9
1
mirror of https://github.com/QuantumPackage/qp2.git synced 2024-11-06 21:43:39 +01:00

S2 OK in TC
Some checks reported errors
continuous-integration/drone/push Build was killed

This commit is contained in:
eginer 2023-04-10 19:37:54 +02:00
parent fbe8c4b60f
commit 367abb3d70
4 changed files with 189 additions and 60 deletions

View File

@ -1,7 +1,7 @@
! --- ! ---
subroutine davidson_hs2_nonsym_b1space(u_in, H_jj, energies, sze, N_st, N_st_diag_in, converged, hcalc) subroutine davidson_hs2_nonsym_b1space(u_in, H_jj, s2_out,energies, sze, N_st, N_st_diag_in, converged, hcalc)
use mmap_module use mmap_module
@ -30,6 +30,7 @@ subroutine davidson_hs2_nonsym_b1space(u_in, H_jj, energies, sze, N_st, N_st_dia
logical, intent(inout) :: converged logical, intent(inout) :: converged
double precision, intent(inout) :: u_in(sze,N_st_diag_in) double precision, intent(inout) :: u_in(sze,N_st_diag_in)
double precision, intent(out) :: energies(N_st) double precision, intent(out) :: energies(N_st)
double precision, intent(inout) :: s2_out(N_st)
external hcalc external hcalc
character*(16384) :: write_buffer character*(16384) :: write_buffer
@ -528,6 +529,7 @@ subroutine davidson_hs2_nonsym_b1space(u_in, H_jj, energies, sze, N_st, N_st_dia
do k = 1, N_st do k = 1, N_st
energies(k) = lambda(k) energies(k) = lambda(k)
s2_out(k) = s2(k)
enddo enddo
write_buffer = '=====' write_buffer = '====='
do i = 1, N_st do i = 1, N_st

View File

@ -1,3 +1,33 @@
subroutine get_H_tc_s2_l0_r0(l_0,r_0,N_st,sze,energies, s2)
use bitmasks
implicit none
BEGIN_DOC
! Computes $e_0 = \langle l_0 | H | r_0\rangle$.
!
! Computes $s_0 = \langle l_0 | S^2 | r_0\rangle$.
!
! Assumes that the determinants are in psi_det
!
! istart, iend, ishift, istep are used in ZMQ parallelization.
END_DOC
integer, intent(in) :: N_st,sze
double precision, intent(in) :: l_0(sze,N_st), r_0(sze,N_st)
double precision, intent(out) :: energies(N_st), s2(N_st)
logical :: do_right
integer :: istate
double precision, allocatable :: s_0(:,:), v_0(:,:)
double precision :: u_dot_v, norm
allocate(s_0(sze,N_st), v_0(sze,N_st))
do_right = .True.
call H_tc_s2_u_0_opt(v_0,s_0,r_0,N_st,sze)
do istate = 1, N_st
norm = u_dot_v(l_0(1,istate),r_0(1,istate),sze)
energies(istate) = u_dot_v(l_0(1,istate),v_0(1,istate),sze)/norm
s2(istate) = u_dot_v(l_0(1,istate),s_0(1,istate),sze)/norm
enddo
end
subroutine H_tc_s2_u_0_opt(v_0,s_0,u_0,N_st,sze) subroutine H_tc_s2_u_0_opt(v_0,s_0,u_0,N_st,sze)
use bitmasks use bitmasks
implicit none implicit none

