mirror of
https://github.com/QuantumPackage/qp2.git
synced 2024-11-09 06:53:38 +01:00
Merge branch 'QuantumPackage-good-dev-tc' into good-dev-tc
This commit is contained in:
commit
2bc1d5af9b
2
configure
vendored
2
configure
vendored
@ -369,7 +369,7 @@ else
|
||||
echo ""
|
||||
echo "${QP_ROOT}/build.ninja does not exist,"
|
||||
echo "you need to specify the COMPILATION configuration file."
|
||||
echo "See ./configure --help for more details."
|
||||
echo "See ./configure -h for more details."
|
||||
echo ""
|
||||
fi
|
||||
|
||||
|
1
external/Python/.gitignore
vendored
1
external/Python/.gitignore
vendored
@ -0,0 +1 @@
|
||||
docopt.py
|
579
external/Python/docopt.py
vendored
579
external/Python/docopt.py
vendored
@ -1,579 +0,0 @@
|
||||
"""Pythonic command-line interface parser that will make you smile.
|
||||
|
||||
* http://docopt.org
|
||||
* Repository and issue-tracker: https://github.com/docopt/docopt
|
||||
* Licensed under terms of MIT license (see LICENSE-MIT)
|
||||
* Copyright (c) 2013 Vladimir Keleshev, vladimir@keleshev.com
|
||||
|
||||
"""
|
||||
import sys
|
||||
import re
|
||||
|
||||
|
||||
__all__ = ['docopt']
|
||||
__version__ = '0.6.2'
|
||||
|
||||
|
||||
class DocoptLanguageError(Exception):
|
||||
|
||||
"""Error in construction of usage-message by developer."""
|
||||
|
||||
|
||||
class DocoptExit(SystemExit):
|
||||
|
||||
"""Exit in case user invoked program with incorrect arguments."""
|
||||
|
||||
usage = ''
|
||||
|
||||
def __init__(self, message=''):
|
||||
SystemExit.__init__(self, (message + '\n' + self.usage).strip())
|
||||
|
||||
|
||||
class Pattern(object):
|
||||
|
||||
def __eq__(self, other):
|
||||
return repr(self) == repr(other)
|
||||
|
||||
def __hash__(self):
|
||||
return hash(repr(self))
|
||||
|
||||
def fix(self):
|
||||
self.fix_identities()
|
||||
self.fix_repeating_arguments()
|
||||
return self
|
||||
|
||||
def fix_identities(self, uniq=None):
|
||||
"""Make pattern-tree tips point to same object if they are equal."""
|
||||
if not hasattr(self, 'children'):
|
||||
return self
|
||||
uniq = list(set(self.flat())) if uniq is None else uniq
|
||||
for i, c in enumerate(self.children):
|
||||
if not hasattr(c, 'children'):
|
||||
assert c in uniq
|
||||
self.children[i] = uniq[uniq.index(c)]
|
||||
else:
|
||||
c.fix_identities(uniq)
|
||||
|
||||
def fix_repeating_arguments(self):
|
||||
"""Fix elements that should accumulate/increment values."""
|
||||
either = [list(c.children) for c in self.either.children]
|
||||
for case in either:
|
||||
for e in [c for c in case if case.count(c) > 1]:
|
||||
if type(e) is Argument or type(e) is Option and e.argcount:
|
||||
if e.value is None:
|
||||
e.value = []
|
||||
elif type(e.value) is not list:
|
||||
e.value = e.value.split()
|
||||
if type(e) is Command or type(e) is Option and e.argcount == 0:
|
||||
e.value = 0
|
||||
return self
|
||||
|
||||
@property
|
||||
def either(self):
|
||||
"""Transform pattern into an equivalent, with only top-level Either."""
|
||||
# Currently the pattern will not be equivalent, but more "narrow",
|
||||
# although good enough to reason about list arguments.
|
||||
ret = []
|
||||
groups = [[self]]
|
||||
while groups:
|
||||
children = groups.pop(0)
|
||||
types = [type(c) for c in children]
|
||||
if Either in types:
|
||||
either = [c for c in children if type(c) is Either][0]
|
||||
children.pop(children.index(either))
|
||||
for c in either.children:
|
||||
groups.append([c] + children)
|
||||
elif Required in types:
|
||||
required = [c for c in children if type(c) is Required][0]
|
||||
children.pop(children.index(required))
|
||||
groups.append(list(required.children) + children)
|
||||
elif Optional in types:
|
||||
optional = [c for c in children if type(c) is Optional][0]
|
||||
children.pop(children.index(optional))
|
||||
groups.append(list(optional.children) + children)
|
||||
elif AnyOptions in types:
|
||||
optional = [c for c in children if type(c) is AnyOptions][0]
|
||||
children.pop(children.index(optional))
|
||||
groups.append(list(optional.children) + children)
|
||||
elif OneOrMore in types:
|
||||
oneormore = [c for c in children if type(c) is OneOrMore][0]
|
||||
children.pop(children.index(oneormore))
|
||||
groups.append(list(oneormore.children) * 2 + children)
|
||||
else:
|
||||
ret.append(children)
|
||||
return Either(*[Required(*e) for e in ret])
|
||||
|
||||
|
||||
class ChildPattern(Pattern):
|
||||
|
||||
def __init__(self, name, value=None):
|
||||
self.name = name
|
||||
self.value = value
|
||||
|
||||
def __repr__(self):
|
||||
return '%s(%r, %r)' % (self.__class__.__name__, self.name, self.value)
|
||||
|
||||
def flat(self, *types):
|
||||
return [self] if not types or type(self) in types else []
|
||||
|
||||
def match(self, left, collected=None):
|
||||
collected = [] if collected is None else collected
|
||||
pos, match = self.single_match(left)
|
||||
if match is None:
|
||||
return False, left, collected
|
||||
left_ = left[:pos] + left[pos + 1:]
|
||||
same_name = [a for a in collected if a.name == self.name]
|
||||
if type(self.value) in (int, list):
|
||||
if type(self.value) is int:
|
||||
increment = 1
|
||||
else:
|
||||
increment = ([match.value] if type(match.value) is str
|
||||
else match.value)
|
||||
if not same_name:
|
||||
match.value = increment
|
||||
return True, left_, collected + [match]
|
||||
same_name[0].value += increment
|
||||
return True, left_, collected
|
||||
return True, left_, collected + [match]
|
||||
|
||||
|
||||
class ParentPattern(Pattern):
|
||||
|
||||
def __init__(self, *children):
|
||||
self.children = list(children)
|
||||
|
||||
def __repr__(self):
|
||||
return '%s(%s)' % (self.__class__.__name__,
|
||||
', '.join(repr(a) for a in self.children))
|
||||
|
||||
def flat(self, *types):
|
||||
if type(self) in types:
|
||||
return [self]
|
||||
return sum([c.flat(*types) for c in self.children], [])
|
||||
|
||||
|
||||
class Argument(ChildPattern):
|
||||
|
||||
def single_match(self, left):
|
||||
for n, p in enumerate(left):
|
||||
if type(p) is Argument:
|
||||
return n, Argument(self.name, p.value)
|
||||
return None, None
|
||||
|
||||
@classmethod
|
||||
def parse(class_, source):
|
||||
name = re.findall('(<\S*?>)', source)[0]
|
||||
value = re.findall('\[default: (.*)\]', source, flags=re.I)
|
||||
return class_(name, value[0] if value else None)
|
||||
|
||||
|
||||
class Command(Argument):
|
||||
|
||||
def __init__(self, name, value=False):
|
||||
self.name = name
|
||||
self.value = value
|
||||
|
||||
def single_match(self, left):
|
||||
for n, p in enumerate(left):
|
||||
if type(p) is Argument:
|
||||
if p.value == self.name:
|
||||
return n, Command(self.name, True)
|
||||
else:
|
||||
break
|
||||
return None, None
|
||||
|
||||
|
||||
class Option(ChildPattern):
|
||||
|
||||
def __init__(self, short=None, long=None, argcount=0, value=False):
|
||||
assert argcount in (0, 1)
|
||||
self.short, self.long = short, long
|
||||
self.argcount, self.value = argcount, value
|
||||
self.value = None if value is False and argcount else value
|
||||
|
||||
@classmethod
|
||||
def parse(class_, option_description):
|
||||
short, long, argcount, value = None, None, 0, False
|
||||
options, _, description = option_description.strip().partition(' ')
|
||||
options = options.replace(',', ' ').replace('=', ' ')
|
||||
for s in options.split():
|
||||
if s.startswith('--'):
|
||||
long = s
|
||||
elif s.startswith('-'):
|
||||
short = s
|
||||
else:
|
||||
argcount = 1
|
||||
if argcount:
|
||||
matched = re.findall('\[default: (.*)\]', description, flags=re.I)
|
||||
value = matched[0] if matched else None
|
||||
return class_(short, long, argcount, value)
|
||||
|
||||
def single_match(self, left):
|
||||
for n, p in enumerate(left):
|
||||
if self.name == p.name:
|
||||
return n, p
|
||||
return None, None
|
||||
|
||||
@property
|
||||
def name(self):
|
||||
return self.long or self.short
|
||||
|
||||
def __repr__(self):
|
||||
return 'Option(%r, %r, %r, %r)' % (self.short, self.long,
|
||||
self.argcount, self.value)
|
||||
|
||||
|
||||
class Required(ParentPattern):
|
||||
|
||||
def match(self, left, collected=None):
|
||||
collected = [] if collected is None else collected
|
||||
l = left
|
||||
c = collected
|
||||
for p in self.children:
|
||||
matched, l, c = p.match(l, c)
|
||||
if not matched:
|
||||
return False, left, collected
|
||||
return True, l, c
|
||||
|
||||
|
||||
class Optional(ParentPattern):
|
||||
|
||||
def match(self, left, collected=None):
|
||||
collected = [] if collected is None else collected
|
||||
for p in self.children:
|
||||
m, left, collected = p.match(left, collected)
|
||||
return True, left, collected
|
||||
|
||||
|
||||
class AnyOptions(Optional):
|
||||
|
||||
"""Marker/placeholder for [options] shortcut."""
|
||||
|
||||
|
||||
class OneOrMore(ParentPattern):
|
||||
|
||||
def match(self, left, collected=None):
|
||||
assert len(self.children) == 1
|
||||
collected = [] if collected is None else collected
|
||||
l = left
|
||||
c = collected
|
||||
l_ = None
|
||||
matched = True
|
||||
times = 0
|
||||
while matched:
|
||||
# could it be that something didn't match but changed l or c?
|
||||
matched, l, c = self.children[0].match(l, c)
|
||||
times += 1 if matched else 0
|
||||
if l_ == l:
|
||||
break
|
||||
l_ = l
|
||||
if times >= 1:
|
||||
return True, l, c
|
||||
return False, left, collected
|
||||
|
||||
|
||||
class Either(ParentPattern):
|
||||
|
||||
def match(self, left, collected=None):
|
||||
collected = [] if collected is None else collected
|
||||
outcomes = []
|
||||
for p in self.children:
|
||||
matched, _, _ = outcome = p.match(left, collected)
|
||||
if matched:
|
||||
outcomes.append(outcome)
|
||||
if outcomes:
|
||||
return min(outcomes, key=lambda outcome: len(outcome[1]))
|
||||
return False, left, collected
|
||||
|
||||
|
||||
class TokenStream(list):
|
||||
|
||||
def __init__(self, source, error):
|
||||
self += source.split() if hasattr(source, 'split') else source
|
||||
self.error = error
|
||||
|
||||
def move(self):
|
||||
return self.pop(0) if len(self) else None
|
||||
|
||||
def current(self):
|
||||
return self[0] if len(self) else None
|
||||
|
||||
|
||||
def parse_long(tokens, options):
|
||||
"""long ::= '--' chars [ ( ' ' | '=' ) chars ] ;"""
|
||||
long, eq, value = tokens.move().partition('=')
|
||||
assert long.startswith('--')
|
||||
value = None if eq == value == '' else value
|
||||
similar = [o for o in options if o.long == long]
|
||||
if tokens.error is DocoptExit and similar == []: # if no exact match
|
||||
similar = [o for o in options if o.long and o.long.startswith(long)]
|
||||
if len(similar) > 1: # might be simply specified ambiguously 2+ times?
|
||||
raise tokens.error('%s is not a unique prefix: %s?' %
|
||||
(long, ', '.join(o.long for o in similar)))
|
||||
elif len(similar) < 1:
|
||||
argcount = 1 if eq == '=' else 0
|
||||
o = Option(None, long, argcount)
|
||||
options.append(o)
|
||||
if tokens.error is DocoptExit:
|
||||
o = Option(None, long, argcount, value if argcount else True)
|
||||
else:
|
||||
o = Option(similar[0].short, similar[0].long,
|
||||
similar[0].argcount, similar[0].value)
|
||||
if o.argcount == 0:
|
||||
if value is not None:
|
||||
raise tokens.error('%s must not have an argument' % o.long)
|
||||
else:
|
||||
if value is None:
|
||||
if tokens.current() is None:
|
||||
raise tokens.error('%s requires argument' % o.long)
|
||||
value = tokens.move()
|
||||
if tokens.error is DocoptExit:
|
||||
o.value = value if value is not None else True
|
||||
return [o]
|
||||
|
||||
|
||||
def parse_shorts(tokens, options):
|
||||
"""shorts ::= '-' ( chars )* [ [ ' ' ] chars ] ;"""
|
||||
token = tokens.move()
|
||||
assert token.startswith('-') and not token.startswith('--')
|
||||
left = token.lstrip('-')
|
||||
parsed = []
|
||||
while left != '':
|
||||
short, left = '-' + left[0], left[1:]
|
||||
similar = [o for o in options if o.short == short]
|
||||
if len(similar) > 1:
|
||||
raise tokens.error('%s is specified ambiguously %d times' %
|
||||
(short, len(similar)))
|
||||
elif len(similar) < 1:
|
||||
o = Option(short, None, 0)
|
||||
options.append(o)
|
||||
if tokens.error is DocoptExit:
|
||||
o = Option(short, None, 0, True)
|
||||
else: # why copying is necessary here?
|
||||
o = Option(short, similar[0].long,
|
||||
similar[0].argcount, similar[0].value)
|
||||
value = None
|
||||
if o.argcount != 0:
|
||||
if left == '':
|
||||
if tokens.current() is None:
|
||||
raise tokens.error('%s requires argument' % short)
|
||||
value = tokens.move()
|
||||
else:
|
||||
value = left
|
||||
left = ''
|
||||
if tokens.error is DocoptExit:
|
||||
o.value = value if value is not None else True
|
||||
parsed.append(o)
|
||||
return parsed
|
||||
|
||||
|
||||
def parse_pattern(source, options):
|
||||
tokens = TokenStream(re.sub(r'([\[\]\(\)\|]|\.\.\.)', r' \1 ', source),
|
||||
DocoptLanguageError)
|
||||
result = parse_expr(tokens, options)
|
||||
if tokens.current() is not None:
|
||||
raise tokens.error('unexpected ending: %r' % ' '.join(tokens))
|
||||
return Required(*result)
|
||||
|
||||
|
||||
def parse_expr(tokens, options):
|
||||
"""expr ::= seq ( '|' seq )* ;"""
|
||||
seq = parse_seq(tokens, options)
|
||||
if tokens.current() != '|':
|
||||
return seq
|
||||
result = [Required(*seq)] if len(seq) > 1 else seq
|
||||
while tokens.current() == '|':
|
||||
tokens.move()
|
||||
seq = parse_seq(tokens, options)
|
||||
result += [Required(*seq)] if len(seq) > 1 else seq
|
||||
return [Either(*result)] if len(result) > 1 else result
|
||||
|
||||
|
||||
def parse_seq(tokens, options):
|
||||
"""seq ::= ( atom [ '...' ] )* ;"""
|
||||
result = []
|
||||
while tokens.current() not in [None, ']', ')', '|']:
|
||||
atom = parse_atom(tokens, options)
|
||||
if tokens.current() == '...':
|
||||
atom = [OneOrMore(*atom)]
|
||||
tokens.move()
|
||||
result += atom
|
||||
return result
|
||||
|
||||
|
||||
def parse_atom(tokens, options):
|
||||
"""atom ::= '(' expr ')' | '[' expr ']' | 'options'
|
||||
| long | shorts | argument | command ;
|
||||
"""
|
||||
token = tokens.current()
|
||||
result = []
|
||||
if token in '([':
|
||||
tokens.move()
|
||||
matching, pattern = {'(': [')', Required], '[': [']', Optional]}[token]
|
||||
result = pattern(*parse_expr(tokens, options))
|
||||
if tokens.move() != matching:
|
||||
raise tokens.error("unmatched '%s'" % token)
|
||||
return [result]
|
||||
elif token == 'options':
|
||||
tokens.move()
|
||||
return [AnyOptions()]
|
||||
elif token.startswith('--') and token != '--':
|
||||
return parse_long(tokens, options)
|
||||
elif token.startswith('-') and token not in ('-', '--'):
|
||||
return parse_shorts(tokens, options)
|
||||
elif token.startswith('<') and token.endswith('>') or token.isupper():
|
||||
return [Argument(tokens.move())]
|
||||
else:
|
||||
return [Command(tokens.move())]
|
||||
|
||||
|
||||
def parse_argv(tokens, options, options_first=False):
|
||||
"""Parse command-line argument vector.
|
||||
|
||||
If options_first:
|
||||
argv ::= [ long | shorts ]* [ argument ]* [ '--' [ argument ]* ] ;
|
||||
else:
|
||||
argv ::= [ long | shorts | argument ]* [ '--' [ argument ]* ] ;
|
||||
|
||||
"""
|
||||
parsed = []
|
||||
while tokens.current() is not None:
|
||||
if tokens.current() == '--':
|
||||
return parsed + [Argument(None, v) for v in tokens]
|
||||
elif tokens.current().startswith('--'):
|
||||
parsed += parse_long(tokens, options)
|
||||
elif tokens.current().startswith('-') and tokens.current() != '-':
|
||||
parsed += parse_shorts(tokens, options)
|
||||
elif options_first:
|
||||
return parsed + [Argument(None, v) for v in tokens]
|
||||
else:
|
||||
parsed.append(Argument(None, tokens.move()))
|
||||
return parsed
|
||||
|
||||
|
||||
def parse_defaults(doc):
|
||||
# in python < 2.7 you can't pass flags=re.MULTILINE
|
||||
split = re.split('\n *(<\S+?>|-\S+?)', doc)[1:]
|
||||
split = [s1 + s2 for s1, s2 in zip(split[::2], split[1::2])]
|
||||
options = [Option.parse(s) for s in split if s.startswith('-')]
|
||||
#arguments = [Argument.parse(s) for s in split if s.startswith('<')]
|
||||
#return options, arguments
|
||||
return options
|
||||
|
||||
|
||||
def printable_usage(doc):
|
||||
# in python < 2.7 you can't pass flags=re.IGNORECASE
|
||||
usage_split = re.split(r'([Uu][Ss][Aa][Gg][Ee]:)', doc)
|
||||
if len(usage_split) < 3:
|
||||
raise DocoptLanguageError('"usage:" (case-insensitive) not found.')
|
||||
if len(usage_split) > 3:
|
||||
raise DocoptLanguageError('More than one "usage:" (case-insensitive).')
|
||||
return re.split(r'\n\s*\n', ''.join(usage_split[1:]))[0].strip()
|
||||
|
||||
|
||||
def formal_usage(printable_usage):
|
||||
pu = printable_usage.split()[1:] # split and drop "usage:"
|
||||
return '( ' + ' '.join(') | (' if s == pu[0] else s for s in pu[1:]) + ' )'
|
||||
|
||||
|
||||
def extras(help, version, options, doc):
|
||||
if help and any((o.name in ('-h', '--help')) and o.value for o in options):
|
||||
print(doc.strip("\n"))
|
||||
sys.exit()
|
||||
if version and any(o.name == '--version' and o.value for o in options):
|
||||
print(version)
|
||||
sys.exit()
|
||||
|
||||
|
||||
class Dict(dict):
|
||||
def __repr__(self):
|
||||
return '{%s}' % ',\n '.join('%r: %r' % i for i in sorted(self.items()))
|
||||
|
||||
|
||||
def docopt(doc, argv=None, help=True, version=None, options_first=False):
|
||||
"""Parse `argv` based on command-line interface described in `doc`.
|
||||
|
||||
`docopt` creates your command-line interface based on its
|
||||
description that you pass as `doc`. Such description can contain
|
||||
--options, <positional-argument>, commands, which could be
|
||||
[optional], (required), (mutually | exclusive) or repeated...
|
||||
|
||||
Parameters
|
||||
----------
|
||||
doc : str
|
||||
Description of your command-line interface.
|
||||
argv : list of str, optional
|
||||
Argument vector to be parsed. sys.argv[1:] is used if not
|
||||
provided.
|
||||
help : bool (default: True)
|
||||
Set to False to disable automatic help on -h or --help
|
||||
options.
|
||||
version : any object
|
||||
If passed, the object will be printed if --version is in
|
||||
`argv`.
|
||||
options_first : bool (default: False)
|
||||
Set to True to require options preceed positional arguments,
|
||||
i.e. to forbid options and positional arguments intermix.
|
||||
|
||||
Returns
|
||||
-------
|
||||
args : dict
|
||||
A dictionary, where keys are names of command-line elements
|
||||
such as e.g. "--verbose" and "<path>", and values are the
|
||||
parsed values of those elements.
|
||||
|
||||
Example
|
||||
-------
|
||||
>>> from docopt import docopt
|
||||
>>> doc = '''
|
||||
Usage:
|
||||
my_program tcp <host> <port> [--timeout=<seconds>]
|
||||
my_program serial <port> [--baud=<n>] [--timeout=<seconds>]
|
||||
my_program (-h | --help | --version)
|
||||
|
||||
Options:
|
||||
-h, --help Show this screen and exit.
|
||||
--baud=<n> Baudrate [default: 9600]
|
||||
'''
|
||||
>>> argv = ['tcp', '127.0.0.1', '80', '--timeout', '30']
|
||||
>>> docopt(doc, argv)
|
||||
{'--baud': '9600',
|
||||
'--help': False,
|
||||
'--timeout': '30',
|
||||
'--version': False,
|
||||
'<host>': '127.0.0.1',
|
||||
'<port>': '80',
|
||||
'serial': False,
|
||||
'tcp': True}
|
||||
|
||||
See also
|
||||
--------
|
||||
* For video introduction see http://docopt.org
|
||||
* Full documentation is available in README.rst as well as online
|
||||
at https://github.com/docopt/docopt#readme
|
||||
|
||||
"""
|
||||
if argv is None:
|
||||
argv = sys.argv[1:]
|
||||
DocoptExit.usage = printable_usage(doc)
|
||||
options = parse_defaults(doc)
|
||||
pattern = parse_pattern(formal_usage(DocoptExit.usage), options)
|
||||
# [default] syntax for argument is disabled
|
||||
#for a in pattern.flat(Argument):
|
||||
# same_name = [d for d in arguments if d.name == a.name]
|
||||
# if same_name:
|
||||
# a.value = same_name[0].value
|
||||
argv = parse_argv(TokenStream(argv, DocoptExit), list(options),
|
||||
options_first)
|
||||
pattern_options = set(pattern.flat(Option))
|
||||
for ao in pattern.flat(AnyOptions):
|
||||
doc_options = parse_defaults(doc)
|
||||
ao.children = list(set(doc_options) - pattern_options)
|
||||
#if any_options:
|
||||
# ao.children += [Option(o.short, o.long, o.argcount)
|
||||
# for o in argv if type(o) is Option]
|
||||
extras(help, version, argv, doc)
|
||||
matched, left, collected = pattern.fix().match(argv)
|
||||
if matched and left == []: # better error message if left?
