9
1
mirror of https://github.com/QuantumPackage/qp2.git synced 2024-11-07 05:53:37 +01:00

renamed and documented properly all providers for two rdms

This commit is contained in:
Emmanuel Giner 2020-03-22 18:09:04 +01:00
parent 7f88580052
commit 2e90197987
5 changed files with 171 additions and 108 deletions

View File

@ -4,7 +4,11 @@
BEGIN_DOC
! act_2_rdm_ab_mo(i,j,k,l,istate) = STATE SPECIFIC physicist notation for 2RDM of alpha/beta electrons
!
! <Psi| a^{\dagger}_{i \alpha} a^{\dagger}_{j \beta} a_{l \beta} a_{k \alpha} |Psi>
! <Psi_{istate}| a^{\dagger}_{i \alpha} a^{\dagger}_{j \beta} a_{l \beta} a_{k \alpha} |Psi_{istate}>
!
! WHERE ALL ORBITALS (i,j,k,l) BELONGS TO AN ACTIVE SPACE DEFINED BY "list_act"
!
! THE NORMALIZATION (i.e. sum of diagonal elements) IS SET TO N_{\alpha}^{act} * N_{\beta}^{act}
!
! !!!!! WARNING !!!!! ALL SLATER DETERMINANTS IN PSI_DET MUST BELONG TO AN ACTIVE SPACE DEFINED BY "list_act"
!
@ -12,17 +16,14 @@
!
! act_2_rdm_ab_mo(i,j,k,l,istate) = i:alpha, j:beta, j:alpha, l:beta
!
! Therefore you don't necessayr have symmetry between electron 1 and 2
! Therefore you don't necessary have symmetry between electron 1 and 2
END_DOC
integer :: ispin
double precision :: wall_1, wall_2
! condition for alpha/beta spin
print*,''
print*,''
print*,''
print*,'Providing act_2_rdm_ab_mo '
ispin = 3
print*,'ispin = ',ispin
act_2_rdm_ab_mo = 0.d0
call wall_time(wall_1)
call orb_range_2_rdm_openmp(act_2_rdm_ab_mo,n_act_orb,n_act_orb,list_act,ispin,psi_coef,size(psi_coef,2),size(psi_coef,1))
@ -35,27 +36,22 @@
BEGIN_PROVIDER [double precision, act_2_rdm_aa_mo, (n_act_orb,n_act_orb,n_act_orb,n_act_orb,N_states)]
implicit none
BEGIN_DOC
! act_2_rdm_aa_mo(i,j,k,l,istate) = STATE SPECIFIC physicist notation for 2RDM of alpha/beta electrons
! act_2_rdm_aa_mo(i,j,k,l,istate) = STATE SPECIFIC physicist notation for 2RDM of ALPHA/ALPHA electrons
!
! <Psi| a^{\dagger}_{i \alpha} a^{\dagger}_{j \beta} a_{l \beta} a_{k \alpha} |Psi>
! <Psi_{istate}| a^{\dagger}_{i \alpha} a^{\dagger}_{j \alpha} a_{l \alpha} a_{k \alpha} |Psi_{istate}>
!
! WHERE ALL ORBITALS (i,j,k,l) BELONGS TO AN ACTIVE SPACE DEFINED BY "list_act"
!
! THE NORMALIZATION (i.e. sum of diagonal elements) IS SET TO N_{\alpha}^{act} * (N_{\alpha}^{act} - 1)/2
!
! !!!!! WARNING !!!!! ALL SLATER DETERMINANTS IN PSI_DET MUST BELONG TO AN ACTIVE SPACE DEFINED BY "list_act"
!
! !!!!! WARNING !!!!! For efficiency reasons, electron 1 is alpha, electron 2 is beta
!
! act_2_rdm_aa_mo(i,j,k,l,istate) = i:alpha, j:beta, j:alpha, l:beta
!
