9
1
mirror of https://github.com/QuantumPackage/qp2.git synced 2024-12-22 03:23:29 +01:00

Merge remote-tracking branch 'origin/casscf' into dev-lct

This commit is contained in:
Emmanuel Giner LCT 2019-07-01 15:32:50 +02:00
commit 3abbef9364
43 changed files with 5398 additions and 17 deletions

View File

@ -22,6 +22,20 @@
%%%% PUBLISHED PAPERS
@article{Ferte_2019,
doi = {10.1063/1.5082638},
url = {https://doi.org/10.1063%2F1.5082638},
year = 2019,
month = {feb},
publisher = {{AIP} Publishing},
volume = {150},
number = {8},
pages = {084103},
author = {Anthony Fert{\'{e}} and Emmanuel Giner and Julien Toulouse},
title = {Range-separated multideterminant density-functional theory with a short-range correlation functional of the on-top pair density},
journal = {The Journal of Chemical Physics}
}
@article{Loos_2019,
doi = {10.1021/acs.jpclett.9b01176},
url = {https://doi.org/10.1021%2Facs.jpclett.9b01176},

View File

@ -363,6 +363,12 @@ let () =
|> Zmq.Socket.send socket_in
in
Printf.printf "On remote hosts, create ssh tunnel using:
ssh -L %d:%s:%d -L %d:%s:%d -L %d:%s:%d %s\n%!"
(port ) localhost (localport )
(port+1) localhost (localport+1)
(port+9) localhost (localport+9)
(Unix.gethostname ());
Printf.printf "Ready\n%!";
while !run_status do

View File

@ -33,7 +33,7 @@ subroutine bitstring_to_list( string, list, n_elements, Nint)
use bitmasks
implicit none
BEGIN_DOC
! Gives the inidices(+1) of the bits set to 1 in the bit string
! Gives the indices(+1) of the bits set to 1 in the bit string
END_DOC
integer, intent(in) :: Nint
integer(bit_kind), intent(in) :: string(Nint)
@ -213,3 +213,34 @@ subroutine print_spindet(string,Nint)
print *, trim(output(1))
end
logical function is_integer_in_string(bite,string,Nint)
use bitmasks
implicit none
integer, intent(in) :: bite,Nint
integer(bit_kind), intent(in) :: string(Nint)
integer(bit_kind) :: string_bite(Nint)
integer :: i,itot,itot_and
character*(2048) :: output(1)
string_bite = 0_bit_kind
call set_bit_to_integer(bite,string_bite,Nint)
itot = 0
itot_and = 0
is_integer_in_string = .False.
!print*,''
!print*,''
!print*,'bite = ',bite
!call bitstring_to_str( output(1), string_bite, Nint )
! print *, trim(output(1))
!call bitstring_to_str( output(1), string, Nint )
! print *, trim(output(1))
do i = 1, Nint
itot += popcnt(string(i))
itot_and += popcnt(ior(string(i),string_bite(i)))
enddo
!print*,'itot,itot_and',itot,itot_and
if(itot == itot_and)then
is_integer_in_string = .True.
endif
!pause
end

View File

@ -141,6 +141,10 @@ END_PROVIDER
n_act_orb_tmp = 0
n_virt_orb_tmp = 0
n_del_orb_tmp = 0
core_bitmask = 0_bit_kind
inact_bitmask = 0_bit_kind
act_bitmask = 0_bit_kind
virt_bitmask = 0_bit_kind
do i = 1, mo_num
if(mo_class(i) == 'Core')then
n_core_orb_tmp += 1

13
src/casscf/EZFIO.cfg Normal file
View File

@ -0,0 +1,13 @@
[energy]
type: double precision
doc: Calculated Selected |FCI| energy
interface: ezfio
size: (determinants.n_states)
[energy_pt2]
type: double precision
doc: Calculated |FCI| energy + |PT2|
interface: ezfio
size: (determinants.n_states)

4
src/casscf/NEED Normal file
View File

@ -0,0 +1,4 @@
cipsi
selectors_full
generators_cas
two_body_rdm

5
src/casscf/README.rst Normal file
View File

@ -0,0 +1,5 @@
======
casscf
======
|CASSCF| program with the CIPSI algorithm.

6
src/casscf/bavard.irp.f Normal file
View File

@ -0,0 +1,6 @@
! -*- F90 -*-
BEGIN_PROVIDER [logical, bavard]
! bavard=.true.
bavard=.false.
END_PROVIDER

148
src/casscf/bielec.irp.f Normal file
View File

@ -0,0 +1,148 @@
BEGIN_PROVIDER [real*8, bielec_PQxx, (mo_num, mo_num,n_core_orb+n_act_orb,n_core_orb+n_act_orb)]
BEGIN_DOC
! bielec_PQxx : integral (pq|xx) with p,q arbitrary, x core or active
! indices are unshifted orbital numbers
END_DOC
implicit none
integer :: i,j,ii,jj,p,q,i3,j3,t3,v3
double precision, allocatable :: integrals_array(:,:)
real*8 :: mo_two_e_integral
allocate(integrals_array(mo_num,mo_num))
bielec_PQxx = 0.d0
do i=1,n_core_orb
ii=list_core(i)
do j=i,n_core_orb
jj=list_core(j)
call get_mo_two_e_integrals_i1j1(ii,jj,mo_num,integrals_array,mo_integrals_map)
do p=1,mo_num
do q=1,mo_num
bielec_PQxx(p,q,i,j)=integrals_array(p,q)
bielec_PQxx(p,q,j,i)=integrals_array(p,q)
end do
end do
end do
do j=1,n_act_orb
jj=list_act(j)
j3=j+n_core_orb
call get_mo_two_e_integrals_i1j1(ii,jj,mo_num,integrals_array,mo_integrals_map)
do p=1,mo_num
do q=1,mo_num
bielec_PQxx(p,q,i,j3)=integrals_array(p,q)
bielec_PQxx(p,q,j3,i)=integrals_array(p,q)
end do
end do
end do
end do
! (ij|pq)
do i=1,n_act_orb
ii=list_act(i)
i3=i+n_core_orb
do j=i,n_act_orb
jj=list_act(j)
j3=j+n_core_orb
call get_mo_two_e_integrals_i1j1(ii,jj,mo_num,integrals_array,mo_integrals_map)
do p=1,mo_num
do q=1,mo_num
bielec_PQxx(p,q,i3,j3)=integrals_array(p,q)
bielec_PQxx(p,q,j3,i3)=integrals_array(p,q)
end do
end do
end do
end do
END_PROVIDER
BEGIN_PROVIDER [real*8, bielec_PxxQ, (mo_num,n_core_orb+n_act_orb,n_core_orb+n_act_orb, mo_num)]
BEGIN_DOC
! bielec_PxxQ : integral (px|xq) with p,q arbitrary, x core or active
! indices are unshifted orbital numbers
END_DOC
implicit none
integer :: i,j,ii,jj,p,q,i3,j3,t3,v3
double precision, allocatable :: integrals_array(:,:)
real*8 :: mo_two_e_integral
allocate(integrals_array(mo_num,mo_num))
bielec_PxxQ = 0.d0
do i=1,n_core_orb
ii=list_core(i)
do j=i,n_core_orb
jj=list_core(j)
call get_mo_two_e_integrals_ij (ii,jj,mo_num,integrals_array,mo_integrals_map)
do p=1,mo_num
do q=1,mo_num
bielec_PxxQ(p,i,j,q)=integrals_array(p,q)
bielec_PxxQ(p,j,i,q)=integrals_array(q,p)
end do
end do
end do
do j=1,n_act_orb
jj=list_act(j)
j3=j+n_core_orb
call get_mo_two_e_integrals_ij (ii,jj,mo_num,integrals_array,mo_integrals_map)
do p=1,mo_num
do q=1,mo_num
bielec_PxxQ(p,i,j3,q)=integrals_array(p,q)
bielec_PxxQ(p,j3,i,q)=integrals_array(q,p)
end do
end do
end do
end do
! (ip|qj)
do i=1,n_act_orb
ii=list_act(i)
i3=i+n_core_orb
do j=i,n_act_orb
jj=list_act(j)
j3=j+n_core_orb
call get_mo_two_e_integrals_ij (ii,jj,mo_num,integrals_array,mo_integrals_map)
do p=1,mo_num
do q=1,mo_num
bielec_PxxQ(p,i3,j3,q)=integrals_array(p,q)
bielec_PxxQ(p,j3,i3,q)=integrals_array(q,p)
end do
end do
end do
end do
END_PROVIDER
BEGIN_PROVIDER [real*8, bielecCI, (n_act_orb,n_act_orb,n_act_orb, mo_num)]
BEGIN_DOC
! bielecCI : integrals (tu|vp) with p arbitrary, tuv active
! index p runs over the whole basis, t,u,v only over the active orbitals
END_DOC
implicit none
integer :: i,j,k,p,t,u,v
double precision, allocatable :: integrals_array(:)
real*8 :: mo_two_e_integral
allocate(integrals_array(mo_num))
do i=1,n_act_orb
t=list_act(i)
do j=1,n_act_orb
u=list_act(j)
do k=1,n_act_orb
v=list_act(k)
! (tu|vp)
call get_mo_two_e_integrals(t,u,v,mo_num,integrals_array,mo_integrals_map)
do p=1,mo_num
bielecCI(i,k,j,p)=integrals_array(p)
end do
end do
end do
end do
END_PROVIDER

View File

@ -0,0 +1,270 @@
BEGIN_PROVIDER [real*8, bielec_PQxx_no, (mo_num, mo_num,n_core_orb+n_act_orb,n_core_orb+n_act_orb)]
BEGIN_DOC
! integral (pq|xx) in the basis of natural MOs
! indices are unshifted orbital numbers
END_DOC
implicit none
integer :: i,j,k,l,t,u,p,q,pp
real*8 :: d(n_act_orb)
bielec_PQxx_no(:,:,:,:) = bielec_PQxx(:,:,:,:)
do j=1,mo_num
do k=1,n_core_orb+n_act_orb
do l=1,n_core_orb+n_act_orb
do p=1,n_act_orb
d(p)=0.D0
end do
do p=1,n_act_orb
pp=n_act_orb-p+1
do q=1,n_act_orb
d(pp)+=bielec_PQxx_no(list_act(q),j,k,l)*natorbsCI(q,p)
end do
end do
do p=1,n_act_orb
bielec_PQxx_no(list_act(p),j,k,l)=d(p)
end do
end do
end do
end do
! 2nd quarter
do j=1,mo_num
do k=1,n_core_orb+n_act_orb
do l=1,n_core_orb+n_act_orb
do p=1,n_act_orb
d(p)=0.D0
end do
do p=1,n_act_orb
pp=n_act_orb-p+1
do q=1,n_act_orb
d(pp)+=bielec_PQxx_no(j,list_act(q),k,l)*natorbsCI(q,p)
end do
end do
do p=1,n_act_orb
bielec_PQxx_no(j,list_act(p),k,l)=d(p)
end do
end do
end do
end do
! 3rd quarter
do j=1,mo_num
do k=1,mo_num
do l=1,n_core_orb+n_act_orb
do p=1,n_act_orb
d(p)=0.D0
end do
do p=1,n_act_orb
pp=n_act_orb-p+1
do q=1,n_act_orb
d(pp)+=bielec_PQxx_no(j,k,n_core_orb+q,l)*natorbsCI(q,p)
end do
end do
do p=1,n_act_orb
bielec_PQxx_no(j,k,n_core_orb+p,l)=d(p)
end do
end do
end do
end do
! 4th quarter
do j=1,mo_num
do k=1,mo_num
do l=1,n_core_orb+n_act_orb
do p=1,n_act_orb
d(p)=0.D0
end do
do p=1,n_act_orb
pp=n_act_orb-p+1
do q=1,n_act_orb
d(pp)+=bielec_PQxx_no(j,k,l,n_core_orb+q)*natorbsCI(q,p)
end do
end do
do p=1,n_act_orb
bielec_PQxx_no(j,k,l,n_core_orb+p)=d(p)
end do
end do
end do
end do
END_PROVIDER
BEGIN_PROVIDER [real*8, bielec_PxxQ_no, (mo_num,n_core_orb+n_act_orb,n_core_orb+n_act_orb, mo_num)]
BEGIN_DOC
! integral (px|xq) in the basis of natural MOs
! indices are unshifted orbital numbers
END_DOC
implicit none
integer :: i,j,k,l,t,u,p,q,pp
real*8 :: d(n_act_orb)
bielec_PxxQ_no(:,:,:,:) = bielec_PxxQ(:,:,:,:)
do j=1,mo_num
do k=1,n_core_orb+n_act_orb
do l=1,n_core_orb+n_act_orb
do p=1,n_act_orb
d(p)=0.D0
end do
do p=1,n_act_orb
pp=n_act_orb-p+1
do q=1,n_act_orb
d(pp)+=bielec_PxxQ_no(list_act(q),k,l,j)*natorbsCI(q,p)
end do
end do
do p=1,n_act_orb
bielec_PxxQ_no(list_act(p),k,l,j)=d(p)
end do
end do
end do
end do
! 2nd quarter
do j=1,mo_num
do k=1,n_core_orb+n_act_orb
do l=1,n_core_orb+n_act_orb
do p=1,n_act_orb
d(p)=0.D0
end do
do p=1,n_act_orb
pp=n_act_orb-p+1
do q=1,n_act_orb
d(pp)+=bielec_PxxQ_no(j,k,l,list_act(q))*natorbsCI(q,p)
end do
end do
do p=1,n_act_orb
bielec_PxxQ_no(j,k,l,list_act(p))=d(p)
end do
end do
end do
end do
! 3rd quarter
do j=1,mo_num
do k=1,mo_num
do l=1,n_core_orb+n_act_orb
do p=1,n_act_orb
d(p)=0.D0
end do
do p=1,n_act_orb
pp=n_act_orb-p+1
do q=1,n_act_orb
d(pp)+=bielec_PxxQ_no(j,n_core_orb+q,l,k)*natorbsCI(q,p)
end do
end do
do p=1,n_act_orb
bielec_PxxQ_no(j,n_core_orb+p,l,k)=d(p)
end do
end do
end do
end do
! 4th quarter
do j=1,mo_num
do k=1,mo_num
do l=1,n_core_orb+n_act_orb
do p=1,n_act_orb
d(p)=0.D0
end do
do p=1,n_act_orb
pp=n_act_orb-p+1
do q=1,n_act_orb
d(pp)+=bielec_PxxQ_no(j,l,n_core_orb+q,k)*natorbsCI(q,p)
end do
end do
do p=1,n_act_orb
bielec_PxxQ_no(j,l,n_core_orb+p,k)=d(p)
end do
end do
end do
end do
END_PROVIDER
BEGIN_PROVIDER [real*8, bielecCI_no, (n_act_orb,n_act_orb,n_act_orb, mo_num)]
BEGIN_DOC
! integrals (tu|vp) in the basis of natural MOs
! index p runs over the whole basis, t,u,v only over the active orbitals
END_DOC
implicit none
integer :: i,j,k,l,t,u,p,q,pp
real*8 :: d(n_act_orb)
bielecCI_no(:,:,:,:) = bielecCI(:,:,:,:)
do j=1,n_act_orb
do k=1,n_act_orb
do l=1,mo_num
do p=1,n_act_orb
d(p)=0.D0
end do
do p=1,n_act_orb
pp=n_act_orb-p+1
do q=1,n_act_orb
d(pp)+=bielecCI_no(q,j,k,l)*natorbsCI(q,p)
end do
end do
do p=1,n_act_orb
bielecCI_no(p,j,k,l)=d(p)
end do
end do
end do
end do
! 2nd quarter
do j=1,n_act_orb
do k=1,n_act_orb
do l=1,mo_num
do p=1,n_act_orb
d(p)=0.D0
end do
do p=1,n_act_orb
pp=n_act_orb-p+1
do q=1,n_act_orb
d(pp)+=bielecCI_no(j,q,k,l)*natorbsCI(q,p)
end do
end do
do p=1,n_act_orb
bielecCI_no(j,p,k,l)=d(p)
end do
end do
end do
end do
! 3rd quarter
do j=1,n_act_orb
do k=1,n_act_orb
do l=1,mo_num
do p=1,n_act_orb
d(p)=0.D0
end do
do p=1,n_act_orb
pp=n_act_orb-p+1
do q=1,n_act_orb
d(pp)+=bielecCI_no(j,k,q,l)*natorbsCI(q,p)
end do
end do
do p=1,n_act_orb
bielecCI_no(j,k,p,l)=d(p)
end do
end do
end do
end do
! 4th quarter
do j=1,n_act_orb
do k=1,n_act_orb
do l=1,n_act_orb
do p=1,n_act_orb
d(p)=0.D0
end do
do p=1,n_act_orb
pp=n_act_orb-p+1
do q=1,n_act_orb
d(pp)+=bielecCI_no(j,k,l,list_act(q))*natorbsCI(q,p)
end do
end do
do p=1,n_act_orb
bielecCI_no(j,k,l,list_act(p))=d(p)
end do
end do
end do
end do
END_PROVIDER

48
src/casscf/casscf.irp.f Normal file
View File

@ -0,0 +1,48 @@
program casscf
implicit none
BEGIN_DOC
! TODO : Put the documentation of the program here
END_DOC
no_vvvv_integrals = .True.
pt2_max = 0.02
SOFT_TOUCH no_vvvv_integrals pt2_max
call run
end
subroutine run
implicit none
double precision :: energy_old, energy
logical :: converged
integer :: iteration
converged = .False.
energy = 0.d0
mo_label = "MCSCF"
iteration = 1
do while (.not.converged)
call run_stochastic_cipsi
energy_old = energy
energy = eone+etwo+ecore
call write_time(6)
call write_int(6,iteration,'CAS-SCF iteration')
call write_double(6,energy,'CAS-SCF energy')
call write_double(6,energy_improvement, 'Predicted energy improvement')
converged = dabs(energy_improvement) < thresh_scf
pt2_max = dabs(energy_improvement / pt2_relative_error)
mo_coef = NewOrbs
call save_mos
call map_deinit(mo_integrals_map)
iteration += 1
N_det = N_det/2
psi_det = psi_det_sorted
psi_coef = psi_coef_sorted
read_wf = .True.
FREE mo_integrals_map mo_two_e_integrals_in_map
SOFT_TOUCH mo_coef N_det pt2_max psi_det psi_coef
enddo
end

12
src/casscf/class.irp.f Normal file
View File

@ -0,0 +1,12 @@
BEGIN_PROVIDER [ logical, do_only_1h1p ]
&BEGIN_PROVIDER [ logical, do_only_cas ]
&BEGIN_PROVIDER [ logical, do_ddci ]
implicit none
BEGIN_DOC
! In the CAS case, all those are always false except do_only_cas
END_DOC
do_only_cas = .True.
do_only_1h1p = .False.
do_ddci = .False.
END_PROVIDER

View File

@ -0,0 +1,66 @@
use bitmasks
BEGIN_PROVIDER [real*8, D0tu, (n_act_orb,n_act_orb) ]
implicit none
BEGIN_DOC
! the first-order density matrix in the basis of the starting MOs.
! matrix is state averaged.
END_DOC
integer :: t,u
do u=1,n_act_orb
do t=1,n_act_orb
D0tu(t,u) = one_e_dm_mo_alpha_average( list_act(t), list_act(u) ) + &
one_e_dm_mo_beta_average ( list_act(t), list_act(u) )
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [real*8, P0tuvx, (n_act_orb,n_act_orb,n_act_orb,n_act_orb) ]
BEGIN_DOC
! The second-order density matrix in the basis of the starting MOs ONLY IN THE RANGE OF ACTIVE MOS
! The values are state averaged
!
! We use the spin-free generators of mono-excitations
! E_pq destroys q and creates p
! D_pq = <0|E_pq|0> = D_qp
! P_pqrs = 1/2 <0|E_pq E_rs - delta_qr E_ps|0>
!
! P0tuvx(p,q,r,s) = chemist notation : 1/2 <0|E_pq E_rs - delta_qr E_ps|0>
END_DOC
implicit none
integer :: t,u,v,x
integer :: tt,uu,vv,xx
integer :: mu,nu,istate,ispin,jspin,ihole,ipart,jhole,jpart
integer :: ierr
real*8 :: phase1,phase11,phase12,phase2,phase21,phase22
integer :: nu1,nu2,nu11,nu12,nu21,nu22
integer :: ierr1,ierr2,ierr11,ierr12,ierr21,ierr22
real*8 :: cI_mu(N_states),term
integer(bit_kind), dimension(N_int,2) :: det_mu, det_mu_ex
integer(bit_kind), dimension(N_int,2) :: det_mu_ex1, det_mu_ex11, det_mu_ex12
integer(bit_kind), dimension(N_int,2) :: det_mu_ex2, det_mu_ex21, det_mu_ex22
if (bavard) then
write(6,*) ' providing the 2 body RDM on the active part'
endif
P0tuvx= 0.d0
do istate=1,N_states
do x = 1, n_act_orb
xx = list_act(x)
do v = 1, n_act_orb
vv = list_act(v)
do u = 1, n_act_orb
uu = list_act(u)
do t = 1, n_act_orb
tt = list_act(t)
P0tuvx(t,u,v,x) = act_two_rdm_spin_trace_mo(t,v,u,x)
enddo
enddo
enddo
enddo
enddo
END_PROVIDER

125
src/casscf/det_manip.irp.f Normal file
View File

@ -0,0 +1,125 @@
use bitmasks
subroutine do_signed_mono_excitation(key1,key2,nu,ihole,ipart, &
ispin,phase,ierr)
BEGIN_DOC
! we create the mono-excitation, and determine, if possible,
! the phase and the number in the list of determinants
END_DOC
implicit none
integer(bit_kind) :: key1(N_int,2),key2(N_int,2)
integer(bit_kind), allocatable :: keytmp(:,:)
integer :: exc(0:2,2,2),ihole,ipart,ierr,nu,ispin
real*8 :: phase
logical :: found
allocate(keytmp(N_int,2))
nu=-1
phase=1.D0
ierr=0
call det_copy(key1,key2,N_int)
! write(6,*) ' key2 before excitation ',ihole,' -> ',ipart,' spin = ',ispin
! call print_det(key2,N_int)
call do_single_excitation(key2,ihole,ipart,ispin,ierr)
! write(6,*) ' key2 after ',ihole,' -> ',ipart,' spin = ',ispin
! call print_det(key2,N_int)
! write(6,*) ' excitation ',ihole,' -> ',ipart,' gives ierr = ',ierr
if (ierr.eq.1) then
! excitation is possible
! get the phase
call get_single_excitation(key1,key2,exc,phase,N_int)
! get the number in the list
found=.false.
nu=0
!TODO BOTTLENECK
do while (.not.found)
nu+=1
if (nu.gt.N_det) then
! the determinant is possible, but not in the list
found=.true.
nu=-1
else
call det_extract(keytmp,nu,N_int)
integer :: i,ii
found=.true.
do ii=1,2
do i=1,N_int
if (keytmp(i,ii).ne.key2(i,ii)) then
found=.false.
end if
end do
end do
end if
end do
end if
!
! we found the new string, the phase, and possibly the number in the list
!
end subroutine do_signed_mono_excitation
subroutine det_extract(key,nu,Nint)
BEGIN_DOC
! extract a determinant from the list of determinants
END_DOC
implicit none
integer :: ispin,i,nu,Nint
integer(bit_kind) :: key(Nint,2)
do ispin=1,2
do i=1,Nint
key(i,ispin)=psi_det(i,ispin,nu)
end do
end do
end subroutine det_extract
subroutine det_copy(key1,key2,Nint)
use bitmasks ! you need to include the bitmasks_module.f90 features
BEGIN_DOC
! copy a determinant from key1 to key2
END_DOC
implicit none
integer :: ispin,i,Nint
integer(bit_kind) :: key1(Nint,2),key2(Nint,2)
do ispin=1,2
do i=1,Nint
key2(i,ispin)=key1(i,ispin)
end do
end do
end subroutine det_copy
subroutine do_spinfree_mono_excitation(key_in,key_out1,key_out2 &
,nu1,nu2,ihole,ipart,phase1,phase2,ierr,jerr)
BEGIN_DOC
! we create the spin-free mono-excitation E_pq=(a^+_p a_q + a^+_P a_Q)
! we may create two determinants as result
!
END_DOC
implicit none
integer(bit_kind) :: key_in(N_int,2),key_out1(N_int,2)
integer(bit_kind) :: key_out2(N_int,2)
integer :: ihole,ipart,ierr,jerr,nu1,nu2
integer :: ispin
real*8 :: phase1,phase2
! write(6,*) ' applying E_',ipart,ihole,' on determinant '
! call print_det(key_in,N_int)
! spin alpha
ispin=1
call do_signed_mono_excitation(key_in,key_out1,nu1,ihole &
,ipart,ispin,phase1,ierr)
! if (ierr.eq.1) then
! write(6,*) ' 1 result is ',nu1,phase1
! call print_det(key_out1,N_int)
! end if
! spin beta
ispin=2
call do_signed_mono_excitation(key_in,key_out2,nu2,ihole &
,ipart,ispin,phase2,jerr)
! if (jerr.eq.1) then
! write(6,*) ' 2 result is ',nu2,phase2
! call print_det(key_out2,N_int)
! end if
end subroutine do_spinfree_mono_excitation