|
||||
return Dict((a.name, a.value) for a in (pattern.flat() + collected))
|
||||
raise DocoptExit()
|
1
include/.gitignore
vendored
1
include/.gitignore
vendored
@ -5,3 +5,4 @@ zconf.h
|
||||
zlib.h
|
||||
zmq_utils.h
|
||||
f77_zmq_free.h
|
||||
f77_zmq.h
|
||||
|
@ -1,617 +0,0 @@
|
||||
integer EADDRINUSE
|
||||
integer EADDRNOTAVAIL
|
||||
integer EAFNOSUPPORT
|
||||
integer ECONNABORTED
|
||||
integer ECONNREFUSED
|
||||
integer ECONNRESET
|
||||
integer EFSM
|
||||
integer EHOSTUNREACH
|
||||
integer EINPROGRESS
|
||||
integer EMSGSIZE
|
||||
integer EMTHREAD
|
||||
integer ENETDOWN
|
||||
integer ENETRESET
|
||||
integer ENETUNREACH
|
||||
integer ENOBUFS
|
||||
integer ENOCOMPATPROTO
|
||||
integer ENOTCONN
|
||||
integer ENOTSOCK
|
||||
integer ENOTSUP
|
||||
integer EPROTONOSUPPORT
|
||||
integer ETERM
|
||||
integer ETIMEDOUT
|
||||
integer ZMQ_AFFINITY
|
||||
integer ZMQ_BACKLOG
|
||||
integer ZMQ_BINDTODEVICE
|
||||
integer ZMQ_BLOCKY
|
||||
integer ZMQ_CHANNEL
|
||||
integer ZMQ_CLIENT
|
||||
integer ZMQ_CONFLATE
|
||||
integer ZMQ_CONNECT_RID
|
||||
integer ZMQ_CONNECT_ROUTING_ID
|
||||
integer ZMQ_CONNECT_TIMEOUT
|
||||
integer ZMQ_CURRENT_EVENT_VERSION
|
||||
integer ZMQ_CURRENT_EVENT_VERSION_DRAFT
|
||||
integer ZMQ_CURVE
|
||||
integer ZMQ_CURVE_PUBLICKEY
|
||||
integer ZMQ_CURVE_SECRETKEY
|
||||
integer ZMQ_CURVE_SERVER
|
||||
integer ZMQ_CURVE_SERVERKEY
|
||||
integer ZMQ_DEALER
|
||||
integer ZMQ_DEFINED_STDINT
|
||||
integer ZMQ_DELAY_ATTACH_ON_CONNECT
|
||||
integer ZMQ_DGRAM
|
||||
integer ZMQ_DISCONNECT_MSG
|
||||
integer ZMQ_DISH
|
||||
integer ZMQ_DONTWAIT
|
||||
integer ZMQ_EVENTS
|
||||
integer ZMQ_EVENT_ACCEPTED
|
||||
integer ZMQ_EVENT_ACCEPT_FAILED
|
||||
integer ZMQ_EVENT_ALL
|
||||
integer ZMQ_EVENT_ALL_V1
|
||||
integer ZMQ_EVENT_ALL_V2
|
||||
integer ZMQ_EVENT_BIND_FAILED
|
||||
integer ZMQ_EVENT_CLOSED
|
||||
integer ZMQ_EVENT_CLOSE_FAILED
|
||||
integer ZMQ_EVENT_CONNECTED
|
||||
integer ZMQ_EVENT_CONNECT_DELAYED
|
||||
integer ZMQ_EVENT_CONNECT_RETRIED
|
||||
integer ZMQ_EVENT_DISCONNECTED
|
||||
integer ZMQ_EVENT_HANDSHAKE_FAILED_AUTH
|
||||
integer ZMQ_EVENT_HANDSHAKE_FAILED_NO_DETAIL
|
||||
integer ZMQ_EVENT_HANDSHAKE_FAILED_PROTOCOL
|
||||
integer ZMQ_EVENT_HANDSHAKE_SUCCEEDED
|
||||
integer ZMQ_EVENT_LISTENING
|
||||
integer ZMQ_EVENT_MONITOR_STOPPED
|
||||
integer ZMQ_EVENT_PIPES_STATS
|
||||
integer ZMQ_FAIL_UNROUTABLE
|
||||
integer ZMQ_FD
|
||||
integer ZMQ_FORWARDER
|
||||
integer ZMQ_GATHER
|
||||
integer ZMQ_GROUP_MAX_LENGTH
|
||||
integer ZMQ_GSSAPI
|
||||
integer ZMQ_GSSAPI_NT_HOSTBASED
|
||||
integer ZMQ_GSSAPI_NT_KRB5_PRINCIPAL
|
||||
integer ZMQ_GSSAPI_NT_USER_NAME
|
||||
integer ZMQ_GSSAPI_PLAINTEXT
|
||||
integer ZMQ_GSSAPI_PRINCIPAL
|
||||
integer ZMQ_GSSAPI_PRINCIPAL_NAMETYPE
|
||||
integer ZMQ_GSSAPI_SERVER
|
||||
integer ZMQ_GSSAPI_SERVICE_PRINCIPAL
|
||||
integer ZMQ_GSSAPI_SERVICE_PRINCIPAL_NAMETYPE
|
||||
integer ZMQ_HANDSHAKE_IVL
|
||||
integer ZMQ_HAS_CAPABILITIES
|
||||
integer ZMQ_HAUSNUMERO
|
||||
integer ZMQ_HEARTBEAT_IVL
|
||||
integer ZMQ_HEARTBEAT_TIMEOUT
|
||||
integer ZMQ_HEARTBEAT_TTL
|
||||
integer ZMQ_HELLO_MSG
|
||||
integer ZMQ_IDENTITY
|
||||
integer ZMQ_IMMEDIATE
|
||||
integer ZMQ_INVERT_MATCHING
|
||||
integer ZMQ_IN_BATCH_SIZE
|
||||
integer ZMQ_IO_THREADS
|
||||
integer ZMQ_IO_THREADS_DFLT
|
||||
integer ZMQ_IPC_FILTER_GID
|
||||
integer ZMQ_IPC_FILTER_PID
|
||||
integer ZMQ_IPC_FILTER_UID
|
||||
integer ZMQ_IPV4ONLY
|
||||
integer ZMQ_IPV6
|
||||
integer ZMQ_LAST_ENDPOINT
|
||||
integer ZMQ_LINGER
|
||||
integer ZMQ_LOOPBACK_FASTPATH
|
||||
integer ZMQ_MAXMSGSIZE
|
||||
integer ZMQ_MAX_MSGSZ
|
||||
integer ZMQ_MAX_SOCKETS
|
||||
integer ZMQ_MAX_SOCKETS_DFLT
|
||||
integer ZMQ_MECHANISM
|
||||
integer ZMQ_METADATA
|
||||
integer ZMQ_MORE
|
||||
integer ZMQ_MSG_T_SIZE
|
||||
integer ZMQ_MULTICAST_HOPS
|
||||
integer ZMQ_MULTICAST_LOOP
|
||||
integer ZMQ_MULTICAST_MAXTPDU
|
||||
integer ZMQ_NOBLOCK
|
||||
integer ZMQ_NOTIFY_CONNECT
|
||||
integer ZMQ_NOTIFY_DISCONNECT
|
||||
integer ZMQ_NULL
|
||||
integer ZMQ_ONLY_FIRST_SUBSCRIBE
|
||||
integer ZMQ_OUT_BATCH_SIZE
|
||||
integer ZMQ_PAIR
|
||||
integer ZMQ_PEER
|
||||
integer ZMQ_PLAIN
|
||||
integer ZMQ_PLAIN_PASSWORD
|
||||
integer ZMQ_PLAIN_SERVER
|
||||
integer ZMQ_PLAIN_USERNAME
|
||||
integer ZMQ_POLLERR
|
||||
integer ZMQ_POLLIN
|
||||
integer ZMQ_POLLITEMS_DFLT
|
||||
integer ZMQ_POLLOUT
|
||||
integer ZMQ_POLLPRI
|
||||
integer ZMQ_PRIORITY
|
||||
integer ZMQ_PROBE_ROUTER
|
||||
integer ZMQ_PROTOCOL_ERROR_WS_UNSPECIFIED
|
||||
integer ZMQ_PROTOCOL_ERROR_ZAP_BAD_REQUEST_ID
|
||||
integer ZMQ_PROTOCOL_ERROR_ZAP_BAD_VERSION
|
||||
integer ZMQ_PROTOCOL_ERROR_ZAP_INVALID_METADATA
|
||||
integer ZMQ_PROTOCOL_ERROR_ZAP_INVALID_STATUS_CODE
|
||||
integer ZMQ_PROTOCOL_ERROR_ZAP_MALFORMED_REPLY
|
||||
integer ZMQ_PROTOCOL_ERROR_ZAP_UNSPECIFIED
|
||||
integer ZMQ_PROTOCOL_ERROR_ZMTP_CRYPTOGRAPHIC
|
||||
integer ZMQ_PROTOCOL_ERROR_ZMTP_INVALID_METADATA
|
||||
integer ZMQ_PROTOCOL_ERROR_ZMTP_INVALID_SEQUENCE
|
||||
integer ZMQ_PROTOCOL_ERROR_ZMTP_KEY_EXCHANGE
|
||||
integer ZMQ_PROTOCOL_ERROR_ZMTP_MALFORMED_COMMAND_ERROR
|
||||
integer ZMQ_PROTOCOL_ERROR_ZMTP_MALFORMED_COMMAND_HELLO
|
||||
integer ZMQ_PROTOCOL_ERROR_ZMTP_MALFORMED_COMMAND_INITIATE
|
||||
integer ZMQ_PROTOCOL_ERROR_ZMTP_MALFORMED_COMMAND_MESSAGE
|
||||
integer ZMQ_PROTOCOL_ERROR_ZMTP_MALFORMED_COMMAND_READY
|
||||
integer ZMQ_PROTOCOL_ERROR_ZMTP_MALFORMED_COMMAND_UNSPECIFIED
|
||||
integer ZMQ_PROTOCOL_ERROR_ZMTP_MALFORMED_COMMAND_WELCOME
|
||||
integer ZMQ_PROTOCOL_ERROR_ZMTP_MECHANISM_MISMATCH
|
||||
integer ZMQ_PROTOCOL_ERROR_ZMTP_UNEXPECTED_COMMAND
|
||||
integer ZMQ_PROTOCOL_ERROR_ZMTP_UNSPECIFIED
|
||||
integer ZMQ_PTR
|
||||
integer ZMQ_PUB
|
||||
integer ZMQ_PULL
|
||||
integer ZMQ_PUSH
|
||||
integer ZMQ_QUEUE
|
||||
integer ZMQ_RADIO
|
||||
integer ZMQ_RATE
|
||||
integer ZMQ_RCVBUF
|
||||
integer ZMQ_RCVHWM
|
||||
integer ZMQ_RCVMORE
|
||||
integer ZMQ_RCVTIMEO
|
||||
integer ZMQ_RECONNECT_IVL
|
||||
integer ZMQ_RECONNECT_IVL_MAX
|
||||
integer ZMQ_RECONNECT_STOP
|
||||
integer ZMQ_RECONNECT_STOP_AFTER_DISCONNECT
|
||||
integer ZMQ_RECONNECT_STOP_CONN_REFUSED
|
||||
integer ZMQ_RECONNECT_STOP_HANDSHAKE_FAILED
|
||||
integer ZMQ_RECOVERY_IVL
|
||||
integer ZMQ_REP
|
||||
integer ZMQ_REQ
|
||||
integer ZMQ_REQ_CORRELATE
|
||||
integer ZMQ_REQ_RELAXED
|
||||
integer ZMQ_ROUTER
|
||||
integer ZMQ_ROUTER_BEHAVIOR
|
||||
integer ZMQ_ROUTER_HANDOVER
|
||||
integer ZMQ_ROUTER_MANDATORY
|
||||
integer ZMQ_ROUTER_NOTIFY
|
||||
integer ZMQ_ROUTER_RAW
|
||||
integer ZMQ_ROUTING_ID
|
||||
integer ZMQ_SCATTER
|
||||
integer ZMQ_SERVER
|
||||
integer ZMQ_SHARED
|
||||
integer ZMQ_SNDBUF
|
||||
integer ZMQ_SNDHWM
|
||||
integer ZMQ_SNDMORE
|
||||
integer ZMQ_SNDTIMEO
|
||||
integer ZMQ_SOCKET_LIMIT
|
||||
integer ZMQ_SOCKS_PASSWORD
|
||||
integer ZMQ_SOCKS_PROXY
|
||||
integer ZMQ_SOCKS_USERNAME
|
||||
integer ZMQ_SRCFD
|
||||
integer ZMQ_STREAM
|
||||
integer ZMQ_STREAMER
|
||||
integer ZMQ_STREAM_NOTIFY
|
||||
integer ZMQ_SUB
|
||||
integer ZMQ_SUBSCRIBE
|
||||
integer ZMQ_TCP_ACCEPT_FILTER
|
||||
integer ZMQ_TCP_KEEPALIVE
|
||||
integer ZMQ_TCP_KEEPALIVE_CNT
|
||||
integer ZMQ_TCP_KEEPALIVE_IDLE
|
||||
integer ZMQ_TCP_KEEPALIVE_INTVL
|
||||
integer ZMQ_TCP_MAXRT
|
||||
integer ZMQ_THREAD_AFFINITY_CPU_ADD
|
||||
integer ZMQ_THREAD_AFFINITY_CPU_REMOVE
|
||||
integer ZMQ_THREAD_NAME_PREFIX
|
||||
integer ZMQ_THREAD_PRIORITY
|
||||
integer ZMQ_THREAD_PRIORITY_DFLT
|
||||
integer ZMQ_THREAD_SAFE
|
||||
integer ZMQ_THREAD_SCHED_POLICY
|
||||
integer ZMQ_THREAD_SCHED_POLICY_DFLT
|
||||
integer ZMQ_TOS
|
||||
integer ZMQ_TYPE
|
||||
integer ZMQ_UNSUBSCRIBE
|
||||
integer ZMQ_USE_FD
|
||||
integer ZMQ_VERSION
|
||||
integer ZMQ_VERSION_MAJOR
|
||||
integer ZMQ_VERSION_MINOR
|
||||
integer ZMQ_VERSION_PATCH
|
||||
integer ZMQ_VMCI_BUFFER_MAX_SIZE
|
||||
integer ZMQ_VMCI_BUFFER_MIN_SIZE
|
||||
integer ZMQ_VMCI_BUFFER_SIZE
|
||||
integer ZMQ_VMCI_CONNECT_TIMEOUT
|
||||
integer ZMQ_WSS_CERT_PEM
|
||||
integer ZMQ_WSS_HOSTNAME
|
||||
integer ZMQ_WSS_KEY_PEM
|
||||
integer ZMQ_WSS_TRUST_PEM
|
||||
integer ZMQ_WSS_TRUST_SYSTEM
|
||||
integer ZMQ_XPUB
|
||||
integer ZMQ_XPUB_MANUAL
|
||||
integer ZMQ_XPUB_MANUAL_LAST_VALUE
|
||||
integer ZMQ_XPUB_NODROP
|
||||
integer ZMQ_XPUB_VERBOSE
|
||||
integer ZMQ_XPUB_VERBOSER
|
||||
integer ZMQ_XPUB_WELCOME_MSG
|
||||
integer ZMQ_XREP
|
||||
integer ZMQ_XREQ
|
||||
integer ZMQ_XSUB
|
||||
integer ZMQ_ZAP_DOMAIN
|
||||
integer ZMQ_ZAP_ENFORCE_DOMAIN
|
||||
integer ZMQ_ZERO_COPY_RECV
|
||||
parameter(EADDRINUSE=156384717)
|
||||
parameter(EADDRNOTAVAIL=156384718)
|
||||
parameter(EAFNOSUPPORT=156384723)
|
||||
parameter(ECONNABORTED=156384725)
|
||||
parameter(ECONNREFUSED=156384719)
|
||||
parameter(ECONNRESET=156384726)
|
||||
parameter(EFSM=156384763)
|
||||
parameter(EHOSTUNREACH=156384729)
|
||||
parameter(EINPROGRESS=156384720)
|
||||
parameter(EMSGSIZE=156384722)
|
||||
parameter(EMTHREAD=156384766)
|
||||
parameter(ENETDOWN=156384716)
|
||||
parameter(ENETRESET=156384730)
|
||||
parameter(ENETUNREACH=156384724)
|
||||
parameter(ENOBUFS=156384715)
|
||||
parameter(ENOCOMPATPROTO=156384764)
|
||||
parameter(ENOTCONN=156384727)
|
||||
parameter(ENOTSOCK=156384721)
|
||||
parameter(ENOTSUP=156384713)
|
||||
parameter(EPROTONOSUPPORT=156384714)
|
||||
parameter(ETERM=156384765)
|
||||
parameter(ETIMEDOUT=156384728)
|
||||
parameter(ZMQ_AFFINITY=4)
|
||||
parameter(ZMQ_BACKLOG=19)
|
||||
parameter(ZMQ_BINDTODEVICE=92)
|
||||
parameter(ZMQ_BLOCKY=70)
|
||||
parameter(ZMQ_CHANNEL=20)
|
||||
parameter(ZMQ_CLIENT=13)
|
||||
parameter(ZMQ_CONFLATE=54)
|
||||
parameter(ZMQ_CONNECT_RID=61)
|
||||
parameter(ZMQ_CONNECT_ROUTING_ID=61)
|
||||
parameter(ZMQ_CONNECT_TIMEOUT=79)
|
||||
parameter(ZMQ_CURRENT_EVENT_VERSION=1)
|
||||
parameter(ZMQ_CURRENT_EVENT_VERSION_DRAFT=2)
|
||||
parameter(ZMQ_CURVE=2)
|
||||
parameter(ZMQ_CURVE_PUBLICKEY=48)
|
||||
parameter(ZMQ_CURVE_SECRETKEY=49)
|
||||
parameter(ZMQ_CURVE_SERVER=47)
|
||||
parameter(ZMQ_CURVE_SERVERKEY=50)
|
||||
parameter(ZMQ_DEALER=5)
|
||||
parameter(ZMQ_DEFINED_STDINT=1)
|
||||
parameter(ZMQ_DELAY_ATTACH_ON_CONNECT=39)
|
||||
parameter(ZMQ_DGRAM=18)
|
||||
parameter(ZMQ_DISCONNECT_MSG=111)
|
||||
parameter(ZMQ_DISH=15)
|
||||
parameter(ZMQ_DONTWAIT=1)
|
||||
parameter(ZMQ_EVENTS=15)
|
||||
parameter(ZMQ_EVENT_ACCEPTED=32)
|
||||
parameter(ZMQ_EVENT_ACCEPT_FAILED=64)
|
||||
parameter(ZMQ_EVENT_ALL=65535)
|
||||
parameter(ZMQ_EVENT_ALL_V1=65535)
|
||||
parameter(ZMQ_EVENT_ALL_V2=131071)
|
||||
parameter(ZMQ_EVENT_BIND_FAILED=16)
|
||||
parameter(ZMQ_EVENT_CLOSED=128)
|
||||
parameter(ZMQ_EVENT_CLOSE_FAILED=256)
|
||||
parameter(ZMQ_EVENT_CONNECTED=1)
|
||||
parameter(ZMQ_EVENT_CONNECT_DELAYED=2)
|
||||
parameter(ZMQ_EVENT_CONNECT_RETRIED=4)
|
||||
parameter(ZMQ_EVENT_DISCONNECTED=512)
|
||||
parameter(ZMQ_EVENT_HANDSHAKE_FAILED_AUTH=16384)
|
||||
parameter(ZMQ_EVENT_HANDSHAKE_FAILED_NO_DETAIL=2048)
|
||||
parameter(ZMQ_EVENT_HANDSHAKE_FAILED_PROTOCOL=8192)
|
||||
parameter(ZMQ_EVENT_HANDSHAKE_SUCCEEDED=4096)
|
||||
parameter(ZMQ_EVENT_LISTENING=8)
|
||||
parameter(ZMQ_EVENT_MONITOR_STOPPED=1024)
|
||||
parameter(ZMQ_EVENT_PIPES_STATS=65536)
|
||||
parameter(ZMQ_FAIL_UNROUTABLE=33)
|
||||
parameter(ZMQ_FD=14)
|
||||
parameter(ZMQ_FORWARDER=2)
|
||||
parameter(ZMQ_GATHER=16)
|
||||
parameter(ZMQ_GROUP_MAX_LENGTH=255)
|
||||
parameter(ZMQ_GSSAPI=3)
|
||||
parameter(ZMQ_GSSAPI_NT_HOSTBASED=0)
|
||||
parameter(ZMQ_GSSAPI_NT_KRB5_PRINCIPAL=2)
|
||||
parameter(ZMQ_GSSAPI_NT_USER_NAME=1)
|
||||
parameter(ZMQ_GSSAPI_PLAINTEXT=65)
|
||||
parameter(ZMQ_GSSAPI_PRINCIPAL=63)
|
||||
parameter(ZMQ_GSSAPI_PRINCIPAL_NAMETYPE=90)
|
||||
parameter(ZMQ_GSSAPI_SERVER=62)
|
||||
parameter(ZMQ_GSSAPI_SERVICE_PRINCIPAL=64)
|
||||
parameter(ZMQ_GSSAPI_SERVICE_PRINCIPAL_NAMETYPE=91)
|
||||
parameter(ZMQ_HANDSHAKE_IVL=66)
|
||||
parameter(ZMQ_HAS_CAPABILITIES=1)
|
||||
parameter(ZMQ_HAUSNUMERO=156384712)
|
||||
parameter(ZMQ_HEARTBEAT_IVL=75)
|
||||
parameter(ZMQ_HEARTBEAT_TIMEOUT=77)
|
||||
parameter(ZMQ_HEARTBEAT_TTL=76)
|
||||
parameter(ZMQ_HELLO_MSG=110)
|
||||
parameter(ZMQ_IDENTITY=5)
|
||||
parameter(ZMQ_IMMEDIATE=39)
|
||||
parameter(ZMQ_INVERT_MATCHING=74)
|
||||
parameter(ZMQ_IN_BATCH_SIZE=101)
|
||||
parameter(ZMQ_IO_THREADS=1)
|
||||
parameter(ZMQ_IO_THREADS_DFLT=1)
|
||||
parameter(ZMQ_IPC_FILTER_GID=60)
|
||||
parameter(ZMQ_IPC_FILTER_PID=58)
|
||||
parameter(ZMQ_IPC_FILTER_UID=59)
|
||||
parameter(ZMQ_IPV4ONLY=31)
|
||||
parameter(ZMQ_IPV6=42)
|
||||
parameter(ZMQ_LAST_ENDPOINT=32)
|
||||
parameter(ZMQ_LINGER=17)
|
||||
parameter(ZMQ_LOOPBACK_FASTPATH=94)
|
||||
parameter(ZMQ_MAXMSGSIZE=22)
|
||||
parameter(ZMQ_MAX_MSGSZ=5)
|
||||
parameter(ZMQ_MAX_SOCKETS=2)
|
||||
parameter(ZMQ_MAX_SOCKETS_DFLT=1023)
|
||||
parameter(ZMQ_MECHANISM=43)
|
||||
parameter(ZMQ_METADATA=95)
|
||||
parameter(ZMQ_MORE=1)
|
||||
parameter(ZMQ_MSG_T_SIZE=6)
|
||||
parameter(ZMQ_MULTICAST_HOPS=25)
|
||||
parameter(ZMQ_MULTICAST_LOOP=96)
|
||||
parameter(ZMQ_MULTICAST_MAXTPDU=84)
|
||||
parameter(ZMQ_NOBLOCK=1)
|
||||
parameter(ZMQ_NOTIFY_CONNECT=1)
|
||||
parameter(ZMQ_NOTIFY_DISCONNECT=2)
|
||||
parameter(ZMQ_NULL=0)
|
||||
parameter(ZMQ_ONLY_FIRST_SUBSCRIBE=108)
|
||||
parameter(ZMQ_OUT_BATCH_SIZE=102)
|
||||
parameter(ZMQ_PAIR=0)
|
||||
parameter(ZMQ_PEER=19)
|
||||
parameter(ZMQ_PLAIN=1)
|
||||
parameter(ZMQ_PLAIN_PASSWORD=46)
|
||||
parameter(ZMQ_PLAIN_SERVER=44)
|
||||
parameter(ZMQ_PLAIN_USERNAME=45)
|
||||
parameter(ZMQ_POLLERR=4)
|
||||
parameter(ZMQ_POLLIN=1)
|
||||
parameter(ZMQ_POLLITEMS_DFLT=16)
|
||||
parameter(ZMQ_POLLOUT=2)
|
||||
parameter(ZMQ_POLLPRI=8)
|
||||
parameter(ZMQ_PRIORITY=112)
|
||||
parameter(ZMQ_PROBE_ROUTER=51)
|
||||
parameter(ZMQ_PROTOCOL_ERROR_WS_UNSPECIFIED=805306368)
|
||||
parameter(ZMQ_PROTOCOL_ERROR_ZAP_BAD_REQUEST_ID=536870914)
|
||||
parameter(ZMQ_PROTOCOL_ERROR_ZAP_BAD_VERSION=536870915)
|
||||
parameter(ZMQ_PROTOCOL_ERROR_ZAP_INVALID_METADATA=536870917)
|
||||
parameter(ZMQ_PROTOCOL_ERROR_ZAP_INVALID_STATUS_CODE=536870916)
|
||||
parameter(ZMQ_PROTOCOL_ERROR_ZAP_MALFORMED_REPLY=536870913)
|
||||
parameter(ZMQ_PROTOCOL_ERROR_ZAP_UNSPECIFIED=536870912)
|
||||
parameter(ZMQ_PROTOCOL_ERROR_ZMTP_CRYPTOGRAPHIC=285212673)
|
||||
parameter(ZMQ_PROTOCOL_ERROR_ZMTP_INVALID_METADATA=268435480)
|
||||
parameter(ZMQ_PROTOCOL_ERROR_ZMTP_INVALID_SEQUENCE=268435458)
|
||||
parameter(ZMQ_PROTOCOL_ERROR_ZMTP_KEY_EXCHANGE=268435459)
|
||||
parameter(
|
||||
& ZMQ_PROTOCOL_ERROR_ZMTP_MALFORMED_COMMAND_ERROR=268435477)
|
||||
parameter(
|
||||
& ZMQ_PROTOCOL_ERROR_ZMTP_MALFORMED_COMMAND_HELLO=268435475)
|
||||
parameter(
|
||||
& ZMQ_PROTOCOL_ERROR_ZMTP_MALFORMED_COMMAND_INITIATE=268435476)
|
||||
parameter(
|
||||
& ZMQ_PROTOCOL_ERROR_ZMTP_MALFORMED_COMMAND_MESSAGE=268435474)
|
||||
parameter(
|
||||
& ZMQ_PROTOCOL_ERROR_ZMTP_MALFORMED_COMMAND_READY=268435478)
|
||||
parameter(
|
||||
& ZMQ_PROTOCOL_ERROR_ZMTP_MALFORMED_COMMAND_UNSPECIFIED=268435473)
|
||||
parameter(
