho2,rho1+rho2
call get_all_rho_grad_rho(r1,r2,rho1,rho2,grad_rho1)
rho_tot = rho1 + rho2
if(rho_tot.lt.1.d-10)rho_tot = 1.d-10
inv_rho_tot = 1.d0/rho_tot
! f(rho) = mu_r_ct * rho**beta_rho_power + mu_erf * exp(-rho)
call get_all_f_rho(rho1,rho2,mu_r_ct,mu_erf,beta_rho_power,f_rho1,d_drho_f_rho1,f_rho2)
d_dx1_f_rho1(1:3) = d_drho_f_rho1 * grad_rho1(1:3)
d_dx_rho_f_rho(1:3) = rho1 * d_dx1_f_rho1(1:3) + f_rho1 * grad_rho1(1:3)
nume = rho1 * f_rho1 + rho2 * f_rho2
mu_val = nume * inv_rho_tot
mu_der(1:3) = inv_rho_tot*inv_rho_tot * (rho_tot * d_dx_rho_f_rho(1:3) - grad_rho1(1:3) * nume)
elseif(j1b_type .eq. 203) then
! mu(r1,r2) = {rho(r1) f[rho(r1)] + rho(r2) f[rho(r2)]} / RHO
!
! RHO = rho(r1) + rho(r2)
!
! f[rho] = alpha rho^beta + mu0
!
! d/dx1 mu(r1,r2) = 1/RHO^2 * {RHO * d/dx1 (rho(r1) f[rho(r1)])
! - d/dx1 rho(r1) * [rho(r1) f[rho(r1)] + rho(r2) f[rho(r2)]] }
!
! d/dx1 f[rho(r1)] = [0.5 alpha / sqrt(rho(r1)) ] (d rho(r1) / dx1)
!
! d/dx1 (rho(r1) f[rho(r1)] = rho(r1) * d/dx1 f[rho(r1)] + f[rho(r1)] * d/dx1 rho(r1)
!!!!!!!!! rho1,rho2,rho1+rho2
call get_all_rho_grad_rho(r1,r2,rho1,rho2,grad_rho1)
rho_tot = rho1 + rho2
if(rho_tot.lt.1.d-10)rho_tot = 1.d-10
inv_rho_tot = 1.d0/rho_tot
! f(rho) = mu_r_ct * rho**beta_rho_power + mu_erf
call get_all_f_rho_simple(rho1,rho2,mu_r_ct,mu_erf,beta_rho_power,f_rho1,d_drho_f_rho1,f_rho2)
d_dx1_f_rho1(1:3) = d_drho_f_rho1 * grad_rho1(1:3)
d_dx_rho_f_rho(1:3) = rho1 * d_dx1_f_rho1(1:3) + f_rho1 * grad_rho1(1:3)
nume = rho1 * f_rho1 + rho2 * f_rho2
mu_val = nume * inv_rho_tot
mu_der(1:3) = inv_rho_tot*inv_rho_tot * (rho_tot * d_dx_rho_f_rho(1:3) - grad_rho1(1:3) * nume)
elseif(j1b_type .eq. 204) then
! mu(r1,r2) = 1/2 * (f[rho(r1)] + f[rho(r2)]}
!
! f[rho] = alpha rho^beta + mu0
!
! d/dx1 mu(r1,r2) = 1/2 * d/dx1 (rho(r1) f[rho(r1)])
!
! d/dx1 f[rho(r1)] = [0.5 alpha / sqrt(rho(r1)) ] (d rho(r1) / dx1)
!
! d/dx1 (rho(r1) f[rho(r1)] = rho(r1) * d/dx1 f[rho(r1)] + f[rho(r1)] * d/dx1 rho(r1)
!!!!!!!!! rho1,rho2,rho1+rho2
call get_all_rho_grad_rho(r1,r2,rho1,rho2,grad_rho1)
rho_tot = rho1 + rho2
if(rho_tot.lt.1.d-10)rho_tot = 1.d-10
inv_rho_tot = 1.d0/rho_tot
! f(rho) = mu_r_ct * rho**beta_rho_power + mu_erf
call get_all_f_rho_simple(rho1,rho2,mu_r_ct,mu_erf,beta_rho_power,f_rho1,d_drho_f_rho1,f_rho2)
d_dx1_f_rho1(1:3) = d_drho_f_rho1 * grad_rho1(1:3)
d_dx_rho_f_rho(1:3) = rho1 * d_dx1_f_rho1(1:3) + f_rho1 * grad_rho1(1:3)
mu_val = 0.5d0 * ( f_rho1 + f_rho2)
mu_der(1:3) = d_dx_rho_f_rho(1:3)
else
print *, ' j1b_type = ', j1b_type, 'not implemented yet'
stop
@ -684,3 +776,76 @@ end function j12_mu_square
! ---
subroutine f_mu_and_deriv_mu(rho,alpha,mu0,beta,f_mu,d_drho_f_mu)
implicit none
BEGIN_DOC
! function giving mu as a function of rho
!
! f_mu = alpha * rho**beta + mu0 * exp(-rho)
!
! and its derivative with respect to rho d_drho_f_mu
END_DOC
double precision, intent(in) :: rho,alpha,mu0,beta
double precision, intent(out) :: f_mu,d_drho_f_mu
f_mu = alpha * (rho)**beta + mu0 * dexp(-rho)
d_drho_f_mu = alpha * beta * rho**(beta-1.d0) - mu0 * dexp(-rho)
end
subroutine get_all_rho_grad_rho(r1,r2,rho1,rho2,grad_rho1)
implicit none
BEGIN_DOC
! returns the density in r1,r2 and grad_rho at r1
END_DOC
double precision, intent(in) :: r1(3),r2(3)
double precision, intent(out):: grad_rho1(3),rho1,rho2
double precision :: dm_a(1), dm_b(1), grad_dm_a(3,1), grad_dm_b(3,1)
call density_and_grad_alpha_beta(r1, dm_a, dm_b, grad_dm_a, grad_dm_b)
rho1 = dm_a(1) + dm_b(1)
grad_rho1(1:3) = grad_dm_a(1:3,1) + grad_dm_b(1:3,1)
call density_and_grad_alpha_beta(r2, dm_a, dm_b, grad_dm_a, grad_dm_b)
rho2 = dm_a(1) + dm_b(1)
end
subroutine get_all_f_rho(rho1,rho2,alpha,mu0,beta,f_rho1,d_drho_f_rho1,f_rho2)
implicit none
BEGIN_DOC
! returns the values f(mu(r1)), f(mu(r2)) and d/drho(1) f(mu(r1))
END_DOC
double precision, intent(in) :: rho1,rho2,alpha,mu0,beta
double precision, intent(out):: f_rho1,d_drho_f_rho1,f_rho2
double precision :: tmp
call f_mu_and_deriv_mu(rho1,alpha,mu0,beta,f_rho1,d_drho_f_rho1)
call f_mu_and_deriv_mu(rho2,alpha,mu0,beta,f_rho2,tmp)
end
subroutine get_all_f_rho_simple(rho1,rho2,alpha,mu0,beta,f_rho1,d_drho_f_rho1,f_rho2)
implicit none
BEGIN_DOC
! returns the values f(mu(r1)), f(mu(r2)) and d/drho(1) f(mu(r1))
END_DOC
double precision, intent(in) :: rho1,rho2,alpha,mu0,beta
double precision, intent(out):: f_rho1,d_drho_f_rho1,f_rho2
double precision :: tmp
call f_mu_and_deriv_mu_simple(rho1,alpha,mu0,beta,f_rho1,d_drho_f_rho1)
call f_mu_and_deriv_mu_simple(rho2,alpha,mu0,beta,f_rho2,tmp)
end
subroutine f_mu_and_deriv_mu_simple(rho,alpha,mu0,beta,f_mu,d_drho_f_mu)
implicit none
BEGIN_DOC
! function giving mu as a function of rho
!
! f_mu = alpha * rho**beta + mu0
!
! and its derivative with respect to rho d_drho_f_mu
END_DOC
double precision, intent(in) :: rho,alpha,mu0,beta
double precision, intent(out) :: f_mu,d_drho_f_mu
f_mu = alpha * (rho)**beta + mu0
d_drho_f_mu = alpha * beta * rho**(beta-1.d0)
end

View File

@ -284,6 +284,7 @@ BEGIN_PROVIDER [double precision, tc_grad_and_lapl_ao, (ao_num, ao_num, ao_num,
call wall_time(time1)
print*, ' Wall time for tc_grad_and_lapl_ao = ', time1 - time0
call print_memory_usage()
END_PROVIDER

View File

@ -0,0 +1,33 @@
program plot_mu_of_r
implicit none
read_wf = .False.
touch read_wf
call routine_print
end
subroutine routine_print
implicit none
character*(128) :: output
integer :: i_unit_output,getUnitAndOpen
output=trim(ezfio_filename)//'.mu_of_r'
i_unit_output = getUnitAndOpen(output,'w')
integer :: ipoint,nx
double precision :: xmax,xmin,r(3),dx
double precision :: mu_val, mu_der(3),dm_a,dm_b,grad
xmax = 5.D0
xmin = -5.D0
nx = 10000
dx = (xmax - xmin)/dble(nx)
r = 0.d0
r(1) = xmin
do ipoint = 1, nx
call mu_r_val_and_grad(r, r, mu_val, mu_der)
call dm_dft_alpha_beta_at_r(r,dm_a,dm_b)
grad = mu_der(1)**2 + mu_der(2)**2 + mu_der(3)**2
grad = dsqrt(grad)
write(i_unit_output,'(100(F16.7,X))')r(1),mu_val,dm_a+dm_b,grad
r(1) += dx
enddo
end

View File

@ -100,6 +100,8 @@ BEGIN_PROVIDER [double precision, int2_grad1_u12_ao, (ao_num, ao_num, n_points_f
!$OMP END DO
!$OMP END PARALLEL
FREE v_ij_erf_rk_cst_mu_j1b v_ij_u_cst_mu_j1b x_v_ij_erf_rk_cst_mu_j1b
elseif(j1b_type .ge. 100) then
PROVIDE final_weight_at_r_vector_extra aos_in_r_array_extra
@ -176,6 +178,7 @@ BEGIN_PROVIDER [double precision, int2_grad1_u12_ao, (ao_num, ao_num, n_points_f
call wall_time(time1)
print*, ' wall time for int2_grad1_u12_ao =', time1-time0
call print_memory_usage()
END_PROVIDER
@ -242,6 +245,8 @@ BEGIN_PROVIDER [double precision, int2_grad1_u12_square_ao, (ao_num, ao_num, n_p
!$OMP END DO
!$OMP END PARALLEL
FREE u12sq_j1bsq grad12_j12
else
PROVIDE u12sq_j1bsq u12_grad1_u12_j1b_grad1_j1b grad12_j12
@ -262,6 +267,8 @@ BEGIN_PROVIDER [double precision, int2_grad1_u12_square_ao, (ao_num, ao_num, n_p
!$OMP END DO
!$OMP END PARALLEL
FREE u12sq_j1bsq u12_grad1_u12_j1b_grad1_j1b grad12_j12
endif
elseif(j1b_type .ge. 100) then
@ -324,6 +331,7 @@ BEGIN_PROVIDER [double precision, int2_grad1_u12_square_ao, (ao_num, ao_num, n_p
call wall_time(time1)
print*, ' wall time for int2_grad1_u12_square_ao =', time1-time0
call print_memory_usage()
END_PROVIDER

View File

@ -84,8 +84,11 @@ BEGIN_PROVIDER [double precision, ao_tc_int_chemist, (ao_num, ao_num, ao_num, ao
enddo
endif
FREE tc_grad_square_ao tc_grad_and_lapl_ao ao_two_e_coul
call wall_time(wall1)
print *, ' wall time for ao_tc_int_chemist ', wall1 - wall0
call print_memory_usage()
END_PROVIDER

View File

@ -206,7 +206,12 @@ BEGIN_PROVIDER [ double precision, nuclear_repulsion ]
enddo
nuclear_repulsion *= 0.5d0
if(point_charges)then
nuclear_repulsion += pt_chrg_nuclei_interaction + pt_chrg_interaction
print*,'bear nuclear repulsion = ',nuclear_repulsion
print*,'adding the interaction between the nuclein and the point charges'
print*,'to the usual nuclear repulsion '
nuclear_repulsion += pt_chrg_nuclei_interaction
print*,'new nuclear repulsion = ',nuclear_repulsion
print*,'WARNING: we do not add the interaction between the point charges themselves'
endif
end if

View File

@ -205,5 +205,8 @@ BEGIN_PROVIDER [ double precision, pt_chrg_nuclei_interaction]
enddo
print*,'Interaction between point charges and nuclei'
print*,'pt_chrg_nuclei_interaction = ',pt_chrg_nuclei_interaction
if(point_charges)then
provide pt_chrg_interaction
endif
END_PROVIDER