View File

@ -35,6 +35,7 @@ end
&BEGIN_PROVIDER [double precision, eigval_left_tc_bi_orth, (N_states)] &BEGIN_PROVIDER [double precision, eigval_left_tc_bi_orth, (N_states)]
&BEGIN_PROVIDER [double precision, reigvec_tc_bi_orth, (N_det,N_states)] &BEGIN_PROVIDER [double precision, reigvec_tc_bi_orth, (N_det,N_states)]
&BEGIN_PROVIDER [double precision, leigvec_tc_bi_orth, (N_det,N_states)] &BEGIN_PROVIDER [double precision, leigvec_tc_bi_orth, (N_det,N_states)]
&BEGIN_PROVIDER [double precision, s2_eigvec_tc_bi_orth, (N_states)]
&BEGIN_PROVIDER [double precision, norm_ground_left_right_bi_orth ] &BEGIN_PROVIDER [double precision, norm_ground_left_right_bi_orth ]
BEGIN_DOC BEGIN_DOC
@ -46,16 +47,104 @@ end
logical :: converged, dagger logical :: converged, dagger
integer :: n_real_tc_bi_orth_eigval_right,igood_r,igood_l integer :: n_real_tc_bi_orth_eigval_right,igood_r,igood_l
double precision, allocatable :: reigvec_tc_bi_orth_tmp(:,:),leigvec_tc_bi_orth_tmp(:,:),eigval_right_tmp(:) double precision, allocatable :: reigvec_tc_bi_orth_tmp(:,:),leigvec_tc_bi_orth_tmp(:,:),eigval_right_tmp(:)
double precision, allocatable :: s2_values_tmp(:), H_prime(:,:), expect_e(:)
double precision, parameter :: alpha = 0.1d0
integer :: i_good_state,i_other_state, i_state
integer, allocatable :: index_good_state_array(:)
logical, allocatable :: good_state_array(:)
double precision, allocatable :: coef_hf_r(:),coef_hf_l(:)
integer, allocatable :: iorder(:)
PROVIDE N_det N_int PROVIDE N_det N_int
if(n_det.le.N_det_max_full)then if(n_det.le.N_det_max_full)then
allocate(reigvec_tc_bi_orth_tmp(N_det,N_det),leigvec_tc_bi_orth_tmp(N_det,N_det),eigval_right_tmp(N_det)) allocate(reigvec_tc_bi_orth_tmp(N_det,N_det),leigvec_tc_bi_orth_tmp(N_det,N_det),eigval_right_tmp(N_det),expect_e(N_det))
call non_hrmt_real_diag(N_det,htilde_matrix_elmt_bi_ortho,& allocate (H_prime(N_det,N_det),s2_values_tmp(N_det))
H_prime(1:N_det,1:N_det) = htilde_matrix_elmt_bi_ortho(1:N_det,1:N_det)
if(s2_eig)then
H_prime(1:N_det,1:N_det) += alpha * S2_matrix_all_dets(1:N_det,1:N_det)
do j=1,N_det
H_prime(j,j) = H_prime(j,j) - alpha*expected_s2
enddo
endif
call non_hrmt_real_diag(N_det,H_prime,&
leigvec_tc_bi_orth_tmp,reigvec_tc_bi_orth_tmp,& leigvec_tc_bi_orth_tmp,reigvec_tc_bi_orth_tmp,&
n_real_tc_bi_orth_eigval_right,eigval_right_tmp) n_real_tc_bi_orth_eigval_right,eigval_right_tmp)
double precision, allocatable :: coef_hf_r(:),coef_hf_l(:) ! do i = 1, N_det
integer, allocatable :: iorder(:) ! call get_H_tc_s2_l0_r0(leigvec_tc_bi_orth_tmp(1,i),reigvec_tc_bi_orth_tmp(1,i),1,N_det,expect_e(i), s2_values_tmp(i))
! enddo
call get_H_tc_s2_l0_r0(leigvec_tc_bi_orth_tmp,reigvec_tc_bi_orth_tmp,N_det,N_det,expect_e, s2_values_tmp)
allocate(index_good_state_array(N_det),good_state_array(N_det))
i_state = 0
good_state_array = .False.
if(s2_eig)then
