diff --git a/src/casscf/test_two_rdm.irp.f b/src/casscf/test_two_rdm.irp.f index 562d15a6..f2afdb25 100644 --- a/src/casscf/test_two_rdm.irp.f +++ b/src/casscf/test_two_rdm.irp.f @@ -8,11 +8,11 @@ program print_two_rdm double precision :: accu,twodm accu = 0.d0 - do i=1,mo_num - do j=1,mo_num - do k=1,mo_num - do l=1,mo_num - twodm = coussin_peter_two_rdm_mo(i,j,k,l,1) + do i=1,n_act_orb + do j=1,n_act_orb + do k=1,n_act_orb + do l=1,n_act_orb + twodm = coussin_peter_two_rdm_mo(list_act(i),list_act(j),list_act(k),list_act(l),1) if(dabs(twodm - P0tuvx(i,j,k,l)).gt.thr)then print*,'' print*,'sum' diff --git a/src/two_body_rdm/README.rst b/src/two_body_rdm/README.rst index 1318bb43..ea5839e8 100644 --- a/src/two_body_rdm/README.rst +++ b/src/two_body_rdm/README.rst @@ -2,5 +2,7 @@ two_body_rdm ============ -Contains the two rdms (aa,bb,ab) stored as plain arrays +Contains the two rdms $\alpha\alpha$, $\beta\beta$ and $\alpha\beta$ stored as +maps, with pysicists notation, consistent with the two-electron integrals in the +MO basis. diff --git a/src/two_body_rdm/all_2rdm_routines.irp.f b/src/two_body_rdm/all_2rdm_routines.irp.f index 6536e382..75d71ded 100644 --- a/src/two_body_rdm/all_2rdm_routines.irp.f +++ b/src/two_body_rdm/all_2rdm_routines.irp.f @@ -1,443 +1,442 @@ - - subroutine all_two_rdm_dm_nstates_openmp(big_array_aa,big_array_bb,big_array_ab,dim1,dim2,dim3,dim4,u_0,N_st,sze) - use bitmasks - implicit none - BEGIN_DOC - ! Computes v_0 = H|u_0> and s_0 = S^2 |u_0> - ! - ! Assumes that the determinants are in psi_det - ! - ! istart, iend, ishift, istep are used in ZMQ parallelization. - END_DOC - integer, intent(in) :: N_st,sze - integer, intent(in) :: dim1,dim2,dim3,dim4 - double precision, intent(inout) :: big_array_aa(dim1,dim2,dim3,dim4,N_states) - double precision, intent(inout) :: big_array_bb(dim1,dim2,dim3,dim4,N_states) - double precision, intent(inout) :: big_array_ab(dim1,dim2,dim3,dim4,N_states) - double precision, intent(inout) :: u_0(sze,N_st) - integer :: k - double precision, allocatable :: u_t(:,:) - !DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: u_t - allocate(u_t(N_st,N_det)) - do k=1,N_st - call dset_order(u_0(1,k),psi_bilinear_matrix_order,N_det) - enddo - call dtranspose( & - u_0, & - size(u_0, 1), & - u_t, & - size(u_t, 1), & - N_det, N_st) - - call all_two_rdm_dm_nstates_openmp_work(big_array_aa,big_array_bb,big_array_ab,dim1,dim2,dim3,dim4,u_t,N_st,sze,1,N_det,0,1) - deallocate(u_t) - - do k=1,N_st - call dset_order(u_0(1,k),psi_bilinear_matrix_order_reverse,N_det) - enddo - - end - - - subroutine all_two_rdm_dm_nstates_openmp_work(big_array_aa,big_array_bb,big_array_ab,dim1,dim2,dim3,dim4,u_t,N_st,sze,istart,iend,ishift,istep) - use bitmasks - implicit none - BEGIN_DOC - ! Computes two-rdm - ! - ! Default should be 1,N_det,0,1 - END_DOC - integer, intent(in) :: N_st,sze,istart,iend,ishift,istep - integer, intent(in) :: dim1,dim2,dim3,dim4 - double precision, intent(inout) :: big_array_aa(dim1,dim2,dim3,dim4,N_states) - double precision, intent(inout) :: big_array_bb(dim1,dim2,dim3,dim4,N_states) - double precision, intent(inout) :: big_array_ab(dim1,dim2,dim3,dim4,N_states) - double precision, intent(in) :: u_t(N_st,N_det) - - - PROVIDE N_int - - select case (N_int) - case (1) - call all_two_rdm_dm_nstates_openmp_work_1(big_array_aa,big_array_bb,big_array_ab,dim1,dim2,dim3,dim4,u_t,N_st,sze,istart,iend,ishift,istep) - case (2) - call all_two_rdm_dm_nstates_openmp_work_2(big_array_aa,big_array_bb,big_array_ab,dim1,dim2,dim3,dim4,u_t,N_st,sze,istart,iend,ishift,istep) - case (3) - call all_two_rdm_dm_nstates_openmp_work_3(big_array_aa,big_array_bb,big_array_ab,dim1,dim2,dim3,dim4,u_t,N_st,sze,istart,iend,ishift,istep) - case (4) - call all_two_rdm_dm_nstates_openmp_work_4(big_array_aa,big_array_bb,big_array_ab,dim1,dim2,dim3,dim4,u_t,N_st,sze,istart,iend,ishift,istep) - case default - call all_two_rdm_dm_nstates_openmp_work_N_int(big_array_aa,big_array_bb,big_array_ab,dim1,dim2,dim3,dim4,u_t,N_st,sze,istart,iend,ishift,istep) - end select - end - -BEGIN_TEMPLATE - +subroutine all_two_rdm_dm_nstates_openmp(big_array_aa,big_array_bb,big_array_ab,dim1,dim2,dim3,dim4,u_0,N_st,sze) + use