View File

@ -5,6 +5,90 @@
! Fock matrix on the MO basis.
! For open shells, the ROHF Fock Matrix is ::
!
! | Rcc | F^b | Fcv |
! |-----------------------|
! | F^b | Roo | F^a |
! |-----------------------|
! | Fcv | F^a | Rvv |
!
! C: Core, O: Open, V: Virtual
!
! Rcc = Acc Fcc^a + Bcc Fcc^b
! Roo = Aoo Foo^a + Boo Foo^b
! Rvv = Avv Fvv^a + Bvv Fvv^b
! Fcv = (F^a + F^b)/2
!
! F^a: Fock matrix alpha (MO), F^b: Fock matrix beta (MO)
! A,B: Coupling parameters
!
! J. Chem. Phys. 133, 141102 (2010), https://doi.org/10.1063/1.3503173
! Coupling parameters from J. Chem. Phys. 125, 204110 (2006); https://doi.org/10.1063/1.2393223.
! cc oo vv
! A -0.5 0.5 1.5
! B 1.5 0.5 -0.5
!
END_DOC
integer :: i,j,n
if (elec_alpha_num == elec_beta_num) then
Fock_matrix_mo = Fock_matrix_mo_alpha
else
! Core
do j = 1, elec_beta_num
! Core
do i = 1, elec_beta_num
fock_matrix_mo(i,j) = - 0.5d0 * fock_matrix_mo_alpha(i,j) &
+ 1.5d0 * fock_matrix_mo_beta(i,j)
enddo
! Open
do i = elec_beta_num+1, elec_alpha_num
fock_matrix_mo(i,j) = fock_matrix_mo_beta(i,j)
enddo
! Virtual
do i = elec_alpha_num+1, mo_num
fock_matrix_mo(i,j) = 0.5d0 * fock_matrix_mo_alpha(i,j) &
+ 0.5d0 * fock_matrix_mo_beta(i,j)
enddo
enddo
! Open
do j = elec_beta_num+1, elec_alpha_num
! Core
do i = 1, elec_beta_num
fock_matrix_mo(i,j) = fock_matrix_mo_beta(i,j)
enddo
! Open
do i = elec_beta_num+1, elec_alpha_num
fock_matrix_mo(i,j) = 0.5d0 * fock_matrix_mo_alpha(i,j) &
+ 0.5d0 * fock_matrix_mo_beta(i,j)
enddo
! Virtual
do i = elec_alpha_num+1, mo_num
fock_matrix_mo(i,j) = fock_matrix_mo_alpha(i,j)
enddo
enddo
! Virtual
do j = elec_alpha_num+1, mo_num
! Core
do i = 1, elec_beta_num
fock_matrix_mo(i,j) = 0.5d0 * fock_matrix_mo_alpha(i,j) &
+ 0.5d0 * fock_matrix_mo_beta(i,j)
enddo
! Open
do i = elec_beta_num+1, elec_alpha_num
fock_matrix_mo(i,j) = fock_matrix_mo_alpha(i,j)
enddo
! Virtual
do i = elec_alpha_num+1, mo_num
fock_matrix_mo(i,j) = 1.5d0 * fock_matrix_mo_alpha(i,j) &
- 0.5d0 * fock_matrix_mo_beta(i,j)
enddo
enddo
endif
! Old
! BEGIN_DOC
! Fock matrix on the MO basis.
! For open shells, the ROHF Fock Matrix is ::
!
! | F-K | F + K/2 | F |
! |---------------------------------|
! | F + K/2 | F | F - K/2 |
@ -16,64 +100,64 @@
!
! K = Fb - Fa
!
END_DOC
integer :: i,j,n
if (elec_alpha_num == elec_beta_num) then
Fock_matrix_mo = Fock_matrix_mo_alpha
else
! END_DOC
!integer :: i,j,n
!if (elec_alpha_num == elec_beta_num) then
! Fock_matrix_mo = Fock_matrix_mo_alpha
!else
do j=1,elec_beta_num
! F-K
do i=1,elec_beta_num !CC
Fock_matrix_mo(i,j) = 0.5d0*(Fock_matrix_mo_alpha(i,j)+Fock_matrix_mo_beta(i,j))&
- (Fock_matrix_mo_beta(i,j) - Fock_matrix_mo_alpha(i,j))
enddo
! F+K/2
do i=elec_beta_num+1,elec_alpha_num !CA
Fock_matrix_mo(i,j) = 0.5d0*(Fock_matrix_mo_alpha(i,j)+Fock_matrix_mo_beta(i,j))&
+ 0.5d0*(Fock_matrix_mo_beta(i,j) - Fock_matrix_mo_alpha(i,j))
enddo
! F
do i=elec_alpha_num+1, mo_num !CV
Fock_matrix_mo(i,j) = 0.5d0*(Fock_matrix_mo_alpha(i,j)+Fock_matrix_mo_beta(i,j))
enddo
enddo
! do j=1,elec_beta_num
! ! F-K
! do i=1,elec_beta_num !CC
! Fock_matrix_mo(i,j) = 0.5d0*(Fock_matrix_mo_alpha(i,j)+Fock_matrix_mo_beta(i,j))&
! - (Fock_matrix_mo_beta(i,j) - Fock_matrix_mo_alpha(i,j))
! enddo
! ! F+K/2
! do i=elec_beta_num+1,elec_alpha_num !CA
! Fock_matrix_mo(i,j) = 0.5d0*(Fock_matrix_mo_alpha(i,j)+Fock_matrix_mo_beta(i,j))&
! + 0.5d0*(Fock_matrix_mo_beta(i,j) - Fock_matrix_mo_alpha(i,j))
! enddo
! ! F
! do i=elec_alpha_num+1, mo_num !CV
! Fock_matrix_mo(i,j) = 0.5d0*(Fock_matrix_mo_alpha(i,j)+Fock_matrix_mo_beta(i,j))
! enddo
! enddo
do j=elec_beta_num+1,elec_alpha_num
! F+K/2
do i=1,elec_beta_num !AC
Fock_matrix_mo(i,j) = 0.5d0*(Fock_matrix_mo_alpha(i,j)+Fock_matrix_mo_beta(i,j))&
+ 0.5d0*(Fock_matrix_mo_beta(i,j) - Fock_matrix_mo_alpha(i,j))
enddo
! F
do i=elec_beta_num+1,elec_alpha_num !AA
Fock_matrix_mo(i,j) = 0.5d0*(Fock_matrix_mo_alpha(i,j)+Fock_matrix_mo_beta(i,j))
enddo
! F-K/2
do i=elec_alpha_num+1, mo_num !AV
Fock_matrix_mo(i,j) = 0.5d0*(Fock_matrix_mo_alpha(i,j)+Fock_matrix_mo_beta(i,j))&
- 0.5d0*(Fock_matrix_mo_beta(i,j) - Fock_matrix_mo_alpha(i,j))
enddo
enddo
! do j=elec_beta_num+1,elec_alpha_num
! ! F+K/2
! do i=1,elec_beta_num !AC
! Fock_matrix_mo(i,j) = 0.5d0*(Fock_matrix_mo_alpha(i,j)+Fock_matrix_mo_beta(i,j))&
! + 0.5d0*(Fock_matrix_mo_beta(i,j) - Fock_matrix_mo_alpha(i,j))
! enddo
! ! F
! do i=elec_beta_num+1,elec_alpha_num !AA
! Fock_matrix_mo(i,j) = 0.5d0*(Fock_matrix_mo_alpha(i,j)+Fock_matrix_mo_beta(i,j))
! enddo
! ! F-K/2
! do i=elec_alpha_num+1, mo_num !AV
! Fock_matrix_mo(i,j) = 0.5d0*(Fock_matrix_mo_alpha(i,j)+Fock_matrix_mo_beta(i,j))&
! - 0.5d0*(Fock_matrix_mo_beta(i,j) - Fock_matrix_mo_alpha(i,j))
! enddo
! enddo
do j=elec_alpha_num+1, mo_num
! F
do i=1,elec_beta_num !VC
Fock_matrix_mo(i,j) = 0.5d0*(Fock_matrix_mo_alpha(i,j)+Fock_matrix_mo_beta(i,j))
enddo
! F-K/2
do i=elec_beta_num+1,elec_alpha_num !VA
Fock_matrix_mo(i,j) = 0.5d0*(Fock_matrix_mo_alpha(i,j)+Fock_matrix_mo_beta(i,j))&
- 0.5d0*(Fock_matrix_mo_beta(i,j) - Fock_matrix_mo_alpha(i,j))
enddo
! F+K
do i=elec_alpha_num+1,mo_num !VV
Fock_matrix_mo(i,j) = 0.5d0*(Fock_matrix_mo_alpha(i,j)+Fock_matrix_mo_beta(i,j)) &
+ (Fock_matrix_mo_beta(i,j) - Fock_matrix_mo_alpha(i,j))
enddo
enddo
! do j=elec_alpha_num+1, mo_num
! ! F
! do i=1,elec_beta_num !VC
! Fock_matrix_mo(i,j) = 0.5d0*(Fock_matrix_mo_alpha(i,j)+Fock_matrix_mo_beta(i,j))
! enddo
! ! F-K/2
! do i=elec_beta_num+1,elec_alpha_num !VA
! Fock_matrix_mo(i,j) = 0.5d0*(Fock_matrix_mo_alpha(i,j)+Fock_matrix_mo_beta(i,j))&
! - 0.5d0*(Fock_matrix_mo_beta(i,j) - Fock_matrix_mo_alpha(i,j))
! enddo
! ! F+K
! do i=elec_alpha_num+1,mo_num !VV
! Fock_matrix_mo(i,j) = 0.5d0*(Fock_matrix_mo_alpha(i,j)+Fock_matrix_mo_beta(i,j)) &
! + (Fock_matrix_mo_beta(i,j) - Fock_matrix_mo_alpha(i,j))
! enddo
! enddo
endif
!endif
do i = 1, mo_num
Fock_matrix_diag_mo(i) = Fock_matrix_mo(i,i)
@ -115,8 +199,6 @@
END_PROVIDER
BEGIN_PROVIDER [ double precision, Fock_matrix_mo_alpha, (mo_num,mo_num) ]
implicit none
BEGIN_DOC

View File

@ -4,12 +4,16 @@ source $QP_ROOT/tests/bats/common.bats.sh
source $QP_ROOT/quantum_package.rc
function get_e() {
grep "eigval_right_tc_bi_orth" $1 | cut -d '=' -f 2 | xargs
}
function run_Ne() {
qp set_file Ne_tc_scf
qp run cisd
qp run tc_bi_ortho | tee Ne_tc_scf.cisd_tc_bi_ortho.out
eref=-128.77020441279302
energy="$(grep "eigval_right_tc_bi_orth =" Ne_tc_scf.cisd_tc_bi_ortho.out)"
energy=$(get_e Ne_tc_scf.cisd_tc_bi_ortho.out)
eq $energy $eref 1e-6
}
@ -24,7 +28,7 @@ function run_C() {
qp run cisd
qp run tc_bi_ortho | tee C_tc_scf.cisd_tc_bi_ortho.out
eref=-37.757536149952514
energy="$(grep "eigval_right_tc_bi_orth =" C_tc_scf.cisd_tc_bi_ortho.out)"
energy=$(get_e C_tc_scf.cisd_tc_bi_ortho.out)
eq $energy $eref 1e-6
}
@ -38,7 +42,7 @@ function run_O() {
qp run cisd
qp run tc_bi_ortho | tee O_tc_scf.cisd_tc_bi_ortho.out
eref=-74.908518517716161
energy="$(grep "eigval_right_tc_bi_orth =" O_tc_scf.cisd_tc_bi_ortho.out)"
energy=$(get_e O_tc_scf.cisd_tc_bi_ortho.out)
eq $energy $eref 1e-6
}

View File

@ -27,7 +27,7 @@ subroutine get_delta_bitc_right(psidet, psicoef, ndet, Nint, delta)
i = 1
j = 1
call htilde_mu_mat_bi_ortho(psidet(1,1,i), psidet(1,1,j), Nint, htc_mono, htc_twoe, htc_three, htc_tot)
call htilde_mu_mat_bi_ortho_slow(psidet(1,1,i), psidet(1,1,j), Nint, htc_mono, htc_twoe, htc_three, htc_tot)
call hmat_bi_ortho (psidet(1,1,i), psidet(1,1,j), Nint, h_mono, h_twoe, h_tot)
delta = 0.d0
@ -39,7 +39,7 @@ subroutine get_delta_bitc_right(psidet, psicoef, ndet, Nint, delta)
do j = 1, ndet
! < I | Htilde | J >
call htilde_mu_mat_bi_ortho(psidet(1,1,i), psidet(1,1,j), Nint, htc_mono, htc_twoe, htc_three, htc_tot)
call htilde_mu_mat_bi_ortho_slow(psidet(1,1,i), psidet(1,1,j), Nint, htc_mono, htc_twoe, htc_three, htc_tot)
! < I | H | J >
call hmat_bi_ortho(psidet(1,1,i), psidet(1,1,j), Nint, h_mono, h_twoe, h_tot)
@ -78,7 +78,7 @@ subroutine get_htc_bitc_right(psidet, psicoef, ndet, Nint, delta)
i = 1
j = 1
call htilde_mu_mat_bi_ortho(psidet(1,1,i), psidet(1,1,j), Nint, htc_mono, htc_twoe, htc_three, htc_tot)
call htilde_mu_mat_bi_ortho_slow(psidet(1,1,i), psidet(1,1,j), Nint, htc_mono, htc_twoe, htc_three, htc_tot)
delta = 0.d0
!$OMP PARALLEL DO DEFAULT(NONE) SCHEDULE(dynamic,8) &
@ -88,7 +88,7 @@ subroutine get_htc_bitc_right(psidet, psicoef, ndet, Nint, delta)
do j = 1, ndet
! < I | Htilde | J >
call htilde_mu_mat_bi_ortho(psidet(1,1,i), psidet(1,1,j), Nint, htc_mono, htc_twoe, htc_three, htc_tot)
call htilde_mu_mat_bi_ortho_slow(psidet(1,1,i), psidet(1,1,j), Nint, htc_mono, htc_twoe, htc_three, htc_tot)
delta(i) = delta(i) + psicoef(j) * htc_tot
enddo

View File

@ -2,7 +2,7 @@
BEGIN_PROVIDER [ double precision, e_tilde_00]
implicit none
double precision :: hmono,htwoe,hthree,htot
call htilde_mu_mat_bi_ortho(HF_bitmask,HF_bitmask,N_int,hmono,htwoe,hthree,htot)
call htilde_mu_mat_bi_ortho_slow(HF_bitmask,HF_bitmask,N_int,hmono,htwoe,hthree,htot)
e_tilde_00 = htot
END_PROVIDER
@ -18,11 +18,11 @@
do i = 1, N_det
call get_excitation_degree(HF_bitmask,psi_det(1,1,i),degree,N_int)
if(degree == 1 .or. degree == 2)then
call htilde_mu_mat_bi_ortho(psi_det(1,1,i),HF_bitmask,N_int,hmono,htwoe,hthree,htilde_ij)
call htilde_mu_mat_bi_ortho(psi_det(1,1,i),psi_det(1,1,i),N_int,hmono,htwoe,hthree,e_i0)
call htilde_mu_mat_bi_ortho_slow(psi_det(1,1,i),HF_bitmask,N_int,hmono,htwoe,hthree,htilde_ij)
call htilde_mu_mat_bi_ortho_slow(psi_det(1,1,i),psi_det(1,1,i),N_int,hmono,htwoe,hthree,e_i0)
delta_e = e_tilde_00 - e_i0
coef_pt1 = htilde_ij / delta_e
call htilde_mu_mat_bi_ortho(HF_bitmask,psi_det(1,1,i),N_int,hmono,htwoe,hthree,htilde_ij)
call htilde_mu_mat_bi_ortho_slow(HF_bitmask,psi_det(1,1,i),N_int,hmono,htwoe,hthree,htilde_ij)
e_pt2_tc_bi_orth += coef_pt1 * htilde_ij
if(degree == 1)then
e_pt2_tc_bi_orth_single += coef_pt1 * htilde_ij
@ -37,7 +37,7 @@
BEGIN_PROVIDER [ double precision, e_tilde_bi_orth_00]
implicit none
double precision :: hmono,htwoe,hthree,htilde_ij
call htilde_mu_mat_bi_ortho(HF_bitmask,HF_bitmask,N_int,hmono,htwoe,hthree,e_tilde_bi_orth_00)
call htilde_mu_mat_bi_ortho_slow(HF_bitmask,HF_bitmask,N_int,hmono,htwoe,hthree,e_tilde_bi_orth_00)
e_tilde_bi_orth_00 += nuclear_repulsion
END_PROVIDER
@ -57,7 +57,7 @@
e_corr_double_bi_orth = 0.d0
do i = 1, N_det
call get_excitation_degree(HF_bitmask,psi_det(1,1,i),degree,N_int)
call htilde_mu_mat_bi_ortho(HF_bitmask,psi_det(1,1,i),N_int,hmono,htwoe,hthree,htilde_ij)
call htilde_mu_mat_bi_ortho_slow(HF_bitmask,psi_det(1,1,i),N_int,hmono,htwoe,hthree,htilde_ij)
if(degree == 1)then
e_corr_single_bi_orth += reigvec_tc_bi_orth(i,1) * htilde_ij/reigvec_tc_bi_orth(1,1)
e_corr_single_bi_orth_abs += dabs(reigvec_tc_bi_orth(i,1) * htilde_ij/reigvec_tc_bi_orth(1,1))
@ -80,7 +80,7 @@
do i = 1, N_det
accu += reigvec_tc_bi_orth(i,1) * leigvec_tc_bi_orth(i,1)
do j = 1, N_det
call htilde_mu_mat_bi_ortho(psi_det(1,1,j),psi_det(1,1,i),N_int,hmono,htwoe,hthree,htilde_ij)
call htilde_mu_mat_bi_ortho_slow(psi_det(1,1,j),psi_det(1,1,i),N_int,hmono,htwoe,hthree,htilde_ij)
e_tc_left_right += htilde_ij * reigvec_tc_bi_orth(i,1) * leigvec_tc_bi_orth(j,1)
enddo
enddo
@ -99,8 +99,8 @@ BEGIN_PROVIDER [ double precision, coef_pt1_bi_ortho, (N_det)]
if(degree==0)then
coef_pt1_bi_ortho(i) = 1.d0
else
call htilde_mu_mat_bi_ortho(psi_det(1,1,i),HF_bitmask,N_int,hmono,htwoe,hthree,htilde_ij)
call htilde_mu_mat_bi_ortho(psi_det(1,1,i),psi_det(1,1,i),N_int,hmono,htwoe,hthree,e_i0)
call htilde_mu_mat_bi_ortho_slow(psi_det(1,1,i),HF_bitmask,N_int,hmono,htwoe,hthree,htilde_ij)
call htilde_mu_mat_bi_ortho_slow(psi_det(1,1,i),psi_det(1,1,i),N_int,hmono,htwoe,hthree,e_i0)
delta_e = e_tilde_00 - e_i0
coef_pt1 = htilde_ij / delta_e
coef_pt1_bi_ortho(i)= coef_pt1

