9
1
mirror of https://github.com/QuantumPackage/qp2.git synced 2024-10-31 18:53:38 +01:00

renaming in functionals/sr_pbe.irp.f

This commit is contained in:
Emmanuel Giner 2020-04-02 16:24:33 +02:00
parent 25102d79a3
commit 408af98512
2 changed files with 88 additions and 88 deletions

View File

@ -22,8 +22,8 @@ The core modules of the QP
Ex : if "exchange_functional" == "sr_pbe", then energy_x will contain the exchange correlation functional defined in "functiona/sr_pbe.irp.f", which corresponds to the short-range PBE functional (at the value mu_erf for the range separation parameter)
*** How are handled the DFT functionals in QP2 ?
================================================
*** How to add a new functional in QP2
======================================
Creating a new functional and propagating it through the whole QP2 programs is easy as all dependencies are handled by a script.

View File

@ -62,11 +62,11 @@ END_PROVIDER
do istate = 1, n_states
do i = 1, ao_num
do j = 1, ao_num
potential_x_alpha_ao_sr_pbe(j,i,istate) = pot_sr_scal_x_alpha_ao_pbe(j,i,istate) + pot_sr_grad_x_alpha_ao_pbe(j,i,istate) + pot_sr_grad_x_alpha_ao_pbe(i,j,istate)
potential_x_beta_ao_sr_pbe(j,i,istate) = pot_sr_scal_x_beta_ao_pbe(j,i,istate) + pot_sr_grad_x_beta_ao_pbe(j,i,istate) + pot_sr_grad_x_beta_ao_pbe(i,j,istate)
potential_x_alpha_ao_sr_pbe(j,i,istate) = pot_scal_x_alpha_ao_sr_pbe(j,i,istate) + pot_grad_x_alpha_ao_sr_pbe(j,i,istate) + pot_grad_x_alpha_ao_sr_pbe(i,j,istate)
potential_x_beta_ao_sr_pbe(j,i,istate) = pot_scal_x_beta_ao_sr_pbe(j,i,istate) + pot_grad_x_beta_ao_sr_pbe(j,i,istate) + pot_grad_x_beta_ao_sr_pbe(i,j,istate)
potential_c_alpha_ao_sr_pbe(j,i,istate) = pot_sr_scal_c_alpha_ao_pbe(j,i,istate) + pot_sr_grad_c_alpha_ao_pbe(j,i,istate) + pot_sr_grad_c_alpha_ao_pbe(i,j,istate)
potential_c_beta_ao_sr_pbe(j,i,istate) = pot_sr_scal_c_beta_ao_pbe(j,i,istate) + pot_sr_grad_c_beta_ao_pbe(j,i,istate) + pot_sr_grad_c_beta_ao_pbe(i,j,istate)
potential_c_alpha_ao_sr_pbe(j,i,istate) = pot_scal_c_alpha_ao_sr_pbe(j,i,istate) + pot_grad_c_alpha_ao_sr_pbe(j,i,istate) + pot_grad_c_alpha_ao_sr_pbe(i,j,istate)
potential_c_beta_ao_sr_pbe(j,i,istate) = pot_scal_c_beta_ao_sr_pbe(j,i,istate) + pot_grad_c_beta_ao_sr_pbe(j,i,istate) + pot_grad_c_beta_ao_sr_pbe(i,j,istate)
enddo
enddo
enddo
@ -83,8 +83,8 @@ END_PROVIDER
do istate = 1, n_states