bitmasks + implicit none + BEGIN_DOC + ! Computes v_0 = H|u_0> and s_0 = S^2 |u_0> + ! + ! Assumes that the determinants are in psi_det + ! + ! istart, iend, ishift, istep are used in ZMQ parallelization. + END_DOC + integer, intent(in) :: N_st,sze + integer, intent(in) :: dim1,dim2,dim3,dim4 + double precision, intent(inout) :: big_array_aa(dim1,dim2,dim3,dim4,N_states) + double precision, intent(inout) :: big_array_bb(dim1,dim2,dim3,dim4,N_states) + double precision, intent(inout) :: big_array_ab(dim1,dim2,dim3,dim4,N_states) + double precision, intent(inout) :: u_0(sze,N_st) + integer :: k + double precision, allocatable :: u_t(:,:) + !DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: u_t + allocate(u_t(N_st,N_det)) + do k=1,N_st + call dset_order(u_0(1,k),psi_bilinear_matrix_order,N_det) + enddo + call dtranspose( & + u_0, & + size(u_0, 1), & + u_t, & + size(u_t, 1), & + N_det, N_st) + + call all_two_rdm_dm_nstates_openmp_work(big_array_aa,big_array_bb,big_array_ab,dim1,dim2,dim3,dim4,u_t,N_st,sze,1,N_det,0,1) + deallocate(u_t) + + do k=1,N_st + call dset_order(u_0(1,k),psi_bilinear_matrix_order_reverse,N_det) + enddo + +end + + +subroutine all_two_rdm_dm_nstates_openmp_work(big_array_aa,big_array_bb,big_array_ab,dim1,dim2,dim3,dim4,u_t,N_st,sze,istart,iend,ishift,istep) + use bitmasks + implicit none + BEGIN_DOC + ! Computes two-rdm + ! + ! Default should be 1,N_det,0,1 + END_DOC + integer, intent(in) :: N_st,sze,istart,iend,ishift,istep + integer, intent(in) :: dim1,dim2,dim3,dim4 + double precision, intent(inout) :: big_array_aa(dim1,dim2,dim3,dim4,N_states) + double precision, intent(inout) :: big_array_bb(dim1,dim2,dim3,dim4,N_states) + double precision, intent(inout) :: big_array_ab(dim1,dim2,dim3,dim4,N_states) + double precision, intent(in) :: u_t(N_st,N_det) + + + PROVIDE N_int + + select case (N_int) + case (1) + call all_two_rdm_dm_nstates_openmp_work_1(big_array_aa,big_array_bb,big_array_ab,dim1,dim2,dim3,dim4,u_t,N_st,sze,istart,iend,ishift,istep) + case (2) + call all_two_rdm_dm_nstates_openmp_work_2(big_array_aa,big_array_bb,big_array_ab,dim1,dim2,dim3,dim4,u_t,N_st,sze,istart,iend,ishift,istep) + case (3) + call all_two_rdm_dm_nstates_openmp_work_3(big_array_aa,big_array_bb,big_array_ab,dim1,dim2,dim3,dim4,u_t,N_st,sze,istart,iend,ishift,istep) + case (4) + call all_two_rdm_dm_nstates_openmp_work_4(big_array_aa,big_array_bb,big_array_ab,dim1,dim2,dim3,dim4,u_t,N_st,sze,istart,iend,ishift,istep) + case default + call all_two_rdm_dm_nstates_openmp_work_N_int(big_array_aa,big_array_bb,big_array_ab,dim1,dim2,dim3,dim4,u_t,N_st,sze,istart,iend,ishift,istep) + end select +end + + BEGIN_TEMPLATE + subroutine all_two_rdm_dm_nstates_openmp_work_$N_int(big_array_aa,big_array_bb,big_array_ab,dim1,dim2,dim3,dim4,u_t,N_st,sze,istart,iend,ishift,istep) - use bitmasks - implicit none - BEGIN_DOC - ! Computes $v_t = H | u_t \\rangle$ and $s_t = S^2 | u_t \\rangle$ - ! - ! Default should be 1,N_det,0,1 - END_DOC - integer, intent(in) :: N_st,sze,istart,iend,ishift,istep - double precision, intent(in) :: u_t(N_st,N_det) - integer, intent(in) :: dim1,dim2,dim3,dim4 - double precision, intent(inout) :: big_array_aa(dim1,dim2,dim3,dim4,N_states) - double precision, intent(inout) :: big_array_bb(dim1,dim2,dim3,dim4,N_states) - double precision, intent(inout) :: big_array_ab(dim1,dim2,dim3,dim4,N_states) - - integer :: i,j,k,l - integer :: k_a, k_b, l_a, l_b, m_a, m_b - integer :: istate - integer :: krow, kcol, krow_b, kcol_b - integer :: lrow, lcol - integer :: mrow, mcol - integer(bit_kind) :: spindet($N_int) - integer(bit_kind) :: tmp_det($N_int,2) - integer(bit_kind) :: tmp_det2($N_int,2) - integer(bit_kind) :: tmp_det3($N_int,2) - integer(bit_kind), allocatable :: buffer(:,:) - integer :: n_doubles - integer, allocatable :: doubles(:) - integer, allocatable :: singles_a(:) - integer, allocatable :: singles_b(:) - integer, allocatable :: idx(:), idx0(:) - integer :: maxab, n_singles_a, n_singles_b, kcol_prev - integer*8 :: k8 - - maxab = max(N_det_alpha_unique, N_det_beta_unique)+1 - allocate(idx0(maxab)) - - do i=1,maxab - idx0(i) = i - enddo - - ! Prepare the array of all alpha single excitations - ! ------------------------------------------------- - - PROVIDE N_int nthreads_davidson - !!