9
1
mirror of https://github.com/QuantumPackage/qp2.git synced 2024-11-06 21:43:39 +01:00

add one body transition density matrix

This commit is contained in:
Yann Damour 2023-03-10 20:15:29 +01:00
parent d4ea7fe7e6
commit 457af47323

View File

@ -0,0 +1,313 @@
BEGIN_PROVIDER [double precision, tr_one_e_dm_mo, (mo_num, mo_num, N_states, N_states)]
implicit none
BEGIN_DOC
! One body transition density matrix for all pairs of states n and m, < Psi^n | a_i^\dagger a_a | Psi^m >
END_DOC
integer :: j,k,l,m,k_a,k_b,n
integer :: occ(N_int*bit_kind_size,2)
double precision :: ck, cl, ckl
double precision :: phase
integer :: h1,h2,p1,p2,s1,s2, degree
integer(bit_kind) :: tmp_det(N_int,2), tmp_det2(N_int)
integer :: exc(0:2,2),n_occ(2)
double precision, allocatable :: tmp_a(:,:,:,:), tmp_b(:,:,:,:)
integer :: krow, kcol, lrow, lcol
PROVIDE psi_det
tr_one_e_dm_mo = 0d0
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP PRIVATE(j,k,k_a,k_b,l,m,occ,ck, cl, ckl,phase,h1,h2,p1,p2,s1,s2, degree,exc,&
!$OMP tmp_a, tmp_b, n_occ, krow, kcol, lrow, lcol, tmp_det, tmp_det2)&
!$OMP SHARED(psi_det,psi_coef,N_int,N_states,elec_alpha_num, &
!$OMP elec_beta_num,tr_one_e_dm_mo,N_det,&
!$OMP mo_num,psi_bilinear_matrix_rows,psi_bilinear_matrix_columns,&
!$OMP psi_bilinear_matrix_transp_rows, psi_bilinear_matrix_transp_columns,&
!$OMP psi_bilinear_matrix_order_reverse, psi_det_alpha_unique, psi_det_beta_unique,&
!$OMP psi_bilinear_matrix_values, psi_bilinear_matrix_transp_values,&
!$OMP N_det_alpha_unique,N_det_beta_unique,irp_here)
allocate(tmp_a(mo_num,mo_num,N_states,N_states), tmp_b(mo_num,mo_num,N_states,N_states) )
tmp_a = 0.d0
!$OMP DO SCHEDULE(dynamic,64)
do k_a=1,N_det
krow = psi_bilinear_matrix_rows(k_a)
ASSERT (krow <= N_det_alpha_unique)
kcol = psi_bilinear_matrix_columns(k_a)
ASSERT (kcol <= N_det_beta_unique)
tmp_det(1:N_int,1) = psi_det_alpha_unique(1:N_int,krow)
tmp_det(1:N_int,2) = psi_det_beta_unique (1:N_int,kcol)
! Diagonal part
! -------------
call bitstring_to_list_ab(tmp_det, occ, n_occ, N_int)
do m=1,N_states
do n = 1, N_states
ck = psi_bilinear_matrix_values(k_a,m)*psi_bilinear_matrix_values(k_a,n)
do l=1,elec_alpha_num
j = occ(l,1)
tmp_a(j,j,m,n) += ck
enddo
enddo
enddo
if (k_a == N_det) cycle
l = k_a+1
lrow = psi_bilinear_matrix_rows(l)
lcol = psi_bilinear_matrix_columns(l)
! Fix beta determinant, loop over alphas
do while ( lcol == kcol )
tmp_det2(:) = psi_det_alpha_unique(:, lrow)
call get_excitation_degree_spin(tmp_det(1,1),tmp_det2,degree,N_int)
if (degree == 1) then
exc = 0
call get_single_excitation_spin(tmp_det(1,1),tmp_det2,exc,phase,N_int)
call decode_exc_spin(exc,h1,p1,h2,p2)
do m=1,N_states
do n = 1, N_states
ckl = psi_bilinear_matrix_values(k_a,m)*psi_bilinear_matrix_values(l,n) * phase
tmp_a(h1,p1,m,n) += ckl
ckl = psi_bilinear_matrix_values(k_a,n)*psi_bilinear_matrix_values(l,m) * phase
tmp_a(p1,h1,m,n) += ckl
enddo
enddo
endif
l = l+1
if (l>N_det) exit
lrow = psi_bilinear_matrix_rows(l)
lcol = psi_bilinear_matrix_columns(l)
enddo
enddo
!$OMP END DO NOWAIT
!$OMP CRITICAL
tr_one_e_dm_mo(:,:,:,:) = tr_one_e_dm_mo(:,:,:,:) + tmp_a(:,:,:,:)