do i = 1, ao_num
do j = 1, ao_num
potential_xc_alpha_ao_sr_pbe(j,i,istate) = pot_sr_scal_xc_alpha_ao_pbe(j,i,istate) + pot_sr_grad_xc_alpha_ao_pbe(j,i,istate) + pot_sr_grad_xc_alpha_ao_pbe(i,j,istate)
potential_xc_beta_ao_sr_pbe(j,i,istate) = pot_sr_scal_xc_beta_ao_pbe(j,i,istate) + pot_sr_grad_xc_beta_ao_pbe(j,i,istate) + pot_sr_grad_xc_beta_ao_pbe(i,j,istate)
potential_xc_alpha_ao_sr_pbe(j,i,istate) = pot_scal_xc_alpha_ao_sr_pbe(j,i,istate) + pot_grad_xc_alpha_ao_sr_pbe(j,i,istate) + pot_grad_xc_alpha_ao_sr_pbe(i,j,istate)
potential_xc_beta_ao_sr_pbe(j,i,istate) = pot_scal_xc_beta_ao_sr_pbe(j,i,istate) + pot_grad_xc_beta_ao_sr_pbe(j,i,istate) + pot_grad_xc_beta_ao_sr_pbe(i,j,istate)
enddo
enddo
enddo
@ -93,19 +93,19 @@ END_PROVIDER
BEGIN_PROVIDER[double precision, aos_sr_vc_alpha_pbe_w , (ao_num,n_points_final_grid,N_states)]
&BEGIN_PROVIDER[double precision, aos_sr_vc_beta_pbe_w , (ao_num,n_points_final_grid,N_states)]
&BEGIN_PROVIDER[double precision, aos_sr_vx_alpha_pbe_w , (ao_num,n_points_final_grid,N_states)]
&BEGIN_PROVIDER[double precision, aos_sr_vx_beta_pbe_w , (ao_num,n_points_final_grid,N_states)]
&BEGIN_PROVIDER[double precision, aos_dsr_vc_alpha_pbe_w , (ao_num,n_points_final_grid,N_states)]
&BEGIN_PROVIDER[double precision, aos_dsr_vc_beta_pbe_w , (ao_num,n_points_final_grid,N_states)]
&BEGIN_PROVIDER[double precision, aos_dsr_vx_alpha_pbe_w , (ao_num,n_points_final_grid,N_states)]
&BEGIN_PROVIDER[double precision, aos_dsr_vx_beta_pbe_w , (ao_num,n_points_final_grid,N_states)]
BEGIN_PROVIDER[double precision, aos_vc_alpha_sr_pbe_w , (ao_num,n_points_final_grid,N_states)]
&BEGIN_PROVIDER[double precision, aos_vc_beta_sr_pbe_w , (ao_num,n_points_final_grid,N_states)]
&BEGIN_PROVIDER[double precision, aos_vx_alpha_sr_pbe_w , (ao_num,n_points_final_grid,N_states)]
&BEGIN_PROVIDER[double precision, aos_vx_beta_sr_pbe_w , (ao_num,n_points_final_grid,N_states)]
&BEGIN_PROVIDER[double precision, aos_d_vc_alpha_sr_pbe_w , (ao_num,n_points_final_grid,N_states)]
&BEGIN_PROVIDER[double precision, aos_d_vc_beta_sr_pbe_w , (ao_num,n_points_final_grid,N_states)]
&BEGIN_PROVIDER[double precision, aos_d_vx_alpha_sr_pbe_w , (ao_num,n_points_final_grid,N_states)]
&BEGIN_PROVIDER[double precision, aos_d_vx_beta_sr_pbe_w , (ao_num,n_points_final_grid,N_states)]
implicit none
BEGIN_DOC
! intermediates to compute the sr_pbe potentials
!