|
||||
& ZMQ_PROTOCOL_ERROR_ZMTP_MALFORMED_COMMAND_WELCOME=268435479)
|
||||
parameter(ZMQ_PROTOCOL_ERROR_ZMTP_MECHANISM_MISMATCH=285212674)
|
||||
parameter(ZMQ_PROTOCOL_ERROR_ZMTP_UNEXPECTED_COMMAND=268435457)
|
||||
parameter(ZMQ_PROTOCOL_ERROR_ZMTP_UNSPECIFIED=268435456)
|
||||
parameter(ZMQ_PTR=8)
|
||||
parameter(ZMQ_PUB=1)
|
||||
parameter(ZMQ_PULL=7)
|
||||
parameter(ZMQ_PUSH=8)
|
||||
parameter(ZMQ_QUEUE=3)
|
||||
parameter(ZMQ_RADIO=14)
|
||||
parameter(ZMQ_RATE=8)
|
||||
parameter(ZMQ_RCVBUF=12)
|
||||
parameter(ZMQ_RCVHWM=24)
|
||||
parameter(ZMQ_RCVMORE=13)
|
||||
parameter(ZMQ_RCVTIMEO=27)
|
||||
parameter(ZMQ_RECONNECT_IVL=18)
|
||||
parameter(ZMQ_RECONNECT_IVL_MAX=21)
|
||||
parameter(ZMQ_RECONNECT_STOP=109)
|
||||
parameter(ZMQ_RECONNECT_STOP_AFTER_DISCONNECT=3)
|
||||
parameter(ZMQ_RECONNECT_STOP_CONN_REFUSED=1)
|
||||
parameter(ZMQ_RECONNECT_STOP_HANDSHAKE_FAILED=2)
|
||||
parameter(ZMQ_RECOVERY_IVL=9)
|
||||
parameter(ZMQ_REP=4)
|
||||
parameter(ZMQ_REQ=3)
|
||||
parameter(ZMQ_REQ_CORRELATE=52)
|
||||
parameter(ZMQ_REQ_RELAXED=53)
|
||||
parameter(ZMQ_ROUTER=6)
|
||||
parameter(ZMQ_ROUTER_BEHAVIOR=33)
|
||||
parameter(ZMQ_ROUTER_HANDOVER=56)
|
||||
parameter(ZMQ_ROUTER_MANDATORY=33)
|
||||
parameter(ZMQ_ROUTER_NOTIFY=97)
|
||||
parameter(ZMQ_ROUTER_RAW=41)
|
||||
parameter(ZMQ_ROUTING_ID=5)
|
||||
parameter(ZMQ_SCATTER=17)
|
||||
parameter(ZMQ_SERVER=12)
|
||||
parameter(ZMQ_SHARED=3)
|
||||
parameter(ZMQ_SNDBUF=11)
|
||||
parameter(ZMQ_SNDHWM=23)
|
||||
parameter(ZMQ_SNDMORE=2)
|
||||
parameter(ZMQ_SNDTIMEO=28)
|
||||
parameter(ZMQ_SOCKET_LIMIT=3)
|
||||
parameter(ZMQ_SOCKS_PASSWORD=100)
|
||||
parameter(ZMQ_SOCKS_PROXY=68)
|
||||
parameter(ZMQ_SOCKS_USERNAME=99)
|
||||
parameter(ZMQ_SRCFD=2)
|
||||
parameter(ZMQ_STREAM=11)
|
||||
parameter(ZMQ_STREAMER=1)
|
||||
parameter(ZMQ_STREAM_NOTIFY=73)
|
||||
parameter(ZMQ_SUB=2)
|
||||
parameter(ZMQ_SUBSCRIBE=6)
|
||||
parameter(ZMQ_TCP_ACCEPT_FILTER=38)
|
||||
parameter(ZMQ_TCP_KEEPALIVE=34)
|
||||
parameter(ZMQ_TCP_KEEPALIVE_CNT=35)
|
||||
parameter(ZMQ_TCP_KEEPALIVE_IDLE=36)
|
||||
parameter(ZMQ_TCP_KEEPALIVE_INTVL=37)
|
||||
parameter(ZMQ_TCP_MAXRT=80)
|
||||
parameter(ZMQ_THREAD_AFFINITY_CPU_ADD=7)
|
||||
parameter(ZMQ_THREAD_AFFINITY_CPU_REMOVE=8)
|
||||
parameter(ZMQ_THREAD_NAME_PREFIX=9)
|
||||
parameter(ZMQ_THREAD_PRIORITY=3)
|
||||
parameter(ZMQ_THREAD_PRIORITY_DFLT=-1)
|
||||
parameter(ZMQ_THREAD_SAFE=81)
|
||||
parameter(ZMQ_THREAD_SCHED_POLICY=4)
|
||||
parameter(ZMQ_THREAD_SCHED_POLICY_DFLT=-1)
|
||||
parameter(ZMQ_TOS=57)
|
||||
parameter(ZMQ_TYPE=16)
|
||||
parameter(ZMQ_UNSUBSCRIBE=7)
|
||||
parameter(ZMQ_USE_FD=89)
|
||||
parameter(ZMQ_VERSION=40304)
|
||||
parameter(ZMQ_VERSION_MAJOR=4)
|
||||
parameter(ZMQ_VERSION_MINOR=3)
|
||||
parameter(ZMQ_VERSION_PATCH=4)
|
||||
parameter(ZMQ_VMCI_BUFFER_MAX_SIZE=87)
|
||||
parameter(ZMQ_VMCI_BUFFER_MIN_SIZE=86)
|
||||
parameter(ZMQ_VMCI_BUFFER_SIZE=85)
|
||||
parameter(ZMQ_VMCI_CONNECT_TIMEOUT=88)
|
||||
parameter(ZMQ_WSS_CERT_PEM=104)
|
||||
parameter(ZMQ_WSS_HOSTNAME=106)
|
||||
parameter(ZMQ_WSS_KEY_PEM=103)
|
||||
parameter(ZMQ_WSS_TRUST_PEM=105)
|
||||
parameter(ZMQ_WSS_TRUST_SYSTEM=107)
|
||||
parameter(ZMQ_XPUB=9)
|
||||
parameter(ZMQ_XPUB_MANUAL=71)
|
||||
parameter(ZMQ_XPUB_MANUAL_LAST_VALUE=98)
|
||||
parameter(ZMQ_XPUB_NODROP=69)
|
||||
parameter(ZMQ_XPUB_VERBOSE=40)
|
||||
parameter(ZMQ_XPUB_VERBOSER=78)
|
||||
parameter(ZMQ_XPUB_WELCOME_MSG=72)
|
||||
parameter(ZMQ_XREP=6)
|
||||
parameter(ZMQ_XREQ=5)
|
||||
parameter(ZMQ_XSUB=10)
|
||||
parameter(ZMQ_ZAP_DOMAIN=55)
|
||||
parameter(ZMQ_ZAP_ENFORCE_DOMAIN=93)
|
||||
parameter(ZMQ_ZERO_COPY_RECV=10)
|
||||
integer f77_zmq_bind
|
||||
external f77_zmq_bind
|
||||
integer f77_zmq_close
|
||||
external f77_zmq_close
|
||||
integer f77_zmq_connect
|
||||
external f77_zmq_connect
|
||||
integer f77_zmq_ctx_destroy
|
||||
external f77_zmq_ctx_destroy
|
||||
integer f77_zmq_ctx_get
|
||||
external f77_zmq_ctx_get
|
||||
integer*8 f77_zmq_ctx_new
|
||||
external f77_zmq_ctx_new
|
||||
integer f77_zmq_ctx_set
|
||||
external f77_zmq_ctx_set
|
||||
integer f77_zmq_ctx_shutdown
|
||||
external f77_zmq_ctx_shutdown
|
||||
integer f77_zmq_ctx_term
|
||||
external f77_zmq_ctx_term
|
||||
integer f77_zmq_disconnect
|
||||
external f77_zmq_disconnect
|
||||
integer f77_zmq_errno
|
||||
external f77_zmq_errno
|
||||
integer f77_zmq_getsockopt
|
||||
external f77_zmq_getsockopt
|
||||
integer f77_zmq_microsleep
|
||||
external f77_zmq_microsleep
|
||||
integer f77_zmq_msg_close
|
||||
external f77_zmq_msg_close
|
||||
integer f77_zmq_msg_copy
|
||||
external f77_zmq_msg_copy
|
||||
integer f77_zmq_msg_copy_from_data
|
||||
external f77_zmq_msg_copy_from_data
|
||||
integer f77_zmq_msg_copy_to_data
|
||||
external f77_zmq_msg_copy_to_data
|
||||
integer f77_zmq_msg_copy_to_data8
|
||||
external f77_zmq_msg_copy_to_data8
|
||||
integer*8 f77_zmq_msg_data
|
||||
external f77_zmq_msg_data
|
||||
integer*8 f77_zmq_msg_data_new
|
||||
external f77_zmq_msg_data_new
|
||||
integer f77_zmq_msg_destroy
|
||||
external f77_zmq_msg_destroy
|
||||
integer f77_zmq_msg_destroy_data
|
||||
external f77_zmq_msg_destroy_data
|
||||
integer f77_zmq_msg_get
|
||||
external f77_zmq_msg_get
|
||||
character*(64) f77_zmq_msg_gets
|
||||
external f77_zmq_msg_gets
|
||||
integer f77_zmq_msg_init
|
||||
external f77_zmq_msg_init
|
||||
integer f77_zmq_msg_init_data
|
||||
external f77_zmq_msg_init_data
|
||||
integer f77_zmq_msg_init_size
|
||||
external f77_zmq_msg_init_size
|
||||
integer f77_zmq_msg_more
|
||||
external f77_zmq_msg_more
|
||||
integer f77_zmq_msg_move
|
||||
external f77_zmq_msg_move
|
||||
integer*8 f77_zmq_msg_new
|
||||
external f77_zmq_msg_new
|
||||
integer f77_zmq_msg_recv
|
||||
external f77_zmq_msg_recv
|
||||
integer*8 f77_zmq_msg_recv8
|
||||
external f77_zmq_msg_recv8
|
||||
integer f77_zmq_msg_send
|
||||
external f77_zmq_msg_send
|
||||
integer*8 f77_zmq_msg_send8
|
||||
external f77_zmq_msg_send8
|
||||
integer f77_zmq_msg_set
|
||||
external f77_zmq_msg_set
|
||||
integer f77_zmq_msg_size
|
||||
external f77_zmq_msg_size
|
||||
integer*8 f77_zmq_msg_size8
|
||||
external f77_zmq_msg_size8
|
||||
integer f77_zmq_poll
|
||||
external f77_zmq_poll
|
||||
integer f77_zmq_pollitem_destroy
|
||||
external f77_zmq_pollitem_destroy
|
||||
integer*8 f77_zmq_pollitem_new
|
||||
external f77_zmq_pollitem_new
|
||||
integer f77_zmq_pollitem_revents
|
||||
external f77_zmq_pollitem_revents
|
||||
integer f77_zmq_pollitem_set_events
|
||||
external f77_zmq_pollitem_set_events
|
||||
integer f77_zmq_pollitem_set_socket
|
||||
external f77_zmq_pollitem_set_socket
|
||||
integer f77_zmq_proxy
|
||||
external f77_zmq_proxy
|
||||
integer f77_zmq_proxy_steerable
|
||||
external f77_zmq_proxy_steerable
|
||||
integer f77_zmq_recv
|
||||
external f77_zmq_recv
|
||||
integer*8 f77_zmq_recv8
|
||||
external f77_zmq_recv8
|
||||
integer f77_zmq_send
|
||||
external f77_zmq_send
|
||||
integer*8 f77_zmq_send8
|
||||
external f77_zmq_send8
|
||||
integer f77_zmq_send_const
|
||||
external f77_zmq_send_const
|
||||
integer*8 f77_zmq_send_const8
|
||||
external f77_zmq_send_const8
|
||||
integer f77_zmq_setsockopt
|
||||
external f77_zmq_setsockopt
|
||||
integer*8 f77_zmq_socket
|
||||
external f77_zmq_socket
|
||||
integer f77_zmq_socket_monitor
|
||||
external f77_zmq_socket_monitor
|
||||
character*(64) f77_zmq_strerror
|
||||
external f77_zmq_strerror
|
||||
integer f77_zmq_term
|
||||
external f77_zmq_term
|
||||
integer f77_zmq_unbind
|
||||
external f77_zmq_unbind
|
||||
integer f77_zmq_version
|
||||
external f77_zmq_version
|
||||
integer pthread_create
|
||||
external pthread_create
|
||||
integer pthread_create_arg
|
||||
external pthread_create_arg
|
||||
integer pthread_detach
|
||||
external pthread_detach
|
||||
integer pthread_join
|
||||
external pthread_join
|
@ -63,11 +63,11 @@ end
|
||||
|
||||
module Connect_msg : sig
|
||||
type t = Tcp | Inproc | Ipc
|
||||
val create : typ:string -> t
|
||||
val create : string -> t
|
||||
val to_string : t -> string
|
||||
end = struct
|
||||
type t = Tcp | Inproc | Ipc
|
||||
let create ~typ =
|
||||
let create typ =
|
||||
match typ with
|
||||
| "tcp" -> Tcp
|
||||
| "inproc" -> Inproc
|
||||
@ -515,9 +515,9 @@ let of_string s =
|
||||
| Connect_ socket ->
|
||||
Connect (Connect_msg.create socket)
|
||||
| NewJob_ { state ; push_address_tcp ; push_address_inproc } ->
|
||||
Newjob (Newjob_msg.create push_address_tcp push_address_inproc state)
|
||||
Newjob (Newjob_msg.create ~address_tcp:push_address_tcp ~address_inproc:push_address_inproc ~state)
|
||||
| EndJob_ state ->
|
||||
Endjob (Endjob_msg.create state)
|
||||
Endjob (Endjob_msg.create ~state)
|
||||
| GetData_ { state ; client_id ; key } ->
|
||||
GetData (GetData_msg.create ~client_id ~state ~key)
|
||||
| PutData_ { state ; client_id ; key } ->
|
||||
|
@ -776,7 +776,7 @@ let run ~port =
|
||||
Zmq.Socket.create zmq_context Zmq.Socket.rep
|
||||
in
|
||||
Zmq.Socket.set_linger_period rep_socket 1_000_000;
|
||||
bind_socket "REP" rep_socket port;
|
||||
bind_socket ~socket_type:"REP" ~socket:rep_socket ~port;
|
||||
|
||||
let initial_program_state =
|
||||
{ queue = Queuing_system.create () ;
|
||||
|
@ -110,7 +110,7 @@ let run slave ?prefix exe ezfio_file =
|
||||
let task_thread =
|
||||
let thread =
|
||||
Thread.create ( fun () ->
|
||||
TaskServer.run port_number )
|
||||
TaskServer.run ~port:port_number )
|
||||
in
|
||||
thread ();
|
||||
in
|
||||
|
@ -121,6 +121,7 @@ def ninja_create_env_variable(pwd_config_file):
|
||||
|
||||
l_string.append("LIB = {0} ".format(str_lib))
|
||||
|
||||
l_string.append("CONFIG_FILE = {0}".format(pwd_config_file))
|
||||
l_string.append("")
|
||||
|
||||
return l_string
|
||||
|
@ -19,11 +19,11 @@ subroutine phi_j_erf_mu_r_xyz_phi(i,j,mu_in, C_center, xyz_ints)
|
||||
return
|
||||
endif
|
||||
n_pt_in = n_pt_max_integrals
|
||||
! j
|
||||
! j
|
||||
num_A = ao_nucl(j)
|
||||
power_A(1:3)= ao_power(j,1:3)
|
||||
A_center(1:3) = nucl_coord(num_A,1:3)
|
||||
! i
|
||||
! i
|
||||
num_B = ao_nucl(i)
|
||||
power_B(1:3)= ao_power(i,1:3)
|
||||
B_center(1:3) = nucl_coord(num_B,1:3)
|
||||
@ -33,19 +33,19 @@ subroutine phi_j_erf_mu_r_xyz_phi(i,j,mu_in, C_center, xyz_ints)
|
||||
do m=1,ao_prim_num(i)
|
||||
beta = ao_expo_ordered_transp(m,i)
|
||||
do mm = 1, 3
|
||||
! (x phi_i ) * phi_j
|
||||
! (x phi_i ) * phi_j
|
||||
! x * (x - B_x)^b_x = b_x (x - B_x)^b_x + 1 * (x - B_x)^{b_x+1}
|
||||
!
|
||||
! first contribution :: B_x (x - B_x)^b_x :: usual integral multiplied by B_x
|
||||
power_B_tmp = power_B
|
||||
contrib = NAI_pol_mult_erf(A_center,B_center,power_A,power_B_tmp,alpha,beta,C_center,n_pt_in,mu_in)
|
||||
contrib = NAI_pol_mult_erf(A_center,B_center,power_A,power_B_tmp,alpha,beta,C_center,n_pt_in,mu_in)
|
||||
xyz_ints(mm) += contrib * B_center(mm) * ao_coef_normalized_ordered_transp(l,j) &
|
||||
* ao_coef_normalized_ordered_transp(m,i)
|
||||
! second contribution :: 1 * (x - B_x)^(b_x+1) :: integral with b_x=>b_x+1
|
||||
* ao_coef_normalized_ordered_transp(m,i)
|
||||
! second contribution :: 1 * (x - B_x)^(b_x+1) :: integral with b_x=>b_x+1
|
||||
power_B_tmp(mm) += 1
|
||||
contrib = NAI_pol_mult_erf(A_center,B_center,power_A,power_B_tmp,alpha,beta,C_center,n_pt_in,mu_in)
|
||||
contrib = NAI_pol_mult_erf(A_center,B_center,power_A,power_B_tmp,alpha,beta,C_center,n_pt_in,mu_in)
|
||||
xyz_ints(mm) += contrib * 1.d0 * ao_coef_normalized_ordered_transp(l,j) &
|
||||
* ao_coef_normalized_ordered_transp(m,i)
|
||||
* ao_coef_normalized_ordered_transp(m,i)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
@ -58,7 +58,7 @@ double precision function phi_j_erf_mu_r_phi(i, j, mu_in, C_center)
|
||||
BEGIN_DOC
|
||||
! phi_j_erf_mu_r_phi = int dr phi_j(r) [erf(mu |r - C|)/|r-C|] phi_i(r)
|
||||
END_DOC
|
||||
|
||||
|
||||
implicit none
|
||||
integer, intent(in) :: i,j
|
||||
double precision, intent(in) :: mu_in, C_center(3)
|
||||
@ -77,24 +77,24 @@ double precision function phi_j_erf_mu_r_phi(i, j, mu_in, C_center)
|
||||
|
||||
n_pt_in = n_pt_max_integrals
|
||||
|
||||
! j
|
||||
! j
|
||||
num_A = ao_nucl(j)
|
||||
power_A(1:3) = ao_power(j,1:3)
|
||||
A_center(1:3) = nucl_coord(num_A,1:3)
|
||||
|
||||
! i
|
||||
! i
|
||||
num_B = ao_nucl(i)
|
||||
power_B(1:3) = ao_power(i,1:3)
|
||||
B_center(1:3) = nucl_coord(num_B,1:3)
|
||||
|
||||
|
||||
do l = 1, ao_prim_num(j)
|
||||
alpha = ao_expo_ordered_transp(l,j)
|
||||
do m = 1, ao_prim_num(i)
|
||||
beta = ao_expo_ordered_transp(m,i)
|
||||
|
||||
contrib = NAI_pol_mult_erf(A_center, B_center, power_A, power_B, alpha, beta, C_center, n_pt_in, mu_in)
|
||||
contrib = NAI_pol_mult_erf(A_center, B_center, power_A, power_B, alpha, beta, C_center, n_pt_in, mu_in)
|
||||
|
||||
phi_j_erf_mu_r_phi += contrib * ao_coef_normalized_ordered_transp(l,j) * ao_coef_normalized_ordered_transp(m,i)
|
||||
phi_j_erf_mu_r_phi += contrib * ao_coef_normalized_ordered_transp(l,j) * ao_coef_normalized_ordered_transp(m,i)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
@ -124,11 +124,11 @@ subroutine erfc_mu_gauss_xyz_ij_ao(i, j, mu, C_center, delta, gauss_ints)
|
||||
return
|
||||
endif
|
||||
n_pt_in = n_pt_max_integrals
|
||||
! j
|
||||
! j
|
||||
num_A = ao_nucl(j)
|
||||
power_A(1:3)= ao_power(j,1:3)
|
||||
A_center(1:3) = nucl_coord(num_A,1:3)
|
||||
! i
|
||||
! i
|
||||
num_B = ao_nucl(i)
|
||||
power_B(1:3)= ao_power(i,1:3)
|
||||
B_center(1:3) = nucl_coord(num_B,1:3)
|
||||
@ -141,7 +141,7 @@ subroutine erfc_mu_gauss_xyz_ij_ao(i, j, mu, C_center, delta, gauss_ints)
|
||||
call erfc_mu_gauss_xyz(C_center,delta,mu,A_center,B_center,power_A,power_B,alpha,beta,n_pt_in,xyz_ints)
|
||||
do mm = 1, 4
|
||||
gauss_ints(mm) += xyz_ints(mm) * ao_coef_normalized_ordered_transp(l,j) &
|
||||
* ao_coef_normalized_ordered_transp(m,i)
|
||||
* ao_coef_normalized_ordered_transp(m,i)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
@ -161,7 +161,7 @@ subroutine erf_mu_gauss_ij_ao(i, j, mu, C_center, delta, gauss_ints)
|
||||
integer, intent(in) :: i, j
|
||||
double precision, intent(in) :: mu, C_center(3), delta
|
||||
double precision, intent(out) :: gauss_ints
|
||||
|
||||
|
||||
integer :: n_pt_in, l, m
|
||||
integer :: num_A, power_A(3), num_b, power_B(3)
|
||||
double precision :: alpha, beta, A_center(3), B_center(3), coef
|
||||
@ -177,16 +177,16 @@ subroutine erf_mu_gauss_ij_ao(i, j, mu, C_center, delta, gauss_ints)
|
||||
|
||||
n_pt_in = n_pt_max_integrals
|
||||
|
||||
! j
|
||||
! j
|
||||
num_A = ao_nucl(j)
|
||||
power_A(1:3) = ao_power(j,1:3)
|
||||
A_center(1:3) = nucl_coord(num_A,1:3)
|
||||
|
||||
! i
|
||||
! i
|
||||
num_B = ao_nucl(i)
|
||||
power_B(1:3) = ao_power(i,1:3)
|
||||
B_center(1:3) = nucl_coord(num_B,1:3)
|
||||
|
||||
|
||||
do l = 1, ao_prim_num(j)
|
||||
alpha = ao_expo_ordered_transp(l,j)
|
||||
do m = 1, ao_prim_num(i)
|
||||
@ -219,7 +219,7 @@ subroutine NAI_pol_x_mult_erf_ao(i_ao, j_ao, mu_in, C_center, ints)
|
||||
!