!$OMP END CRITICAL
deallocate(tmp_a)
!$OMP BARRIER
tmp_b = 0.d0
!$OMP DO SCHEDULE(dynamic,64)
do k_b=1,N_det
krow = psi_bilinear_matrix_transp_rows(k_b)
ASSERT (krow <= N_det_alpha_unique)
kcol = psi_bilinear_matrix_transp_columns(k_b)
ASSERT (kcol <= N_det_beta_unique)
tmp_det(1:N_int,1) = psi_det_alpha_unique(1:N_int,krow)
tmp_det(1:N_int,2) = psi_det_beta_unique (1:N_int,kcol)
! Diagonal part
! -------------
call bitstring_to_list_ab(tmp_det, occ, n_occ, N_int)
do m=1,N_states
do n = 1, N_states
ck = psi_bilinear_matrix_transp_values(k_b,m)*psi_bilinear_matrix_transp_values(k_b,n)
do l=1,elec_beta_num
j = occ(l,2)
tmp_b(j,j,m,n) += ck
enddo
enddo
enddo
if (k_b == N_det) cycle
l = k_b+1
lrow = psi_bilinear_matrix_transp_rows(l)
lcol = psi_bilinear_matrix_transp_columns(l)
! Fix beta determinant, loop over alphas
do while ( lrow == krow )
tmp_det2(:) = psi_det_beta_unique(:, lcol)
call get_excitation_degree_spin(tmp_det(1,2),tmp_det2,degree,N_int)
if (degree == 1) then
exc = 0
call get_single_excitation_spin(tmp_det(1,2),tmp_det2,exc,phase,N_int)
call decode_exc_spin(exc,h1,p1,h2,p2)
do m=1,N_states
do n = 1, N_states
ckl = psi_bilinear_matrix_transp_values(k_b,m)*psi_bilinear_matrix_transp_values(l,n) * phase
tmp_b(h1,p1,m,n) += ckl
ckl = psi_bilinear_matrix_transp_values(k_b,n)*psi_bilinear_matrix_transp_values(l,m) * phase
tmp_b(p1,h1,m,n) += ckl
enddo
enddo
endif
l = l+1
if (l>N_det) exit
lrow = psi_bilinear_matrix_transp_rows(l)
lcol = psi_bilinear_matrix_transp_columns(l)
enddo
enddo
!$OMP END DO NOWAIT
!$OMP CRITICAL
tr_one_e_dm_mo(:,:,:,:) = tr_one_e_dm_mo(:,:,:,:) + tmp_b(:,:,:,:)
!$OMP END CRITICAL
deallocate(tmp_b)
!$OMP END PARALLEL
END_PROVIDER
BEGIN_PROVIDER [ double precision, tr_one_e_dm_mo_alpha, (mo_num,mo_num,N_states,N_states) ]
&BEGIN_PROVIDER [ double precision, tr_one_e_dm_mo_beta, (mo_num,mo_num,N_states,N_states) ]
implicit none
BEGIN_DOC
! $\alpha$ and $\beta$ one-body transition density matrices for all pairs of states
END_DOC
integer :: j,k,l,m,n,k_a,k_b
integer :: occ(N_int*bit_kind_size,2)
double precision :: ck, cl, ckl
double precision :: phase
integer :: h1,h2,p1,p2,s1,s2, degree
integer(bit_kind) :: tmp_det(N_int,2), tmp_det2(N_int)
integer :: exc(0:2,2),n_occ(2)
double precision, allocatable :: tmp_a(:,:,:,:), tmp_b(:,:,:,:)
integer :: krow, kcol, lrow, lcol
PROVIDE psi_det
tr_one_e_dm_mo_alpha = 0.d0
tr_one_e_dm_mo_beta = 0.d0
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP PRIVATE(j,k,k_a,k_b,l,m,n,occ,ck, cl, ckl,phase,h1,h2,p1,p2,s1,s2, degree,exc,&
!$OMP tmp_a, tmp_b, n_occ, krow, kcol, lrow, lcol, tmp_det, tmp_det2)&
!$OMP SHARED(psi_det,psi_coef,N_int,N_states,elec_alpha_num, &
!$OMP elec_beta_num,tr_one_e_dm_mo_alpha,tr_one_e_dm_mo_beta,N_det,&
!$OMP mo_num,psi_bilinear_matrix_rows,psi_bilinear_matrix_columns,&
!$OMP psi_bilinear_matrix_transp_rows, psi_bilinear_matrix_transp_columns,&
!$OMP psi_bilinear_matrix_order_reverse, psi_det_alpha_unique, psi_det_beta_unique,&
!$OMP psi_bilinear_matrix_values, psi_bilinear_matrix_transp_values,&
!$OMP N_det_alpha_unique,N_det_beta_unique,irp_here)