! aos_sr_vxc_alpha_pbe_w(j,i) = ao_i(r_j) * (v^x_alpha(r_j) + v^c_alpha(r_j)) * W(r_j)
! aos_vxc_alpha_sr_pbe_w(j,i) = ao_i(r_j) * (v^x_alpha(r_j) + v^c_alpha(r_j)) * W(r_j)
END_DOC
integer :: istate,i,j,m
double precision :: mu,weight
@ -114,10 +114,10 @@ END_PROVIDER
double precision :: contrib_grad_xa(3),contrib_grad_xb(3),contrib_grad_ca(3),contrib_grad_cb(3)
double precision :: vc_rho_a, vc_rho_b, vx_rho_a, vx_rho_b
double precision :: vx_grad_rho_a_2, vx_grad_rho_b_2, vx_grad_rho_a_b, vc_grad_rho_a_2, vc_grad_rho_b_2, vc_grad_rho_a_b
aos_dsr_vc_alpha_pbe_w= 0.d0
aos_dsr_vc_beta_pbe_w = 0.d0
aos_dsr_vx_alpha_pbe_w= 0.d0
aos_dsr_vx_beta_pbe_w = 0.d0
aos_d_vc_alpha_sr_pbe_w= 0.d0
aos_d_vc_beta_sr_pbe_w = 0.d0
aos_d_vx_alpha_sr_pbe_w= 0.d0
aos_d_vx_beta_sr_pbe_w = 0.d0
do istate = 1, N_states
do i = 1, n_points_final_grid
weight = final_weight_at_r_vector(i)
@ -150,17 +150,17 @@ END_PROVIDER
contrib_grad_xb(m) = weight * (2.d0 * vx_grad_rho_b_2 * grad_rho_b(m) + vx_grad_rho_a_b * grad_rho_a(m) )
enddo
do j = 1, ao_num
aos_sr_vc_alpha_pbe_w(j,i,istate) = vc_rho_a * aos_in_r_array(j,i)
aos_sr_vc_beta_pbe_w (j,i,istate) = vc_rho_b * aos_in_r_array(j,i)
aos_sr_vx_alpha_pbe_w(j,i,istate) = vx_rho_a * aos_in_r_array(j,i)
aos_sr_vx_beta_pbe_w (j,i,istate) = vx_rho_b * aos_in_r_array(j,i)
aos_vc_alpha_sr_pbe_w(j,i,istate) = vc_rho_a * aos_in_r_array(j,i)
aos_vc_beta_sr_pbe_w (j,i,istate) = vc_rho_b * aos_in_r_array(j,i)
aos_vx_alpha_sr_pbe_w(j,i,istate) = vx_rho_a * aos_in_r_array(j,i)
aos_vx_beta_sr_pbe_w (j,i,istate) = vx_rho_b * aos_in_r_array(j,i)
enddo
do j = 1, ao_num
do m = 1,3
aos_dsr_vc_alpha_pbe_w(j,i,istate) += contrib_grad_ca(m) * aos_grad_in_r_array_transp_xyz(m,j,i)
aos_dsr_vc_beta_pbe_w (j,i,istate) += contrib_grad_cb(m) * aos_grad_in_r_array_transp_xyz(m,j,i)
aos_dsr_vx_alpha_pbe_w(j,i,istate) += contrib_grad_xa(m) * aos_grad_in_r_array_transp_xyz(m,j,i)
aos_dsr_vx_beta_pbe_w (j,i,istate) += contrib_grad_xb(m) * aos_grad_in_r_array_transp_xyz(m,j,i)
aos_d_vc_alpha_sr_pbe_w(j,i,istate) += contrib_grad_ca(m) * aos_grad_in_r_array_transp_xyz(m,j,i)
aos_d_vc_beta_sr_pbe_w (j,i,istate) += contrib_grad_cb(m) * aos_grad_in_r_array_transp_xyz(m,j,i)
aos_d_vx_alpha_sr_pbe_w(j,i,istate) += contrib_grad_xa(m) * aos_grad_in_r_array_transp_xyz(m,j,i)
aos_d_vx_beta_sr_pbe_w (j,i,istate) += contrib_grad_xb(m) * aos_grad_in_r_array_transp_xyz(m,j,i)
enddo
enddo
