diff --git a/src/casscf/densities.irp.f b/src/casscf/densities.irp.f index 3cfd7583..88c9021d 100644 --- a/src/casscf/densities.irp.f +++ b/src/casscf/densities.irp.f @@ -56,7 +56,7 @@ BEGIN_PROVIDER [real*8, P0tuvx, (n_act_orb,n_act_orb,n_act_orb,n_act_orb) ] uu = list_act(u) do t = 1, n_act_orb tt = list_act(t) - P0tuvx(t,u,v,x) = act_two_rdm_spin_trace_mo(t,v,u,x) + P0tuvx(t,u,v,x) = state_av_act_two_rdm_spin_trace_mo(t,v,u,x) enddo enddo enddo diff --git a/src/two_body_rdm/all_states_2_rdm.irp.f b/src/two_body_rdm/all_states_2_rdm.irp.f new file mode 100644 index 00000000..b168da56 --- /dev/null +++ b/src/two_body_rdm/all_states_2_rdm.irp.f @@ -0,0 +1,83 @@ + + + + BEGIN_PROVIDER [double precision, all_states_act_two_rdm_alpha_alpha_mo, (n_act_orb,n_act_orb,n_act_orb,n_act_orb,N_states)] + implicit none + double precision, allocatable :: state_weights(:) + BEGIN_DOC +! all_states_act_two_rdm_alpha_alpha_mo(i,j,k,l) = state average physicist two-body rdm restricted to the ACTIVE indices for alpha-alpha electron pairs +! = + END_DOC + allocate(state_weights(N_states)) + state_weights = 1.d0/dble(N_states) + integer :: ispin + ! condition for alpha/beta spin + ispin = 1 + all_states_act_two_rdm_alpha_alpha_mo = 0.D0 + call orb_range_all_states_two_rdm_openmp(all_states_act_two_rdm_alpha_alpha_mo,n_act_orb,n_act_orb,list_act,list_act_reverse,state_weights,ispin,psi_coef,size(psi_coef,2),size(psi_coef,1)) + + END_PROVIDER + + BEGIN_PROVIDER [double precision, all_states_act_two_rdm_beta_beta_mo, (n_act_orb,n_act_orb,n_act_orb,n_act_orb,N_states)] + implicit none + double precision, allocatable :: state_weights(:) + BEGIN_DOC +! all_states_act_two_rdm_beta_beta_mo(i,j,k,l) = state average physicist two-body rdm restricted to the ACTIVE indices for beta-beta electron pairs +! = + END_DOC + allocate(state_weights(N_states)) + state_weights = 1.d0/dble(N_states) + integer :: ispin + ! condition for alpha/beta spin + ispin = 2 + all_states_act_two_rdm_beta_beta_mo = 0.d0 + call orb_range_all_states_two_rdm_openmp(all_states_act_two_rdm_beta_beta_mo,n_act_orb,n_act_orb,list_act,list_act_reverse,state_weights,ispin,psi_coef,size(psi_coef,2),size(psi_coef,1)) + + END_PROVIDER + + BEGIN_PROVIDER [double precision, all_states_act_two_rdm_alpha_beta_mo, (n_act_orb,n_act_orb,n_act_orb,n_act_orb,N_states)] + implicit none + double precision, allocatable :: state_weights(:) + BEGIN_DOC +! all_states_act_two_rdm_alpha_beta_mo(i,j,k,l) = state average physicist two-body rdm restricted to the ACTIVE indices for alpha-beta electron pairs +! = + END_DOC + allocate(state_weights(N_states)) + state_weights = 1.d0/dble(N_states) + integer :: ispin + ! condition for alpha/beta spin + print*,'' + print*,'' + print*,'' + print*,'providint all_states_act_two_rdm_alpha_beta_mo ' + ispin = 3 + print*,'ispin = ',ispin + all_states_act_two_rdm_alpha_beta_mo = 0.d0 + call orb_range_all_states_two_rdm_openmp(all_states_act_two_rdm_alpha_beta_mo,n_act_orb,n_act_orb,list_act,list_act_reverse,state_weights,ispin,psi_coef,size(psi_coef,2),size(psi_coef,1)) + + END_PROVIDER + + + BEGIN_PROVIDER [double precision, all_states_act_two_rdm_spin_trace_mo, (n_act_orb,n_act_orb,n_act_orb,n_act_orb,N_states)] + implicit none + BEGIN_DOC +! all_states_act_two_rdm_spin_trace_mo(i,j,k,l) = state average physicist spin trace two-body rdm restricted to the ACTIVE indices +! The active part of the two-electron energy can be computed as: +! +! \sum_{i,j,k,l = 1, n_act_orb} all_states_act_two_rdm_spin_trace_mo(i,j,k,l) * < ii jj | kk ll > +! +! with ii = list_act(i), jj = list_act(j), kk = list_act(k), ll = list_act(l) + END_DOC + double precision, allocatable :: state_weights(:) + allocate(state_weights(N_states)) + state_weights = 1.d0/dble(N_states) + integer :: ispin + ! condition for alpha/beta spin + ispin = 4 + all_states_act_two_rdm_spin_trace_mo = 0.d0 + integer :: i + + call orb_range_all_states_two_rdm_openmp(all_states_act_two_rdm_spin_trace_mo,n_act_orb,n_act_orb,list_act,list_act_reverse,state_weights,ispin,psi_coef,size(psi_coef,2),size(psi_coef,1)) + + END_PROVIDER + diff --git a/src/two_body_rdm/all_states_routines.irp.f b/src/two_body_rdm/all_states_routines.irp.f new file mode 100644 index 00000000..b8888299 --- /dev/null +++ b/src/two_body_rdm/all_states_routines.irp.f @@ -0,0 +1,495 @@ +subroutine orb_range_all_states_two_rdm_openmp(big_array,dim1,norb,list_orb,list_orb_reverse,ispin,u_0,N_st,sze) + use bitmasks + implicit none + BEGIN_DOC + ! if ispin == 1 :: alpha/alpha 2rdm + ! == 2 :: beta /beta 2rdm + ! == 3 :: alpha/beta 2rdm + ! == 4 :: spin traced 2rdm :: aa + bb + 0.5 (ab + ba)) + ! + ! Assumes that the determinants are in psi_det + ! + ! istart, iend, ishift, istep are used in ZMQ parallelization. + END_DOC + integer, intent(in) :: N_st,sze + integer, intent(in) :: dim1,norb,list_orb(norb),ispin + integer, intent(in) :: list_orb_reverse(mo_num) + double precision, intent(inout) :: big_array(dim1,dim1,dim1,dim1,N_st) + double precision, intent(in) :: u_0(sze,N_st) + + integer :: k + double precision, allocatable :: u_t(:,:) + !DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: u_t + allocate(u_t(N_st,N_det)) + do k=1,N_st + call dset_order(u_0(1,k),psi_bilinear_matrix_order,N_det) + enddo + call dtranspose( & + u_0, & + size(u_0, 1), & + u_t, & + size(u_t, 1), & + N_det, N_st) + + call orb_range_all_states_two_rdm_openmp_work(big_array,dim1,norb,list_orb,list_orb_reverse,ispin,u_t,N_st,sze,1,N_det,0,1) + deallocate(u_t) + + do k=1,N_st + call dset_order(u_0(1,k),psi_bilinear_matrix_order_reverse,N_det) + enddo + +end + +subroutine orb_range_all_states_two_rdm_openmp_work(big_array,dim1,norb,list_orb,list_orb_reverse,ispin,u_t,N_st,sze,istart,iend,ishift,istep) + use bitmasks + implicit none + BEGIN_DOC + ! Computes two-rdm + ! + ! Default should be 1,N_det,0,1 + END_DOC + integer, intent(in) :: N_st,sze,istart,iend,ishift,istep + integer, intent(in) :: dim1,norb,list_orb(norb),ispin + integer, intent(in) :: list_orb_reverse(mo_num) + double precision, intent(inout) :: big_array(dim1,dim1,dim1,dim1,N_st) + double precision, intent(in) :: u_t(N_st,N_det) + + integer :: k + + PROVIDE N_int + + select case (N_int) + case (1) + call orb_range_all_states_two_rdm_openmp_work_1(big_array,dim1,norb,list_orb,list_orb_reverse,ispin,u_t,N_st,sze,istart,iend,ishift,istep) + case (2) + call orb_range_all_states_two_rdm_openmp_work_2(big_array,dim1,norb,list_orb,list_orb_reverse,ispin,u_t,N_st,sze,istart,iend,ishift,istep) + case (3) + call orb_range_all_states_two_rdm_openmp_work_3(big_array,dim1,norb,list_orb,list_orb_reverse,ispin,u_t,N_st,sze,istart,iend,ishift,istep) + case (4) + call orb_range_all_states_two_rdm_openmp_work_4(big_array,dim1,norb,list_orb,list_orb_reverse,ispin,u_t,N_st,sze,istart,iend,ishift,istep) + case default + call orb_range_all_states_two_rdm_openmp_work_N_int(big_array,dim1,norb,list_orb,list_orb_reverse,ispin,u_t,N_st,sze,istart,iend,ishift,istep) + end select +end + + + + + BEGIN_TEMPLATE +subroutine orb_range_all_states_two_rdm_openmp_work_$N_int(big_array,dim1,norb,list_orb,list_orb_reverse,ispin,u_t,N_st,sze,istart,iend,ishift,istep) + use