|
||||
END_DOC
|
||||
|
||||
include 'utils/constants.include.F'
|
||||
include 'utils/constants.include.F'
|
||||
|
||||
implicit none
|
||||
|
||||
@ -275,6 +275,83 @@ end subroutine NAI_pol_x_mult_erf_ao
|
||||
|
||||
! ---
|
||||
|
||||
subroutine NAI_pol_x_mult_erf_ao_v(i_ao, j_ao, mu_in, C_center, ints, n_points)
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
! Computes the following integral :
|
||||
!
|
||||
! $\int_{-\infty}^{infty} dr x * \chi_i(r) \chi_j(r) \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
|
||||
!
|
||||
! $\int_{-\infty}^{infty} dr y * \chi_i(r) \chi_j(r) \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
|
||||
!
|
||||
! $\int_{-\infty}^{infty} dr z * \chi_i(r) \chi_j(r) \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
|
||||
!
|
||||
END_DOC
|
||||
|
||||
include 'utils/constants.include.F'
|
||||
|
||||
implicit none
|
||||
|
||||
integer, intent(in) :: i_ao, j_ao, n_points
|
||||
double precision, intent(in) :: mu_in, C_center(n_points,3)
|
||||
double precision, intent(out) :: ints(n_points,3)
|
||||
|
||||
integer :: i, j, num_A, num_B, power_A(3), power_B(3), n_pt_in
|
||||
integer :: power_xA(3), m, ipoint
|
||||
double precision :: A_center(3), B_center(3), alpha, beta, coef
|
||||
double precision, allocatable :: integral(:)
|
||||
double precision :: NAI_pol_mult_erf
|
||||
|
||||
ints = 0.d0
|
||||
if(ao_overlap_abs(j_ao,i_ao).lt.1.d-12) then
|
||||
return
|
||||
endif
|
||||
|
||||
num_A = ao_nucl(i_ao)
|
||||
power_A(1:3) = ao_power(i_ao,1:3)
|
||||
A_center(1:3) = nucl_coord(num_A,1:3)
|
||||
num_B = ao_nucl(j_ao)
|
||||
power_B(1:3) = ao_power(j_ao,1:3)
|
||||
B_center(1:3) = nucl_coord(num_B,1:3)
|
||||
|
||||
n_pt_in = n_pt_max_integrals
|
||||
|
||||
allocate(integral(n_points))
|
||||
do i = 1, ao_prim_num(i_ao)
|
||||
alpha = ao_expo_ordered_transp(i,i_ao)
|
||||
|
||||
do m = 1, 3
|
||||
|
||||
power_xA = power_A
|
||||
! x * phi_i(r) = x * (x-Ax)**ax = (x-Ax)**(ax+1) + Ax * (x-Ax)**ax
|
||||
power_xA(m) += 1
|
||||
|
||||
do j = 1, ao_prim_num(j_ao)
|
||||
beta = ao_expo_ordered_transp(j,j_ao)
|
||||
coef = ao_coef_normalized_ordered_transp(j,j_ao) * ao_coef_normalized_ordered_transp(i,i_ao)
|
||||
|
||||
! First term = (x-Ax)**(ax+1)
|
||||
call NAI_pol_mult_erf_v(A_center, B_center, power_xA, power_B, alpha, beta, C_center, n_pt_in, mu_in, integral, n_points)
|
||||
do ipoint=1,n_points
|
||||
ints(ipoint,m) += integral(ipoint) * coef
|
||||
enddo
|
||||
|
||||
! Second term = Ax * (x-Ax)**(ax)
|
||||
call NAI_pol_mult_erf_v(A_center, B_center, power_A, power_B, alpha, beta, C_center, n_pt_in, mu_in, integral, n_points)
|
||||
do ipoint=1,n_points
|
||||
ints(ipoint,m) += A_center(m) * integral(ipoint) * coef
|
||||
enddo
|
||||
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
deallocate(integral)
|
||||
|
||||
end subroutine NAI_pol_x_mult_erf_ao_v
|
||||
|
||||
! ---
|
||||
|
||||
double precision function NAI_pol_x_mult_erf_ao_x(i_ao, j_ao, mu_in, C_center)
|
||||
|
||||
BEGIN_DOC
|
||||
@ -662,6 +739,8 @@ end function NAI_pol_x_mult_erf_ao_with1s_z
|
||||
|
||||
! ---
|
||||
|
||||
! ---
|
||||
|
||||
subroutine NAI_pol_x_mult_erf_ao_with1s(i_ao, j_ao, beta, B_center, mu_in, C_center, ints)
|
||||
|
||||
BEGIN_DOC
|
||||
@ -676,7 +755,7 @@ subroutine NAI_pol_x_mult_erf_ao_with1s(i_ao, j_ao, beta, B_center, mu_in, C_cen
|
||||
!
|
||||
END_DOC
|
||||
|
||||
include 'utils/constants.include.F'
|
||||
include 'utils/constants.include.F'
|
||||
|
||||
implicit none
|
||||
|
||||
@ -720,7 +799,7 @@ subroutine NAI_pol_x_mult_erf_ao_with1s(i_ao, j_ao, beta, B_center, mu_in, C_cen
|
||||
|
||||
do j = 1, ao_prim_num(j_ao)
|
||||
alphaj = ao_expo_ordered_transp (j,j_ao)
|
||||
coef = coefi * ao_coef_normalized_ordered_transp(j,j_ao)
|
||||
coef = coefi * ao_coef_normalized_ordered_transp(j,j_ao)
|
||||
|
||||
! First term = (x-Ax)**(ax+1)
|
||||
integral = NAI_pol_mult_erf_with1s( Ai_center, Aj_center, power_xA, power_Aj, alphai, alphaj &
|
||||
@ -738,6 +817,91 @@ subroutine NAI_pol_x_mult_erf_ao_with1s(i_ao, j_ao, beta, B_center, mu_in, C_cen
|
||||
|
||||
end subroutine NAI_pol_x_mult_erf_ao_with1s
|
||||
|
||||
!--
|
||||
|
||||
subroutine NAI_pol_x_mult_erf_ao_with1s_v(i_ao, j_ao, beta, B_center, mu_in, C_center, ints, n_points)
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
! Computes the following integral :
|
||||
!
|
||||
! $\int_{-\infty}^{infty} dr x * \chi_i(r) \chi_j(r) e^{-\beta (r - B_center)^2} \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
|
||||
!
|
||||
! $\int_{-\infty}^{infty} dr y * \chi_i(r) \chi_j(r) e^{-\beta (r - B_center)^2} \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
|
||||
!
|
||||
! $\int_{-\infty}^{infty} dr z * \chi_i(r) \chi_j(r) e^{-\beta (r - B_center)^2} \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
|
||||
!
|
||||
END_DOC
|
||||
|
||||
include 'utils/constants.include.F'
|
||||
|
||||
implicit none
|
||||
|
||||
integer, intent(in) :: i_ao, j_ao, n_points
|
||||
double precision, intent(in) :: beta, B_center(n_points,3), mu_in, C_center(n_points,3)
|
||||
double precision, intent(out) :: ints(n_points,3)
|
||||
|
||||
integer :: i, j, power_Ai(3), power_Aj(3), n_pt_in, power_xA(3), m
|
||||
double precision :: Ai_center(3), Aj_center(3), alphai, alphaj, coef, coefi
|
||||
|
||||
integer :: ipoint
|
||||
double precision, allocatable :: integral(:)
|
||||
|
||||
if(beta .lt. 1d-10) then
|
||||
call NAI_pol_x_mult_erf_ao_v(i_ao, j_ao, mu_in, C_center, ints, n_points)
|
||||
return
|
||||
endif
|
||||
|
||||
ints(:,:) = 0.d0
|
||||
if(ao_overlap_abs(j_ao,i_ao) .lt. 1.d-12) then
|
||||
return
|
||||
endif
|
||||
|
||||
power_Ai(1:3) = ao_power(i_ao,1:3)
|
||||
power_Aj(1:3) = ao_power(j_ao,1:3)
|
||||
|
||||
Ai_center(1:3) = nucl_coord(ao_nucl(i_ao),1:3)
|
||||
Aj_center(1:3) = nucl_coord(ao_nucl(j_ao),1:3)
|
||||
|
||||
n_pt_in = n_pt_max_integrals
|
||||
|
||||
allocate(integral(n_points))
|
||||
do i = 1, ao_prim_num(i_ao)
|
||||
alphai = ao_expo_ordered_transp (i,i_ao)
|
||||
coefi = ao_coef_normalized_ordered_transp(i,i_ao)
|
||||
|
||||
do m = 1, 3
|
||||
|
||||
! x * phi_i(r) = x * (x-Ax)**ax = (x-Ax)**(ax+1) + Ax * (x-Ax)**ax
|
||||
power_xA = power_Ai
|
||||
power_xA(m) += 1
|
||||
|
||||
do j = 1, ao_prim_num(j_ao)
|
||||
alphaj = ao_expo_ordered_transp (j,j_ao)
|
||||
coef = coefi * ao_coef_normalized_ordered_transp(j,j_ao)
|
||||
|
||||
! First term = (x-Ax)**(ax+1)
|
||||
call NAI_pol_mult_erf_with1s_v( Ai_center, Aj_center, power_xA, power_Aj, alphai, &
|
||||
alphaj, beta, B_center, C_center, n_pt_in, mu_in, integral, n_points)
|
||||
do ipoint = 1, n_points
|
||||
ints(ipoint,m) += integral(ipoint) * coef
|
||||
enddo
|
||||
|
||||
! Second term = Ax * (x-Ax)**(ax)
|
||||
call NAI_pol_mult_erf_with1s_v( Ai_center, Aj_center, power_Ai, power_Aj, alphai, &
|
||||
alphaj, beta, B_center, C_center, n_pt_in, mu_in, integral, n_points)
|
||||
do ipoint = 1, n_points
|
||||
ints(ipoint,m) += Ai_center(m) * integral(ipoint) * coef
|
||||
enddo
|
||||
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
deallocate(integral)
|
||||
|
||||
end subroutine NAI_pol_x_mult_erf_ao_with1s
|
||||
|
||||
|
||||
! ---
|
||||
|
||||
subroutine NAI_pol_x_specify_mult_erf_ao(i_ao,j_ao,mu_in,C_center,m,ints)
|
||||
@ -748,7 +912,7 @@ subroutine NAI_pol_x_specify_mult_erf_ao(i_ao,j_ao,mu_in,C_center,m,ints)
|
||||
!
|
||||
! if m == 1 X(m) = x, m == 1 X(m) = y, m == 1 X(m) = z
|
||||
END_DOC
|
||||
include 'utils/constants.include.F'
|
||||
include 'utils/constants.include.F'
|
||||
integer, intent(in) :: i_ao,j_ao,m
|
||||
double precision, intent(in) :: mu_in, C_center(3)
|
||||
double precision, intent(out):: ints
|
||||
|
@ -22,15 +22,15 @@ subroutine overlap_gauss_xyz_r12_ao(D_center,delta,i,j,gauss_ints)
|
||||
power_B(1:3)= ao_power(j,1:3)
|
||||
B_center(1:3) = nucl_coord(num_B,1:3)
|
||||
do l=1,ao_prim_num(i)
|
||||
alpha = ao_expo_ordered_transp(l,i)
|
||||
alpha = ao_expo_ordered_transp(l,i)
|
||||
do k=1,ao_prim_num(j)
|
||||
beta = ao_expo_ordered_transp(k,j)
|
||||
beta = ao_expo_ordered_transp(k,j)
|
||||
call overlap_gauss_xyz_r12(D_center,delta,A_center,B_center,power_A,power_B,alpha,beta,gauss_ints_tmp)
|
||||
do m = 1, 3
|
||||
gauss_ints(m) += gauss_ints_tmp(m) * ao_coef_normalized_ordered_transp(l,i) &
|
||||
* ao_coef_normalized_ordered_transp(k,j)
|
||||
* ao_coef_normalized_ordered_transp(k,j)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
end
|
||||
|
||||
@ -61,13 +61,13 @@ double precision function overlap_gauss_xyz_r12_ao_specific(D_center,delta,i,j,m
|
||||
power_B(1:3)= ao_power(j,1:3)
|
||||
B_center(1:3) = nucl_coord(num_B,1:3)
|
||||
do l=1,ao_prim_num(i)
|
||||
alpha = ao_expo_ordered_transp(l,i)
|
||||
alpha = ao_expo_ordered_transp(l,i)
|
||||
do k=1,ao_prim_num(j)
|
||||
beta = ao_expo_ordered_transp(k,j)
|
||||
beta = ao_expo_ordered_transp(k,j)
|
||||
gauss_int = overlap_gauss_xyz_r12_specific(D_center,delta,A_center,B_center,power_A,power_B,alpha,beta,mx)
|
||||
overlap_gauss_xyz_r12_ao_specific = gauss_int * ao_coef_normalized_ordered_transp(l,i) &
|
||||
* ao_coef_normalized_ordered_transp(k,j)
|
||||
enddo
|
||||
* ao_coef_normalized_ordered_transp(k,j)
|
||||
enddo
|
||||
enddo
|
||||
end
|
||||
|
||||
@ -90,13 +90,13 @@ subroutine overlap_gauss_r12_all_ao(D_center,delta,aos_ints)
|
||||
power_B(1:3)= ao_power(j,1:3)
|
||||
B_center(1:3) = nucl_coord(num_B,1:3)
|
||||
do l=1,ao_prim_num(i)
|
||||
alpha = ao_expo_ordered_transp(l,i)
|
||||
alpha = ao_expo_ordered_transp(l,i)
|
||||
do k=1,ao_prim_num(j)
|
||||
beta = ao_expo_ordered_transp(k,j)
|
||||
beta = ao_expo_ordered_transp(k,j)
|
||||
analytical_j = overlap_gauss_r12(D_center,delta,A_center,B_center,power_A,power_B,alpha,beta)
|
||||
aos_ints(j,i) += analytical_j * ao_coef_normalized_ordered_transp(l,i) &
|
||||
* ao_coef_normalized_ordered_transp(k,j)
|
||||
enddo
|
||||
* ao_coef_normalized_ordered_transp(k,j)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
@ -114,7 +114,7 @@ double precision function overlap_gauss_r12_ao(D_center, delta, i, j)
|
||||
implicit none
|
||||
integer, intent(in) :: i, j
|
||||
double precision, intent(in) :: D_center(3), delta
|
||||
|
||||
|
||||
integer :: power_A(3), power_B(3), l, k
|
||||
double precision :: A_center(3), B_center(3), alpha, beta, coef, coef1, analytical_j
|
||||
|
||||
@ -133,23 +133,75 @@ double precision function overlap_gauss_r12_ao(D_center, delta, i, j)
|
||||
B_center(1:3) = nucl_coord(ao_nucl(j),1:3)
|
||||
|
||||
do l = 1, ao_prim_num(i)
|
||||
alpha = ao_expo_ordered_transp (l,i)
|
||||
coef1 = ao_coef_normalized_ordered_transp(l,i)
|
||||
alpha = ao_expo_ordered_transp (l,i)
|
||||
coef1 = ao_coef_normalized_ordered_transp(l,i)
|
||||
|
||||
do k = 1, ao_prim_num(j)
|
||||
beta = ao_expo_ordered_transp(k,j)
|
||||
coef = coef1 * ao_coef_normalized_ordered_transp(k,j)
|
||||
coef = coef1 * ao_coef_normalized_ordered_transp(k,j)
|
||||
|
||||
if(dabs(coef) .lt. 1d-12) cycle
|
||||
|
||||
analytical_j = overlap_gauss_r12(D_center, delta, A_center, B_center, power_A, power_B, alpha, beta)
|
||||
|
||||
overlap_gauss_r12_ao += coef * analytical_j
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
end function overlap_gauss_r12_ao
|
||||
|
||||
! --
|
||||
|
||||
subroutine overlap_gauss_r12_ao_v(D_center, delta, i, j, resv, n_points)
|
||||
|
||||
BEGIN_DOC
|
||||
! \int dr AO_i(r) AO_j(r) e^{-delta |r-D_center|^2}
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
integer, intent(in) :: i, j, n_points
|
||||
double precision, intent(in) :: D_center(n_points,3), delta
|
||||
double precision, intent(out) :: resv(n_points)
|
||||
|
||||
integer :: power_A(3), power_B(3), l, k
|
||||
double precision :: A_center(3), B_center(3), alpha, beta, coef, coef1
|
||||
double precision, allocatable :: analytical_j(:)
|
||||
|
||||
double precision, external :: overlap_gauss_r12
|
||||
integer :: ipoint
|
||||
|
||||
resv(:) = 0.d0
|
||||
if(ao_overlap_abs(j,i).lt.1.d-12) then
|
||||
return
|
||||
endif
|
||||
|
||||
power_A(1:3) = ao_power(i,1:3)
|
||||
power_B(1:3) = ao_power(j,1:3)
|
||||
|
||||
A_center(1:3) = nucl_coord(ao_nucl(i),1:3)
|
||||
B_center(1:3) = nucl_coord(ao_nucl(j),1:3)
|
||||
|
||||
allocate(analytical_j(n_points))
|
||||
do l = 1, ao_prim_num(i)
|
||||
alpha = ao_expo_ordered_transp (l,i)
|
||||
coef1 = ao_coef_normalized_ordered_transp(l,i)
|
||||
|
||||
do k = 1, ao_prim_num(j)
|
||||
beta = ao_expo_ordered_transp(k,j)
|
||||
coef = coef1 * ao_coef_normalized_ordered_transp(k,j)
|
||||
|
||||
if(dabs(coef) .lt. 1d-12) cycle
|
||||
|
||||
call overlap_gauss_r12_v(D_center, delta, A_center, B_center, power_A, power_B, alpha, beta, analytical_j, n_points)
|
||||
do ipoint=1, n_points
|
||||
resv(ipoint) = resv(ipoint) + coef*analytical_j(ipoint)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
deallocate(analytical_j)
|
||||
|
||||
end
|
||||
|
||||
! ---
|
||||
|
||||
double precision function overlap_gauss_r12_ao_with1s(B_center, beta, D_center, delta, i, j)
|
||||
@ -163,14 +215,13 @@ double precision function overlap_gauss_r12_ao_with1s(B_center, beta, D_center,
|
||||
implicit none
|
||||
integer, intent(in) :: i, j
|
||||
double precision, intent(in) :: B_center(3), beta, D_center(3), delta
|
||||
|
||||
|
||||
integer :: power_A1(3), power_A2(3), l, k
|
||||
double precision :: A1_center(3), A2_center(3), alpha1, alpha2, coef1, coef12, analytical_j
|
||||
double precision :: G_center(3), gama, fact_g, gama_inv
|
||||
|
||||
double precision, external :: overlap_gauss_r12, overlap_gauss_r12_ao
|
||||
|
||||
ASSERT(beta .gt. 0.d0)
|
||||
if(beta .lt. 1d-10) then
|
||||
overlap_gauss_r12_ao_with1s = overlap_gauss_r12_ao(D_center, delta, i, j)
|
||||
return
|
||||
@ -192,7 +243,7 @@ double precision function overlap_gauss_r12_ao_with1s(B_center, beta, D_center,
|
||||
fact_g = beta * delta * gama_inv * ( (B_center(1) - D_center(1)) * (B_center(1) - D_center(1)) &
|
||||
+ (B_center(2) - D_center(2)) * (B_center(2) - D_center(2)) &
|
||||
+ (B_center(3) - D_center(3)) * (B_center(3) - D_center(3)) )
|
||||
if(fact_g .gt. 80d0) return
|
||||
if(fact_g .gt. 10d0) return
|
||||
fact_g = dexp(-fact_g)
|
||||
|
||||
! ---
|
||||
@ -204,22 +255,118 @@ double precision function overlap_gauss_r12_ao_with1s(B_center, beta, D_center,
|
||||
A2_center(1:3) = nucl_coord(ao_nucl(j),1:3)
|
||||
|
||||
do l = 1, ao_prim_num(i)
|
||||
alpha1 = ao_expo_ordered_transp (l,i)
|
||||
alpha1 = ao_expo_ordered_transp (l,i)
|
||||
coef1 = fact_g * ao_coef_normalized_ordered_transp(l,i)
|
||||
!if(dabs(coef1) .lt. 1d-12) cycle
|
||||
if(dabs(coef1) .lt. 1d-12) cycle
|
||||
|
||||
do k = 1, ao_prim_num(j)
|
||||
alpha2 = ao_expo_ordered_transp (k,j)
|
||||
coef12 = coef1 * ao_coef_normalized_ordered_transp(k,j)
|
||||
coef12 = coef1 * ao_coef_normalized_ordered_transp(k,j)
|
||||
if(dabs(coef12) .lt. 1d-12) cycle
|
||||
|
||||
analytical_j = overlap_gauss_r12(G_center, gama, A1_center, A2_center, power_A1, power_A2, alpha1, alpha2)
|
||||
|
||||
overlap_gauss_r12_ao_with1s += coef12 * analytical_j
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
end function overlap_gauss_r12_ao_with1s
|
||||
|
||||
! ---
|
||||
|
||||
subroutine overlap_gauss_r12_ao_with1s_v(B_center, beta, D_center, delta, i, j, resv, n_points)
|
||||
BEGIN_DOC
|
||||
!
|
||||
! \int dr AO_i(r) AO_j(r) e^{-beta |r-B_center^2|} e^{-delta |r-D_center|^2}
|
||||
! using an array of D_centers.
|
||||
!