enddo
@ -169,10 +169,10 @@ END_PROVIDER
END_PROVIDER
BEGIN_PROVIDER [double precision, pot_sr_scal_x_alpha_ao_pbe, (ao_num,ao_num,N_states)]
&BEGIN_PROVIDER [double precision, pot_sr_scal_c_alpha_ao_pbe, (ao_num,ao_num,N_states)]
&BEGIN_PROVIDER [double precision, pot_sr_scal_x_beta_ao_pbe, (ao_num,ao_num,N_states)]
&BEGIN_PROVIDER [double precision, pot_sr_scal_c_beta_ao_pbe, (ao_num,ao_num,N_states)]
BEGIN_PROVIDER [double precision, pot_scal_x_alpha_ao_sr_pbe, (ao_num,ao_num,N_states)]
&BEGIN_PROVIDER [double precision, pot_scal_c_alpha_ao_sr_pbe, (ao_num,ao_num,N_states)]
&BEGIN_PROVIDER [double precision, pot_scal_x_beta_ao_sr_pbe, (ao_num,ao_num,N_states)]
&BEGIN_PROVIDER [double precision, pot_scal_c_beta_ao_sr_pbe, (ao_num,ao_num,N_states)]
implicit none
! intermediates to compute the sr_pbe potentials
!
@ -180,33 +180,33 @@ END_PROVIDER
BEGIN_DOC
! intermediate quantity for the calculation of the vxc potentials for the GGA functionals related to the scalar part of the potential
END_DOC
pot_sr_scal_c_alpha_ao_pbe = 0.d0
pot_sr_scal_x_alpha_ao_pbe = 0.d0
pot_sr_scal_c_beta_ao_pbe = 0.d0
pot_sr_scal_x_beta_ao_pbe = 0.d0
pot_scal_c_alpha_ao_sr_pbe = 0.d0
pot_scal_x_alpha_ao_sr_pbe = 0.d0
pot_scal_c_beta_ao_sr_pbe = 0.d0
pot_scal_x_beta_ao_sr_pbe = 0.d0
double precision :: wall_1,wall_2
call wall_time(wall_1)
do istate = 1, N_states
! correlation alpha
call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, &
aos_sr_vc_alpha_pbe_w(1,1,istate),size(aos_sr_vc_alpha_pbe_w,1), &
aos_vc_alpha_sr_pbe_w(1,1,istate),size(aos_vc_alpha_sr_pbe_w,1), &
aos_in_r_array,size(aos_in_r_array,1),1.d0, &
pot_sr_scal_c_alpha_ao_pbe(1,1,istate),size(pot_sr_scal_c_alpha_ao_pbe,1))
pot_scal_c_alpha_ao_sr_pbe(1,1,istate),size(pot_scal_c_alpha_ao_sr_pbe,1))
! correlation beta
call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, &
aos_sr_vc_beta_pbe_w(1,1,istate),size(aos_sr_vc_beta_pbe_w,1), &
aos_vc_beta_sr_pbe_w(1,1,istate),size(aos_vc_beta_sr_pbe_w,1), &
aos_in_r_array,size(aos_in_r_array,1),1.d0, &
pot_sr_scal_c_beta_ao_pbe(1,1,istate),size(pot_sr_scal_c_beta_ao_pbe,1))
pot_scal_c_beta_ao_sr_pbe(1,1,istate),size(pot_scal_c_beta_ao_sr_pbe,1))
! exchange alpha
call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, &
aos_sr_vx_alpha_pbe_w(1,1,istate),size(aos_sr_vx_alpha_pbe_w,1), &
aos_vx_alpha_sr_pbe_w(1,1,istate),size(aos_vx_alpha_sr_pbe_w,1), &
