9
1
mirror of https://github.com/QuantumPackage/qp2.git synced 2025-01-05 09:58:42 +01:00

Use Yann's restore_symmetry

This commit is contained in:
Anthony Scemama 2023-01-17 13:07:50 +01:00
parent c41bef4a8e
commit 2f937cbca4
2 changed files with 52 additions and 144 deletions

View File

@ -3,8 +3,27 @@ subroutine get_excitation_degree(key1,key2,degree,Nint)
include 'utils/constants.include.F' include 'utils/constants.include.F'
implicit none implicit none
BEGIN_DOC BEGIN_DOC
! Returns the excitation degree between two determinants. ! This function calculates the excitation degree between two
! determinants, which is half the number of bits that are different between the two
! determinants. The function takes four arguments:
!
! * key1: An integer array of length Nint*2, representing the first determinant.
!
! * key2: An integer array of length Nint*2, representing the second determinant.
!
! * degree: An integer, passed by reference, that will store the calculated excitation degree.
!
! * Nint: An integer representing the number of integers in each of the key1 and key2 arrays.
!
! It starts a select case block that depends on the value of Nint.
! In each case, the function first calculates the bitwise XOR of each
! corresponding pair of elements in key1 and key2, storing the results in the
! xorvec array. It then calculates the number of bits set (using the popcnt
! function) for each element in xorvec, and sums these counts up. This sum is
! stored in the degree variable.
! Finally, the degree variable is right-shifted by 1 bit to divide the result by 2.
END_DOC END_DOC
integer, intent(in) :: Nint integer, intent(in) :: Nint
integer(bit_kind), intent(in) :: key1(Nint*2) integer(bit_kind), intent(in) :: key1(Nint*2)
integer(bit_kind), intent(in) :: key2(Nint*2) integer(bit_kind), intent(in) :: key2(Nint*2)

