9
1
mirror of https://github.com/QuantumPackage/qp2.git synced 2025-01-03 09:05:39 +01:00

fixed bug in cpx polyn multip

This commit is contained in:
AbdAmmar 2024-10-21 18:14:23 +02:00
parent 3589688254
commit 398ca5ceb7
7 changed files with 334 additions and 223 deletions

View File

@ -12,16 +12,19 @@ BEGIN_PROVIDER [double precision, ao_integrals_n_e_cgtos, (ao_num, ao_num)]
END_DOC END_DOC
implicit none implicit none
integer :: power_A(3), power_B(3)
integer :: i, j, k, l, m, n, ii, jj
double precision :: c, Z, C_center(3)
double precision :: phiA, KA2
double precision :: phiB, KB2
complex*16 :: alpha, alpha_inv, Ae_center(3), Ap_center(3)
complex*16 :: beta, beta_inv, Be_center(3), Bp_center(3)
complex*16 :: C1, C2, I1, I2
complex*16 :: NAI_pol_mult_cgtos integer :: power_A(3), power_B(3)
integer :: i, j, k, l, m, n, ii, jj
double precision :: c, Z, C_center(3)
double precision :: phiA, KA2
double precision :: phiB, KB2
complex*16 :: alpha, alpha_inv, Ae_center(3), Ap_center(3)
complex*16 :: beta, beta_inv, Be_center(3), Bp_center(3)
complex*16 :: C1, C2, I1, I2
complex*16, external :: NAI_pol_mult_cgtos
ao_integrals_n_e_cgtos = 0.d0 ao_integrals_n_e_cgtos = 0.d0
@ -140,7 +143,6 @@ complex*16 function NAI_pol_mult_cgtos(Ae_center, Be_center, power_A, power_B, a
dist_AC += abs(Ae_center(i) - C_center(i) * (1.d0, 0.d0)) dist_AC += abs(Ae_center(i) - C_center(i) * (1.d0, 0.d0))
enddo enddo
if((dist_AB .gt. 1d-13) .or. (dist_AC .gt. 1d-13) .or. use_pw) then if((dist_AB .gt. 1d-13) .or. (dist_AC .gt. 1d-13) .or. use_pw) then
continue continue
@ -217,7 +219,7 @@ subroutine give_cpolynomial_mult_center_one_e(A_center, B_center, alpha, beta, &
double precision, intent(in) :: C_center(3) double precision, intent(in) :: C_center(3)
complex*16, intent(in) :: alpha, beta, A_center(3), B_center(3) complex*16, intent(in) :: alpha, beta, A_center(3), B_center(3)
integer, intent(out) :: n_pt_out integer, intent(out) :: n_pt_out
complex*16, intent(out) :: d(0:n_pt_in) complex*16, intent(inout) :: d(0:n_pt_in)
integer :: a_x, b_x, a_y, b_y, a_z, b_z integer :: a_x, b_x, a_y, b_y, a_z, b_z
integer :: n_pt1, n_pt2, n_pt3, dim, i, n_pt_tmp integer :: n_pt1, n_pt2, n_pt3, dim, i, n_pt_tmp
@ -231,9 +233,9 @@ subroutine give_cpolynomial_mult_center_one_e(A_center, B_center, alpha, beta, &
p_inv = (1.d0, 0.d0) / p p_inv = (1.d0, 0.d0) / p
p_inv_2 = 0.5d0 * p_inv p_inv_2 = 0.5d0 * p_inv
do i = 1, 3 P_center(1) = (alpha * A_center(1) + beta * B_center(1)) * p_inv
P_center(i) = (alpha * A_center(i) + beta * B_center(i)) * p_inv P_center(2) = (alpha * A_center(2) + beta * B_center(2)) * p_inv
enddo P_center(3) = (alpha * A_center(3) + beta * B_center(3)) * p_inv
do i = 0, n_pt_in do i = 0, n_pt_in
d(i) = (0.d0, 0.d0) d(i) = (0.d0, 0.d0)
@ -260,6 +262,7 @@ subroutine give_cpolynomial_mult_center_one_e(A_center, B_center, alpha, beta, &
a_x = power_A(1) a_x = power_A(1)
b_x = power_B(1) b_x = power_B(1)
call I_x1_pol_mult_one_e_cgtos(a_x, b_x, R1x, R1xp, R2x, d1, n_pt1, n_pt_in) call I_x1_pol_mult_one_e_cgtos(a_x, b_x, R1x, R1xp, R2x, d1, n_pt1, n_pt_in)
if(n_pt1 < 0) then if(n_pt1 < 0) then
@ -284,6 +287,7 @@ subroutine give_cpolynomial_mult_center_one_e(A_center, B_center, alpha, beta, &
a_y = power_A(2) a_y = power_A(2)
b_y = power_B(2) b_y = power_B(2)
call I_x1_pol_mult_one_e_cgtos(a_y, b_y, R1x, R1xp, R2x, d2, n_pt2, n_pt_in) call I_x1_pol_mult_one_e_cgtos(a_y, b_y, R1x, R1xp, R2x, d2, n_pt2, n_pt_in)
if(n_pt2 < 0) then if(n_pt2 < 0) then
@ -308,6 +312,7 @@ subroutine give_cpolynomial_mult_center_one_e(A_center, B_center, alpha, beta, &
a_z = power_A(3) a_z = power_A(3)
b_z = power_B(3) b_z = power_B(3)
call I_x1_pol_mult_one_e_cgtos(a_z, b_z, R1x, R1xp, R2x, d3, n_pt3, n_pt_in) call I_x1_pol_mult_one_e_cgtos(a_z, b_z, R1x, R1xp, R2x, d3, n_pt3, n_pt_in)
if(n_pt3 < 0) then if(n_pt3 < 0) then
@ -322,11 +327,9 @@ subroutine give_cpolynomial_mult_center_one_e(A_center, B_center, alpha, beta, &
n_pt_tmp = 0 n_pt_tmp = 0
call multiply_cpoly(d1, n_pt1, d2, n_pt2, d, n_pt_tmp) call multiply_cpoly(d1, n_pt1, d2, n_pt2, d, n_pt_tmp)
do i = 0, n_pt_tmp
d1(i) = (0.d0, 0.d0)
enddo
n_pt_out = 0 n_pt_out = 0
d1(0:n_pt_tmp) = (0.d0, 0.d0)
call multiply_cpoly(d, n_pt_tmp, d3, n_pt3, d1, n_pt_out) call multiply_cpoly(d, n_pt_tmp, d3, n_pt3, d1, n_pt_out)
do i = 0, n_pt_out do i = 0, n_pt_out
d(i) = d1(i) d(i) = d1(i)