bitmasks + implicit none + BEGIN_DOC + ! Computes the two rdm for the N_st vectors |u_t> + ! if ispin == 1 :: alpha/alpha 2rdm + ! == 2 :: beta /beta 2rdm + ! == 3 :: alpha/beta 2rdm + ! == 4 :: spin traced 2rdm :: aa + bb + 0.5 (ab + ba)) + ! The 2rdm will be computed only on the list of orbitals list_orb, which contains norb + ! Default should be 1,N_det,0,1 for istart,iend,ishift,istep + END_DOC + integer, intent(in) :: N_st,sze,istart,iend,ishift,istep + double precision, intent(in) :: u_t(N_st,N_det) + integer, intent(in) :: dim1,norb,list_orb(norb),ispin + integer, intent(in) :: list_orb_reverse(mo_num) + double precision, intent(inout) :: big_array(dim1,dim1,dim1,dim1,N_st) + + integer :: i,j,k,l + integer :: k_a, k_b, l_a, l_b, m_a, m_b + integer :: istate + integer :: krow, kcol, krow_b, kcol_b + integer :: lrow, lcol + integer :: mrow, mcol + integer(bit_kind) :: spindet($N_int) + integer(bit_kind) :: tmp_det($N_int,2) + integer(bit_kind) :: tmp_det2($N_int,2) + integer(bit_kind) :: tmp_det3($N_int,2) + integer(bit_kind), allocatable :: buffer(:,:) + integer :: n_doubles + integer, allocatable :: doubles(:) + integer, allocatable :: singles_a(:) + integer, allocatable :: singles_b(:) + integer, allocatable :: idx(:), idx0(:) + integer :: maxab, n_singles_a, n_singles_b, kcol_prev + integer*8 :: k8 + double precision,allocatable :: c_contrib(:) + + logical :: alpha_alpha,beta_beta,alpha_beta,spin_trace + integer(bit_kind) :: orb_bitmask($N_int) + alpha_alpha = .False. + beta_beta = .False. + alpha_beta = .False. + spin_trace = .False. + if( ispin == 1)then + alpha_alpha = .True. + else if(ispin == 2)then + beta_beta = .True. + else if(ispin == 3)then + alpha_beta = .True. + else if(ispin == 4)then + spin_trace = .True. + else + print*,'Wrong parameter for ispin in general_two_rdm_dm_nstates_openmp_work' + print*,'ispin = ',ispin + stop + endif + + PROVIDE N_int + + call list_to_bitstring( orb_bitmask, list_orb, norb, N_int) + + maxab = max(N_det_alpha_unique, N_det_beta_unique)+1 + allocate(idx0(maxab)) + + do i=1,maxab + idx0(i) = i + enddo + + ! Prepare the array of all alpha single excitations + ! ------------------------------------------------- + + PROVIDE N_int nthreads_davidson + !!$OMP PARALLEL DEFAULT(NONE) NUM_THREADS(nthreads_davidson) & + ! !$OMP SHARED(psi_bilinear_matrix_rows, N_det, & + ! !$OMP psi_bilinear_matrix_columns, & + ! !$OMP psi_det_alpha_unique, psi_det_beta_unique,& + ! !$OMP n_det_alpha_unique, n_det_beta_unique, N_int,& + ! !$OMP psi_bilinear_matrix_transp_rows, & + ! !$OMP psi_bilinear_matrix_transp_columns, & + ! !$OMP psi_bilinear_matrix_transp_order, N_st, & + ! !$OMP psi_bilinear_matrix_order_transp_reverse, & + ! !$OMP psi_bilinear_matrix_columns_loc, & + ! !$OMP psi_bilinear_matrix_transp_rows_loc, & + ! !$OMP istart, iend, istep, irp_here, v_t, s_t, & + ! !$OMP ishift, idx0, u_t, maxab) & + ! !$OMP PRIVATE(krow, kcol, tmp_det, spindet, k_a, k_b, i,& + ! !$OMP lcol, lrow, l_a, l_b, & + ! !$OMP buffer, doubles, n_doubles, & + ! !$OMP tmp_det2, idx, l, kcol_prev, & + ! !$OMP singles_a, n_singles_a, singles_b, & + ! !$OMP n_singles_b, k8) + + ! Alpha/Beta double excitations + ! ============================= + + allocate( buffer($N_int,maxab), & + singles_a(maxab), & + singles_b(maxab), & + doubles(maxab), & + idx(maxab),c_contrib(N_st)) + + kcol_prev=-1 + + ASSERT (iend <= N_det) + ASSERT (istart > 0) + ASSERT (istep > 0) + + !!