View File

@ -1,4 +1,4 @@
subroutine htc_bi_ortho_calc_tdav(v, u, N_st, sze)
subroutine htc_bi_ortho_calc_tdav_slow(v, u, N_st, sze)
use bitmasks
@ -27,7 +27,7 @@ subroutine htc_bi_ortho_calc_tdav(v, u, N_st, sze)
i = 1
j = 1
call htilde_mu_mat_bi_ortho_tot(psi_det(1,1,i), psi_det(1,1,j), N_int, htot)
call htilde_mu_mat_bi_ortho_tot_slow(psi_det(1,1,i), psi_det(1,1,j), N_int, htot)
v = 0.d0
!$OMP PARALLEL DO DEFAULT(NONE) SCHEDULE(dynamic,8) &
@ -36,7 +36,7 @@ subroutine htc_bi_ortho_calc_tdav(v, u, N_st, sze)
do istate = 1, N_st
do i = 1, sze
do j = 1, sze
call htilde_mu_mat_bi_ortho_tot(psi_det(1,1,i), psi_det(1,1,j), N_int, htot)
call htilde_mu_mat_bi_ortho_tot_slow(psi_det(1,1,i), psi_det(1,1,j), N_int, htot)
v(i,istate) = v(i,istate) + htot * u(j,istate)
enddo
enddo
@ -45,7 +45,7 @@ subroutine htc_bi_ortho_calc_tdav(v, u, N_st, sze)
end
subroutine htcdag_bi_ortho_calc_tdav(v, u, N_st, sze)
subroutine htcdag_bi_ortho_calc_tdav_slow(v, u, N_st, sze)
use bitmasks
@ -71,7 +71,7 @@ subroutine htcdag_bi_ortho_calc_tdav(v, u, N_st, sze)
i = 1
j = 1
call htilde_mu_mat_bi_ortho_tot(psi_det(1,1,i), psi_det(1,1,j), N_int, htot)
call htilde_mu_mat_bi_ortho_tot_slow(psi_det(1,1,i), psi_det(1,1,j), N_int, htot)
v = 0.d0
@ -81,7 +81,7 @@ subroutine htcdag_bi_ortho_calc_tdav(v, u, N_st, sze)
do istate = 1, N_st
do i = 1, sze
do j = 1, sze
call htilde_mu_mat_bi_ortho_tot(psi_det(1,1,j), psi_det(1,1,i), N_int, htot)
call htilde_mu_mat_bi_ortho_tot_slow(psi_det(1,1,j), psi_det(1,1,i), N_int, htot)
v(i,istate) = v(i,istate) + htot * u(j,istate)
enddo
enddo

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,392 @@
! ---
BEGIN_PROVIDER [ double precision, normal_two_body_bi_orth_old, (mo_num, mo_num, mo_num, mo_num)]
BEGIN_DOC
! Normal ordering of the three body interaction on the HF density
END_DOC
use bitmasks ! you need to include the bitmasks_module.f90 features
implicit none
integer :: i, h1, p1, h2, p2
integer :: hh1, hh2, pp1, pp2
integer :: Ne(2)
double precision :: hthree_aba, hthree_aaa, hthree_aab
double precision :: wall0, wall1
integer, allocatable :: occ(:,:)
integer(bit_kind), allocatable :: key_i_core(:,:)
print*,' Providing normal_two_body_bi_orth_old ...'
call wall_time(wall0)
PROVIDE N_int
if(read_tc_norm_ord) then
open(unit=11, form="unformatted", file=trim(ezfio_filename)//'/work/normal_two_body_bi_orth_old', action="read")
read(11) normal_two_body_bi_orth_old
close(11)
else
PROVIDE N_int
allocate( occ(N_int*bit_kind_size,2) )
allocate( key_i_core(N_int,2) )
if(core_tc_op) then
do i = 1, N_int
key_i_core(i,1) = xor(ref_bitmask(i,1),core_bitmask(i,1))
key_i_core(i,2) = xor(ref_bitmask(i,2),core_bitmask(i,2))
enddo
call bitstring_to_list_ab(key_i_core,occ,Ne,N_int)
else
call bitstring_to_list_ab(ref_bitmask,occ,Ne,N_int)
endif
normal_two_body_bi_orth_old = 0.d0
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (hh1, h1, hh2, h2, pp1, p1, pp2, p2, hthree_aba, hthree_aab, hthree_aaa) &
!$OMP SHARED (N_int, n_act_orb, list_act, Ne, occ, normal_two_body_bi_orth_old)
!$OMP DO SCHEDULE (static)
do hh1 = 1, n_act_orb
h1 = list_act(hh1)
do pp1 = 1, n_act_orb
p1 = list_act(pp1)
do hh2 = 1, n_act_orb
h2 = list_act(hh2)
do pp2 = 1, n_act_orb
p2 = list_act(pp2)
! all contributions from the 3-e terms to the double excitations
! s1:(h1-->p1), s2:(h2-->p2) from the HF reference determinant
! opposite spin double excitations : s1 /= s2
call give_aba_contraction(N_int, h1, h2, p1, p2, Ne, occ, hthree_aba)
! same spin double excitations : s1 == s2
if(h1<h2.and.p1.gt.p2)then
! with opposite spin contributions
call give_aab_contraction(N_int, h2, h1, p1, p2, Ne, occ, hthree_aab) ! exchange h1<->h2
! same spin double excitations with same spin contributions
if(Ne(2).ge.3)then
call give_aaa_contraction(N_int, h2, h1, p1, p2, Ne, occ, hthree_aaa) ! exchange h1<->h2
else
hthree_aaa = 0.d0
endif
else
! with opposite spin contributions
call give_aab_contraction(N_int, h1, h2, p1, p2, Ne, occ, hthree_aab)
if(Ne(2).ge.3)then
! same spin double excitations with same spin contributions
call give_aaa_contraction(N_int, h1, h2, p1, p2, Ne, occ, hthree_aaa)
else
hthree_aaa = 0.d0
endif
endif
normal_two_body_bi_orth_old(p2,h2,p1,h1) = 0.5d0*(hthree_aba + hthree_aab + hthree_aaa)
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
deallocate( occ )
deallocate( key_i_core )
endif
if(write_tc_norm_ord.and.mpi_master) then
open(unit=11, form="unformatted", file=trim(ezfio_filename)//'/work/normal_two_body_bi_orth_old', action="write")
call ezfio_set_work_empty(.False.)
write(11) normal_two_body_bi_orth_old
close(11)
call ezfio_set_tc_keywords_io_tc_integ('Read')
endif
call wall_time(wall1)
print*,' Wall time for normal_two_body_bi_orth_old ', wall1-wall0
END_PROVIDER
! ---
subroutine give_aba_contraction(Nint, h1, h2, p1, p2, Ne, occ, hthree)
use bitmasks ! you need to include the bitmasks_module.f90 features
implicit none
integer, intent(in) :: Nint, h1, h2, p1, p2
integer, intent(in) :: Ne(2), occ(Nint*bit_kind_size,2)
double precision, intent(out) :: hthree
integer :: ii, i
double precision :: int_direct, int_exc_12, int_exc_13, integral
!!!! double alpha/beta
hthree = 0.d0
do ii = 1, Ne(2) ! purely closed shell part
i = occ(ii,2)
call give_integrals_3_body_bi_ort(i, p2, p1, i, h2, h1, integral)
int_direct = -1.d0 * integral
call give_integrals_3_body_bi_ort(p1, p2, i, i, h2, h1, integral)
int_exc_13 = -1.d0 * integral
call give_integrals_3_body_bi_ort(p2, i, p1, i, h2, h1, integral)
int_exc_12 = -1.d0 * integral
hthree += 2.d0 * int_direct - 1.d0 * (int_exc_13 + int_exc_12)
enddo
do ii = Ne(2) + 1, Ne(1) ! purely open-shell part
i = occ(ii,1)
call give_integrals_3_body_bi_ort(i, p2, p1, i, h2, h1, integral)
int_direct = -1.d0 * integral
call give_integrals_3_body_bi_ort(p1, p2, i, i, h2, h1, integral)
int_exc_13 = -1.d0 * integral
call give_integrals_3_body_bi_ort(p2, i, p1, i, h2, h1, integral)
int_exc_12 = -1.d0 * integral
hthree += 1.d0 * int_direct - 0.5d0 * (int_exc_13 + int_exc_12)
enddo
return
end
! ---
BEGIN_PROVIDER [ double precision, normal_two_body_bi_orth_ab, (mo_num, mo_num, mo_num, mo_num)]
BEGIN_DOC
! Normal ordered two-body sector of the three-body terms for opposite spin double excitations
END_DOC
use bitmasks ! you need to include the bitmasks_module.f90 features
implicit none
integer :: h1, p1, h2, p2, i
integer :: hh1, hh2, pp1, pp2
integer :: Ne(2)
integer, allocatable :: occ(:,:)
integer(bit_kind), allocatable :: key_i_core(:,:)
double precision :: hthree
PROVIDE N_int
allocate( key_i_core(N_int,2) )
allocate( occ(N_int*bit_kind_size,2) )
if(core_tc_op) then
do i = 1, N_int
key_i_core(i,1) = xor(ref_bitmask(i,1),core_bitmask(i,1))
key_i_core(i,2) = xor(ref_bitmask(i,2),core_bitmask(i,2))
enddo
call bitstring_to_list_ab(key_i_core,occ,Ne,N_int)
else
call bitstring_to_list_ab(ref_bitmask,occ,Ne,N_int)
endif
normal_two_body_bi_orth_ab = 0.d0
do hh1 = 1, n_act_orb
h1 = list_act(hh1)
do pp1 = 1, n_act_orb
p1 = list_act(pp1)
do hh2 = 1, n_act_orb
h2 = list_act(hh2)
do pp2 = 1, n_act_orb
p2 = list_act(pp2)
call give_aba_contraction(N_int, h1, h2, p1, p2, Ne, occ, hthree)
normal_two_body_bi_orth_ab(p2,h2,p1,h1) = hthree
enddo
enddo
enddo
enddo
deallocate( key_i_core )
deallocate( occ )
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, normal_two_body_bi_orth_aa_bb, (n_act_orb, n_act_orb, n_act_orb, n_act_orb)]
BEGIN_DOC
! Normal ordered two-body sector of the three-body terms for same spin double excitations
END_DOC
use bitmasks ! you need to include the bitmasks_module.f90 features
implicit none
integer :: i,ii,j,h1,p1,h2,p2
integer :: hh1,hh2,pp1,pp2
integer :: Ne(2)
integer, allocatable :: occ(:,:)
integer(bit_kind), allocatable :: key_i_core(:,:)
double precision :: hthree_aab, hthree_aaa
PROVIDE N_int
allocate( key_i_core(N_int,2) )
allocate( occ(N_int*bit_kind_size,2) )
if(core_tc_op)then
do i = 1, N_int
key_i_core(i,1) = xor(ref_bitmask(i,1),core_bitmask(i,1))
key_i_core(i,2) = xor(ref_bitmask(i,2),core_bitmask(i,2))
enddo
call bitstring_to_list_ab(key_i_core, occ, Ne, N_int)
else
call bitstring_to_list_ab(ref_bitmask, occ, Ne, N_int)
endif
normal_two_body_bi_orth_aa_bb = 0.d0
do hh1 = 1, n_act_orb
h1 = list_act(hh1)
do pp1 = 1 , n_act_orb
p1 = list_act(pp1)
do hh2 = 1, n_act_orb
h2 = list_act(hh2)
do pp2 = 1 , n_act_orb
p2 = list_act(pp2)
if(h1<h2.and.p1.gt.p2)then
call give_aab_contraction(N_int, h2, h1, p1, p2, Ne, occ, hthree_aab) ! exchange h1<->h2
if(Ne(2).ge.3)then
call give_aaa_contraction(N_int, h2, h1, p1, p2, Ne, occ, hthree_aaa) ! exchange h1<->h2
else
hthree_aaa = 0.d0
endif
else
call give_aab_contraction(N_int, h1, h2, p1, p2, Ne, occ, hthree_aab)
if(Ne(2).ge.3)then
call give_aaa_contraction(N_int, h1, h2, p1, p2, Ne, occ, hthree_aaa)
else
hthree_aaa = 0.d0
endif
endif
normal_two_body_bi_orth_aa_bb(p2,h2,p1,h1) = hthree_aab + hthree_aaa
enddo
enddo
enddo
enddo
deallocate( key_i_core )
deallocate( occ )
END_PROVIDER
! ---
subroutine give_aaa_contraction(Nint, h1, h2, p1, p2, Ne, occ, hthree)
BEGIN_DOC
! pure same spin contribution to same spin double excitation s1=h1,p1, s2=h2,p2, with s1==s2
END_DOC
use bitmasks ! you need to include the bitmasks_module.f90 features
implicit none
integer, intent(in) :: Nint, h1, h2, p1, p2
integer, intent(in) :: Ne(2), occ(Nint*bit_kind_size,2)
double precision, intent(out) :: hthree
integer :: ii,i
double precision :: int_direct,int_exc_12,int_exc_13,int_exc_23
double precision :: integral,int_exc_l,int_exc_ll
hthree = 0.d0
do ii = 1, Ne(2) ! purely closed shell part
i = occ(ii,2)
call give_integrals_3_body_bi_ort(i, p2, p1, i, h2, h1, integral)
int_direct = -1.d0 * integral
call give_integrals_3_body_bi_ort(p2, p1, i, i, h2, h1, integral)
int_exc_l = -1.d0 * integral
call give_integrals_3_body_bi_ort(p1, i, p2, i, h2, h1, integral)
int_exc_ll= -1.d0 * integral
call give_integrals_3_body_bi_ort(p2, i, p1, i, h2, h1, integral)
int_exc_12= -1.d0 * integral
call give_integrals_3_body_bi_ort(p1, p2, i, i, h2, h1, integral)
int_exc_13= -1.d0 * integral
call give_integrals_3_body_bi_ort(i, p1, p2, i, h2, h1, integral)
int_exc_23= -1.d0 * integral
hthree += 1.d0 * int_direct + int_exc_l + int_exc_ll - (int_exc_12 + int_exc_13 + int_exc_23)
enddo
do ii = Ne(2)+1,Ne(1) ! purely open-shell part
i = occ(ii,1)
call give_integrals_3_body_bi_ort(i, p2, p1, i, h2, h1, integral)
int_direct = -1.d0 * integral
call give_integrals_3_body_bi_ort(p2, p1, i , i, h2, h1, integral)
int_exc_l = -1.d0 * integral
call give_integrals_3_body_bi_ort(p1, i, p2, i, h2, h1, integral)
int_exc_ll = -1.d0 * integral
call give_integrals_3_body_bi_ort(p2, i, p1, i, h2, h1, integral)
int_exc_12 = -1.d0 * integral
call give_integrals_3_body_bi_ort(p1, p2, i, i, h2, h1, integral)
int_exc_13 = -1.d0 * integral
call give_integrals_3_body_bi_ort(i, p1, p2, i, h2, h1, integral)
int_exc_23 = -1.d0 * integral
!hthree += 1.d0 * int_direct + 0.5d0 * (int_exc_l + int_exc_ll - (int_exc_12 + int_exc_13 + int_exc_23))
hthree += 0.5d0 * int_direct + 0.5d0 * (int_exc_l + int_exc_ll - (int_exc_12 + int_exc_13 + int_exc_23))
enddo
return
end
! ---
subroutine give_aab_contraction(Nint, h1, h2, p1, p2, Ne, occ, hthree)
use bitmasks ! you need to include the bitmasks_module.f90 features
implicit none
integer, intent(in) :: Nint, h1, h2, p1, p2
integer, intent(in) :: Ne(2), occ(Nint*bit_kind_size,2)
double precision, intent(out) :: hthree
integer :: ii, i
double precision :: int_direct, int_exc_12, int_exc_13, int_exc_23
double precision :: integral, int_exc_l, int_exc_ll
hthree = 0.d0
do ii = 1, Ne(2) ! purely closed shell part
i = occ(ii,2)
call give_integrals_3_body_bi_ort(p2, p1, i, h2, h1, i, integral)
int_direct = -1.d0 * integral
call give_integrals_3_body_bi_ort(p1, p2, i, h2, h1, i, integral)
int_exc_23= -1.d0 * integral
hthree += 1.d0 * int_direct - int_exc_23
enddo
return
end
! ---

View File

@ -49,12 +49,12 @@ subroutine routine
do i = 1, N_det
call get_excitation_degree(HF_bitmask,psi_det(1,1,i),degree,N_int)
if(degree == 1 .or. degree == 2)then
call htilde_mu_mat_bi_ortho(psi_det(1,1,i),HF_bitmask,N_int,hmono,htwoe,hthree,htilde_ij)
call htilde_mu_mat_bi_ortho(psi_det(1,1,i),psi_det(1,1,i),N_int,hmono,htwoe,hthree,e_i0)
call htilde_mu_mat_bi_ortho_slow(psi_det(1,1,i),HF_bitmask,N_int,hmono,htwoe,hthree,htilde_ij)
call htilde_mu_mat_bi_ortho_slow(psi_det(1,1,i),psi_det(1,1,i),N_int,hmono,htwoe,hthree,e_i0)
delta_e = e_tilde_00 - e_i0
coef_pt1 = htilde_ij / delta_e
call htilde_mu_mat_bi_ortho(HF_bitmask,psi_det(1,1,i),N_int,hmono,htwoe,hthree,htilde_ij)
call htilde_mu_mat_bi_ortho_slow(HF_bitmask,psi_det(1,1,i),N_int,hmono,htwoe,hthree,htilde_ij)
contrib_pt = coef_pt1 * htilde_ij
e_pt2 += contrib_pt