View File

@ -3,7 +3,7 @@ logical function ao_one_e_integral_zero(i,k)
integer, intent(in) :: i,k integer, intent(in) :: i,k
ao_one_e_integral_zero = .False. ao_one_e_integral_zero = .False.
if (.not.((io_ao_integrals_overlap/='None').or.is_periodic)) then if (.not.((io_ao_integrals_overlap/='None').or.is_periodic.or.use_cgtos)) then
if (ao_overlap_abs(i,k) < ao_one_e_integrals_threshold) then if (ao_overlap_abs(i,k) < ao_one_e_integrals_threshold) then
ao_one_e_integral_zero = .True. ao_one_e_integral_zero = .True.
return return

View File

@ -1,153 +0,0 @@
! ---
subroutine deb_ao_2eint_cgtos(i, j, k, l)
BEGIN_DOC
! integral of the AO basis <ik|jl> or (ij|kl)
! i(r1) j(r1) 1/r12 k(r2) l(r2)
END_DOC
implicit none
include 'utils/constants.include.F'
integer, intent(in) :: i, j, k, l
integer :: p, q, r, s
integer :: num_i, num_j, num_k, num_l, dim1, I_power(3), J_power(3), K_power(3), L_power(3)
integer :: iorder_p1(3), iorder_p2(3), iorder_q1(3), iorder_q2(3)
complex*16 :: I_center(3), J_center(3), K_center(3), L_center(3)
complex*16 :: expo1, expo2, expo3, expo4
complex*16 :: P1_center(3), pp1
complex*16 :: P2_center(3), pp2
complex*16 :: Q1_center(3), qq1
complex*16 :: Q2_center(3), qq2
dim1 = n_pt_max_integrals
num_i = ao_nucl(i)
num_j = ao_nucl(j)
num_k = ao_nucl(k)
num_l = ao_nucl(l)
if(num_i /= num_j .or. num_k /= num_l .or. num_j /= num_k) then
!print*, ao_prim_num(i), ao_prim_num(j), ao_prim_num(k), ao_prim_num(l)
do p = 1, 3
I_power(p) = ao_power(i,p)
J_power(p) = ao_power(j,p)
K_power(p) = ao_power(k,p)
L_power(p) = ao_power(l,p)
I_center(p) = nucl_coord(num_i,p) * (1.d0, 0.d0)
J_center(p) = nucl_coord(num_j,p) * (1.d0, 0.d0)
K_center(p) = nucl_coord(num_k,p) * (1.d0, 0.d0)
L_center(p) = nucl_coord(num_l,p) * (1.d0, 0.d0)
enddo
do p = 1, ao_prim_num(i)
expo1 = ao_expo_cgtos_ord_transp(p,i)
!print*, "expo1 = ", expo1
!print*, "center1 = ", I_center
do q = 1, ao_prim_num(j)
expo2 = ao_expo_cgtos_ord_transp(q,j)
!print*, "expo2 = ", expo2
!print*, "center2 = ", J_center
pp1 = expo1 + expo2
P1_center(1:3) = (expo1 * I_center(1:3) + expo2 * J_center(1:3)) / pp1
iorder_p1(1:3) = I_power(1:3) + J_power(1:3)
pp2 = conjg(expo1) + expo2
P2_center(1:3) = (conjg(expo1) * I_center(1:3) + expo2 * J_center(1:3)) / pp2
iorder_p2(1:3) = I_power(1:3) + J_power(1:3)
do r = 1, ao_prim_num(k)