aos_in_r_array,size(aos_in_r_array,1),1.d0, &
pot_sr_scal_x_alpha_ao_pbe(1,1,istate),size(pot_sr_scal_x_alpha_ao_pbe,1))
pot_scal_x_alpha_ao_sr_pbe(1,1,istate),size(pot_scal_x_alpha_ao_sr_pbe,1))
! exchange beta
call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, &
aos_sr_vx_beta_pbe_w(1,1,istate),size(aos_sr_vx_beta_pbe_w,1), &
aos_vx_beta_sr_pbe_w(1,1,istate),size(aos_vx_beta_sr_pbe_w,1), &
aos_in_r_array,size(aos_in_r_array,1),1.d0, &
pot_sr_scal_x_beta_ao_pbe(1,1,istate), size(pot_sr_scal_x_beta_ao_pbe,1))
pot_scal_x_beta_ao_sr_pbe(1,1,istate), size(pot_scal_x_beta_ao_sr_pbe,1))
enddo
call wall_time(wall_2)
@ -214,10 +214,10 @@ END_PROVIDER
END_PROVIDER
BEGIN_PROVIDER [double precision, pot_sr_grad_x_alpha_ao_pbe,(ao_num,ao_num,N_states)]
&BEGIN_PROVIDER [double precision, pot_sr_grad_x_beta_ao_pbe,(ao_num,ao_num,N_states)]
&BEGIN_PROVIDER [double precision, pot_sr_grad_c_alpha_ao_pbe,(ao_num,ao_num,N_states)]
&BEGIN_PROVIDER [double precision, pot_sr_grad_c_beta_ao_pbe,(ao_num,ao_num,N_states)]
BEGIN_PROVIDER [double precision, pot_grad_x_alpha_ao_sr_pbe,(ao_num,ao_num,N_states)]
&BEGIN_PROVIDER [double precision, pot_grad_x_beta_ao_sr_pbe,(ao_num,ao_num,N_states)]
&BEGIN_PROVIDER [double precision, pot_grad_c_alpha_ao_sr_pbe,(ao_num,ao_num,N_states)]
&BEGIN_PROVIDER [double precision, pot_grad_c_beta_ao_sr_pbe,(ao_num,ao_num,N_states)]
implicit none
BEGIN_DOC
! intermediate quantity for the calculation of the vxc potentials for the GGA functionals related to the gradienst of the density and orbitals
@ -225,31 +225,31 @@ END_PROVIDER
integer :: istate
double precision :: wall_1,wall_2
call wall_time(wall_1)
pot_sr_grad_c_alpha_ao_pbe = 0.d0
pot_sr_grad_x_alpha_ao_pbe = 0.d0
pot_sr_grad_c_beta_ao_pbe = 0.d0
pot_sr_grad_x_beta_ao_pbe = 0.d0
pot_grad_c_alpha_ao_sr_pbe = 0.d0
pot_grad_x_alpha_ao_sr_pbe = 0.d0
pot_grad_c_beta_ao_sr_pbe = 0.d0
pot_grad_x_beta_ao_sr_pbe = 0.d0
do istate = 1, N_states
! correlation alpha
call dgemm('N','N',ao_num,ao_num,n_points_final_grid,1.d0, &
aos_dsr_vc_alpha_pbe_w(1,1,istate),size(aos_dsr_vc_alpha_pbe_w,1), &
aos_d_vc_alpha_sr_pbe_w(1,1,istate),size(aos_d_vc_alpha_sr_pbe_w,1), &
aos_in_r_array_transp,size(aos_in_r_array_transp,1),1.d0, &
pot_sr_grad_c_alpha_ao_pbe(1,1,istate),size(pot_sr_grad_c_alpha_ao_pbe,1))
pot_grad_c_alpha_ao_sr_pbe(1,1,istate),size(pot_grad_c_alpha_ao_sr_pbe,1))
! correlation beta