View File

@ -1675,111 +1675,6 @@ subroutine nullify_small_elements(m,n,A,LDA,thresh)
end end
subroutine restore_symmetry(m,n,A,LDA,thresh) subroutine restore_symmetry(m,n,A,LDA,thresh)
implicit none
BEGIN_DOC
! Tries to find the matrix elements that are the same, and sets them
! to the average value.
! If restore_symm is False, only nullify small elements
END_DOC
integer, intent(in) :: m,n,LDA
double precision, intent(inout) :: A(LDA,n)
double precision, intent(in) :: thresh
integer :: i,j,k,l
logical, allocatable :: done(:,:)
double precision :: f, g, count, thresh2
thresh2 = dsqrt(thresh)
call nullify_small_elements(m,n,A,LDA,thresh)
! Debug
!double precision, allocatable :: B(:,:)
!double precision :: max_diff, ti,tf
!allocate(B(m,n))
!B = A
!call wall_time(ti)
!call restore_symmetry_fast(m,n,B,LDA,thresh)
!call wall_time(tf)
!print*,''
!print*,'Restore_symmetry'
!print*,'Fast version:',tf-ti,'s'
!call wall_time(ti)
! if (.not.restore_symm) then
! return
! endif
! TODO: Costs O(n^4), but can be improved to (2 n^2 * log(n)):
! - copy all values in a 1D array
! - sort 1D array
! - average nearby elements
! - for all elements, find matching value in the sorted 1D array
allocate(done(m,n))
do j=1,n
do i=1,m
done(i,j) = A(i,j) == 0.d0
enddo
enddo
do j=1,n
do i=1,m
if ( done(i,j) ) cycle
done(i,j) = .True.
count = 1.d0
f = 1.d0/A(i,j)
do l=1,n
do k=1,m
if ( done(k,l) ) cycle
g = f * A(k,l)
if ( dabs(dabs(g) - 1.d0) < thresh2 ) then
count = count + 1.d0
if (g>0.d0) then
A(i,j) = A(i,j) + A(k,l)
else
A(i,j) = A(i,j) - A(k,l)
end if
endif
enddo
enddo
if (count > 1.d0) then
A(i,j) = A(i,j) / count
do l=1,n
do k=1,m
if ( done(k,l) ) cycle
g = f * A(k,l)
if ( dabs(dabs(g) - 1.d0) < thresh2 ) then
done(k,l) = .True.
if (g>0.d0) then
A(k,l) = A(i,j)
else
A(k,l) = -A(i,j)
end if
endif
enddo
enddo
endif
enddo
enddo
! Debug
!call wall_time(tf)
!print*,'Old version:',tf-ti,'s'
!max_diff = 0d0
!do j = 1, n
! do i = 1, n
! if (dabs(A(i,j)-B(i,j)) > max_diff) then
! max_diff = dabs(A(i,j)-B(i,j))
! endif
! enddo
!enddo
!print*,'Max diff:', max_diff
!deallocate(B)
end
subroutine restore_symmetry_fast(m,n,A,LDA,thresh)
implicit none implicit none
@ -1794,58 +1689,53 @@ subroutine restore_symmetry_fast(m,n,A,LDA,thresh)
double precision, intent(in) :: thresh double precision, intent(in) :: thresh
double precision, allocatable :: copy(:), copy_sign(:) double precision, allocatable :: copy(:), copy_sign(:)
integer, allocatable :: key(:) integer, allocatable :: key(:), ii(:), jj(:)
integer :: sze, pi, pf, idx, i,j,k integer :: sze, pi, pf, idx, i,j,k
double precision :: average, val, thresh2 double precision :: average, val, thresh2
thresh2 = dsqrt(thresh) thresh2 = dsqrt(thresh)
call nullify_small_elements(m,n,A,LDA,thresh)
sze = m * n sze = m * n
allocate(copy(sze),copy_sign(sze),key(sze)) allocate(copy(sze),copy_sign(sze),key(sze),ii(sze),jj(sze))
! Copy to 1D ! Copy to 1D
!$OMP PARALLEL & !$OMP PARALLEL if (m>100) &
!$OMP SHARED(A,m,n,sze,copy_sign,copy,key) & !$OMP SHARED(A,m,n,sze,copy_sign,copy,key,ii,jj) &
!$OMP PRIVATE(i,j,k) & !$OMP PRIVATE(i,j,k) &
!$OMP DEFAULT(NONE) !$OMP DEFAULT(NONE)
!$OMP DO !$OMP DO COLLAPSE(2)
do j = 1, n do j = 1, n
do i = 1, m do i = 1, m
copy(i+(j-1)*m) = A(i,j) k = i+(j-1)*m
copy(k) = A(i,j)
copy_sign(k) = sign(1.d0,copy(k))
copy(k) = -dabs(copy(k))
key(k) = k
ii(k) = i
jj(k) = j
enddo enddo
enddo enddo
!$OMP END DO !$OMP END DO
! Copy sign
!$OMP DO
do i = 1,sze
copy_sign(i) = sign(1d0,copy(i))
copy(i) = dabs(copy(i))
enddo
!$OMP END DO NOWAIT
! Keys
!$OMP DO
do i = 1, sze
key(i) = i
enddo
!$OMP END DO
!$OMP END PARALLEL !$OMP END PARALLEL
! Sort ! Sort
call dsort(copy,key,sze) call dsort(copy,key,sze)
call iset_order(ii,key,sze)
call iset_order(jj,key,sze)
call dset_order(copy_sign,key,sze)
!TODO !TODO
! Parallelization with OMP ! Parallelization with OMP
! Jump all the elements below thresh ! ! Skip all the elements below thresh
i = 1 ! i = 1
do while (copy(i) <= thresh) ! do while (copy(i) <= thresh)
i = i + 1 ! i = i + 1
enddo ! enddo
! Symmetrize ! Symmetrize
do while(i < sze) do while( (i < sze).and.(-copy(i) > thresh) )
pi = i pi = i
pf = i pf = i
val = 1d0/copy(i) val = 1d0/copy(i)
@ -1862,7 +1752,7 @@ subroutine restore_symmetry_fast(m,n,A,LDA,thresh)
do j = pi, pf do j = pi, pf
average = average + copy(j) average = average + copy(j)
enddo enddo
average = average / (pf-pi+1) average = average / (pf-pi+1.d0)
do j = pi, pf do j = pi, pf
copy(j) = average copy(j) = average
enddo enddo
@ -1872,24 +1762,23 @@ subroutine restore_symmetry_fast(m,n,A,LDA,thresh)
! Update i ! Update i
i = i + 1 i = i + 1
enddo enddo
copy(i:) = 0.d0
!$OMP PARALLEL & !$OMP PARALLEL if (sze>10000) &
!$OMP SHARED(m,sze,copy_sign,copy,key,A) & !$OMP SHARED(m,sze,copy_sign,copy,key,A,ii,jj) &
!$OMP PRIVATE(i,j,k,idx) & !$OMP PRIVATE(i,j,k,idx) &
!$OMP DEFAULT(NONE) !$OMP DEFAULT(NONE)
! copy -> A ! copy -> A
!$OMP DO !$OMP DO
do k = 1, sze do k = 1, sze
idx = key(k) i = ii(k)
i = mod(idx-1,m) + 1 j = jj(k)
j = (idx-1) / m + 1 A(i,j) = sign(copy(k),copy_sign(k))
! New value with the right sign
A(i,j) = sign(copy(k),copy_sign(idx))
enddo enddo
!$OMP END DO !$OMP END DO
!$OMP END PARALLEL !$OMP END PARALLEL
deallocate(copy,copy_sign,key) deallocate(copy,copy_sign,key,ii,jj)
end end