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
integer, intent(in) :: i, j, n_points
|
||||
double precision, intent(in) :: B_center(3), beta, D_center(n_points,3), delta
|
||||
double precision, intent(out) :: resv(n_points)
|
||||
|
||||
integer :: power_A1(3), power_A2(3), l, k
|
||||
double precision :: A1_center(3), A2_center(3), alpha1, alpha2, coef1
|
||||
double precision :: coef12, coef12f
|
||||
double precision :: gama, gama_inv
|
||||
double precision :: bg, dg, bdg
|
||||
|
||||
integer :: ipoint
|
||||
|
||||
double precision, allocatable :: fact_g(:), G_center(:,:), analytical_j(:)
|
||||
|
||||
if(ao_overlap_abs(j,i) .lt. 1.d-12) then
|
||||
return
|
||||
endif
|
||||
|
||||
ASSERT(beta .gt. 0.d0)
|
||||
|
||||
if(beta .lt. 1d-10) then
|
||||
call overlap_gauss_r12_ao_v(D_center, delta, i, j, resv, n_points)
|
||||
return
|
||||
endif
|
||||
|
||||
resv(:) = 0.d0
|
||||
|
||||
! e^{-beta |r-B_center^2|} e^{-delta |r-D_center|^2} = fact_g e^{-gama |r - G|^2}
|
||||
|
||||
gama = beta + delta
|
||||
gama_inv = 1.d0 / gama
|
||||
|
||||
power_A1(1:3) = ao_power(i,1:3)
|
||||
power_A2(1:3) = ao_power(j,1:3)
|
||||
|
||||
A1_center(1:3) = nucl_coord(ao_nucl(i),1:3)
|
||||
A2_center(1:3) = nucl_coord(ao_nucl(j),1:3)
|
||||
|
||||
allocate (fact_g(n_points), G_center(n_points,3), analytical_j(n_points) )
|
||||
|
||||
bg = beta * gama_inv
|
||||
dg = delta * gama_inv
|
||||
bdg = bg * delta
|
||||
do ipoint=1,n_points
|
||||
G_center(ipoint,1) = bg * B_center(1) + dg * D_center(ipoint,1)
|
||||
G_center(ipoint,2) = bg * B_center(2) + dg * D_center(ipoint,2)
|
||||
G_center(ipoint,3) = bg * B_center(3) + dg * D_center(ipoint,3)
|
||||
fact_g(ipoint) = bdg * ( &
|
||||
(B_center(1) - D_center(ipoint,1)) * (B_center(1) - D_center(ipoint,1)) &
|
||||
+ (B_center(2) - D_center(ipoint,2)) * (B_center(2) - D_center(ipoint,2)) &
|
||||
+ (B_center(3) - D_center(ipoint,3)) * (B_center(3) - D_center(ipoint,3)) )
|
||||
|
||||
if(fact_g(ipoint) < 10d0) then
|
||||
fact_g(ipoint) = dexp(-fact_g(ipoint))
|
||||
else
|
||||
fact_g(ipoint) = 0.d0
|
||||
endif
|
||||
|
||||
enddo
|
||||
|
||||
! ---
|
||||
|
||||
do l = 1, ao_prim_num(i)
|
||||
alpha1 = ao_expo_ordered_transp (l,i)
|
||||
coef1 = ao_coef_normalized_ordered_transp(l,i)
|
||||
|
||||
do k = 1, ao_prim_num(j)
|
||||
alpha2 = ao_expo_ordered_transp (k,j)
|
||||
coef12 = coef1 * ao_coef_normalized_ordered_transp(k,j)
|
||||
if(dabs(coef12) .lt. 1d-12) cycle
|
||||
|
||||
call overlap_gauss_r12_v(G_center, gama, A1_center,&
|
||||
A2_center, power_A1, power_A2, alpha1, alpha2, analytical_j, n_points)
|
||||
|
||||
do ipoint=1,n_points
|
||||
coef12f = coef12 * fact_g(ipoint)
|
||||
resv(ipoint) += coef12f * analytical_j(ipoint)
|
||||
end do
|
||||
|
||||
enddo
|
||||
enddo
|
||||
deallocate (fact_g, G_center, analytical_j )
|
||||
|
||||
|
||||
end
|
||||
|
||||
|
||||
|
@ -11,78 +11,65 @@ BEGIN_PROVIDER [ double precision, int2_grad1u2_grad2u2_j1b2, (ao_num, ao_num, n
|
||||
|
||||
implicit none
|
||||
integer :: i, j, ipoint, i_1s, i_fit
|
||||
double precision :: r(3), int_fit, expo_fit, coef_fit
|
||||
double precision :: r(3), expo_fit, coef_fit
|
||||
double precision :: coef, beta, B_center(3)
|
||||
double precision :: tmp
|
||||
double precision :: wall0, wall1
|
||||
|
||||
double precision, allocatable :: int_fit_v(:)
|
||||
double precision, external :: overlap_gauss_r12_ao_with1s
|
||||
|
||||
provide mu_erf final_grid_points j1b_pen
|
||||
provide mu_erf final_grid_points_transp j1b_pen
|
||||
call wall_time(wall0)
|
||||
|
||||
int2_grad1u2_grad2u2_j1b2 = 0.d0
|
||||
int2_grad1u2_grad2u2_j1b2(:,:,:) = 0.d0
|
||||
|
||||
!$OMP PARALLEL DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (ipoint, i, j, i_1s, i_fit, r, coef, beta, B_center, &
|
||||
!$OMP coef_fit, expo_fit, int_fit, tmp) &
|
||||
!$OMP SHARED (n_points_final_grid, ao_num, List_all_comb_b3_size, &
|
||||
!$OMP final_grid_points, n_max_fit_slat, &
|
||||
!$OMP expo_gauss_1_erf_x_2, coef_gauss_1_erf_x_2, &
|
||||
!$OMP List_all_comb_b3_coef, List_all_comb_b3_expo, &
|
||||
!$OMP List_all_comb_b3_cent, int2_grad1u2_grad2u2_j1b2)
|
||||
!$OMP DO
|
||||
do ipoint = 1, n_points_final_grid
|
||||
r(1) = final_grid_points(1,ipoint)
|
||||
r(2) = final_grid_points(2,ipoint)
|
||||
r(3) = final_grid_points(3,ipoint)
|
||||
!$OMP PARALLEL DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (ipoint, i, j, i_1s, i_fit, r, coef, beta, B_center,&
|
||||
!$OMP coef_fit, expo_fit, int_fit_v, tmp) &
|
||||
!$OMP SHARED (n_points_final_grid, ao_num, List_all_comb_b3_size,&
|
||||
!$OMP final_grid_points_transp, n_max_fit_slat, &
|
||||
!$OMP expo_gauss_1_erf_x_2, coef_gauss_1_erf_x_2, &
|
||||
!$OMP List_all_comb_b3_coef, List_all_comb_b3_expo, &
|
||||
!$OMP List_all_comb_b3_cent, int2_grad1u2_grad2u2_j1b2,&
|
||||
!$OMP ao_overlap_abs)
|
||||
|
||||
do i = 1, ao_num
|
||||
do j = i, ao_num
|
||||
allocate(int_fit_v(n_points_final_grid))
|
||||
!$OMP DO SCHEDULE(dynamic)
|
||||
do i = 1, ao_num
|
||||
do j = i, ao_num
|
||||
|
||||
tmp = 0.d0
|
||||
do i_fit = 1, n_max_fit_slat
|
||||
if(ao_overlap_abs(j,i) .lt. 1.d-12) then
|
||||
cycle
|
||||
endif
|
||||
|
||||
expo_fit = expo_gauss_1_erf_x_2(i_fit)
|
||||
coef_fit = coef_gauss_1_erf_x_2(i_fit)
|
||||
do i_1s = 1, List_all_comb_b3_size
|
||||
|
||||
! ---
|
||||
coef = List_all_comb_b3_coef (i_1s)
|
||||
beta = List_all_comb_b3_expo (i_1s)
|
||||
B_center(1) = List_all_comb_b3_cent(1,i_1s)
|
||||
B_center(2) = List_all_comb_b3_cent(2,i_1s)
|
||||
B_center(3) = List_all_comb_b3_cent(3,i_1s)
|
||||
|
||||
coef = List_all_comb_b3_coef (1)
|
||||
beta = List_all_comb_b3_expo (1)
|
||||
B_center(1) = List_all_comb_b3_cent(1,1)
|
||||
B_center(2) = List_all_comb_b3_cent(2,1)
|
||||
B_center(3) = List_all_comb_b3_cent(3,1)
|
||||
do i_fit = 1, n_max_fit_slat
|
||||
|
||||
int_fit = overlap_gauss_r12_ao_with1s(B_center, beta, r, expo_fit, i, j)
|
||||
if(dabs(int_fit) .lt. 1d-10) cycle
|
||||
expo_fit = expo_gauss_1_erf_x_2(i_fit)
|
||||
coef_fit = -0.25d0 * coef_gauss_1_erf_x_2(i_fit) * coef
|
||||
|
||||
tmp += -0.25d0 * coef * coef_fit * int_fit
|
||||
call overlap_gauss_r12_ao_with1s_v(B_center, beta, final_grid_points_transp, &
|
||||
expo_fit, i, j, int_fit_v, n_points_final_grid)
|
||||
|
||||
! ---
|
||||
do ipoint = 1, n_points_final_grid
|
||||
int2_grad1u2_grad2u2_j1b2(j,i,ipoint) += coef_fit * int_fit_v(ipoint)
|
||||
enddo
|
||||
|
||||
do i_1s = 2, List_all_comb_b3_size
|
||||
enddo
|
||||
|
||||
coef = List_all_comb_b3_coef (i_1s)
|
||||
beta = List_all_comb_b3_expo (i_1s)
|
||||
B_center(1) = List_all_comb_b3_cent(1,i_1s)
|
||||
B_center(2) = List_all_comb_b3_cent(2,i_1s)
|
||||
B_center(3) = List_all_comb_b3_cent(3,i_1s)
|
||||
|
||||
int_fit = overlap_gauss_r12_ao_with1s(B_center, beta, r, expo_fit, i, j)
|
||||
|
||||
tmp += -0.25d0 * coef * coef_fit * int_fit
|
||||
enddo
|
||||
|
||||
! ---
|
||||
|
||||
enddo
|
||||
|
||||
int2_grad1u2_grad2u2_j1b2(j,i,ipoint) = tmp
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
deallocate(int_fit_v)
|
||||
!$OMP END PARALLEL
|
||||
|
||||
do ipoint = 1, n_points_final_grid
|
||||
@ -96,7 +83,7 @@ BEGIN_PROVIDER [ double precision, int2_grad1u2_grad2u2_j1b2, (ao_num, ao_num, n
|
||||
call wall_time(wall1)
|
||||
print*, ' wall time for int2_grad1u2_grad2u2_j1b2', wall1 - wall0
|
||||
|
||||
END_PROVIDER
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
||||
@ -109,79 +96,60 @@ BEGIN_PROVIDER [ double precision, int2_u2_j1b2, (ao_num, ao_num, n_points_final
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
integer :: i, j, ipoint, i_1s, i_fit
|
||||
double precision :: r(3), int_fit, expo_fit, coef_fit
|
||||
double precision :: coef, beta, B_center(3), tmp
|
||||
double precision :: wall0, wall1
|
||||
integer :: i, j, ipoint, i_1s, i_fit
|
||||
double precision :: r(3), expo_fit, coef_fit
|
||||
double precision :: coef, beta, B_center(3), tmp
|
||||
double precision :: wall0, wall1
|
||||
double precision, allocatable :: int_fit_v(:)
|
||||
|
||||
double precision, external :: overlap_gauss_r12_ao_with1s
|
||||
double precision, external :: overlap_gauss_r12_ao_with1s
|
||||
|
||||
provide mu_erf final_grid_points j1b_pen
|
||||
provide mu_erf final_grid_points_transp j1b_pen
|
||||
call wall_time(wall0)
|
||||
|
||||
int2_u2_j1b2 = 0.d0
|
||||
int2_u2_j1b2(:,:,:) = 0.d0
|
||||
|
||||
!$OMP PARALLEL DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (ipoint, i, j, i_1s, i_fit, r, coef, beta, B_center, &
|
||||
!$OMP coef_fit, expo_fit, int_fit, tmp) &
|
||||
!$OMP SHARED (n_points_final_grid, ao_num, List_all_comb_b3_size, &
|
||||
!$OMP final_grid_points, n_max_fit_slat, &
|
||||
!$OMP expo_gauss_j_mu_x_2, coef_gauss_j_mu_x_2, &
|
||||
!$OMP List_all_comb_b3_coef, List_all_comb_b3_expo, &
|
||||
!$OMP List_all_comb_b3_cent, int2_u2_j1b2)
|
||||
!$OMP DO
|
||||
do ipoint = 1, n_points_final_grid
|
||||
r(1) = final_grid_points(1,ipoint)
|
||||
r(2) = final_grid_points(2,ipoint)
|
||||
r(3) = final_grid_points(3,ipoint)
|
||||
!$OMP PARALLEL DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (ipoint, i, j, i_1s, i_fit, r, coef, beta, B_center,&
|
||||
!$OMP coef_fit, expo_fit, int_fit_v) &
|
||||
!$OMP SHARED (n_points_final_grid, ao_num, List_all_comb_b3_size,&
|
||||
!$OMP final_grid_points_transp, n_max_fit_slat, &
|
||||
!$OMP expo_gauss_j_mu_x_2, coef_gauss_j_mu_x_2, &
|
||||
!$OMP List_all_comb_b3_coef, List_all_comb_b3_expo, &
|
||||
!$OMP List_all_comb_b3_cent, int2_u2_j1b2)
|
||||
allocate(int_fit_v(n_points_final_grid))
|
||||
!$OMP DO SCHEDULE(dynamic)
|
||||
do i = 1, ao_num
|
||||
do j = i, ao_num
|
||||
|
||||
do i = 1, ao_num
|
||||
do j = i, ao_num
|
||||
do i_1s = 1, List_all_comb_b3_size
|
||||
|
||||
coef = List_all_comb_b3_coef (i_1s)
|
||||
beta = List_all_comb_b3_expo (i_1s)
|
||||
B_center(1) = List_all_comb_b3_cent(1,i_1s)
|
||||
B_center(2) = List_all_comb_b3_cent(2,i_1s)
|
||||
B_center(3) = List_all_comb_b3_cent(3,i_1s)
|
||||
|
||||
tmp = 0.d0
|
||||
do i_fit = 1, n_max_fit_slat
|
||||
|
||||
expo_fit = expo_gauss_j_mu_x_2(i_fit)
|
||||
coef_fit = coef_gauss_j_mu_x_2(i_fit)
|
||||
coef_fit = coef_gauss_j_mu_x_2(i_fit) * coef
|
||||
|
||||
! ---
|
||||
call overlap_gauss_r12_ao_with1s_v(B_center, beta, final_grid_points_transp, &
|
||||
expo_fit, i, j, int_fit_v, n_points_final_grid)
|
||||
|
||||
coef = List_all_comb_b3_coef (1)
|
||||
beta = List_all_comb_b3_expo (1)
|
||||
B_center(1) = List_all_comb_b3_cent(1,1)
|
||||
B_center(2) = List_all_comb_b3_cent(2,1)
|
||||
B_center(3) = List_all_comb_b3_cent(3,1)
|
||||
|
||||
int_fit = overlap_gauss_r12_ao_with1s(B_center, beta, r, expo_fit, i, j)
|
||||
if(dabs(int_fit) .lt. 1d-10) cycle
|
||||
|
||||
tmp += coef * coef_fit * int_fit
|
||||
|
||||
! ---
|
||||
|
||||
do i_1s = 2, List_all_comb_b3_size
|
||||
|
||||
coef = List_all_comb_b3_coef (i_1s)
|
||||
beta = List_all_comb_b3_expo (i_1s)
|
||||
B_center(1) = List_all_comb_b3_cent(1,i_1s)
|
||||
B_center(2) = List_all_comb_b3_cent(2,i_1s)
|
||||
B_center(3) = List_all_comb_b3_cent(3,i_1s)
|
||||
|
||||
int_fit = overlap_gauss_r12_ao_with1s(B_center, beta, r, expo_fit, i, j)
|
||||
|
||||
tmp += coef * coef_fit * int_fit
|
||||
do ipoint = 1, n_points_final_grid
|
||||
int2_u2_j1b2(j,i,ipoint) += coef_fit * int_fit_v(ipoint)
|
||||
enddo
|
||||
|
||||
! ---
|
||||
|
||||
enddo
|
||||
|
||||
int2_u2_j1b2(j,i,ipoint) = tmp
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
!$OMP END DO
|
||||
deallocate(int_fit_v)
|
||||
!$OMP END PARALLEL
|
||||
|
||||
do ipoint = 1, n_points_final_grid
|
||||
do i = 2, ao_num
|
||||
@ -194,7 +162,7 @@ BEGIN_PROVIDER [ double precision, int2_u2_j1b2, (ao_num, ao_num, n_points_final
|
||||
call wall_time(wall1)
|
||||
print*, ' wall time for int2_u2_j1b2', wall1 - wall0
|
||||
|
||||
END_PROVIDER
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
||||
@ -207,117 +175,98 @@ BEGIN_PROVIDER [ double precision, int2_u_grad1u_x_j1b2, (3, ao_num, ao_num, n_p
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
integer :: i, j, ipoint, i_1s, i_fit
|
||||
double precision :: r(3), int_fit(3), expo_fit, coef_fit
|
||||
double precision :: coef, beta, B_center(3), dist
|
||||
double precision :: alpha_1s, alpha_1s_inv, centr_1s(3), expo_coef_1s, coef_tmp
|
||||
double precision :: tmp_x, tmp_y, tmp_z
|
||||
double precision :: wall0, wall1
|
||||
integer :: i, j, ipoint, i_1s, i_fit
|
||||
double precision :: r(3), expo_fit, coef_fit
|
||||
double precision :: coef, beta, B_center(3)
|
||||
double precision :: alpha_1s, alpha_1s_inv, expo_coef_1s, coef_tmp
|
||||
double precision :: tmp_x, tmp_y, tmp_z
|
||||
double precision :: wall0, wall1
|
||||
double precision, allocatable :: int_fit_v(:,:), dist(:), centr_1s(:,:)
|
||||
|
||||
provide mu_erf final_grid_points j1b_pen
|
||||
provide mu_erf final_grid_points_transp j1b_pen
|
||||
call wall_time(wall0)
|
||||
|
||||
int2_u_grad1u_x_j1b2 = 0.d0
|
||||
|
||||
!$OMP PARALLEL DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (ipoint, i, j, i_1s, i_fit, r, coef, beta, B_center, &
|
||||
!$OMP coef_fit, expo_fit, int_fit, alpha_1s, dist, &
|
||||
!$OMP alpha_1s_inv, centr_1s, expo_coef_1s, coef_tmp, &
|
||||
!$OMP tmp_x, tmp_y, tmp_z) &
|
||||
!$OMP SHARED (n_points_final_grid, ao_num, List_all_comb_b3_size, &
|
||||
!$OMP final_grid_points, n_max_fit_slat, &
|
||||
!$OMP expo_gauss_j_mu_1_erf, coef_gauss_j_mu_1_erf, &
|
||||
!$OMP List_all_comb_b3_coef, List_all_comb_b3_expo, &
|
||||
!$OMP List_all_comb_b3_cent, int2_u_grad1u_x_j1b2)
|
||||
!$OMP DO
|
||||
allocate(dist(n_points_final_grid), centr_1s(n_points_final_grid,3))
|
||||
do ipoint = 1, n_points_final_grid
|
||||
r(1) = final_grid_points(1,ipoint)
|
||||
r(2) = final_grid_points(2,ipoint)
|
||||
r(3) = final_grid_points(3,ipoint)
|
||||
r(1) = final_grid_points_transp(ipoint,1)
|
||||
r(2) = final_grid_points_transp(ipoint,2)
|
||||
r(3) = final_grid_points_transp(ipoint,3)
|
||||
|
||||
do i = 1, ao_num
|
||||
do j = i, ao_num
|
||||
dist(ipoint) = (B_center(1) - r(1)) * (B_center(1) - r(1)) &
|
||||
+ (B_center(2) - r(2)) * (B_center(2) - r(2)) &
|
||||
+ (B_center(3) - r(3)) * (B_center(3) - r(3))
|
||||
enddo
|
||||
|
||||
tmp_x = 0.d0
|
||||
tmp_y = 0.d0
|
||||
tmp_z = 0.d0
|
||||
do i_fit = 1, n_max_fit_slat
|
||||
int2_u_grad1u_x_j1b2(:,:,:,:) = 0.d0
|
||||
|
||||
expo_fit = expo_gauss_j_mu_1_erf(i_fit)
|
||||
coef_fit = coef_gauss_j_mu_1_erf(i_fit)
|
||||
!$OMP PARALLEL DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (ipoint, i, j, i_1s, i_fit, r, coef, beta, B_center,&
|
||||
!$OMP coef_fit, expo_fit, int_fit_v, alpha_1s, &
|
||||
!$OMP alpha_1s_inv, centr_1s, expo_coef_1s, coef_tmp, &
|
||||
!$OMP tmp_x, tmp_y, tmp_z) &
|
||||
!$OMP SHARED (n_points_final_grid, ao_num, List_all_comb_b3_size,&
|
||||
!$OMP final_grid_points_transp, n_max_fit_slat, dist, &
|
||||
!$OMP expo_gauss_j_mu_1_erf, coef_gauss_j_mu_1_erf, &
|
||||
!$OMP List_all_comb_b3_coef, List_all_comb_b3_expo, &
|
||||
!$OMP List_all_comb_b3_cent, int2_u_grad1u_x_j1b2)
|
||||
allocate(int_fit_v(n_points_final_grid,3))
|
||||
|
||||
! ---
|
||||
do i_1s = 1, List_all_comb_b3_size
|
||||
|
||||
coef = List_all_comb_b3_coef (1)
|
||||
beta = List_all_comb_b3_expo (1)
|
||||
B_center(1) = List_all_comb_b3_cent(1,1)
|
||||
B_center(2) = List_all_comb_b3_cent(2,1)
|
||||
B_center(3) = List_all_comb_b3_cent(3,1)
|
||||
dist = (B_center(1) - r(1)) * (B_center(1) - r(1)) &
|
||||
+ (B_center(2) - r(2)) * (B_center(2) - r(2)) &
|
||||
+ (B_center(3) - r(3)) * (B_center(3) - r(3))
|
||||
coef = List_all_comb_b3_coef (i_1s)
|
||||
beta = List_all_comb_b3_expo (i_1s)
|
||||
B_center(1) = List_all_comb_b3_cent(1,i_1s)
|
||||
B_center(2) = List_all_comb_b3_cent(2,i_1s)
|
||||
B_center(3) = List_all_comb_b3_cent(3,i_1s)
|
||||
|
||||
alpha_1s = beta + expo_fit
|
||||
alpha_1s_inv = 1.d0 / alpha_1s
|
||||
do i_fit = 1, n_max_fit_slat
|
||||
|
||||
centr_1s(1) = alpha_1s_inv * (beta * B_center(1) + expo_fit * r(1))
|
||||
centr_1s(2) = alpha_1s_inv * (beta * B_center(2) + expo_fit * r(2))
|
||||
centr_1s(3) = alpha_1s_inv * (beta * B_center(3) + expo_fit * r(3))
|
||||
expo_fit = expo_gauss_j_mu_1_erf(i_fit)
|
||||
coef_fit = coef_gauss_j_mu_1_erf(i_fit) * coef
|
||||
|
||||
expo_coef_1s = beta * expo_fit * alpha_1s_inv * dist
|
||||
coef_tmp = coef * coef_fit * dexp(-expo_coef_1s)
|
||||
if(dabs(coef_tmp) .lt. 1d-10) cycle
|
||||
|
||||
call NAI_pol_x_mult_erf_ao_with1s(i, j, alpha_1s, centr_1s, 1.d+9, r, int_fit)
|
||||
if( (dabs(int_fit(1)) + dabs(int_fit(2)) + dabs(int_fit(3))) .lt. 3d-10 ) cycle
|
||||
alpha_1s = beta + expo_fit
|
||||
alpha_1s_inv = 1.d0 / alpha_1s
|
||||
|
||||
tmp_x += coef_tmp * int_fit(1)
|
||||
tmp_y += coef_tmp * int_fit(2)
|
||||
tmp_z += coef_tmp * int_fit(3)
|
||||
do ipoint = 1, n_points_final_grid
|
||||
r(1) = final_grid_points_transp(ipoint,1)
|
||||
r(2) = final_grid_points_transp(ipoint,2)
|
||||
r(3) = final_grid_points_transp(ipoint,3)
|
||||
|
||||
! ---
|
||||
centr_1s(ipoint,1) = alpha_1s_inv * (beta * B_center(1) + expo_fit * r(1))
|
||||
centr_1s(ipoint,2) = alpha_1s_inv * (beta * B_center(2) + expo_fit * r(2))
|
||||
centr_1s(ipoint,3) = alpha_1s_inv * (beta * B_center(3) + expo_fit * r(3))
|
||||
enddo
|
||||
|
||||
do i_1s = 2, List_all_comb_b3_size
|
||||
|
||||
coef = List_all_comb_b3_coef (i_1s)
|
||||
beta = List_all_comb_b3_expo (i_1s)
|
||||
B_center(1) = List_all_comb_b3_cent(1,i_1s)
|
||||
B_center(2) = List_all_comb_b3_cent(2,i_1s)
|
||||
B_center(3) = List_all_comb_b3_cent(3,i_1s)
|
||||
dist = (B_center(1) - r(1)) * (B_center(1) - r(1)) &
|
||||
+ (B_center(2) - r(2)) * (B_center(2) - r(2)) &
|
||||
+ (B_center(3) - r(3)) * (B_center(3) - r(3))
|
||||
expo_coef_1s = beta * expo_fit * alpha_1s_inv
|
||||
!$OMP BARRIER
|
||||
!$OMP DO SCHEDULE(dynamic)
|
||||
do i = 1, ao_num
|
||||
do j = i, ao_num
|
||||
call NAI_pol_x_mult_erf_ao_with1s_v(i, j, alpha_1s, centr_1s,&
|
||||
1.d+9, final_grid_points_transp, int_fit_v, n_points_final_grid)
|
||||
|
||||
alpha_1s = beta + expo_fit
|
||||
alpha_1s_inv = 1.d0 / alpha_1s
|
||||
|
||||
centr_1s(1) = alpha_1s_inv * (beta * B_center(1) + expo_fit * r(1))
|
||||
centr_1s(2) = alpha_1s_inv * (beta * B_center(2) + expo_fit * r(2))
|
||||
centr_1s(3) = alpha_1s_inv * (beta * B_center(3) + expo_fit * r(3))
|
||||
|
||||
expo_coef_1s = beta * expo_fit * alpha_1s_inv * dist
|
||||
coef_tmp = coef * coef_fit * dexp(-expo_coef_1s)
|
||||
if(dabs(coef_tmp) .lt. 1d-10) cycle
|
||||
|
||||
call NAI_pol_x_mult_erf_ao_with1s(i, j, alpha_1s, centr_1s, 1.d+9, r, int_fit)
|
||||
|
||||
tmp_x += coef_tmp * int_fit(1)
|
||||
tmp_y += coef_tmp * int_fit(2)
|
||||
tmp_z += coef_tmp * int_fit(3)
|
||||
do ipoint = 1, n_points_final_grid
|
||||
coef_tmp = coef_fit * dexp(-expo_coef_1s* dist(ipoint))
|
||||
int2_u_grad1u_x_j1b2(1,j,i,ipoint) = &
|
||||
int2_u_grad1u_x_j1b2(1,j,i,ipoint) + coef_tmp * int_fit_v(ipoint,1)
|
||||
int2_u_grad1u_x_j1b2(2,j,i,ipoint) = &
|
||||
int2_u_grad1u_x_j1b2(2,j,i,ipoint) + coef_tmp * int_fit_v(ipoint,2)
|
||||
int2_u_grad1u_x_j1b2(3,j,i,ipoint) = &
|
||||
int2_u_grad1u_x_j1b2(3,j,i,ipoint) + coef_tmp * int_fit_v(ipoint,3)
|
||||
enddo
|
||||
|
||||
! ---
|
||||
|
||||
enddo
|
||||
|
||||
int2_u_grad1u_x_j1b2(1,j,i,ipoint) = tmp_x
|
||||
int2_u_grad1u_x_j1b2(2,j,i,ipoint) = tmp_y
|
||||
int2_u_grad1u_x_j1b2(3,j,i,ipoint) = tmp_z
|
||||
enddo
|
||||
!$OMP END DO NOWAIT
|
||||
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
deallocate(int_fit_v)
|
||||
!$OMP END PARALLEL
|
||||
|
||||
deallocate(dist)
|
||||
|
||||
do ipoint = 1, n_points_final_grid
|
||||
do i = 2, ao_num
|
||||
@ -332,7 +281,7 @@ BEGIN_PROVIDER [ double precision, int2_u_grad1u_x_j1b2, (3, ao_num, ao_num, n_p
|
||||
call wall_time(wall1)
|
||||
print*, ' wall time for int2_u_grad1u_x_j1b2', wall1 - wall0
|
||||
|
||||
END_PROVIDER
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
||||
@ -360,11 +309,11 @@ BEGIN_PROVIDER [ double precision, int2_u_grad1u_j1b2, (ao_num, ao_num, n_points
|
||||
!$OMP PARALLEL DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (ipoint, i, j, i_1s, i_fit, r, coef, beta, B_center, &
|
||||
!$OMP coef_fit, expo_fit, int_fit, tmp, alpha_1s, dist, &
|
||||
!$OMP alpha_1s_inv, centr_1s, expo_coef_1s, coef_tmp) &
|
||||
!$OMP SHARED (n_points_final_grid, ao_num, List_all_comb_b3_size, &
|
||||
!$OMP alpha_1s_inv, centr_1s, expo_coef_1s, coef_tmp) &
|
||||
!$OMP SHARED (n_points_final_grid, ao_num, List_all_comb_b3_size, &
|
||||
!$OMP final_grid_points, n_max_fit_slat, &
|
||||
!$OMP expo_gauss_j_mu_1_erf, coef_gauss_j_mu_1_erf, &
|
||||
!$OMP List_all_comb_b3_coef, List_all_comb_b3_expo, &
|
||||
!$OMP List_all_comb_b3_coef, List_all_comb_b3_expo, &
|
||||
!$OMP List_all_comb_b3_cent, int2_u_grad1u_j1b2)
|
||||
!$OMP DO
|
||||
do ipoint = 1, n_points_final_grid
|
||||
@ -420,15 +369,13 @@ BEGIN_PROVIDER [ double precision, int2_u_grad1u_j1b2, (ao_num, ao_num, n_points
|
||||
+ (B_center(3) - r(3)) * (B_center(3) - r(3))
|
||||
|
||||
alpha_1s = beta + expo_fit
|
||||
alpha_1s_inv = 1.d0 / alpha_1s
|
||||
alpha_1s_inv = 1.d0 / alpha_1s
|
||||
centr_1s(1) = alpha_1s_inv * (beta * B_center(1) + expo_fit * r(1))
|
||||
centr_1s(2) = alpha_1s_inv * (beta * B_center(2) + expo_fit * r(2))
|
||||
centr_1s(3) = alpha_1s_inv * (beta * B_center(3) + expo_fit * r(3))
|
||||
|
||||
expo_coef_1s = beta * expo_fit * alpha_1s_inv * dist
|
||||
coef_tmp = coef * coef_fit * dexp(-expo_coef_1s)
|
||||
if(dabs(coef_tmp) .lt. 1d-10) cycle
|
||||
|
||||
int_fit = NAI_pol_mult_erf_ao_with1s(i, j, alpha_1s, centr_1s, 1.d+9, r)
|
||||
|
||||
tmp += coef_tmp * int_fit
|
||||
@ -456,7 +403,7 @@ BEGIN_PROVIDER [ double precision, int2_u_grad1u_j1b2, (ao_num, ao_num, n_points
|
||||
call wall_time(wall1)
|
||||
print*, ' wall time for int2_u_grad1u_j1b2', wall1 - wall0
|
||||
|
||||
END_PROVIDER
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
||||
|
@ -63,7 +63,6 @@ END_PROVIDER
|
||||
tmp_cent_z += tmp_alphaj * nucl_coord(j,3)
|
||||
enddo
|
||||
|
||||
ASSERT(List_all_comb_b2_expo(i) .gt. 0d0)
|
||||
if(List_all_comb_b2_expo(i) .lt. 1d-10) cycle
|
||||
|
||||
List_all_comb_b2_cent(1,i) = tmp_cent_x / List_all_comb_b2_expo(i)
|
||||
@ -169,7 +168,7 @@ END_PROVIDER
|
||||
|
||||
do j = 1, nucl_num
|
||||
tmp_alphaj = dble(List_all_comb_b3(j,i)) * j1b_pen(j)
|
||||
|
||||
print*,List_all_comb_b3(j,i),j1b_pen(j)
|
||||
List_all_comb_b3_expo(i) += tmp_alphaj
|
||||
List_all_comb_b3_cent(1,i) += tmp_alphaj * nucl_coord(j,1)
|
||||
List_all_comb_b3_cent(2,i) += tmp_alphaj * nucl_coord(j,2)
|
||||
@ -177,8 +176,8 @@ END_PROVIDER
|
||||
|
||||
enddo
|
||||
|
||||
ASSERT(List_all_comb_b3_expo(i) .gt. 0d0)
|
||||
if(List_all_comb_b3_expo(i) .lt. 1d-10) cycle
|
||||
ASSERT(List_all_comb_b3_expo(i) .gt. 0d0)
|
||||
|
||||
List_all_comb_b3_cent(1,i) = List_all_comb_b3_cent(1,i) / List_all_comb_b3_expo(i)
|
||||
List_all_comb_b3_cent(2,i) = List_all_comb_b3_cent(2,i) / List_all_comb_b3_expo(i)
|
||||
|
@ -1,67 +1,139 @@
|
||||
|
||||
double precision function overlap_gauss_r12(D_center,delta,A_center,B_center,power_A,power_B,alpha,beta)
|
||||
BEGIN_DOC
|
||||
! Computes the following integral :
|
||||
!