View File

@ -36,11 +36,11 @@ subroutine routine
e_corr_abs = 0.d0
e_corr_pos = 0.d0
e_corr_neg = 0.d0
call htilde_mu_mat_bi_ortho_tot(psi_det(1,1,1), psi_det(1,1,1), N_int, e00)
call htilde_mu_mat_bi_ortho_tot_slow(psi_det(1,1,1), psi_det(1,1,1), N_int, e00)
do i = 2, N_det
call htilde_mu_mat_bi_ortho_tot(psi_det(1,1,i), psi_det(1,1,1), N_int, hi0)
call htilde_mu_mat_bi_ortho_tot(psi_det(1,1,1), psi_det(1,1,i), N_int, h0i)
call htilde_mu_mat_bi_ortho_tot(psi_det(1,1,i), psi_det(1,1,i), N_int, ei)
call htilde_mu_mat_bi_ortho_tot_slow(psi_det(1,1,i), psi_det(1,1,1), N_int, hi0)
call htilde_mu_mat_bi_ortho_tot_slow(psi_det(1,1,1), psi_det(1,1,i), N_int, h0i)
call htilde_mu_mat_bi_ortho_tot_slow(psi_det(1,1,i), psi_det(1,1,i), N_int, ei)
call get_excitation_degree(psi_det(1,1,1), psi_det(1,1,i),degree,N_int)
call get_excitation(psi_det(1,1,1), psi_det(1,1,i),exc,degree,phase,N_int)
call decode_exc(exc,degree,h1,p1,h2,p2,s1,s2)

View File

@ -1,23 +1,5 @@
subroutine provide_all_three_ints_bi_ortho
implicit none
BEGIN_DOC
! routine that provides all necessary three-electron integrals
END_DOC
if(three_body_h_tc)then
PROVIDE three_e_3_idx_direct_bi_ort three_e_3_idx_cycle_1_bi_ort three_e_3_idx_cycle_2_bi_ort
PROVIDE three_e_3_idx_exch23_bi_ort three_e_3_idx_exch13_bi_ort three_e_3_idx_exch12_bi_ort
PROVIDE three_e_4_idx_direct_bi_ort three_e_4_idx_cycle_1_bi_ort three_e_4_idx_cycle_2_bi_ort
PROVIDE three_e_4_idx_exch23_bi_ort three_e_4_idx_exch13_bi_ort three_e_4_idx_exch12_bi_ort
endif
if(.not.double_normal_ord)then
PROVIDE three_e_5_idx_direct_bi_ort three_e_5_idx_cycle_1_bi_ort three_e_5_idx_cycle_2_bi_ort
PROVIDE three_e_5_idx_exch23_bi_ort three_e_5_idx_exch13_bi_ort three_e_5_idx_exch12_bi_ort
else
PROVIDE normal_two_body_bi_orth
endif
end
subroutine diag_htilde_three_body_ints_bi_ort(Nint, key_i, hthree)
subroutine diag_htilde_three_body_ints_bi_ort_slow(Nint, key_i, hthree)
BEGIN_DOC
! diagonal element of htilde ONLY FOR THREE-BODY TERMS WITH BI ORTHONORMAL ORBITALS
@ -108,7 +90,7 @@ subroutine diag_htilde_three_body_ints_bi_ort(Nint, key_i, hthree)
end
subroutine single_htilde_three_body_ints_bi_ort(Nint, key_j, key_i, hthree)
subroutine single_htilde_three_body_ints_bi_ort_slow(Nint, key_j, key_i, hthree)
BEGIN_DOC
! <key_j | H_tilde | key_i> for single excitation ONLY FOR THREE-BODY TERMS WITH BI ORTHONORMAL ORBITALS
@ -203,7 +185,7 @@ end
! ---
subroutine double_htilde_three_body_ints_bi_ort(Nint, key_j, key_i, hthree)
subroutine double_htilde_three_body_ints_bi_ort_slow(Nint, key_j, key_i, hthree)
BEGIN_DOC
! <key_j | H_tilde | key_i> for double excitation ONLY FOR THREE-BODY TERMS WITH BI ORTHONORMAL ORBITALS
@ -260,7 +242,8 @@ subroutine double_htilde_three_body_ints_bi_ort(Nint, key_j, key_i, hthree)
do m = 1, Ne(ispin) ! direct(other_spin) - exchange(s1)
mm = occ(m,ispin)
direct_int = three_e_5_idx_direct_bi_ort(mm,p2,h2,p1,h1)
exchange_int = three_e_5_idx_exch12_bi_ort(mm,p2,h2,p1,h1)
! exchange_int = three_e_5_idx_exch12_bi_ort(mm,p2,h2,p1,h1)
exchange_int = three_e_5_idx_direct_bi_ort(mm,p2,h1,p1,h2)
hthree += direct_int - exchange_int
enddo
do m = 1, Ne(s1) ! pure contribution from s1

View File

@ -1,3 +1,37 @@
! ---
subroutine provide_all_three_ints_bi_ortho()
BEGIN_DOC
! routine that provides all necessary three-electron integrals
END_DOC
implicit none
if(three_body_h_tc) then
if(three_e_3_idx_term) then
PROVIDE three_e_3_idx_direct_bi_ort three_e_3_idx_cycle_1_bi_ort three_e_3_idx_cycle_2_bi_ort
PROVIDE three_e_3_idx_exch23_bi_ort three_e_3_idx_exch13_bi_ort three_e_3_idx_exch12_bi_ort
endif
if(three_e_4_idx_term) then
PROVIDE three_e_4_idx_direct_bi_ort three_e_4_idx_cycle_1_bi_ort three_e_4_idx_exch23_bi_ort three_e_4_idx_exch13_bi_ort
endif
if(.not. double_normal_ord .and. three_e_5_idx_term) then
PROVIDE three_e_5_idx_direct_bi_ort
elseif(double_normal_ord .and. (.not. three_e_5_idx_term)) then
PROVIDE normal_two_body_bi_orth
endif
endif
return
end
! ---
subroutine htilde_mu_mat_opt_bi_ortho_tot(key_j, key_i, Nint, htot)
implicit none
BEGIN_DOC

View File

@ -7,11 +7,11 @@
! Various component of the TC energy for the reference "HF" Slater determinant
END_DOC
double precision :: hmono, htwoe, htot, hthree
call diag_htilde_mu_mat_bi_ortho(N_int,HF_bitmask , hmono, htwoe, htot)
call diag_htilde_mu_mat_bi_ortho_slow(N_int,HF_bitmask , hmono, htwoe, htot)
ref_tc_energy_1e = hmono
ref_tc_energy_2e = htwoe
if(three_body_h_tc)then
call diag_htilde_three_body_ints_bi_ort(N_int, HF_bitmask, hthree)
call diag_htilde_three_body_ints_bi_ort_slow(N_int, HF_bitmask, hthree)
ref_tc_energy_3e = hthree
else
ref_tc_energy_3e = 0.d0
@ -156,7 +156,7 @@ subroutine ac_tc_operator(iorb,ispin,key,hmono,htwoe,hthree,Nint,na,nb)
htwoe = htwoe + mo_bi_ortho_tc_two_e_jj(occ(i,other_spin),iorb)
enddo
if(three_body_h_tc.and.elec_num.gt.2)then
if(three_body_h_tc.and.elec_num.gt.2.and.three_e_3_idx_term)then
!!!!! 3-e part
!! same-spin/same-spin
do j = 1, na
@ -243,7 +243,7 @@ subroutine a_tc_operator(iorb,ispin,key,hmono,htwoe,hthree,Nint,na,nb)
htwoe= htwoe- mo_bi_ortho_tc_two_e_jj(occ(i,other_spin),iorb)
enddo
if(three_body_h_tc.and.elec_num.gt.2)then
if(three_body_h_tc.and.elec_num.gt.2.and.three_e_3_idx_term)then
!!!!! 3-e part
!! same-spin/same-spin
do j = 1, na

View File

@ -42,13 +42,13 @@ subroutine double_htilde_mu_mat_fock_bi_ortho(Nint, key_j, key_i, hmono, htwoe,
! opposite spin two-body
htwoe = mo_bi_ortho_tc_two_e(p2,p1,h2,h1)
if(three_body_h_tc.and.elec_num.gt.2)then
if(.not.double_normal_ord)then
if(.not.double_normal_ord.and.three_e_5_idx_term)then
if(degree_i>degree_j)then
call three_comp_two_e_elem(key_j,h1,h2,p1,p2,s1,s2,hthree)
else
call three_comp_two_e_elem(key_i,h1,h2,p1,p2,s1,s2,hthree)
endif
elseif(double_normal_ord.and.elec_num.gt.2)then
elseif(double_normal_ord)then
htwoe += normal_two_body_bi_orth(p2,h2,p1,h1)
endif
endif
@ -59,13 +59,13 @@ subroutine double_htilde_mu_mat_fock_bi_ortho(Nint, key_j, key_i, hmono, htwoe,
! exchange terms
htwoe -= mo_bi_ortho_tc_two_e(p1,p2,h2,h1)
if(three_body_h_tc.and.elec_num.gt.2)then
if(.not.double_normal_ord)then
if(.not.double_normal_ord.and.three_e_5_idx_term)then
if(degree_i>degree_j)then
call three_comp_two_e_elem(key_j,h1,h2,p1,p2,s1,s2,hthree)
else
call three_comp_two_e_elem(key_i,h1,h2,p1,p2,s1,s2,hthree)
endif
elseif(double_normal_ord.and.elec_num.gt.2)then
elseif(double_normal_ord)then
htwoe -= normal_two_body_bi_orth(h2,p1,h1,p2)
htwoe += normal_two_body_bi_orth(h1,p1,h2,p2)
endif
@ -136,11 +136,13 @@ subroutine three_comp_two_e_elem(key_i,h1,h2,p1,p2,s1,s2,hthree)
! exchange between (h1,p1) and (h2,p2)
ipart=occ_particle(i,ispin)
direct_int = three_e_5_idx_direct_bi_ort(ipart,p2,h2,p1,h1)
exchange_int = three_e_5_idx_exch12_bi_ort(ipart,p2,h2,p1,h1)
! exchange_int = three_e_5_idx_exch12_bi_ort(ipart,p2,h2,p1,h1)
exchange_int = three_e_5_idx_direct_bi_ort(ipart,p2,h1,p1,h2)
hthree += direct_int - exchange_int
ihole=occ_hole(i,ispin)
direct_int = three_e_5_idx_direct_bi_ort(ihole,p2,h2,p1,h1)
exchange_int = three_e_5_idx_exch12_bi_ort(ihole,p2,h2,p1,h1)
! exchange_int = three_e_5_idx_exch12_bi_ort(ihole,p2,h2,p1,h1)
exchange_int = three_e_5_idx_direct_bi_ort(ihole,p2,h1,p1,h2)
hthree -= direct_int - exchange_int
enddo
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
@ -163,11 +165,13 @@ subroutine three_comp_two_e_elem(key_i,h1,h2,p1,p2,s1,s2,hthree)
! exchange between (h1,p1) and (h2,p2)
ipart=occ_particle(i,ispin)
direct_int = three_e_5_idx_direct_bi_ort(ipart,p2,h2,p1,h1)
exchange_int = three_e_5_idx_exch12_bi_ort(ipart,p2,h2,p1,h1)
! exchange_int = three_e_5_idx_exch12_bi_ort(ipart,p2,h2,p1,h1)
exchange_int = three_e_5_idx_direct_bi_ort(ipart,p2,h1,p1,h2)
hthree += direct_int - exchange_int
ihole=occ_hole(i,ispin)
direct_int = three_e_5_idx_direct_bi_ort(ihole,p2,h2,p1,h1)
exchange_int = three_e_5_idx_exch12_bi_ort(ihole,p2,h2,p1,h1)
! exchange_int = three_e_5_idx_exch12_bi_ort(ihole,p2,h2,p1,h1)
exchange_int = three_e_5_idx_direct_bi_ort(ihole,p2,h1,p1,h2)
hthree -= direct_int - exchange_int
enddo
else ! (h1,p1) == alpha/(h2,p2) == beta
@ -342,7 +346,8 @@ subroutine give_contrib_for_aaaa(h1,h2,p1,p2,occ,Ne,contrib)
m = occ(mm,2)
direct_int = three_e_5_idx_direct_bi_ort(mm,p2,h2,p1,h1)
! exchange between (h1,p1) and (h2,p2)
exchange_int = three_e_5_idx_exch12_bi_ort(mm,p2,h2,p1,h1)
! exchange_int = three_e_5_idx_exch12_bi_ort(mm,p2,h2,p1,h1)
exchange_int = three_e_5_idx_direct_bi_ort(mm,p2,h1,p1,h2)
contrib += direct_int - exchange_int
enddo
end
@ -415,7 +420,8 @@ subroutine give_contrib_for_bbbb(h1,h2,p1,p2,occ,Ne,contrib)
m = occ(mm,1)
direct_int = three_e_5_idx_direct_bi_ort(mm,p2,h2,p1,h1)
! exchange between (h1,p1) and (h2,p2)
exchange_int = three_e_5_idx_exch12_bi_ort(mm,p2,h2,p1,h1)
! exchange_int = three_e_5_idx_exch12_bi_ort(mm,p2,h2,p1,h1)
exchange_int = three_e_5_idx_direct_bi_ort(mm,p2,h1,p1,h2)
contrib += direct_int - exchange_int
enddo
end

View File

@ -106,7 +106,7 @@ subroutine get_single_excitation_from_fock_tc(key_i,key_j,h,p,spin,phase,hmono,h
htwoe -= buffer_x(i)
enddo
hthree = 0.d0
if (three_body_h_tc.and.elec_num.gt.2)then
if (three_body_h_tc.and.elec_num.gt.2.and.three_e_4_idx_term)then
call three_comp_fock_elem(key_i,h,p,spin,hthree)
endif
@ -243,7 +243,9 @@ subroutine fock_ac_tc_operator(iorb,ispin,key, h_fock,p_fock, ispin_fock,hthree,
do j = 1, nb
jj = occ(j,other_spin)
direct_int = three_e_4_idx_direct_bi_ort(jj,iorb,p_fock,h_fock) ! USES 4-IDX TENSOR
exchange_int = three_e_4_idx_exch12_bi_ort(jj,iorb,p_fock,h_fock) ! USES 4-IDX TENSOR
! TODO
! use transpose
exchange_int = three_e_4_idx_exch13_bi_ort(iorb,jj,p_fock,h_fock) ! USES 4-IDX TENSOR
hthree += direct_int - exchange_int
enddo
else !! ispin NE to ispin_fock
@ -322,7 +324,8 @@ subroutine fock_a_tc_operator(iorb,ispin,key, h_fock,p_fock, ispin_fock,hthree,N
do j = 1, nb
jj = occ(j,other_spin)
direct_int = three_e_4_idx_direct_bi_ort(jj,iorb,p_fock,h_fock) ! USES 4-IDX TENSOR
exchange_int = three_e_4_idx_exch12_bi_ort(jj,iorb,p_fock,h_fock) ! USES 4-IDX TENSOR
! TODO use transpose
exchange_int = three_e_4_idx_exch13_bi_ort(iorb,jj,p_fock,h_fock) ! USES 4-IDX TENSOR
hthree -= direct_int - exchange_int
enddo
else !! ispin NE to ispin_fock