expo3 = ao_expo_cgtos_ord_transp(r,k)
!print*, "expo3 = ", expo3
!print*, "center3 = ", K_center
do s = 1, ao_prim_num(l)
expo4 = ao_expo_cgtos_ord_transp(s,l)
!print*, "expo4 = ", expo4
!print*, "center4 = ", L_center
qq1 = expo3 + expo4
Q1_center(1:3) = (expo3 * K_center(1:3) + expo4 * L_center(1:3)) / qq1
iorder_q1(1:3) = K_power(1:3) + L_power(1:3)
qq2 = conjg(expo3) + expo4
Q2_center(1:3) = (conjg(expo3) * K_center(1:3) + expo4 * L_center(1:3)) / qq2
iorder_q2(1:3) = K_power(1:3) + L_power(1:3)
call deb_cboys(P1_center, pp1, iorder_p1, Q1_center, qq1, iorder_q1)
call deb_cboys(P1_center, pp1, iorder_p1, Q2_center, qq2, iorder_q2)
call deb_cboys(P2_center, pp2, iorder_p2, Q1_center, qq1, iorder_q1)
call deb_cboys(P2_center, pp2, iorder_p2, Q2_center, qq2, iorder_q2)
call deb_cboys(conjg(P2_center), conjg(pp2), iorder_p2, Q1_center, qq1, iorder_q1)
call deb_cboys(conjg(P2_center), conjg(pp2), iorder_p2, Q2_center, qq2, iorder_q2)
call deb_cboys(conjg(P1_center), conjg(pp1), iorder_p1, Q1_center, qq1, iorder_q1)
call deb_cboys(conjg(P1_center), conjg(pp1), iorder_p1, Q2_center, qq2, iorder_q2)
enddo ! s
enddo ! r
enddo ! q
enddo ! p
endif ! same centers
return
end
! ---
subroutine deb_cboys(P_center, p, iorder_p, Q_center, q, iorder_q)
implicit none
include 'utils/constants.include.F'
integer, intent(in) :: iorder_p(3), iorder_q(3)
complex*16, intent(in) :: P_center(3), p
complex*16, intent(in) :: Q_center(3), q
integer :: iorder, n
complex*16 :: dist, rho
complex*16 :: int1, int2
complex*16, external :: crint_2
dist = (P_center(1) - Q_center(1)) * (P_center(1) - Q_center(1)) &
+ (P_center(2) - Q_center(2)) * (P_center(2) - Q_center(2)) &
+ (P_center(3) - Q_center(3)) * (P_center(3) - Q_center(3))
rho = dist * p * q / (p + q)
if(abs(rho) .lt. 1d-15) return
iorder = 2*iorder_p(1)+2*iorder_q(1) + 2*iorder_p(2)+2*iorder_q(2) + 2*iorder_p(3)+2*iorder_q(3)
n = shiftr(iorder, 1)
!write(33,*) n, real(rho), aimag(rho)
!print*, n, real(rho), aimag(rho)
int1 = crint_2(n, rho)
call crint_quad_12(n, rho, 1000000, int2)
if(abs(int1 - int2) .gt. 1d-5) then
print*, ' important error found: '
print*, p!, P_center
print*, q!, Q_center
print*, dist
print*, " n, tho = ", n, real(rho), aimag(rho)
print*, real(int1), real(int2), dabs(real(int1-int2))
print*, aimag(int1), aimag(int2), dabs(aimag(int1-int2))
stop
endif
end
! ---