! Therefore you don't necessayr have symmetry between electron 1 and 2
END_DOC
integer :: ispin
double precision :: wall_1, wall_2
! condition for alpha/beta spin
print*,''
print*,''
print*,''
print*,'Providing act_2_rdm_aa_mo '
ispin = 1
print*,'ispin = ',ispin
act_2_rdm_aa_mo = 0.d0
call wall_time(wall_1)
call orb_range_2_rdm_openmp(act_2_rdm_aa_mo,n_act_orb,n_act_orb,list_act,ispin,psi_coef,size(psi_coef,2),size(psi_coef,1))
@ -68,27 +64,22 @@
BEGIN_PROVIDER [double precision, act_2_rdm_bb_mo, (n_act_orb,n_act_orb,n_act_orb,n_act_orb,N_states)]
implicit none
BEGIN_DOC
! act_2_rdm_bb_mo(i,j,k,l,istate) = STATE SPECIFIC physicist notation for 2RDM of beta/beta electrons
! act_2_rdm_bb_mo(i,j,k,l,istate) = STATE SPECIFIC physicist notation for 2RDM of BETA/BETA electrons
!
! <Psi| a^{\dagger}_{i \beta} a^{\dagger}_{j \beta} a_{l \beta} a_{k \beta} |Psi>
! <Psi_{istate}| a^{\dagger}_{i \beta} a^{\dagger}_{j \beta} a_{l \beta} a_{k \beta} |Psi_{istate}>
!
! WHERE ALL ORBITALS (i,j,k,l) BELONGS TO AN ACTIVE SPACE DEFINED BY "list_act"
!
! THE NORMALIZATION (i.e. sum of diagonal elements) IS SET TO N_{\beta}^{act} * (N_{\beta}^{act} - 1)/2
!
! !!!!! WARNING !!!!! ALL SLATER DETERMINANTS IN PSI_DET MUST BELONG TO AN ACTIVE SPACE DEFINED BY "list_act"
!
! !!!!! WARNING !!!!! For efficiency reasons, electron 1 is beta, electron 2 is beta
!
! act_2_rdm_bb_mo(i,j,k,l,istate) = i:beta, j:beta, j:beta, l:beta
!
! Therefore you don't necessayr have symmetry between electron 1 and 2
END_DOC
integer :: ispin
double precision :: wall_1, wall_2
! condition for beta/beta spin
print*,''
print*,''
print*,''
print*,'Providing act_2_rdm_bb_mo '
ispin = 2
print*,'ispin = ',ispin
act_2_rdm_bb_mo = 0.d0
call wall_time(wall_1)
call orb_range_2_rdm_openmp(act_2_rdm_bb_mo,n_act_orb,n_act_orb,list_act,ispin,psi_coef,size(psi_coef,2),size(psi_coef,1))
@ -100,27 +91,22 @@
BEGIN_PROVIDER [double precision, act_2_rdm_spin_trace_mo, (n_act_orb,n_act_orb,n_act_orb,n_act_orb,N_states)]
implicit none
BEGIN_DOC
! act_2_rdm_spin_trace_mo(i,j,k,l,istate) = STATE SPECIFIC physicist notation for 2RDM of beta/beta electrons
! act_2_rdm_spin_trace_mo(i,j,k,l,istate) = STATE SPECIFIC physicist notation for 2RDM
!
! <Psi| a^{\dagger}_{i \beta} a^{\dagger}_{j \beta} a_{l \beta} a_{k \beta} |Psi>
! \sum_{\sigma,\sigma'}<Psi_{istate}| a^{\dagger}_{i \sigma} a^{\dagger}_{j \sigma'} a_{l \sigma'} a_{k \sigma} |Psi_{istate}>
!
! WHERE ALL ORBITALS (i,j,k,l) BELONGS TO AN ACTIVE SPACE DEFINED BY "list_act"
!
! THE NORMALIZATION (i.e. sum of diagonal elements) IS SET TO N_{elec}^{act} * (N_{elec}^{act} - 1)/2
!
! !!!!! WARNING !!!!! ALL SLATER DETERMINANTS IN PSI_DET MUST BELONG TO AN ACTIVE SPACE DEFINED BY "list_act"
!
! !!!!! WARNING !!!!! For efficiency reasons, electron 1 is beta, electron 2 is beta
!
! act_2_rdm_spin_trace_mo(i,j,k,l,istate) = i:beta, j:beta, j:beta, l:beta
!