View File

@ -0,0 +1,3 @@
subroutine driver_optorb
implicit none
end

View File

@ -0,0 +1,36 @@
program print_2rdm
implicit none
BEGIN_DOC
! get the active part of the bielectronic energy on a given wave function.
!
! useful to test the active part of the spin trace 2 rdms
END_DOC
read_wf = .True.
touch read_wf
call routine
end
subroutine routine
integer :: i,j,k,l
integer :: ii,jj,kk,ll
double precision :: accu(4),twodm,thr,act_twodm2,integral,get_two_e_integral
thr = 1.d-10
accu = 0.d0
do ll = 1, n_act_orb
l = list_act(ll)
do kk = 1, n_act_orb
k = list_act(kk)
do jj = 1, n_act_orb
j = list_act(jj)
do ii = 1, n_act_orb
i = list_act(ii)
integral = get_two_e_integral(i,j,k,l,mo_integrals_map)
accu(1) += act_two_rdm_spin_trace_mo(ii,jj,kk,ll) * integral
enddo
enddo
enddo
enddo
print*,'accu = ',accu(1)
end

246
src/casscf/gradient.irp.f Normal file
View File

@ -0,0 +1,246 @@
use bitmasks
BEGIN_PROVIDER [ integer, nMonoEx ]
BEGIN_DOC
! Number of single excitations
END_DOC
implicit none
nMonoEx=n_core_orb*n_act_orb+n_core_orb*n_virt_orb+n_act_orb*n_virt_orb
END_PROVIDER
BEGIN_PROVIDER [integer, excit, (2,nMonoEx)]
&BEGIN_PROVIDER [character*3, excit_class, (nMonoEx)]
BEGIN_DOC
! a list of the orbitals involved in the excitation
END_DOC
implicit none
integer :: i,t,a,ii,tt,aa,indx
indx=0
do ii=1,n_core_orb
i=list_core(ii)
do tt=1,n_act_orb
t=list_act(tt)
indx+=1
excit(1,indx)=i
excit(2,indx)=t
excit_class(indx)='c-a'
end do
end do
do ii=1,n_core_orb
i=list_core(ii)
do aa=1,n_virt_orb
a=list_virt(aa)
indx+=1
excit(1,indx)=i
excit(2,indx)=a
excit_class(indx)='c-v'
end do
end do
do tt=1,n_act_orb
t=list_act(tt)
do aa=1,n_virt_orb
a=list_virt(aa)
indx+=1
excit(1,indx)=t
excit(2,indx)=a
excit_class(indx)='a-v'
end do
end do
if (bavard) then
write(6,*) ' Filled the table of the Monoexcitations '
do indx=1,nMonoEx
write(6,*) ' ex ',indx,' : ',excit(1,indx),' -> ' &
,excit(2,indx),' ',excit_class(indx)
end do
end if
END_PROVIDER
BEGIN_PROVIDER [real*8, gradvec, (nMonoEx)]
BEGIN_DOC
! calculate the orbital gradient <Psi| H E_pq |Psi> by hand, i.e. for
! each determinant I we determine the string E_pq |I> (alpha and beta
! separately) and generate <Psi|H E_pq |I>
! sum_I c_I <Psi|H E_pq |I> is then the pq component of the orbital
! gradient
! E_pq = a^+_pa_q + a^+_Pa_Q
END_DOC
implicit none
integer :: ii,tt,aa,indx,ihole,ipart,istate
real*8 :: res
do indx=1,nMonoEx
ihole=excit(1,indx)
ipart=excit(2,indx)
call calc_grad_elem(ihole,ipart,res)
gradvec(indx)=res
end do
real*8 :: norm_grad
norm_grad=0.d0
do indx=1,nMonoEx
norm_grad+=gradvec(indx)*gradvec(indx)
end do
norm_grad=sqrt(norm_grad)
if (bavard) then
write(6,*)
write(6,*) ' Norm of the orbital gradient (via <0|EH|0>) : ', norm_grad
write(6,*)
endif
END_PROVIDER
subroutine calc_grad_elem(ihole,ipart,res)
BEGIN_DOC
! eq 18 of Siegbahn et al, Physica Scripta 1980
! we calculate 2 <Psi| H E_pq | Psi>, q=hole, p=particle
END_DOC
implicit none
integer :: ihole,ipart,mu,iii,ispin,ierr,nu,istate
real*8 :: res
integer(bit_kind), allocatable :: det_mu(:,:),det_mu_ex(:,:)
real*8 :: i_H_psi_array(N_states),phase
allocate(det_mu(N_int,2))
allocate(det_mu_ex(N_int,2))
res=0.D0
do mu=1,n_det
! get the string of the determinant
call det_extract(det_mu,mu,N_int)
do ispin=1,2
! do the monoexcitation on it
call det_copy(det_mu,det_mu_ex,N_int)
call do_signed_mono_excitation(det_mu,det_mu_ex,nu &
,ihole,ipart,ispin,phase,ierr)
if (ierr.eq.1) then
call i_H_psi(det_mu_ex,psi_det,psi_coef,N_int &
,N_det,N_det,N_states,i_H_psi_array)
do istate=1,N_states
res+=i_H_psi_array(istate)*psi_coef(mu,istate)*phase
end do
end if
end do
end do
! state-averaged gradient
res*=2.D0/dble(N_states)
end subroutine calc_grad_elem
BEGIN_PROVIDER [real*8, gradvec2, (nMonoEx)]
BEGIN_DOC
! calculate the orbital gradient <Psi| H E_pq |Psi> from density
! matrices and integrals; Siegbahn et al, Phys Scr 1980
! eqs 14 a,b,c
END_DOC
implicit none
integer :: i,t,a,indx
real*8 :: gradvec_it,gradvec_ia,gradvec_ta
real*8 :: norm_grad
indx=0
do i=1,n_core_orb
do t=1,n_act_orb
indx+=1
gradvec2(indx)=gradvec_it(i,t)
end do
end do
do i=1,n_core_orb
do a=1,n_virt_orb
indx+=1
gradvec2(indx)=gradvec_ia(i,a)
end do
end do
do t=1,n_act_orb
do a=1,n_virt_orb
indx+=1
gradvec2(indx)=gradvec_ta(t,a)
end do
end do
norm_grad=0.d0
do indx=1,nMonoEx
norm_grad+=gradvec2(indx)*gradvec2(indx)
end do
norm_grad=sqrt(norm_grad)
if (bavard) then
write(6,*)
write(6,*) ' Norm of the orbital gradient (via D, P and integrals): ', norm_grad
write(6,*)
endif
END_PROVIDER
real*8 function gradvec_it(i,t)
BEGIN_DOC
! the orbital gradient core -> active
! we assume natural orbitals
END_DOC
implicit none
integer :: i,t
integer :: ii,tt,v,vv,x,y
integer :: x3,y3
ii=list_core(i)
tt=list_act(t)
gradvec_it=2.D0*(Fipq(tt,ii)+Fapq(tt,ii))
gradvec_it-=occnum(tt)*Fipq(ii,tt)
do v=1,n_act_orb
vv=list_act(v)
do x=1,n_act_orb
x3=x+n_core_orb
do y=1,n_act_orb
y3=y+n_core_orb
gradvec_it-=2.D0*P0tuvx_no(t,v,x,y)*bielec_PQxx_no(ii,vv,x3,y3)
end do
end do
end do
gradvec_it*=2.D0
end function gradvec_it
real*8 function gradvec_ia(i,a)
BEGIN_DOC
! the orbital gradient core -> virtual
END_DOC
implicit none
integer :: i,a,ii,aa
ii=list_core(i)
aa=list_virt(a)
gradvec_ia=2.D0*(Fipq(aa,ii)+Fapq(aa,ii))
gradvec_ia*=2.D0
end function gradvec_ia
real*8 function gradvec_ta(t,a)
BEGIN_DOC
! the orbital gradient active -> virtual
! we assume natural orbitals
END_DOC
implicit none
integer :: t,a,tt,aa,v,vv,x,y
tt=list_act(t)
aa=list_virt(a)
gradvec_ta=0.D0
gradvec_ta+=occnum(tt)*Fipq(aa,tt)
do v=1,n_act_orb
do x=1,n_act_orb
do y=1,n_act_orb
gradvec_ta+=2.D0*P0tuvx_no(t,v,x,y)*bielecCI_no(x,y,v,aa)
end do
end do
end do
gradvec_ta*=2.D0
end function gradvec_ta

630
src/casscf/hessian.irp.f Normal file
View File

@ -0,0 +1,630 @@
use bitmasks
BEGIN_PROVIDER [real*8, hessmat, (nMonoEx,nMonoEx)]
BEGIN_DOC
! calculate the orbital hessian 2 <Psi| E_pq H E_rs |Psi>
! + <Psi| E_pq E_rs H |Psi> + <Psi| E_rs E_pq H |Psi> by hand,
! determinant per determinant, as for the gradient
!
! we assume that we have natural active orbitals
END_DOC
implicit none
integer :: indx,ihole,ipart
integer :: jndx,jhole,jpart
character*3 :: iexc,jexc
real*8 :: res
if (bavard) then
write(6,*) ' providing Hessian matrix hessmat '
write(6,*) ' nMonoEx = ',nMonoEx
endif
do indx=1,nMonoEx
do jndx=1,nMonoEx
hessmat(indx,jndx)=0.D0
end do
end do
do indx=1,nMonoEx
ihole=excit(1,indx)
ipart=excit(2,indx)
iexc=excit_class(indx)
do jndx=indx,nMonoEx
jhole=excit(1,jndx)
jpart=excit(2,jndx)
jexc=excit_class(jndx)
call calc_hess_elem(ihole,ipart,jhole,jpart,res)
hessmat(indx,jndx)=res
hessmat(jndx,indx)=res
end do
end do
END_PROVIDER
subroutine calc_hess_elem(ihole,ipart,jhole,jpart,res)
BEGIN_DOC
! eq 19 of Siegbahn et al, Physica Scripta 1980
! we calculate 2 <Psi| E_pq H E_rs |Psi>
! + <Psi| E_pq E_rs H |Psi> + <Psi| E_rs E_pq H |Psi>
! average over all states is performed.
! no transition between states.
END_DOC
implicit none
integer :: ihole,ipart,ispin,mu,istate
integer :: jhole,jpart,jspin
integer :: mu_pq, mu_pqrs, mu_rs, mu_rspq, nu_rs,nu
real*8 :: res
integer(bit_kind), allocatable :: det_mu(:,:)
integer(bit_kind), allocatable :: det_nu(:,:)
integer(bit_kind), allocatable :: det_mu_pq(:,:)
integer(bit_kind), allocatable :: det_mu_rs(:,:)
integer(bit_kind), allocatable :: det_nu_rs(:,:)
integer(bit_kind), allocatable :: det_mu_pqrs(:,:)
integer(bit_kind), allocatable :: det_mu_rspq(:,:)
real*8 :: i_H_psi_array(N_states),phase,phase2,phase3
real*8 :: i_H_j_element
allocate(det_mu(N_int,2))
allocate(det_nu(N_int,2))
allocate(det_mu_pq(N_int,2))
allocate(det_mu_rs(N_int,2))
allocate(det_nu_rs(N_int,2))
allocate(det_mu_pqrs(N_int,2))
allocate(det_mu_rspq(N_int,2))
integer :: mu_pq_possible
integer :: mu_rs_possible
integer :: nu_rs_possible
integer :: mu_pqrs_possible
integer :: mu_rspq_possible
res=0.D0
! the terms <0|E E H |0>
do mu=1,n_det
! get the string of the determinant
call det_extract(det_mu,mu,N_int)
do ispin=1,2
! do the monoexcitation pq on it
call det_copy(det_mu,det_mu_pq,N_int)
call do_signed_mono_excitation(det_mu,det_mu_pq,mu_pq &
,ihole,ipart,ispin,phase,mu_pq_possible)
if (mu_pq_possible.eq.1) then
! possible, but not necessarily in the list
! do the second excitation
do jspin=1,2
call det_copy(det_mu_pq,det_mu_pqrs,N_int)
call do_signed_mono_excitation(det_mu_pq,det_mu_pqrs,mu_pqrs&
,jhole,jpart,jspin,phase2,mu_pqrs_possible)
! excitation possible
if (mu_pqrs_possible.eq.1) then
call i_H_psi(det_mu_pqrs,psi_det,psi_coef,N_int &
,N_det,N_det,N_states,i_H_psi_array)
do istate=1,N_states
res+=i_H_psi_array(istate)*psi_coef(mu,istate)*phase*phase2
end do
end if
! try the de-excitation with opposite sign
call det_copy(det_mu_pq,det_mu_pqrs,N_int)
call do_signed_mono_excitation(det_mu_pq,det_mu_pqrs,mu_pqrs&
,jpart,jhole,jspin,phase2,mu_pqrs_possible)
phase2=-phase2
! excitation possible
if (mu_pqrs_possible.eq.1) then
call i_H_psi(det_mu_pqrs,psi_det,psi_coef,N_int &
,N_det,N_det,N_states,i_H_psi_array)
do istate=1,N_states
res+=i_H_psi_array(istate)*psi_coef(mu,istate)*phase*phase2
end do
end if
end do
end if
! exchange the notion of pq and rs
! do the monoexcitation rs on the initial determinant
call det_copy(det_mu,det_mu_rs,N_int)
call do_signed_mono_excitation(det_mu,det_mu_rs,mu_rs &
,jhole,jpart,ispin,phase2,mu_rs_possible)
if (mu_rs_possible.eq.1) then
! do the second excitation
do jspin=1,2
call det_copy(det_mu_rs,det_mu_rspq,N_int)
call do_signed_mono_excitation(det_mu_rs,det_mu_rspq,mu_rspq&
,ihole,ipart,jspin,phase3,mu_rspq_possible)
! excitation possible (of course, the result is outside the CAS)
if (mu_rspq_possible.eq.1) then
call i_H_psi(det_mu_rspq,psi_det,psi_coef,N_int &
,N_det,N_det,N_states,i_H_psi_array)
do istate=1,N_states
res+=i_H_psi_array(istate)*psi_coef(mu,istate)*phase2*phase3
end do
end if
! we may try the de-excitation, with opposite sign
call det_copy(det_mu_rs,det_mu_rspq,N_int)
call do_signed_mono_excitation(det_mu_rs,det_mu_rspq,mu_rspq&
,ipart,ihole,jspin,phase3,mu_rspq_possible)
phase3=-phase3
! excitation possible (of course, the result is outside the CAS)
if (mu_rspq_possible.eq.1) then
call i_H_psi(det_mu_rspq,psi_det,psi_coef,N_int &
,N_det,N_det,N_states,i_H_psi_array)
do istate=1,N_states
res+=i_H_psi_array(istate)*psi_coef(mu,istate)*phase2*phase3
end do
end if
end do
end if
!
! the operator E H E, we have to do a double loop over the determinants
! we still have the determinant mu_pq and the phase in memory
if (mu_pq_possible.eq.1) then
do nu=1,N_det
call det_extract(det_nu,nu,N_int)
do jspin=1,2
call det_copy(det_nu,det_nu_rs,N_int)
call do_signed_mono_excitation(det_nu,det_nu_rs,nu_rs &
,jhole,jpart,jspin,phase2,nu_rs_possible)
! excitation possible ?
if (nu_rs_possible.eq.1) then
call i_H_j(det_mu_pq,det_nu_rs,N_int,i_H_j_element)
do istate=1,N_states
res+=2.D0*i_H_j_element*psi_coef(mu,istate) &
*psi_coef(nu,istate)*phase*phase2
end do
end if
end do
end do
end if
end do
end do
! state-averaged Hessian
res*=1.D0/dble(N_states)
end subroutine calc_hess_elem
BEGIN_PROVIDER [real*8, hessmat2, (nMonoEx,nMonoEx)]
BEGIN_DOC
! explicit hessian matrix from density matrices and integrals
! of course, this will be used for a direct Davidson procedure later
! we will not store the matrix in real life
! formulas are broken down as functions for the 6 classes of matrix elements
!
END_DOC
implicit none
integer :: i,j,t,u,a,b,indx,jndx,bstart,ustart
real*8 :: hessmat_itju
real*8 :: hessmat_itja
real*8 :: hessmat_itua
real*8 :: hessmat_iajb
real*8 :: hessmat_iatb
real*8 :: hessmat_taub
if (bavard) then
write(6,*) ' providing Hessian matrix hessmat2 '
write(6,*) ' nMonoEx = ',nMonoEx
endif
indx=1
do i=1,n_core_orb
do t=1,n_act_orb
jndx=indx
do j=i,n_core_orb
if (i.eq.j) then
ustart=t
else
ustart=1
end if
do u=ustart,n_act_orb
hessmat2(indx,jndx)=hessmat_itju(i,t,j,u)
hessmat2(jndx,indx)=hessmat2(indx,jndx)
jndx+=1
end do
end do
do j=1,n_core_orb
do a=1,n_virt_orb
hessmat2(indx,jndx)=hessmat_itja(i,t,j,a)
hessmat2(jndx,indx)=hessmat2(indx,jndx)
jndx+=1
end do
end do
do u=1,n_act_orb
do a=1,n_virt_orb
hessmat2(indx,jndx)=hessmat_itua(i,t,u,a)
hessmat2(jndx,indx)=hessmat2(indx,jndx)
jndx+=1
end do
end do
indx+=1
end do
end do
do i=1,n_core_orb
do a=1,n_virt_orb
jndx=indx
do j=i,n_core_orb
if (i.eq.j) then
bstart=a
else
bstart=1
end if
do b=bstart,n_virt_orb
hessmat2(indx,jndx)=hessmat_iajb(i,a,j,b)
hessmat2(jndx,indx)=hessmat2(indx,jndx)
jndx+=1
end do
end do
do t=1,n_act_orb
do b=1,n_virt_orb
hessmat2(indx,jndx)=hessmat_iatb(i,a,t,b)
hessmat2(jndx,indx)=hessmat2(indx,jndx)
jndx+=1
end do
end do
indx+=1
end do
end do
do t=1,n_act_orb
do a=1,n_virt_orb
jndx=indx
do u=t,n_act_orb
if (t.eq.u) then
bstart=a
else
bstart=1
end if
do b=bstart,n_virt_orb
hessmat2(indx,jndx)=hessmat_taub(t,a,u,b)
hessmat2(jndx,indx)=hessmat2(indx,jndx)
jndx+=1
end do
end do
indx+=1
end do
end do
END_PROVIDER
real*8 function hessmat_itju(i,t,j,u)
BEGIN_DOC
! the orbital hessian for core->act,core->act
! i, t, j, u are list indices, the corresponding orbitals are ii,tt,jj,uu
!
! we assume natural orbitals
END_DOC
implicit none
integer :: i,t,j,u,ii,tt,uu,v,vv,x,xx,y,jj
real*8 :: term,t2
ii=list_core(i)
tt=list_act(t)
if (i.eq.j) then
if (t.eq.u) then
! diagonal element
term=occnum(tt)*Fipq(ii,ii)+2.D0*(Fipq(tt,tt)+Fapq(tt,tt)) &
-2.D0*(Fipq(ii,ii)+Fapq(ii,ii))
term+=2.D0*(3.D0*bielec_pxxq_no(tt,i,i,tt)-bielec_pqxx_no(tt,tt,i,i))
term-=2.D0*occnum(tt)*(3.D0*bielec_pxxq_no(tt,i,i,tt) &
-bielec_pqxx_no(tt,tt,i,i))
term-=occnum(tt)*Fipq(tt,tt)
do v=1,n_act_orb
vv=list_act(v)
do x=1,n_act_orb
xx=list_act(x)
term+=2.D0*(P0tuvx_no(t,t,v,x)*bielec_pqxx_no(vv,xx,i,i) &
+(P0tuvx_no(t,x,v,t)+P0tuvx_no(t,x,t,v))* &
bielec_pxxq_no(vv,i,i,xx))
do y=1,n_act_orb
term-=2.D0*P0tuvx_no(t,v,x,y)*bielecCI_no(t,v,y,xx)
end do
end do
end do
else
! it/iu, t != u
uu=list_act(u)
term=2.D0*(Fipq(tt,uu)+Fapq(tt,uu))
term+=2.D0*(4.D0*bielec_PxxQ_no(tt,i,j,uu)-bielec_PxxQ_no(uu,i,j,tt) &
-bielec_PQxx_no(tt,uu,i,j))
term-=occnum(tt)*Fipq(uu,tt)
term-=(occnum(tt)+occnum(uu)) &
*(3.D0*bielec_PxxQ_no(tt,i,i,uu)-bielec_PQxx_no(uu,tt,i,i))
do v=1,n_act_orb
vv=list_act(v)
! term-=D0tu(u,v)*Fipq(tt,vv) ! published, but inverting t and u seems more correct
do x=1,n_act_orb
xx=list_act(x)
term+=2.D0*(P0tuvx_no(u,t,v,x)*bielec_pqxx_no(vv,xx,i,i) &
+(P0tuvx_no(u,x,v,t)+P0tuvx_no(u,x,t,v)) &
*bielec_pxxq_no(vv,i,i,xx))
do y=1,n_act_orb
term-=2.D0*P0tuvx_no(t,v,x,y)*bielecCI_no(u,v,y,xx)
end do
end do
end do
end if
else
! it/ju
jj=list_core(j)
uu=list_act(u)
if (t.eq.u) then
term=occnum(tt)*Fipq(ii,jj)
term-=2.D0*(Fipq(ii,jj)+Fapq(ii,jj))
else
term=0.D0
end if
term+=2.D0*(4.D0*bielec_PxxQ_no(tt,i,j,uu)-bielec_PxxQ_no(uu,i,j,tt) &
-bielec_PQxx_no(tt,uu,i,j))
term-=(occnum(tt)+occnum(uu))* &
(4.D0*bielec_PxxQ_no(tt,i,j,uu)-bielec_PxxQ_no(uu,i,j,tt) &
-bielec_PQxx_no(uu,tt,i,j))
do v=1,n_act_orb
vv=list_act(v)
do x=1,n_act_orb
xx=list_act(x)
term+=2.D0*(P0tuvx_no(u,t,v,x)*bielec_pqxx_no(vv,xx,i,j) &
+(P0tuvx_no(u,x,v,t)+P0tuvx_no(u,x,t,v)) &
*bielec_pxxq_no(vv,i,j,xx))
end do
end do
end if
term*=2.D0
hessmat_itju=term
end function hessmat_itju
real*8 function hessmat_itja(i,t,j,a)
BEGIN_DOC
! the orbital hessian for core->act,core->virt
END_DOC
implicit none
integer :: i,t,j,a,ii,tt,jj,aa,v,vv,x,y
real*8 :: term
! it/ja
ii=list_core(i)
tt=list_act(t)
jj=list_core(j)
aa=list_virt(a)
term=2.D0*(4.D0*bielec_pxxq_no(aa,j,i,tt) &
-bielec_pqxx_no(aa,tt,i,j) -bielec_pxxq_no(aa,i,j,tt))
term-=occnum(tt)*(4.D0*bielec_pxxq_no(aa,j,i,tt) &
-bielec_pqxx_no(aa,tt,i,j) -bielec_pxxq_no(aa,i,j,tt))
if (i.eq.j) then
term+=2.D0*(Fipq(aa,tt)+Fapq(aa,tt))
term-=0.5D0*occnum(tt)*Fipq(aa,tt)
do v=1,n_act_orb
do x=1,n_act_orb
do y=1,n_act_orb
term-=P0tuvx_no(t,v,x,y)*bielecCI_no(x,y,v,aa)
end do
end do
end do
end if
term*=2.D0
hessmat_itja=term
end function hessmat_itja
real*8 function hessmat_itua(i,t,u,a)
BEGIN_DOC
! the orbital hessian for core->act,act->virt
END_DOC
implicit none
integer :: i,t,u,a,ii,tt,uu,aa,v,vv,x,xx,u3,t3,v3
real*8 :: term
ii=list_core(i)
tt=list_act(t)
t3=t+n_core_orb
uu=list_act(u)
u3=u+n_core_orb
aa=list_virt(a)
if (t.eq.u) then
term=-occnum(tt)*Fipq(aa,ii)
else
term=0.D0
end if
term-=occnum(uu)*(bielec_pqxx_no(aa,ii,t3,u3)-4.D0*bielec_pqxx_no(aa,uu,t3,i)&
+bielec_pxxq_no(aa,t3,u3,ii))
do v=1,n_act_orb
vv=list_act(v)
v3=v+n_core_orb
do x=1,n_act_orb
integer :: x3
xx=list_act(x)
x3=x+n_core_orb
term-=2.D0*(P0tuvx_no(t,u,v,x)*bielec_pqxx_no(aa,ii,v3,x3) &
+(P0tuvx_no(t,v,u,x)+P0tuvx_no(t,v,x,u)) &
*bielec_pqxx_no(aa,xx,v3,i))
end do
end do
if (t.eq.u) then
term+=Fipq(aa,ii)+Fapq(aa,ii)
end if
term*=2.D0
hessmat_itua=term
end function hessmat_itua
real*8 function hessmat_iajb(i,a,j,b)
BEGIN_DOC
! the orbital hessian for core->virt,core->virt
END_DOC
implicit none
integer :: i,a,j,b,ii,aa,jj,bb
real*8 :: term
ii=list_core(i)
aa=list_virt(a)
if (i.eq.j) then
if (a.eq.b) then
! ia/ia
term=2.D0*(Fipq(aa,aa)+Fapq(aa,aa)-Fipq(ii,ii)-Fapq(ii,ii))
term+=2.D0*(3.D0*bielec_pxxq_no(aa,i,i,aa)-bielec_pqxx_no(aa,aa,i,i))
else
bb=list_virt(b)
! ia/ib
term=2.D0*(Fipq(aa,bb)+Fapq(aa,bb))
term+=2.D0*(3.D0*bielec_pxxq_no(aa,i,i,bb)-bielec_pqxx_no(aa,bb,i,i))
end if
else
! ia/jb
jj=list_core(j)
bb=list_virt(b)
term=2.D0*(4.D0*bielec_pxxq_no(aa,i,j,bb)-bielec_pqxx_no(aa,bb,i,j) &
-bielec_pxxq_no(aa,j,i,bb))
if (a.eq.b) then
term-=2.D0*(Fipq(ii,jj)+Fapq(ii,jj))
end if
end if
term*=2.D0
hessmat_iajb=term
end function hessmat_iajb
real*8 function hessmat_iatb(i,a,t,b)
BEGIN_DOC
! the orbital hessian for core->virt,act->virt
END_DOC
implicit none
integer :: i,a,t,b,ii,aa,tt,bb,v,vv,x,y,v3,t3
real*8 :: term
ii=list_core(i)
aa=list_virt(a)
tt=list_act(t)
bb=list_virt(b)
t3=t+n_core_orb
term=occnum(tt)*(4.D0*bielec_pxxq_no(aa,i,t3,bb)-bielec_pxxq_no(aa,t3,i,bb)&
-bielec_pqxx_no(aa,bb,i,t3))
if (a.eq.b) then
term-=Fipq(tt,ii)+Fapq(tt,ii)
term-=0.5D0*occnum(tt)*Fipq(tt,ii)
do v=1,n_act_orb
do x=1,n_act_orb
do y=1,n_act_orb
term-=P0tuvx_no(t,v,x,y)*bielecCI_no(x,y,v,ii)
end do
end do
end do
end if
term*=2.D0
hessmat_iatb=term
end function hessmat_iatb
real*8 function hessmat_taub(t,a,u,b)
BEGIN_DOC
! the orbital hessian for act->virt,act->virt
END_DOC
implicit none
integer :: t,a,u,b,tt,aa,uu,bb,v,vv,x,xx,y
integer :: v3,x3
real*8 :: term,t1,t2,t3
tt=list_act(t)
aa=list_virt(a)
if (t.eq.u) then
if (a.eq.b) then
! ta/ta
t1=occnum(tt)*Fipq(aa,aa)
t2=0.D0
t3=0.D0
t1-=occnum(tt)*Fipq(tt,tt)
do v=1,n_act_orb
vv=list_act(v)
v3=v+n_core_orb
do x=1,n_act_orb
xx=list_act(x)
x3=x+n_core_orb
t2+=2.D0*(P0tuvx_no(t,t,v,x)*bielec_pqxx_no(aa,aa,v3,x3) &
+(P0tuvx_no(t,x,v,t)+P0tuvx_no(t,x,t,v))* &
bielec_pxxq_no(aa,x3,v3,aa))
do y=1,n_act_orb
t3-=2.D0*P0tuvx_no(t,v,x,y)*bielecCI_no(t,v,y,xx)
end do
end do
end do
term=t1+t2+t3
else
bb=list_virt(b)
! ta/tb b/=a
term=occnum(tt)*Fipq(aa,bb)
do v=1,n_act_orb
vv=list_act(v)
v3=v+n_core_orb
do x=1,n_act_orb
xx=list_act(x)
x3=x+n_core_orb
term+=2.D0*(P0tuvx_no(t,t,v,x)*bielec_pqxx_no(aa,bb,v3,x3) &
+(P0tuvx_no(t,x,v,t)+P0tuvx_no(t,x,t,v)) &
*bielec_pxxq_no(aa,x3,v3,bb))
end do
end do
end if
else
! ta/ub t/=u
uu=list_act(u)
bb=list_virt(b)
term=0.D0
do v=1,n_act_orb
vv=list_act(v)
v3=v+n_core_orb
do x=1,n_act_orb
xx=list_act(x)
x3=x+n_core_orb
term+=2.D0*(P0tuvx_no(t,u,v,x)*bielec_pqxx_no(aa,bb,v3,x3) &
+(P0tuvx_no(t,x,v,u)+P0tuvx_no(t,x,u,v)) &
*bielec_pxxq_no(aa,x3,v3,bb))
end do
end do
if (a.eq.b) then
term-=0.5D0*(occnum(tt)*Fipq(uu,tt)+occnum(uu)*Fipq(tt,uu))
do v=1,n_act_orb
do x=1,n_act_orb
do y=1,n_act_orb
term-=P0tuvx_no(t,v,x,y)*bielecCI_no(x,y,v,uu)
term-=P0tuvx_no(u,v,x,y)*bielecCI_no(x,y,v,tt)
end do
end do
end do
end if
end if
term*=2.D0
hessmat_taub=term
end function hessmat_taub
BEGIN_PROVIDER [real*8, hessdiag, (nMonoEx)]
BEGIN_DOC
! the diagonal of the Hessian, needed for the Davidson procedure
END_DOC
implicit none
integer :: i,t,a,indx
real*8 :: hessmat_itju,hessmat_iajb,hessmat_taub
indx=0
do i=1,n_core_orb
do t=1,n_act_orb
indx+=1
hessdiag(indx)=hessmat_itju(i,t,i,t)
end do
end do
do i=1,n_core_orb
do a=1,n_virt_orb
indx+=1
hessdiag(indx)=hessmat_iajb(i,a,i,a)
end do
end do
do t=1,n_act_orb
do a=1,n_virt_orb
indx+=1
hessdiag(indx)=hessmat_taub(t,a,t,a)
end do
end do
END_PROVIDER