$OMP DO SCHEDULE(dynamic,64) + do k_a=istart+ishift,iend,istep + + krow = psi_bilinear_matrix_rows(k_a) + ASSERT (krow <= N_det_alpha_unique) + + kcol = psi_bilinear_matrix_columns(k_a) + ASSERT (kcol <= N_det_beta_unique) + + tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow) + tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol) + + if (kcol /= kcol_prev) then + call get_all_spin_singles_$N_int( & + psi_det_beta_unique, idx0, & + tmp_det(1,2), N_det_beta_unique, & + singles_b, n_singles_b) + endif + kcol_prev = kcol + + ! Loop over singly excited beta columns + ! ------------------------------------- + + do i=1,n_singles_b + lcol = singles_b(i) + + tmp_det2(1:$N_int,2) = psi_det_beta_unique(1:$N_int, lcol) + + l_a = psi_bilinear_matrix_columns_loc(lcol) + ASSERT (l_a <= N_det) + + do j=1,psi_bilinear_matrix_columns_loc(lcol+1) - l_a + lrow = psi_bilinear_matrix_rows(l_a) + ASSERT (lrow <= N_det_alpha_unique) + + buffer(1:$N_int,j) = psi_det_alpha_unique(1:$N_int, lrow) + + ASSERT (l_a <= N_det) + idx(j) = l_a + l_a = l_a+1 + enddo + j = j-1 + + call get_all_spin_singles_$N_int( & + buffer, idx, tmp_det(1,1), j, & + singles_a, n_singles_a ) + + ! Loop over alpha singles + ! ----------------------- + + if(alpha_beta.or.spin_trace)then + do k = 1,n_singles_a + l_a = singles_a(k) + ASSERT (l_a <= N_det) + + lrow = psi_bilinear_matrix_rows(l_a) + ASSERT (lrow <= N_det_alpha_unique) + + tmp_det2(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, lrow) + c_contrib = 0.d0 + do l= 1, N_states + c_1(l) = u_t(l,l_a) + c_2(l) = u_t(l,k_a) + c_contrib(l) = c_1(l) * c_2(l) + enddo + call orb_range_off_diagonal_double_to_two_rdm_ab_dm(tmp_det,tmp_det2,c_contrib,N_st,big_array,dim1,orb_bitmask,list_orb_reverse,ispin) + enddo + endif + + enddo + + enddo + ! !$OMP END DO + + ! !$OMP DO SCHEDULE(dynamic,64) + do k_a=istart+ishift,iend,istep + + + ! Single and double alpha exitations + ! =================================== + + + ! Initial determinant is at k_a in alpha-major representation + ! ----------------------------------------------------------------------- + + krow = psi_bilinear_matrix_rows(k_a) + ASSERT (krow <= N_det_alpha_unique) + + kcol = psi_bilinear_matrix_columns(k_a) + ASSERT (kcol <= N_det_beta_unique) + + tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow) + tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol) + + ! Initial determinant is at k_b in beta-major representation + ! ---------------------------------------------------------------------- + + k_b = psi_bilinear_matrix_order_transp_reverse(k_a) + ASSERT (k_b <= N_det) + + spindet(1:$N_int) = tmp_det(1:$N_int,1) + + ! Loop inside the beta column to gather all the connected alphas + lcol = psi_bilinear_matrix_columns(k_a) + l_a = psi_bilinear_matrix_columns_loc(lcol) + do i=1,N_det_alpha_unique + if (l_a > N_det) exit + lcol = psi_bilinear_matrix_columns(l_a) + if (lcol /= kcol) exit + lrow = psi_bilinear_matrix_rows(l_a) + ASSERT (lrow <= N_det_alpha_unique) + + buffer(1:$N_int,i) = psi_det_alpha_unique(1:$N_int, lrow) + idx(i) = l_a + l_a = l_a+1 + enddo + i = i-1 + + call get_all_spin_singles_and_doubles_$N_int( & + buffer, idx, spindet, i, & + singles_a, doubles, n_singles_a, n_doubles ) + + ! Compute Hij for all alpha singles + ! ---------------------------------- + + tmp_det2(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol) + do i=1,n_singles_a + l_a = singles_a(i) + ASSERT (l_a <= N_det) + + lrow = psi_bilinear_matrix_rows(l_a) + ASSERT (lrow <= N_det_alpha_unique) + + tmp_det2(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, lrow) + c_contrib = 0.d0 + do l= 1, N_states + c_1(l) = u_t(l,l_a) + c_2(l) = u_t(l,k_a) + c_contrib(l) = c_1(l) * c_2(l) + enddo + if(alpha_beta.or.spin_trace.or.alpha_alpha)then + ! increment the alpha/beta part for single excitations + call orb_range_off_diagonal_single_to_two_rdm_ab_dm(tmp_det, tmp_det2,c_contrib,N_st,big_array,dim1,orb_bitmask,list_orb_reverse,ispin) + ! increment the alpha/alpha part for single excitations + call orb_range_off_diagonal_single_to_two_rdm_aa_dm(tmp_det,tmp_det2,c_contrib,N_st,big_array,dim1,orb_bitmask,list_orb_reverse,ispin) + endif + + enddo + + + ! Compute Hij for all alpha doubles + ! ---------------------------------- + + if(alpha_alpha.or.spin_trace)then + do i=1,n_doubles + l_a = doubles(i) + ASSERT (l_a <= N_det) + + lrow = psi_bilinear_matrix_rows(l_a) + ASSERT (lrow <= N_det_alpha_unique) + + c_contrib = 0.d0 + do l= 1, N_states + c_1(l) = u_t(l,l_a) + c_2(l) = u_t(l,k_a) + c_contrib(l) += c_1(l) * c_2(l) + enddo + call orb_range_off_diagonal_double_to_two_rdm_aa_dm(tmp_det(1,1),psi_det_alpha_unique(1, lrow),c_contrib,N_st,big_array,dim1,orb_bitmask,list_orb_reverse,ispin) + enddo + endif + + + ! Single and double beta excitations + ! ================================== + + + ! Initial determinant is at k_a in alpha-major representation + ! ----------------------------------------------------------------------- + + krow = psi_bilinear_matrix_rows(k_a) + kcol = psi_bilinear_matrix_columns(k_a) + + tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow) + tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol) + + spindet(1:$N_int) = tmp_det(1:$N_int,2) + + ! Initial determinant is at k_b in beta-major representation + ! ----------------------------------------------------------------------- + + k_b = psi_bilinear_matrix_order_transp_reverse(k_a) + ASSERT (k_b <= N_det) + + ! Loop inside the alpha row to gather all the connected betas + lrow = psi_bilinear_matrix_transp_rows(k_b) + l_b = psi_bilinear_matrix_transp_rows_loc(lrow) + do i=1,N_det_beta_unique + if (l_b > N_det) exit + lrow = psi_bilinear_matrix_transp_rows(l_b) + if (lrow /= krow) exit + lcol = psi_bilinear_matrix_transp_columns(l_b) + ASSERT (lcol <= N_det_beta_unique) + + buffer(1:$N_int,i) = psi_det_beta_unique(1:$N_int, lcol) + idx(i) = l_b + l_b = l_b+1 + enddo + i = i-1 + + call get_all_spin_singles_and_doubles_$N_int( & + buffer, idx, spindet, i, & + singles_b, doubles, n_singles_b, n_doubles ) + + ! Compute Hij for all beta singles + ! ---------------------------------- + + tmp_det2(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow) + do i=1,n_singles_b + l_b = singles_b(i) + ASSERT (l_b <= N_det) + + lcol = psi_bilinear_matrix_transp_columns(l_b) + ASSERT (lcol <= N_det_beta_unique) + + tmp_det2(1:$N_int,2) = psi_det_beta_unique (1:$N_int, lcol) + l_a = psi_bilinear_matrix_transp_order(l_b) + c_contrib = 0.d0 + do l= 1, N_states + c_1(l) = u_t(l,l_a) + c_2(l) = u_t(l,k_a) + c_contrib(l) = c_1(l) * c_2(l) + enddo + if(alpha_beta.or.spin_trace.or.beta_beta)then + ! increment the alpha/beta part for single excitations + call orb_range_off_diagonal_single_to_two_rdm_ab_dm(tmp_det, tmp_det2,c_contrib,N_st,big_array,dim1,orb_bitmask,list_orb_reverse,ispin) + ! increment the beta /beta part for single excitations + call orb_range_off_diagonal_single_to_two_rdm_bb_dm(tmp_det, tmp_det2,c_contrib,N_st,big_array,dim1,orb_bitmask,list_orb_reverse,ispin) + endif + enddo + + ! Compute Hij for all beta doubles + ! ---------------------------------- + + if(beta_beta.or.spin_trace)then + do