! Therefore you don't necessayr have symmetry between electron 1 and 2
END_DOC
integer :: ispin
double precision :: wall_1, wall_2
! condition for beta/beta spin
print*,''
print*,''
print*,''
print*,'Providing act_2_rdm_spin_trace_mo '
ispin = 4
print*,'ispin = ',ispin
act_2_rdm_spin_trace_mo = 0.d0
call wall_time(wall_1)
call orb_range_2_rdm_openmp(act_2_rdm_spin_trace_mo,n_act_orb,n_act_orb,list_act,ispin,psi_coef,size(psi_coef,2),size(psi_coef,1))

View File

@ -152,6 +152,13 @@ subroutine routine_full_mos
double precision :: wee_ab_st_av, rdm_ab_st_av
double precision :: wee_tot_st_av, rdm_tot_st_av
double precision :: wee_aa_st_av_2,wee_ab_st_av_2,wee_bb_st_av_2,wee_tot_st_av_2,wee_tot_st_av_3
double precision :: aa_norm(N_states),bb_norm(N_states),ab_norm(N_states),tot_norm(N_states)
aa_norm = 0.d0
bb_norm = 0.d0
ab_norm = 0.d0
tot_norm = 0.d0
wee_aa = 0.d0
wee_ab = 0.d0
wee_bb = 0.d0
@ -194,6 +201,10 @@ subroutine routine_full_mos
wee_tot(istate)+= vijkl * rdmtot
enddo
enddo
aa_norm(istate) += full_occ_2_rdm_aa_mo(j,i,j,i,istate)
bb_norm(istate) += full_occ_2_rdm_bb_mo(j,i,j,i,istate)
ab_norm(istate) += full_occ_2_rdm_ab_mo(j,i,j,i,istate)
tot_norm(istate)+= full_occ_2_rdm_spin_trace_mo(j,i,j,i,istate)
enddo
enddo
wee_aa_st_av_2 += wee_aa(istate) * state_average_weight(istate)
@ -211,6 +222,20 @@ subroutine routine_full_mos
print*,'sum (istate) = ',wee_aa(istate) + wee_bb(istate) + wee_ab(istate)
print*,'wee_tot(istate) = ',wee_tot(istate)
print*,'psi_energy_two_e(istate)= ',psi_energy_two_e(istate)
print*,''
print*,'Normalization of two-rdms '
print*,''
print*,'aa_norm(istate) = ',aa_norm(istate)
print*,'N_alpha(N_alpha-1)/2 = ',elec_num_tab(1) * (elec_num_tab(1) - 1)/2
print*,''
print*,'bb_norm(istate) = ',bb_norm(istate)
print*,'N_alpha(N_alpha-1)/2 = ',elec_num_tab(2) * (elec_num_tab(2) - 1)/2
print*,''
print*,'ab_norm(istate) = ',ab_norm(istate)
print*,'N_alpha * N_beta = ',elec_num_tab(1) * elec_num_tab(2)
print*,''
print*,'tot_norm(istate) = ',tot_norm(istate)
print*,'N(N-1)/2 = ',elec_num*(elec_num - 1)/2
enddo
wee_aa_st_av = 0.d0

View File

@ -8,17 +8,19 @@
!
! <Psi| a^{\dagger}_{i \alpha} a^{\dagger}_{j \beta} a_{l \beta} a_{k \alpha} |Psi>
!
! !!!!! WARNING !!!!! ALL SLATER DETERMINANTS IN PSI_DET MUST BELONG TO AN ACTIVE SPACE DEFINED BY "list_act"
! WHERE ALL ORBITALS (i,j,k,l) BELONGS TO ALL OCCUPIED ORBITALS : core, inactive and active
!
! BUT THE STRUCTURE OF THE TWO-RDM ON THE RANGE OF OCCUPIED MOS (CORE+INACT+ACT) BECAUSE IT CAN BE CONVENIENT FOR SOME APPLICATIONS
! THE NORMALIZATION (i.e. sum of diagonal elements) IS SET TO N_{\alpha} * N_{\beta}
!