View File

@ -0,0 +1,80 @@
BEGIN_PROVIDER [real*8, Fipq, (mo_num,mo_num) ]
BEGIN_DOC
! the inactive Fock matrix, in molecular orbitals
END_DOC
implicit none
integer :: p,q,k,kk,t,tt,u,uu
do q=1,mo_num
do p=1,mo_num
Fipq(p,q)=one_ints_no(p,q)
end do
end do
! the inactive Fock matrix
do k=1,n_core_orb
kk=list_core(k)
do q=1,mo_num
do p=1,mo_num
Fipq(p,q)+=2.D0*bielec_pqxx_no(p,q,k,k) -bielec_pxxq_no(p,k,k,q)
end do
end do
end do
if (bavard) then
integer :: i
write(6,*)
write(6,*) ' the diagonal of the inactive effective Fock matrix '
write(6,'(5(i3,F12.5))') (i,Fipq(i,i),i=1,mo_num)
write(6,*)
end if
END_PROVIDER
BEGIN_PROVIDER [real*8, Fapq, (mo_num,mo_num) ]
BEGIN_DOC
! the active active Fock matrix, in molecular orbitals
! we create them in MOs, quite expensive
!
! for an implementation in AOs we need first the natural orbitals
! for forming an active density matrix in AOs
!
END_DOC
implicit none
integer :: p,q,k,kk,t,tt,u,uu
Fapq = 0.d0
! the active Fock matrix, D0tu is diagonal
do t=1,n_act_orb
tt=list_act(t)
do q=1,mo_num
do p=1,mo_num
Fapq(p,q)+=occnum(tt) &
*(bielec_pqxx_no(p,q,tt,tt)-0.5D0*bielec_pxxq_no(p,tt,tt,q))
end do
end do
end do
if (bavard) then
integer :: i
write(6,*)
write(6,*) ' the effective Fock matrix over MOs'
write(6,*)
write(6,*)
write(6,*) ' the diagonal of the inactive effective Fock matrix '
write(6,'(5(i3,F12.5))') (i,Fipq(i,i),i=1,mo_num)
write(6,*)
write(6,*)
write(6,*) ' the diagonal of the active Fock matrix '
write(6,'(5(i3,F12.5))') (i,Fapq(i,i),i=1,mo_num)
write(6,*)
end if
END_PROVIDER

228
src/casscf/natorb.irp.f Normal file
View File

@ -0,0 +1,228 @@
BEGIN_PROVIDER [real*8, occnum, (mo_num)]
implicit none
BEGIN_DOC
! MO occupation numbers
END_DOC
integer :: i
occnum=0.D0
do i=1,n_core_orb
occnum(list_core(i))=2.D0
end do
do i=1,n_act_orb
occnum(list_act(i))=occ_act(n_act_orb-i+1)
end do
if (bavard) then
write(6,*) ' occupation numbers '
do i=1,mo_num
write(6,*) i,occnum(i)
end do
endif
END_PROVIDER
BEGIN_PROVIDER [ real*8, natorbsCI, (n_act_orb,n_act_orb) ]
&BEGIN_PROVIDER [ real*8, occ_act, (n_act_orb) ]
implicit none
BEGIN_DOC
! Natural orbitals of CI
END_DOC
integer :: i, j
call lapack_diag(occ_act,natorbsCI,D0tu,n_act_orb,n_act_orb)
if (bavard) then
write(6,*) ' found occupation numbers as '
do i=1,n_act_orb
write(6,*) i,occ_act(i)
end do
integer :: nmx
real*8 :: xmx
do i=1,n_act_orb
! largest element of the eigenvector should be positive
xmx=0.D0
nmx=0
do j=1,n_act_orb
if (abs(natOrbsCI(j,i)).gt.xmx) then
nmx=j
xmx=abs(natOrbsCI(j,i))
end if
end do
xmx=sign(1.D0,natOrbsCI(nmx,i))
do j=1,n_act_orb
natOrbsCI(j,i)*=xmx
end do
write(6,*) ' Eigenvector No ',i
write(6,'(5(I3,F12.5))') (j,natOrbsCI(j,i),j=1,n_act_orb)
end do
end if
END_PROVIDER
BEGIN_PROVIDER [real*8, P0tuvx_no, (n_act_orb,n_act_orb,n_act_orb,n_act_orb)]
implicit none
BEGIN_DOC
! 4-index transformation of 2part matrices
END_DOC
integer :: i,j,k,l,p,q,pp
real*8 :: d(n_act_orb)
! index per index
! first quarter
P0tuvx_no(:,:,:,:) = P0tuvx(:,:,:,:)
do j=1,n_act_orb
do k=1,n_act_orb
do l=1,n_act_orb
do p=1,n_act_orb
d(p)=0.D0
end do
do p=1,n_act_orb
pp=n_act_orb-p+1
do q=1,n_act_orb
d(pp)+=P0tuvx_no(q,j,k,l)*natorbsCI(q,p)
end do
end do
do p=1,n_act_orb
P0tuvx_no(p,j,k,l)=d(p)
end do
end do
end do
end do
! 2nd quarter
do j=1,n_act_orb
do k=1,n_act_orb
do l=1,n_act_orb
do p=1,n_act_orb
d(p)=0.D0
end do
do p=1,n_act_orb
pp=n_act_orb-p+1
do q=1,n_act_orb
d(pp)+=P0tuvx_no(j,q,k,l)*natorbsCI(q,p)
end do
end do
do p=1,n_act_orb
P0tuvx_no(j,p,k,l)=d(p)
end do
end do
end do
end do
! 3rd quarter
do j=1,n_act_orb
do k=1,n_act_orb
do l=1,n_act_orb
do p=1,n_act_orb
d(p)=0.D0
end do
do p=1,n_act_orb
pp=n_act_orb-p+1
do q=1,n_act_orb
d(pp)+=P0tuvx_no(j,k,q,l)*natorbsCI(q,p)
end do
end do
do p=1,n_act_orb
P0tuvx_no(j,k,p,l)=d(p)
end do
end do
end do
end do
! 4th quarter
do j=1,n_act_orb
do k=1,n_act_orb
do l=1,n_act_orb
do p=1,n_act_orb
d(p)=0.D0
end do
do p=1,n_act_orb
pp=n_act_orb-p+1
do q=1,n_act_orb
d(pp)+=P0tuvx_no(j,k,l,q)*natorbsCI(q,p)
end do
end do
do p=1,n_act_orb
P0tuvx_no(j,k,l,p)=d(p)
end do
end do
end do
end do
END_PROVIDER
BEGIN_PROVIDER [real*8, one_ints_no, (mo_num,mo_num)]
implicit none
BEGIN_DOC
! Transformed one-e integrals
END_DOC
integer :: i,j, p, pp, q
real*8 :: d(n_act_orb)
one_ints_no(:,:)=mo_one_e_integrals(:,:)
! 1st half-trf
do j=1,mo_num
do p=1,n_act_orb
d(p)=0.D0
end do
do p=1,n_act_orb
pp=n_act_orb-p+1
do q=1,n_act_orb
d(pp)+=one_ints_no(list_act(q),j)*natorbsCI(q,p)
end do
end do
do p=1,n_act_orb
one_ints_no(list_act(p),j)=d(p)
end do
end do
! 2nd half-trf
do j=1,mo_num
do p=1,n_act_orb
d(p)=0.D0
end do
do p=1,n_act_orb
pp=n_act_orb-p+1
do q=1,n_act_orb
d(pp)+=one_ints_no(j,list_act(q))*natorbsCI(q,p)
end do
end do
do p=1,n_act_orb
one_ints_no(j,list_act(p))=d(p)
end do
end do
END_PROVIDER
BEGIN_PROVIDER [real*8, NatOrbsFCI, (ao_num,mo_num)]
implicit none
BEGIN_DOC
! FCI natural orbitals
END_DOC
integer :: i,j, p, pp, q
real*8 :: d(n_act_orb)
NatOrbsFCI(:,:)=mo_coef(:,:)
do j=1,ao_num
do p=1,n_act_orb
d(p)=0.D0
end do
do p=1,n_act_orb
pp=n_act_orb-p+1
do q=1,n_act_orb
d(pp)+=NatOrbsFCI(j,list_act(q))*natorbsCI(q,p)
end do
end do
do p=1,n_act_orb
NatOrbsFCI(j,list_act(p))=d(p)
end do
end do
END_PROVIDER

178
src/casscf/neworbs.irp.f Normal file
View File

@ -0,0 +1,178 @@
BEGIN_PROVIDER [real*8, SXmatrix, (nMonoEx+1,nMonoEx+1)]
implicit none
BEGIN_DOC
! Single-excitation matrix
END_DOC
integer :: i,j
do i=1,nMonoEx+1
do j=1,nMonoEx+1
SXmatrix(i,j)=0.D0
end do
end do
do i=1,nMonoEx
SXmatrix(1,i+1)=gradvec2(i)
SXmatrix(1+i,1)=gradvec2(i)
end do
do i=1,nMonoEx
do j=1,nMonoEx
SXmatrix(i+1,j+1)=hessmat2(i,j)
SXmatrix(j+1,i+1)=hessmat2(i,j)
end do
end do
if (bavard) then
do i=2,nMonoEx
write(6,*) ' diagonal of the Hessian : ',i,hessmat2(i,i)
end do
end if
END_PROVIDER
BEGIN_PROVIDER [real*8, SXeigenvec, (nMonoEx+1,nMonoEx+1)]
&BEGIN_PROVIDER [real*8, SXeigenval, (nMonoEx+1)]
implicit none
BEGIN_DOC
! Eigenvectors/eigenvalues of the single-excitation matrix
END_DOC
call lapack_diag(SXeigenval,SXeigenvec,SXmatrix,nMonoEx+1,nMonoEx+1)
END_PROVIDER
BEGIN_PROVIDER [real*8, SXvector, (nMonoEx+1)]
&BEGIN_PROVIDER [real*8, energy_improvement]
implicit none
BEGIN_DOC
! Best eigenvector of the single-excitation matrix
END_DOC
integer :: ierr,matz,i
real*8 :: c0
if (bavard) then
write(6,*) ' SXdiag : lowest 5 eigenvalues '
write(6,*) ' 1 - ',SXeigenval(1),SXeigenvec(1,1)
write(6,*) ' 2 - ',SXeigenval(2),SXeigenvec(1,2)
write(6,*) ' 3 - ',SXeigenval(3),SXeigenvec(1,3)
write(6,*) ' 4 - ',SXeigenval(4),SXeigenvec(1,4)
write(6,*) ' 5 - ',SXeigenval(5),SXeigenvec(1,5)
write(6,*)
write(6,*) ' SXdiag : lowest eigenvalue = ',SXeigenval(1)
endif
energy_improvement = SXeigenval(1)
integer :: best_vector
real*8 :: best_overlap
best_overlap=0.D0
do i=1,nMonoEx+1
if (SXeigenval(i).lt.0.D0) then
if (abs(SXeigenvec(1,i)).gt.best_overlap) then
best_overlap=abs(SXeigenvec(1,i))
best_vector=i
end if
end if
end do
energy_improvement = SXeigenval(best_vector)
c0=SXeigenvec(1,best_vector)
if (bavard) then
write(6,*) ' SXdiag : eigenvalue for best overlap with '
write(6,*) ' previous orbitals = ',SXeigenval(best_vector)
write(6,*) ' weight of the 1st element ',c0
endif
do i=1,nMonoEx+1
SXvector(i)=SXeigenvec(i,best_vector)/c0
end do
END_PROVIDER
BEGIN_PROVIDER [real*8, NewOrbs, (ao_num,mo_num) ]
implicit none
BEGIN_DOC
! Updated orbitals
END_DOC
integer :: i,j,ialph
call dgemm('N','T', ao_num,mo_num,mo_num,1.d0, &
NatOrbsFCI, size(NatOrbsFCI,1), &
Umat, size(Umat,1), 0.d0, &
NewOrbs, size(NewOrbs,1))
END_PROVIDER
BEGIN_PROVIDER [real*8, Umat, (mo_num,mo_num) ]
implicit none
BEGIN_DOC
! Orbital rotation matrix
END_DOC
integer :: i,j,indx,k,iter,t,a,ii,tt,aa
logical :: converged
real*8 :: Tpotmat (mo_num,mo_num), Tpotmat2 (mo_num,mo_num)
real*8 :: Tmat(mo_num,mo_num)
real*8 :: f
! the orbital rotation matrix T
Tmat(:,:)=0.D0
indx=1
do i=1,n_core_orb
ii=list_core(i)
do t=1,n_act_orb
tt=list_act(t)
indx+=1
Tmat(ii,tt)= SXvector(indx)
Tmat(tt,ii)=-SXvector(indx)
end do
end do
do i=1,n_core_orb
ii=list_core(i)
do a=1,n_virt_orb
aa=list_virt(a)
indx+=1
Tmat(ii,aa)= SXvector(indx)
Tmat(aa,ii)=-SXvector(indx)
end do
end do
do t=1,n_act_orb
tt=list_act(t)
do a=1,n_virt_orb
aa=list_virt(a)
indx+=1
Tmat(tt,aa)= SXvector(indx)
Tmat(aa,tt)=-SXvector(indx)
end do
end do
! Form the exponential
Tpotmat(:,:)=0.D0
Umat(:,:) =0.D0
do i=1,mo_num
Tpotmat(i,i)=1.D0
Umat(i,i) =1.d0
end do
iter=0
converged=.false.
do while (.not.converged)
iter+=1
f = 1.d0 / dble(iter)
Tpotmat2(:,:) = Tpotmat(:,:) * f
call dgemm('N','N', mo_num,mo_num,mo_num,1.d0, &
Tpotmat2, size(Tpotmat2,1), &
Tmat, size(Tmat,1), 0.d0, &
Tpotmat, size(Tpotmat,1))
Umat(:,:) = Umat(:,:) + Tpotmat(:,:)
converged = ( sum(abs(Tpotmat(:,:))) < 1.d-6).or.(iter>30)
end do
END_PROVIDER

View File

@ -0,0 +1,9 @@
subroutine save_energy(E,pt2)
implicit none
BEGIN_DOC
! Saves the energy in |EZFIO|.
END_DOC
double precision, intent(in) :: E(N_states), pt2(N_states)
call ezfio_set_casscf_energy(E(1:N_states))
call ezfio_set_casscf_energy_pt2(E(1:N_states)+pt2(1:N_states))
end

101
src/casscf/tot_en.irp.f Normal file
View File

@ -0,0 +1,101 @@
BEGIN_PROVIDER [real*8, etwo]
&BEGIN_PROVIDER [real*8, eone]
&BEGIN_PROVIDER [real*8, eone_bis]
&BEGIN_PROVIDER [real*8, etwo_bis]
&BEGIN_PROVIDER [real*8, etwo_ter]
&BEGIN_PROVIDER [real*8, ecore]
&BEGIN_PROVIDER [real*8, ecore_bis]
implicit none
integer :: t,u,v,x,i,ii,tt,uu,vv,xx,j,jj,t3,u3,v3,x3
real*8 :: e_one_all,e_two_all
e_one_all=0.D0
e_two_all=0.D0
do i=1,n_core_orb
ii=list_core(i)
e_one_all+=2.D0*mo_one_e_integrals(ii,ii)
do j=1,n_core_orb
jj=list_core(j)
e_two_all+=2.D0*bielec_PQxx(ii,ii,j,j)-bielec_PQxx(ii,jj,j,i)
end do
do t=1,n_act_orb
tt=list_act(t)
t3=t+n_core_orb
do u=1,n_act_orb
uu=list_act(u)
u3=u+n_core_orb
e_two_all+=D0tu(t,u)*(2.D0*bielec_PQxx(tt,uu,i,i) &
-bielec_PQxx(tt,ii,i,u3))
end do
end do
end do
do t=1,n_act_orb
tt=list_act(t)
do u=1,n_act_orb
uu=list_act(u)
e_one_all+=D0tu(t,u)*mo_one_e_integrals(tt,uu)
do v=1,n_act_orb
v3=v+n_core_orb
do x=1,n_act_orb
x3=x+n_core_orb
e_two_all +=P0tuvx(t,u,v,x)*bielec_PQxx(tt,uu,v3,x3)
end do
end do
end do
end do
ecore =nuclear_repulsion
ecore_bis=nuclear_repulsion
do i=1,n_core_orb
ii=list_core(i)
ecore +=2.D0*mo_one_e_integrals(ii,ii)
ecore_bis+=2.D0*mo_one_e_integrals(ii,ii)
do j=1,n_core_orb
jj=list_core(j)
ecore +=2.D0*bielec_PQxx(ii,ii,j,j)-bielec_PQxx(ii,jj,j,i)
ecore_bis+=2.D0*bielec_PxxQ(ii,i,j,jj)-bielec_PxxQ(ii,j,j,ii)
end do
end do
eone =0.D0
eone_bis=0.D0
etwo =0.D0
etwo_bis=0.D0
etwo_ter=0.D0
do t=1,n_act_orb
tt=list_act(t)
t3=t+n_core_orb
do u=1,n_act_orb
uu=list_act(u)
u3=u+n_core_orb
eone +=D0tu(t,u)*mo_one_e_integrals(tt,uu)
eone_bis+=D0tu(t,u)*mo_one_e_integrals(tt,uu)
do i=1,n_core_orb
ii=list_core(i)
eone +=D0tu(t,u)*(2.D0*bielec_PQxx(tt,uu,i,i) &
-bielec_PQxx(tt,ii,i,u3))
eone_bis+=D0tu(t,u)*(2.D0*bielec_PxxQ(tt,u3,i,ii) &
-bielec_PxxQ(tt,i,i,uu))
end do
do v=1,n_act_orb
vv=list_act(v)
v3=v+n_core_orb
do x=1,n_act_orb
xx=list_act(x)
x3=x+n_core_orb
real*8 :: h1,h2,h3
h1=bielec_PQxx(tt,uu,v3,x3)
h2=bielec_PxxQ(tt,u3,v3,xx)
h3=bielecCI(t,u,v,xx)
etwo +=P0tuvx(t,u,v,x)*h1
etwo_bis+=P0tuvx(t,u,v,x)*h2
etwo_ter+=P0tuvx(t,u,v,x)*h3
if ((h1.ne.h2).or.(h1.ne.h3)) then
write(6,9901) t,u,v,x,h1,h2,h3
9901 format('aie: ',4I4,3E20.12)
end if
end do
end do
end do
end do
END_PROVIDER

View File

@ -13,6 +13,7 @@ subroutine run_cipsi
rss = memory_of_double(N_states)*4.d0
call check_mem(rss,irp_here)
N_iter = 1
allocate (pt2(N_states), zeros(N_states), rpt2(N_states), norm(N_states), variance(N_states))
double precision :: hf_energy_ref