View File

@ -882,15 +882,13 @@ complex*16 function general_primitive_integral_cgtos(dim, P_new, P_center, fact_
complex*16, intent(in) :: Q_new(0:max_dim,3), Q_center(3), fact_q, q, q_inv complex*16, intent(in) :: Q_new(0:max_dim,3), Q_center(3), fact_q, q, q_inv
integer :: i, j, nx, ny, nz, n_Ix, n_Iy, n_Iz, iorder, n_pt_tmp, n_pt_out integer :: i, j, nx, ny, nz, n_Ix, n_Iy, n_Iz, iorder, n_pt_tmp, n_pt_out
double precision :: tmp_mod
double precision :: ppq_re, ppq_im, ppq_mod, sq_ppq_re, sq_ppq_im
complex*16 :: pq, pq_inv, pq_inv_2, p01_1, p01_2, p10_1, p10_2, ppq, sq_ppq complex*16 :: pq, pq_inv, pq_inv_2, p01_1, p01_2, p10_1, p10_2, ppq, sq_ppq
complex*16 :: rho, dist, const complex*16 :: rho, dist, const
complex*16 :: accu, tmp_p, tmp_q complex*16 :: accu, tmp_p, tmp_q
complex*16 :: dx(0:max_dim), Ix_pol(0:max_dim), dy(0:max_dim), Iy_pol(0:max_dim), dz(0:max_dim), Iz_pol(0:max_dim) complex*16 :: dx(0:max_dim), Ix_pol(0:max_dim), dy(0:max_dim), Iy_pol(0:max_dim), dz(0:max_dim), Iz_pol(0:max_dim)
complex*16 :: d1(0:max_dim), d_poly(0:max_dim) complex*16 :: d1(0:max_dim), d_poly(0:max_dim)
complex*16 :: crint_sum complex*16, external :: crint_sum
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: dx, Ix_pol, dy, Iy_pol, dz, Iz_pol !DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: dx, Ix_pol, dy, Iy_pol, dz, Iz_pol
@ -919,15 +917,13 @@ complex*16 function general_primitive_integral_cgtos(dim, P_new, P_center, fact_
n_Ix = 0 n_Ix = 0
do i = 0, iorder_p(1) do i = 0, iorder_p(1)
tmp_p = P_new(i,1) tmp_p = P_new(i,1)
tmp_mod = dsqrt(real(tmp_p)*real(tmp_p) + aimag(tmp_p)*aimag(tmp_p)) if(zabs(tmp_p) < thresh) cycle
if(tmp_mod < thresh) cycle
do j = 0, iorder_q(1) do j = 0, iorder_q(1)
tmp_q = tmp_p * Q_new(j,1) tmp_q = tmp_p * Q_new(j,1)
tmp_mod = dsqrt(real(tmp_q)*real(tmp_q) + aimag(tmp_q)*aimag(tmp_q)) if(zabs(tmp_q) < thresh) cycle
if(tmp_mod < thresh) cycle
!DIR$ FORCEINLINE !DIR$ FORCEINLINE
call give_cpolynom_mult_center_x(P_center(1), Q_center(1), i, j, p, q, iorder, pq_inv, pq_inv_2, p10_1, p01_1, p10_2, p01_2, dx, nx) call give_cpolynom_mult_center_x(P_center(1), Q_center(1), i, j, p, q, iorder, pq_inv, pq_inv_2, p10_1, p01_1, p10_2, p01_2, dx, nx)
@ -950,15 +946,13 @@ complex*16 function general_primitive_integral_cgtos(dim, P_new, P_center, fact_
n_Iy = 0 n_Iy = 0
do i = 0, iorder_p(2) do i = 0, iorder_p(2)
tmp_p = P_new(i,2) tmp_p = P_new(i,2)
tmp_mod = dsqrt(REAL(tmp_p)*REAL(tmp_p) + AIMAG(tmp_p)*AIMAG(tmp_p)) if(zabs(tmp_p) < thresh) cycle
if(tmp_mod < thresh) cycle
do j = 0, iorder_q(2) do j = 0, iorder_q(2)
tmp_q = tmp_p * Q_new(j,2) tmp_q = tmp_p * Q_new(j,2)