! !!!!! WARNING !!!!! ALL SLATER DETERMINANTS IN PSI_DET MUST BELONG TO AN ACTIVE SPACE DEFINED BY "list_act"
!
! !!!!! WARNING !!!!! For efficiency reasons, electron 1 is ALPHA, electron 2 is BETA
!
! act_2_rdm_ab_mo(i,j,k,l,istate) = i:alpha, j:beta, j:alpha, l:beta
! full_occ_2_rdm_ab_mo(i,j,k,l,istate) = i:alpha, j:beta, j:alpha, l:beta
!
! Therefore you don't necessary have symmetry between electron 1 and 2
!
! !!!!! WARNING !!!!! IF "no_core_density" then all elements involving at least one CORE MO is set to zero
! !!!!! WARNING !!!!! IF "no_core_density" then all elements involving at least one CORE MO ARE SET TO ZERO
END_DOC
full_occ_2_rdm_ab_mo = 0.d0
do istate = 1, N_states
@ -135,9 +137,11 @@
!
! <Psi| a^{\dagger}_{i \alpha} a^{\dagger}_{j \alpha} a_{l \alpha} a_{k \alpha} |Psi>
!
! !!!!! WARNING !!!!! ALL SLATER DETERMINANTS IN PSI_DET MUST BELONG TO AN ACTIVE SPACE DEFINED BY "list_act"
! WHERE ALL ORBITALS (i,j,k,l) BELONGS TO ALL OCCUPIED ORBITALS : core, inactive and active
!
! BUT THE STRUCTURE OF THE TWO-RDM ON THE FULL RANGE OF MOs IS IMPLEMENTED BECAUSE IT CAN BE CONVENIENT FOR SOME APPLICATIONS
! THE NORMALIZATION (i.e. sum of diagonal elements) IS SET TO N_{\alpha} * (N_{\alpha} - 1)/2
!
! !!!!! WARNING !!!!! ALL SLATER DETERMINANTS IN PSI_DET MUST BELONG TO AN ACTIVE SPACE DEFINED BY "list_act"
!
! !!!!! WARNING !!!!! IF "no_core_density" then all elements involving at least one CORE MO is set to zero
END_DOC
@ -231,9 +235,11 @@
!
! <Psi| a^{\dagger}_{i \beta} a^{\dagger}_{j \beta} a_{l \beta} a_{k \beta} |Psi>
!
! !!!!! WARNING !!!!! ALL SLATER DETERMINANTS IN PSI_DET MUST BELONG TO AN ACTIVE SPACE DEFINED BY "list_act"
! WHERE ALL ORBITALS (i,j,k,l) BELONGS TO ALL OCCUPIED ORBITALS : core, inactive and active
!
! BUT THE STRUCTURE OF THE TWO-RDM ON THE FULL RANGE OF MOs IS IMPLEMENTED BECAUSE IT CAN BE CONVENIENT FOR SOME APPLICATIONS
! THE NORMALIZATION (i.e. sum of diagonal elements) IS SET TO N_{\beta} * (N_{\beta} - 1)/2
!
! !!!!! WARNING !!!!! ALL SLATER DETERMINANTS IN PSI_DET MUST BELONG TO AN ACTIVE SPACE DEFINED BY "list_act"
!
! !!!!! WARNING !!!!! IF "no_core_density" then all elements involving at least one CORE MO is set to zero
END_DOC
@ -327,11 +333,18 @@
!
! <Psi| a^{\dagger}_{i \beta} a^{\dagger}_{j \beta} a_{l \beta} a_{k \beta} |Psi>
!
! !!!!! WARNING !!!!! ALL SLATER DETERMINANTS IN PSI_DET MUST BELONG TO AN ACTIVE SPACE DEFINED BY "list_act"
! WHERE ALL ORBITALS (i,j,k,l) BELONGS TO ALL OCCUPIED ORBITALS : core, inactive and active
!
! BUT THE STRUCTURE OF THE TWO-RDM ON THE FULL RANGE OF MOs IS IMPLEMENTED BECAUSE IT CAN BE CONVENIENT FOR SOME APPLICATIONS
! THE NORMALIZATION (i.e. sum of diagonal elements) IS SET TO N_{elec} * (N_{elec} - 1)/2
!