View File

@ -135,7 +135,7 @@ subroutine ZMQ_pt2(E, pt2,relative_error, error, variance, norm, N_in)
PROVIDE psi_occ_pattern_hii det_to_occ_pattern
endif
if (N_det < max(4,N_states)) then
if (N_det <= max(4,N_states)) then
pt2=0.d0
variance=0.d0
norm=0.d0
@ -719,6 +719,15 @@ END_PROVIDER
double precision :: rss
double precision, external :: memory_of_double, memory_of_int
if (N_det_generators == 1) then
pt2_w = 1.d0
pt2_cw = 1.d0
pt2_W_T = 1.d0
pt2_u_0 = 1.d0
pt2_n_0 = 1
return
endif
rss = memory_of_double(2*N_det_generators+1)
call check_mem(rss,irp_here)
@ -754,7 +763,7 @@ END_PROVIDER
end if
pt2_n_0(1) += 1
if(N_det_generators - pt2_n_0(1) < pt2_minDetInFirstTeeth * pt2_N_teeth) then
stop "teeth building failed"
print *, "teeth building failed"
end if
end do
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

View File

@ -683,6 +683,16 @@ subroutine fill_buffer_double(i_generator, sp, h1, h2, bannedOrb, banned, fock_d
if( sum(abs(mat(1:N_states, p1, p2))) == 0d0) cycle
call apply_particles(mask, s1, p1, s2, p2, det, ok, N_int)
if (do_only_cas) then
integer, external :: number_of_holes, number_of_particles
if (number_of_particles(det)>0) then
cycle
endif
if (number_of_holes(det)>0) then
cycle
endif
endif
if (do_ddci) then
logical, external :: is_a_two_holes_two_particles
if (is_a_two_holes_two_particles(det)) then

View File

@ -12,6 +12,7 @@ subroutine run_stochastic_cipsi
double precision, external :: memory_of_double
PROVIDE H_apply_buffer_allocated N_generators_bitmask
N_iter = 1
threshold_generators = 1.d0
SOFT_TOUCH threshold_generators

View File

@ -12,6 +12,7 @@ subroutine do_single_excitation(key_in,i_hole,i_particle,ispin,i_ok)
integer(bit_kind), intent(inout) :: key_in(N_int,2)
integer, intent(out) :: i_ok
integer :: k,j,i
integer(bit_kind) :: mask
use bitmasks
ASSERT (i_hole > 0 )
ASSERT (i_particle <= mo_num)
@ -19,31 +20,66 @@ subroutine do_single_excitation(key_in,i_hole,i_particle,ispin,i_ok)
! hole
k = shiftr(i_hole-1,bit_kind_shift)+1
j = i_hole-shiftl(k-1,bit_kind_shift)-1
mask = ibset(0_bit_kind,j)
! check whether position j is occupied
if (ibits(key_in(k,ispin),j,1).eq.1) then
if (iand(key_in(k,ispin),mask) /= 0_bit_kind) then
key_in(k,ispin) = ibclr(key_in(k,ispin),j)
else
i_ok= -1
return
end if
! particle
k = shiftr(i_particle-1,bit_kind_shift)+1
j = i_particle-shiftl(k-1,bit_kind_shift)-1
mask = ibset(0_bit_kind,j)
if (iand(key_in(k,ispin),mask) == 0_bit_kind) then
key_in(k,ispin) = ibset(key_in(k,ispin),j)
else
i_ok= -1
return
end if
integer :: n_elec_tmp
n_elec_tmp = 0
do i = 1, N_int
n_elec_tmp += popcnt(key_in(i,1)) + popcnt(key_in(i,2))
enddo
if(n_elec_tmp .ne. elec_num)then
!print*, n_elec_tmp,elec_num
!call debug_det(key_in,N_int)
i_ok = -1
endif
! integer :: n_elec_tmp
! n_elec_tmp = 0
! do i = 1, N_int
! n_elec_tmp += popcnt(key_in(i,1)) + popcnt(key_in(i,2))
! enddo
! if(n_elec_tmp .ne. elec_num)then
! print*, n_elec_tmp,elec_num
! call debug_det(key_in,N_int)
! stop -1
! endif
end
subroutine build_singly_excited_wavefunction(i_hole,i_particle,ispin,det_out,coef_out)
implicit none
BEGIN_DOC
! Applies the single excitation operator : a^{dager}_(i_particle) a_(i_hole) of
! spin = ispin to the current wave function (psi_det, psi_coef)
END_DOC
integer, intent(in) :: i_hole,i_particle,ispin
integer(bit_kind), intent(out) :: det_out(N_int,2,N_det)
double precision, intent(out) :: coef_out(N_det,N_states)
integer :: k
integer :: i_ok
double precision :: phase
do k=1,N_det
coef_out(k,:) = psi_coef(k,:)
det_out(:,:,k) = psi_det(:,:,k)
call do_single_excitation(det_out(1,1,k),i_hole,i_particle,ispin,i_ok)
if (i_ok == 1) then
call get_phase(psi_det(1,1,k), det_out(1,1,k),phase,N_int)
coef_out(k,:) = phase * coef_out(k,:)
else
coef_out(k,:) = 0.d0
det_out(:,:,k) = psi_det(:,:,k)
endif
enddo
end
logical function is_spin_flip_possible(key_in,i_flip,ispin)
implicit none
BEGIN_DOC

View File

@ -53,7 +53,17 @@ subroutine occ_pattern_to_dets(o,d,sze,n_alpha,Nint)
use bitmasks
implicit none
BEGIN_DOC
! Generate all possible determinants for a give occ_pattern
! Generate all possible determinants for a given occ_pattern
!
! Input :
! o : occupation pattern : (doubly occupied, singly occupied)
! sze : Number of produced determinants, computed by `occ_pattern_to_dets_size`
! n_alpha : Number of $\alpha$ electrons
! Nint : N_int
!
! Output:
! d : determinants
!
END_DOC
integer ,intent(in) :: Nint
integer ,intent(in) :: n_alpha ! Number of alpha electrons

View File

@ -0,0 +1,609 @@
BEGIN_PROVIDER [double precision, two_bod_alpha_beta_mo, (mo_num,mo_num,mo_num,mo_num,N_states)]
implicit none
BEGIN_DOC
! two_bod_alpha_beta(i,j,k,l) = <Psi| a^{dagger}_{j,alpha} a^{dagger}_{l,beta} a_{k,beta} a_{i,alpha} | Psi>
! 1 1 2 2 = chemist notations
! note that no 1/2 factor is introduced in order to take into acccount for the spin symmetry
!
END_DOC
integer :: dim1,dim2,dim3,dim4
double precision :: cpu_0,cpu_1
dim1 = mo_num
dim2 = mo_num
dim3 = mo_num
dim4 = mo_num
two_bod_alpha_beta_mo = 0.d0
print*,'providing two_bod_alpha_beta ...'
call wall_time(cpu_0)
call two_body_dm_nstates_openmp(two_bod_alpha_beta_mo,dim1,dim2,dim3,dim4,psi_coef,size(psi_coef,2),size(psi_coef,1))
call wall_time(cpu_1)
print*,'two_bod_alpha_beta provided in',dabs(cpu_1-cpu_0)
integer :: ii,jj,i,j,k,l
if(no_core_density .EQ. "no_core_dm")then
print*,'USING THE VALENCE ONLY TWO BODY DENSITY'
do ii = 1, n_core_orb ! 1
i = list_core(ii)
do j = 1, mo_num ! 2
do k = 1, mo_num ! 1
do l = 1, mo_num ! 2
! 2 2 1 1
two_bod_alpha_beta_mo(l,j,k,i,:) = 0.d0
two_bod_alpha_beta_mo(j,l,k,i,:) = 0.d0
two_bod_alpha_beta_mo(l,j,i,k,:) = 0.d0
two_bod_alpha_beta_mo(j,l,i,k,:) = 0.d0
two_bod_alpha_beta_mo(k,i,l,j,:) = 0.d0
two_bod_alpha_beta_mo(k,i,j,l,:) = 0.d0
two_bod_alpha_beta_mo(i,k,l,j,:) = 0.d0
two_bod_alpha_beta_mo(i,k,j,l,:) = 0.d0
enddo
enddo
enddo
enddo
endif
END_PROVIDER
BEGIN_PROVIDER [double precision, two_bod_alpha_beta_mo_physicist, (mo_num,mo_num,mo_num,mo_num,N_states)]
implicit none
BEGIN_DOC
! two_bod_alpha_beta_mo_physicist,(i,j,k,l) = <Psi| a^{dagger}_{k,alpha} a^{dagger}_{l,beta} a_{j,beta} a_{i,alpha} | Psi>
! 1 2 1 2 = physicist notations
! note that no 1/2 factor is introduced in order to take into acccount for the spin symmetry
!
END_DOC
integer :: i,j,k,l,istate
double precision :: cpu_0,cpu_1
two_bod_alpha_beta_mo_physicist = 0.d0
print*,'providing two_bod_alpha_beta_mo_physicist ...'
call wall_time(cpu_0)
do istate = 1, N_states
do i = 1, mo_num
do j = 1, mo_num
do k = 1, mo_num
do l = 1, mo_num
! 1 2 1 2 1 1 2 2
two_bod_alpha_beta_mo_physicist(l,k,i,j,istate) = two_bod_alpha_beta_mo(i,l,j,k,istate)
enddo
enddo
enddo
enddo
enddo
call wall_time(cpu_1)
print*,'two_bod_alpha_beta_mo_physicist provided in',dabs(cpu_1-cpu_0)
END_PROVIDER
subroutine two_body_dm_nstates_openmp(big_array,dim1,dim2,dim3,dim4,u_0,N_st,sze)
use bitmasks
implicit none
BEGIN_DOC
! Computes v_0 = H|u_0> and s_0 = S^2 |u_0>
!
! Assumes that the determinants are in psi_det
!
! istart, iend, ishift, istep are used in ZMQ parallelization.
END_DOC
integer, intent(in) :: N_st,sze
integer, intent(in) :: dim1,dim2,dim3,dim4
double precision, intent(inout) :: big_array(dim1,dim2,dim3,dim4,N_states)
double precision, intent(inout) :: u_0(sze,N_st)
integer :: k
double precision, allocatable :: u_t(:,:)
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: u_t
allocate(u_t(N_st,N_det))
do k=1,N_st
call dset_order(u_0(1,k),psi_bilinear_matrix_order,N_det)
enddo
call dtranspose( &
u_0, &
size(u_0, 1), &
u_t, &
size(u_t, 1), &
N_det, N_st)
call two_body_dm_nstates_openmp_work(big_array,dim1,dim2,dim3,dim4,u_t,N_st,sze,1,N_det,0,1)
deallocate(u_t)
do k=1,N_st
call dset_order(u_0(1,k),psi_bilinear_matrix_order_reverse,N_det)
enddo
end
subroutine two_body_dm_nstates_openmp_work(big_array,dim1,dim2,dim3,dim4,u_t,N_st,sze,istart,iend,ishift,istep)
use bitmasks
implicit none
BEGIN_DOC
! Computes v_0 = H|u_0> and s_0 = S^2 |u_0>
!
! Default should be 1,N_det,0,1
END_DOC
integer, intent(in) :: N_st,sze,istart,iend,ishift,istep
integer, intent(in) :: dim1,dim2,dim3,dim4
double precision, intent(inout) :: big_array(dim1,dim2,dim3,dim4,N_states)
double precision, intent(in) :: u_t(N_st,N_det)
PROVIDE N_int
select case (N_int)
case (1)
call two_body_dm_nstates_openmp_work_1(big_array,dim1,dim2,dim3,dim4,u_t,N_st,sze,istart,iend,ishift,istep)
case (2)
call two_body_dm_nstates_openmp_work_2(big_array,dim1,dim2,dim3,dim4,u_t,N_st,sze,istart,iend,ishift,istep)
case (3)
call two_body_dm_nstates_openmp_work_3(big_array,dim1,dim2,dim3,dim4,u_t,N_st,sze,istart,iend,ishift,istep)
case (4)
call two_body_dm_nstates_openmp_work_4(big_array,dim1,dim2,dim3,dim4,u_t,N_st,sze,istart,iend,ishift,istep)
case default
call two_body_dm_nstates_openmp_work_N_int(big_array,dim1,dim2,dim3,dim4,u_t,N_st,sze,istart,iend,ishift,istep)
end select
end
BEGIN_TEMPLATE
subroutine two_body_dm_nstates_openmp_work_$N_int(big_array,dim1,dim2,dim3,dim4,u_t,N_st,sze,istart,iend,ishift,istep)
use bitmasks
implicit none
integer, intent(in) :: N_st,sze,istart,iend,ishift,istep
integer, intent(in) :: dim1,dim2,dim3,dim4
double precision, intent(inout) :: big_array(dim1,dim2,dim3,dim4,N_states)
double precision, intent(in) :: u_t(N_st,N_det)
double precision :: hij, sij
integer :: i,j,k,l
integer :: k_a, k_b, l_a, l_b, m_a, m_b
integer :: istate
integer :: krow, kcol, krow_b, kcol_b
integer :: lrow, lcol
integer :: mrow, mcol
integer(bit_kind) :: spindet($N_int)
integer(bit_kind) :: tmp_det($N_int,2)
integer(bit_kind) :: tmp_det2($N_int,2)
integer(bit_kind) :: tmp_det3($N_int,2)
integer(bit_kind), allocatable :: buffer(:,:)
integer :: n_doubles
integer, allocatable :: doubles(:)
integer, allocatable :: singles_a(:)
integer, allocatable :: singles_b(:)
integer, allocatable :: idx(:), idx0(:)
integer :: maxab, n_singles_a, n_singles_b, kcol_prev, nmax
integer*8 :: k8
maxab = max(N_det_alpha_unique, N_det_beta_unique)+1
allocate(idx0(maxab))
do i=1,maxab
idx0(i) = i
enddo
! Prepare the array of all alpha single excitations
! -------------------------------------------------
PROVIDE N_int nthreads_davidson
! Alpha/Beta double excitations
! =============================
allocate( buffer($N_int,maxab), &
singles_a(maxab), &
singles_b(maxab), &
doubles(maxab), &
idx(maxab))
kcol_prev=-1
ASSERT (iend <= N_det)
ASSERT (istart > 0)
ASSERT (istep > 0)
do k_a=istart+ishift,iend,istep
krow = psi_bilinear_matrix_rows(k_a)
ASSERT (krow <= N_det_alpha_unique)
kcol = psi_bilinear_matrix_columns(k_a)
ASSERT (kcol <= N_det_beta_unique)
tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
if (kcol /= kcol_prev) then
call get_all_spin_singles_$N_int( &
psi_det_beta_unique, idx0, &
tmp_det(1,2), N_det_beta_unique, &
singles_b, n_singles_b)
endif
kcol_prev = kcol
! Loop over singly excited beta columns
! -------------------------------------
do i=1,n_singles_b
lcol = singles_b(i)
tmp_det2(1:$N_int,2) = psi_det_beta_unique(1:$N_int, lcol)
l_a = psi_bilinear_matrix_columns_loc(lcol)
ASSERT (l_a <= N_det)
do j=1,psi_bilinear_matrix_columns_loc(lcol+1) - l_a
lrow = psi_bilinear_matrix_rows(l_a)
ASSERT (lrow <= N_det_alpha_unique)
buffer(1:$N_int,j) = psi_det_alpha_unique(1:$N_int, lrow)
ASSERT (l_a <= N_det)
idx(j) = l_a
l_a = l_a+1
enddo
j = j-1
call get_all_spin_singles_$N_int( &
buffer, idx, tmp_det(1,1), j, &
singles_a, n_singles_a )
! Loop over alpha singles
! -----------------------
do k = 1,n_singles_a
l_a = singles_a(k)
ASSERT (l_a <= N_det)
lrow = psi_bilinear_matrix_rows(l_a)
ASSERT (lrow <= N_det_alpha_unique)
tmp_det2(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, lrow)
!!!!!!!!!!!!!!!!!! ALPHA BETA
do l= 1, N_states
c_1(l) = u_t(l,l_a)
c_2(l) = u_t(l,k_a)
enddo
call off_diagonal_double_to_two_body_ab_dm(tmp_det,tmp_det2,c_1,c_2,big_array,dim1,dim2,dim3,dim4)
enddo
enddo
enddo
do k_a=istart+ishift,iend,istep
! Single and double alpha excitations
! ===================================
! Initial determinant is at k_a in alpha-major representation
! -----------------------------------------------------------------------
krow = psi_bilinear_matrix_rows(k_a)
ASSERT (krow <= N_det_alpha_unique)
kcol = psi_bilinear_matrix_columns(k_a)
ASSERT (kcol <= N_det_beta_unique)
tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
! Initial determinant is at k_b in beta-major representation
! ----------------------------------------------------------------------
k_b = psi_bilinear_matrix_order_transp_reverse(k_a)
spindet(1:$N_int) = tmp_det(1:$N_int,1)
! Loop inside the beta column to gather all the connected alphas
lcol = psi_bilinear_matrix_columns(k_a)
l_a = psi_bilinear_matrix_columns_loc(lcol)
do i=1,N_det_alpha_unique
if (l_a > N_det) exit
lcol = psi_bilinear_matrix_columns(l_a)
if (lcol /= kcol) exit
lrow = psi_bilinear_matrix_rows(l_a)
ASSERT (lrow <= N_det_alpha_unique)
buffer(1:$N_int,i) = psi_det_alpha_unique(1:$N_int, lrow)
idx(i) = l_a
l_a = l_a+1
enddo
i = i-1
call get_all_spin_singles_and_doubles_$N_int( &
buffer, idx, spindet, i, &
singles_a, doubles, n_singles_a, n_doubles )
! Compute Hij for all alpha singles
! ----------------------------------
tmp_det2(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
do i=1,n_singles_a
l_a = singles_a(i)
ASSERT (l_a <= N_det)
lrow = psi_bilinear_matrix_rows(l_a)
ASSERT (lrow <= N_det_alpha_unique)
tmp_det2(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, lrow)
!!!! MONO SPIN
do l= 1, N_states
c_1(l) = u_t(l,l_a)
c_2(l) = u_t(l,k_a)
enddo
call off_diagonal_single_to_two_body_ab_dm(tmp_det, tmp_det2,c_1,c_2,big_array,dim1,dim2,dim3,dim4)
enddo
!! Compute Hij for all alpha doubles
!! ----------------------------------
!
!do i=1,n_doubles
! l_a = doubles(i)
! ASSERT (l_a <= N_det)
! lrow = psi_bilinear_matrix_rows(l_a)
! ASSERT (lrow <= N_det_alpha_unique)
! call i_H_j_double_spin_erf( tmp_det(1,1), psi_det_alpha_unique(1, lrow), $N_int, hij)
! do l=1,N_st
! v_t(l,k_a) = v_t(l,k_a) + hij * u_t(l,l_a)
! ! same spin => sij = 0
! enddo
!enddo
! Single and double beta excitations
! ==================================
! Initial determinant is at k_a in alpha-major representation
! -----------------------------------------------------------------------
krow = psi_bilinear_matrix_rows(k_a)
kcol = psi_bilinear_matrix_columns(k_a)
tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
spindet(1:$N_int) = tmp_det(1:$N_int,2)
! Initial determinant is at k_b in beta-major representation
! -----------------------------------------------------------------------
k_b = psi_bilinear_matrix_order_transp_reverse(k_a)
! Loop inside the alpha row to gather all the connected betas
lrow = psi_bilinear_matrix_transp_rows(k_b)
l_b = psi_bilinear_matrix_transp_rows_loc(lrow)
do i=1,N_det_beta_unique
if (l_b > N_det) exit
lrow = psi_bilinear_matrix_transp_rows(l_b)
if (lrow /= krow) exit
lcol = psi_bilinear_matrix_transp_columns(l_b)
ASSERT (lcol <= N_det_beta_unique)
buffer(1:$N_int,i) = psi_det_beta_unique(1:$N_int, lcol)
idx(i) = l_b
l_b = l_b+1
enddo
i = i-1
call get_all_spin_singles_and_doubles_$N_int( &
buffer, idx, spindet, i, &
singles_b, doubles, n_singles_b, n_doubles )
! Compute Hij for all beta singles
! ----------------------------------
tmp_det2(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
do i=1,n_singles_b
l_b = singles_b(i)
ASSERT (l_b <= N_det)
lcol = psi_bilinear_matrix_transp_columns(l_b)
ASSERT (lcol <= N_det_beta_unique)
tmp_det2(1:$N_int,2) = psi_det_beta_unique (1:$N_int, lcol)
l_a = psi_bilinear_matrix_transp_order(l_b)
do l= 1, N_states
c_1(l) = u_t(l,l_a)
c_2(l) = u_t(l,k_a)
enddo
call off_diagonal_single_to_two_body_ab_dm(tmp_det, tmp_det2,c_1,c_2,big_array,dim1,dim2,dim3,dim4)
ASSERT (l_a <= N_det)
enddo
!
!! Compute Hij for all beta doubles
!! ----------------------------------
!
!do i=1,n_doubles
! l_b = doubles(i)
! ASSERT (l_b <= N_det)
! lcol = psi_bilinear_matrix_transp_columns(l_b)
! ASSERT (lcol <= N_det_beta_unique)
! call i_H_j_double_spin_erf( tmp_det(1,2), psi_det_beta_unique(1, lcol), $N_int, hij)
! l_a = psi_bilinear_matrix_transp_order(l_b)
! ASSERT (l_a <= N_det)
! do l=1,N_st
! v_t(l,k_a) = v_t(l,k_a) + hij * u_t(l,l_a)
! ! same spin => sij = 0
! enddo
!enddo
! Diagonal contribution
! =====================
! Initial determinant is at k_a in alpha-major representation
! -----------------------------------------------------------------------
krow = psi_bilinear_matrix_rows(k_a)
ASSERT (krow <= N_det_alpha_unique)
kcol = psi_bilinear_matrix_columns(k_a)
ASSERT (kcol <= N_det_beta_unique)
tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
double precision, external :: diag_H_mat_elem_erf, diag_S_mat_elem
double precision :: c_1(N_states),c_2(N_states)
do l = 1, N_states
c_1(l) = u_t(l,k_a)
enddo
call diagonal_contrib_to_two_body_ab_dm(tmp_det,c_1,big_array,dim1,dim2,dim3,dim4)
end do
deallocate(buffer, singles_a, singles_b, doubles, idx)
end
SUBST [ N_int ]
1;;
2;;
3;;
4;;
N_int;;
END_TEMPLATE
subroutine diagonal_contrib_to_two_body_ab_dm(det_1,c_1,big_array,dim1,dim2,dim3,dim4)
use bitmasks
implicit none
integer, intent(in) :: dim1,dim2,dim3,dim4
double precision, intent(inout) :: big_array(dim1,dim2,dim3,dim4,N_states)
integer(bit_kind), intent(in) :: det_1(N_int,2)
double precision, intent(in) :: c_1(N_states)
integer :: occ(N_int*bit_kind_size,2)
integer :: n_occ_ab(2)
integer :: i,j,h1,h2,istate
double precision :: c_1_bis
call bitstring_to_list_ab(det_1, occ, n_occ_ab, N_int)
do istate = 1, N_states
c_1_bis = c_1(istate) * c_1(istate)
do i = 1, n_occ_ab(1)
h1 = occ(i,1)
do j = 1, n_occ_ab(2)
h2 = occ(j,2)
big_array(h1,h1,h2,h2,istate) += c_1_bis
enddo
enddo
enddo
end
subroutine diagonal_contrib_to_all_two_body_dm(det_1,c_1,big_array_ab,big_array_aa,big_array_bb,dim1,dim2,dim3,dim4)
use bitmasks
implicit none
integer, intent(in) :: dim1,dim2,dim3,dim4
double precision, intent(inout) :: big_array_ab(dim1,dim2,dim3,dim4,N_states)
double precision, intent(inout) :: big_array_aa(dim1,dim2,dim3,dim4,N_states)
double precision, intent(inout) :: big_array_bb(dim1,dim2,dim3,dim4,N_states)
integer(bit_kind), intent(in) :: det_1(N_int,2)
double precision, intent(in) :: c_1(N_states)
integer :: occ(N_int*bit_kind_size,2)
integer :: n_occ_ab(2)
integer :: i,j,h1,h2,istate
double precision :: c_1_bis
BEGIN_DOC
! no factor 1/2 have to be taken into account as the permutations are already taken into account
END_DOC
call bitstring_to_list_ab(det_1, occ, n_occ_ab, N_int)
do istate = 1, N_states
c_1_bis = c_1(istate) * c_1(istate)
do i = 1, n_occ_ab(1)
h1 = occ(i,1)
do j = 1, n_occ_ab(2)
h2 = occ(j,2)
big_array_ab(h1,h1,h2,h2,istate) += c_1_bis
enddo
do j = 1, n_occ_ab(1)
h2 = occ(j,1)
big_array_aa(h1,h2,h1,h2,istate) -= c_1_bis
big_array_aa(h1,h1,h2,h2,istate) += c_1_bis
enddo
enddo
do i = 1, n_occ_ab(2)
h1 = occ(i,2)
do j = 1, n_occ_ab(2)
h2 = occ(j,2)
big_array_bb(h1,h1,h2,h2,istate) += c_1_bis
big_array_bb(h1,h2,h1,h2,istate) -= c_1_bis
enddo
enddo
enddo
end
subroutine off_diagonal_double_to_two_body_ab_dm(det_1,det_2,c_1,c_2,big_array,dim1,dim2,dim3,dim4)
use bitmasks
implicit none
integer, intent(in) :: dim1,dim2,dim3,dim4
double precision, intent(inout) :: big_array(dim1,dim2,dim3,dim4,N_states)
integer(bit_kind), intent(in) :: det_1(N_int,2),det_2(N_int,2)
double precision, intent(in) :: c_1(N_states),c_2(N_states)
integer :: i,j,h1,h2,p1,p2,istate
integer :: exc(0:2,2,2)
double precision :: phase
call get_double_excitation(det_1,det_2,exc,phase,N_int)
h1 = exc(1,1,1)
h2 = exc(1,1,2)
p1 = exc(1,2,1)
p2 = exc(1,2,2)
do istate = 1, N_states
big_array(h1,p1,h2,p2,istate) += c_1(istate) * phase * c_2(istate)
! big_array(p1,h1,p2,h2,istate) += c_1(istate) * phase * c_2(istate)
enddo
end
subroutine off_diagonal_single_to_two_body_ab_dm(det_1,det_2,c_1,c_2,big_array,dim1,dim2,dim3,dim4)
use bitmasks
implicit none
integer, intent(in) :: dim1,dim2,dim3,dim4
double precision, intent(inout) :: big_array(dim1,dim2,dim3,dim4,N_states)
integer(bit_kind), intent(in) :: det_1(N_int,2),det_2(N_int,2)
double precision, intent(in) :: c_1(N_states),c_2(N_states)
integer :: occ(N_int*bit_kind_size,2)
integer :: n_occ_ab(2)
integer :: i,j,h1,h2,istate,p1
integer :: exc(0:2,2,2)
double precision :: phase
call bitstring_to_list_ab(det_1, occ, n_occ_ab, N_int)
call get_single_excitation(det_1,det_2,exc,phase,N_int)
if (exc(0,1,1) == 1) then
! Mono alpha
h1 = exc(1,1,1)
p1 = exc(1,2,1)
do istate = 1, N_states
do i = 1, n_occ_ab(2)
h2 = occ(i,2)
big_array(h1,p1,h2,h2,istate) += 1.d0 * c_1(istate) * c_2(istate) * phase
enddo
enddo
else
! Mono beta
h1 = exc(1,1,2)
p1 = exc(1,2,2)
do istate = 1, N_states
do i = 1, n_occ_ab(1)
h2 = occ(i,1)
big_array(h2,h2,h1,p1,istate) += 1.d0 * c_1(istate) * c_2(istate) * phase
enddo
enddo
endif
end

View File

@ -1,10 +1,12 @@
BEGIN_PROVIDER [ logical, do_only_1h1p ]
&BEGIN_PROVIDER [ logical, do_only_cas ]
&BEGIN_PROVIDER [ logical, do_ddci ]
implicit none
BEGIN_DOC
! In the FCI case, all those are always false
END_DOC
do_only_1h1p = .False.
do_only_cas = .False.
do_ddci = .False.
END_PROVIDER

View File

@ -55,6 +55,7 @@ END_PROVIDER
nongen(inongen) = i
endif
enddo
ASSERT (m == N_det_generators)
psi_det_sorted_gen(:,:,:N_det_generators) = psi_det_generators(:,:,:N_det_generators)
psi_coef_sorted_gen(:N_det_generators, :) = psi_coef_generators(:N_det_generators, :)

View File

@ -24,6 +24,7 @@ subroutine routine
implicit none
integer :: i,k
integer :: degree
call print_energy_components
do i = 1, N_det
print *, 'Determinant ', i
call debug_det(psi_det(1,1,i),N_int)

1
src/two_body_rdm/NEED Normal file
View File

@ -0,0 +1 @@
davidson_undressed

View File

@ -0,0 +1,8 @@
============
two_body_rdm
============
Contains the two rdms $\alpha\alpha$, $\beta\beta$ and $\alpha\beta$ stored as
arrays, with pysicists notation, consistent with the two-electron integrals in the
MO basis.