View File

@ -1,7 +1,7 @@
! ---
subroutine htilde_mu_mat_bi_ortho_tot(key_j, key_i, Nint, htot)
subroutine htilde_mu_mat_bi_ortho_tot_slow(key_j, key_i, Nint, htot)
BEGIN_DOC
! <key_j | H_tilde | key_i> where |key_j> is developed on the LEFT basis and |key_i> is developed on the RIGHT basis
@ -24,14 +24,14 @@ subroutine htilde_mu_mat_bi_ortho_tot(key_j, key_i, Nint, htot)
if(degree.gt.2)then
htot = 0.d0
else
call htilde_mu_mat_bi_ortho(key_j, key_i, Nint, hmono, htwoe, hthree, htot)
call htilde_mu_mat_bi_ortho_slow(key_j, key_i, Nint, hmono, htwoe, hthree, htot)
endif
end subroutine htilde_mu_mat_bi_ortho_tot
end subroutine htilde_mu_mat_bi_ortho_tot_slow
! --
subroutine htilde_mu_mat_bi_ortho(key_j, key_i, Nint, hmono, htwoe, hthree, htot)
subroutine htilde_mu_mat_bi_ortho_slow(key_j, key_i, Nint, hmono, htwoe, hthree, htot)
BEGIN_DOC
!
@ -61,22 +61,22 @@ subroutine htilde_mu_mat_bi_ortho(key_j, key_i, Nint, hmono, htwoe, hthree, htot
if(degree.gt.2) return
if(degree == 0)then
call diag_htilde_mu_mat_bi_ortho(Nint, key_i, hmono, htwoe, htot)
call diag_htilde_mu_mat_bi_ortho_slow(Nint, key_i, hmono, htwoe, htot)
else if (degree == 1)then
call single_htilde_mu_mat_bi_ortho(Nint, key_j, key_i, hmono, htwoe, htot)
call single_htilde_mu_mat_bi_ortho_slow(Nint, key_j, key_i, hmono, htwoe, htot)
else if(degree == 2)then
call double_htilde_mu_mat_bi_ortho(Nint, key_j, key_i, hmono, htwoe, htot)
call double_htilde_mu_mat_bi_ortho_slow(Nint, key_j, key_i, hmono, htwoe, htot)
endif
if(three_body_h_tc) then
if(degree == 2) then
if(.not.double_normal_ord) then
call double_htilde_three_body_ints_bi_ort(Nint, key_j, key_i, hthree)
if(.not.double_normal_ord.and.elec_num.gt.2.and.three_e_5_idx_term) then
call double_htilde_three_body_ints_bi_ort_slow(Nint, key_j, key_i, hthree)
endif
else if(degree == 1) then
call single_htilde_three_body_ints_bi_ort(Nint, key_j, key_i, hthree)
else if(degree == 0) then
call diag_htilde_three_body_ints_bi_ort(Nint, key_i, hthree)
else if(degree == 1.and.elec_num.gt.2.and.three_e_4_idx_term) then
call single_htilde_three_body_ints_bi_ort_slow(Nint, key_j, key_i, hthree)
else if(degree == 0.and.elec_num.gt.2.and.three_e_3_idx_term) then
call diag_htilde_three_body_ints_bi_ort_slow(Nint, key_i, hthree)
endif
endif
@ -89,7 +89,7 @@ end
! ---
subroutine diag_htilde_mu_mat_bi_ortho(Nint, key_i, hmono, htwoe, htot)
subroutine diag_htilde_mu_mat_bi_ortho_slow(Nint, key_i, hmono, htwoe, htot)
BEGIN_DOC
! diagonal element of htilde ONLY FOR ONE- AND TWO-BODY TERMS
@ -188,7 +188,7 @@ end
subroutine double_htilde_mu_mat_bi_ortho(Nint, key_j, key_i, hmono, htwoe, htot)
subroutine double_htilde_mu_mat_bi_ortho_slow(Nint, key_j, key_i, hmono, htwoe, htot)
BEGIN_DOC
! <key_j | H_tilde | key_i> for double excitation ONLY FOR ONE- AND TWO-BODY TERMS
@ -227,18 +227,7 @@ subroutine double_htilde_mu_mat_bi_ortho(Nint, key_j, key_i, hmono, htwoe, htot)
return
endif
! if(core_tc_op)then
! print*,'core_tc_op not already taken into account for bi ortho'
! print*,'stopping ...'
! stop
! do i = 1, Nint
! key_i_core(i,1) = xor(key_i(i,1),core_bitmask(i,1))
! key_i_core(i,2) = xor(key_i(i,2),core_bitmask(i,2))
! enddo
! call bitstring_to_list_ab(key_i_core, occ, Ne, Nint)
! else
call bitstring_to_list_ab(key_i, occ, Ne, Nint)
! endif
call get_double_excitation(key_i, key_j, exc, phase, Nint)
call decode_exc(exc, 2, h1, p1, h2, p2, s1, s2)
@ -246,7 +235,7 @@ subroutine double_htilde_mu_mat_bi_ortho(Nint, key_j, key_i, hmono, htwoe, htot)
! opposite spin two-body
! key_j, key_i
htwoe = mo_bi_ortho_tc_two_e(p2,p1,h2,h1)
if(double_normal_ord.and.+Ne(1).gt.2)then
if(three_body_h_tc.and.double_normal_ord.and.+Ne(1).gt.2)then
htwoe += normal_two_body_bi_orth(p2,h2,p1,h1)!!! WTF ???
endif
else
@ -255,7 +244,7 @@ subroutine double_htilde_mu_mat_bi_ortho(Nint, key_j, key_i, hmono, htwoe, htot)
htwoe = mo_bi_ortho_tc_two_e(p2,p1,h2,h1)
! exchange terms
htwoe -= mo_bi_ortho_tc_two_e(p1,p2,h2,h1)
if(double_normal_ord.and.+Ne(1).gt.2)then
if(three_body_h_tc.and.double_normal_ord.and.+Ne(1).gt.2)then
htwoe -= normal_two_body_bi_orth(h2,p1,h1,p2)!!! WTF ???
htwoe += normal_two_body_bi_orth(h1,p1,h2,p2)!!! WTF ???
endif
@ -266,7 +255,7 @@ subroutine double_htilde_mu_mat_bi_ortho(Nint, key_j, key_i, hmono, htwoe, htot)
end
subroutine single_htilde_mu_mat_bi_ortho(Nint, key_j, key_i, hmono, htwoe, htot)
subroutine single_htilde_mu_mat_bi_ortho_slow(Nint, key_j, key_i, hmono, htwoe, htot)
BEGIN_DOC
! <key_j | H_tilde | key_i> for single excitation ONLY FOR ONE- AND TWO-BODY TERMS

View File

@ -96,9 +96,11 @@ double precision function three_e_single_parrallel_spin(m,j,k,i)
implicit none
integer, intent(in) :: i,k,j,m
three_e_single_parrallel_spin = three_e_4_idx_direct_bi_ort(m,j,k,i) ! direct
three_e_single_parrallel_spin += three_e_4_idx_cycle_1_bi_ort(m,j,k,i) + three_e_4_idx_cycle_2_bi_ort(m,j,k,i) & ! two cyclic permutations
three_e_single_parrallel_spin += three_e_4_idx_cycle_1_bi_ort(m,j,k,i) + three_e_4_idx_cycle_1_bi_ort(j,m,k,i) & ! two cyclic permutations
- three_e_4_idx_exch23_bi_ort(m,j,k,i) - three_e_4_idx_exch13_bi_ort(m,j,k,i) & ! two first exchange
- three_e_4_idx_exch12_bi_ort(m,j,k,i) ! last exchange
- three_e_4_idx_exch13_bi_ort(j,m,k,i) ! last exchange
! TODO
! use transpose
end
double precision function three_e_double_parrallel_spin(m,l,j,k,i)
@ -107,5 +109,6 @@ double precision function three_e_double_parrallel_spin(m,l,j,k,i)
three_e_double_parrallel_spin = three_e_5_idx_direct_bi_ort(m,l,j,k,i) ! direct
three_e_double_parrallel_spin += three_e_5_idx_cycle_1_bi_ort(m,l,j,k,i) + three_e_5_idx_cycle_2_bi_ort(m,l,j,k,i) & ! two cyclic permutations
- three_e_5_idx_exch23_bi_ort(m,l,j,k,i) - three_e_5_idx_exch13_bi_ort(m,l,j,k,i) & ! two first exchange
- three_e_5_idx_exch12_bi_ort(m,l,j,k,i) ! last exchange
! - three_e_5_idx_exch12_bi_ort(m,l,j,k,i) ! last exchange
- three_e_5_idx_direct_bi_ort(m,l,i,k,j) ! last exchange
end

View File

@ -11,10 +11,10 @@
allocate(H_jj(N_det),vec_tmp(N_det,n_states_diag),eigval_tmp(N_states))
dressing_dets = 0.d0
do i = 1, N_det
call htilde_mu_mat_bi_ortho_tot(psi_det(1,1,i), psi_det(1,1,i), N_int, H_jj(i))
call htilde_mu_mat_bi_ortho_tot_slow(psi_det(1,1,i), psi_det(1,1,i), N_int, H_jj(i))
call get_excitation_degree(HF_bitmask,psi_det(1,1,i),degree,N_int)
if(degree == 1 .or. degree == 2)then
call htilde_mu_mat_bi_ortho(HF_bitmask,psi_det(1,1,i),N_int,hmono,htwoe,hthree,h0j(i))
call htilde_mu_mat_bi_ortho_slow(HF_bitmask,psi_det(1,1,i),N_int,hmono,htwoe,hthree,h0j(i))
endif
enddo
reigvec_tc_bi_orth_tmp = 0.d0
@ -29,7 +29,7 @@
vec_tmp(istate,istate) = 1.d0
enddo
print*,'Diagonalizing the TC CISD '
call davidson_general_diag_dressed_ext_rout_nonsym_b1space(vec_tmp, H_jj, dressing_dets,eigval_tmp, N_det, n_states, n_states_diag, converged, htc_bi_ortho_calc_tdav)
call davidson_general_diag_dressed_ext_rout_nonsym_b1space(vec_tmp, H_jj, dressing_dets,eigval_tmp, N_det, n_states, n_states_diag, converged, htc_bi_ortho_calc_tdav_slow)
do i = 1, N_det
e_corr_dets(i) = reigvec_tc_bi_orth_tmp(i,1) * h0j(i)/reigvec_tc_bi_orth_tmp(1,1)
enddo
@ -41,8 +41,8 @@
it = 0
dressing_dets = 0.d0
double precision, allocatable :: H_jj(:),vec_tmp(:,:),eigval_tmp(:)
external htc_bi_ortho_calc_tdav
external htcdag_bi_ortho_calc_tdav
external htc_bi_ortho_calc_tdav_slow
external htcdag_bi_ortho_calc_tdav_slow
logical :: converged
do while (dabs(E_before-E_current).gt.thr)
it += 1
@ -66,7 +66,7 @@
do istate = N_states+1, n_states_diag
vec_tmp(istate,istate) = 1.d0
enddo
call davidson_general_diag_dressed_ext_rout_nonsym_b1space(vec_tmp, H_jj, dressing_dets,eigval_tmp, N_det, n_states, n_states_diag, converged, htc_bi_ortho_calc_tdav)
call davidson_general_diag_dressed_ext_rout_nonsym_b1space(vec_tmp, H_jj, dressing_dets,eigval_tmp, N_det, n_states, n_states_diag, converged, htc_bi_ortho_calc_tdav_slow)
print*,'outside Davidson'
print*,'eigval_tmp(1) = ',eigval_tmp(1)
do i = 1, N_det

View File

@ -207,8 +207,6 @@ end
else ! n_det > N_det_max_full
double precision, allocatable :: H_jj(:),vec_tmp(:,:)
external htc_bi_ortho_calc_tdav
external htcdag_bi_ortho_calc_tdav
external H_tc_u_0_opt
external H_tc_dagger_u_0_opt
external H_tc_s2_dagger_u_0_opt
@ -217,7 +215,7 @@ end
allocate(H_jj(N_det),vec_tmp(N_det,n_states_diag))
do i = 1, N_det
call htilde_mu_mat_bi_ortho_tot(psi_det(1,1,i), psi_det(1,1,i), N_int, H_jj(i))
call htilde_mu_mat_opt_bi_ortho_tot(psi_det(1,1,i), psi_det(1,1,i), N_int, H_jj(i))
enddo
print*,'---------------------------------'
@ -259,7 +257,6 @@ end
do istate = N_states+1, n_states_diag
vec_tmp(istate,istate) = 1.d0
enddo
!call davidson_general_ext_rout_nonsym_b1space(vec_tmp, H_jj, eigval_right_tc_bi_orth, N_det, n_states, n_states_diag, converged, htc_bi_ortho_calc_tdav)
!call davidson_general_ext_rout_nonsym_b1space(vec_tmp, H_jj, eigval_right_tc_bi_orth, N_det, n_states, n_states_diag, converged, H_tc_u_0_opt)
converged = .False.
i_it = 0

View File

@ -9,33 +9,25 @@
implicit none
integer :: i, j
double precision :: hmono,htwoe,hthree,htot
double precision :: htot
PROVIDE N_int
i = 1
j = 1
call htilde_mu_mat_bi_ortho(psi_det(1,1,j), psi_det(1,1,i), N_int, hmono, htwoe, hthree, htot)
call htilde_mu_mat_opt_bi_ortho_tot(psi_det(1,1,j), psi_det(1,1,i), N_int, htot)
!$OMP PARALLEL DO SCHEDULE(GUIDED) DEFAULT(NONE) PRIVATE(i,j,hmono, htwoe, hthree, htot) &
!$OMP PARALLEL DO SCHEDULE(GUIDED) DEFAULT(NONE) PRIVATE(i,j, htot) &
!$OMP SHARED (N_det, psi_det, N_int,htilde_matrix_elmt_bi_ortho)
do i = 1, N_det
do j = 1, N_det
! < J | Htilde | I >
call htilde_mu_mat_bi_ortho(psi_det(1,1,j), psi_det(1,1,i), N_int, hmono, htwoe, hthree, htot)
call htilde_mu_mat_opt_bi_ortho_tot(psi_det(1,1,j), psi_det(1,1,i), N_int, htot)
!print *, ' hmono = ', hmono
!print *, ' htwoe = ', htwoe
!print *, ' hthree = ', hthree
htilde_matrix_elmt_bi_ortho(j,i) = htot
enddo
enddo
!$OMP END PARALLEL DO
! print*,'htilde_matrix_elmt_bi_ortho = '
! do i = 1, min(100,N_det)
! write(*,'(100(F16.10,X))')htilde_matrix_elmt_bi_ortho(1:min(100,N_det),i)
! enddo
END_PROVIDER

View File

@ -56,8 +56,8 @@ subroutine main()
U_SOM = 0.d0
do i = 1, N_det
if(i == i_HF) cycle
call htilde_mu_mat_bi_ortho(psi_det(1,1,i_HF), psi_det(1,1,i), N_int, hmono_1, htwoe_1, hthree_1, htot_1)
call htilde_mu_mat_bi_ortho(psi_det(1,1,i), psi_det(1,1,i_HF), N_int, hmono_2, htwoe_2, hthree_2, htot_2)
call htilde_mu_mat_bi_ortho_slow(psi_det(1,1,i_HF), psi_det(1,1,i), N_int, hmono_1, htwoe_1, hthree_1, htot_1)
call htilde_mu_mat_bi_ortho_slow(psi_det(1,1,i), psi_det(1,1,i_HF), N_int, hmono_2, htwoe_2, hthree_2, htot_2)
U_SOM += htot_1 * htot_2
enddo
U_SOM = 0.5d0 * U_SOM

View File

@ -12,7 +12,7 @@ subroutine write_tc_energy()
do i = 1, N_det
do j = 1, N_det
!htot = htilde_matrix_elmt_bi_ortho(i,j)
call htilde_mu_mat_bi_ortho(psi_det(1,1,i), psi_det(1,1,j), N_int, hmono, htwoe, hthree, htot)
call htilde_mu_mat_bi_ortho_slow(psi_det(1,1,i), psi_det(1,1,j), N_int, hmono, htwoe, hthree, htot)
E_TC = E_TC + psi_l_coef_bi_ortho(i,k) * psi_r_coef_bi_ortho(j,k) * htot
!E_TC = E_TC + leigvec_tc_bi_orth(i,k) * reigvec_tc_bi_orth(j,k) * htot
enddo
@ -38,15 +38,16 @@ subroutine write_tc_var()
implicit none
integer :: i, j, k
double precision :: hmono, htwoe, hthree, htot
double precision :: hmono, htwoe, hthree, htot_1j, htot_j1
double precision :: SIGMA_TC
do k = 1, n_states
SIGMA_TC = 0.d0
do j = 2, N_det
call htilde_mu_mat_bi_ortho(psi_det(1,1,1), psi_det(1,1,j), N_int, hmono, htwoe, hthree, htot)
SIGMA_TC = SIGMA_TC + htot * htot
call htilde_mu_mat_bi_ortho_slow(psi_det(1,1,1), psi_det(1,1,j), N_int, hmono, htwoe, hthree, htot_1j)
call htilde_mu_mat_bi_ortho_slow(psi_det(1,1,j), psi_det(1,1,1), N_int, hmono, htwoe, hthree, htot_j1)
SIGMA_TC = SIGMA_TC + htot_1j * htot_j1
enddo
print *, " state : ", k