! !!!!! WARNING !!!!! ALL SLATER DETERMINANTS IN PSI_DET MUST BELONG TO AN ACTIVE SPACE DEFINED BY "list_act"
!
! !!!!! WARNING !!!!! IF "no_core_density" then all elements involving at least one CORE MO is set to zero
! The two-electron energy of each state can be computed as:
!
! \sum_{i,j,k,l = 1, n_core_inact_act_orb} full_occ_2_rdm_spin_trace_mo(i,j,k,l,istate) * < ii jj | kk ll >
!
! with ii = list_core_inact_act(i), jj = list_core_inact_act(j), kk = list_core_inact_act(k), ll = list_core_inact_act(l)
END_DOC
do istate = 1, N_states

View File

@ -1,52 +1,22 @@
BEGIN_PROVIDER [double precision, state_av_act_2_rdm_aa_mo, (n_act_orb,n_act_orb,n_act_orb,n_act_orb)]
implicit none
double precision, allocatable :: state_weights(:)
BEGIN_DOC
! state_av_act_2_rdm_aa_mo(i,j,k,l) = state average physicist two-body rdm restricted to the ACTIVE indices for alpha-alpha electron pairs
! = <Psi| a^{\dagger}_i a^{\dagger}_j a_l a_k |Psi>
END_DOC
allocate(state_weights(N_states))
state_weights = state_average_weight
integer :: ispin
! condition for alpha/beta spin
ispin = 1
state_av_act_2_rdm_aa_mo = 0.D0
call wall_time(wall_1)
double precision :: wall_1, wall_2
call orb_range_2_rdm_state_av_openmp(state_av_act_2_rdm_aa_mo,n_act_orb,n_act_orb,list_act,state_weights,ispin,psi_coef,size(psi_coef,2),size(psi_coef,1))
call wall_time(wall_2)
print*,'Wall time to provide state_av_act_2_rdm_aa_mo',wall_2 - wall_1
END_PROVIDER
BEGIN_PROVIDER [double precision, state_av_act_2_rdm_bb_mo, (n_act_orb,n_act_orb,n_act_orb,n_act_orb)]
implicit none
double precision, allocatable :: state_weights(:)
BEGIN_DOC
! state_av_act_2_rdm_bb_mo(i,j,k,l) = state average physicist two-body rdm restricted to the ACTIVE indices for beta-beta electron pairs
! = <Psi| a^{\dagger}_i a^{\dagger}_j a_l a_k |Psi>
END_DOC
allocate(state_weights(N_states))
state_weights = state_average_weight
integer :: ispin
! condition for alpha/beta spin
ispin = 2
state_av_act_2_rdm_bb_mo = 0.d0
call wall_time(wall_1)
double precision :: wall_1, wall_2
call orb_range_2_rdm_state_av_openmp(state_av_act_2_rdm_bb_mo,n_act_orb,n_act_orb,list_act,state_weights,ispin,psi_coef,size(psi_coef,2),size(psi_coef,1))
call wall_time(wall_2)
print*,'Wall time to provide state_av_act_2_rdm_bb_mo',wall_2 - wall_1
END_PROVIDER
BEGIN_PROVIDER [double precision, state_av_act_2_rdm_ab_mo, (n_act_orb,n_act_orb,n_act_orb,n_act_orb)]
implicit none
double precision, allocatable :: state_weights(:)
BEGIN_DOC
! state_av_act_2_rdm_ab_mo(i,j,k,l) = state average physicist two-body rdm restricted to the ACTIVE indices for alpha-beta electron pairs
! = <Psi| a^{\dagger}_{i,alpha} a^{\dagger}_{j,beta} a_{l,beta} a_{k,alpha} |Psi>
!
! = \sum_{istate} w(istate) * <Psi_{istate}| a^{\dagger}_{i,alpha} a^{\dagger}_{j,beta} a_{l,beta} a_{k,alpha} |Psi_{istate}>
!
! WHERE ALL ORBITALS (i,j,k,l) BELONGS TO AN ACTIVE SPACE DEFINED BY "list_act"
!