View File

@ -0,0 +1,402 @@
subroutine two_rdm_ab_nstates_openmp(big_array,dim1,dim2,dim3,dim4,u_0,N_st,sze)
use bitmasks
implicit none
BEGIN_DOC
! Computes the alpha/beta part of the two-body density matrix IN CHEMIST NOTATIONS
!
! Assumes that the determinants are in psi_det
!
! istart, iend, ishift, istep are used in ZMQ parallelization.
END_DOC
integer, intent(in) :: N_st,sze
integer, intent(in) :: dim1,dim2,dim3,dim4
double precision, intent(inout) :: big_array(dim1,dim2,dim3,dim4,N_states)
double precision, intent(inout) :: u_0(sze,N_st)
integer :: k
double precision, allocatable :: u_t(:,:)
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: u_t
allocate(u_t(N_st,N_det))
do k=1,N_st
call dset_order(u_0(1,k),psi_bilinear_matrix_order,N_det)
enddo
call dtranspose( &
u_0, &
size(u_0, 1), &
u_t, &
size(u_t, 1), &
N_det, N_st)
call two_rdm_ab_nstates_openmp_work(big_array,dim1,dim2,dim3,dim4,u_t,N_st,sze,1,N_det,0,1)
deallocate(u_t)
do k=1,N_st
call dset_order(u_0(1,k),psi_bilinear_matrix_order_reverse,N_det)
enddo
end
subroutine two_rdm_ab_nstates_openmp_work(big_array,dim1,dim2,dim3,dim4,u_t,N_st,sze,istart,iend,ishift,istep)
use bitmasks
implicit none
BEGIN_DOC
! Computes the alpha/beta part of the two-body density matrix
!
! Default should be 1,N_det,0,1
END_DOC
integer, intent(in) :: N_st,sze,istart,iend,ishift,istep
integer, intent(in) :: dim1,dim2,dim3,dim4
double precision, intent(inout) :: big_array(dim1,dim2,dim3,dim4,N_states)
double precision, intent(in) :: u_t(N_st,N_det)
PROVIDE N_int
select case (N_int)
case (1)
call two_rdm_ab_nstates_openmp_work_1(big_array,dim1,dim2,dim3,dim4,u_t,N_st,sze,istart,iend,ishift,istep)
case (2)
call two_rdm_ab_nstates_openmp_work_2(big_array,dim1,dim2,dim3,dim4,u_t,N_st,sze,istart,iend,ishift,istep)
case (3)
call two_rdm_ab_nstates_openmp_work_3(big_array,dim1,dim2,dim3,dim4,u_t,N_st,sze,istart,iend,ishift,istep)
case (4)
call two_rdm_ab_nstates_openmp_work_4(big_array,dim1,dim2,dim3,dim4,u_t,N_st,sze,istart,iend,ishift,istep)
case default
call two_rdm_ab_nstates_openmp_work_N_int(big_array,dim1,dim2,dim3,dim4,u_t,N_st,sze,istart,iend,ishift,istep)
end select
end
BEGIN_TEMPLATE
subroutine two_rdm_ab_nstates_openmp_work_$N_int(big_array,dim1,dim2,dim3,dim4,u_t,N_st,sze,istart,iend,ishift,istep)
use bitmasks
implicit none
integer, intent(in) :: N_st,sze,istart,iend,ishift,istep
integer, intent(in) :: dim1,dim2,dim3,dim4
double precision, intent(inout) :: big_array(dim1,dim2,dim3,dim4,N_states)
double precision, intent(in) :: u_t(N_st,N_det)
double precision :: hij, sij
integer :: i,j,k,l
integer :: k_a, k_b, l_a, l_b, m_a, m_b
integer :: istate
integer :: krow, kcol, krow_b, kcol_b
integer :: lrow, lcol
integer :: mrow, mcol
integer(bit_kind) :: spindet($N_int)
integer(bit_kind) :: tmp_det($N_int,2)
integer(bit_kind) :: tmp_det2($N_int,2)
integer(bit_kind) :: tmp_det3($N_int,2)
integer(bit_kind), allocatable :: buffer(:,:)
integer :: n_doubles
integer, allocatable :: doubles(:)
integer, allocatable :: singles_a(:)
integer, allocatable :: singles_b(:)
integer, allocatable :: idx(:), idx0(:)
integer :: maxab, n_singles_a, n_singles_b, kcol_prev, nmax
integer*8 :: k8
maxab = max(N_det_alpha_unique, N_det_beta_unique)+1
allocate(idx0(maxab))
do i=1,maxab
idx0(i) = i
enddo
! Prepare the array of all alpha single excitations
! -------------------------------------------------
PROVIDE N_int nthreads_davidson
! Alpha/Beta double excitations
! =============================
allocate( buffer($N_int,maxab), &
singles_a(maxab), &
singles_b(maxab), &
doubles(maxab), &
idx(maxab))
kcol_prev=-1
ASSERT (iend <= N_det)
ASSERT (istart > 0)
ASSERT (istep > 0)
do k_a=istart+ishift,iend,istep
krow = psi_bilinear_matrix_rows(k_a)
ASSERT (krow <= N_det_alpha_unique)
kcol = psi_bilinear_matrix_columns(k_a)
ASSERT (kcol <= N_det_beta_unique)
tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
if (kcol /= kcol_prev) then
call get_all_spin_singles_$N_int( &
psi_det_beta_unique, idx0, &
tmp_det(1,2), N_det_beta_unique, &
singles_b, n_singles_b)
endif
kcol_prev = kcol
! Loop over singly excited beta columns
! -------------------------------------
do i=1,n_singles_b
lcol = singles_b(i)
tmp_det2(1:$N_int,2) = psi_det_beta_unique(1:$N_int, lcol)
l_a = psi_bilinear_matrix_columns_loc(lcol)
ASSERT (l_a <= N_det)
do j=1,psi_bilinear_matrix_columns_loc(lcol+1) - l_a
lrow = psi_bilinear_matrix_rows(l_a)
ASSERT (lrow <= N_det_alpha_unique)
buffer(1:$N_int,j) = psi_det_alpha_unique(1:$N_int, lrow)
ASSERT (l_a <= N_det)
idx(j) = l_a
l_a = l_a+1
enddo
j = j-1
call get_all_spin_singles_$N_int( &
buffer, idx, tmp_det(1,1), j, &
singles_a, n_singles_a )
! Loop over alpha singles
! -----------------------
do k = 1,n_singles_a
l_a = singles_a(k)
ASSERT (l_a <= N_det)
lrow = psi_bilinear_matrix_rows(l_a)
ASSERT (lrow <= N_det_alpha_unique)
tmp_det2(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, lrow)
!!!!!!!!!!!!!!!!!! ALPHA BETA
do l= 1, N_states
c_1(l) = u_t(l,l_a)
c_2(l) = u_t(l,k_a)
enddo
call off_diagonal_double_to_two_rdm_ab_dm(tmp_det,tmp_det2,c_1,c_2,big_array,dim1,dim2,dim3,dim4)
enddo
enddo
enddo
do k_a=istart+ishift,iend,istep
! Single and double alpha excitations
! ===================================
! Initial determinant is at k_a in alpha-major representation
! -----------------------------------------------------------------------
krow = psi_bilinear_matrix_rows(k_a)
ASSERT (krow <= N_det_alpha_unique)
kcol = psi_bilinear_matrix_columns(k_a)
ASSERT (kcol <= N_det_beta_unique)
tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
! Initial determinant is at k_b in beta-major representation
! ----------------------------------------------------------------------
k_b = psi_bilinear_matrix_order_transp_reverse(k_a)
spindet(1:$N_int) = tmp_det(1:$N_int,1)
! Loop inside the beta column to gather all the connected alphas
lcol = psi_bilinear_matrix_columns(k_a)
l_a = psi_bilinear_matrix_columns_loc(lcol)
do i=1,N_det_alpha_unique
if (l_a > N_det) exit
lcol = psi_bilinear_matrix_columns(l_a)
if (lcol /= kcol) exit
lrow = psi_bilinear_matrix_rows(l_a)
ASSERT (lrow <= N_det_alpha_unique)
buffer(1:$N_int,i) = psi_det_alpha_unique(1:$N_int, lrow)
idx(i) = l_a
l_a = l_a+1
enddo
i = i-1
call get_all_spin_singles_and_doubles_$N_int( &
buffer, idx, spindet, i, &
singles_a, doubles, n_singles_a, n_doubles )
! Compute Hij for all alpha singles
! ----------------------------------
tmp_det2(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
do i=1,n_singles_a
l_a = singles_a(i)
ASSERT (l_a <= N_det)
lrow = psi_bilinear_matrix_rows(l_a)
ASSERT (lrow <= N_det_alpha_unique)
tmp_det2(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, lrow)
!!!! MONO SPIN
do l= 1, N_states
c_1(l) = u_t(l,l_a)
c_2(l) = u_t(l,k_a)
enddo
call off_diagonal_single_to_two_rdm_ab_dm(tmp_det, tmp_det2,c_1,c_2,big_array,dim1,dim2,dim3,dim4)
enddo
!! Compute Hij for all alpha doubles
!! ----------------------------------
!
!do i=1,n_doubles
! l_a = doubles(i)
! ASSERT (l_a <= N_det)
! lrow = psi_bilinear_matrix_rows(l_a)
! ASSERT (lrow <= N_det_alpha_unique)
! call i_H_j_double_spin_erf( tmp_det(1,1), psi_det_alpha_unique(1, lrow), $N_int, hij)
! do l=1,N_st
! v_t(l,k_a) = v_t(l,k_a) + hij * u_t(l,l_a)
! ! same spin => sij = 0
! enddo
!enddo
! Single and double beta excitations
! ==================================
! Initial determinant is at k_a in alpha-major representation
! -----------------------------------------------------------------------
krow = psi_bilinear_matrix_rows(k_a)
kcol = psi_bilinear_matrix_columns(k_a)
tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
spindet(1:$N_int) = tmp_det(1:$N_int,2)
! Initial determinant is at k_b in beta-major representation
! -----------------------------------------------------------------------
k_b = psi_bilinear_matrix_order_transp_reverse(k_a)
! Loop inside the alpha row to gather all the connected betas
lrow = psi_bilinear_matrix_transp_rows(k_b)
l_b = psi_bilinear_matrix_transp_rows_loc(lrow)
do i=1,N_det_beta_unique
if (l_b > N_det) exit
lrow = psi_bilinear_matrix_transp_rows(l_b)
if (lrow /= krow) exit
lcol = psi_bilinear_matrix_transp_columns(l_b)
ASSERT (lcol <= N_det_beta_unique)
buffer(1:$N_int,i) = psi_det_beta_unique(1:$N_int, lcol)
idx(i) = l_b
l_b = l_b+1
enddo
i = i-1
call get_all_spin_singles_and_doubles_$N_int( &
buffer, idx, spindet, i, &
singles_b, doubles, n_singles_b, n_doubles )
! Compute Hij for all beta singles
! ----------------------------------
tmp_det2(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
do i=1,n_singles_b
l_b = singles_b(i)
ASSERT (l_b <= N_det)
lcol = psi_bilinear_matrix_transp_columns(l_b)
ASSERT (lcol <= N_det_beta_unique)
tmp_det2(1:$N_int,2) = psi_det_beta_unique (1:$N_int, lcol)
l_a = psi_bilinear_matrix_transp_order(l_b)
do l= 1, N_states
c_1(l) = u_t(l,l_a)
c_2(l) = u_t(l,k_a)
enddo
call off_diagonal_single_to_two_rdm_ab_dm(tmp_det, tmp_det2,c_1,c_2,big_array,dim1,dim2,dim3,dim4)
ASSERT (l_a <= N_det)
enddo
!
!! Compute Hij for all beta doubles
!! ----------------------------------
!
!do i=1,n_doubles
! l_b = doubles(i)
! ASSERT (l_b <= N_det)
! lcol = psi_bilinear_matrix_transp_columns(l_b)
! ASSERT (lcol <= N_det_beta_unique)
! call i_H_j_double_spin_erf( tmp_det(1,2), psi_det_beta_unique(1, lcol), $N_int, hij)
! l_a = psi_bilinear_matrix_transp_order(l_b)
! ASSERT (l_a <= N_det)
! do l=1,N_st
! v_t(l,k_a) = v_t(l,k_a) + hij * u_t(l,l_a)
! ! same spin => sij = 0
! enddo
!enddo
! Diagonal contribution
! =====================
! Initial determinant is at k_a in alpha-major representation
! -----------------------------------------------------------------------
krow = psi_bilinear_matrix_rows(k_a)
ASSERT (krow <= N_det_alpha_unique)
kcol = psi_bilinear_matrix_columns(k_a)
ASSERT (kcol <= N_det_beta_unique)
tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
double precision, external :: diag_H_mat_elem_erf, diag_S_mat_elem
double precision :: c_1(N_states),c_2(N_states)
do l = 1, N_states
c_1(l) = u_t(l,k_a)
enddo
call diagonal_contrib_to_two_rdm_ab_dm(tmp_det,c_1,big_array,dim1,dim2,dim3,dim4)
end do
deallocate(buffer, singles_a, singles_b, doubles, idx)
end
SUBST [ N_int ]
1;;
2;;
3;;
4;;
N_int;;
END_TEMPLATE

View File

@ -0,0 +1,442 @@
subroutine all_two_rdm_dm_nstates_openmp(big_array_aa,big_array_bb,big_array_ab,dim1,dim2,dim3,dim4,u_0,N_st,sze)
use bitmasks
implicit none
BEGIN_DOC
! Computes the alpha/alpha, beta/beta and alpha/beta part of the two-body density matrix IN CHEMIST NOTATIONS
!
! Assumes that the determinants are in psi_det
!
! istart, iend, ishift, istep are used in ZMQ parallelization.
END_DOC
integer, intent(in) :: N_st,sze
integer, intent(in) :: dim1,dim2,dim3,dim4
double precision, intent(inout) :: big_array_aa(dim1,dim2,dim3,dim4,N_states)
double precision, intent(inout) :: big_array_bb(dim1,dim2,dim3,dim4,N_states)
double precision, intent(inout) :: big_array_ab(dim1,dim2,dim3,dim4,N_states)
double precision, intent(inout) :: u_0(sze,N_st)
integer :: k
double precision, allocatable :: u_t(:,:)
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: u_t
allocate(u_t(N_st,N_det))
do k=1,N_st
call dset_order(u_0(1,k),psi_bilinear_matrix_order,N_det)
enddo
call dtranspose( &
u_0, &
size(u_0, 1), &
u_t, &
size(u_t, 1), &
N_det, N_st)
call all_two_rdm_dm_nstates_openmp_work(big_array_aa,big_array_bb,big_array_ab,dim1,dim2,dim3,dim4,u_t,N_st,sze,1,N_det,0,1)
deallocate(u_t)
do k=1,N_st
call dset_order(u_0(1,k),psi_bilinear_matrix_order_reverse,N_det)
enddo
end
subroutine all_two_rdm_dm_nstates_openmp_work(big_array_aa,big_array_bb,big_array_ab,dim1,dim2,dim3,dim4,u_t,N_st,sze,istart,iend,ishift,istep)
use bitmasks
implicit none
BEGIN_DOC
! Computes two-rdm
!
! Default should be 1,N_det,0,1
END_DOC
integer, intent(in) :: N_st,sze,istart,iend,ishift,istep
integer, intent(in) :: dim1,dim2,dim3,dim4
double precision, intent(inout) :: big_array_aa(dim1,dim2,dim3,dim4,N_states)
double precision, intent(inout) :: big_array_bb(dim1,dim2,dim3,dim4,N_states)
double precision, intent(inout) :: big_array_ab(dim1,dim2,dim3,dim4,N_states)
double precision, intent(in) :: u_t(N_st,N_det)
PROVIDE N_int
select case (N_int)
case (1)
call all_two_rdm_dm_nstates_openmp_work_1(big_array_aa,big_array_bb,big_array_ab,dim1,dim2,dim3,dim4,u_t,N_st,sze,istart,iend,ishift,istep)
case (2)
call all_two_rdm_dm_nstates_openmp_work_2(big_array_aa,big_array_bb,big_array_ab,dim1,dim2,dim3,dim4,u_t,N_st,sze,istart,iend,ishift,istep)
case (3)
call all_two_rdm_dm_nstates_openmp_work_3(big_array_aa,big_array_bb,big_array_ab,dim1,dim2,dim3,dim4,u_t,N_st,sze,istart,iend,ishift,istep)
case (4)
call all_two_rdm_dm_nstates_openmp_work_4(big_array_aa,big_array_bb,big_array_ab,dim1,dim2,dim3,dim4,u_t,N_st,sze,istart,iend,ishift,istep)
case default
call all_two_rdm_dm_nstates_openmp_work_N_int(big_array_aa,big_array_bb,big_array_ab,dim1,dim2,dim3,dim4,u_t,N_st,sze,istart,iend,ishift,istep)
end select
end
BEGIN_TEMPLATE
subroutine all_two_rdm_dm_nstates_openmp_work_$N_int(big_array_aa,big_array_bb,big_array_ab,dim1,dim2,dim3,dim4,u_t,N_st,sze,istart,iend,ishift,istep)
use bitmasks
implicit none
BEGIN_DOC
! Computes $v_t = H | u_t \\rangle$ and $s_t = S^2 | u_t \\rangle$
!
! Default should be 1,N_det,0,1
END_DOC
integer, intent(in) :: N_st,sze,istart,iend,ishift,istep
double precision, intent(in) :: u_t(N_st,N_det)
integer, intent(in) :: dim1,dim2,dim3,dim4
double precision, intent(inout) :: big_array_aa(dim1,dim2,dim3,dim4,N_states)
double precision, intent(inout) :: big_array_bb(dim1,dim2,dim3,dim4,N_states)
double precision, intent(inout) :: big_array_ab(dim1,dim2,dim3,dim4,N_states)
integer :: i,j,k,l
integer :: k_a, k_b, l_a, l_b, m_a, m_b
integer :: istate
integer :: krow, kcol, krow_b, kcol_b
integer :: lrow, lcol
integer :: mrow, mcol
integer(bit_kind) :: spindet($N_int)
integer(bit_kind) :: tmp_det($N_int,2)
integer(bit_kind) :: tmp_det2($N_int,2)
integer(bit_kind) :: tmp_det3($N_int,2)
integer(bit_kind), allocatable :: buffer(:,:)
integer :: n_doubles
integer, allocatable :: doubles(:)
integer, allocatable :: singles_a(:)
integer, allocatable :: singles_b(:)
integer, allocatable :: idx(:), idx0(:)
integer :: maxab, n_singles_a, n_singles_b, kcol_prev
integer*8 :: k8
maxab = max(N_det_alpha_unique, N_det_beta_unique)+1
allocate(idx0(maxab))
do i=1,maxab
idx0(i) = i
enddo
! Prepare the array of all alpha single excitations
! -------------------------------------------------
PROVIDE N_int nthreads_davidson
!!$OMP PARALLEL DEFAULT(NONE) NUM_THREADS(nthreads_davidson) &
! !$OMP SHARED(psi_bilinear_matrix_rows, N_det, &
! !$OMP psi_bilinear_matrix_columns, &
! !$OMP psi_det_alpha_unique, psi_det_beta_unique,&
! !$OMP n_det_alpha_unique, n_det_beta_unique, N_int,&
! !$OMP psi_bilinear_matrix_transp_rows, &
! !$OMP psi_bilinear_matrix_transp_columns, &
! !$OMP psi_bilinear_matrix_transp_order, N_st, &
! !$OMP psi_bilinear_matrix_order_transp_reverse, &
! !$OMP psi_bilinear_matrix_columns_loc, &
! !$OMP psi_bilinear_matrix_transp_rows_loc, &
! !$OMP istart, iend, istep, irp_here, v_t, s_t, &
! !$OMP ishift, idx0, u_t, maxab) &
! !$OMP PRIVATE(krow, kcol, tmp_det, spindet, k_a, k_b, i,&
! !$OMP lcol, lrow, l_a, l_b, &
! !$OMP buffer, doubles, n_doubles, &
! !$OMP tmp_det2, idx, l, kcol_prev, &
! !$OMP singles_a, n_singles_a, singles_b, &
! !$OMP n_singles_b, k8)
! Alpha/Beta double excitations
! =============================
allocate( buffer($N_int,maxab), &
singles_a(maxab), &
singles_b(maxab), &
doubles(maxab), &
idx(maxab))
kcol_prev=-1
ASSERT (iend <= N_det)
ASSERT (istart > 0)
ASSERT (istep > 0)
!!$OMP DO SCHEDULE(dynamic,64)
do k_a=istart+ishift,iend,istep
krow = psi_bilinear_matrix_rows(k_a)
ASSERT (krow <= N_det_alpha_unique)
kcol = psi_bilinear_matrix_columns(k_a)
ASSERT (kcol <= N_det_beta_unique)
tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
if (kcol /= kcol_prev) then
call get_all_spin_singles_$N_int( &
psi_det_beta_unique, idx0, &
tmp_det(1,2), N_det_beta_unique, &
singles_b, n_singles_b)
endif
kcol_prev = kcol
! Loop over singly excited beta columns
! -------------------------------------
do i=1,n_singles_b
lcol = singles_b(i)
tmp_det2(1:$N_int,2) = psi_det_beta_unique(1:$N_int, lcol)
l_a = psi_bilinear_matrix_columns_loc(lcol)
ASSERT (l_a <= N_det)
do j=1,psi_bilinear_matrix_columns_loc(lcol+1) - l_a
lrow = psi_bilinear_matrix_rows(l_a)
ASSERT (lrow <= N_det_alpha_unique)
buffer(1:$N_int,j) = psi_det_alpha_unique(1:$N_int, lrow)
ASSERT (l_a <= N_det)
idx(j) = l_a
l_a = l_a+1
enddo
j = j-1
call get_all_spin_singles_$N_int( &
buffer, idx, tmp_det(1,1), j, &
singles_a, n_singles_a )
! Loop over alpha singles
! -----------------------
do k = 1,n_singles_a
l_a = singles_a(k)
ASSERT (l_a <= N_det)
lrow = psi_bilinear_matrix_rows(l_a)
ASSERT (lrow <= N_det_alpha_unique)
tmp_det2(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, lrow)
!call i_H_j_double_alpha_beta(tmp_det,tmp_det2,$N_int,hij)
do l= 1, N_states
c_1(l) = u_t(l,l_a)
c_2(l) = u_t(l,k_a)
enddo
call off_diagonal_double_to_two_rdm_ab_dm(tmp_det,tmp_det2,c_1,c_2,big_array_ab,dim1,dim2,dim3,dim4)
enddo
enddo
enddo
! !$OMP END DO
! !$OMP DO SCHEDULE(dynamic,64)
do k_a=istart+ishift,iend,istep
! Single and double alpha exitations
! ===================================
! Initial determinant is at k_a in alpha-major representation
! -----------------------------------------------------------------------
krow = psi_bilinear_matrix_rows(k_a)
ASSERT (krow <= N_det_alpha_unique)
kcol = psi_bilinear_matrix_columns(k_a)
ASSERT (kcol <= N_det_beta_unique)
tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
! Initial determinant is at k_b in beta-major representation
! ----------------------------------------------------------------------
k_b = psi_bilinear_matrix_order_transp_reverse(k_a)
ASSERT (k_b <= N_det)
spindet(1:$N_int) = tmp_det(1:$N_int,1)
! Loop inside the beta column to gather all the connected alphas
lcol = psi_bilinear_matrix_columns(k_a)
l_a = psi_bilinear_matrix_columns_loc(lcol)
do i=1,N_det_alpha_unique
if (l_a > N_det) exit
lcol = psi_bilinear_matrix_columns(l_a)
if (lcol /= kcol) exit
lrow = psi_bilinear_matrix_rows(l_a)
ASSERT (lrow <= N_det_alpha_unique)
buffer(1:$N_int,i) = psi_det_alpha_unique(1:$N_int, lrow)
idx(i) = l_a
l_a = l_a+1
enddo
i = i-1
call get_all_spin_singles_and_doubles_$N_int( &
buffer, idx, spindet, i, &
singles_a, doubles, n_singles_a, n_doubles )
! Compute Hij for all alpha singles
! ----------------------------------
tmp_det2(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
do i=1,n_singles_a
l_a = singles_a(i)
ASSERT (l_a <= N_det)
lrow = psi_bilinear_matrix_rows(l_a)
ASSERT (lrow <= N_det_alpha_unique)
tmp_det2(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, lrow)
do l= 1, N_states
c_1(l) = u_t(l,l_a)
c_2(l) = u_t(l,k_a)
enddo
! increment the alpha/beta part for single excitations
call off_diagonal_single_to_two_rdm_ab_dm(tmp_det, tmp_det2,c_1,c_2,big_array_ab,dim1,dim2,dim3,dim4)
! increment the alpha/alpha part for single excitations
call off_diagonal_single_to_two_rdm_aa_dm(tmp_det,tmp_det2,c_1,c_2,big_array_aa,dim1,dim2,dim3,dim4)
enddo
! Compute Hij for all alpha doubles
! ----------------------------------
do i=1,n_doubles
l_a = doubles(i)
ASSERT (l_a <= N_det)
lrow = psi_bilinear_matrix_rows(l_a)
ASSERT (lrow <= N_det_alpha_unique)
do l= 1, N_states
c_1(l) = u_t(l,l_a)
c_2(l) = u_t(l,k_a)
enddo
call off_diagonal_double_to_two_rdm_aa_dm(tmp_det(1,1),psi_det_alpha_unique(1, lrow),c_1,c_2,big_array_aa,dim1,dim2,dim3,dim4)
enddo
! Single and double beta excitations
! ==================================
! Initial determinant is at k_a in alpha-major representation
! -----------------------------------------------------------------------
krow = psi_bilinear_matrix_rows(k_a)
kcol = psi_bilinear_matrix_columns(k_a)
tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
spindet(1:$N_int) = tmp_det(1:$N_int,2)
! Initial determinant is at k_b in beta-major representation
! -----------------------------------------------------------------------
k_b = psi_bilinear_matrix_order_transp_reverse(k_a)
ASSERT (k_b <= N_det)
! Loop inside the alpha row to gather all the connected betas
lrow = psi_bilinear_matrix_transp_rows(k_b)
l_b = psi_bilinear_matrix_transp_rows_loc(lrow)
do i=1,N_det_beta_unique
if (l_b > N_det) exit
lrow = psi_bilinear_matrix_transp_rows(l_b)
if (lrow /= krow) exit
lcol = psi_bilinear_matrix_transp_columns(l_b)
ASSERT (lcol <= N_det_beta_unique)
buffer(1:$N_int,i) = psi_det_beta_unique(1:$N_int, lcol)
idx(i) = l_b
l_b = l_b+1
enddo
i = i-1
call get_all_spin_singles_and_doubles_$N_int( &
buffer, idx, spindet, i, &
singles_b, doubles, n_singles_b, n_doubles )
! Compute Hij for all beta singles
! ----------------------------------
tmp_det2(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
do i=1,n_singles_b
l_b = singles_b(i)
ASSERT (l_b <= N_det)
lcol = psi_bilinear_matrix_transp_columns(l_b)
ASSERT (lcol <= N_det_beta_unique)
tmp_det2(1:$N_int,2) = psi_det_beta_unique (1:$N_int, lcol)
l_a = psi_bilinear_matrix_transp_order(l_b)
do l= 1, N_states
c_1(l) = u_t(l,l_a)
c_2(l) = u_t(l,k_a)
enddo
! increment the alpha/beta part for single excitations
call off_diagonal_single_to_two_rdm_ab_dm(tmp_det, tmp_det2,c_1,c_2,big_array_ab,dim1,dim2,dim3,dim4)
! increment the beta /beta part for single excitations
call off_diagonal_single_to_two_rdm_bb_dm(tmp_det, tmp_det2,c_1,c_2,big_array_bb,dim1,dim2,dim3,dim4)
enddo
! Compute Hij for all beta doubles
! ----------------------------------
do i=1,n_doubles
l_b = doubles(i)
ASSERT (l_b <= N_det)
lcol = psi_bilinear_matrix_transp_columns(l_b)
ASSERT (lcol <= N_det_beta_unique)
l_a = psi_bilinear_matrix_transp_order(l_b)
do l= 1, N_states
c_1(l) = u_t(l,l_a)
c_2(l) = u_t(l,k_a)
enddo
call off_diagonal_double_to_two_rdm_bb_dm(tmp_det(1,2),psi_det_alpha_unique(1, lcol),c_1,c_2,big_array_bb,dim1,dim2,dim3,dim4)
ASSERT (l_a <= N_det)
enddo
! Diagonal contribution
! =====================
! Initial determinant is at k_a in alpha-major representation
! -----------------------------------------------------------------------
krow = psi_bilinear_matrix_rows(k_a)
ASSERT (krow <= N_det_alpha_unique)
kcol = psi_bilinear_matrix_columns(k_a)
ASSERT (kcol <= N_det_beta_unique)
tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
double precision, external :: diag_wee_mat_elem, diag_S_mat_elem
double precision :: c_1(N_states),c_2(N_states)
do l = 1, N_states
c_1(l) = u_t(l,k_a)
enddo
call diagonal_contrib_to_all_two_rdm_dm(tmp_det,c_1,big_array_aa,big_array_bb,big_array_ab,dim1,dim2,dim3,dim4)
end do
!!$OMP END DO
deallocate(buffer, singles_a, singles_b, doubles, idx)
!!$OMP END PARALLEL
end
SUBST [ N_int ]
1;;
2;;
3;;
4;;
N_int;;
END_TEMPLATE