tmp_mod = dsqrt(REAL(tmp_q)*REAL(tmp_q) + AIMAG(tmp_q)*AIMAG(tmp_q)) if(zabs(tmp_q) < thresh) cycle
if(tmp_mod < thresh) cycle
!DIR$ FORCEINLINE !DIR$ FORCEINLINE
call give_cpolynom_mult_center_x(P_center(2), Q_center(2), i, j, p, q, iorder, pq_inv, pq_inv_2, p10_1, p01_1, p10_2, p01_2, dy, ny) call give_cpolynom_mult_center_x(P_center(2), Q_center(2), i, j, p, q, iorder, pq_inv, pq_inv_2, p10_1, p01_1, p10_2, p01_2, dy, ny)
@ -982,15 +976,13 @@ complex*16 function general_primitive_integral_cgtos(dim, P_new, P_center, fact_
n_Iz = 0 n_Iz = 0
do i = 0, iorder_p(3) do i = 0, iorder_p(3)
tmp_p = P_new(i,3) tmp_p = P_new(i,3)
tmp_mod = dsqrt(REAL(tmp_p)*REAL(tmp_p) + AIMAG(tmp_p)*AIMAG(tmp_p)) if(zabs(tmp_p) < thresh) cycle
if(tmp_mod < thresh) cycle
do j = 0, iorder_q(3) do j = 0, iorder_q(3)
tmp_q = tmp_p * Q_new(j,3) tmp_q = tmp_p * Q_new(j,3)
tmp_mod = dsqrt(REAL(tmp_q)*REAL(tmp_q) + AIMAG(tmp_q)*AIMAG(tmp_q)) if(zabs(tmp_q) < thresh) cycle
if(tmp_mod < thresh) cycle
!DIR$ FORCEINLINE !DIR$ FORCEINLINE
call give_cpolynom_mult_center_x(P_center(3), Q_center(3), i, j, p, q, iorder, pq_inv, pq_inv_2, p10_1, p01_1, p10_2, p01_2, dz, nz) call give_cpolynom_mult_center_x(P_center(3), Q_center(3), i, j, p, q, iorder, pq_inv, pq_inv_2, p10_1, p01_1, p10_2, p01_2, dz, nz)
@ -1028,6 +1020,9 @@ complex*16 function general_primitive_integral_cgtos(dim, P_new, P_center, fact_
!DIR$ FORCEINLINE !DIR$ FORCEINLINE
call multiply_cpoly(d_poly, n_pt_tmp, Iz_pol, n_Iz, d1, n_pt_out) call multiply_cpoly(d_poly, n_pt_tmp, Iz_pol, n_Iz, d1, n_pt_out)
if(n_pt_out == -1) then
return
endif
accu = crint_sum(n_pt_out, const, d1) accu = crint_sum(n_pt_out, const, d1)
@ -1056,7 +1051,6 @@ complex*16 function ERI_cgtos(alpha, beta, delta, gama, a_x, b_x, c_x, d_x, a_y,
integer :: a_x_2, b_x_2, c_x_2, d_x_2, a_y_2, b_y_2, c_y_2, d_y_2, a_z_2, b_z_2, c_z_2, d_z_2 integer :: a_x_2, b_x_2, c_x_2, d_x_2, a_y_2, b_y_2, c_y_2, d_y_2, a_z_2, b_z_2, c_z_2, d_z_2
integer :: i, j, k, l, n_pt integer :: i, j, k, l, n_pt
integer :: nx, ny, nz integer :: nx, ny, nz
double precision :: ppq_re, ppq_im, ppq_mod, sq_ppq_re, sq_ppq_im
complex*16 :: p, q, ppq, sq_ppq, coeff, I_f complex*16 :: p, q, ppq, sq_ppq, coeff, I_f
ERI_cgtos = (0.d0, 0.d0) ERI_cgtos = (0.d0, 0.d0)
@ -1494,7 +1488,7 @@ recursive subroutine I_x1_pol_mult_a1_cgtos(c,B_10,B_01,B_00,C_00,D_00,d,nd,n_pt
complex*16 :: Y(0:max_dim) complex*16 :: Y(0:max_dim)
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: X,Y !DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: X,Y
if( (c < 0) .or. (nd < 0) ) then if((c < 0) .or. (nd < 0)) then
nd = -1 nd = -1
return return
endif endif