View File

@ -35,7 +35,7 @@ subroutine test
det_i = ref_bitmask
call do_single_excitation(det_i,h1,p1,s1,i_ok)
call do_single_excitation(det_i,h2,p2,s2,i_ok)
call htilde_mu_mat_bi_ortho(det_i,HF_bitmask,N_int,hmono,htwoe,hthree,htilde_ij)
call htilde_mu_mat_bi_ortho_slow(det_i,HF_bitmask,N_int,hmono,htwoe,hthree,htilde_ij)
call get_excitation_degree(ref_bitmask,det_i,degree,N_int)
call get_excitation(ref_bitmask,det_i,exc,degree,phase,N_int)
hthree *= phase
@ -67,7 +67,7 @@ do h1 = 1, elec_alpha_num
if(i_ok.ne.1)cycle
call do_single_excitation(det_i,h2,p2,s2,i_ok)
if(i_ok.ne.1)cycle
call htilde_mu_mat_bi_ortho(det_i,ref_bitmask,N_int,hmono,htwoe,hthree,htilde_ij)
call htilde_mu_mat_bi_ortho_slow(det_i,ref_bitmask,N_int,hmono,htwoe,hthree,htilde_ij)
call get_excitation_degree(ref_bitmask,det_i,degree,N_int)
call get_excitation(ref_bitmask,det_i,exc,degree,phase,N_int)
integer :: hh1, pp1, hh2, pp2, ss1, ss2
@ -103,7 +103,7 @@ do h1 = 1, elec_beta_num
if(i_ok.ne.1)cycle
call do_single_excitation(det_i,h2,p2,s2,i_ok)
if(i_ok.ne.1)cycle
call htilde_mu_mat_bi_ortho(det_i,ref_bitmask,N_int,hmono,htwoe,hthree,htilde_ij)
call htilde_mu_mat_bi_ortho_slow(det_i,ref_bitmask,N_int,hmono,htwoe,hthree,htilde_ij)
call get_excitation_degree(ref_bitmask,det_i,degree,N_int)
call get_excitation(ref_bitmask,det_i,exc,degree,phase,N_int)
call decode_exc(exc, 2, hh1, pp1, hh2, pp2, ss1, ss2)

View File

@ -91,7 +91,7 @@ subroutine routine_test_s2_davidson
external H_tc_s2_u_0_opt
allocate(H_jj(N_det),vec_tmp(N_det,n_states_diag),energies(n_states_diag), s2(n_states_diag))
do i = 1, N_det
call htilde_mu_mat_bi_ortho_tot(psi_det(1,1,i), psi_det(1,1,i), N_int, H_jj(i))
call htilde_mu_mat_bi_ortho_tot_slow(psi_det(1,1,i), psi_det(1,1,i), N_int, H_jj(i))
enddo
! Preparing the left-eigenvector
print*,'Computing the left-eigenvector '

View File

@ -11,12 +11,17 @@ program tc_bi_ortho
touch read_wf
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
call test_h_u0
! call test_h_u0
! call test_slater_tc_opt
! call timing_tot
! call timing_diag
! call timing_single
! call timing_double
call test_no()
!call test_no_aba()
!call test_no_aab()
!call test_no_aaa()
end
subroutine test_h_u0
@ -31,7 +36,7 @@ subroutine test_h_u0
u_0(i) = psi_r_coef_bi_ortho(i,1)
enddo
call H_tc_u_0_nstates_openmp(v_0_new,u_0,N_states,N_det, do_right)
call htc_bi_ortho_calc_tdav (v_0_ref,u_0,N_states,N_det)
call htc_bi_ortho_calc_tdav_slow (v_0_ref,u_0,N_states,N_det)
print*,'difference right '
accu = 0.d0
do i = 1, N_det
@ -42,7 +47,7 @@ subroutine test_h_u0
do_right = .False.
v_0_new = 0.d0
call H_tc_u_0_nstates_openmp(v_0_new,u_0,N_states,N_det, do_right)
call htcdag_bi_ortho_calc_tdav(v_0_ref_dagger,u_0,N_states,N_det, do_right)
call htcdag_bi_ortho_calc_tdav_slow(v_0_ref_dagger,u_0,N_states,N_det, do_right)
print*,'difference left'
accu = 0.d0
do i = 1, N_det
@ -63,7 +68,7 @@ subroutine test_slater_tc_opt
i_count = 0.d0
do i = 1, N_det
do j = 1,N_det
call htilde_mu_mat_bi_ortho(psi_det(1,1,j), psi_det(1,1,i), N_int, hmono, htwoe, hthree, htot)
call htilde_mu_mat_bi_ortho_slow(psi_det(1,1,j), psi_det(1,1,i), N_int, hmono, htwoe, hthree, htot)
call htilde_mu_mat_opt_bi_ortho(psi_det(1,1,j), psi_det(1,1,i), N_int, hnewmono, hnewtwoe, hnewthree, hnewtot)
if(dabs(htot).gt.1.d-15)then
i_count += 1.D0
@ -99,7 +104,7 @@ subroutine timing_tot
do j = 1, N_det
! call get_excitation_degree(psi_det(1,1,j), psi_det(1,1,i),degree,N_int)
i_count += 1.d0
call htilde_mu_mat_bi_ortho(psi_det(1,1,j), psi_det(1,1,i), N_int, hmono, htwoe, hthree, htot)
call htilde_mu_mat_bi_ortho_slow(psi_det(1,1,j), psi_det(1,1,i), N_int, hmono, htwoe, hthree, htot)
enddo
enddo
call wall_time(wall1)
@ -146,7 +151,7 @@ subroutine timing_diag
do i = 1, N_det
do j = i,i
i_count += 1.d0
call htilde_mu_mat_bi_ortho(psi_det(1,1,j), psi_det(1,1,i), N_int, hmono, htwoe, hthree, htot)
call htilde_mu_mat_bi_ortho_slow(psi_det(1,1,j), psi_det(1,1,i), N_int, hmono, htwoe, hthree, htot)
enddo
enddo
call wall_time(wall1)
@ -183,7 +188,7 @@ subroutine timing_single
if(degree.ne.1)cycle
i_count += 1.d0
call wall_time(wall0)
call htilde_mu_mat_bi_ortho(psi_det(1,1,j), psi_det(1,1,i), N_int, hmono, htwoe, hthree, htot)
call htilde_mu_mat_bi_ortho_slow(psi_det(1,1,j), psi_det(1,1,i), N_int, hmono, htwoe, hthree, htot)
call wall_time(wall1)
accu += wall1 - wall0
enddo
@ -225,7 +230,7 @@ subroutine timing_double
if(degree.ne.2)cycle
i_count += 1.d0
call wall_time(wall0)
call htilde_mu_mat_bi_ortho(psi_det(1,1,j), psi_det(1,1,i), N_int, hmono, htwoe, hthree, htot)
call htilde_mu_mat_bi_ortho_slow(psi_det(1,1,j), psi_det(1,1,i), N_int, hmono, htwoe, hthree, htot)
call wall_time(wall1)
accu += wall1 - wall0
enddo
@ -252,3 +257,169 @@ subroutine timing_double
end
! ---
subroutine test_no()
implicit none
integer :: i, j, k, l
double precision :: accu, contrib, new, ref, thr
print*, ' testing normal_two_body_bi_orth ...'
thr = 1d-8
PROVIDE normal_two_body_bi_orth_old
PROVIDE normal_two_body_bi_orth
accu = 0.d0
do i = 1, mo_num
do j = 1, mo_num
do k = 1, mo_num
do l = 1, mo_num
new = normal_two_body_bi_orth (l,k,j,i)
ref = normal_two_body_bi_orth_old(l,k,j,i)
contrib = dabs(new - ref)
accu += contrib
if(contrib .gt. thr) then
print*, ' problem on normal_two_body_bi_orth'
print*, l, k, j, i
print*, ref, new, contrib
stop
endif
enddo
enddo
enddo
enddo
print*, ' accu on normal_two_body_bi_orth = ', accu / dble(mo_num)**4
return
end
! ---
subroutine test_no_aba()
implicit none
integer :: i, j, k, l
double precision :: accu, contrib, new, ref, thr
print*, ' testing no_aba_contraction ...'
thr = 1d-8
PROVIDE no_aba_contraction_v0
PROVIDE no_aba_contraction
accu = 0.d0
do i = 1, mo_num
do j = 1, mo_num
do k = 1, mo_num
do l = 1, mo_num
new = no_aba_contraction (l,k,j,i)
ref = no_aba_contraction_v0(l,k,j,i)
contrib = dabs(new - ref)
accu += contrib
if(contrib .gt. thr) then
print*, ' problem on no_aba_contraction'
print*, l, k, j, i
print*, ref, new, contrib
stop
endif
enddo
enddo
enddo
enddo
print*, ' accu on no_aba_contraction = ', accu / dble(mo_num)**4
return
end
! ---
subroutine test_no_aab()
implicit none
integer :: i, j, k, l
double precision :: accu, contrib, new, ref, thr
print*, ' testing no_aab_contraction ...'
thr = 1d-8
PROVIDE no_aab_contraction_v0
PROVIDE no_aab_contraction
accu = 0.d0
do i = 1, mo_num
do j = 1, mo_num
do k = 1, mo_num
do l = 1, mo_num
new = no_aab_contraction (l,k,j,i)
ref = no_aab_contraction_v0(l,k,j,i)
contrib = dabs(new - ref)
accu += contrib
if(contrib .gt. thr) then
print*, ' problem on no_aab_contraction'
print*, l, k, j, i
print*, ref, new, contrib
stop
endif
enddo
enddo
enddo
enddo
print*, ' accu on no_aab_contraction = ', accu / dble(mo_num)**4
return
end
! ---
subroutine test_no_aaa()
implicit none
integer :: i, j, k, l
double precision :: accu, contrib, new, ref, thr
print*, ' testing no_aaa_contraction ...'
thr = 1d-8
PROVIDE no_aaa_contraction_v0
PROVIDE no_aaa_contraction
accu = 0.d0
do i = 1, mo_num
do j = 1, mo_num
do k = 1, mo_num
do l = 1, mo_num
new = no_aaa_contraction (l,k,j,i)
ref = no_aaa_contraction_v0(l,k,j,i)
contrib = dabs(new - ref)
accu += contrib
if(contrib .gt. thr) then
print*, ' problem on no_aaa_contraction'
print*, l, k, j, i
print*, ref, new, contrib
stop
endif
enddo
enddo
enddo
enddo
print*, ' accu on no_aaa_contraction = ', accu / dble(mo_num)**4
return
end
! ---

View File

@ -25,8 +25,7 @@ subroutine test_3e
implicit none
double precision :: integral_aaa,integral_aab,integral_abb,integral_bbb,accu
double precision :: hmono, htwoe, hthree, htot
call htilde_mu_mat_bi_ortho(ref_bitmask, ref_bitmask, N_int, hmono, htwoe, hthree, htot)
! call diag_htilde_three_body_ints_bi_ort(N_int, ref_bitmask, hthree)
call htilde_mu_mat_bi_ortho_slow(ref_bitmask, ref_bitmask, N_int, hmono, htwoe, hthree, htot)
print*,'hmono = ',hmono
print*,'htwoe = ',htwoe
print*,'hthree= ',hthree
@ -88,7 +87,7 @@ subroutine routine_3()
print*, ' excited det'
call debug_det(det_i, N_int)
call htilde_mu_mat_bi_ortho(det_i, ref_bitmask, N_int, hmono, htwoe, hthree, htilde_ij)
call htilde_mu_mat_bi_ortho_slow(det_i, ref_bitmask, N_int, hmono, htwoe, hthree, htilde_ij)
if(dabs(hthree).lt.1.d-10)cycle
ref = hthree
if(s1 == 1)then
@ -156,7 +155,7 @@ subroutine routine_tot()
stop
endif
call htilde_mu_mat_bi_ortho(det_i, ref_bitmask, N_int, hmono, htwoe, hthree, htilde_ij)
call htilde_mu_mat_bi_ortho_slow(det_i, ref_bitmask, N_int, hmono, htwoe, hthree, htilde_ij)
print*,htilde_ij
if(dabs(htilde_ij).lt.1.d-10)cycle
print*, ' excited det'

View File

@ -16,6 +16,24 @@ doc: If |true|, three-body terms are included
interface: ezfio,provider,ocaml
default: True
[three_e_3_idx_term]
type: logical
doc: If |true|, the diagonal 3-idx terms of the 3-e interaction are taken
interface: ezfio,provider,ocaml
default: True
[three_e_4_idx_term]
type: logical
doc: If |true|, the off-diagonal 4-idx terms of the 3-e interaction are taken
interface: ezfio,provider,ocaml
default: True
[three_e_5_idx_term]
type: logical
doc: If |true|, the off-diagonal 5-idx terms of the 3-e interaction are taken
interface: ezfio,provider,ocaml
default: True
[pure_three_body_h_tc]
type: logical
doc: If |true|, pure triple excitation three-body terms are included
@ -112,6 +130,12 @@ doc: exponents of the 1-body Jastrow
interface: ezfio
size: (nuclei.nucl_num)
[j1b_pen_coef]
type: double precision
doc: coefficients of the 1-body Jastrow
interface: ezfio
size: (nuclei.nucl_num)
[j1b_coeff]
type: double precision
doc: coeff of the 1-body Jastrow
@ -130,6 +154,12 @@ doc: a parameter used to define mu(r)
interface: ezfio, provider, ocaml
default: 6.203504908994001e-1
[beta_rho_power]
type: double precision
doc: a parameter used to define mu(r)
interface: ezfio, provider, ocaml
default: 0.5
[thr_degen_tc]
type: Threshold
doc: Threshold to determine if two orbitals are degenerate in TCSCF in order to avoid random quasi orthogonality between the right- and left-eigenvector for the same eigenvalue

View File

@ -1,17 +1,22 @@
! ---
BEGIN_PROVIDER [ double precision, j1b_pen, (nucl_num) ]
BEGIN_PROVIDER [ double precision, j1b_pen , (nucl_num) ]
&BEGIN_PROVIDER [ double precision, j1b_pen_coef, (nucl_num) ]
BEGIN_DOC
! exponents of the 1-body Jastrow
! parameters of the 1-body Jastrow
END_DOC
implicit none
logical :: exists
integer :: i
integer :: ierr
PROVIDE ezfio_filename
! ---
if (mpi_master) then
call ezfio_has_tc_keywords_j1b_pen(exists)
endif
@ -23,7 +28,6 @@ BEGIN_PROVIDER [ double precision, j1b_pen, (nucl_num) ]
IRP_IF MPI
include 'mpif.h'
integer :: ierr
call MPI_BCAST(j1b_pen, (nucl_num), MPI_DOUBLE_PRECISION, 0, MPI_COMM_WORLD, ierr)
if (ierr /= MPI_SUCCESS) then
stop 'Unable to read j1b_pen with MPI'
@ -31,7 +35,6 @@ BEGIN_PROVIDER [ double precision, j1b_pen, (nucl_num) ]
IRP_ENDIF
if (exists) then
if (mpi_master) then
write(6,'(A)') '.. >>>>> [ IO READ: j1b_pen ] <<<<< ..'
call ezfio_get_tc_keywords_j1b_pen(j1b_pen)
@ -42,19 +45,54 @@ BEGIN_PROVIDER [ double precision, j1b_pen, (nucl_num) ]
endif
IRP_ENDIF
endif
else
integer :: i
do i = 1, nucl_num
j1b_pen(i) = 1d5
enddo
endif
print*,'parameters for nuclei jastrow'
do i = 1, nucl_num
print*,'i,Z,j1b_pen(i)',i,nucl_charge(i),j1b_pen(i)
enddo
! ---
if (mpi_master) then
call ezfio_has_tc_keywords_j1b_pen_coef(exists)
endif
IRP_IF MPI_DEBUG
print *, irp_here, mpi_rank
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
IRP_ENDIF
IRP_IF MPI
call MPI_BCAST(j1b_pen_coef, (nucl_num), MPI_DOUBLE_PRECISION, 0, MPI_COMM_WORLD, ierr)
if (ierr /= MPI_SUCCESS) then
stop 'Unable to read j1b_pen_coef with MPI'
endif
IRP_ENDIF
if (exists) then
if (mpi_master) then
write(6,'(A)') '.. >>>>> [ IO READ: j1b_pen_coef ] <<<<< ..'
call ezfio_get_tc_keywords_j1b_pen_coef(j1b_pen_coef)
IRP_IF MPI
call MPI_BCAST(j1b_pen_coef, (nucl_num), MPI_DOUBLE_PRECISION, 0, MPI_COMM_WORLD, ierr)
if (ierr /= MPI_SUCCESS) then
stop 'Unable to read j1b_pen_coef with MPI'
endif
IRP_ENDIF
endif
else
do i = 1, nucl_num
j1b_pen_coef(i) = 1d0
enddo
endif
! ---
print *, ' parameters for nuclei jastrow'
print *, ' i, Z, j1b_pen, j1b_pen_coef'
do i = 1, nucl_num
print *, i, nucl_charge(i), j1b_pen(i), j1b_pen_coef(i)
enddo
END_PROVIDER
@ -114,3 +152,4 @@ BEGIN_PROVIDER [ double precision, j1b_coeff, (nucl_num) ]
END_PROVIDER
! ---