i=1,n_doubles + l_b = doubles(i) + ASSERT (l_b <= N_det) + + lcol = psi_bilinear_matrix_transp_columns(l_b) + ASSERT (lcol <= N_det_beta_unique) + + l_a = psi_bilinear_matrix_transp_order(l_b) + c_contrib = 0.d0 + do l= 1, N_states + c_1(l) = u_t(l,l_a) + c_2(l) = u_t(l,k_a) + c_contrib(l) = c_1(l) * c_2(l) + enddo + call orb_range_off_diagonal_double_to_two_rdm_bb_dm(tmp_det(1,2),psi_det_alpha_unique(1, lcol),c_contrib,N_st,big_array,dim1,orb_bitmask,list_orb_reverse,ispin) + ASSERT (l_a <= N_det) + + enddo + endif + + + ! Diagonal contribution + ! ===================== + + + ! Initial determinant is at k_a in alpha-major representation + ! ----------------------------------------------------------------------- + + krow = psi_bilinear_matrix_rows(k_a) + ASSERT (krow <= N_det_alpha_unique) + + kcol = psi_bilinear_matrix_columns(k_a) + ASSERT (kcol <= N_det_beta_unique) + + tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow) + tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol) + + double precision, external :: diag_wee_mat_elem, diag_S_mat_elem + + double precision :: c_1(N_states),c_2(N_states) + c_contrib = 0.d0 + do l = 1, N_states + c_1(l) = u_t(l,k_a) + c_contrib(l) += c_1(l) * c_1(l) + enddo + + call orb_range_diagonal_contrib_to_all_two_rdm_dm(tmp_det,c_contrib,N_st,big_array,dim1,orb_bitmask,list_orb_reverse,ispin) + + end do + !!$OMP END DO + deallocate(buffer, singles_a, singles_b, doubles, idx) + !!$OMP END PARALLEL + +end + + SUBST [ N_int ] + + 1;; + 2;; + 3;; + 4;; + N_int;; + + END_TEMPLATE + diff --git a/src/two_body_rdm/orb_range_2_rdm.irp.f b/src/two_body_rdm/orb_range_2_rdm.irp.f index c40c46d2..8a47f73b 100644 --- a/src/two_body_rdm/orb_range_2_rdm.irp.f +++ b/src/two_body_rdm/orb_range_2_rdm.irp.f @@ -1,11 +1,11 @@ - BEGIN_PROVIDER [double precision, act_two_rdm_alpha_alpha_mo, (n_act_orb,n_act_orb,n_act_orb,n_act_orb)] + BEGIN_PROVIDER [double precision, state_av_act_two_rdm_alpha_alpha_mo, (n_act_orb,n_act_orb,n_act_orb,n_act_orb)] implicit none double precision, allocatable :: state_weights(:) BEGIN_DOC -! act_two_rdm_alpha_alpha_mo(i,j,k,l) = state average physicist two-body rdm restricted to the ACTIVE indices for alpha-alpha electron pairs +! state_av_act_two_rdm_alpha_alpha_mo(i,j,k,l) = state average physicist two-body rdm restricted to the ACTIVE indices for alpha-alpha electron pairs ! = END_DOC allocate(state_weights(N_states)) @@ -13,16 +13,16 @@ integer :: ispin ! condition for alpha/beta spin ispin = 1 - act_two_rdm_alpha_alpha_mo = 0.D0 - call orb_range_two_rdm_dm_nstates_openmp(act_two_rdm_alpha_alpha_mo,n_act_orb,n_act_orb,list_act,list_act_reverse,state_weights,ispin,psi_coef,size(psi_coef,2),size(psi_coef,1)) + state_av_act_two_rdm_alpha_alpha_mo = 0.D0 + call orb_range_two_rdm_state_av_openmp(state_av_act_two_rdm_alpha_alpha_mo,n_act_orb,n_act_orb,list_act,list_act_reverse,state_weights,ispin,psi_coef,size(psi_coef,2),size(psi_coef,1)) END_PROVIDER - BEGIN_PROVIDER [double precision, act_two_rdm_beta_beta_mo, (n_act_orb,n_act_orb,n_act_orb,n_act_orb)] + BEGIN_PROVIDER [double precision, state_av_act_two_rdm_beta_beta_mo, (n_act_orb,n_act_orb,n_act_orb,n_act_orb)] implicit none double precision, allocatable :: state_weights(:) BEGIN_DOC -! act_two_rdm_beta_beta_mo(i,j,k,l) = state average physicist two-body rdm restricted to the ACTIVE indices for beta-beta electron pairs +! state_av_act_two_rdm_beta_beta_mo(i,j,k,l) = state average physicist two-body rdm restricted to the ACTIVE indices for beta-beta electron pairs ! = END_DOC