View File

@ -46,6 +46,7 @@ double precision function ao_two_e_integral(i, j, k, l)
if(use_cgtos) then if(use_cgtos) then
ao_two_e_integral = ao_two_e_integral_cgtos(i, j, k, l) ao_two_e_integral = ao_two_e_integral_cgtos(i, j, k, l)
return
else if (use_only_lr) then else if (use_only_lr) then

View File

@ -3,18 +3,134 @@ program deb_ao_2e_int
implicit none implicit none
!call main()
call check_ao_one_e_integral_cgtos()
!call check_ao_two_e_integral_cgtos() !call check_ao_two_e_integral_cgtos()
!call check_crint1() !call check_crint1()
!call check_crint2() !call check_crint2()
!call check_crint3() !call check_crint3()
!call check_crint4() !call check_crint4()
call check_crint5() !call check_crint5()
!call check_crint6() !call check_crint6()
end end
! --- ! ---
subroutine main()
implicit none
integer :: i, j
PROVIDE ao_overlap
PROVIDE ao_kinetic_integrals
PROVIDE ao_integrals_n_e
print*, "ao_overlap:"
do i = 1, ao_num
print*, (ao_overlap(i,j), j=1, ao_num)
enddo
print*, "ao_kinetic_integrals:"
do i = 1, ao_num
print*, (ao_kinetic_integrals(i,j), j=1, ao_num)
enddo
print*, "ao_integrals_n_e:"
do i = 1, ao_num
print*, (ao_integrals_n_e(i,j), j=1, ao_num)
enddo
return
end
! ---
subroutine check_ao_one_e_integral_cgtos()
implicit none
integer :: i, j
double precision :: acc, nrm, dif
double precision :: tmp1, tmp2
double precision :: t1, t2, tt
PROVIDE ao_overlap ao_overlap_cgtos
PROVIDE ao_integrals_n_e ao_integrals_n_e_cgtos
PROVIDE ao_kinetic_integrals ao_kinetic_integrals_cgtos
! ---
! print *, "overlap:"
! acc = 0.d0
! nrm = 0.d0
! do i = 1, ao_num
! do j = 1, ao_num
! tmp1 = ao_overlap (i,j)
! tmp2 = ao_overlap_cgtos(i,j)
! dif = abs(tmp1 - tmp2)
! if(dif .gt. 1d-10) then
! print*, ' error on:', i, j
! print*, tmp1, tmp2, dif
! !stop
! endif
! acc += dif
! nrm += abs(tmp1)
! enddo
! enddo
! print *, ' acc (%) = ', 100.d0 * acc / nrm
!
! ! ---
!
! print *, "kinetic:"
! acc = 0.d0
! nrm = 0.d0
! do i = 1, ao_num
! do j = 1, ao_num
! tmp1 = ao_kinetic_integrals (i,j)
! tmp2 = ao_kinetic_integrals_cgtos(i,j)
! dif = abs(tmp1 - tmp2)
! if(dif .gt. 1d-10) then
! print*, ' error on:', i, j
! print*, tmp1, tmp2, dif
! !stop
! endif
! acc += dif
! nrm += abs(tmp1)
! enddo
! enddo
! print *, ' acc (%) = ', 100.d0 * acc / nrm
! ---
print *, "NAI:"
acc = 0.d0
nrm = 0.d0
do i = 1, ao_num
!do i = 9, 9
do j = 1, ao_num
!do j = 16, 16
tmp1 = ao_integrals_n_e (i,j)
tmp2 = ao_integrals_n_e_cgtos(i,j)
dif = dabs(tmp1 - tmp2)
if(dif .gt. 1d-10) then
print*, ' error on:', i, j
print*, tmp1, tmp2, dif
stop
endif
acc += dif
nrm += dabs(tmp1)
enddo
enddo
print *, ' acc (%) = ', 100.d0 * acc / nrm
end
! ---
subroutine check_ao_two_e_integral_cgtos() subroutine check_ao_two_e_integral_cgtos()
implicit none implicit none
@ -22,7 +138,6 @@ subroutine check_ao_two_e_integral_cgtos()
integer :: i, j, k, l integer :: i, j, k, l
double precision :: acc, nrm, dif double precision :: acc, nrm, dif
double precision :: tmp1, tmp2 double precision :: tmp1, tmp2
double precision :: pw, pw0
double precision :: t1, t2, tt double precision :: t1, t2, tt
double precision, external :: ao_two_e_integral double precision, external :: ao_two_e_integral