$OMP PARALLEL DEFAULT(NONE) NUM_THREADS(nthreads_davidson) & - ! !$OMP SHARED(psi_bilinear_matrix_rows, N_det, & - ! !$OMP psi_bilinear_matrix_columns, & - ! !$OMP psi_det_alpha_unique, psi_det_beta_unique, & - ! !$OMP n_det_alpha_unique, n_det_beta_unique, N_int, & - ! !$OMP psi_bilinear_matrix_transp_rows, & - ! !$OMP psi_bilinear_matrix_transp_columns, & - ! !$OMP psi_bilinear_matrix_transp_order, N_st, & - ! !$OMP psi_bilinear_matrix_order_transp_reverse, & - ! !$OMP psi_bilinear_matrix_columns_loc, & - ! !$OMP psi_bilinear_matrix_transp_rows_loc, & - ! !$OMP istart, iend, istep, irp_here, v_t, s_t, & - ! !$OMP ishift, idx0, u_t, maxab) & - ! !$OMP PRIVATE(krow, kcol, tmp_det, spindet, k_a, k_b, i, & - ! !$OMP lcol, lrow, l_a, l_b, & - ! !$OMP buffer, doubles, n_doubles, & - ! !$OMP tmp_det2, idx, l, kcol_prev, & - ! !$OMP singles_a, n_singles_a, singles_b, & - ! !$OMP n_singles_b, k8) - - ! Alpha/Beta double excitations - ! ============================= - - allocate( buffer($N_int,maxab), & - singles_a(maxab), & - singles_b(maxab), & - doubles(maxab), & - idx(maxab)) - - kcol_prev=-1 - - ASSERT (iend <= N_det) - ASSERT (istart > 0) - ASSERT (istep > 0) - - !!$OMP DO SCHEDULE(dynamic,64) - do k_a=istart+ishift,iend,istep - - krow = psi_bilinear_matrix_rows(k_a) - ASSERT (krow <= N_det_alpha_unique) - - kcol = psi_bilinear_matrix_columns(k_a) - ASSERT (kcol <= N_det_beta_unique) - - tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow) - tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol) - - if (kcol /= kcol_prev) then - call get_all_spin_singles_$N_int( & - psi_det_beta_unique, idx0, & - tmp_det(1,2), N_det_beta_unique, & - singles_b, n_singles_b) - endif - kcol_prev = kcol - - ! Loop over singly excited beta columns - ! ------------------------------------- - - do i=1,n_singles_b - lcol = singles_b(i) - - tmp_det2(1:$N_int,2) = psi_det_beta_unique(1:$N_int, lcol) - - l_a = psi_bilinear_matrix_columns_loc(lcol) - ASSERT (l_a <= N_det) - - do j=1,psi_bilinear_matrix_columns_loc(lcol+1) - l_a - lrow = psi_bilinear_matrix_rows(l_a) - ASSERT (lrow <= N_det_alpha_unique) - - buffer(1:$N_int,j) = psi_det_alpha_unique(1:$N_int, lrow) - - ASSERT (l_a <= N_det) - idx(j) = l_a - l_a = l_a+1 - enddo - j = j-1 - - call get_all_spin_singles_$N_int( & - buffer, idx, tmp_det(1,1), j, & - singles_a, n_singles_a ) - - ! Loop over alpha singles - ! ----------------------- - - do k = 1,n_singles_a - l_a = singles_a(k) - ASSERT (l_a <= N_det) - - lrow = psi_bilinear_matrix_rows(l_a) - ASSERT (lrow <= N_det_alpha_unique) - - tmp_det2(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, lrow) - !call i_H_j_double_alpha_beta(tmp_det,tmp_det2,$N_int,hij) - do l= 1, N_states + use bitmasks + implicit none + BEGIN_DOC + ! Computes $v_t = H | u_t \\rangle$ and $s_t = S^2 | u_t \\rangle$ + ! + ! Default should be 1,N_det,0,1 + END_DOC + integer, intent(in) :: N_st,sze,istart,iend,ishift,istep + double precision, intent(in) :: u_t(N_st,N_det) + integer, intent(in) :: dim1,dim2,dim3,dim4 + double precision, intent(inout) :: big_array_aa(dim1,dim2,dim3,dim4,N_states) + double precision, intent(inout) :: big_array_bb(dim1,dim2,dim3,dim4,N_states) + double precision, intent(inout) :: big_array_ab(dim1,dim2,dim3,dim4,N_states) + + integer :: i,j,k,l + integer :: k_a, k_b, l_a, l_b, m_a, m_b + integer :: istate + integer :: krow, kcol, krow_b, kcol_b + integer :: lrow, lcol + integer :: mrow, mcol + integer(bit_kind) :: spindet($N_int) + integer(bit_kind) :: tmp_det($N_int,2) + integer(bit_kind) :: tmp_det2($N_int,2) + integer(bit_kind) :: tmp_det3($N_int,2) + integer(bit_kind), allocatable :: buffer(:,:) + integer :: n_doubles + integer, allocatable :: doubles(:) + integer, allocatable :: singles_a(:) + integer, allocatable :: singles_b(:) + integer, allocatable :: idx(:), idx0(:) + integer :: maxab, n_singles_a, n_singles_b, kcol_prev + integer*8 :: k8 + + maxab = max(N_det_alpha_unique, N_det_beta_unique)+1 + allocate(idx0(maxab)) + + do i=1,maxab + idx0(i) = i + enddo + + ! Prepare the array of all alpha single excitations + ! ------------------------------------------------- + + PROVIDE N_int nthreads_davidson + !!