View File

@ -0,0 +1,83 @@
BEGIN_PROVIDER [double precision, act_two_rdm_alpha_alpha_mo, (n_act_orb,n_act_orb,n_act_orb,n_act_orb)]
implicit none
double precision, allocatable :: state_weights(:)
BEGIN_DOC
! act_two_rdm_alpha_alpha_mo(i,j,k,l) = state average physicist two-body rdm restricted to the ACTIVE indices for alpha-alpha electron pairs
! = <Psi| a^{\dagger}_i a^{\dagger}_j a_l a_k |Psi>
END_DOC
allocate(state_weights(N_states))
state_weights = 1.d0/dble(N_states)
integer :: ispin
! condition for alpha/beta spin
ispin = 1
act_two_rdm_alpha_alpha_mo = 0.D0
call orb_range_two_rdm_dm_nstates_openmp(act_two_rdm_alpha_alpha_mo,n_act_orb,n_act_orb,list_act,list_act_reverse,state_weights,ispin,psi_coef,size(psi_coef,2),size(psi_coef,1))
END_PROVIDER
BEGIN_PROVIDER [double precision, act_two_rdm_beta_beta_mo, (n_act_orb,n_act_orb,n_act_orb,n_act_orb)]
implicit none
double precision, allocatable :: state_weights(:)
BEGIN_DOC
! act_two_rdm_beta_beta_mo(i,j,k,l) = state average physicist two-body rdm restricted to the ACTIVE indices for beta-beta electron pairs
! = <Psi| a^{\dagger}_i a^{\dagger}_j a_l a_k |Psi>
END_DOC
allocate(state_weights(N_states))
state_weights = 1.d0/dble(N_states)
integer :: ispin
! condition for alpha/beta spin
ispin = 2
act_two_rdm_beta_beta_mo = 0.d0
call orb_range_two_rdm_dm_nstates_openmp(act_two_rdm_beta_beta_mo,n_act_orb,n_act_orb,list_act,list_act_reverse,state_weights,ispin,psi_coef,size(psi_coef,2),size(psi_coef,1))
END_PROVIDER
BEGIN_PROVIDER [double precision, act_two_rdm_alpha_beta_mo, (n_act_orb,n_act_orb,n_act_orb,n_act_orb)]
implicit none
double precision, allocatable :: state_weights(:)
BEGIN_DOC
! act_two_rdm_alpha_beta_mo(i,j,k,l) = state average physicist two-body rdm restricted to the ACTIVE indices for alpha-beta electron pairs
! = <Psi| a^{\dagger}_{i,alpha} a^{\dagger}_{j,beta} a_{l,beta} a_{k,alpha} |Psi>
END_DOC
allocate(state_weights(N_states))
state_weights = 1.d0/dble(N_states)
integer :: ispin
! condition for alpha/beta spin
print*,''
print*,''
print*,''
print*,'providint act_two_rdm_alpha_beta_mo '
ispin = 3
print*,'ispin = ',ispin
act_two_rdm_alpha_beta_mo = 0.d0
call orb_range_two_rdm_dm_nstates_openmp(act_two_rdm_alpha_beta_mo,n_act_orb,n_act_orb,list_act,list_act_reverse,state_weights,ispin,psi_coef,size(psi_coef,2),size(psi_coef,1))
END_PROVIDER
BEGIN_PROVIDER [double precision, act_two_rdm_spin_trace_mo, (n_act_orb,n_act_orb,n_act_orb,n_act_orb)]
implicit none
BEGIN_DOC
! act_two_rdm_spin_trace_mo(i,j,k,l) = state average physicist spin trace two-body rdm restricted to the ACTIVE indices
! The active part of the two-electron energy can be computed as:
!
! \sum_{i,j,k,l = 1, n_act_orb} act_two_rdm_spin_trace_mo(i,j,k,l) * < ii jj | kk ll >
!
! with ii = list_act(i), jj = list_act(j), kk = list_act(k), ll = list_act(l)
END_DOC
double precision, allocatable :: state_weights(:)
allocate(state_weights(N_states))
state_weights = 1.d0/dble(N_states)
integer :: ispin
! condition for alpha/beta spin
ispin = 4
act_two_rdm_spin_trace_mo = 0.d0
integer :: i
call orb_range_two_rdm_dm_nstates_openmp(act_two_rdm_spin_trace_mo,n_act_orb,n_act_orb,list_act,list_act_reverse,state_weights,ispin,psi_coef,size(psi_coef,2),size(psi_coef,1))
END_PROVIDER

View File

@ -0,0 +1,496 @@
subroutine orb_range_two_rdm_dm_nstates_openmp(big_array,dim1,norb,list_orb,list_orb_reverse,state_weights,ispin,u_0,N_st,sze)
use bitmasks
implicit none
BEGIN_DOC
! if ispin == 1 :: alpha/alpha 2rdm
! == 2 :: beta /beta 2rdm
! == 3 :: alpha/beta 2rdm
! == 4 :: spin traced 2rdm :: aa + bb + 0.5 (ab + ba))
!
! Assumes that the determinants are in psi_det
!
! istart, iend, ishift, istep are used in ZMQ parallelization.
END_DOC
integer, intent(in) :: N_st,sze
integer, intent(in) :: dim1,norb,list_orb(norb),ispin
integer, intent(in) :: list_orb_reverse(mo_num)
double precision, intent(inout) :: big_array(dim1,dim1,dim1,dim1)
double precision, intent(in) :: u_0(sze,N_st),state_weights(N_st)
integer :: k
double precision, allocatable :: u_t(:,:)
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: u_t
allocate(u_t(N_st,N_det))
do k=1,N_st
call dset_order(u_0(1,k),psi_bilinear_matrix_order,N_det)
enddo
call dtranspose( &
u_0, &
size(u_0, 1), &
u_t, &
size(u_t, 1), &
N_det, N_st)
call orb_range_two_rdm_dm_nstates_openmp_work(big_array,dim1,norb,list_orb,list_orb_reverse,state_weights,ispin,u_t,N_st,sze,1,N_det,0,1)
deallocate(u_t)
do k=1,N_st
call dset_order(u_0(1,k),psi_bilinear_matrix_order_reverse,N_det)
enddo
end
subroutine orb_range_two_rdm_dm_nstates_openmp_work(big_array,dim1,norb,list_orb,list_orb_reverse,state_weights,ispin,u_t,N_st,sze,istart,iend,ishift,istep)
use bitmasks
implicit none
BEGIN_DOC
! Computes two-rdm
!
! Default should be 1,N_det,0,1
END_DOC
integer, intent(in) :: N_st,sze,istart,iend,ishift,istep
integer, intent(in) :: dim1,norb,list_orb(norb),ispin
integer, intent(in) :: list_orb_reverse(mo_num)
double precision, intent(inout) :: big_array(dim1,dim1,dim1,dim1)
double precision, intent(in) :: u_t(N_st,N_det),state_weights(N_st)
integer :: k
PROVIDE N_int
select case (N_int)
case (1)
call orb_range_two_rdm_dm_nstates_openmp_work_1(big_array,dim1,norb,list_orb,list_orb_reverse,state_weights,ispin,u_t,N_st,sze,istart,iend,ishift,istep)
case (2)
call orb_range_two_rdm_dm_nstates_openmp_work_2(big_array,dim1,norb,list_orb,list_orb_reverse,state_weights,ispin,u_t,N_st,sze,istart,iend,ishift,istep)
case (3)
call orb_range_two_rdm_dm_nstates_openmp_work_3(big_array,dim1,norb,list_orb,list_orb_reverse,state_weights,ispin,u_t,N_st,sze,istart,iend,ishift,istep)
case (4)
call orb_range_two_rdm_dm_nstates_openmp_work_4(big_array,dim1,norb,list_orb,list_orb_reverse,state_weights,ispin,u_t,N_st,sze,istart,iend,ishift,istep)
case default
call orb_range_two_rdm_dm_nstates_openmp_work_N_int(big_array,dim1,norb,list_orb,list_orb_reverse,state_weights,ispin,u_t,N_st,sze,istart,iend,ishift,istep)
end select
end
BEGIN_TEMPLATE
subroutine orb_range_two_rdm_dm_nstates_openmp_work_$N_int(big_array,dim1,norb,list_orb,list_orb_reverse,state_weights,ispin,u_t,N_st,sze,istart,iend,ishift,istep)
use bitmasks
implicit none
BEGIN_DOC
! Computes the two rdm for the N_st vectors |u_t>
! if ispin == 1 :: alpha/alpha 2rdm
! == 2 :: beta /beta 2rdm
! == 3 :: alpha/beta 2rdm
! == 4 :: spin traced 2rdm :: aa + bb + 0.5 (ab + ba))
! The 2rdm will be computed only on the list of orbitals list_orb, which contains norb
! In any cases, the state average weights will be used with an array state_weights
! Default should be 1,N_det,0,1 for istart,iend,ishift,istep
END_DOC
integer, intent(in) :: N_st,sze,istart,iend,ishift,istep
double precision, intent(in) :: u_t(N_st,N_det),state_weights(N_st)
integer, intent(in) :: dim1,norb,list_orb(norb),ispin
integer, intent(in) :: list_orb_reverse(mo_num)
double precision, intent(inout) :: big_array(dim1,dim1,dim1,dim1)
integer :: i,j,k,l
integer :: k_a, k_b, l_a, l_b, m_a, m_b
integer :: istate
integer :: krow, kcol, krow_b, kcol_b
integer :: lrow, lcol
integer :: mrow, mcol
integer(bit_kind) :: spindet($N_int)
integer(bit_kind) :: tmp_det($N_int,2)
integer(bit_kind) :: tmp_det2($N_int,2)
integer(bit_kind) :: tmp_det3($N_int,2)
integer(bit_kind), allocatable :: buffer(:,:)
integer :: n_doubles
integer, allocatable :: doubles(:)
integer, allocatable :: singles_a(:)
integer, allocatable :: singles_b(:)
integer, allocatable :: idx(:), idx0(:)
integer :: maxab, n_singles_a, n_singles_b, kcol_prev
integer*8 :: k8
double precision :: c_average
logical :: alpha_alpha,beta_beta,alpha_beta,spin_trace
integer(bit_kind) :: orb_bitmask($N_int)
alpha_alpha = .False.
beta_beta = .False.
alpha_beta = .False.
spin_trace = .False.
if( ispin == 1)then
alpha_alpha = .True.
else if(ispin == 2)then
beta_beta = .True.
else if(ispin == 3)then
alpha_beta = .True.
else if(ispin == 4)then
spin_trace = .True.
else
print*,'Wrong parameter for ispin in general_two_rdm_dm_nstates_openmp_work'
print*,'ispin = ',ispin
stop
endif
PROVIDE N_int
call list_to_bitstring( orb_bitmask, list_orb, norb, N_int)
maxab = max(N_det_alpha_unique, N_det_beta_unique)+1
allocate(idx0(maxab))
do i=1,maxab
idx0(i) = i
enddo
! Prepare the array of all alpha single excitations
! -------------------------------------------------
PROVIDE N_int nthreads_davidson
!!$OMP PARALLEL DEFAULT(NONE) NUM_THREADS(nthreads_davidson) &
! !$OMP SHARED(psi_bilinear_matrix_rows, N_det, &
! !$OMP psi_bilinear_matrix_columns, &
! !$OMP psi_det_alpha_unique, psi_det_beta_unique,&
! !$OMP n_det_alpha_unique, n_det_beta_unique, N_int,&
! !$OMP psi_bilinear_matrix_transp_rows, &
! !$OMP psi_bilinear_matrix_transp_columns, &
! !$OMP psi_bilinear_matrix_transp_order, N_st, &
! !$OMP psi_bilinear_matrix_order_transp_reverse, &
! !$OMP psi_bilinear_matrix_columns_loc, &
! !$OMP psi_bilinear_matrix_transp_rows_loc, &
! !$OMP istart, iend, istep, irp_here, v_t, s_t, &
! !$OMP ishift, idx0, u_t, maxab) &
! !$OMP PRIVATE(krow, kcol, tmp_det, spindet, k_a, k_b, i,&
! !$OMP lcol, lrow, l_a, l_b, &
! !$OMP buffer, doubles, n_doubles, &
! !$OMP tmp_det2, idx, l, kcol_prev, &
! !$OMP singles_a, n_singles_a, singles_b, &
! !$OMP n_singles_b, k8)
! Alpha/Beta double excitations
! =============================
allocate( buffer($N_int,maxab), &
singles_a(maxab), &
singles_b(maxab), &
doubles(maxab), &
idx(maxab))
kcol_prev=-1
ASSERT (iend <= N_det)
ASSERT (istart > 0)
ASSERT (istep > 0)
!!$OMP DO SCHEDULE(dynamic,64)
do k_a=istart+ishift,iend,istep
krow = psi_bilinear_matrix_rows(k_a)
ASSERT (krow <= N_det_alpha_unique)
kcol = psi_bilinear_matrix_columns(k_a)
ASSERT (kcol <= N_det_beta_unique)
tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
if (kcol /= kcol_prev) then
call get_all_spin_singles_$N_int( &
psi_det_beta_unique, idx0, &
tmp_det(1,2), N_det_beta_unique, &
singles_b, n_singles_b)
endif
kcol_prev = kcol
! Loop over singly excited beta columns
! -------------------------------------
do i=1,n_singles_b
lcol = singles_b(i)
tmp_det2(1:$N_int,2) = psi_det_beta_unique(1:$N_int, lcol)
l_a = psi_bilinear_matrix_columns_loc(lcol)
ASSERT (l_a <= N_det)
do j=1,psi_bilinear_matrix_columns_loc(lcol+1) - l_a
lrow = psi_bilinear_matrix_rows(l_a)
ASSERT (lrow <= N_det_alpha_unique)
buffer(1:$N_int,j) = psi_det_alpha_unique(1:$N_int, lrow)
ASSERT (l_a <= N_det)
idx(j) = l_a
l_a = l_a+1
enddo
j = j-1
call get_all_spin_singles_$N_int( &
buffer, idx, tmp_det(1,1), j, &
singles_a, n_singles_a )
! Loop over alpha singles
! -----------------------
if(alpha_beta.or.spin_trace)then
do k = 1,n_singles_a
l_a = singles_a(k)
ASSERT (l_a <= N_det)
lrow = psi_bilinear_matrix_rows(l_a)
ASSERT (lrow <= N_det_alpha_unique)
tmp_det2(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, lrow)
c_average = 0.d0
do l= 1, N_states
c_1(l) = u_t(l,l_a)
c_2(l) = u_t(l,k_a)
c_average += c_1(l) * c_2(l) * state_weights(l)
enddo
call orb_range_off_diagonal_double_to_two_rdm_ab_dm(tmp_det,tmp_det2,c_average,big_array,dim1,orb_bitmask,list_orb_reverse,ispin)
enddo
endif
enddo
enddo
! !$OMP END DO
! !$OMP DO SCHEDULE(dynamic,64)
do k_a=istart+ishift,iend,istep
! Single and double alpha exitations
! ===================================
! Initial determinant is at k_a in alpha-major representation
! -----------------------------------------------------------------------
krow = psi_bilinear_matrix_rows(k_a)
ASSERT (krow <= N_det_alpha_unique)
kcol = psi_bilinear_matrix_columns(k_a)
ASSERT (kcol <= N_det_beta_unique)
tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
! Initial determinant is at k_b in beta-major representation
! ----------------------------------------------------------------------
k_b = psi_bilinear_matrix_order_transp_reverse(k_a)
ASSERT (k_b <= N_det)
spindet(1:$N_int) = tmp_det(1:$N_int,1)
! Loop inside the beta column to gather all the connected alphas
lcol = psi_bilinear_matrix_columns(k_a)
l_a = psi_bilinear_matrix_columns_loc(lcol)
do i=1,N_det_alpha_unique
if (l_a > N_det) exit
lcol = psi_bilinear_matrix_columns(l_a)
if (lcol /= kcol) exit
lrow = psi_bilinear_matrix_rows(l_a)
ASSERT (lrow <= N_det_alpha_unique)
buffer(1:$N_int,i) = psi_det_alpha_unique(1:$N_int, lrow)
idx(i) = l_a
l_a = l_a+1
enddo
i = i-1
call get_all_spin_singles_and_doubles_$N_int( &
buffer, idx, spindet, i, &
singles_a, doubles, n_singles_a, n_doubles )
! Compute Hij for all alpha singles
! ----------------------------------
tmp_det2(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
do i=1,n_singles_a
l_a = singles_a(i)
ASSERT (l_a <= N_det)
lrow = psi_bilinear_matrix_rows(l_a)
ASSERT (lrow <= N_det_alpha_unique)
tmp_det2(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, lrow)
c_average = 0.d0
do l= 1, N_states
c_1(l) = u_t(l,l_a)
c_2(l) = u_t(l,k_a)
c_average += c_1(l) * c_2(l) * state_weights(l)
enddo
if(alpha_beta.or.spin_trace.or.alpha_alpha)then
! increment the alpha/beta part for single excitations
call orb_range_off_diagonal_single_to_two_rdm_ab_dm(tmp_det, tmp_det2,c_average,big_array,dim1,orb_bitmask,list_orb_reverse,ispin)
! increment the alpha/alpha part for single excitations
call orb_range_off_diagonal_single_to_two_rdm_aa_dm(tmp_det,tmp_det2,c_average,big_array,dim1,orb_bitmask,list_orb_reverse,ispin)
endif
enddo
! Compute Hij for all alpha doubles
! ----------------------------------
if(alpha_alpha.or.spin_trace)then
do i=1,n_doubles
l_a = doubles(i)
ASSERT (l_a <= N_det)
lrow = psi_bilinear_matrix_rows(l_a)
ASSERT (lrow <= N_det_alpha_unique)
c_average = 0.d0
do l= 1, N_states
c_1(l) = u_t(l,l_a)
c_2(l) = u_t(l,k_a)
c_average += c_1(l) * c_2(l) * state_weights(l)
enddo
call orb_range_off_diagonal_double_to_two_rdm_aa_dm(tmp_det(1,1),psi_det_alpha_unique(1, lrow),c_average,big_array,dim1,orb_bitmask,list_orb_reverse,ispin)
enddo
endif
! Single and double beta excitations
! ==================================
! Initial determinant is at k_a in alpha-major representation
! -----------------------------------------------------------------------
krow = psi_bilinear_matrix_rows(k_a)
kcol = psi_bilinear_matrix_columns(k_a)
tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
spindet(1:$N_int) = tmp_det(1:$N_int,2)
! Initial determinant is at k_b in beta-major representation
! -----------------------------------------------------------------------
k_b = psi_bilinear_matrix_order_transp_reverse(k_a)
ASSERT (k_b <= N_det)
! Loop inside the alpha row to gather all the connected betas
lrow = psi_bilinear_matrix_transp_rows(k_b)
l_b = psi_bilinear_matrix_transp_rows_loc(lrow)
do i=1,N_det_beta_unique
if (l_b > N_det) exit
lrow = psi_bilinear_matrix_transp_rows(l_b)
if (lrow /= krow) exit
lcol = psi_bilinear_matrix_transp_columns(l_b)
ASSERT (lcol <= N_det_beta_unique)
buffer(1:$N_int,i) = psi_det_beta_unique(1:$N_int, lcol)
idx(i) = l_b
l_b = l_b+1
enddo
i = i-1
call get_all_spin_singles_and_doubles_$N_int( &
buffer, idx, spindet, i, &
singles_b, doubles, n_singles_b, n_doubles )
! Compute Hij for all beta singles
! ----------------------------------
tmp_det2(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
do i=1,n_singles_b
l_b = singles_b(i)
ASSERT (l_b <= N_det)
lcol = psi_bilinear_matrix_transp_columns(l_b)
ASSERT (lcol <= N_det_beta_unique)
tmp_det2(1:$N_int,2) = psi_det_beta_unique (1:$N_int, lcol)
l_a = psi_bilinear_matrix_transp_order(l_b)
c_average = 0.d0
do l= 1, N_states
c_1(l) = u_t(l,l_a)
c_2(l) = u_t(l,k_a)
c_average += c_1(l) * c_2(l) * state_weights(l)
enddo
if(alpha_beta.or.spin_trace.or.beta_beta)then
! increment the alpha/beta part for single excitations
call orb_range_off_diagonal_single_to_two_rdm_ab_dm(tmp_det, tmp_det2,c_average,big_array,dim1,orb_bitmask,list_orb_reverse,ispin)
! increment the beta /beta part for single excitations
call orb_range_off_diagonal_single_to_two_rdm_bb_dm(tmp_det, tmp_det2,c_average,big_array,dim1,orb_bitmask,list_orb_reverse,ispin)
endif
enddo
! Compute Hij for all beta doubles
! ----------------------------------
if(beta_beta.or.spin_trace)then
do i=1,n_doubles
l_b = doubles(i)
ASSERT (l_b <= N_det)
lcol = psi_bilinear_matrix_transp_columns(l_b)
ASSERT (lcol <= N_det_beta_unique)
l_a = psi_bilinear_matrix_transp_order(l_b)
c_average = 0.d0
do l= 1, N_states
c_1(l) = u_t(l,l_a)
c_2(l) = u_t(l,k_a)
c_average += c_1(l) * c_2(l) * state_weights(l)
enddo
call orb_range_off_diagonal_double_to_two_rdm_bb_dm(tmp_det(1,2),psi_det_alpha_unique(1, lcol),c_average,big_array,dim1,orb_bitmask,list_orb_reverse,ispin)
ASSERT (l_a <= N_det)
enddo
endif
! Diagonal contribution
! =====================
! Initial determinant is at k_a in alpha-major representation
! -----------------------------------------------------------------------
krow = psi_bilinear_matrix_rows(k_a)
ASSERT (krow <= N_det_alpha_unique)
kcol = psi_bilinear_matrix_columns(k_a)
ASSERT (kcol <= N_det_beta_unique)
tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
double precision, external :: diag_wee_mat_elem, diag_S_mat_elem
double precision :: c_1(N_states),c_2(N_states)
c_average = 0.d0
do l = 1, N_states
c_1(l) = u_t(l,k_a)
c_average += c_1(l) * c_1(l) * state_weights(l)
enddo
call orb_range_diagonal_contrib_to_all_two_rdm_dm(tmp_det,c_average,big_array,dim1,orb_bitmask,list_orb_reverse,ispin)
end do
!!$OMP END DO
deallocate(buffer, singles_a, singles_b, doubles, idx)
!!$OMP END PARALLEL
end
SUBST [ N_int ]
1;;
2;;
3;;
4;;
N_int;;
END_TEMPLATE