@ -31,40 +146,40 @@ subroutine check_ao_two_e_integral_cgtos()
acc = 0.d0 acc = 0.d0
nrm = 0.d0 nrm = 0.d0
pw0 = dble(ao_num**3)
pw = 0.d0
tt = 0.d0 tt = 0.d0
do i = 1, ao_num do i = 1, ao_num
!do i = 1, 1
call wall_time(t1) call wall_time(t1)
do j = 1, ao_num do j = 1, ao_num
!do j = 1, 1
do k = 1, ao_num do k = 1, ao_num
!do k = 1, 1
do l = 1, ao_num do l = 1, ao_num
!do l = 21, 21
call deb_ao_2eint_cgtos(i, j, k, l) !call deb_ao_2eint_cgtos(i, j, k, l)
!tmp1 = ao_two_e_integral (i, j, k, l) tmp1 = ao_two_e_integral (i, j, k, l)
!tmp2 = ao_two_e_integral_cgtos(i, j, k, l) tmp2 = ao_two_e_integral_cgtos(i, j, k, l)
!print*, i, j, k, l dif = abs(tmp1 - tmp2)
if(dif .gt. 1d-10) then
!dif = abs(tmp1 - tmp2) print*, ' error on:', i, j, k, l
!!if(dif .gt. 1d-10) then print*, tmp1, tmp2, dif
! print*, ' error on:', i, j, k, l !stop
! print*, tmp1, tmp2, dif endif
! !stop acc += dif
!!endif nrm += abs(tmp1)
!acc += dif
!nrm += abs(tmp1)
enddo enddo
enddo enddo
enddo enddo
call wall_time(t2) call wall_time(t2)
tt += t2 - t1 tt += t2 - t1
print*, " % done = ", 100.d0 * dble(i) / ao_num print*, " % done = ", 100.d0 * dble(i) / ao_num
print*, ' ellepsed time (sec) =', tt print*, ' ellapsed time (sec) =', tt
enddo enddo
!print *, ' acc (%) = ', dif * 100.d0 / nrm !print *, ' acc (%) = ', 100.d0 * acc / nrm
end end
@ -635,3 +750,160 @@ end
! --- ! ---
! ---
subroutine deb_ao_2eint_cgtos(i, j, k, l)
BEGIN_DOC
! integral of the AO basis <ik|jl> or (ij|kl)
! i(r1) j(r1) 1/r12 k(r2) l(r2)
END_DOC
implicit none
include 'utils/constants.include.F'
integer, intent(in) :: i, j, k, l
integer :: p, q, r, s
integer :: num_i, num_j, num_k, num_l, dim1, I_power(3), J_power(3), K_power(3), L_power(3)
integer :: iorder_p1(3), iorder_p2(3), iorder_q1(3), iorder_q2(3)
complex*16 :: I_center(3), J_center(3), K_center(3), L_center(3)
complex*16 :: expo1, expo2, expo3, expo4
complex*16 :: P1_center(3), pp1
complex*16 :: P2_center(3), pp2
complex*16 :: Q1_center(3), qq1
complex*16 :: Q2_center(3), qq2
dim1 = n_pt_max_integrals
num_i = ao_nucl(i)
num_j = ao_nucl(j)
num_k = ao_nucl(k)
num_l = ao_nucl(l)
if(num_i /= num_j .or. num_k /= num_l .or. num_j /= num_k) then
!print*, ao_prim_num(i), ao_prim_num(j), ao_prim_num(k), ao_prim_num(l)
do p = 1, 3
I_power(p) = ao_power(i,p)
J_power(p) = ao_power(j,p)
K_power(p) = ao_power(k,p)
L_power(p) = ao_power(l,p)
I_center(p) = nucl_coord(num_i,p) * (1.d0, 0.d0)
J_center(p) = nucl_coord(num_j,p) * (1.d0, 0.d0)
K_center(p) = nucl_coord(num_k,p) * (1.d0, 0.d0)
L_center(p) = nucl_coord(num_l,p) * (1.d0, 0.d0)
enddo
do p = 1, ao_prim_num(i)
expo1 = ao_expo_cgtos_ord_transp(p,i)
!print*, "expo1 = ", expo1
!print*, "center1 = ", I_center
do q = 1, ao_prim_num(j)
expo2 = ao_expo_cgtos_ord_transp(q,j)
!print*, "expo2 = ", expo2
!print*, "center2 = ", J_center
pp1 = expo1 + expo2
P1_center(1:3) = (expo1 * I_center(1:3) + expo2 * J_center(1:3)) / pp1
iorder_p1(1:3) = I_power(1:3) + J_power(1:3)
pp2 = conjg(expo1) + expo2
P2_center(1:3) = (conjg(expo1) * I_center(1:3) + expo2 * J_center(1:3)) / pp2
iorder_p2(1:3) = I_power(1:3) + J_power(1:3)
do r = 1, ao_prim_num(k)