call dgemm('N','N',ao_num,ao_num,n_points_final_grid,1.d0, &
aos_dsr_vc_beta_pbe_w(1,1,istate),size(aos_dsr_vc_beta_pbe_w,1), &
aos_d_vc_beta_sr_pbe_w(1,1,istate),size(aos_d_vc_beta_sr_pbe_w,1), &
aos_in_r_array_transp,size(aos_in_r_array_transp,1),1.d0, &
pot_sr_grad_c_beta_ao_pbe(1,1,istate),size(pot_sr_grad_c_beta_ao_pbe,1))
pot_grad_c_beta_ao_sr_pbe(1,1,istate),size(pot_grad_c_beta_ao_sr_pbe,1))
! exchange alpha
call dgemm('N','N',ao_num,ao_num,n_points_final_grid,1.d0, &
aos_dsr_vx_alpha_pbe_w(1,1,istate),size(aos_dsr_vx_alpha_pbe_w,1), &
aos_d_vx_alpha_sr_pbe_w(1,1,istate),size(aos_d_vx_alpha_sr_pbe_w,1), &
aos_in_r_array_transp,size(aos_in_r_array_transp,1),1.d0, &
pot_sr_grad_x_alpha_ao_pbe(1,1,istate),size(pot_sr_grad_x_alpha_ao_pbe,1))
pot_grad_x_alpha_ao_sr_pbe(1,1,istate),size(pot_grad_x_alpha_ao_sr_pbe,1))
! exchange beta
call dgemm('N','N',ao_num,ao_num,n_points_final_grid,1.d0, &
aos_dsr_vx_beta_pbe_w(1,1,istate),size(aos_dsr_vx_beta_pbe_w,1), &
aos_d_vx_beta_sr_pbe_w(1,1,istate),size(aos_d_vx_beta_sr_pbe_w,1), &
aos_in_r_array_transp,size(aos_in_r_array_transp,1),1.d0, &
pot_sr_grad_x_beta_ao_pbe(1,1,istate),size(pot_sr_grad_x_beta_ao_pbe,1))
pot_grad_x_beta_ao_sr_pbe(1,1,istate),size(pot_grad_x_beta_ao_sr_pbe,1))
enddo
call wall_time(wall_2)
@ -257,13 +257,13 @@ END_PROVIDER
END_PROVIDER
BEGIN_PROVIDER[double precision, aos_sr_vxc_alpha_pbe_w , (ao_num,n_points_final_grid,N_states)]
&BEGIN_PROVIDER[double precision, aos_sr_vxc_beta_pbe_w , (ao_num,n_points_final_grid,N_states)]
&BEGIN_PROVIDER[double precision, aos_dsr_vxc_alpha_pbe_w , (ao_num,n_points_final_grid,N_states)]
&BEGIN_PROVIDER[double precision, aos_dsr_vxc_beta_pbe_w , (ao_num,n_points_final_grid,N_states)]
BEGIN_PROVIDER[double precision, aos_vxc_alpha_sr_pbe_w , (ao_num,n_points_final_grid,N_states)]
&BEGIN_PROVIDER[double precision, aos_vxc_beta_sr_pbe_w , (ao_num,n_points_final_grid,N_states)]
&BEGIN_PROVIDER[double precision, aos_d_vxc_alpha_sr_pbe_w , (ao_num,n_points_final_grid,N_states)]
&BEGIN_PROVIDER[double precision, aos_d_vxc_beta_sr_pbe_w , (ao_num,n_points_final_grid,N_states)]
implicit none
BEGIN_DOC
! aos_sr_vxc_alpha_pbe_w(j,i) = ao_i(r_j) * (v^x_alpha(r_j) + v^c_alpha(r_j)) * W(r_j)
! aos_vxc_alpha_sr_pbe_w(j,i) = ao_i(r_j) * (v^x_alpha(r_j) + v^c_alpha(r_j)) * W(r_j)
END_DOC
integer :: istate,i,j,m
double precision :: mu,weight
@ -273,8 +273,8 @@ END_PROVIDER