View File

@ -0,0 +1,269 @@
subroutine diagonal_contrib_to_two_rdm_ab_dm(det_1,c_1,big_array,dim1,dim2,dim3,dim4)
use bitmasks
BEGIN_DOC
! routine that update the DIAGONAL PART of the alpha/beta two body rdm IN CHEMIST NOTATIONS
END_DOC
implicit none
integer, intent(in) :: dim1,dim2,dim3,dim4
double precision, intent(inout) :: big_array(dim1,dim2,dim3,dim4,N_states)
integer(bit_kind), intent(in) :: det_1(N_int,2)
double precision, intent(in) :: c_1(N_states)
integer :: occ(N_int*bit_kind_size,2)
integer :: n_occ_ab(2)
integer :: i,j,h1,h2,istate
double precision :: c_1_bis
call bitstring_to_list_ab(det_1, occ, n_occ_ab, N_int)
do istate = 1, N_states
c_1_bis = c_1(istate) * c_1(istate)
do i = 1, n_occ_ab(1)
h1 = occ(i,1)
do j = 1, n_occ_ab(2)
h2 = occ(j,2)
big_array(h1,h1,h2,h2,istate) += c_1_bis
enddo
enddo
enddo
end
subroutine diagonal_contrib_to_all_two_rdm_dm(det_1,c_1,big_array_aa,big_array_bb,big_array_ab,dim1,dim2,dim3,dim4)
use bitmasks
BEGIN_DOC
! routine that update the DIAGONAL PART of ALL THREE two body rdm IN CHEMIST NOTATIONS
END_DOC
implicit none
integer, intent(in) :: dim1,dim2,dim3,dim4
double precision, intent(inout) :: big_array_ab(dim1,dim2,dim3,dim4,N_states)
double precision, intent(inout) :: big_array_aa(dim1,dim2,dim3,dim4,N_states)
double precision, intent(inout) :: big_array_bb(dim1,dim2,dim3,dim4,N_states)
integer(bit_kind), intent(in) :: det_1(N_int,2)
double precision, intent(in) :: c_1(N_states)
integer :: occ(N_int*bit_kind_size,2)
integer :: n_occ_ab(2)
integer :: i,j,h1,h2,istate
double precision :: c_1_bis
BEGIN_DOC
! no factor 1/2 have to be taken into account as the permutations are already taken into account
END_DOC
call bitstring_to_list_ab(det_1, occ, n_occ_ab, N_int)
do istate = 1, N_states
c_1_bis = c_1(istate) * c_1(istate)
do i = 1, n_occ_ab(1)
h1 = occ(i,1)
do j = 1, n_occ_ab(2)
h2 = occ(j,2)
big_array_ab(h1,h1,h2,h2,istate) += c_1_bis
enddo
do j = 1, n_occ_ab(1)
h2 = occ(j,1)
big_array_aa(h1,h1,h2,h2,istate) += 0.5d0 * c_1_bis
big_array_aa(h1,h2,h2,h1,istate) -= 0.5d0 * c_1_bis
enddo
enddo
do i = 1, n_occ_ab(2)
h1 = occ(i,2)
do j = 1, n_occ_ab(2)
h2 = occ(j,2)
big_array_bb(h1,h1,h2,h2,istate) += 0.5d0 * c_1_bis
big_array_bb(h1,h2,h2,h1,istate) -= 0.5d0 * c_1_bis
enddo
enddo
enddo
end
subroutine off_diagonal_double_to_two_rdm_ab_dm(det_1,det_2,c_1,c_2,big_array,dim1,dim2,dim3,dim4)
use bitmasks
BEGIN_DOC
! routine that update the OFF DIAGONAL PART of the alpha/beta 2RDM only for DOUBLE EXCITATIONS IN CHEMIST NOTATIONS
END_DOC
implicit none
integer, intent(in) :: dim1,dim2,dim3,dim4
double precision, intent(inout) :: big_array(dim1,dim2,dim3,dim4,N_states)
integer(bit_kind), intent(in) :: det_1(N_int,2),det_2(N_int,2)
double precision, intent(in) :: c_1(N_states),c_2(N_states)
integer :: i,j,h1,h2,p1,p2,istate
integer :: exc(0:2,2,2)
double precision :: phase
call get_double_excitation(det_1,det_2,exc,phase,N_int)
h1 = exc(1,1,1)
h2 = exc(1,1,2)
p1 = exc(1,2,1)
p2 = exc(1,2,2)
do istate = 1, N_states
big_array(h1,p1,h2,p2,istate) += c_1(istate) * phase * c_2(istate)
! big_array(p1,h1,p2,h2,istate) += c_1(istate) * phase * c_2(istate)
enddo
end
subroutine off_diagonal_single_to_two_rdm_ab_dm(det_1,det_2,c_1,c_2,big_array,dim1,dim2,dim3,dim4)
use bitmasks
BEGIN_DOC
! routine that update the OFF DIAGONAL PART of the alpha/beta 2RDM only for SINGLE EXCITATIONS IN CHEMIST NOTATIONS
END_DOC
implicit none
integer, intent(in) :: dim1,dim2,dim3,dim4
double precision, intent(inout) :: big_array(dim1,dim2,dim3,dim4,N_states)
integer(bit_kind), intent(in) :: det_1(N_int,2),det_2(N_int,2)
double precision, intent(in) :: c_1(N_states),c_2(N_states)
integer :: occ(N_int*bit_kind_size,2)
integer :: n_occ_ab(2)
integer :: i,j,h1,h2,istate,p1
integer :: exc(0:2,2,2)
double precision :: phase
call bitstring_to_list_ab(det_1, occ, n_occ_ab, N_int)
call get_single_excitation(det_1,det_2,exc,phase,N_int)
if (exc(0,1,1) == 1) then
! Mono alpha
h1 = exc(1,1,1)
p1 = exc(1,2,1)
do istate = 1, N_states
do i = 1, n_occ_ab(2)
h2 = occ(i,2)
big_array(h1,p1,h2,h2,istate) += 1.d0 * c_1(istate) * c_2(istate) * phase
enddo
enddo
else
! Mono beta
h1 = exc(1,1,2)
p1 = exc(1,2,2)
do istate = 1, N_states
do i = 1, n_occ_ab(1)
h2 = occ(i,1)
big_array(h2,h2,h1,p1,istate) += 1.d0 * c_1(istate) * c_2(istate) * phase
enddo
enddo
endif
end
subroutine off_diagonal_single_to_two_rdm_aa_dm(det_1,det_2,c_1,c_2,big_array,dim1,dim2,dim3,dim4)
BEGIN_DOC
! routine that update the OFF DIAGONAL PART of the alpha/alpha 2RDM only for SINGLE EXCITATIONS IN CHEMIST NOTATIONS
END_DOC
use bitmasks
implicit none
integer, intent(in) :: dim1,dim2,dim3,dim4
double precision, intent(inout) :: big_array(dim1,dim2,dim3,dim4,N_states)
integer(bit_kind), intent(in) :: det_1(N_int,2),det_2(N_int,2)
double precision, intent(in) :: c_1(N_states),c_2(N_states)
integer :: occ(N_int*bit_kind_size,2)
integer :: n_occ_ab(2)
integer :: i,j,h1,h2,istate,p1
integer :: exc(0:2,2,2)
double precision :: phase
call bitstring_to_list_ab(det_1, occ, n_occ_ab, N_int)
call get_single_excitation(det_1,det_2,exc,phase,N_int)
if (exc(0,1,1) == 1) then
! Mono alpha
h1 = exc(1,1,1)
p1 = exc(1,2,1)
do istate = 1, N_states
do i = 1, n_occ_ab(1)
h2 = occ(i,1)
big_array(h1,p1,h2,h2,istate) += 0.5d0 * c_1(istate) * c_2(istate) * phase
big_array(h1,h2,h2,p1,istate) -= 0.5d0 * c_1(istate) * c_2(istate) * phase
big_array(h2,h2,h1,p1,istate) += 0.5d0 * c_1(istate) * c_2(istate) * phase
big_array(h2,p1,h1,h2,istate) -= 0.5d0 * c_1(istate) * c_2(istate) * phase
enddo
enddo
else
return
endif
end
subroutine off_diagonal_single_to_two_rdm_bb_dm(det_1,det_2,c_1,c_2,big_array,dim1,dim2,dim3,dim4)
use bitmasks
BEGIN_DOC
! routine that update the OFF DIAGONAL PART of the beta /beta 2RDM only for SINGLE EXCITATIONS IN CHEMIST NOTATIONS
END_DOC
implicit none
integer, intent(in) :: dim1,dim2,dim3,dim4
double precision, intent(inout) :: big_array(dim1,dim2,dim3,dim4,N_states)
integer(bit_kind), intent(in) :: det_1(N_int,2),det_2(N_int,2)
double precision, intent(in) :: c_1(N_states),c_2(N_states)
integer :: occ(N_int*bit_kind_size,2)
integer :: n_occ_ab(2)
integer :: i,j,h1,h2,istate,p1
integer :: exc(0:2,2,2)
double precision :: phase
call bitstring_to_list_ab(det_1, occ, n_occ_ab, N_int)
call get_single_excitation(det_1,det_2,exc,phase,N_int)
if (exc(0,1,1) == 1) then
return
else
! Mono beta
h1 = exc(1,1,2)
p1 = exc(1,2,2)
do istate = 1, N_states
do i = 1, n_occ_ab(2)
h2 = occ(i,2)
big_array(h1,p1,h2,h2,istate) += 0.5d0 * c_1(istate) * c_2(istate) * phase
big_array(h1,h2,h2,p1,istate) -= 0.5d0 * c_1(istate) * c_2(istate) * phase
big_array(h2,h2,h1,p1,istate) += 0.5d0 * c_1(istate) * c_2(istate) * phase
big_array(h2,p1,h1,h2,istate) -= 0.5d0 * c_1(istate) * c_2(istate) * phase
enddo
enddo
endif
end
subroutine off_diagonal_double_to_two_rdm_aa_dm(det_1,det_2,c_1,c_2,big_array,dim1,dim2,dim3,dim4)
use bitmasks
BEGIN_DOC
! routine that update the OFF DIAGONAL PART of the alpha/alpha 2RDM only for DOUBLE EXCITATIONS IN CHEMIST NOTATIONS
END_DOC
implicit none
integer, intent(in) :: dim1,dim2,dim3,dim4
double precision, intent(inout) :: big_array(dim1,dim2,dim3,dim4,N_states)
integer(bit_kind), intent(in) :: det_1(N_int),det_2(N_int)
double precision, intent(in) :: c_1(N_states),c_2(N_states)
integer :: i,j,h1,h2,p1,p2,istate
integer :: exc(0:2,2)
double precision :: phase
call get_double_excitation_spin(det_1,det_2,exc,phase,N_int)
h1 =exc(1,1)
h2 =exc(2,1)
p1 =exc(1,2)
p2 =exc(2,2)
!print*,'h1,p1,h2,p2',h1,p1,h2,p2,c_1(istate) * phase * c_2(istate)
do istate = 1, N_states
big_array(h1,p1,h2,p2,istate) += 0.5d0 * c_1(istate) * phase * c_2(istate)
big_array(h1,p2,h2,p1,istate) -= 0.5d0 * c_1(istate) * phase * c_2(istate)
big_array(h2,p2,h1,p1,istate) += 0.5d0 * c_1(istate) * phase * c_2(istate)
big_array(h2,p1,h1,p2,istate) -= 0.5d0 * c_1(istate) * phase * c_2(istate)
enddo
end
subroutine off_diagonal_double_to_two_rdm_bb_dm(det_1,det_2,c_1,c_2,big_array,dim1,dim2,dim3,dim4)
use bitmasks
BEGIN_DOC
! routine that update the OFF DIAGONAL PART of the beta /beta 2RDM only for DOUBLE EXCITATIONS
END_DOC
implicit none
integer, intent(in) :: dim1,dim2,dim3,dim4
double precision, intent(inout) :: big_array(dim1,dim2,dim3,dim4,N_states)
integer(bit_kind), intent(in) :: det_1(N_int),det_2(N_int)
double precision, intent(in) :: c_1(N_states),c_2(N_states)
integer :: i,j,h1,h2,p1,p2,istate
integer :: exc(0:2,2)
double precision :: phase
call get_double_excitation_spin(det_1,det_2,exc,phase,N_int)
h1 =exc(1,1)
h2 =exc(2,1)
p1 =exc(1,2)
p2 =exc(2,2)
!print*,'h1,p1,h2,p2',h1,p1,h2,p2,c_1(istate) * phase * c_2(istate)
do istate = 1, N_states
big_array(h1,p1,h2,p2,istate) += 0.5d0 * c_1(istate) * phase * c_2(istate)
big_array(h1,p2,h2,p1,istate) -= 0.5d0 * c_1(istate) * phase * c_2(istate)
big_array(h2,p2,h1,p1,istate) += 0.5d0 * c_1(istate) * phase * c_2(istate)
big_array(h2,p1,h1,p2,istate) -= 0.5d0 * c_1(istate) * phase * c_2(istate)
enddo
end