|
||||
! .. math::
|
||||
!
|
||||
! .. math ::
|
||||
!
|
||||
! \int dr exp(-delta (r - D)^2 ) (x-A_x)^a (x-B_x)^b \exp(-\alpha (x-A_x)^2 - \beta (x-B_x)^2 )
|
||||
!
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
implicit none
|
||||
include 'constants.include.F'
|
||||
double precision, intent(in) :: D_center(3), delta ! pure gaussian "D"
|
||||
double precision, intent(in) :: A_center(3),B_center(3),alpha,beta ! gaussian/polynoms "A" and "B"
|
||||
integer, intent(in) :: power_A(3),power_B(3)
|
||||
double precision, intent(in) :: D_center(3), delta ! pure gaussian "D"
|
||||
double precision, intent(in) :: A_center(3),B_center(3),alpha,beta ! gaussian/polynoms "A" and "B"
|
||||
integer, intent(in) :: power_A(3),power_B(3)
|
||||
|
||||
double precision :: overlap_x,overlap_y,overlap_z,overlap
|
||||
! First you multiply the usual gaussian "A" with the gaussian exp(-delta (r - D)^2 )
|
||||
double precision :: A_new(0:max_dim,3)! new polynom
|
||||
double precision :: A_center_new(3) ! new center
|
||||
integer :: iorder_a_new(3) ! i_order(i) = order of the new polynom ==> should be equal to power_A
|
||||
double precision :: alpha_new ! new exponent
|
||||
double precision :: fact_a_new ! constant factor
|
||||
double precision :: accu,coefx,coefy,coefz,coefxy,coefxyz,thr
|
||||
integer :: d(3),i,lx,ly,lz,iorder_tmp(3),dim1
|
||||
dim1=100
|
||||
thr = 1.d-10
|
||||
d = 0 ! order of the polynom for the gaussian exp(-delta (r - D)^2 ) == 0
|
||||
double precision :: overlap_x,overlap_y,overlap_z,overlap
|
||||
! First you multiply the usual gaussian "A" with the gaussian exp(-delta (r - D)^2 )
|
||||
double precision :: A_new(0:max_dim,3)! new polynom
|
||||
double precision :: A_center_new(3) ! new center
|
||||
integer :: iorder_a_new(3) ! i_order(i) = order of the new polynom ==> should be equal to power_A
|
||||
double precision :: alpha_new ! new exponent
|
||||
double precision :: fact_a_new ! constant factor
|
||||
double precision :: accu,coefx,coefy,coefz,coefxy,coefxyz,thr
|
||||
integer :: d(3),i,lx,ly,lz,iorder_tmp(3),dim1
|
||||
dim1=100
|
||||
thr = 1.d-10
|
||||
d(:) = 0 ! order of the polynom for the gaussian exp(-delta (r - D)^2 ) == 0
|
||||
|
||||
! New gaussian/polynom defined by :: new pol new center new expo cst fact new order
|
||||
call give_explicit_poly_and_gaussian(A_new , A_center_new , alpha_new, fact_a_new , iorder_a_new , &
|
||||
delta,alpha,d,power_A,D_center,A_center,n_pt_max_integrals)
|
||||
! The new gaussian exp(-delta (r - D)^2 ) (x-A_x)^a \exp(-\alpha (x-A_x)^2
|
||||
accu = 0.d0
|
||||
do lx = 0, iorder_a_new(1)
|
||||
coefx = A_new(lx,1)
|
||||
if(dabs(coefx).lt.thr)cycle
|
||||
iorder_tmp(1) = lx
|
||||
do ly = 0, iorder_a_new(2)
|
||||
coefy = A_new(ly,2)
|
||||
coefxy = coefx * coefy
|
||||
if(dabs(coefxy).lt.thr)cycle
|
||||
iorder_tmp(2) = ly
|
||||
do lz = 0, iorder_a_new(3)
|
||||
coefz = A_new(lz,3)
|
||||
coefxyz = coefxy * coefz
|
||||
if(dabs(coefxyz).lt.thr)cycle
|
||||
iorder_tmp(3) = lz
|
||||
call overlap_gaussian_xyz(A_center_new,B_center,alpha_new,beta,iorder_tmp,power_B,overlap_x,overlap_y,overlap_z,overlap,dim1)
|
||||
accu += coefxyz * overlap
|
||||
enddo
|
||||
! New gaussian/polynom defined by :: new pol new center new expo cst fact new order
|
||||
call give_explicit_poly_and_gaussian(A_new , A_center_new , alpha_new, fact_a_new , iorder_a_new ,&
|
||||
delta,alpha,d,power_A,D_center,A_center,n_pt_max_integrals)
|
||||
! The new gaussian exp(-delta (r - D)^2 ) (x-A_x)^a \exp(-\alpha (x-A_x)^2
|
||||
accu = 0.d0
|
||||
do lx = 0, iorder_a_new(1)
|
||||
coefx = A_new(lx,1)
|
||||
if(dabs(coefx).lt.thr)cycle
|
||||
iorder_tmp(1) = lx
|
||||
do ly = 0, iorder_a_new(2)
|
||||
coefy = A_new(ly,2)
|
||||
coefxy = coefx * coefy
|
||||
if(dabs(coefxy).lt.thr)cycle
|
||||
iorder_tmp(2) = ly
|
||||
do lz = 0, iorder_a_new(3)
|
||||
coefz = A_new(lz,3)
|
||||
coefxyz = coefxy * coefz
|
||||
if(dabs(coefxyz).lt.thr)cycle
|
||||
iorder_tmp(3) = lz
|
||||
call overlap_gaussian_xyz(A_center_new,B_center,alpha_new,beta,iorder_tmp,power_B,overlap_x,overlap_y,overlap_z,overlap,dim1)
|
||||
accu += coefxyz * overlap
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
overlap_gauss_r12 = fact_a_new * accu
|
||||
overlap_gauss_r12 = fact_a_new * accu
|
||||
end
|
||||
|
||||
!---
|
||||
|
||||
subroutine overlap_gauss_r12_v(D_center,delta,A_center,B_center,power_A,power_B,alpha,beta,rvec,n_points)
|
||||
BEGIN_DOC
|
||||
! Computes the following integral :
|
||||
!
|
||||
! .. math ::
|
||||
!
|
||||
! \int dr exp(-delta (r - D)^2 ) (x-A_x)^a (x-B_x)^b \exp(-\alpha (x-A_x)^2 - \beta (x-B_x)^2 )
|
||||
! using an array of D_centers
|
||||
!
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
include 'constants.include.F'
|
||||
integer, intent(in) :: n_points
|
||||
double precision, intent(in) :: D_center(n_points,3), delta ! pure gaussian "D"
|
||||
double precision, intent(in) :: A_center(3),B_center(3),alpha,beta ! gaussian/polynoms "A" and "B"
|
||||
integer, intent(in) :: power_A(3),power_B(3)
|
||||
double precision, intent(out) :: rvec(n_points)
|
||||
|
||||
double precision, allocatable :: overlap(:)
|
||||
double precision :: overlap_x, overlap_y, overlap_z
|
||||
|
||||
integer :: maxab
|
||||
integer, allocatable :: iorder_a_new(:)
|
||||
double precision, allocatable :: A_new(:,:,:), A_center_new(:,:)
|
||||
double precision, allocatable :: fact_a_new(:)
|
||||
double precision :: alpha_new
|
||||
double precision :: accu,thr, coefxy
|
||||
integer :: d(3),i,lx,ly,lz,iorder_tmp(3),dim1, ipoint
|
||||
|
||||
dim1=100
|
||||
thr = 1.d-10
|
||||
d(:) = 0
|
||||
|
||||
maxab = maxval(power_A(1:3))
|
||||
|
||||
allocate (A_new(n_points, 0:maxab, 3), A_center_new(n_points, 3), &
|
||||
fact_a_new(n_points), iorder_a_new(3), overlap(n_points) )
|
||||
|
||||
call give_explicit_poly_and_gaussian_v(A_new, maxab, A_center_new, &
|
||||
alpha_new, fact_a_new, iorder_a_new , delta, alpha, d, power_A, &
|
||||
D_center, A_center, n_points)
|
||||
|
||||
do ipoint=1,n_points
|
||||
rvec(ipoint) = 0.d0
|
||||
enddo
|
||||
|
||||
do lx = 0, iorder_a_new(1)
|
||||
iorder_tmp(1) = lx
|
||||
do ly = 0, iorder_a_new(2)
|
||||
iorder_tmp(2) = ly
|
||||
do lz = 0, iorder_a_new(3)
|
||||
iorder_tmp(3) = lz
|
||||
call overlap_gaussian_xyz_v(A_center_new,B_center,alpha_new,beta,iorder_tmp,power_B,overlap,dim1,n_points)
|
||||
do ipoint=1,n_points
|
||||
rvec(ipoint) = rvec(ipoint) + A_new(ipoint,lx,1) * &
|
||||
A_new(ipoint,ly,2) * &
|
||||
A_new(ipoint,lz,3) * overlap(ipoint)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
do ipoint=1,n_points
|
||||
rvec(ipoint) = rvec(ipoint) * fact_a_new(ipoint)
|
||||
enddo
|
||||
deallocate(A_new, A_center_new, fact_a_new, iorder_a_new, overlap)
|
||||
end
|
||||
|
||||
!---
|
||||
!---
|
||||
|
||||
subroutine overlap_gauss_xyz_r12(D_center,delta,A_center,B_center,power_A,power_B,alpha,beta,gauss_ints)
|
||||
BEGIN_DOC
|
||||
! Computes the following integral :
|
||||
!
|
||||
! .. math::
|
||||
!
|
||||
!
|
||||
! gauss_ints(m) = \int dr exp(-delta (r - D)^2 ) * x/y/z (x-A_x)^a (x-B_x)^b \exp(-\alpha (x-A_x)^2 - \beta (x-B_x)^2 )
|
||||
!
|
||||
! with m == 1 ==> x, m == 2 ==> y, m == 3 ==> z
|
||||
@ -69,14 +141,14 @@ subroutine overlap_gauss_xyz_r12(D_center,delta,A_center,B_center,power_A,power_
|
||||
|
||||
implicit none
|
||||
include 'constants.include.F'
|
||||
double precision, intent(in) :: D_center(3), delta ! pure gaussian "D"
|
||||
double precision, intent(in) :: D_center(3), delta ! pure gaussian "D"
|
||||
double precision, intent(in) :: A_center(3),B_center(3),alpha,beta ! gaussian/polynoms "A" and "B"
|
||||
integer, intent(in) :: power_A(3),power_B(3)
|
||||
double precision, intent(out) :: gauss_ints(3)
|
||||
|
||||
double precision :: overlap_x,overlap_y,overlap_z,overlap
|
||||
! First you multiply the usual gaussian "A" with the gaussian exp(-delta (r - D)^2 )
|
||||
double precision :: A_new(0:max_dim,3)! new polynom
|
||||
double precision :: A_new(0:max_dim,3)! new polynom
|
||||
double precision :: A_center_new(3) ! new center
|
||||
integer :: iorder_a_new(3) ! i_order(i) = order of the new polynom ==> should be equal to power_A
|
||||
integer :: power_B_new(3)
|
||||
@ -88,8 +160,8 @@ subroutine overlap_gauss_xyz_r12(D_center,delta,A_center,B_center,power_A,power_
|
||||
thr = 1.d-10
|
||||
d = 0 ! order of the polynom for the gaussian exp(-delta (r - D)^2 ) == 0
|
||||
|
||||
! New gaussian/polynom defined by :: new pol new center new expo cst fact new order
|
||||
call give_explicit_poly_and_gaussian(A_new , A_center_new , alpha_new, fact_a_new , iorder_a_new , &
|
||||
! New gaussian/polynom defined by :: new pol new center new expo cst fact new order
|
||||
call give_explicit_poly_and_gaussian(A_new , A_center_new , alpha_new, fact_a_new , iorder_a_new , &
|
||||
delta,alpha,d,power_A,D_center,A_center,n_pt_max_integrals)
|
||||
! The new gaussian exp(-delta (r - D)^2 ) (x-A_x)^a \exp(-\alpha (x-A_x)^2
|
||||
gauss_ints = 0.d0
|
||||
@ -99,12 +171,12 @@ subroutine overlap_gauss_xyz_r12(D_center,delta,A_center,B_center,power_A,power_
|
||||
iorder_tmp(1) = lx
|
||||
do ly = 0, iorder_a_new(2)
|
||||
coefy = A_new(ly,2)
|
||||
coefxy = coefx * coefy
|
||||
coefxy = coefx * coefy
|
||||
if(dabs(coefxy).lt.thr)cycle
|
||||
iorder_tmp(2) = ly
|
||||
do lz = 0, iorder_a_new(3)
|
||||
coefz = A_new(lz,3)
|
||||
coefxyz = coefxy * coefz
|
||||
coefxyz = coefxy * coefz
|
||||
if(dabs(coefxyz).lt.thr)cycle
|
||||
iorder_tmp(3) = lz
|
||||
do m = 1, 3
|
||||
@ -129,7 +201,7 @@ double precision function overlap_gauss_xyz_r12_specific(D_center,delta,A_center
|
||||
! Computes the following integral :
|
||||
!
|
||||
! .. math::
|
||||
!
|
||||
!
|
||||
! \int dr exp(-delta (r - D)^2 ) * x/y/z (x-A_x)^a (x-B_x)^b \exp(-\alpha (x-A_x)^2 - \beta (x-B_x)^2 )
|
||||
!
|
||||
! with mx == 1 ==> x, mx == 2 ==> y, mx == 3 ==> z
|
||||
@ -137,13 +209,13 @@ double precision function overlap_gauss_xyz_r12_specific(D_center,delta,A_center
|
||||
|
||||
implicit none
|
||||
include 'constants.include.F'
|
||||
double precision, intent(in) :: D_center(3), delta ! pure gaussian "D"
|
||||
double precision, intent(in) :: D_center(3), delta ! pure gaussian "D"
|
||||
double precision, intent(in) :: A_center(3),B_center(3),alpha,beta ! gaussian/polynoms "A" and "B"
|
||||
integer, intent(in) :: power_A(3),power_B(3),mx
|
||||
|
||||
double precision :: overlap_x,overlap_y,overlap_z,overlap
|
||||
! First you multiply the usual gaussian "A" with the gaussian exp(-delta (r - D)^2 )
|
||||
double precision :: A_new(0:max_dim,3)! new polynom
|
||||
double precision :: A_new(0:max_dim,3)! new polynom
|
||||
double precision :: A_center_new(3) ! new center
|
||||
integer :: iorder_a_new(3) ! i_order(i) = order of the new polynom ==> should be equal to power_A
|
||||
integer :: power_B_new(3)
|
||||
@ -155,8 +227,8 @@ double precision function overlap_gauss_xyz_r12_specific(D_center,delta,A_center
|
||||
thr = 1.d-10
|
||||
d = 0 ! order of the polynom for the gaussian exp(-delta (r - D)^2 ) == 0
|
||||
|
||||
! New gaussian/polynom defined by :: new pol new center new expo cst fact new order
|
||||
call give_explicit_poly_and_gaussian(A_new , A_center_new , alpha_new, fact_a_new , iorder_a_new , &
|
||||
! New gaussian/polynom defined by :: new pol new center new expo cst fact new order
|
||||
call give_explicit_poly_and_gaussian(A_new , A_center_new , alpha_new, fact_a_new , iorder_a_new , &
|
||||
delta,alpha,d,power_A,D_center,A_center,n_pt_max_integrals)
|
||||
! The new gaussian exp(-delta (r - D)^2 ) (x-A_x)^a \exp(-\alpha (x-A_x)^2
|
||||
overlap_gauss_xyz_r12_specific = 0.d0
|
||||
@ -166,12 +238,12 @@ double precision function overlap_gauss_xyz_r12_specific(D_center,delta,A_center
|
||||
iorder_tmp(1) = lx
|
||||
do ly = 0, iorder_a_new(2)
|
||||
coefy = A_new(ly,2)
|
||||
coefxy = coefx * coefy
|
||||
coefxy = coefx * coefy
|
||||
if(dabs(coefxy).lt.thr)cycle
|
||||
iorder_tmp(2) = ly
|
||||
do lz = 0, iorder_a_new(3)
|
||||
coefz = A_new(lz,3)
|
||||
coefxyz = coefxy * coefz
|
||||
coefxyz = coefxy * coefz
|
||||
if(dabs(coefxyz).lt.thr)cycle
|
||||
iorder_tmp(3) = lz
|
||||
m = mx
|
||||
|
@ -124,7 +124,7 @@ double precision function NAI_pol_mult_erf(A_center, B_center, power_A, power_B,
|
||||
! Computes the following integral :
|
||||
!
|
||||
! .. math::
|
||||
!
|
||||
!
|
||||
! \int dr (x-A_x)^a (x-B_x)^b \exp(-\alpha (x-A_x)^2 - \beta (x-B_x)^2 )
|
||||
! \frac{\erf(\mu |r - R_C |)}{| r - R_C |}$.
|
||||
!
|
||||
@ -197,6 +197,92 @@ double precision function NAI_pol_mult_erf(A_center, B_center, power_A, power_B,
|
||||
|
||||
end function NAI_pol_mult_erf
|
||||
|
||||
! ---
|
||||
subroutine NAI_pol_mult_erf_v(A_center, B_center, power_A, power_B, alpha, beta, C_center, n_pt_in, mu_in, res_v, n_points)
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
! Computes the following integral :
|
||||
!
|
||||
! .. math::
|
||||
!
|
||||
! \int dr (x-A_x)^a (x-B_x)^b \exp(-\alpha (x-A_x)^2 - \beta (x-B_x)^2 )
|
||||
! \frac{\erf(\mu |r - R_C |)}{| r - R_C |}$.
|
||||
!