double precision :: vc_rho_a, vc_rho_b, vx_rho_a, vx_rho_b
double precision :: vx_grad_rho_a_2, vx_grad_rho_b_2, vx_grad_rho_a_b, vc_grad_rho_a_2, vc_grad_rho_b_2, vc_grad_rho_a_b
aos_dsr_vxc_alpha_pbe_w = 0.d0
aos_dsr_vxc_beta_pbe_w = 0.d0
aos_d_vxc_alpha_sr_pbe_w = 0.d0
aos_d_vxc_beta_sr_pbe_w = 0.d0
do istate = 1, N_states
do i = 1, n_points_final_grid
@ -307,13 +307,13 @@ END_PROVIDER
contrib_grad_xb(m) = weight * (2.d0 * vx_grad_rho_b_2 * grad_rho_b(m) + vx_grad_rho_a_b * grad_rho_a(m) )
enddo
do j = 1, ao_num
aos_sr_vxc_alpha_pbe_w(j,i,istate) = ( vc_rho_a + vx_rho_a ) * aos_in_r_array(j,i)
aos_sr_vxc_beta_pbe_w (j,i,istate) = ( vc_rho_b + vx_rho_b ) * aos_in_r_array(j,i)
aos_vxc_alpha_sr_pbe_w(j,i,istate) = ( vc_rho_a + vx_rho_a ) * aos_in_r_array(j,i)
aos_vxc_beta_sr_pbe_w (j,i,istate) = ( vc_rho_b + vx_rho_b ) * aos_in_r_array(j,i)
enddo
do j = 1, ao_num
do m = 1,3
aos_dsr_vxc_alpha_pbe_w(j,i,istate) += ( contrib_grad_ca(m) + contrib_grad_xa(m) ) * aos_grad_in_r_array_transp_xyz(m,j,i)
aos_dsr_vxc_beta_pbe_w (j,i,istate) += ( contrib_grad_cb(m) + contrib_grad_xb(m) ) * aos_grad_in_r_array_transp_xyz(m,j,i)
aos_d_vxc_alpha_sr_pbe_w(j,i,istate) += ( contrib_grad_ca(m) + contrib_grad_xa(m) ) * aos_grad_in_r_array_transp_xyz(m,j,i)
aos_d_vxc_beta_sr_pbe_w (j,i,istate) += ( contrib_grad_cb(m) + contrib_grad_xb(m) ) * aos_grad_in_r_array_transp_xyz(m,j,i)
enddo
enddo
enddo
@ -322,36 +322,36 @@ END_PROVIDER
END_PROVIDER
BEGIN_PROVIDER [double precision, pot_sr_scal_xc_alpha_ao_pbe, (ao_num,ao_num,N_states)]
&BEGIN_PROVIDER [double precision, pot_sr_scal_xc_beta_ao_pbe, (ao_num,ao_num,N_states)]
BEGIN_PROVIDER [double precision, pot_scal_xc_alpha_ao_sr_pbe, (ao_num,ao_num,N_states)]
&BEGIN_PROVIDER [double precision, pot_scal_xc_beta_ao_sr_pbe, (ao_num,ao_num,N_states)]
implicit none
integer :: istate
BEGIN_DOC
! intermediate quantity for the calculation of the vxc potentials for the GGA functionals related to the scalar part of the potential
END_DOC
pot_sr_scal_xc_alpha_ao_pbe = 0.d0
pot_sr_scal_xc_beta_ao_pbe = 0.d0
pot_scal_xc_alpha_ao_sr_pbe = 0.d0
pot_scal_xc_beta_ao_sr_pbe = 0.d0
double precision :: wall_1,wall_2
call wall_time(wall_1)
do istate = 1, N_states
! exchange - correlation alpha
call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, &
aos_sr_vxc_alpha_pbe_w(1,1,istate),size(aos_sr_vxc_alpha_pbe_w,1), &
aos_vxc_alpha_sr_pbe_w(1,1,istate),size(aos_vxc_alpha_sr_pbe_w,1), &