View File

@ -11,6 +11,7 @@ subroutine rh_tcscf_diis()
integer :: i, j, it
integer :: dim_DIIS, index_dim_DIIS
logical :: converged
double precision :: etc_tot, etc_1e, etc_2e, etc_3e, e_save, e_delta
double precision :: tc_grad, g_save, g_delta, g_delta_th
double precision :: level_shift_save, rate_th
@ -92,8 +93,9 @@ subroutine rh_tcscf_diis()
PROVIDE FQS_SQF_ao Fock_matrix_tc_ao_tot
converged = .false.
!do while((tc_grad .gt. dsqrt(thresh_tcscf)) .and. (er_DIIS .gt. dsqrt(thresh_tcscf)))
do while(er_DIIS .gt. dsqrt(thresh_tcscf))
do while(.not. converged)
call wall_time(t0)
@ -218,21 +220,56 @@ subroutine rh_tcscf_diis()
!g_delta_th = dabs(tc_grad) ! g_delta)
er_delta_th = dabs(er_DIIS) !er_delta)
converged = er_DIIS .lt. dsqrt(thresh_tcscf)
call wall_time(t1)
!write(6, '(I4,1X, F16.10,1X, F16.10,1X, F16.10,1X, F16.10,1X, F16.10,1X, F16.10,1X, F16.10,1X, F16.10,1X, I4,1X, F8.2)') &
! it, etc_tot, etc_1e, etc_2e, etc_3e, e_delta, tc_grad, er_DIIS, level_shift_tcscf, dim_DIIS, (t1-t0)/60.d0
write(6, '(I4,1X, F16.10,1X, F16.10,1X, F16.10,1X, F16.10,1X, F16.10,1X, F16.10,1X, F16.10,1X, I4,1X, F8.2)') &
it, etc_tot, etc_1e, etc_2e, etc_3e, e_delta, er_DIIS, level_shift_tcscf, dim_DIIS, (t1-t0)/60.d0
! Write data in JSON file
call lock_io
if (it == 1) then
write(json_unit, json_dict_uopen_fmt)
else
write(json_unit, json_dict_close_uopen_fmt)
endif
write(json_unit, json_int_fmt) ' iteration ', it
write(json_unit, json_real_fmt) ' SCF TC Energy ', etc_tot
write(json_unit, json_real_fmt) ' E(1e) ', etc_1e
write(json_unit, json_real_fmt) ' E(2e) ', etc_2e
write(json_unit, json_real_fmt) ' E(3e) ', etc_3e
write(json_unit, json_real_fmt) ' delta Energy ', e_delta
write(json_unit, json_real_fmt) ' DIIS error ', er_DIIS
write(json_unit, json_real_fmt) ' level_shift ', level_shift_tcscf
write(json_unit, json_real_fmt) ' DIIS ', dim_DIIS
write(json_unit, json_real_fmt) ' Wall time (min)', (t1-t0)/60.d0
call unlock_io
if(er_delta .lt. 0.d0) then
call ezfio_set_tc_scf_bitc_energy(etc_tot)
call ezfio_set_bi_ortho_mos_mo_l_coef(mo_l_coef)
call ezfio_set_bi_ortho_mos_mo_r_coef(mo_r_coef)
write(json_unit, json_true_fmt) 'saved'
else
write(json_unit, json_false_fmt) 'saved'
endif
call lock_io
if (converged) then
write(json_unit, json_true_fmtx) 'converged'
else
write(json_unit, json_false_fmtx) 'converged'
endif
call unlock_io
if(qp_stop()) exit
enddo
write(json_unit, json_dict_close_fmtx)
! ---
print *, ' TCSCF DIIS converged !'

View File

@ -8,6 +8,8 @@ program tc_scf
implicit none
write(json_unit,json_array_open_fmt) 'tc-scf'
print *, ' starting ...'
my_grid_becke = .True.
@ -57,6 +59,8 @@ program tc_scf
endif
write(json_unit,json_array_close_fmtx)
call json_close
end

View File

@ -47,6 +47,7 @@ subroutine routine
do i = 1, min(N_det_print_wf,N_det)
print*,''
print*,'i = ',i
print *,psi_det_sorted(1,1,i)
call debug_det(psi_det_sorted(1,1,i),N_int)
call get_excitation_degree(psi_det_sorted(1,1,i),psi_det_sorted(1,1,1),degree,N_int)
print*,'degree = ',degree

View File

@ -10,11 +10,17 @@ doc: Name of the exported TREXIO file
interface: ezfio, ocaml, provider
default: None
[export_rdm]
[export_basis]
type: logical
doc: If True, export two-body reduced density matrix
doc: If True, export basis set and AOs
interface: ezfio, ocaml, provider
default: False
default: True
[export_mos]
type: logical
doc: If True, export basis set and AOs
interface: ezfio, ocaml, provider
default: True
[export_ao_one_e_ints]
type: logical
@ -22,12 +28,6 @@ doc: If True, export one-electron integrals in AO basis
interface: ezfio, ocaml, provider
default: False
[export_mo_one_e_ints]
type: logical
doc: If True, export one-electron integrals in MO basis
interface: ezfio, ocaml, provider
default: False
[export_ao_two_e_ints]
type: logical
doc: If True, export two-electron integrals in AO basis
@ -40,6 +40,12 @@ doc: If True, export Cholesky-decomposed two-electron integrals in AO basis
interface: ezfio, ocaml, provider
default: False
[export_mo_one_e_ints]
type: logical
doc: If True, export one-electron integrals in MO basis
interface: ezfio, ocaml, provider
default: False
[export_mo_two_e_ints]
type: logical
doc: If True, export two-electron integrals in MO basis
@ -52,3 +58,9 @@ doc: If True, export Cholesky-decomposed two-electron integrals in MO basis
interface: ezfio, ocaml, provider
default: False
[export_rdm]
type: logical
doc: If True, export two-body reduced density matrix
interface: ezfio, ocaml, provider
default: False

View File

@ -2,6 +2,6 @@ program export_trexio_prog
implicit none
read_wf = .True.
SOFT_TOUCH read_wf
call export_trexio
call export_trexio(.False.)
end

View File

@ -1,15 +1,17 @@
subroutine export_trexio
subroutine export_trexio(update)
use trexio
implicit none
BEGIN_DOC
! Exports the wave function in TREXIO format
END_DOC
logical, intent(in) :: update
integer(trexio_t) :: f(N_states) ! TREXIO file handle
integer(trexio_exit_code) :: rc
integer :: k
double precision, allocatable :: factor(:)
character*(256) :: filenames(N_states)
character :: rw
filenames(1) = trexio_filename
do k=2,N_states
@ -18,15 +20,26 @@ subroutine export_trexio
do k=1,N_states
print *, 'TREXIO file : ', trim(filenames(k))
call system('test -f '//trim(filenames(k))//' && mv '//trim(filenames(k))//' '//trim(filenames(k))//'.bak')
if (update) then
call system('test -f '//trim(filenames(k))//' && cp -r '//trim(filenames(k))//' '//trim(filenames(k))//'.bak')
else
call system('test -f '//trim(filenames(k))//' && mv '//trim(filenames(k))//' '//trim(filenames(k))//'.bak')
endif
enddo
print *, ''
if (update) then
rw = 'u'
else
rw = 'w'
endif
do k=1,N_states
if (backend == 0) then
f(k) = trexio_open(filenames(k), 'u', TREXIO_HDF5, rc)
f(k) = trexio_open(filenames(k), rw, TREXIO_HDF5, rc)
else if (backend == 1) then
f(k) = trexio_open(filenames(k), 'u', TREXIO_TEXT, rc)
f(k) = trexio_open(filenames(k), rw, TREXIO_TEXT, rc)
endif
if (f(k) == 0_8) then
print *, 'Unable to open TREXIO file for writing'
@ -171,92 +184,95 @@ subroutine export_trexio
endif
if (export_basis) then
! Basis
! -----
print *, 'Basis'
print *, 'Basis'
rc = trexio_write_basis_type(f(1), 'Gaussian', len('Gaussian'))
call trexio_assert(rc, TREXIO_SUCCESS)
rc = trexio_write_basis_type(f(1), 'Gaussian', len('Gaussian'))
call trexio_assert(rc, TREXIO_SUCCESS)
rc = trexio_write_basis_prim_num(f(1), prim_num)
call trexio_assert(rc, TREXIO_SUCCESS)
rc = trexio_write_basis_prim_num(f(1), prim_num)
call trexio_assert(rc, TREXIO_SUCCESS)
rc = trexio_write_basis_shell_num(f(1), shell_num)
call trexio_assert(rc, TREXIO_SUCCESS)
rc = trexio_write_basis_shell_num(f(1), shell_num)
call trexio_assert(rc, TREXIO_SUCCESS)
rc = trexio_write_basis_nucleus_index(f(1), basis_nucleus_index)
call trexio_assert(rc, TREXIO_SUCCESS)
rc = trexio_write_basis_nucleus_index(f(1), basis_nucleus_index)
call trexio_assert(rc, TREXIO_SUCCESS)
rc = trexio_write_basis_shell_ang_mom(f(1), shell_ang_mom)
call trexio_assert(rc, TREXIO_SUCCESS)
rc = trexio_write_basis_shell_ang_mom(f(1), shell_ang_mom)
call trexio_assert(rc, TREXIO_SUCCESS)
allocate(factor(shell_num))
! if (ao_normalized) then
! factor(1:shell_num) = shell_normalization_factor(1:shell_num)
! else
factor(1:shell_num) = 1.d0
! endif
rc = trexio_write_basis_shell_factor(f(1), factor)
call trexio_assert(rc, TREXIO_SUCCESS)
allocate(factor(shell_num))
if (ao_normalized) then
factor(1:shell_num) = shell_normalization_factor(1:shell_num)
else
factor(1:shell_num) = 1.d0
endif
rc = trexio_write_basis_shell_factor(f(1), factor)
call trexio_assert(rc, TREXIO_SUCCESS)
deallocate(factor)
deallocate(factor)
rc = trexio_write_basis_shell_index(f(1), shell_index)
call trexio_assert(rc, TREXIO_SUCCESS)
rc = trexio_write_basis_shell_index(f(1), shell_index)
call trexio_assert(rc, TREXIO_SUCCESS)
rc = trexio_write_basis_exponent(f(1), prim_expo)
call trexio_assert(rc, TREXIO_SUCCESS)
rc = trexio_write_basis_exponent(f(1), prim_expo)
call trexio_assert(rc, TREXIO_SUCCESS)
rc = trexio_write_basis_coefficient(f(1), prim_coef)
call trexio_assert(rc, TREXIO_SUCCESS)
rc = trexio_write_basis_coefficient(f(1), prim_coef)
call trexio_assert(rc, TREXIO_SUCCESS)
allocate(factor(prim_num))
if (primitives_normalized) then
factor(1:prim_num) = prim_normalization_factor(1:prim_num)
else
factor(1:prim_num) = 1.d0
endif
rc = trexio_write_basis_prim_factor(f(1), factor)
call trexio_assert(rc, TREXIO_SUCCESS)
deallocate(factor)
allocate(factor(prim_num))
if (primitives_normalized) then
factor(1:prim_num) = prim_normalization_factor(1:prim_num)
else
factor(1:prim_num) = 1.d0
endif
rc = trexio_write_basis_prim_factor(f(1), factor)
call trexio_assert(rc, TREXIO_SUCCESS)
deallocate(factor)
! Atomic orbitals
! ---------------
print *, 'AOs'
print *, 'AOs'
rc = trexio_write_ao_num(f(1), ao_num)
call trexio_assert(rc, TREXIO_SUCCESS)
rc = trexio_write_ao_num(f(1), ao_num)
call trexio_assert(rc, TREXIO_SUCCESS)
rc = trexio_write_ao_cartesian(f(1), 1)
call trexio_assert(rc, TREXIO_SUCCESS)
rc = trexio_write_ao_cartesian(f(1), 1)
call trexio_assert(rc, TREXIO_SUCCESS)
rc = trexio_write_ao_shell(f(1), ao_shell)
call trexio_assert(rc, TREXIO_SUCCESS)
rc = trexio_write_ao_shell(f(1), ao_shell)
call trexio_assert(rc, TREXIO_SUCCESS)
integer :: i, pow0(3), powA(3), j, l, nz
double precision :: normA, norm0, C_A(3), overlap_x, overlap_z, overlap_y, c
nz=100
integer :: i, pow0(3), powA(3), j, l, nz
double precision :: normA, norm0, C_A(3), overlap_x, overlap_z, overlap_y, c
nz=100
C_A(1) = 0.d0
C_A(2) = 0.d0
C_A(3) = 0.d0
C_A(1) = 0.d0
C_A(2) = 0.d0
C_A(3) = 0.d0
allocate(factor(ao_num))
if (ao_normalized) then
do i=1,ao_num
l = ao_first_of_shell(ao_shell(i))
factor(i) = (ao_coef_normalized(i,1)+tiny(1.d0))/(ao_coef_normalized(l,1)+tiny(1.d0))
enddo
else
factor(:) = 1.d0
endif
rc = trexio_write_ao_normalization(f(1), factor)
call trexio_assert(rc, TREXIO_SUCCESS)
deallocate(factor)
allocate(factor(ao_num))
if (ao_normalized) then
do i=1,ao_num
l = ao_first_of_shell(ao_shell(i))
factor(i) = (ao_coef_normalized(i,1)+tiny(1.d0))/(ao_coef_normalized(l,1)+tiny(1.d0))
enddo
else
factor(:) = 1.d0
endif
rc = trexio_write_ao_normalization(f(1), factor)
call trexio_assert(rc, TREXIO_SUCCESS)
deallocate(factor)
! One-e AO integrals
! ------------------
@ -375,28 +391,30 @@ subroutine export_trexio
! Molecular orbitals
! ------------------
print *, 'MOs'
if (export_mos) then
print *, 'MOs'
rc = trexio_write_mo_type(f(1), mo_label, len(trim(mo_label)))
call trexio_assert(rc, TREXIO_SUCCESS)
do k=1,N_states
rc = trexio_write_mo_num(f(k), mo_num)
rc = trexio_write_mo_type(f(1), mo_label, len(trim(mo_label)))
call trexio_assert(rc, TREXIO_SUCCESS)
enddo
rc = trexio_write_mo_coefficient(f(1), mo_coef)
call trexio_assert(rc, TREXIO_SUCCESS)
do k=1,N_states
rc = trexio_write_mo_num(f(k), mo_num)
call trexio_assert(rc, TREXIO_SUCCESS)
enddo
if ( (trim(mo_label) == 'Canonical').and. &
(export_mo_two_e_ints_cholesky.or.export_mo_two_e_ints) ) then
rc = trexio_write_mo_energy(f(1), fock_matrix_diag_mo)
rc = trexio_write_mo_coefficient(f(1), mo_coef)
call trexio_assert(rc, TREXIO_SUCCESS)
if ( (trim(mo_label) == 'Canonical').and. &
(export_mo_two_e_ints_cholesky.or.export_mo_two_e_ints) ) then
rc = trexio_write_mo_energy(f(1), fock_matrix_diag_mo)
call trexio_assert(rc, TREXIO_SUCCESS)
endif
rc = trexio_write_mo_class(f(1), mo_class, len(mo_class(1)))
call trexio_assert(rc, TREXIO_SUCCESS)
endif
rc = trexio_write_mo_class(f(1), mo_class, len(mo_class(1)))
call trexio_assert(rc, TREXIO_SUCCESS)
! One-e MO integrals
! ------------------