! THE NORMALIZATION (i.e. sum of diagonal elements) IS SET TO N_{\alpha}^{act} * N_{\beta}^{act}
!
! !!!!! WARNING !!!!! ALL SLATER DETERMINANTS IN PSI_DET MUST BELONG TO AN ACTIVE SPACE DEFINED BY "list_act"
!
! !!!!! WARNING !!!!! For efficiency reasons, electron 1 is alpha, electron 2 is beta
!
! state_av_act_2_rdm_ab_mo(i,j,k,l) = i:alpha, j:beta, j:alpha, l:beta
!
! Therefore you don't necessary have symmetry between electron 1 and 2
END_DOC
allocate(state_weights(N_states))
state_weights = state_average_weight
@ -68,15 +38,75 @@
END_PROVIDER
BEGIN_PROVIDER [double precision, state_av_act_2_rdm_aa_mo, (n_act_orb,n_act_orb,n_act_orb,n_act_orb)]
implicit none
double precision, allocatable :: state_weights(:)
BEGIN_DOC
! state_av_act_2_rdm_aa_mo(i,j,k,l) = state average physicist two-body rdm restricted to the ACTIVE indices for alpha-alpha electron pairs
!
! = \sum_{istate} w(istate) * <Psi_{istate}| a^{\dagger}_{i,alpha} a^{\dagger}_{j,alpha} a_{l,alpha} a_{k,alpha} |Psi_{istate}>
!
! WHERE ALL ORBITALS (i,j,k,l) BELONGS TO AN ACTIVE SPACE DEFINED BY "list_act"
!
! THE NORMALIZATION (i.e. sum of diagonal elements) IS SET TO N_{\alpha}^{act} * (N_{\alpha}^{act} - 1)/2
!
! !!!!! WARNING !!!!! ALL SLATER DETERMINANTS IN PSI_DET MUST BELONG TO AN ACTIVE SPACE DEFINED BY "list_act"
END_DOC
allocate(state_weights(N_states))
state_weights = state_average_weight
integer :: ispin
! condition for alpha/beta spin
ispin = 1
state_av_act_2_rdm_aa_mo = 0.D0
call wall_time(wall_1)
double precision :: wall_1, wall_2
call orb_range_2_rdm_state_av_openmp(state_av_act_2_rdm_aa_mo,n_act_orb,n_act_orb,list_act,state_weights,ispin,psi_coef,size(psi_coef,2),size(psi_coef,1))
call wall_time(wall_2)
print*,'Wall time to provide state_av_act_2_rdm_aa_mo',wall_2 - wall_1
END_PROVIDER
BEGIN_PROVIDER [double precision, state_av_act_2_rdm_bb_mo, (n_act_orb,n_act_orb,n_act_orb,n_act_orb)]
implicit none
double precision, allocatable :: state_weights(:)
BEGIN_DOC
! state_av_act_2_rdm_bb_mo(i,j,k,l) = state average physicist two-body rdm restricted to the ACTIVE indices for beta-beta electron pairs
!
! = \sum_{istate} w(istate) * <Psi_{istate}| a^{\dagger}_{i,beta} a^{\dagger}_{j,beta} a_{l,beta} a_{k,beta} |Psi_{istate}>
!
! WHERE ALL ORBITALS (i,j,k,l) BELONGS TO AN ACTIVE SPACE DEFINED BY "list_act"
!
! THE NORMALIZATION (i.e. sum of diagonal elements) IS SET TO N_{\beta}^{act} * (N_{\beta}^{act} - 1)/2
!