aos_in_r_array,size(aos_in_r_array,1),1.d0, &
pot_sr_scal_xc_alpha_ao_pbe(1,1,istate),size(pot_sr_scal_xc_alpha_ao_pbe,1))
pot_scal_xc_alpha_ao_sr_pbe(1,1,istate),size(pot_scal_xc_alpha_ao_sr_pbe,1))
! exchange - correlation beta
call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, &
aos_sr_vxc_beta_pbe_w(1,1,istate),size(aos_sr_vxc_beta_pbe_w,1), &
aos_vxc_beta_sr_pbe_w(1,1,istate),size(aos_vxc_beta_sr_pbe_w,1), &
aos_in_r_array,size(aos_in_r_array,1),1.d0, &
pot_sr_scal_xc_beta_ao_pbe(1,1,istate),size(pot_sr_scal_xc_beta_ao_pbe,1))
pot_scal_xc_beta_ao_sr_pbe(1,1,istate),size(pot_scal_xc_beta_ao_sr_pbe,1))
enddo
call wall_time(wall_2)
END_PROVIDER
BEGIN_PROVIDER [double precision, pot_sr_grad_xc_alpha_ao_pbe,(ao_num,ao_num,N_states)]
&BEGIN_PROVIDER [double precision, pot_sr_grad_xc_beta_ao_pbe,(ao_num,ao_num,N_states)]
BEGIN_PROVIDER [double precision, pot_grad_xc_alpha_ao_sr_pbe,(ao_num,ao_num,N_states)]
&BEGIN_PROVIDER [double precision, pot_grad_xc_beta_ao_sr_pbe,(ao_num,ao_num,N_states)]
implicit none
BEGIN_DOC
! intermediate quantity for the calculation of the vxc potentials for the GGA functionals related to the gradienst of the density and orbitals
@ -359,19 +359,19 @@ END_PROVIDER
integer :: istate
double precision :: wall_1,wall_2
call wall_time(wall_1)
pot_sr_grad_xc_alpha_ao_pbe = 0.d0
pot_sr_grad_xc_beta_ao_pbe = 0.d0
pot_grad_xc_alpha_ao_sr_pbe = 0.d0
pot_grad_xc_beta_ao_sr_pbe = 0.d0
do istate = 1, N_states
! exchange - correlation alpha
call dgemm('N','N',ao_num,ao_num,n_points_final_grid,1.d0, &
aos_dsr_vxc_alpha_pbe_w(1,1,istate),size(aos_dsr_vxc_alpha_pbe_w,1), &
aos_d_vxc_alpha_sr_pbe_w(1,1,istate),size(aos_d_vxc_alpha_sr_pbe_w,1), &
aos_in_r_array_transp,size(aos_in_r_array_transp,1),1.d0, &
pot_sr_grad_xc_alpha_ao_pbe(1,1,istate),size(pot_sr_grad_xc_alpha_ao_pbe,1))
pot_grad_xc_alpha_ao_sr_pbe(1,1,istate),size(pot_grad_xc_alpha_ao_sr_pbe,1))
! exchange - correlation beta
call dgemm('N','N',ao_num,ao_num,n_points_final_grid,1.d0, &
aos_dsr_vxc_beta_pbe_w(1,1,istate),size(aos_dsr_vxc_beta_pbe_w,1), &
aos_d_vxc_beta_sr_pbe_w(1,1,istate),size(aos_d_vxc_beta_sr_pbe_w,1), &
aos_in_r_array_transp,size(aos_in_r_array_transp,1),1.d0, &
pot_sr_grad_xc_beta_ao_pbe(1,1,istate),size(pot_sr_grad_xc_beta_ao_pbe,1))
pot_grad_xc_beta_ao_sr_pbe(1,1,istate),size(pot_grad_xc_beta_ao_sr_pbe,1))
enddo
call wall_time(wall_2)