View File

@ -0,0 +1,674 @@
subroutine orb_range_diagonal_contrib_to_two_rdm_ab_dm(det_1,c_1,big_array,dim1,orb_bitmask)
use bitmasks
BEGIN_DOC
! routine that update the DIAGONAL PART of the alpha/beta two body rdm in a specific range of orbitals
! c_1 is supposed to be a scalar quantity, such as state averaged coef
END_DOC
implicit none
integer, intent(in) :: dim1
double precision, intent(inout) :: big_array(dim1,dim1,dim1,dim1)
integer(bit_kind), intent(in) :: det_1(N_int,2)
integer(bit_kind), intent(in) :: orb_bitmask(N_int)
double precision, intent(in) :: c_1
integer :: occ(N_int*bit_kind_size,2)
integer :: n_occ_ab(2)
integer :: i,j,h1,h2,istate
call bitstring_to_list_ab(det_1, occ, n_occ_ab, N_int)
do i = 1, n_occ_ab(1)
h1 = occ(i,1)
do j = 1, n_occ_ab(2)
h2 = occ(j,2)
big_array(h1,h2,h1,h2) += c_1
enddo
enddo
end
subroutine orb_range_diagonal_contrib_to_all_two_rdm_dm(det_1,c_1,big_array,dim1,orb_bitmask,list_orb_reverse,ispin)
use bitmasks
BEGIN_DOC
! routine that update the DIAGONAL PART of the two body rdms in a specific range of orbitals for a given determinant det_1
!
! c_1 is supposed to be a scalar quantity, such as state averaged coef of the determinant det_1
!
! big_array(dim1,dim1,dim1,dim1) is the two-body rdm to be updated in physicist notation
!
! orb_bitmask(N_int) is the bitmask for the orbital range, list_orb_reverse(mo_num) is the inverse range of orbitals
!
! ispin determines which spin-spin component of the two-rdm you will update
!
! ispin == 1 :: alpha/ alpha
! ispin == 2 :: beta / beta
! ispin == 3 :: alpha/ beta
! ispin == 4 :: spin traced <=> total two-rdm
END_DOC
implicit none
integer, intent(in) :: dim1,ispin
integer, intent(in) :: list_orb_reverse(mo_num)
double precision, intent(inout) :: big_array(dim1,dim1,dim1,dim1)
integer(bit_kind), intent(in) :: det_1(N_int,2)
integer(bit_kind), intent(in) :: orb_bitmask(N_int)
double precision, intent(in) :: c_1
integer :: occ(N_int*bit_kind_size,2)
integer :: n_occ_ab(2)
integer :: i,j,h1,h2,istate
integer(bit_kind) :: det_1_act(N_int,2)
logical :: alpha_alpha,beta_beta,alpha_beta,spin_trace
do i = 1, N_int
det_1_act(i,1) = iand(det_1(i,1),orb_bitmask(i))
det_1_act(i,2) = iand(det_1(i,2),orb_bitmask(i))
enddo
!print*,'ahah'
!call debug_det(det_1_act,N_int)
!pause
alpha_alpha = .False.
beta_beta = .False.
alpha_beta = .False.
spin_trace = .False.
if( ispin == 1)then
alpha_alpha = .True.
else if(ispin == 2)then
beta_beta = .True.
else if(ispin == 3)then
alpha_beta = .True.
else if(ispin == 4)then
spin_trace = .True.
endif
BEGIN_DOC
! no factor 1/2 have to be taken into account as the permutations are already taken into account
END_DOC
call bitstring_to_list_ab(det_1_act, occ, n_occ_ab, N_int)
logical :: is_integer_in_string
integer :: i1,i2
if(alpha_beta)then
do i = 1, n_occ_ab(1)
i1 = occ(i,1)
! if(.not.is_integer_in_string(i1,orb_bitmask,N_int))cycle
do j = 1, n_occ_ab(2)
! if(.not.is_integer_in_string(i2,orb_bitmask,N_int))cycle
i2 = occ(j,2)
h1 = list_orb_reverse(i1)
h2 = list_orb_reverse(i2)
big_array(h1,h2,h1,h2) += c_1
enddo
enddo
else if (alpha_alpha)then
do i = 1, n_occ_ab(1)
i1 = occ(i,1)
! if(.not.is_integer_in_string(i1,orb_bitmask,N_int))cycle
do j = 1, n_occ_ab(1)
i2 = occ(j,1)
! if(.not.is_integer_in_string(i2,orb_bitmask,N_int))cycle
h1 = list_orb_reverse(i1)
h2 = list_orb_reverse(i2)
big_array(h1,h2,h1,h2) += 0.5d0 * c_1
big_array(h1,h2,h2,h1) -= 0.5d0 * c_1
enddo
enddo
else if (beta_beta)then
do i = 1, n_occ_ab(2)
i1 = occ(i,2)
! if(.not.is_integer_in_string(i1,orb_bitmask,N_int))cycle
do j = 1, n_occ_ab(2)
i2 = occ(j,2)
! if(.not.is_integer_in_string(i2,orb_bitmask,N_int))cycle
h1 = list_orb_reverse(i1)
h2 = list_orb_reverse(i2)
big_array(h1,h2,h1,h2) += 0.5d0 * c_1
big_array(h1,h2,h2,h1) -= 0.5d0 * c_1
enddo
enddo
else if(spin_trace)then
! 0.5 * (alpha beta + beta alpha)
do i = 1, n_occ_ab(1)
i1 = occ(i,1)
! if(.not.is_integer_in_string(i1,orb_bitmask,N_int))cycle
do j = 1, n_occ_ab(2)
i2 = occ(j,2)
! if(.not.is_integer_in_string(i2,orb_bitmask,N_int))cycle
h1 = list_orb_reverse(i1)
h2 = list_orb_reverse(i2)
big_array(h1,h2,h1,h2) += 0.5d0 * (c_1 )
big_array(h2,h1,h2,h1) += 0.5d0 * (c_1 )
enddo
enddo
!stop
do i = 1, n_occ_ab(1)
i1 = occ(i,1)
! if(.not.is_integer_in_string(i1,orb_bitmask,N_int))cycle
do j = 1, n_occ_ab(1)
i2 = occ(j,1)
! if(.not.is_integer_in_string(i2,orb_bitmask,N_int))cycle
h1 = list_orb_reverse(i1)
h2 = list_orb_reverse(i2)
big_array(h1,h2,h1,h2) += 0.5d0 * c_1
big_array(h1,h2,h2,h1) -= 0.5d0 * c_1
enddo
enddo
do i = 1, n_occ_ab(2)
i1 = occ(i,2)
! if(.not.is_integer_in_string(i1,orb_bitmask,N_int))cycle
do j = 1, n_occ_ab(2)
i2 = occ(j,2)
! if(.not.is_integer_in_string(i2,orb_bitmask,N_int))cycle
h1 = list_orb_reverse(i1)
h2 = list_orb_reverse(i2)
big_array(h1,h2,h1,h2) += 0.5d0 * c_1
big_array(h1,h2,h2,h1) -= 0.5d0 * c_1
enddo
enddo
endif
end
subroutine orb_range_off_diagonal_double_to_two_rdm_ab_dm(det_1,det_2,c_1,big_array,dim1,orb_bitmask,list_orb_reverse,ispin)
use bitmasks
BEGIN_DOC
! routine that update the OFF DIAGONAL PART of the two body rdms in a specific range of orbitals for
!
! a given couple of determinant det_1, det_2 being a alpha/beta DOUBLE excitation with respect to one another
!
! c_1 is supposed to be a scalar quantity, such as state averaged coef of the determinant det_1
!
! big_array(dim1,dim1,dim1,dim1) is the two-body rdm to be updated in physicist notation
!
! orb_bitmask(N_int) is the bitmask for the orbital range, list_orb_reverse(mo_num) is the inverse range of orbitals
!
! ispin determines which spin-spin component of the two-rdm you will update
!
! ispin == 1 :: alpha/ alpha
! ispin == 2 :: beta / beta
! ispin == 3 :: alpha/ beta
! ispin == 4 :: spin traced <=> total two-rdm
!
! here, only ispin == 3 or 4 will do something
END_DOC
implicit none
integer, intent(in) :: dim1,ispin
double precision, intent(inout) :: big_array(dim1,dim1,dim1,dim1)
integer(bit_kind), intent(in) :: det_1(N_int,2),det_2(N_int,2)
integer(bit_kind), intent(in) :: orb_bitmask(N_int)
integer, intent(in) :: list_orb_reverse(mo_num)
double precision, intent(in) :: c_1
integer :: i,j,h1,h2,p1,p2,istate
integer :: exc(0:2,2,2)
double precision :: phase
logical :: alpha_alpha,beta_beta,alpha_beta,spin_trace
logical :: is_integer_in_string
alpha_alpha = .False.
beta_beta = .False.
alpha_beta = .False.
spin_trace = .False.
if( ispin == 1)then
alpha_alpha = .True.
else if(ispin == 2)then
beta_beta = .True.
else if(ispin == 3)then
alpha_beta = .True.
else if(ispin == 4)then
spin_trace = .True.
endif
!print*,''
!do i = 1, mo_num
! print*,'list_orb',i,list_orb_reverse(i)
!enddo
call get_double_excitation(det_1,det_2,exc,phase,N_int)
h1 = exc(1,1,1)
!print*,'h1',h1
if(.not.is_integer_in_string(h1,orb_bitmask,N_int))return
h1 = list_orb_reverse(h1)
!print*,'passed h1 = ',h1
h2 = exc(1,1,2)
!print*,'h2',h2
if(.not.is_integer_in_string(h2,orb_bitmask,N_int))return
h2 = list_orb_reverse(h2)
!print*,'passed h2 = ',h2
p1 = exc(1,2,1)
!print*,'p1',p1
if(.not.is_integer_in_string(p1,orb_bitmask,N_int))return
p1 = list_orb_reverse(p1)
!print*,'passed p1 = ',p1
p2 = exc(1,2,2)
!print*,'p2',p2
if(.not.is_integer_in_string(p2,orb_bitmask,N_int))return
p2 = list_orb_reverse(p2)
!print*,'passed p2 = ',p2
if(alpha_beta)then
big_array(h1,h2,p1,p2) += c_1 * phase
else if(spin_trace)then
big_array(h1,h2,p1,p2) += 0.5d0 * c_1 * phase
big_array(p1,p2,h1,h2) += 0.5d0 * c_1 * phase
!print*,'h1,h2,p1,p2',h1,h2,p1,p2
!print*,'',big_array(h1,h2,p1,p2)
endif
end
subroutine orb_range_off_diagonal_single_to_two_rdm_ab_dm(det_1,det_2,c_1,big_array,dim1,orb_bitmask,list_orb_reverse,ispin)
use bitmasks
BEGIN_DOC
! routine that update the OFF DIAGONAL PART of the two body rdms in a specific range of orbitals for
!
! a given couple of determinant det_1, det_2 being a SINGLE excitation with respect to one another
!
! c_1 is supposed to be a scalar quantity, such as state averaged coef of the determinant det_1
!
! big_array(dim1,dim1,dim1,dim1) is the two-body rdm to be updated in physicist notation
!
! orb_bitmask(N_int) is the bitmask for the orbital range, list_orb_reverse(mo_num) is the inverse range of orbitals
!
! ispin determines which spin-spin component of the two-rdm you will update
!
! ispin == 1 :: alpha/ alpha
! ispin == 2 :: beta / beta
! ispin == 3 :: alpha/ beta
! ispin == 4 :: spin traced <=> total two-rdm
!
! here, only ispin == 3 or 4 will do something
END_DOC
implicit none
integer, intent(in) :: dim1,ispin
double precision, intent(inout) :: big_array(dim1,dim1,dim1,dim1)
integer(bit_kind), intent(in) :: det_1(N_int,2),det_2(N_int,2)
integer(bit_kind), intent(in) :: orb_bitmask(N_int)
integer, intent(in) :: list_orb_reverse(mo_num)
double precision, intent(in) :: c_1
integer :: occ(N_int*bit_kind_size,2)
integer :: n_occ_ab(2)
integer :: i,j,h1,h2,istate,p1
integer :: exc(0:2,2,2)
double precision :: phase
logical :: alpha_alpha,beta_beta,alpha_beta,spin_trace
logical :: is_integer_in_string
alpha_alpha = .False.
beta_beta = .False.
alpha_beta = .False.
spin_trace = .False.
if( ispin == 1)then
alpha_alpha = .True.
else if(ispin == 2)then
beta_beta = .True.
else if(ispin == 3)then
alpha_beta = .True.
else if(ispin == 4)then
spin_trace = .True.
endif
call bitstring_to_list_ab(det_1, occ, n_occ_ab, N_int)
call get_single_excitation(det_1,det_2,exc,phase,N_int)
if(alpha_beta)then
if (exc(0,1,1) == 1) then
! Mono alpha
h1 = exc(1,1,1)
if(.not.is_integer_in_string(h1,orb_bitmask,N_int))return
h1 = list_orb_reverse(h1)
p1 = exc(1,2,1)
if(.not.is_integer_in_string(p1,orb_bitmask,N_int))return
p1 = list_orb_reverse(p1)
do i = 1, n_occ_ab(2)
h2 = occ(i,2)
if(.not.is_integer_in_string(h2,orb_bitmask,N_int))cycle
h2 = list_orb_reverse(h2)
big_array(h1,h2,p1,h2) += c_1 * phase
enddo
else
! Mono beta
h1 = exc(1,1,2)
if(.not.is_integer_in_string(h1,orb_bitmask,N_int))return
h1 = list_orb_reverse(h1)
p1 = exc(1,2,2)
if(.not.is_integer_in_string(p1,orb_bitmask,N_int))return
p1 = list_orb_reverse(p1)
do i = 1, n_occ_ab(1)
h2 = occ(i,1)
if(.not.is_integer_in_string(h2,orb_bitmask,N_int))cycle
h2 = list_orb_reverse(h2)
big_array(h2,h1,h2,p1) += c_1 * phase
enddo
endif
else if(spin_trace)then
if (exc(0,1,1) == 1) then
! Mono alpha
h1 = exc(1,1,1)
if(.not.is_integer_in_string(h1,orb_bitmask,N_int))return
h1 = list_orb_reverse(h1)
p1 = exc(1,2,1)
if(.not.is_integer_in_string(p1,orb_bitmask,N_int))return
p1 = list_orb_reverse(p1)
do i = 1, n_occ_ab(2)
h2 = occ(i,2)
if(.not.is_integer_in_string(h2,orb_bitmask,N_int))cycle
h2 = list_orb_reverse(h2)
big_array(h1,h2,p1,h2) += 0.5d0 * c_1 * phase
big_array(h2,h1,h2,p1) += 0.5d0 * c_1 * phase
enddo
else
! Mono beta
h1 = exc(1,1,2)
if(.not.is_integer_in_string(h1,orb_bitmask,N_int))return
h1 = list_orb_reverse(h1)
p1 = exc(1,2,2)
if(.not.is_integer_in_string(p1,orb_bitmask,N_int))return
p1 = list_orb_reverse(p1)
do i = 1, n_occ_ab(1)
h2 = occ(i,1)
if(.not.is_integer_in_string(h2,orb_bitmask,N_int))cycle
h2 = list_orb_reverse(h2)
big_array(h1,h2,p1,h2) += 0.5d0 * c_1 * phase
big_array(h2,h1,h2,p1) += 0.5d0 * c_1 * phase
enddo
endif
endif
end
subroutine orb_range_off_diagonal_single_to_two_rdm_aa_dm(det_1,det_2,c_1,big_array,dim1,orb_bitmask,list_orb_reverse,ispin)
BEGIN_DOC
! routine that update the OFF DIAGONAL PART of the two body rdms in a specific range of orbitals for
!
! a given couple of determinant det_1, det_2 being a ALPHA SINGLE excitation with respect to one another
!
! c_1 is supposed to be a scalar quantity, such as state averaged coef of the determinant det_1
!
! big_array(dim1,dim1,dim1,dim1) is the two-body rdm to be updated in physicist notation
!
! orb_bitmask(N_int) is the bitmask for the orbital range, list_orb_reverse(mo_num) is the inverse range of orbitals
!
! ispin determines which spin-spin component of the two-rdm you will update
!
! ispin == 1 :: alpha/ alpha
! ispin == 2 :: beta / beta
! ispin == 3 :: alpha/ beta
! ispin == 4 :: spin traced <=> total two-rdm
!
! here, only ispin == 1 or 4 will do something
END_DOC
use bitmasks
implicit none
integer, intent(in) :: dim1,ispin
double precision, intent(inout) :: big_array(dim1,dim1,dim1,dim1)
integer(bit_kind), intent(in) :: det_1(N_int,2),det_2(N_int,2)
integer(bit_kind), intent(in) :: orb_bitmask(N_int)
integer, intent(in) :: list_orb_reverse(mo_num)
double precision, intent(in) :: c_1
integer :: occ(N_int*bit_kind_size,2)
integer :: n_occ_ab(2)
integer :: i,j,h1,h2,istate,p1
integer :: exc(0:2,2,2)
double precision :: phase
logical :: alpha_alpha,beta_beta,alpha_beta,spin_trace
logical :: is_integer_in_string
alpha_alpha = .False.
beta_beta = .False.
alpha_beta = .False.
spin_trace = .False.
if( ispin == 1)then
alpha_alpha = .True.
else if(ispin == 2)then
beta_beta = .True.
else if(ispin == 3)then
alpha_beta = .True.
else if(ispin == 4)then
spin_trace = .True.
endif
call bitstring_to_list_ab(det_1, occ, n_occ_ab, N_int)
call get_single_excitation(det_1,det_2,exc,phase,N_int)
if(alpha_alpha.or.spin_trace)then
if (exc(0,1,1) == 1) then
! Mono alpha
h1 = exc(1,1,1)
if(.not.is_integer_in_string(h1,orb_bitmask,N_int))return
h1 = list_orb_reverse(h1)
p1 = exc(1,2,1)
if(.not.is_integer_in_string(p1,orb_bitmask,N_int))return
p1 = list_orb_reverse(p1)
do i = 1, n_occ_ab(1)
h2 = occ(i,1)
if(.not.is_integer_in_string(h2,orb_bitmask,N_int))cycle
h2 = list_orb_reverse(h2)
big_array(h1,h2,p1,h2) += 0.5d0 * c_1 * phase
big_array(h1,h2,h2,p1) -= 0.5d0 * c_1 * phase
big_array(h2,h1,h2,p1) += 0.5d0 * c_1 * phase
big_array(h2,h1,p1,h2) -= 0.5d0 * c_1 * phase
enddo
else
return
endif
endif
end
subroutine orb_range_off_diagonal_single_to_two_rdm_bb_dm(det_1,det_2,c_1,big_array,dim1,orb_bitmask,list_orb_reverse,ispin)
use bitmasks
BEGIN_DOC
! routine that update the OFF DIAGONAL PART of the two body rdms in a specific range of orbitals for
!
! a given couple of determinant det_1, det_2 being a BETA SINGLE excitation with respect to one another
!
! c_1 is supposed to be a scalar quantity, such as state averaged coef of the determinant det_1
!
! big_array(dim1,dim1,dim1,dim1) is the two-body rdm to be updated in physicist notation
!
! orb_bitmask(N_int) is the bitmask for the orbital range, list_orb_reverse(mo_num) is the inverse range of orbitals
!
! ispin determines which spin-spin component of the two-rdm you will update
!
! ispin == 1 :: alpha/ alpha
! ispin == 2 :: beta / beta
! ispin == 3 :: alpha/ beta
! ispin == 4 :: spin traced <=> total two-rdm
!
! here, only ispin == 2 or 4 will do something
END_DOC
implicit none
integer, intent(in) :: dim1,ispin
double precision, intent(inout) :: big_array(dim1,dim1,dim1,dim1)
integer(bit_kind), intent(in) :: det_1(N_int,2),det_2(N_int,2)
integer(bit_kind), intent(in) :: orb_bitmask(N_int)
integer, intent(in) :: list_orb_reverse(mo_num)
double precision, intent(in) :: c_1
integer :: occ(N_int*bit_kind_size,2)
integer :: n_occ_ab(2)
integer :: i,j,h1,h2,istate,p1
integer :: exc(0:2,2,2)
double precision :: phase
logical :: alpha_alpha,beta_beta,alpha_beta,spin_trace
logical :: is_integer_in_string
alpha_alpha = .False.
beta_beta = .False.
alpha_beta = .False.
spin_trace = .False.
if( ispin == 1)then
alpha_alpha = .True.
else if(ispin == 2)then
beta_beta = .True.
else if(ispin == 3)then
alpha_beta = .True.
else if(ispin == 4)then
spin_trace = .True.
endif
call bitstring_to_list_ab(det_1, occ, n_occ_ab, N_int)
call get_single_excitation(det_1,det_2,exc,phase,N_int)
if(beta_beta.or.spin_trace)then
if (exc(0,1,1) == 1) then
return
else
! Mono beta
h1 = exc(1,1,2)
if(.not.is_integer_in_string(h1,orb_bitmask,N_int))return
h1 = list_orb_reverse(h1)
p1 = exc(1,2,2)
if(.not.is_integer_in_string(p1,orb_bitmask,N_int))return
p1 = list_orb_reverse(p1)
do istate = 1, N_states
do i = 1, n_occ_ab(2)
h2 = occ(i,2)
if(.not.is_integer_in_string(h2,orb_bitmask,N_int))cycle
h2 = list_orb_reverse(h2)
big_array(h1,h2,p1,h2) += 0.5d0 * c_1 * phase
big_array(h1,h2,h2,p1) -= 0.5d0 * c_1 * phase
big_array(h2,h1,h2,p1) += 0.5d0 * c_1 * phase
big_array(h2,h1,p1,h2) -= 0.5d0 * c_1 * phase
enddo
enddo
endif
endif
end
subroutine orb_range_off_diagonal_double_to_two_rdm_aa_dm(det_1,det_2,c_1,big_array,dim1,orb_bitmask,list_orb_reverse,ispin)
use bitmasks
BEGIN_DOC
! routine that update the OFF DIAGONAL PART of the two body rdms in a specific range of orbitals for
!
! a given couple of determinant det_1, det_2 being a ALPHA/ALPHA DOUBLE excitation with respect to one another
!
! c_1 is supposed to be a scalar quantity, such as state averaged coef of the determinant det_1
!
! big_array(dim1,dim1,dim1,dim1) is the two-body rdm to be updated in physicist notation
!
! orb_bitmask(N_int) is the bitmask for the orbital range, list_orb_reverse(mo_num) is the inverse range of orbitals
!
! ispin determines which spin-spin component of the two-rdm you will update
!
! ispin == 1 :: alpha/ alpha
! ispin == 2 :: beta / beta
! ispin == 3 :: alpha/ beta
! ispin == 4 :: spin traced <=> total two-rdm
!
! here, only ispin == 1 or 4 will do something
END_DOC
implicit none
integer, intent(in) :: dim1,ispin
double precision, intent(inout) :: big_array(dim1,dim1,dim1,dim1)
integer(bit_kind), intent(in) :: det_1(N_int),det_2(N_int)
integer(bit_kind), intent(in) :: orb_bitmask(N_int)
integer, intent(in) :: list_orb_reverse(mo_num)
double precision, intent(in) :: c_1
integer :: i,j,h1,h2,p1,p2,istate
integer :: exc(0:2,2)
double precision :: phase
logical :: alpha_alpha,beta_beta,alpha_beta,spin_trace
logical :: is_integer_in_string
alpha_alpha = .False.
beta_beta = .False.
alpha_beta = .False.
spin_trace = .False.
if( ispin == 1)then
alpha_alpha = .True.
else if(ispin == 2)then
beta_beta = .True.
else if(ispin == 3)then
alpha_beta = .True.
else if(ispin == 4)then
spin_trace = .True.
endif
call get_double_excitation_spin(det_1,det_2,exc,phase,N_int)
h1 =exc(1,1)
if(.not.is_integer_in_string(h1,orb_bitmask,N_int))return
h1 = list_orb_reverse(h1)
h2 =exc(2,1)
if(.not.is_integer_in_string(h2,orb_bitmask,N_int))return
h2 = list_orb_reverse(h2)
p1 =exc(1,2)
if(.not.is_integer_in_string(p1,orb_bitmask,N_int))return
p1 = list_orb_reverse(p1)
p2 =exc(2,2)
if(.not.is_integer_in_string(p2,orb_bitmask,N_int))return
p2 = list_orb_reverse(p2)
if(alpha_alpha.or.spin_trace)then
do istate = 1, N_states
big_array(h1,h2,p1,p2) += 0.5d0 * c_1 * phase
big_array(h1,h2,p2,p1) -= 0.5d0 * c_1 * phase
big_array(h2,h1,p2,p1) += 0.5d0 * c_1 * phase
big_array(h2,h1,p1,p2) -= 0.5d0 * c_1 * phase
enddo
endif
end
subroutine orb_range_off_diagonal_double_to_two_rdm_bb_dm(det_1,det_2,c_1,big_array,dim1,orb_bitmask,list_orb_reverse,ispin)
use bitmasks
BEGIN_DOC
! routine that update the OFF DIAGONAL PART of the two body rdms in a specific range of orbitals for
!
! a given couple of determinant det_1, det_2 being a BETA /BETA DOUBLE excitation with respect to one another
!
! c_1 is supposed to be a scalar quantity, such as state averaged coef of the determinant det_1
!
! big_array(dim1,dim1,dim1,dim1) is the two-body rdm to be updated in physicist notation
!
! orb_bitmask(N_int) is the bitmask for the orbital range, list_orb_reverse(mo_num) is the inverse range of orbitals
!
! ispin determines which spin-spin component of the two-rdm you will update
!
! ispin == 1 :: alpha/ alpha
! ispin == 2 :: beta / beta
! ispin == 3 :: alpha/ beta
! ispin == 4 :: spin traced <=> total two-rdm
!
! here, only ispin == 2 or 4 will do something
END_DOC
implicit none
integer, intent(in) :: dim1,ispin
double precision, intent(inout) :: big_array(dim1,dim1,dim1,dim1)
integer(bit_kind), intent(in) :: det_1(N_int),det_2(N_int)
integer(bit_kind), intent(in) :: orb_bitmask(N_int)
integer, intent(in) :: list_orb_reverse(mo_num)
double precision, intent(in) :: c_1
integer :: i,j,h1,h2,p1,p2,istate
integer :: exc(0:2,2)
double precision :: phase
logical :: alpha_alpha,beta_beta,alpha_beta,spin_trace
logical :: is_integer_in_string
alpha_alpha = .False.
beta_beta = .False.
alpha_beta = .False.
spin_trace = .False.
if( ispin == 1)then
alpha_alpha = .True.
else if(ispin == 2)then
beta_beta = .True.
else if(ispin == 3)then
alpha_beta = .True.
else if(ispin == 4)then
spin_trace = .True.
endif
call get_double_excitation_spin(det_1,det_2,exc,phase,N_int)
h1 =exc(1,1)
if(.not.is_integer_in_string(h1,orb_bitmask,N_int))return
h1 = list_orb_reverse(h1)
h2 =exc(2,1)
if(.not.is_integer_in_string(h2,orb_bitmask,N_int))return
h2 = list_orb_reverse(h2)
p1 =exc(1,2)
if(.not.is_integer_in_string(p1,orb_bitmask,N_int))return
p1 = list_orb_reverse(p1)
p2 =exc(2,2)
if(.not.is_integer_in_string(p2,orb_bitmask,N_int))return
p2 = list_orb_reverse(p2)
if(beta_beta.or.spin_trace)then
big_array(h1,h2,p1,p2) += 0.5d0 * c_1* phase
big_array(h1,h2,p2,p1) -= 0.5d0 * c_1* phase
big_array(h2,h1,p2,p1) += 0.5d0 * c_1* phase
big_array(h2,h1,p1,p2) -= 0.5d0 * c_1* phase
endif
end

View File

@ -0,0 +1,62 @@
BEGIN_PROVIDER [double precision, two_rdm_alpha_beta_mo, (mo_num,mo_num,mo_num,mo_num,N_states)]
&BEGIN_PROVIDER [double precision, two_rdm_alpha_alpha_mo, (mo_num,mo_num,mo_num,mo_num,N_states)]
&BEGIN_PROVIDER [double precision, two_rdm_beta_beta_mo, (mo_num,mo_num,mo_num,mo_num,N_states)]
implicit none
BEGIN_DOC
! two_rdm_alpha_beta(i,j,k,l) = <Psi| a^{dagger}_{j,alpha} a^{dagger}_{l,beta} a_{k,beta} a_{i,alpha} | Psi>
! 1 1 2 2 = chemist notations
! note that no 1/2 factor is introduced in order to take into acccount for the spin symmetry
!
END_DOC
integer :: dim1,dim2,dim3,dim4
double precision :: cpu_0,cpu_1
dim1 = mo_num
dim2 = mo_num
dim3 = mo_num
dim4 = mo_num
two_rdm_alpha_beta_mo = 0.d0
two_rdm_alpha_alpha_mo= 0.d0
two_rdm_beta_beta_mo = 0.d0
print*,'providing two_rdm_alpha_beta ...'
call wall_time(cpu_0)
call all_two_rdm_dm_nstates_openmp(two_rdm_alpha_alpha_mo,two_rdm_beta_beta_mo,two_rdm_alpha_beta_mo,dim1,dim2,dim3,dim4,psi_coef,size(psi_coef,2),size(psi_coef,1))
call wall_time(cpu_1)
print*,'two_rdm_alpha_beta provided in',dabs(cpu_1-cpu_0)
END_PROVIDER
BEGIN_PROVIDER [double precision, two_rdm_alpha_beta_mo_physicist, (mo_num,mo_num,mo_num,mo_num,N_states)]
&BEGIN_PROVIDER [double precision, two_rdm_alpha_alpha_mo_physicist, (mo_num,mo_num,mo_num,mo_num,N_states)]
&BEGIN_PROVIDER [double precision, two_rdm_beta_beta_mo_physicist, (mo_num,mo_num,mo_num,mo_num,N_states)]
implicit none
BEGIN_DOC
! two_rdm_alpha_beta_mo_physicist,(i,j,k,l) = <Psi| a^{dagger}_{k,alpha} a^{dagger}_{l,beta} a_{j,beta} a_{i,alpha} | Psi>
! 1 2 1 2 = physicist notations
! note that no 1/2 factor is introduced in order to take into acccount for the spin symmetry
!
END_DOC
integer :: i,j,k,l,istate
double precision :: cpu_0,cpu_1
two_rdm_alpha_beta_mo_physicist = 0.d0
print*,'providing two_rdm_alpha_beta_mo_physicist ...'
call wall_time(cpu_0)
do istate = 1, N_states
do i = 1, mo_num
do j = 1, mo_num
do k = 1, mo_num
do l = 1, mo_num
! 1 2 1 2 1 1 2 2
two_rdm_alpha_beta_mo_physicist(l,k,i,j,istate) = two_rdm_alpha_beta_mo(i,l,j,k,istate)
two_rdm_alpha_alpha_mo_physicist(l,k,i,j,istate) = two_rdm_alpha_alpha_mo(i,l,j,k,istate)
two_rdm_beta_beta_mo_physicist(l,k,i,j,istate) = two_rdm_beta_beta_mo(i,l,j,k,istate)
enddo
enddo
enddo
enddo
enddo
call wall_time(cpu_1)
print*,'two_rdm_alpha_beta_mo_physicist provided in',dabs(cpu_1-cpu_0)
END_PROVIDER

View File

@ -752,6 +752,7 @@ integer function add_task_to_taskserver(zmq_to_qp_run_socket,task)
add_task_to_taskserver = 0
allocate(character(len=len(task)+10+len(zmq_state)) :: message)
message='add_task '//trim(zmq_state)//' '//trim(task)
sze = len(message)
rc = f77_zmq_send(zmq_to_qp_run_socket, message, sze, 0)