if (only_expected_s2) then
do j=1,N_det
! Select at least n_states states with S^2 values closed to "expected_s2"
! print*,'s2_values_tmp(j) = ',s2_values_tmp(j),eigval_right_tmp(j),expect_e(j)
if(dabs(s2_values_tmp(j)-expected_s2).le.0.5d0)then
i_state +=1
index_good_state_array(i_state) = j
good_state_array(j) = .True.
endif
if(i_state.eq.N_states) then
exit
endif
enddo
else
do j=1,N_det
index_good_state_array(j) = j
good_state_array(j) = .True.
enddo
endif
if(i_state .ne.0)then
! Fill the first "i_state" states that have a correct S^2 value
do j = 1, i_state
do i=1,N_det
reigvec_tc_bi_orth(i,j) = reigvec_tc_bi_orth_tmp(i,index_good_state_array(j))
leigvec_tc_bi_orth(i,j) = leigvec_tc_bi_orth_tmp(i,index_good_state_array(j))
enddo
eigval_right_tc_bi_orth(j) = expect_e(index_good_state_array(j))
eigval_left_tc_bi_orth(j) = expect_e(index_good_state_array(j))
s2_eigvec_tc_bi_orth(j) = s2_values_tmp(index_good_state_array(j))
enddo
i_other_state = 0
do j = 1, N_det
if(good_state_array(j))cycle
i_other_state +=1
if(i_state+i_other_state.gt.n_states)then
exit
endif
do i=1,N_det
reigvec_tc_bi_orth(i,i_state+i_other_state) = reigvec_tc_bi_orth_tmp(i,j)
leigvec_tc_bi_orth(i,i_state+i_other_state) = leigvec_tc_bi_orth_tmp(i,j)
enddo
eigval_right_tc_bi_orth(i_state+i_other_state) = eigval_right_tmp(j)
eigval_left_tc_bi_orth (i_state+i_other_state) = eigval_right_tmp(j)
s2_eigvec_tc_bi_orth(i_state+i_other_state) = s2_values_tmp(i_state+i_other_state)
enddo
else ! istate == 0
print*,''
print*,'!!!!!!!! WARNING !!!!!!!!!'
print*,' Within the ',N_det,'determinants selected'
print*,' and the ',N_states_diag,'states requested'
print*,' We did not find only states with S^2 values close to ',expected_s2
print*,' We will then set the first N_states eigenvectors of the H matrix'
print*,' as the CI_eigenvectors'
print*,' You should consider more states and maybe ask for s2_eig to be .True. or just enlarge the CI space'
print*,''
do j=1,min(N_states_diag,N_det)
do i=1,N_det
leigvec_tc_bi_orth(i,j) = leigvec_tc_bi_orth_tmp(i,j)
reigvec_tc_bi_orth(i,j) = reigvec_tc_bi_orth_tmp(i,j)
enddo
eigval_right_tc_bi_orth(j) = eigval_right_tmp(j)
eigval_left_tc_bi_orth (j) = eigval_right_tmp(j)
s2_eigvec_tc_bi_orth(j) = s2_values_tmp(j)
enddo
endif ! istate .ne. 0
else ! s2_eig
allocate(coef_hf_r(N_det),coef_hf_l(N_det),iorder(N_det)) allocate(coef_hf_r(N_det),coef_hf_l(N_det),iorder(N_det))
do i = 1,N_det do i = 1,N_det
iorder(i) = i iorder(i) = i
@ -105,12 +194,15 @@ end
enddo enddo
enddo enddo
endif endif
endif
else else
double precision, allocatable :: H_jj(:),vec_tmp(:,:) double precision, allocatable :: H_jj(:),vec_tmp(:,:)
external htc_bi_ortho_calc_tdav external htc_bi_ortho_calc_tdav
external htcdag_bi_ortho_calc_tdav external htcdag_bi_ortho_calc_tdav
external H_tc_u_0_opt external H_tc_u_0_opt