View File

@ -3,6 +3,7 @@ program import_integrals_ao
implicit none
integer(trexio_t) :: f ! TREXIO file handle
integer(trexio_exit_code) :: rc
PROVIDE mo_num
f = trexio_open(trexio_filename, 'r', TREXIO_AUTO, rc)
if (f == 0_8) then
@ -42,10 +43,10 @@ subroutine run(f)
if (trexio_has_nucleus_repulsion(f) == TREXIO_SUCCESS) then
rc = trexio_read_nucleus_repulsion(f, s)
call trexio_assert(rc, TREXIO_SUCCESS)
if (rc /= TREXIO_SUCCESS) then
print *, irp_here, rc
print *, 'Error reading nuclear repulsion'
call trexio_assert(rc, TREXIO_SUCCESS)
stop -1
endif
call ezfio_set_nuclei_nuclear_repulsion(s)
@ -63,6 +64,7 @@ subroutine run(f)
if (rc /= TREXIO_SUCCESS) then
print *, irp_here
print *, 'Error reading AO overlap'
call trexio_assert(rc, TREXIO_SUCCESS)
stop -1
endif
call ezfio_set_ao_one_e_ints_ao_integrals_overlap(A)
@ -74,6 +76,7 @@ subroutine run(f)
if (rc /= TREXIO_SUCCESS) then
print *, irp_here
print *, 'Error reading AO kinetic integrals'
call trexio_assert(rc, TREXIO_SUCCESS)
stop -1
endif
call ezfio_set_ao_one_e_ints_ao_integrals_kinetic(A)
@ -85,6 +88,7 @@ subroutine run(f)
! if (rc /= TREXIO_SUCCESS) then
! print *, irp_here
! print *, 'Error reading AO ECP local integrals'
! call trexio_assert(rc, TREXIO_SUCCESS)
! stop -1
! endif
! call ezfio_set_ao_one_e_ints_ao_integrals_pseudo(A)
@ -96,6 +100,7 @@ subroutine run(f)
if (rc /= TREXIO_SUCCESS) then
print *, irp_here
print *, 'Error reading AO potential N-e integrals'
call trexio_assert(rc, TREXIO_SUCCESS)
stop -1
endif
call ezfio_set_ao_one_e_ints_ao_integrals_n_e(A)
@ -106,41 +111,112 @@ subroutine run(f)
! AO 2e integrals
! ---------------
PROVIDE ao_integrals_map
integer*4 :: BUFSIZE
BUFSIZE=ao_num**2
allocate(buffer_i(BUFSIZE), buffer_values(BUFSIZE))
allocate(Vi(4,BUFSIZE), V(BUFSIZE))
rc = trexio_has_ao_2e_int(f)
PROVIDE ao_num
if (rc /= TREXIO_HAS_NOT) then
PROVIDE ao_integrals_map
integer*8 :: offset, icount
integer*4 :: BUFSIZE
BUFSIZE=ao_num**2
allocate(buffer_i(BUFSIZE), buffer_values(BUFSIZE))
allocate(Vi(4,BUFSIZE), V(BUFSIZE))
offset = 0_8
icount = BUFSIZE
rc = TREXIO_SUCCESS
do while (icount == size(V))
rc = trexio_read_ao_2e_int_eri(f, offset, icount, Vi, V)
do m=1,icount
i = Vi(1,m)
j = Vi(2,m)
k = Vi(3,m)
l = Vi(4,m)
integral = V(m)
call two_e_integrals_index(i, j, k, l, buffer_i(m) )
buffer_values(m) = integral
enddo
call insert_into_ao_integrals_map(int(icount,4),buffer_i,buffer_values)
offset = offset + icount
integer*8 :: offset, icount
offset = 0_8
icount = BUFSIZE
rc = TREXIO_SUCCESS
do while (icount == size(V))
rc = trexio_read_ao_2e_int_eri(f, offset, icount, Vi, V)
do m=1,icount
i = Vi(1,m)
j = Vi(2,m)
k = Vi(3,m)
l = Vi(4,m)
integral = V(m)
call two_e_integrals_index(i, j, k, l, buffer_i(m) )
buffer_values(m) = integral
enddo
call insert_into_ao_integrals_map(int(icount,4),buffer_i,buffer_values)
offset = offset + icount
if (rc /= TREXIO_SUCCESS) then
exit
endif
end do
n_integrals = offset
call map_sort(ao_integrals_map)
call map_unique(ao_integrals_map)
call map_save_to_disk(trim(ezfio_filename)//'/work/ao_ints',ao_integrals_map)
call ezfio_set_ao_two_e_ints_io_ao_two_e_integrals('Read')
deallocate(buffer_i, buffer_values, Vi, V)
print *, 'AO integrals read from TREXIO file'
else
print *, 'AO integrals not found in TREXIO file'
endif
! MO integrals
! ------------
allocate(A(mo_num, mo_num))
if (trexio_has_mo_1e_int_core_hamiltonian(f) == TREXIO_SUCCESS) then
rc = trexio_read_mo_1e_int_core_hamiltonian(f, A)
if (rc /= TREXIO_SUCCESS) then
exit
print *, irp_here
print *, 'Error reading MO 1e integrals'
call trexio_assert(rc, TREXIO_SUCCESS)
stop -1
endif
end do
n_integrals = offset
call ezfio_set_mo_one_e_ints_mo_one_e_integrals(A)
call ezfio_set_mo_one_e_ints_io_mo_one_e_integrals('Read')
endif
deallocate(A)
call map_sort(ao_integrals_map)
call map_unique(ao_integrals_map)
! MO 2e integrals
! ---------------
call map_save_to_disk(trim(ezfio_filename)//'/work/ao_ints',ao_integrals_map)
call ezfio_set_ao_two_e_ints_io_ao_two_e_integrals('Read')
rc = trexio_has_mo_2e_int(f)
if (rc /= TREXIO_HAS_NOT) then
BUFSIZE=mo_num**2
allocate(buffer_i(BUFSIZE), buffer_values(BUFSIZE))
allocate(Vi(4,BUFSIZE), V(BUFSIZE))
offset = 0_8
icount = BUFSIZE
rc = TREXIO_SUCCESS
do while (icount == size(V))
rc = trexio_read_mo_2e_int_eri(f, offset, icount, Vi, V)
do m=1,icount
i = Vi(1,m)
j = Vi(2,m)
k = Vi(3,m)
l = Vi(4,m)
integral = V(m)
call two_e_integrals_index(i, j, k, l, buffer_i(m) )
buffer_values(m) = integral
enddo
call map_append(mo_integrals_map, buffer_i, buffer_values, int(icount,4))
offset = offset + icount
if (rc /= TREXIO_SUCCESS) then
exit
endif
end do
n_integrals = offset
call map_sort(mo_integrals_map)
call map_unique(mo_integrals_map)
call map_save_to_disk(trim(ezfio_filename)//'/work/mo_ints',mo_integrals_map)
call ezfio_set_mo_two_e_ints_io_mo_two_e_integrals('Read')
deallocate(buffer_i, buffer_values, Vi, V)
print *, 'MO integrals read from TREXIO file'
else
print *, 'MO integrals not found in TREXIO file'
endif
end

View File

@ -468,8 +468,6 @@ end subroutine
subroutine multiply_poly(b,nb,c,nc,d,nd)
implicit none
BEGIN_DOC
@ -484,33 +482,292 @@ subroutine multiply_poly(b,nb,c,nc,d,nd)
integer :: ndtmp
integer :: ib, ic, id, k
if(ior(nc,nb) >= 0) then ! True if nc>=0 and nb>=0
continue
else
return
endif
ndtmp = nb+nc
if(ior(nc,nb) < 0) return !False if nc>=0 and nb>=0
select case (nb)
case (0)
call multiply_poly_b0(b,c,nc,d,nd)
return
case (1)
call multiply_poly_b1(b,c,nc,d,nd)
return
case (2)
call multiply_poly_b2(b,c,nc,d,nd)
return
end select
select case (nc)
case (0)
call multiply_poly_c0(b,nb,c,d,nd)
return
case (1)
call multiply_poly_c1(b,nb,c,d,nd)
return
case (2)
call multiply_poly_c2(b,nb,c,d,nd)
return
end select
do ib=0,nb
do ic = 0,nc
d(ib+ic) = d(ib+ic) + c(ic) * b(ib)
enddo
enddo
do nd = nb+nc,0,-1
if (d(nd) /= 0.d0) exit
enddo
end
subroutine multiply_poly_b0(b,c,nc,d,nd)
implicit none
BEGIN_DOC
! Multiply two polynomials
! D(t) += B(t)*C(t)
END_DOC
integer, intent(in) :: nc
integer, intent(out) :: nd
double precision, intent(in) :: b(0:0), c(0:nc)
double precision, intent(inout) :: d(0:nc)
integer :: ndtmp
integer :: ic, id, k
if(nc < 0) return !False if nc>=0
do ic = 0,nc
d(ic) = d(ic) + c(ic) * b(0)
enddo
do ib=1,nb
d(ib) = d(ib) + c(0) * b(ib)
do ic = 1,nc
d(ib+ic) = d(ib+ic) + c(ic) * b(ib)
enddo
enddo
do nd = ndtmp,0,-1
if (d(nd) == 0.d0) then
cycle
endif
exit
do nd = nc,0,-1
if (d(nd) /= 0.d0) exit
enddo
end
subroutine multiply_poly_b1(b,c,nc,d,nd)
implicit none
BEGIN_DOC
! Multiply two polynomials
! D(t) += B(t)*C(t)
END_DOC
integer, intent(in) :: nc
integer, intent(out) :: nd
double precision, intent(in) :: b(0:1), c(0:nc)
double precision, intent(inout) :: d(0:1+nc)
integer :: ndtmp
integer :: ib, ic, id, k
if(nc < 0) return !False if nc>=0
select case (nc)
case (0)
d(0) = d(0) + c(0) * b(0)
d(1) = d(1) + c(0) * b(1)
case (1)
d(0) = d(0) + c(0) * b(0)
d(1) = d(1) + c(0) * b(1) + c(1) * b(0)
d(2) = d(2) + c(1) * b(1)
case default
d(0) = d(0) + c(0) * b(0)
do ic = 1,nc
d(ic) = d(ic) + c(ic) * b(0) + c(ic-1) * b(1)
enddo
d(nc+1) = d(nc+1) + c(nc) * b(1)
end select
do nd = 1+nc,0,-1
if (d(nd) /= 0.d0) exit
enddo
end
subroutine multiply_poly_b2(b,c,nc,d,nd)
implicit none
BEGIN_DOC
! Multiply two polynomials
! D(t) += B(t)*C(t)
END_DOC
integer, intent(in) :: nc
integer, intent(out) :: nd
double precision, intent(in) :: b(0:2), c(0:nc)
double precision, intent(inout) :: d(0:2+nc)
integer :: ndtmp
integer :: ib, ic, id, k
if(nc < 0) return !False if nc>=0
select case (nc)
case (0)
d(0) = d(0) + c(0) * b(0)
d(1) = d(1) + c(0) * b(1)
d(2) = d(2) + c(0) * b(2)
case (1)
d(0) = d(0) + c(0) * b(0)
d(1) = d(1) + c(0) * b(1) + c(1) * b(0)
d(2) = d(2) + c(0) * b(2) + c(1) * b(1)
d(3) = d(3) + c(1) * b(2)
case (2)
d(0) = d(0) + c(0) * b(0)
d(1) = d(1) + c(0) * b(1) + c(1) * b(0)
d(2) = d(2) + c(0) * b(2) + c(1) * b(1) + c(2) * b(0)
d(3) = d(3) + c(2) * b(1) + c(1) * b(2)
d(4) = d(4) + c(2) * b(2)
case default
d(0) = d(0) + c(0) * b(0)
d(1) = d(1) + c(0) * b(1) + c(1) * b(0)
do ic = 2,nc
d(ic) = d(ic) + c(ic) * b(0) + c(ic-1) * b(1) + c(ic-2) * b(2)
enddo
d(nc+1) = d(nc+1) + c(nc) * b(1) + c(nc-1) * b(2)
d(nc+2) = d(nc+2) + c(nc) * b(2)
end select
do nd = 2+nc,0,-1
if (d(nd) /= 0.d0) exit
enddo
end
subroutine multiply_poly_c0(b,nb,c,d,nd)
implicit none
BEGIN_DOC
! Multiply two polynomials
! D(t) += B(t)*C(t)
END_DOC
integer, intent(in) :: nb
integer, intent(out) :: nd
double precision, intent(in) :: b(0:nb), c(0:0)
double precision, intent(inout) :: d(0:nb)
integer :: ndtmp
integer :: ib, ic, id, k
if(nb < 0) return !False if nb>=0
do ib=0,nb
d(ib) = d(ib) + c(0) * b(ib)
enddo
do nd = nb,0,-1
if (d(nd) /= 0.d0) exit
enddo
end
subroutine multiply_poly_c1(b,nb,c,d,nd)
implicit none
BEGIN_DOC
! Multiply two polynomials
! D(t) += B(t)*C(t)
END_DOC
integer, intent(in) :: nb
integer, intent(out) :: nd
double precision, intent(in) :: b(0:nb), c(0:1)
double precision, intent(inout) :: d(0:nb+1)
integer :: ndtmp
integer :: ib, ic, id, k
if(nb < 0) return !False if nb>=0
select case (nb)
case (0)
d(0) = d(0) + c(0) * b(0)
d(1) = d(1) + c(1) * b(0)
case (1)
d(0) = d(0) + c(0) * b(0)
d(1) = d(1) + c(0) * b(1) + c(1) * b(0)
d(2) = d(2) + c(1) * b(1)
case default
d(0) = d(0) + c(0) * b(0)
do ib=1,nb
d(ib) = d(ib) + c(0) * b(ib) + c(1) * b(ib-1)
enddo
d(nb+1) = d(nb+1) + c(1) * b(nb)
end select
do nd = nb+1,0,-1
if (d(nd) /= 0.d0) exit
enddo
end
subroutine multiply_poly_c2(b,nb,c,d,nd)
implicit none
BEGIN_DOC
! Multiply two polynomials
! D(t) += B(t)*C(t)
END_DOC
integer, intent(in) :: nb
integer, intent(out) :: nd
double precision, intent(in) :: b(0:nb), c(0:2)
double precision, intent(inout) :: d(0:nb+2)
integer :: ndtmp
integer :: ib, ic, id, k
if(nb < 0) return !False if nb>=0
select case (nb)
case (0)
d(0) = d(0) + c(0) * b(0)
d(1) = d(1) + c(1) * b(0)
d(2) = d(2) + c(2) * b(0)
case (1)
d(0) = d(0) + c(0) * b(0)
d(1) = d(1) + c(0) * b(1) + c(1) * b(0)
d(2) = d(2) + c(1) * b(1) + c(2) * b(0)
d(3) = d(3) + c(2) * b(1)
case (2)
d(0) = d(0) + c(0) * b(0)
d(1) = d(1) + c(0) * b(1) + c(1) * b(0)
d(2) = d(2) + c(0) * b(2) + c(1) * b(1) + c(2) * b(0)
d(3) = d(3) + c(1) * b(2) + c(2) * b(1)
d(4) = d(4) + c(2) * b(2)
case default
d(0) = d(0) + c(0) * b(0)
d(1) = d(1) + c(0) * b(1) + c(1) * b(0)
do ib=2,nb
d(ib) = d(ib) + c(0) * b(ib) + c(1) * b(ib-1) + c(2) * b(ib-2)
enddo
d(nb+1) = d(nb+1) + c(1) * b(nb) + c(2) * b(nb-1)
d(nb+2) = d(nb+2) + c(2) * b(nb)
end select
do nd = nb+2,0,-1
if (d(nd) /= 0.d0) exit
enddo
end
subroutine multiply_poly_v(b,nb,c,nc,d,nd,n_points)
implicit none
BEGIN_DOC

Some files were not shown because too many files have changed in this diff Show More