! !!!!! WARNING !!!!! ALL SLATER DETERMINANTS IN PSI_DET MUST BELONG TO AN ACTIVE SPACE DEFINED BY "list_act"
END_DOC
allocate(state_weights(N_states))
state_weights = state_average_weight
integer :: ispin
! condition for alpha/beta spin
ispin = 2
state_av_act_2_rdm_bb_mo = 0.d0
call wall_time(wall_1)
double precision :: wall_1, wall_2
call orb_range_2_rdm_state_av_openmp(state_av_act_2_rdm_bb_mo,n_act_orb,n_act_orb,list_act,state_weights,ispin,psi_coef,size(psi_coef,2),size(psi_coef,1))
call wall_time(wall_2)
print*,'Wall time to provide state_av_act_2_rdm_bb_mo',wall_2 - wall_1
END_PROVIDER
BEGIN_PROVIDER [double precision, state_av_act_2_rdm_spin_trace_mo, (n_act_orb,n_act_orb,n_act_orb,n_act_orb)]
implicit none
BEGIN_DOC
! state_av_act_2_rdm_spin_trace_mo(i,j,k,l) = state average physicist spin trace two-body rdm restricted to the ACTIVE indices
! The active part of the two-electron energy can be computed as:
!
! \sum_{i,j,k,l = 1, n_act_orb} state_av_act_2_rdm_spin_trace_mo(i,j,k,l) * < ii jj | kk ll >
! = \sum_{istate} w(istate) * \sum_{sigma,sigma'} <Psi_{istate}| a^{\dagger}_{i,sigma} a^{\dagger'}_{j,sigma} a_{l,sigma'} a_{k,sigma} |Psi_{istate}>
!
! with ii = list_act(i), jj = list_act(j), kk = list_act(k), ll = list_act(l)
! WHERE ALL ORBITALS (i,j,k,l) BELONGS TO AN ACTIVE SPACE DEFINED BY "list_act"
!
! THE NORMALIZATION (i.e. sum of diagonal elements) IS SET TO N_{elec} * (N_{elec} - 1)/2
!
! !!!!! WARNING !!!!! ALL SLATER DETERMINANTS IN PSI_DET MUST BELONG TO AN ACTIVE SPACE DEFINED BY "list_act"
END_DOC
double precision, allocatable :: state_weights(:)
allocate(state_weights(N_states))

View File

@ -6,13 +6,15 @@
BEGIN_DOC
! state_av_full_occ_2_rdm_ab_mo(i,j,k,l) = STATE AVERAGE physicist notation for 2RDM of alpha/beta electrons
!
! <Psi| a^{\dagger}_{i \alpha} a^{\dagger}_{j \beta} a_{l \beta} a_{k \alpha} |Psi>
! = \sum_{istate} w(istate) * <Psi_{istate}| a^{\dagger}_{i,alpha} a^{\dagger}_{j,beta} a_{l,beta} a_{k,alpha} |Psi_{istate}>
!
! !!!!! WARNING !!!!! ALL SLATER DETERMINANTS IN PSI_DET MUST BELONG TO AN ACTIVE SPACE DEFINED BY "list_act"
! WHERE ALL ORBITALS (i,j,k,l) BELONGS TO ALL OCCUPIED ORBITALS : core, inactive and active
!
! BUT THE STRUCTURE OF THE TWO-RDM ON THE RANGE OF OCCUPIED MOS (CORE+INACT+ACT) BECAUSE IT CAN BE CONVENIENT FOR SOME APPLICATIONS
! THE NORMALIZATION (i.e. sum of diagonal elements) IS SET TO N_{\alpha} * N_{\beta}
!
! !!!!! WARNING !!!!! For efficiency reasons, electron 1 is ALPHA, electron 2 is BETA
! !!!!! WARNING !!!!! ALL SLATER DETERMINANTS IN PSI_DET MUST BELONG TO AN ACTIVE SPACE DEFINED BY "list_act"
!
! !!!!! WARNING !!!!! For efficiency reasons, electron 1 is ALPHA, electron 2 is BETA
!
! state_av_full_occ_2_rdm_ab_mo(i,j,k,l) = i:alpha, j:beta, j:alpha, l:beta
!
@ -129,11 +131,13 @@
BEGIN_DOC
! state_av_full_occ_2_rdm_aa_mo(i,j,k,l) = STATE AVERAGE physicist notation for 2RDM of alpha/alpha electrons
!
! <Psi| a^{\dagger}_{i \alpha} a^{\dagger}_{j \alpha} a_{l \alpha} a_{k \alpha} |Psi>
! = \sum_{istate} w(istate) * <Psi_{istate}| a^{\dagger}_{i,alpha} a^{\dagger}_{j,alpha} a_{l,alpha} a_{k,alpha} |Psi_{istate}>
!