$OMP PARALLEL DEFAULT(NONE) NUM_THREADS(nthreads_davidson) & + ! !$OMP SHARED(psi_bilinear_matrix_rows, N_det, & + ! !$OMP psi_bilinear_matrix_columns, & + ! !$OMP psi_det_alpha_unique, psi_det_beta_unique,& + ! !$OMP n_det_alpha_unique, n_det_beta_unique, N_int,& + ! !$OMP psi_bilinear_matrix_transp_rows, & + ! !$OMP psi_bilinear_matrix_transp_columns, & + ! !$OMP psi_bilinear_matrix_transp_order, N_st, & + ! !$OMP psi_bilinear_matrix_order_transp_reverse, & + ! !$OMP psi_bilinear_matrix_columns_loc, & + ! !$OMP psi_bilinear_matrix_transp_rows_loc, & + ! !$OMP istart, iend, istep, irp_here, v_t, s_t, & + ! !$OMP ishift, idx0, u_t, maxab) & + ! !$OMP PRIVATE(krow, kcol, tmp_det, spindet, k_a, k_b, i,& + ! !$OMP lcol, lrow, l_a, l_b, & + ! !$OMP buffer, doubles, n_doubles, & + ! !$OMP tmp_det2, idx, l, kcol_prev, & + ! !$OMP singles_a, n_singles_a, singles_b, & + ! !$OMP n_singles_b, k8) + + ! Alpha/Beta double excitations + ! ============================= + + allocate( buffer($N_int,maxab), & + singles_a(maxab), & + singles_b(maxab), & + doubles(maxab), & + idx(maxab)) + + kcol_prev=-1 + + ASSERT (iend <= N_det) + ASSERT (istart > 0) + ASSERT (istep > 0) + + !!$OMP DO SCHEDULE(dynamic,64) + do k_a=istart+ishift,iend,istep + + krow = psi_bilinear_matrix_rows(k_a) + ASSERT (krow <= N_det_alpha_unique) + + kcol = psi_bilinear_matrix_columns(k_a) + ASSERT (kcol <= N_det_beta_unique) + + tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow) + tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol) + + if (kcol /= kcol_prev) then + call get_all_spin_singles_$N_int( & + psi_det_beta_unique, idx0, & + tmp_det(1,2), N_det_beta_unique, & + singles_b, n_singles_b) + endif + kcol_prev = kcol + + ! Loop over singly excited beta columns + ! ------------------------------------- + + do i=1,n_singles_b + lcol = singles_b(i) + + tmp_det2(1:$N_int,2) = psi_det_beta_unique(1:$N_int, lcol) + + l_a = psi_bilinear_matrix_columns_loc(lcol) + ASSERT (l_a <= N_det) + + do j=1,psi_bilinear_matrix_columns_loc(lcol+1) - l_a + lrow = psi_bilinear_matrix_rows(l_a) + ASSERT (lrow <= N_det_alpha_unique) + + buffer(1:$N_int,j) = psi_det_alpha_unique(1:$N_int, lrow) + + ASSERT (l_a <= N_det) + idx(j) = l_a + l_a = l_a+1 + enddo + j = j-1 + + call get_all_spin_singles_$N_int( & + buffer, idx, tmp_det(1,1), j, & + singles_a, n_singles_a ) + + ! Loop over alpha singles + ! ----------------------- + + do k = 1,n_singles_a + l_a = singles_a(k) + ASSERT (l_a <= N_det) + + lrow = psi_bilinear_matrix_rows(l_a) + ASSERT (lrow <= N_det_alpha_unique) + + tmp_det2(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, lrow) + !call i_H_j_double_alpha_beta(tmp_det,tmp_det2,$N_int,hij) + do l= 1, N_states + c_1(l) = u_t(l,l_a) + c_2(l) = u_t(l,k_a) + enddo + call off_diagonal_double_to_two_rdm_ab_dm(tmp_det,tmp_det2,c_1,c_2,big_array_ab,dim1,dim2,dim3,dim4) + enddo + + enddo + + enddo + ! !$OMP END DO + + ! !$OMP DO SCHEDULE(dynamic,64) + do k_a=istart+ishift,iend,istep + + + ! Single and double alpha exitations + ! =================================== + + + ! Initial determinant is at k_a in alpha-major representation + ! ----------------------------------------------------------------------- + + krow = psi_bilinear_matrix_rows(k_a) + ASSERT (krow <= N_det_alpha_unique) + + kcol = psi_bilinear_matrix_columns(k_a) + ASSERT (kcol <= N_det_beta_unique) + + tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow) + tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol) + + ! Initial determinant is at k_b in beta-major representation + ! ---------------------------------------------------------------------- + + k_b = psi_bilinear_matrix_order_transp_reverse(k_a) + ASSERT (k_b <= N_det) + + spindet(1:$N_int) = tmp_det(1:$N_int,1) + + ! Loop inside the beta column to gather all the connected alphas + lcol = psi_bilinear_matrix_columns(k_a) + l_a = psi_bilinear_matrix_columns_loc(lcol) + do i=1,N_det_alpha_unique + if (l_a > N_det) exit + lcol = psi_bilinear_matrix_columns(l_a) + if (lcol /= kcol) exit + lrow = psi_bilinear_matrix_rows(l_a) + ASSERT (lrow <= N_det_alpha_unique) + + buffer(1:$N_int,i) = psi_det_alpha_unique(1:$N_int, lrow) + idx(i) = l_a + l_a = l_a+1 + enddo + i = i-1 + + call get_all_spin_singles_and_doubles_$N_int( & + buffer, idx, spindet, i, & + singles_a, doubles, n_singles_a, n_doubles ) + + ! Compute Hij for all alpha singles + ! ---------------------------------- + + tmp_det2(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol) + do i=1,n_singles_a + l_a = singles_a(i) + ASSERT (l_a <= N_det) + + lrow = psi_bilinear_matrix_rows(l_a) + ASSERT (lrow <= N_det_alpha_unique) + + tmp_det2(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, lrow) + do l= 1, N_states c_1(l) = u_t(l,l_a) c_2(l) = u_t(l,k_a) - enddo - call off_diagonal_double_to_two_rdm_ab_dm(tmp_det,tmp_det2,c_1,c_2,big_array_ab,dim1,dim2,dim3,dim4) - enddo - - enddo - - enddo -! !$OMP END DO - -! !$OMP DO SCHEDULE(dynamic,64) - do k_a=istart+ishift,iend,istep - - - ! Single and double alpha exitations - ! =================================== - - - ! Initial determinant is at k_a in alpha-major representation - ! ----------------------------------------------------------------------- - - krow = psi_bilinear_matrix_rows(k_a) - ASSERT (krow <= N_det_alpha_unique) - - kcol = psi_bilinear_matrix_columns(k_a) - ASSERT (kcol <= N_det_beta_unique) - - tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow) - tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol) - - ! Initial determinant is at k_b in beta-major representation - ! ---------------------------------------------------------------------- - - k_b = psi_bilinear_matrix_order_transp_reverse(k_a) - ASSERT (k_b <= N_det) - - spindet(1:$N_int) = tmp_det(1:$N_int,1) - - ! Loop inside the beta column to gather all the connected alphas - lcol = psi_bilinear_matrix_columns(k_a) - l_a = psi_bilinear_matrix_columns_loc(lcol) - do i=1,N_det_alpha_unique - if (l_a > N_det) exit - lcol = psi_bilinear_matrix_columns(l_a) - if (lcol /= kcol) exit - lrow = psi_bilinear_matrix_rows(l_a) - ASSERT (lrow <= N_det_alpha_unique) - - buffer(1:$N_int,i) = psi_det_alpha_unique(1:$N_int, lrow) - idx(i) = l_a - l_a = l_a+1 - enddo - i = i-1 - - call get_all_spin_singles_and_doubles_$N_int( & - buffer, idx, spindet, i, & - singles_a, doubles, n_singles_a, n_doubles ) - - ! Compute Hij for all alpha singles - ! ---------------------------------- - - tmp_det2(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol) - do i=1,n_singles_a - l_a = singles_a(i) - ASSERT (l_a <= N_det) - - lrow = psi_bilinear_matrix_rows(l_a) - ASSERT (lrow <= N_det_alpha_unique) - - tmp_det2(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, lrow) - do l= 1, N_states - c_1(l) = u_t(l,l_a) - c_2(l) = u_t(l,k_a) - enddo - ! increment the alpha/beta part for single excitations - call off_diagonal_single_to_two_rdm_ab_dm(tmp_det, tmp_det2,c_1,c_2,big_array_ab,dim1,dim2,dim3,dim4) - ! increment the alpha/alpha part for single excitations - call off_diagonal_single_to_two_rdm_aa_dm(tmp_det,tmp_det2,c_1,c_2,big_array_aa,dim1,dim2,dim3,dim4) - - enddo - - - ! Compute Hij for all alpha doubles - ! ---------------------------------- - - do i=1,n_doubles - l_a = doubles(i) - ASSERT (l_a <= N_det) - - lrow = psi_bilinear_matrix_rows(l_a) - ASSERT (lrow <= N_det_alpha_unique) - - do l= 1, N_states - c_1(l) = u_t(l,l_a) - c_2(l) = u_t(l,k_a) - enddo - call off_diagonal_double_to_two_rdm_aa_dm(tmp_det(1,1),psi_det_alpha_unique(1, lrow),c_1,c_2,big_array_aa,dim1,dim2,dim3,dim4) - enddo - - - ! Single and double beta excitations - ! ================================== - - - ! Initial determinant is at k_a in alpha-major representation - ! ----------------------------------------------------------------------- - - krow = psi_bilinear_matrix_rows(k_a) - kcol = psi_bilinear_matrix_columns(k_a) - - tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow) - tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol) - - spindet(1:$N_int) = tmp_det(1:$N_int,2) - - ! Initial determinant is at k_b in beta-major representation - ! ----------------------------------------------------------------------- - - k_b = psi_bilinear_matrix_order_transp_reverse(k_a) - ASSERT (k_b <= N_det) - - ! Loop inside the