|
||||
END_DOC
|
||||
|
||||
include 'utils/constants.include.F'
|
||||
|
||||
implicit none
|
||||
integer, intent(in) :: n_pt_in, n_points
|
||||
integer, intent(in) :: power_A(3), power_B(3)
|
||||
double precision, intent(in) :: C_center(n_points,3), A_center(3), B_center(3), alpha, beta, mu_in
|
||||
double precision, intent(out) :: res_v(n_points)
|
||||
|
||||
integer :: i, n_pt, n_pt_out, ipoint
|
||||
double precision :: P_center(3)
|
||||
double precision :: d(0:n_pt_in), coeff, dist, const, factor
|
||||
double precision :: const_factor, dist_integral
|
||||
double precision :: accu, p_inv, p, rho, p_inv_2
|
||||
double precision :: p_new
|
||||
|
||||
double precision :: rint
|
||||
|
||||
p = alpha + beta
|
||||
p_inv = 1.d0 / p
|
||||
p_inv_2 = 0.5d0 * p_inv
|
||||
rho = alpha * beta * p_inv
|
||||
p_new = mu_in / dsqrt(p + mu_in * mu_in)
|
||||
|
||||
dist = 0.d0
|
||||
do i = 1, 3
|
||||
P_center(i) = (alpha * A_center(i) + beta * B_center(i)) * p_inv
|
||||
dist += (A_center(i) - B_center(i)) * (A_center(i) - B_center(i))
|
||||
enddo
|
||||
|
||||
do ipoint=1,n_points
|
||||
dist_integral = 0.d0
|
||||
do i = 1, 3
|
||||
dist_integral += (P_center(i) - C_center(ipoint,i)) * (P_center(i) - C_center(ipoint,i))
|
||||
enddo
|
||||
const_factor = dist * rho
|
||||
if(const_factor > 80.d0) then
|
||||
res_V(ipoint) = 0.d0
|
||||
cycle
|
||||
endif
|
||||
|
||||
factor = dexp(-const_factor)
|
||||
coeff = dtwo_pi * factor * p_inv * p_new
|
||||
|
||||
n_pt = 2 * ( power_A(1) + power_B(1) + power_A(2) + power_B(2) + power_A(3) + power_B(3) )
|
||||
const = p * dist_integral * p_new * p_new
|
||||
if(n_pt == 0) then
|
||||
res_v(ipoint) = coeff * rint(0, const)
|
||||
cycle
|
||||
endif
|
||||
|
||||
do i = 0, n_pt_in
|
||||
d(i) = 0.d0
|
||||
enddo
|
||||
p_new = p_new * p_new
|
||||
call give_polynomial_mult_center_one_e_erf_opt( A_center, B_center, power_A, power_B, C_center(ipoint,1:3)&
|
||||
, n_pt_in, d, n_pt_out, p_inv_2, p_new, P_center)
|
||||
|
||||
if(n_pt_out < 0) then
|
||||
res_v(ipoint) = 0.d0
|
||||
cycle
|
||||
endif
|
||||
|
||||
! sum of integrals of type : int {t,[0,1]} exp-(rho.(P-Q)^2 * t^2) * t^i
|
||||
accu = 0.d0
|
||||
do i = 0, n_pt_out, 2
|
||||
accu += d(i) * rint(i/2, const)
|
||||
enddo
|
||||
res_v(ipoint) = accu * coeff
|
||||
enddo
|
||||
|
||||
end
|
||||
|
||||
! ---
|
||||
|
||||
double precision function NAI_pol_mult_erf_with1s( A1_center, A2_center, power_A1, power_A2, alpha1, alpha2 &
|
||||
@ -207,7 +293,7 @@ double precision function NAI_pol_mult_erf_with1s( A1_center, A2_center, power_A
|
||||
! Computes the following integral :
|
||||
!
|
||||
! .. math::
|
||||
!
|
||||
!
|
||||
! \int dx (x - A1_x)^a_1 (x - B1_x)^a_2 \exp(-\alpha_1 (x - A1_x)^2 - \alpha_2 (x - A2_x)^2)
|
||||
! \int dy (y - A1_y)^b_1 (y - B1_y)^b_2 \exp(-\alpha_1 (y - A1_y)^2 - \alpha_2 (y - A2_y)^2)
|
||||
! \int dz (x - A1_z)^c_1 (z - B1_z)^c_2 \exp(-\alpha_1 (z - A1_z)^2 - \alpha_2 (z - A2_z)^2)
|
||||
@ -312,6 +398,131 @@ double precision function NAI_pol_mult_erf_with1s( A1_center, A2_center, power_A
|
||||
|
||||
end function NAI_pol_mult_erf_with1s
|
||||
|
||||
!--
|
||||
|
||||
subroutine NAI_pol_mult_erf_with1s_v( A1_center, A2_center, power_A1, power_A2, alpha1, alpha2&
|
||||
, beta, B_center, C_center, n_pt_in, mu_in, res_v, n_points)
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
! Computes the following integral :
|
||||
!
|
||||
! .. math ::
|
||||
!
|
||||
! \int dx (x - A1_x)^a_1 (x - B1_x)^a_2 \exp(-\alpha_1 (x - A1_x)^2 - \alpha_2 (x - A2_x)^2)
|
||||
! \int dy (y - A1_y)^b_1 (y - B1_y)^b_2 \exp(-\alpha_1 (y - A1_y)^2 - \alpha_2 (y - A2_y)^2)
|
||||
! \int dz (x - A1_z)^c_1 (z - B1_z)^c_2 \exp(-\alpha_1 (z - A1_z)^2 - \alpha_2 (z - A2_z)^2)
|
||||
! \exp(-\beta (r - B)^2)
|
||||
! \frac{\erf(\mu |r - R_C|)}{|r - R_C|}$.
|
||||
!
|
||||
END_DOC
|
||||
|
||||
include 'utils/constants.include.F'
|
||||
|
||||
implicit none
|
||||
integer, intent(in) :: n_pt_in, n_points
|
||||
integer, intent(in) :: power_A1(3), power_A2(3)
|
||||
double precision, intent(in) :: C_center(n_points,3), A1_center(3), A2_center(3), B_center(n_points,3)
|
||||
double precision, intent(in) :: alpha1, alpha2, beta, mu_in
|
||||
double precision, intent(out) :: res_v(n_points)
|
||||
|
||||
integer :: i, n_pt, n_pt_out, ipoint
|
||||
double precision :: alpha12, alpha12_inv, alpha12_inv_2, rho12, A12_center(3), dist12, const_factor12
|
||||
double precision :: p, p_inv, p_inv_2, rho, P_center(3), dist, const_factor
|
||||
double precision :: dist_integral
|
||||
double precision :: d(0:n_pt_in), coeff, const, factor
|
||||
double precision :: accu
|
||||
double precision :: p_new, p_new2
|
||||
|
||||
double precision :: rint
|
||||
|
||||
|
||||
! e^{-alpha1 (r - A1)^2} e^{-alpha2 (r - A2)^2} = e^{-K12} e^{-alpha12 (r - A12)^2}
|
||||
alpha12 = alpha1 + alpha2
|
||||
alpha12_inv = 1.d0 / alpha12
|
||||
alpha12_inv_2 = 0.5d0 * alpha12_inv
|
||||
rho12 = alpha1 * alpha2 * alpha12_inv
|
||||
A12_center(1) = (alpha1 * A1_center(1) + alpha2 * A2_center(1)) * alpha12_inv
|
||||
A12_center(2) = (alpha1 * A1_center(2) + alpha2 * A2_center(2)) * alpha12_inv
|
||||
A12_center(3) = (alpha1 * A1_center(3) + alpha2 * A2_center(3)) * alpha12_inv
|
||||
dist12 = (A1_center(1) - A2_center(1)) * (A1_center(1) - A2_center(1))&
|
||||
+ (A1_center(2) - A2_center(2)) * (A1_center(2) - A2_center(2))&
|
||||
+ (A1_center(3) - A2_center(3)) * (A1_center(3) - A2_center(3))
|
||||
|
||||
const_factor12 = dist12 * rho12
|
||||
|
||||
if(const_factor12 > 80.d0) then
|
||||
res_v(:) = 0.d0
|
||||
return
|
||||
endif
|
||||
|
||||
! ---
|
||||
|
||||
! e^{-K12} e^{-alpha12 (r - A12)^2} e^{-beta (r - B)^2} = e^{-K} e^{-p (r - P)^2}
|
||||
p = alpha12 + beta
|
||||
p_inv = 1.d0 / p
|
||||
p_inv_2 = 0.5d0 * p_inv
|
||||
rho = alpha12 * beta * p_inv
|
||||
p_new = mu_in / dsqrt(p + mu_in * mu_in)
|
||||
p_new2 = p_new * p_new
|
||||
n_pt = 2 * (power_A1(1) + power_A2(1) + power_A1(2) + power_A2(2) &
|
||||
+ power_A1(3) + power_A2(3) )
|
||||
|
||||
do ipoint=1,n_points
|
||||
|
||||
P_center(1) = (alpha12 * A12_center(1) + beta * B_center(ipoint,1)) * p_inv
|
||||
P_center(2) = (alpha12 * A12_center(2) + beta * B_center(ipoint,2)) * p_inv
|
||||
P_center(3) = (alpha12 * A12_center(3) + beta * B_center(ipoint,3)) * p_inv
|
||||
dist = (A12_center(1) - B_center(ipoint,1)) * (A12_center(1) - B_center(ipoint,1))&
|
||||
+ (A12_center(2) - B_center(ipoint,2)) * (A12_center(2) - B_center(ipoint,2))&
|
||||
+ (A12_center(3) - B_center(ipoint,3)) * (A12_center(3) - B_center(ipoint,3))
|
||||
|
||||
const_factor = const_factor12 + dist * rho
|
||||
if(const_factor > 80.d0) then
|
||||
res_v(ipoint) = 0.d0
|
||||
cycle
|
||||
endif
|
||||
|
||||
dist_integral = (P_center(1) - C_center(ipoint,1)) * (P_center(1) - C_center(ipoint,1))&
|
||||
+ (P_center(2) - C_center(ipoint,2)) * (P_center(2) - C_center(ipoint,2))&
|
||||
+ (P_center(3) - C_center(ipoint,3)) * (P_center(3) - C_center(ipoint,3))
|
||||
|
||||
! ---
|
||||
|
||||
factor = dexp(-const_factor)
|
||||
coeff = dtwo_pi * factor * p_inv * p_new
|
||||
|
||||
const = p * dist_integral * p_new2
|
||||
if(n_pt == 0) then
|
||||
res_v(ipoint) = coeff * rint(0, const)
|
||||
cycle
|
||||
endif
|
||||
|
||||
do i = 0, n_pt_in
|
||||
d(i) = 0.d0
|
||||
enddo
|
||||
|
||||
!TODO: VECTORIZE HERE
|
||||
call give_polynomial_mult_center_one_e_erf_opt( &
|
||||
A1_center, A2_center, power_A1, power_A2, C_center(ipoint,1:3)&
|
||||
, n_pt_in, d, n_pt_out, p_inv_2, p_new, P_center,1)
|
||||
|
||||
if(n_pt_out < 0) then
|
||||
res_v(ipoint) = 0.d0
|
||||
cycle
|
||||
endif
|
||||
|
||||
! sum of integrals of type : int {t,[0,1]} exp-(rho.(P-Q)^2 * t^2) * t^i
|
||||
accu = 0.d0
|
||||
do i = 0, n_pt_out, 2
|
||||
accu += d(i) * rint(i/2, const)
|
||||
enddo
|
||||
res_v(ipoint) = accu * coeff
|
||||
end do
|
||||
|
||||
end
|
||||
|
||||
! ---
|
||||
! ---
|
||||
|
||||
subroutine give_polynomial_mult_center_one_e_erf_opt( A_center, B_center, power_A, power_B, C_center &
|
||||
@ -432,10 +643,11 @@ end subroutine give_polynomial_mult_center_one_e_erf_opt
|
||||
! ---
|
||||
|
||||
|
||||
|
||||
subroutine give_polynomial_mult_center_one_e_erf(A_center,B_center,alpha,beta,&
|
||||
power_A,power_B,C_center,n_pt_in,d,n_pt_out,mu_in)
|
||||
BEGIN_DOC
|
||||
! Returns the explicit polynomial in terms of the $t$ variable of the
|
||||
! Returns the explicit polynomial in terms of the $t$ variable of the
|
||||
! following polynomial:
|
||||
!
|
||||
! $I_{x1}(a_x, d_x,p,q) \times I_{x1}(a_y, d_y,p,q) \times I_{x1}(a_z, d_z,p,q)$.
|
||||
|
@ -1095,9 +1095,9 @@ double precision function overlap_orb_ylm_grid(nptsgrid,r_orb,npower_orb,center_
|
||||
implicit none
|
||||
!! PSEUDOS
|
||||
integer nptsgridmax,nptsgrid
|
||||
double precision coefs_pseudo,ptsgrid
|
||||
parameter(nptsgridmax=50)
|
||||
common/pseudos/coefs_pseudo(nptsgridmax),ptsgrid(nptsgridmax,3)
|
||||
double precision coefs_pseudo(nptsgridmax),ptsgrid(nptsgridmax,3)
|
||||
common/pseudos/coefs_pseudo,ptsgrid
|
||||
!!!!!
|
||||
integer npower_orb(3),l,m,i
|
||||
double precision x,g_orb,two_pi,dx,dphi,term,orb_phi,ylm_real,sintheta,r_orb,phi,center_orb(3)
|
||||
@ -1235,10 +1235,10 @@ end
|
||||
subroutine initpseudos(nptsgrid)
|
||||
implicit none
|
||||
integer nptsgridmax,nptsgrid,ik
|
||||
double precision coefs_pseudo,ptsgrid
|
||||
double precision p,q,r,s
|
||||
parameter(nptsgridmax=50)
|
||||
common/pseudos/coefs_pseudo(nptsgridmax),ptsgrid(nptsgridmax,3)
|
||||
double precision :: coefs_pseudo(nptsgridmax),ptsgrid(nptsgridmax,3)
|
||||
common/pseudos/coefs_pseudo,ptsgrid
|
||||
|
||||
p=1.d0/dsqrt(2.d0)
|
||||
q=1.d0/dsqrt(3.d0)
|
||||
|
@ -58,3 +58,18 @@ END_PROVIDER
|
||||
enddo
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [double precision, final_grid_points_transp, (n_points_final_grid,3)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! final_grid_points_transp(j,1:3) = (/ x, y, z /) of the jth grid point
|
||||
END_DOC
|
||||
integer :: i
|
||||
do i=1,n_points_final_grid
|
||||
final_grid_points_transp(i,1) = final_grid_points(1,i)
|
||||
final_grid_points_transp(i,2) = final_grid_points(2,i)
|
||||
final_grid_points_transp(i,3) = final_grid_points(3,i)
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
|
@ -127,6 +127,9 @@ BEGIN_PROVIDER [ double precision, int2_grad1_u12_bimo_transp, (mo_num, mo_num,
|
||||
implicit none
|
||||
integer :: ipoint
|
||||
|
||||
print*,'providing int2_grad1_u12_bimo_transp'
|
||||
double precision :: wall0, wall1
|
||||
call wall_time(wall0)
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (ipoint) &
|
||||
@ -142,6 +145,8 @@ BEGIN_PROVIDER [ double precision, int2_grad1_u12_bimo_transp, (mo_num, mo_num,
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
call wall_time(wall1)
|
||||
print*,'Wall time for providing int2_grad1_u12_bimo_transp',wall1 - wall0
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
@ -173,10 +173,7 @@ BEGIN_PROVIDER [integer, n_core_inact_act_orb ]
|
||||
END_DOC
|
||||
n_core_inact_act_orb = (n_core_orb + n_inact_orb + n_act_orb)
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ integer(bit_kind), core_bitmask , (N_int,2) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
@ -443,5 +440,4 @@ BEGIN_PROVIDER [integer, list_all_but_del_orb, (n_all_but_del_orb)]
|
||||
endif
|
||||
enddo
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
END_PROVIDER
|
||||
|
@ -79,6 +79,6 @@ subroutine run
|
||||
call ezfio_set_cis_energy(CI_energy)
|
||||
psi_coef = ci_eigenvectors
|
||||
SOFT_TOUCH psi_coef
|
||||
call save_wavefunction_truncated(thresh_save_wf)
|
||||
call save_wavefunction_truncated(save_threshold)
|
||||
|
||||
end
|
||||
|
@ -46,6 +46,24 @@ module cfunctions
|
||||
real (kind=C_DOUBLE ),intent(out) :: csftodetmatrix(rowsmax,colsmax)
|
||||
end subroutine getCSFtoDETTransformationMatrix
|
||||
end interface
|
||||
interface
|
||||
subroutine gramSchmidt(A, m, n, B) bind(C, name='gramSchmidt')
|
||||
import C_INT32_T, C_INT64_T, C_DOUBLE
|
||||
integer(kind=C_INT32_T),value,intent(in) :: m
|
||||
integer(kind=C_INT32_T),value,intent(in) :: n
|
||||
real (kind=C_DOUBLE ),intent(in) :: A(m,n)
|
||||
real (kind=C_DOUBLE ),intent(out) :: B(m,n)
|
||||
end subroutine gramSchmidt
|
||||
end interface
|
||||
interface
|
||||
subroutine gramSchmidt_qp(A, m, n, B) bind(C, name='gramSchmidt_qp')
|
||||
import C_INT32_T, C_INT64_T, C_DOUBLE
|
||||
integer(kind=C_INT32_T),value,intent(in) :: m
|
||||
integer(kind=C_INT32_T),value,intent(in) :: n
|
||||
real (kind=C_DOUBLE ),intent(in) :: A(m,n)
|
||||
real (kind=C_DOUBLE ),intent(out) :: B(m,n)
|
||||
end subroutine gramSchmidt_qp
|
||||
end interface
|
||||
end module cfunctions
|
||||
|
||||
subroutine f_dgemm(TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB, BETA, C, LDC) &
|
||||
|
@ -1,5 +1,6 @@
|
||||
#include <stdint.h>
|
||||
#include <stdio.h>
|
||||
#include <assert.h>
|
||||
#include "tree_utils.h"
|
||||
|
||||
void int_to_bin_digit(int64_t in, int count, int* out)
|
||||
@ -28,19 +29,19 @@ void getncsfs1(int *inpnsomo, int *inpms, int *outncsfs){
|
||||
int nsomo = *inpnsomo;
|
||||
int ms = *inpms;
|
||||
int nparcoupl = (nsomo + ms)/2;
|
||||
*outncsfs = binom(nsomo, nparcoupl);
|
||||
*outncsfs = binom((double)nsomo, (double)nparcoupl);
|
||||
}
|
||||
|
||||
void getncsfs(int NSOMO, int MS, int *outncsfs){
|
||||
int nparcoupl = (NSOMO + MS)/2;
|
||||
int nparcouplp1 = ((NSOMO + MS)/2)+1;
|
||||
int nparcoupl = (NSOMO + MS)/2; // n_alpha
|
||||
int nparcouplp1 = ((NSOMO + MS)/2)+1; // n_alpha + 1
|
||||
double tmpndets=0.0;
|
||||
if(NSOMO == 0){
|
||||
(*outncsfs) = 1;
|
||||
return;
|
||||
}
|
||||
tmpndets = binom(NSOMO, nparcoupl);
|
||||
(*outncsfs) = round(tmpndets - binom(NSOMO, nparcouplp1));
|
||||
tmpndets = binom((double)NSOMO, (double)nparcoupl);
|
||||
(*outncsfs) = round(tmpndets - binom((double)NSOMO, (double)nparcouplp1));
|
||||
}
|
||||
|
||||
#include <stdint.h>
|
||||
@ -252,6 +253,27 @@ void generateAllBFs(int64_t Isomo, int64_t MS, Tree *bftree, int *NBF, int *NSOM
|
||||
buildTreeDriver(bftree, *NSOMO, MS, NBF);
|
||||
}
|
||||
|
||||
void ortho_qr_csf(double *overlapMatrix, int lda, double *orthoMatrix, int rows, int cols);
|
||||
|
||||
// QR to orthogonalize CSFs does not work
|
||||
//void gramSchmidt_qp(double *overlapMatrix, int rows, int cols, double *orthoMatrix){
|
||||
// int i,j;
|
||||
// //for(j=0;j<cols;++j){
|
||||
// // for(i=0;i<rows;++i){
|
||||
// // printf(" %3.2f ",overlapMatrix[j*rows + i]);
|
||||
// // }
|
||||
// // printf("\n");
|
||||
// //}
|
||||
// // Call the function ortho_qr from qp
|
||||
// ortho_qr_csf(overlapMatrix, rows, orthoMatrix, rows, cols);
|
||||
// //for(j=0;j<cols;++j){
|
||||
// // for(i=0;i<rows;++i){
|
||||
// // printf(" %3.2f ",orthoMatrix[j*rows + i]);
|
||||
// // }
|
||||
// // printf("\n");
|
||||
// //}
|
||||
//}
|
||||
|
||||
void gramSchmidt(double *overlapMatrix, int rows, int cols, double *orthoMatrix){
|
||||
|
||||
// vector
|
||||
@ -341,8 +363,12 @@ void convertCSFtoDetBasis(int64_t Isomo, int MS, int rowsmax, int colsmax, doubl
|
||||
Get BFtoDeterminant Matrix
|
||||
************************************/
|
||||
|
||||
printf("In convertcsftodet\n");
|
||||
|
||||
//printf(" --- In convet ----\n");
|
||||
convertBFtoDetBasis(Isomo, MS, &bftodetmatrixI, &rowsbftodetI, &colsbftodetI);
|
||||
//printf(" --- done bf det basis ---- row=%d col=%d\n",rowsbftodetI,colsbftodetI);
|
||||
|
||||
//printRealMatrix(bftodetmatrixI,rowsbftodetI,colsbftodetI);
|
||||
|
||||
int rowsI = 0;
|
||||
int colsI = 0;
|
||||
@ -350,6 +376,8 @@ void convertCSFtoDetBasis(int64_t Isomo, int MS, int rowsmax, int colsmax, doubl
|
||||
//getOverlapMatrix(Isomo, MS, &overlapMatrixI, &rowsI, &colsI, &NSOMO);
|
||||
getOverlapMatrix_withDet(bftodetmatrixI, rowsbftodetI, colsbftodetI, Isomo, MS, &overlapMatrixI, &rowsI, &colsI, &NSOMO);
|
||||
|
||||
//printf("Overlap matrix\n");
|
||||
//printRealMatrix(overlapMatrixI,rowsI,colsI);
|
||||
|
||||
/***********************************
|
||||
Get Orthonormalization Matrix
|
||||
@ -359,6 +387,9 @@ void convertCSFtoDetBasis(int64_t Isomo, int MS, int rowsmax, int colsmax, doubl
|
||||
|
||||
gramSchmidt(overlapMatrixI, rowsI, colsI, orthoMatrixI);
|
||||
|
||||
//printf("Ortho matrix\n");
|
||||
//printRealMatrix(orthoMatrixI,rowsI,colsI);
|
||||
|
||||
/***********************************
|