! !!!!! WARNING !!!!! ALL SLATER DETERMINANTS IN PSI_DET MUST BELONG TO AN ACTIVE SPACE DEFINED BY "list_act"
! WHERE ALL ORBITALS (i,j,k,l) BELONGS TO ALL OCCUPIED ORBITALS : core, inactive and active
!
! BUT THE STRUCTURE OF THE TWO-RDM ON THE FULL RANGE OF MOs IS IMPLEMENTED BECAUSE IT CAN BE CONVENIENT FOR SOME APPLICATIONS
! THE NORMALIZATION (i.e. sum of diagonal elements) IS SET TO N_{\alpha} * (N_{\alpha} - 1)/2
!
! !!!!! WARNING !!!!! ALL SLATER DETERMINANTS IN PSI_DET MUST BELONG TO AN ACTIVE SPACE DEFINED BY "list_act"
!
! !!!!! WARNING !!!!! IF "no_core_density" then all elements involving at least one CORE MO is set to zero
END_DOC
@ -223,12 +227,14 @@
BEGIN_DOC
! state_av_full_occ_2_rdm_bb_mo(i,j,k,l) = STATE AVERAGE physicist notation for 2RDM of beta/beta electrons
!
! <Psi| a^{\dagger}_{i \beta} a^{\dagger}_{j \beta} a_{l \beta} a_{k \beta} |Psi>
! = \sum_{istate} w(istate) * <Psi_{istate}| a^{\dagger}_{i,beta} a^{\dagger}_{j,beta} a_{l,beta} a_{k,beta} |Psi_{istate}>
!
! WHERE ALL ORBITALS (i,j,k,l) BELONGS TO ALL OCCUPIED ORBITALS : core, inactive and active
!
! THE NORMALIZATION (i.e. sum of diagonal elements) IS SET TO N_{\beta} * (N_{\beta} - 1)/2
!
! !!!!! WARNING !!!!! ALL SLATER DETERMINANTS IN PSI_DET MUST BELONG TO AN ACTIVE SPACE DEFINED BY "list_act"
!
! BUT THE STRUCTURE OF THE TWO-RDM ON THE FULL RANGE OF MOs IS IMPLEMENTED BECAUSE IT CAN BE CONVENIENT FOR SOME APPLICATIONS
!
! !!!!! WARNING !!!!! IF "no_core_density" then all elements involving at least one CORE MO is set to zero
END_DOC
@ -317,11 +323,14 @@
BEGIN_DOC
! state_av_full_occ_2_rdm_bb_mo(i,j,k,l) = STATE AVERAGE physicist notation for 2RDM of beta/beta electrons
!
! <Psi| a^{\dagger}_{i \beta} a^{\dagger}_{j \beta} a_{l \beta} a_{k \beta} |Psi>
! = \sum_{istate} w(istate) * \sum_{sigma,sigma'} <Psi_{istate}| a^{\dagger}_{i,sigma} a^{\dagger'}_{j,sigma} a_{l,sigma'} a_{k,sigma} |Psi_{istate}>
!
! !!!!! WARNING !!!!! ALL SLATER DETERMINANTS IN PSI_DET MUST BELONG TO AN ACTIVE SPACE DEFINED BY "list_act"
!
! BUT THE STRUCTURE OF THE TWO-RDM ON THE FULL RANGE OF MOs IS IMPLEMENTED BECAUSE IT CAN BE CONVENIENT FOR SOME APPLICATIONS
! WHERE ALL ORBITALS (i,j,k,l) BELONGS TO ALL OCCUPIED ORBITALS : core, inactive and active
!
! THE NORMALIZATION (i.e. sum of diagonal elements) IS SET TO N_{elec} * (N_{elec} - 1)/2
!
! !!!!! WARNING !!!!! ALL SLATER DETERMINANTS IN PSI_DET MUST BELONG TO AN ACTIVE SPACE DEFINED BY "list_act"
!
! !!!!! WARNING !!!!! IF "no_core_density" then all elements involving at least one CORE MO is set to zero
END_DOC