alpha row to gather all the connected betas - lrow = psi_bilinear_matrix_transp_rows(k_b) - l_b = psi_bilinear_matrix_transp_rows_loc(lrow) - do i=1,N_det_beta_unique - if (l_b > N_det) exit - lrow = psi_bilinear_matrix_transp_rows(l_b) - if (lrow /= krow) exit - lcol = psi_bilinear_matrix_transp_columns(l_b) - ASSERT (lcol <= N_det_beta_unique) - - buffer(1:$N_int,i) = psi_det_beta_unique(1:$N_int, lcol) - idx(i) = l_b - l_b = l_b+1 - enddo - i = i-1 - - call get_all_spin_singles_and_doubles_$N_int( & - buffer, idx, spindet, i, & - singles_b, doubles, n_singles_b, n_doubles ) - - ! Compute Hij for all beta singles - ! ---------------------------------- - - tmp_det2(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow) - do i=1,n_singles_b - l_b = singles_b(i) - ASSERT (l_b <= N_det) - - lcol = psi_bilinear_matrix_transp_columns(l_b) - ASSERT (lcol <= N_det_beta_unique) - - tmp_det2(1:$N_int,2) = psi_det_beta_unique (1:$N_int, lcol) - l_a = psi_bilinear_matrix_transp_order(l_b) - do l= 1, N_states - c_1(l) = u_t(l,l_a) - c_2(l) = u_t(l,k_a) - enddo - ! increment the alpha/beta part for single excitations - call off_diagonal_single_to_two_rdm_ab_dm(tmp_det, tmp_det2,c_1,c_2,big_array_ab,dim1,dim2,dim3,dim4) - ! increment the beta /beta part for single excitations - call off_diagonal_single_to_two_rdm_bb_dm(tmp_det, tmp_det2,c_1,c_2,big_array_bb,dim1,dim2,dim3,dim4) - enddo - - ! Compute Hij for all beta doubles - ! ---------------------------------- - - do i=1,n_doubles - l_b = doubles(i) - ASSERT (l_b <= N_det) - - lcol = psi_bilinear_matrix_transp_columns(l_b) - ASSERT (lcol <= N_det_beta_unique) - - l_a = psi_bilinear_matrix_transp_order(l_b) - do l= 1, N_states - c_1(l) = u_t(l,l_a) - c_2(l) = u_t(l,k_a) - enddo - call off_diagonal_double_to_two_rdm_bb_dm(tmp_det(1,2),psi_det_alpha_unique(1, lcol),c_1,c_2,big_array_bb,dim1,dim2,dim3,dim4) - ASSERT (l_a <= N_det) - - enddo - - - ! Diagonal contribution - ! ===================== - - - ! Initial determinant is at k_a in alpha-major representation - ! ----------------------------------------------------------------------- - - krow = psi_bilinear_matrix_rows(k_a) - ASSERT (krow <= N_det_alpha_unique) - - kcol = psi_bilinear_matrix_columns(k_a) - ASSERT (kcol <= N_det_beta_unique) - - tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow) - tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol) - - double precision, external :: diag_wee_mat_elem, diag_S_mat_elem - - double precision :: c_1(N_states),c_2(N_states) - do l = 1, N_states - c_1(l) = u_t(l,k_a) - enddo - - call diagonal_contrib_to_all_two_rdm_dm(tmp_det,c_1,big_array_aa,big_array_bb,big_array_ab,dim1,dim2,dim3,dim4) - - end do - !!$OMP END DO - deallocate(buffer, singles_a, singles_b, doubles, idx) - !!$OMP END PARALLEL - + enddo + ! increment the alpha/beta part for single excitations + call off_diagonal_single_to_two_rdm_ab_dm(tmp_det, tmp_det2,c_1,c_2,big_array_ab,dim1,dim2,dim3,dim4) + ! increment the alpha/alpha part for single excitations + call off_diagonal_single_to_two_rdm_aa_dm(tmp_det,tmp_det2,c_1,c_2,big_array_aa,dim1,dim2,dim3,dim4) + + enddo + + + ! Compute Hij for all alpha doubles + ! ---------------------------------- + + do i=1,n_doubles + l_a = doubles(i) + ASSERT (l_a <= N_det) + + lrow = psi_bilinear_matrix_rows(l_a) + ASSERT (lrow <= N_det_alpha_unique) + + do l= 1, N_states + c_1(l) = u_t(l,l_a) + c_2(l) = u_t(l,k_a) + enddo + call off_diagonal_double_to_two_rdm_aa_dm(tmp_det(1,1),psi_det_alpha_unique(1, lrow),c_1,c_2,big_array_aa,dim1,dim2,dim3,dim4) + enddo + + + ! Single and double beta excitations + ! ================================== + + + ! Initial determinant is at k_a in alpha-major representation + ! ----------------------------------------------------------------------- + + krow = psi_bilinear_matrix_rows(k_a) + kcol = psi_bilinear_matrix_columns(k_a) + + tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow) + tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol) + + spindet(1:$N_int) = tmp_det(1:$N_int,2) + + ! Initial determinant is at k_b in beta-major representation + ! ----------------------------------------------------------------------- + + k_b = psi_bilinear_matrix_order_transp_reverse(k_a) + ASSERT (k_b <= N_det) + + ! Loop inside the alpha row to gather all the connected betas + lrow = psi_bilinear_matrix_transp_rows(k_b) + l_b = psi_bilinear_matrix_transp_rows_loc(lrow) + do i=1,N_det_beta_unique + if (l_b > N_det) exit + lrow = psi_bilinear_matrix_transp_rows(l_b) + if (lrow /= krow) exit + lcol = psi_bilinear_matrix_transp_columns(l_b) + ASSERT (lcol <= N_det_beta_unique) + + buffer(1:$N_int,i) = psi_det_beta_unique(1:$N_int, lcol) + idx(i) = l_b + l_b = l_b+1 + enddo + i = i-1 + + call get_all_spin_singles_and_doubles_$N_int( & + buffer, idx, spindet, i, & + singles_b, doubles, n_singles_b, n_doubles ) + + ! Compute Hij for all beta singles + ! ---------------------------------- + + tmp_det2(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow) + do i=1,n_singles_b + l_b = singles_b(i) + ASSERT (l_b <= N_det) + + lcol = psi_bilinear_matrix_transp_columns(l_b) + ASSERT (lcol <= N_det_beta_unique) + + tmp_det2(1:$N_int,2) = psi_det_beta_unique (1:$N_int, lcol) + l_a = psi_bilinear_matrix_transp_order(l_b) + do l= 1, N_states + c_1(l) = u_t(l,l_a) + c_2(l) = u_t(l,k_a) + enddo + ! increment the alpha/beta part for single excitations + call off_diagonal_single_to_two_rdm_ab_dm(tmp_det, tmp_det2,c_1,c_2,big_array_ab,dim1,dim2,dim3,dim4) + ! increment the beta /beta part for single excitations + call off_diagonal_single_to_two_rdm_bb_dm(tmp_det, tmp_det2,c_1,c_2,big_array_bb,dim1,dim2,dim3,dim4) + enddo + + ! Compute Hij for all beta doubles + ! ---------------------------------- + + do i=1,n_doubles + l_b = doubles(i) + ASSERT (l_b <= N_det) + + lcol = psi_bilinear_matrix_transp_columns(l_b) + ASSERT (lcol <= N_det_beta_unique) + + l_a = psi_bilinear_matrix_transp_order(l_b) + do l= 1, N_states + c_1(l) = u_t(l,l_a) + c_2(l) = u_t(l,k_a) + enddo + call off_diagonal_double_to_two_rdm_bb_dm(tmp_det(1,2),psi_det_alpha_unique(1, lcol),c_1,c_2,big_array_bb,dim1,dim2,dim3,dim4) + ASSERT (l_a <= N_det) + + enddo + + + ! Diagonal contribution + ! ===================== + + + ! Initial determinant is at k_a in alpha-major representation + ! ----------------------------------------------------------------------- + + krow = psi_bilinear_matrix_rows(k_a) + ASSERT (krow <= N_det_alpha_unique) + + kcol = psi_bilinear_matrix_columns(k_a) + ASSERT (kcol <= N_det_beta_unique) + + tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow) + tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol) + + double precision, external :: diag_wee_mat_elem, diag_S_mat_elem + + double precision :: c_1(N_states),c_2(N_states) + do l = 1, N_states + c_1(l) = u_t(l,k_a) + enddo + + call diagonal_contrib_to_all_two_rdm_dm(tmp_det,c_1,big_array_aa,big_array_bb,big_array_ab,dim1,dim2,dim3,dim4) + + end do + !!$OMP END DO + deallocate(buffer, singles_a, singles_b, doubles, idx) + !!$OMP END PARALLEL + end - -SUBST [ N_int ] - -1;; -2;; -3;; -4;; -N_int;; - -END_TEMPLATE - + + SUBST [ N_int ] + + 1;; + 2;; + 3;; + 4;; + N_int;; + + END_TEMPLATE + diff --git a/src/two_body_rdm/two_rdm.irp.f b/src/two_body_rdm/two_rdm.irp.f index 1c299bba..bed6f88d 100644 --- a/src/two_body_rdm/two_rdm.irp.f +++ b/src/two_body_rdm/two_rdm.irp.f @@ -1,84 +1,86 @@ - - BEGIN_PROVIDER [double precision, coussin_peter_two_rdm_mo, (mo_num,mo_num,mo_num,mo_num,N_states)] - implicit none - BEGIN_DOC - ! coussin_peter_two_rdm_mo(i,j,k,l) = the two rdm that peter wants for his CASSCF - END_DOC - integer :: i,j,k,l - do l = 1, mo_num - do k = 1, mo_num - do j = 1, mo_num - do i = 1, mo_num - coussin_peter_two_rdm_mo(i,j,k,l,:) = 0.5d0 * (two_rdm_alpha_beta_mo(i,j,k,l,:) + two_rdm_alpha_beta_mo(i,j,k,l,:)) & - + two_rdm_alpha_alpha_mo(i,j,k,l,:) & - + two_rdm_beta_beta_mo(i,j,k,l,:) +BEGIN_PROVIDER [double precision, coussin_peter_two_rdm_mo, (mo_num,mo_num,mo_num,mo_num,N_states)] + implicit none + BEGIN_DOC + ! coussin_peter_two_rdm_mo(i,j,k,l) = the two rdm that peter wants for his CASSCF + END_DOC + integer :: i,j,k,l, istate + do istate = 1,N_states + do l = 1, mo_num + do k = 1, mo_num + do j = 1, mo_num + do i = 1, mo_num + coussin_peter_two_rdm_mo (i,j,k,l,istate) = & + two_rdm_alpha_beta_mo (i,j,k,l,istate) + & + two_rdm_alpha_alpha_mo(i,j,k,l,istate) + & + two_rdm_beta_beta_mo (i,j,k,l,istate) + enddo + enddo + enddo enddo - enddo enddo - enddo - END_PROVIDER +END_PROVIDER BEGIN_PROVIDER [double precision, two_rdm_alpha_beta_mo, (mo_num,mo_num,mo_num,mo_num,N_states)] &BEGIN_PROVIDER [double precision, two_rdm_alpha_alpha_mo, (mo_num,mo_num,mo_num,mo_num,N_states)] &BEGIN_PROVIDER [double precision, two_rdm_beta_beta_mo, (mo_num,mo_num,mo_num,mo_num,N_states)] - implicit none - BEGIN_DOC - ! two_rdm_alpha_beta(i,j,k,l) = - ! 