allocate(state_weights(N_states)) @@ -30,16 +30,16 @@ integer :: ispin ! condition for alpha/beta spin ispin = 2 - act_two_rdm_beta_beta_mo = 0.d0 - call orb_range_two_rdm_dm_nstates_openmp(act_two_rdm_beta_beta_mo,n_act_orb,n_act_orb,list_act,list_act_reverse,state_weights,ispin,psi_coef,size(psi_coef,2),size(psi_coef,1)) + state_av_act_two_rdm_beta_beta_mo = 0.d0 + call orb_range_two_rdm_state_av_openmp(state_av_act_two_rdm_beta_beta_mo,n_act_orb,n_act_orb,list_act,list_act_reverse,state_weights,ispin,psi_coef,size(psi_coef,2),size(psi_coef,1)) END_PROVIDER - BEGIN_PROVIDER [double precision, act_two_rdm_alpha_beta_mo, (n_act_orb,n_act_orb,n_act_orb,n_act_orb)] + BEGIN_PROVIDER [double precision, state_av_act_two_rdm_alpha_beta_mo, (n_act_orb,n_act_orb,n_act_orb,n_act_orb)] implicit none double precision, allocatable :: state_weights(:) BEGIN_DOC -! act_two_rdm_alpha_beta_mo(i,j,k,l) = state average physicist two-body rdm restricted to the ACTIVE indices for alpha-beta electron pairs +! state_av_act_two_rdm_alpha_beta_mo(i,j,k,l) = state average physicist two-body rdm restricted to the ACTIVE indices for alpha-beta electron pairs ! = END_DOC allocate(state_weights(N_states)) @@ -49,22 +49,22 @@ print*,'' print*,'' print*,'' - print*,'providint act_two_rdm_alpha_beta_mo ' + print*,'providint state_av_act_two_rdm_alpha_beta_mo ' ispin = 3 print*,'ispin = ',ispin - act_two_rdm_alpha_beta_mo = 0.d0 - call orb_range_two_rdm_dm_nstates_openmp(act_two_rdm_alpha_beta_mo,n_act_orb,n_act_orb,list_act,list_act_reverse,state_weights,ispin,psi_coef,size(psi_coef,2),size(psi_coef,1)) + state_av_act_two_rdm_alpha_beta_mo = 0.d0 + call orb_range_two_rdm_state_av_openmp(state_av_act_two_rdm_alpha_beta_mo,n_act_orb,n_act_orb,list_act,list_act_reverse,state_weights,ispin,psi_coef,size(psi_coef,2),size(psi_coef,1)) END_PROVIDER - BEGIN_PROVIDER [double precision, act_two_rdm_spin_trace_mo, (n_act_orb,n_act_orb,n_act_orb,n_act_orb)] + BEGIN_PROVIDER [double precision, state_av_act_two_rdm_spin_trace_mo, (n_act_orb,n_act_orb,n_act_orb,n_act_orb)] implicit none BEGIN_DOC -! act_two_rdm_spin_trace_mo(i,j,k,l) = state average physicist spin trace two-body rdm restricted to the ACTIVE indices +! state_av_act_two_rdm_spin_trace_mo(i,j,k,l) = state average physicist spin trace two-body rdm restricted to the ACTIVE indices ! The active part of the two-electron energy can be computed as: ! -! \sum_{i,j,k,l = 1, n_act_orb} act_two_rdm_spin_trace_mo(i,j,k,l) * < ii jj | kk ll > +! \sum_{i,j,k,l = 1, n_act_orb} state_av_act_two_rdm_spin_trace_mo(i,j,k,l) * < ii jj | kk ll > ! ! with ii = list_act(i), jj = list_act(j), kk = list_act(k), ll = list_act(l) END_DOC @@ -74,10 +74,10 @@ integer :: ispin ! condition for alpha/beta spin ispin = 4 - act_two_rdm_spin_trace_mo = 0.d0 + state_av_act_two_rdm_spin_trace_mo = 0.d0 integer :: i - call orb_range_two_rdm_dm_nstates_openmp(act_two_rdm_spin_trace_mo,n_act_orb,n_act_orb,list_act,list_act_reverse,state_weights,ispin,psi_coef,size(psi_coef,2),size(psi_coef,1)) + call orb_range_two_rdm_state_av_openmp(state_av_act_two_rdm_spin_trace_mo,n_act_orb,n_act_orb,list_act,list_act_reverse,state_weights,ispin,psi_coef,size(psi_coef,2),size(psi_coef,1)) END_PROVIDER diff --git a/src/two_body_rdm/orb_range_routines.irp.f b/src/two_body_rdm/orb_range_routines.irp.f index 0157c46b..b82c4799 100644 --- a/src/two_body_rdm/orb_range_routines.irp.f +++ b/src/two_body_rdm/orb_range_routines.irp.f @@ -1,4 +1,4 @@ -subroutine orb_range_two_rdm_dm_nstates_openmp(big_array,dim1,norb,list_orb,list_orb_reverse,state_weights,ispin,u_0,N_st,sze) +subroutine