expo3 = ao_expo_cgtos_ord_transp(r,k)
!print*, "expo3 = ", expo3
!print*, "center3 = ", K_center
do s = 1, ao_prim_num(l)
expo4 = ao_expo_cgtos_ord_transp(s,l)
!print*, "expo4 = ", expo4
!print*, "center4 = ", L_center
qq1 = expo3 + expo4
Q1_center(1:3) = (expo3 * K_center(1:3) + expo4 * L_center(1:3)) / qq1
iorder_q1(1:3) = K_power(1:3) + L_power(1:3)
qq2 = conjg(expo3) + expo4
Q2_center(1:3) = (conjg(expo3) * K_center(1:3) + expo4 * L_center(1:3)) / qq2
iorder_q2(1:3) = K_power(1:3) + L_power(1:3)
call deb_cboys(P1_center, pp1, iorder_p1, Q1_center, qq1, iorder_q1)
call deb_cboys(P1_center, pp1, iorder_p1, Q2_center, qq2, iorder_q2)
call deb_cboys(P2_center, pp2, iorder_p2, Q1_center, qq1, iorder_q1)
call deb_cboys(P2_center, pp2, iorder_p2, Q2_center, qq2, iorder_q2)
call deb_cboys(conjg(P2_center), conjg(pp2), iorder_p2, Q1_center, qq1, iorder_q1)
call deb_cboys(conjg(P2_center), conjg(pp2), iorder_p2, Q2_center, qq2, iorder_q2)
call deb_cboys(conjg(P1_center), conjg(pp1), iorder_p1, Q1_center, qq1, iorder_q1)
call deb_cboys(conjg(P1_center), conjg(pp1), iorder_p1, Q2_center, qq2, iorder_q2)
enddo ! s
enddo ! r
enddo ! q
enddo ! p
endif ! same centers
return
end
! ---
subroutine deb_cboys(P_center, p, iorder_p, Q_center, q, iorder_q)
implicit none
include 'utils/constants.include.F'
integer, intent(in) :: iorder_p(3), iorder_q(3)
complex*16, intent(in) :: P_center(3), p
complex*16, intent(in) :: Q_center(3), q
integer :: iorder, n
complex*16 :: dist, rho
complex*16 :: int1, int2
complex*16, external :: crint_2
dist = (P_center(1) - Q_center(1)) * (P_center(1) - Q_center(1)) &
+ (P_center(2) - Q_center(2)) * (P_center(2) - Q_center(2)) &
+ (P_center(3) - Q_center(3)) * (P_center(3) - Q_center(3))
rho = dist * p * q / (p + q)
if(real(rho) .lt. -5.d0) then
print*, 'warning ! impotant negative rho: ', rho
endif
!if(abs(rho) .lt. 1d-15) return
iorder = 2*iorder_p(1)+2*iorder_q(1) + 2*iorder_p(2)+2*iorder_q(2) + 2*iorder_p(3)+2*iorder_q(3)
n = shiftr(iorder, 1)
!write(33,*) n, real(rho), aimag(rho)
!print*, n, real(rho), aimag(rho)
int1 = crint_2(n, rho)
call crint_quad_12(n, rho, 1000000, int2)
if(abs(int1 - int2) .gt. 1d-5) then
print*, ' important error found: '
print*, p!, P_center
print*, q!, Q_center
print*, dist
print*, " n, tho = ", n, real(rho), aimag(rho)
print*, real(int1), real(int2), dabs(real(int1-int2))
print*, aimag(int1), aimag(int2), dabs(aimag(int1-int2))
stop
endif
end
! ---

View File

@ -256,15 +256,10 @@ subroutine multiply_cpoly(b, nb, c, nc, d, nd)
complex*16, intent(inout) :: d(0:nb+nc) complex*16, intent(inout) :: d(0:nb+nc)
integer, intent(out) :: nd integer, intent(out) :: nd
integer :: ndtmp, ib, ic integer :: ib, ic
if(ior(nc, nb) >= 0) then ! True if nc>=0 and nb>=0 if(ior(nc, nb) < 0) return ! False if nc>=0 and nb>=0
continue
else
return
endif
ndtmp = nb + nc
do ic = 0, nc do ic = 0, nc
d(ic) = d(ic) + c(ic) * b(0) d(ic) = d(ic) + c(ic) * b(0)
@ -277,9 +272,8 @@ subroutine multiply_cpoly(b, nb, c, nc, d, nd)
enddo enddo
enddo enddo
do nd = ndtmp, 0, -1 do nd = nb + nc, 0, -1
if(abs(d(nd)) .lt. 1.d-15) cycle if(d(nd) /= (0.d0, 0.d0)) exit
exit
enddo enddo
end end