1 1 2 2 = chemist notations - ! note that no 1/2 factor is introduced in order to take into acccount for the spin symmetry - ! - END_DOC - integer :: dim1,dim2,dim3,dim4 - double precision :: cpu_0,cpu_1 - dim1 = mo_num - dim2 = mo_num - dim3 = mo_num - dim4 = mo_num - two_rdm_alpha_beta_mo = 0.d0 - two_rdm_alpha_alpha_mo= 0.d0 - two_rdm_beta_beta_mo = 0.d0 - print*,'providing two_rdm_alpha_beta ...' - call wall_time(cpu_0) - call all_two_rdm_dm_nstates_openmp(two_rdm_alpha_alpha_mo,two_rdm_beta_beta_mo,two_rdm_alpha_beta_mo,dim1,dim2,dim3,dim4,psi_coef,size(psi_coef,2),size(psi_coef,1)) - call wall_time(cpu_1) - print*,'two_rdm_alpha_beta provided in',dabs(cpu_1-cpu_0) - - END_PROVIDER + implicit none + BEGIN_DOC + ! two_rdm_alpha_beta(i,j,k,l) = + ! 1 1 2 2 = chemist notations + ! note that no 1/2 factor is introduced in order to take into acccount for the spin symmetry + ! + END_DOC + integer :: dim1,dim2,dim3,dim4 + double precision :: cpu_0,cpu_1 + dim1 = mo_num + dim2 = mo_num + dim3 = mo_num + dim4 = mo_num + two_rdm_alpha_beta_mo = 0.d0 + two_rdm_alpha_alpha_mo= 0.d0 + two_rdm_beta_beta_mo = 0.d0 + print*,'providing two_rdm_alpha_beta ...' + call wall_time(cpu_0) + call all_two_rdm_dm_nstates_openmp(two_rdm_alpha_alpha_mo,two_rdm_beta_beta_mo,two_rdm_alpha_beta_mo,dim1,dim2,dim3,dim4,psi_coef,size(psi_coef,2),size(psi_coef,1)) + call wall_time(cpu_1) + print*,'two_rdm_alpha_beta provided in',dabs(cpu_1-cpu_0) + +END_PROVIDER BEGIN_PROVIDER [double precision, two_rdm_alpha_beta_mo_physicist, (mo_num,mo_num,mo_num,mo_num,N_states)] &BEGIN_PROVIDER [double precision, two_rdm_alpha_alpha_mo_physicist, (mo_num,mo_num,mo_num,mo_num,N_states)] &BEGIN_PROVIDER [double precision, two_rdm_beta_beta_mo_physicist, (mo_num,mo_num,mo_num,mo_num,N_states)] - implicit none - BEGIN_DOC - ! two_rdm_alpha_beta_mo_physicist,(i,j,k,l) = - ! 1 2 1 2 = physicist notations - ! note that no 1/2 factor is introduced in order to take into acccount for the spin symmetry - ! - END_DOC - integer :: i,j,k,l,istate - double precision :: cpu_0,cpu_1 - two_rdm_alpha_beta_mo_physicist = 0.d0 - print*,'providing two_rdm_alpha_beta_mo_physicist ...' - call wall_time(cpu_0) - do istate = 1, N_states - do i = 1, mo_num - do j = 1, mo_num - do k = 1, mo_num - do l = 1, mo_num - ! 1 2 1 2 1 1 2 2 - two_rdm_alpha_beta_mo_physicist(l,k,i,j,istate) = two_rdm_alpha_beta_mo(i,l,j,k,istate) - two_rdm_alpha_alpha_mo_physicist(l,k,i,j,istate) = two_rdm_alpha_alpha_mo(i,l,j,k,istate) - two_rdm_beta_beta_mo_physicist(l,k,i,j,istate) = two_rdm_beta_beta_mo(i,l,j,k,istate) - enddo + implicit none + BEGIN_DOC + ! two_rdm_alpha_beta_mo_physicist,(i,j,k,l) = + ! 1 2 1 2 = physicist notations + ! note that no 1/2 factor is introduced in order to take into acccount for the spin symmetry + ! + END_DOC + integer :: i,j,k,l,istate + double precision :: cpu_0,cpu_1 + two_rdm_alpha_beta_mo_physicist = 0.d0 + print*,'providing two_rdm_alpha_beta_mo_physicist ...' + call wall_time(cpu_0) + do istate = 1, N_states + do i = 1, mo_num + do j = 1, mo_num + do k = 1, mo_num + do l = 1, mo_num + ! 1 2 1 2 1 1 2 2 + two_rdm_alpha_beta_mo_physicist(l,k,i,j,istate) = two_rdm_alpha_beta_mo(i,l,j,k,istate) + two_rdm_alpha_alpha_mo_physicist(l,k,i,j,istate) = two_rdm_alpha_alpha_mo(i,l,j,k,istate) + two_rdm_beta_beta_mo_physicist(l,k,i,j,istate) = two_rdm_beta_beta_mo(i,l,j,k,istate) + enddo + enddo + enddo enddo - enddo enddo - enddo - call wall_time(cpu_1) - print*,'two_rdm_alpha_beta_mo_physicist provided in',dabs(cpu_1-cpu_0) - - END_PROVIDER + call wall_time(cpu_1) + print*,'two_rdm_alpha_beta_mo_physicist provided in',dabs(cpu_1-cpu_0) + +END_PROVIDER