orb_range_two_rdm_state_av_openmp(big_array,dim1,norb,list_orb,list_orb_reverse,state_weights,ispin,u_0,N_st,sze) use bitmasks implicit none BEGIN_DOC @@ -31,7 +31,7 @@ subroutine orb_range_two_rdm_dm_nstates_openmp(big_array,dim1,norb,list_orb,list size(u_t, 1), & N_det, N_st) - call orb_range_two_rdm_dm_nstates_openmp_work(big_array,dim1,norb,list_orb,list_orb_reverse,state_weights,ispin,u_t,N_st,sze,1,N_det,0,1) + call orb_range_two_rdm_state_av_openmp_work(big_array,dim1,norb,list_orb,list_orb_reverse,state_weights,ispin,u_t,N_st,sze,1,N_det,0,1) deallocate(u_t) do k=1,N_st @@ -40,7 +40,7 @@ subroutine orb_range_two_rdm_dm_nstates_openmp(big_array,dim1,norb,list_orb,list end -subroutine orb_range_two_rdm_dm_nstates_openmp_work(big_array,dim1,norb,list_orb,list_orb_reverse,state_weights,ispin,u_t,N_st,sze,istart,iend,ishift,istep) +subroutine orb_range_two_rdm_state_av_openmp_work(big_array,dim1,norb,list_orb,list_orb_reverse,state_weights,ispin,u_t,N_st,sze,istart,iend,ishift,istep) use bitmasks implicit none BEGIN_DOC @@ -60,15 +60,15 @@ subroutine orb_range_two_rdm_dm_nstates_openmp_work(big_array,dim1,norb,list_orb select case (N_int) case (1) - call orb_range_two_rdm_dm_nstates_openmp_work_1(big_array,dim1,norb,list_orb,list_orb_reverse,state_weights,ispin,u_t,N_st,sze,istart,iend,ishift,istep) + call orb_range_two_rdm_state_av_openmp_work_1(big_array,dim1,norb,list_orb,list_orb_reverse,state_weights,ispin,u_t,N_st,sze,istart,iend,ishift,istep) case (2) - call orb_range_two_rdm_dm_nstates_openmp_work_2(big_array,dim1,norb,list_orb,list_orb_reverse,state_weights,ispin,u_t,N_st,sze,istart,iend,ishift,istep) + call orb_range_two_rdm_state_av_openmp_work_2(big_array,dim1,norb,list_orb,list_orb_reverse,state_weights,ispin,u_t,N_st,sze,istart,iend,ishift,istep) case (3) - call orb_range_two_rdm_dm_nstates_openmp_work_3(big_array,dim1,norb,list_orb,list_orb_reverse,state_weights,ispin,u_t,N_st,sze,istart,iend,ishift,istep) + call orb_range_two_rdm_state_av_openmp_work_3(big_array,dim1,norb,list_orb,list_orb_reverse,state_weights,ispin,u_t,N_st,sze,istart,iend,ishift,istep) case (4) - call orb_range_two_rdm_dm_nstates_openmp_work_4(big_array,dim1,norb,list_orb,list_orb_reverse,state_weights,ispin,u_t,N_st,sze,istart,iend,ishift,istep) + call orb_range_two_rdm_state_av_openmp_work_4(big_array,dim1,norb,list_orb,list_orb_reverse,state_weights,ispin,u_t,N_st,sze,istart,iend,ishift,istep) case default - call orb_range_two_rdm_dm_nstates_openmp_work_N_int(big_array,dim1,norb,list_orb,list_orb_reverse,state_weights,ispin,u_t,N_st,sze,istart,iend,ishift,istep) + call orb_range_two_rdm_state_av_openmp_work_N_int(big_array,dim1,norb,list_orb,list_orb_reverse,state_weights,ispin,u_t,N_st,sze,istart,iend,ishift,istep) end select end @@ -76,7 +76,7 @@ end BEGIN_TEMPLATE -subroutine orb_range_two_rdm_dm_nstates_openmp_work_$N_int(big_array,dim1,norb,list_orb,list_orb_reverse,state_weights,ispin,u_t,N_st,sze,istart,iend,ishift,istep) +subroutine orb_range_two_rdm_state_av_openmp_work_$N_int(big_array,dim1,norb,list_orb,list_orb_reverse,state_weights,ispin,u_t,N_st,sze,istart,iend,ishift,istep) use bitmasks implicit none BEGIN_DOC @@ -130,7 +130,7 @@ subroutine orb_range_two_rdm_dm_nstates_openmp_work_$N_int(big_array,dim1,norb,l else if(ispin == 4)then spin_trace = .True. else - print*,'Wrong parameter for ispin in general_two_rdm_dm_nstates_openmp_work' + print*,'Wrong parameter for ispin in general_two_rdm_state_av_openmp_work' print*,'ispin = ',ispin stop endif