allocate(tmp_a(mo_num,mo_num,N_states,N_states), tmp_b(mo_num,mo_num,N_states,N_states) )
tmp_a = 0.d0
!$OMP DO SCHEDULE(dynamic,64)
do k_a=1,N_det
krow = psi_bilinear_matrix_rows(k_a)
ASSERT (krow <= N_det_alpha_unique)
kcol = psi_bilinear_matrix_columns(k_a)
ASSERT (kcol <= N_det_beta_unique)
tmp_det(1:N_int,1) = psi_det_alpha_unique(1:N_int,krow)
tmp_det(1:N_int,2) = psi_det_beta_unique (1:N_int,kcol)
! Diagonal part
! -------------
call bitstring_to_list_ab(tmp_det, occ, n_occ, N_int)
do m=1,N_states
do n = 1, N_states
ck = psi_bilinear_matrix_values(k_a,m)*psi_bilinear_matrix_values(k_a,n)
do l=1,elec_alpha_num
j = occ(l,1)
tmp_a(j,j,m,n) += ck
enddo
enddo
enddo
if (k_a == N_det) cycle
l = k_a+1
lrow = psi_bilinear_matrix_rows(l)
lcol = psi_bilinear_matrix_columns(l)
! Fix beta determinant, loop over alphas
do while ( lcol == kcol )
tmp_det2(:) = psi_det_alpha_unique(:, lrow)
call get_excitation_degree_spin(tmp_det(1,1),tmp_det2,degree,N_int)
if (degree == 1) then
exc = 0
call get_single_excitation_spin(tmp_det(1,1),tmp_det2,exc,phase,N_int)
call decode_exc_spin(exc,h1,p1,h2,p2)
do m=1,N_states
do n = 1, N_states
ckl = psi_bilinear_matrix_values(k_a,m)*psi_bilinear_matrix_values(l,n) * phase
tmp_a(h1,p1,m,n) += ckl
tmp_a(p1,h1,m,n) += ckl
enddo
enddo
endif
l = l+1
if (l>N_det) exit
lrow = psi_bilinear_matrix_rows(l)
lcol = psi_bilinear_matrix_columns(l)
enddo
enddo
!$OMP END DO NOWAIT
!$OMP CRITICAL
tr_one_e_dm_mo_alpha(:,:,:,:) = tr_one_e_dm_mo_alpha(:,:,:,:) + tmp_a(:,:,:,:)
!$OMP END CRITICAL
deallocate(tmp_a)
tmp_b = 0.d0
!$OMP DO SCHEDULE(dynamic,64)
do k_b=1,N_det
krow = psi_bilinear_matrix_transp_rows(k_b)
ASSERT (krow <= N_det_alpha_unique)
kcol = psi_bilinear_matrix_transp_columns(k_b)
ASSERT (kcol <= N_det_beta_unique)
tmp_det(1:N_int,1) = psi_det_alpha_unique(1:N_int,krow)
tmp_det(1:N_int,2) = psi_det_beta_unique (1:N_int,kcol)
! Diagonal part
! -------------
call bitstring_to_list_ab(tmp_det, occ, n_occ, N_int)
do m=1,N_states
do n = 1, N_states
ck = psi_bilinear_matrix_transp_values(k_b,m)*psi_bilinear_matrix_transp_values(k_b,n)
do l=1,elec_beta_num
j = occ(l,2)
tmp_b(j,j,m,n) += ck
enddo
enddo
enddo
if (k_b == N_det) cycle
l = k_b+1
lrow = psi_bilinear_matrix_transp_rows(l)
lcol = psi_bilinear_matrix_transp_columns(l)
! Fix beta determinant, loop over alphas
do while ( lrow == krow )
tmp_det2(:) = psi_det_beta_unique(:, lcol)
call get_excitation_degree_spin(tmp_det(1,2),tmp_det2,degree,N_int)
if (degree == 1) then
exc = 0
call get_single_excitation_spin(tmp_det(1,2),tmp_det2,exc,phase,N_int)
call decode_exc_spin(exc,h1,p1,h2,p2)
do m=1,N_states
do n = 1, N_states
ckl = psi_bilinear_matrix_transp_values(k_b,m)*psi_bilinear_matrix_transp_values(l,n) * phase
tmp_b(h1,p1,m,n) += ckl
tmp_b(p1,h1,m,n) += ckl
enddo
enddo
endif
l = l+1
if (l>N_det) exit
lrow = psi_bilinear_matrix_transp_rows(l)
lcol = psi_bilinear_matrix_transp_columns(l)
enddo
enddo
!$OMP END DO NOWAIT
!$OMP CRITICAL
tr_one_e_dm_mo_beta(:,:,:,:) = tr_one_e_dm_mo_beta(:,:,:,:) + tmp_b(:,:,:,:)
!$OMP END CRITICAL
deallocate(tmp_b)
!$OMP END PARALLEL
END_PROVIDER