external H_tc_dagger_u_0_opt external H_tc_dagger_u_0_opt
external H_tc_s2_dagger_u_0_opt
external H_tc_s2_u_0_opt
allocate(H_jj(N_det),vec_tmp(N_det,n_states_diag)) allocate(H_jj(N_det),vec_tmp(N_det,n_states_diag))
do i = 1, N_det do i = 1, N_det
call htilde_mu_mat_bi_ortho_tot(psi_det(1,1,i), psi_det(1,1,i), N_int, H_jj(i)) call htilde_mu_mat_bi_ortho_tot(psi_det(1,1,i), psi_det(1,1,i), N_int, H_jj(i))
@ -125,7 +217,8 @@ end
vec_tmp(istate,istate) = 1.d0 vec_tmp(istate,istate) = 1.d0
enddo enddo
! call davidson_general_ext_rout_nonsym_b1space(vec_tmp, H_jj, eigval_left_tc_bi_orth, N_det, n_states, n_states_diag, converged, htcdag_bi_ortho_calc_tdav) ! call davidson_general_ext_rout_nonsym_b1space(vec_tmp, H_jj, eigval_left_tc_bi_orth, N_det, n_states, n_states_diag, converged, htcdag_bi_ortho_calc_tdav)
call davidson_general_ext_rout_nonsym_b1space(vec_tmp, H_jj, eigval_left_tc_bi_orth, N_det, n_states, n_states_diag, converged, H_tc_dagger_u_0_opt) ! call davidson_general_ext_rout_nonsym_b1space(vec_tmp, H_jj, eigval_left_tc_bi_orth, N_det, n_states, n_states_diag, converged, H_tc_dagger_u_0_opt)
call davidson_hs2_nonsym_b1space(vec_tmp, H_jj, s2_eigvec_tc_bi_orth, eigval_left_tc_bi_orth, N_det, n_states, n_states_diag, converged, H_tc_s2_dagger_u_0_opt)
do istate = 1, N_states do istate = 1, N_states
leigvec_tc_bi_orth(1:N_det,istate) = vec_tmp(1:N_det,istate) leigvec_tc_bi_orth(1:N_det,istate) = vec_tmp(1:N_det,istate)
enddo enddo
@ -140,7 +233,8 @@ end
vec_tmp(istate,istate) = 1.d0 vec_tmp(istate,istate) = 1.d0
enddo enddo
! call davidson_general_ext_rout_nonsym_b1space(vec_tmp, H_jj, eigval_right_tc_bi_orth, N_det, n_states, n_states_diag, converged, htc_bi_ortho_calc_tdav) ! call davidson_general_ext_rout_nonsym_b1space(vec_tmp, H_jj, eigval_right_tc_bi_orth, N_det, n_states, n_states_diag, converged, htc_bi_ortho_calc_tdav)
call davidson_general_ext_rout_nonsym_b1space(vec_tmp, H_jj, eigval_right_tc_bi_orth, N_det, n_states, n_states_diag, converged, H_tc_u_0_opt) ! call davidson_general_ext_rout_nonsym_b1space(vec_tmp, H_jj, eigval_right_tc_bi_orth, N_det, n_states, n_states_diag, converged, H_tc_u_0_opt)
call davidson_hs2_nonsym_b1space(vec_tmp, H_jj, s2_eigvec_tc_bi_orth, eigval_right_tc_bi_orth, N_det, n_states, n_states_diag, converged, H_tc_s2_dagger_u_0_opt)
do istate = 1, N_states do istate = 1, N_states
reigvec_tc_bi_orth(1:N_det,istate) = vec_tmp(1:N_det,istate) reigvec_tc_bi_orth(1:N_det,istate) = vec_tmp(1:N_det,istate)
enddo enddo
@ -154,6 +248,7 @@ end
norm_ground_left_right_bi_orth += leigvec_tc_bi_orth(j,1) * reigvec_tc_bi_orth(j,1) norm_ground_left_right_bi_orth += leigvec_tc_bi_orth(j,1) * reigvec_tc_bi_orth(j,1)
enddo enddo
print*,'norm l/r = ',norm_ground_left_right_bi_orth print*,'norm l/r = ',norm_ground_left_right_bi_orth
print*,'<S2> = ',s2_eigvec_tc_bi_orth(1)
END_PROVIDER END_PROVIDER

View File

@ -84,12 +84,12 @@ end
subroutine routine_test_s2_davidson subroutine routine_test_s2_davidson
implicit none implicit none
double precision, allocatable :: H_jj(:),vec_tmp(:,:), energies(:) double precision, allocatable :: H_jj(:),vec_tmp(:,:), energies(:) , s2(:)
integer :: i,istate integer :: i,istate
logical :: converged logical :: converged
external H_tc_s2_dagger_u_0_opt external H_tc_s2_dagger_u_0_opt
external H_tc_s2_u_0_opt external H_tc_s2_u_0_opt
allocate(H_jj(N_det),vec_tmp(N_det,n_states_diag),energies(n_states_diag)) allocate(H_jj(N_det),vec_tmp(N_det,n_states_diag),energies(n_states_diag), s2(n_states_diag))
do i = 1, N_det do i = 1, N_det
call htilde_mu_mat_bi_ortho_tot(psi_det(1,1,i), psi_det(1,1,i), N_int, H_jj(i)) call htilde_mu_mat_bi_ortho_tot(psi_det(1,1,i), psi_det(1,1,i), N_int, H_jj(i))
enddo enddo
@ -105,8 +105,7 @@ subroutine routine_test_s2_davidson
do istate = 1, N_states do istate = 1, N_states
leigvec_tc_bi_orth(1:N_det,istate) = vec_tmp(1:N_det,istate) leigvec_tc_bi_orth(1:N_det,istate) = vec_tmp(1:N_det,istate)
enddo enddo
call davidson_hs2_nonsym_b1space(vec_tmp, H_jj, energies, N_det, n_states, n_states_diag, converged, H_tc_s2_dagger_u_0_opt) call davidson_hs2_nonsym_b1space(vec_tmp, H_jj, s2, energies, N_det, n_states, n_states_diag, converged, H_tc_s2_dagger_u_0_opt)
print*,'energies = ',energies
double precision, allocatable :: v_0_new(:,:),s_0_new(:,:) double precision, allocatable :: v_0_new(:,:),s_0_new(:,:)
integer :: sze,N_st integer :: sze,N_st
logical :: do_right logical :: do_right
@ -122,6 +121,8 @@ subroutine routine_test_s2_davidson
accu_e_0 += v_0_new(i,1) * vec_tmp(i,1) accu_e_0 += v_0_new(i,1) * vec_tmp(i,1)
accu_s_0 += s_0_new(i,1) * vec_tmp(i,1) accu_s_0 += s_0_new(i,1) * vec_tmp(i,1)
enddo enddo
print*,'energies = ',energies
print*,'s2 = ',s2
print*,'accu_e_0',accu_e_0 print*,'accu_e_0',accu_e_0
print*,'accu_s_0',accu_s_0 print*,'accu_s_0',accu_s_0
@ -137,8 +138,7 @@ subroutine routine_test_s2_davidson
do istate = 1, N_states do istate = 1, N_states
leigvec_tc_bi_orth(1:N_det,istate) = vec_tmp(1:N_det,istate) leigvec_tc_bi_orth(1:N_det,istate) = vec_tmp(1:N_det,istate)
enddo enddo
call davidson_hs2_nonsym_b1space(vec_tmp, H_jj, energies, N_det, n_states, n_states_diag, converged, H_tc_s2_u_0_opt) call davidson_hs2_nonsym_b1space(vec_tmp, H_jj, s2, energies, N_det, n_states, n_states_diag, converged, H_tc_s2_u_0_opt)
print*,'energies = ',energies
sze = N_det sze = N_det
N_st = 1 N_st = 1
do_right = .True. do_right = .True.
@ -151,6 +151,8 @@ subroutine routine_test_s2_davidson
accu_e_0 += v_0_new(i,1) * vec_tmp(i,1) accu_e_0 += v_0_new(i,1) * vec_tmp(i,1)
accu_s_0 += s_0_new(i,1) * vec_tmp(i,1) accu_s_0 += s_0_new(i,1) * vec_tmp(i,1)
enddo enddo
print*,'energies = ',energies
print*,'s2 = ',s2
print*,'accu_e_0',accu_e_0 print*,'accu_e_0',accu_e_0
print*,'accu_s_0',accu_s_0 print*,'accu_s_0',accu_s_0