||||
Get Final CSF to Det Matrix
|
||||
************************************/
|
||||
@ -1340,11 +1371,11 @@ void getbftodetfunction(Tree *dettree, int NSOMO, int MS, int *BF1, double *rowv
|
||||
for(int i = 0; i < npairs; i++){
|
||||
for(int j = 0; j < NSOMO; j++) {
|
||||
inpdet[j] = detslist[i*NSOMO + j];
|
||||
printf(" %d ",inpdet[j]);
|
||||
//printf(" %d ",inpdet[j]);
|
||||
}
|
||||
printf("\n");
|
||||
//printf("\n");
|
||||
findAddofDetDriver(dettree, NSOMO, inpdet, &addr);
|
||||
printf("(%d) - addr = %d\n",i,addr);
|
||||
//printf("(%d) - addr = %d\n",i,addr);
|
||||
// Calculate the phase for cfg to QP2 conversion
|
||||
//get_phase_cfg_to_qp_inpList(inpdet, NSOMO, &phase_cfg_to_qp);
|
||||
//rowvec[addr] = 1.0 * phaselist[i]*phase_cfg_to_qp/sqrt(fac);
|
||||
@ -1363,12 +1394,23 @@ void getbftodetfunction(Tree *dettree, int NSOMO, int MS, int *BF1, double *rowv
|
||||
void convertBFtoDetBasis(int64_t Isomo, int MS, double **bftodetmatrixptr, int *rows, int *cols){
|
||||
|
||||
int NSOMO=0;
|
||||
//printf("before getSetBits Isomo=%ld, NSOMO=%ld\n",Isomo,NSOMO);
|
||||
getSetBits(Isomo, &NSOMO);
|
||||
//printf("Isomo=%ld, NSOMO=%ld\n",Isomo,NSOMO);
|
||||
int ndets = 0;
|
||||
int NBF = 0;
|
||||
double dNSOMO = NSOMO*1.0;
|
||||
double nalpha = (NSOMO + MS)/2.0;
|
||||
ndets = (int)binom(dNSOMO, nalpha);
|
||||
//double dNSOMO = NSOMO*1.0;
|
||||
// MS = alpha_num - beta_num
|
||||
int nalpha = (NSOMO + MS)/2;
|
||||
//printf(" in convertbftodet : MS=%d nalpha=%3.2f\n",MS,nalpha);
|
||||
//ndets = (int)binom(dNSOMO, nalpha);
|
||||
if(NSOMO > 0){
|
||||
ndets = (int)binom((double)NSOMO, (double)nalpha);
|
||||
}
|
||||
else if(NSOMO == 0){
|
||||
ndets = 1;
|
||||
}
|
||||
else printf("Something is wrong in calcMEdetpair\n");
|
||||
|
||||
Tree dettree = (Tree){ .rootNode = NULL, .NBF = -1 };
|
||||
dettree.rootNode = malloc(sizeof(Node));
|
||||
@ -1389,16 +1431,6 @@ void convertBFtoDetBasis(int64_t Isomo, int MS, double **bftodetmatrixptr, int *
|
||||
}
|
||||
else{
|
||||
|
||||
//int addr = -1;
|
||||
//int inpdet[NSOMO];
|
||||
//inpdet[0] = 1;
|
||||
//inpdet[1] = 1;
|
||||
//inpdet[2] = 1;
|
||||
//inpdet[3] = 0;
|
||||
//inpdet[4] = 0;
|
||||
//inpdet[5] = 0;
|
||||
|
||||
//findAddofDetDriver(&dettree, NSOMO, inpdet, &addr);
|
||||
|
||||
int detlist[ndets];
|
||||
getDetlistDriver(&dettree, NSOMO, detlist);
|
||||
@ -1411,6 +1443,9 @@ void convertBFtoDetBasis(int64_t Isomo, int MS, double **bftodetmatrixptr, int *
|
||||
generateAllBFs(Isomo, MS, &bftree, &NBF, &NSOMO);
|
||||
|
||||
// Initialize transformation matrix
|
||||
//printf("MS=%d NBF=%d ndets=%d NSOMO=%d\n",MS,NBF,ndets,NSOMO);
|
||||
assert( NBF > 0);
|
||||
assert( ndets > 0);
|
||||
(*bftodetmatrixptr) = malloc(NBF*ndets*sizeof(double));
|
||||
(*rows) = NBF;
|
||||
(*cols) = ndets;
|
||||
@ -1465,9 +1500,10 @@ void convertBFtoDetBasisWithArrayDims(int64_t Isomo, int MS, int rowsmax, int co
|
||||
getSetBits(Isomo, &NSOMO);
|
||||
int ndets = 0;
|
||||
int NBF = 0;
|
||||
double dNSOMO = NSOMO*1.0;
|
||||
double nalpha = (NSOMO + MS)/2.0;
|
||||
ndets = (int)binom(dNSOMO, nalpha);
|
||||
//double dNSOMO = NSOMO*1.0;
|
||||
//double nalpha = (NSOMO + MS)/2.0;
|
||||
int nalpha = (NSOMO + MS)/2;
|
||||
ndets = (int)binom((double)NSOMO, (double)nalpha);
|
||||
|
||||
Tree dettree = (Tree){ .rootNode = NULL, .NBF = -1 };
|
||||
dettree.rootNode = malloc(sizeof(Node));
|
||||
@ -1551,6 +1587,7 @@ void getApqIJMatrixDims(int64_t Isomo, int64_t Jsomo, int64_t MS, int32_t *rowso
|
||||
getncsfs(NSOMOJ, MS, &NBFJ);
|
||||
(*rowsout) = NBFI;
|
||||
(*colsout) = NBFJ;
|
||||
//exit(0);
|
||||
}
|
||||
|
||||
void getApqIJMatrixDriver(int64_t Isomo, int64_t Jsomo, int orbp, int orbq, int64_t MS, int64_t NMO, double **CSFICSFJApqIJptr, int *rowsout, int *colsout){
|
||||
@ -1669,6 +1706,7 @@ void getApqIJMatrixDriverArrayInp(int64_t Isomo, int64_t Jsomo, int32_t orbp, in
|
||||
|
||||
int rowsbftodetI, colsbftodetI;
|
||||
|
||||
//printf(" 1Calling convertBFtoDetBasis Isomo=%ld MS=%ld\n",Isomo,MS);
|
||||
convertBFtoDetBasis(Isomo, MS, &bftodetmatrixI, &rowsbftodetI, &colsbftodetI);
|
||||
|
||||
// Fill matrix
|
||||
@ -1676,8 +1714,14 @@ void getApqIJMatrixDriverArrayInp(int64_t Isomo, int64_t Jsomo, int32_t orbp, in
|
||||
int colsI = 0;
|
||||
|
||||
//getOverlapMatrix(Isomo, MS, &overlapMatrixI, &rowsI, &colsI, &NSOMO);
|
||||
//getOverlapMatrix(Isomo, MS, &overlapMatrixI, &rowsI, &colsI, &NSOMO);
|
||||
//printf("Isomo=%ld\n",Isomo);
|
||||
getOverlapMatrix_withDet(bftodetmatrixI, rowsbftodetI, colsbftodetI, Isomo, MS, &overlapMatrixI, &rowsI, &colsI, &NSOMO);
|
||||
if(Isomo == 0){
|
||||
rowsI = 1;
|
||||
colsI = 1;
|
||||
}
|
||||
|
||||
//printf("Isomo=%ld\n",Isomo);
|
||||
|
||||
orthoMatrixI = malloc(rowsI*colsI*sizeof(double));
|
||||
|
||||
@ -1689,6 +1733,7 @@ void getApqIJMatrixDriverArrayInp(int64_t Isomo, int64_t Jsomo, int32_t orbp, in
|
||||
|
||||
int rowsbftodetJ, colsbftodetJ;
|
||||
|
||||
//printf(" 2Calling convertBFtoDetBasis Jsomo=%ld MS=%ld\n",Jsomo,MS);
|
||||
convertBFtoDetBasis(Jsomo, MS, &bftodetmatrixJ, &rowsbftodetJ, &colsbftodetJ);
|
||||
|
||||
int rowsJ = 0;
|
||||
@ -1696,6 +1741,10 @@ void getApqIJMatrixDriverArrayInp(int64_t Isomo, int64_t Jsomo, int32_t orbp, in
|
||||
// Fill matrix
|
||||
//getOverlapMatrix(Jsomo, MS, &overlapMatrixJ, &rowsJ, &colsJ, &NSOMO);
|
||||
getOverlapMatrix_withDet(bftodetmatrixJ, rowsbftodetJ, colsbftodetJ, Jsomo, MS, &overlapMatrixJ, &rowsJ, &colsJ, &NSOMO);
|
||||
if(Jsomo == 0){
|
||||
rowsJ = 1;
|
||||
colsJ = 1;
|
||||
}
|
||||
|
||||
orthoMatrixJ = malloc(rowsJ*colsJ*sizeof(double));
|
||||
|
||||
@ -1713,18 +1762,25 @@ void getApqIJMatrixDriverArrayInp(int64_t Isomo, int64_t Jsomo, int32_t orbp, in
|
||||
|
||||
int transA=false;
|
||||
int transB=false;
|
||||
//printf("1Calling blas\n");
|
||||
//printf("rowsA=%d colsA=%d\nrowB=%d colB=%d\n",rowsbftodetI,colsbftodetI,rowsA,colsA);
|
||||
callBlasMatxMat(bftodetmatrixI, rowsbftodetI, colsbftodetI, ApqIJ, rowsA, colsA, bfIApqIJ, transA, transB);
|
||||
//printf("done\n");
|
||||
|
||||
// now transform I in csf basis
|
||||
double *CSFIApqIJ = malloc(rowsI*colsA*sizeof(double));
|
||||
transA = false;
|
||||
transB = false;
|
||||
//printf("2Calling blas\n");
|
||||
//printf("rowsA=%d colsA=%d\nrowB=%d colB=%d\n",rowsI,colsI,colsI,colsA);
|
||||
callBlasMatxMat(orthoMatrixI, rowsI, colsI, bfIApqIJ, colsI, colsA, CSFIApqIJ, transA, transB);
|
||||
|
||||
// now transform J in BF basis
|
||||
double *CSFIbfJApqIJ = malloc(rowsI*rowsbftodetJ*sizeof(double));
|
||||
transA = false;
|
||||
transB = true;
|
||||
//printf("3Calling blas\n");
|
||||
//printf("rowsA=%d colsA=%d\nrowB=%d colB=%d\n",rowsI,colsA,rowsbftodetJ,colsbftodetJ);
|
||||
callBlasMatxMat(CSFIApqIJ, rowsI, colsA, bftodetmatrixJ, rowsbftodetJ, colsbftodetJ, CSFIbfJApqIJ, transA, transB);
|
||||
|
||||
// now transform J in CSF basis
|
||||
@ -1735,13 +1791,14 @@ void getApqIJMatrixDriverArrayInp(int64_t Isomo, int64_t Jsomo, int32_t orbp, in
|
||||
double *tmpCSFICSFJApqIJ = malloc(rowsI*rowsJ*sizeof(double));
|
||||
transA = false;
|
||||
transB = true;
|
||||
//printf("4Calling blas\n");
|
||||
//printf("rowsA=%d colsA=%d\nrowB=%d colB=%d\n",rowsI,rowsbftodetJ,rowsJ,colsJ);
|
||||
callBlasMatxMat(CSFIbfJApqIJ, rowsI, rowsbftodetJ, orthoMatrixJ, rowsJ, colsJ, tmpCSFICSFJApqIJ, transA, transB);
|
||||
// Transfer to actual buffer in Fortran order
|
||||
for(int i = 0; i < rowsI; i++)
|
||||
for(int j = 0; j < rowsJ; j++)
|
||||
CSFICSFJApqIJ[j*rowsI + i] = tmpCSFICSFJApqIJ[i*rowsJ + j];
|
||||
|
||||
|
||||
// Garbage collection
|
||||
free(overlapMatrixI);
|
||||
free(overlapMatrixJ);
|
||||
|
@ -1,3 +1,592 @@
|
||||
use bitmasks
|
||||
|
||||
BEGIN_PROVIDER [ integer(bit_kind), alphasIcfg_list , (N_int,2,N_configuration,mo_num*(mo_num))]
|
||||
&BEGIN_PROVIDER [ integer, NalphaIcfg_list, (N_configuration) ]
|
||||
implicit none
|
||||
!use bitmasks
|
||||
BEGIN_DOC
|
||||
! Documentation for alphasI
|
||||
! Returns the associated alpha's for
|
||||
! the input configuration Icfg.
|
||||
END_DOC
|
||||
|
||||
integer :: idxI ! The id of the Ith CFG
|
||||
integer(bit_kind) :: Icfg(N_int,2)
|
||||
integer :: NalphaIcfg
|
||||
logical,dimension(:,:),allocatable :: tableUniqueAlphas
|
||||
integer :: listholes(mo_num)
|
||||
integer :: holetype(mo_num) ! 1-> SOMO 2->DOMO
|
||||
integer :: nholes
|
||||
integer :: nvmos
|
||||
integer :: listvmos(mo_num)
|
||||
integer :: vmotype(mo_num) ! 1 -> VMO 2 -> SOMO
|
||||
integer*8 :: Idomo
|
||||
integer*8 :: Isomo
|
||||
integer*8 :: Jdomo
|
||||
integer*8 :: Jsomo
|
||||
integer*8 :: diffSOMO
|
||||
integer*8 :: diffDOMO
|
||||
integer*8 :: xordiffSOMODOMO
|
||||
integer :: ndiffSOMO
|
||||
integer :: ndiffDOMO
|
||||
integer :: nxordiffSOMODOMO
|
||||
integer :: ndiffAll
|
||||
integer :: i,ii
|
||||
integer :: j,jj
|
||||
integer :: k,kk
|
||||
integer :: kstart
|
||||
integer :: kend
|
||||
integer :: Nsomo_I
|
||||
integer :: hole
|
||||
integer :: p
|
||||
integer :: q
|
||||
integer :: countalphas
|
||||
logical :: pqAlreadyGenQ
|
||||
logical :: pqExistsQ
|
||||
logical :: ppExistsQ
|
||||
integer*8 :: MS
|
||||
|
||||
double precision :: t0, t1
|
||||
call wall_time(t0)
|
||||
|
||||
MS = elec_alpha_num-elec_beta_num
|
||||
|
||||
allocate(tableUniqueAlphas(mo_num,mo_num))
|
||||
NalphaIcfg_list = 0
|
||||
|
||||
do idxI = 1, N_configuration
|
||||
|
||||
Icfg = psi_configuration(:,:,idxI)
|
||||
|
||||
Isomo = iand(act_bitmask(1,1),Icfg(1,1))
|
||||
Idomo = iand(act_bitmask(1,1),Icfg(1,2))
|
||||
|
||||
! find out all pq holes possible
|
||||
nholes = 0
|
||||
! holes in SOMO
|
||||
do ii = 1,n_act_orb
|
||||
i = list_act(ii)
|
||||
if(POPCNT(IAND(Isomo,IBSET(0_8,i-1))) .EQ. 1) then
|
||||
nholes += 1
|
||||
listholes(nholes) = i
|
||||
holetype(nholes) = 1
|
||||
endif
|
||||
end do
|
||||
! holes in DOMO
|
||||
do ii = 1,n_act_orb
|
||||
i = list_act(ii)
|
||||
if(POPCNT(IAND(Idomo,IBSET(0_8,i-1))) .EQ. 1) then
|
||||
nholes += 1
|
||||
listholes(nholes) = i
|
||||
holetype(nholes) = 2
|
||||
endif
|
||||
end do
|
||||
|
||||
! find vmos
|
||||
listvmos = -1
|
||||
vmotype = -1
|
||||
nvmos = 0
|
||||
do ii = 1,n_act_orb
|
||||
i = list_act(ii)
|
||||
if(IAND(Idomo,(IBSET(0_8,i-1))) .EQ. 0) then
|
||||
if(IAND(Isomo,(IBSET(0_8,i-1))) .EQ. 0) then
|
||||
nvmos += 1
|
||||
listvmos(nvmos) = i
|
||||
vmotype(nvmos) = 1
|
||||
else if(POPCNT(IAND(Isomo,(IBSET(0_8,i-1)))) .EQ. 1) then
|
||||
nvmos += 1
|
||||
listvmos(nvmos) = i
|
||||
vmotype(nvmos) = 2
|
||||
end if
|
||||
end if
|
||||
end do
|
||||
|
||||
tableUniqueAlphas = .FALSE.
|
||||
|
||||
! Now find the allowed (p,q) excitations
|
||||
Isomo = iand(act_bitmask(1,1),Icfg(1,1))
|
||||
Idomo = iand(act_bitmask(1,1),Icfg(1,2))
|
||||
Nsomo_I = POPCNT(Isomo)
|
||||
if(Nsomo_I .EQ. 0) then
|
||||
kstart = 1
|
||||
else
|
||||
kstart = cfg_seniority_index(max(NSOMOMin,Nsomo_I-2))
|
||||
endif
|
||||
kend = idxI-1
|
||||
|
||||
do i = 1,nholes
|
||||
p = listholes(i)
|
||||
do j = 1,nvmos
|
||||
q = listvmos(j)
|
||||
if(p .EQ. q) cycle
|
||||
if(holetype(i) .EQ. 1 .AND. vmotype(j) .EQ. 1) then
|
||||
! SOMO -> VMO
|
||||
Jsomo = IBCLR(Isomo,p-1)
|
||||
Jsomo = IBSET(Jsomo,q-1)
|
||||
Jdomo = Idomo
|
||||
kstart = max(1,cfg_seniority_index(max(NSOMOMin,Nsomo_I-2)))
|
||||
kend = idxI-1
|
||||
else if(holetype(i) .EQ. 1 .AND. vmotype(j) .EQ. 2) then
|
||||
! SOMO -> SOMO
|
||||
Jsomo = IBCLR(Isomo,p-1)
|
||||
Jsomo = IBCLR(Jsomo,q-1)
|
||||
Jdomo = IBSET(Idomo,q-1)
|
||||
! Check for Minimal alpha electrons (MS)
|
||||
if(POPCNT(Jsomo).ge.MS)then
|
||||
kstart = max(1,cfg_seniority_index(max(NSOMOMin,Nsomo_I-4)))
|
||||
kend = idxI-1
|
||||
else
|
||||
cycle
|
||||
endif
|
||||
else if(holetype(i) .EQ. 2 .AND. vmotype(j) .EQ. 1) then
|
||||
! DOMO -> VMO
|
||||
Jsomo = IBSET(Isomo,p-1)
|
||||
Jsomo = IBSET(Jsomo,q-1)
|
||||
Jdomo = IBCLR(Idomo,p-1)
|
||||
kstart = cfg_seniority_index(Nsomo_I)
|
||||
kend = idxI-1
|
||||
else if(holetype(i) .EQ. 2 .AND. vmotype(j) .EQ. 2) then
|
||||
! DOMO -> SOMO
|
||||
Jsomo = IBSET(Isomo,p-1)
|
||||
Jsomo = IBCLR(Jsomo,q-1)
|
||||
Jdomo = IBCLR(Idomo,p-1)
|
||||
Jdomo = IBSET(Jdomo,q-1)
|
||||
kstart = max(1,cfg_seniority_index(max(NSOMOMin,Nsomo_I-2)))
|
||||
kend = idxI-1
|
||||
else
|
||||
print*,"Something went wrong in obtain_associated_alphaI"
|
||||
endif
|
||||
! Check for Minimal alpha electrons (MS)
|
||||
if(POPCNT(Jsomo).lt.MS)then
|
||||
cycle
|
||||
endif
|
||||
|
||||
! Again, we don't have to search from 1
|
||||
! we just use seniority to find the
|
||||
! first index with NSOMO - 2 to NSOMO + 2
|
||||
! this is what is done in kstart, kend
|
||||
|
||||
pqAlreadyGenQ = .FALSE.
|
||||
! First check if it can be generated before
|
||||
do k = kstart, kend
|
||||
diffSOMO = IEOR(Jsomo,iand(reunion_of_act_virt_bitmask(1,1),psi_configuration(1,1,k)))
|
||||
ndiffSOMO = POPCNT(diffSOMO)
|
||||
if((ndiffSOMO .NE. 0) .AND. (ndiffSOMO .NE. 2)) cycle
|
||||
diffDOMO = IEOR(Jdomo,iand(reunion_of_act_virt_bitmask(1,1),psi_configuration(1,2,k)))
|
||||
xordiffSOMODOMO = IEOR(diffSOMO,diffDOMO)
|
||||
ndiffDOMO = POPCNT(diffDOMO)
|
||||
nxordiffSOMODOMO = POPCNT(xordiffSOMODOMO)
|
||||
nxordiffSOMODOMO += ndiffSOMO + ndiffDOMO
|
||||
!if(POPCNT(IEOR(diffSOMO,diffDOMO)) .LE. 1 .AND. ndiffDOMO .LT. 3) then
|
||||
if((ndiffSOMO+ndiffDOMO) .EQ. 0) then
|
||||
pqAlreadyGenQ = .TRUE.
|
||||
ppExistsQ = .TRUE.
|
||||
EXIT
|
||||
endif
|
||||
if((nxordiffSOMODOMO .EQ. 4) .AND. ndiffSOMO .EQ. 2) then
|
||||
pqAlreadyGenQ = .TRUE.
|
||||
EXIT
|
||||
endif
|
||||
end do
|
||||
|
||||
if(pqAlreadyGenQ) cycle
|
||||
|
||||
pqExistsQ = .FALSE.
|
||||
|
||||
if(.NOT. pqExistsQ) then
|
||||
tableUniqueAlphas(p,q) = .TRUE.
|
||||
endif
|
||||
end do
|
||||
end do
|
||||
|
||||
!print *,tableUniqueAlphas(:,:)
|
||||
|
||||
! prune list of alphas
|
||||
Isomo = Icfg(1,1)
|
||||
Idomo = Icfg(1,2)
|
||||
Jsomo = Icfg(1,1)
|
||||
Jdomo = Icfg(1,2)
|
||||
NalphaIcfg = 0
|
||||
do i = 1, nholes
|
||||
p = listholes(i)
|
||||
do j = 1, nvmos
|
||||
q = listvmos(j)
|
||||
if(p .EQ. q) cycle
|
||||
if(tableUniqueAlphas(p,q)) then
|
||||
if(holetype(i) .EQ. 1 .AND. vmotype(j) .EQ. 1) then
|
||||
! SOMO -> VMO
|
||||
Jsomo = IBCLR(Isomo,p-1)
|
||||
Jsomo = IBSET(Jsomo,q-1)
|
||||
Jdomo = Idomo
|
||||
else if(holetype(i) .EQ. 1 .AND. vmotype(j) .EQ. 2) then
|
||||
! SOMO -> SOMO
|
||||
Jsomo = IBCLR(Isomo,p-1)
|
||||
Jsomo = IBCLR(Jsomo,q-1)
|
||||
Jdomo = IBSET(Idomo,q-1)
|
||||
if(POPCNT(Jsomo).ge.MS)then
|
||||
kstart = max(1,cfg_seniority_index(max(NSOMOMin,Nsomo_I-4)))
|
||||
kend = idxI-1
|
||||
else
|
||||
cycle
|
||||
endif
|
||||
else if(holetype(i) .EQ. 2 .AND. vmotype(j) .EQ. 1) then
|
||||
! DOMO -> VMO
|
||||
Jsomo = IBSET(Isomo,p-1)
|
||||
Jsomo = IBSET(Jsomo,q-1)
|
||||
Jdomo = IBCLR(Idomo,p-1)
|
||||
else if(holetype(i) .EQ. 2 .AND. vmotype(j) .EQ. 2) then
|
||||
! DOMO -> SOMO
|
||||
Jsomo = IBSET(Isomo,p-1)
|
||||
Jsomo = IBCLR(Jsomo,q-1)
|
||||
Jdomo = IBCLR(Idomo,p-1)
|
||||
Jdomo = IBSET(Jdomo,q-1)
|
||||
else
|
||||
print*,"Something went wrong in obtain_associated_alphaI"
|
||||
endif
|
||||
|
||||
! SOMO
|
||||
!print *,i,j,"|",NalphaIcfg, Jsomo, IOR(Jdomo,ISHFT(1_8,n_core_orb)-1)
|
||||
if(POPCNT(Jsomo) .ge. NSOMOMin) then
|
||||
NalphaIcfg += 1
|
||||
alphasIcfg_list(1,1,idxI,NalphaIcfg) = Jsomo
|
||||
alphasIcfg_list(1,2,idxI,NalphaIcfg) = IOR(Jdomo,ISHFT(1_8,n_core_orb)-1)
|
||||
NalphaIcfg_list(idxI) = NalphaIcfg
|
||||
endif
|
||||
endif
|
||||
end do
|
||||
end do
|
||||
|
||||
! Check if this Icfg has been previously generated as a mono
|
||||
ppExistsQ = .False.
|
||||
Isomo = iand(reunion_of_act_virt_bitmask(1,1),Icfg(1,1))
|
||||
Idomo = iand(reunion_of_act_virt_bitmask(1,1),Icfg(1,2))
|
||||
kstart = max(1,cfg_seniority_index(max(NSOMOMin,Nsomo_I-2)))
|
||||
do k = kstart, idxI-1
|
||||
diffSOMO = IEOR(Isomo,iand(act_bitmask(1,1),psi_configuration(1,1,k)))
|
||||
ndiffSOMO = POPCNT(diffSOMO)
|
||||
if (ndiffSOMO /= 2) cycle
|
||||
diffDOMO = IEOR(Idomo,iand(act_bitmask(1,1),psi_configuration(1,2,k)))
|
||||
xordiffSOMODOMO = IEOR(diffSOMO,diffDOMO)
|
||||
ndiffDOMO = POPCNT(diffDOMO)
|
||||
nxordiffSOMODOMO = POPCNT(xordiffSOMODOMO)
|
||||
if((ndiffSOMO+ndiffDOMO+nxordiffSOMODOMO .EQ. 4)) then
|
||||
ppExistsQ = .TRUE.
|
||||
EXIT
|
||||
endif
|
||||
end do
|
||||
! Diagonal part (pp,qq)
|
||||
if(nholes > 0 .AND. (.NOT. ppExistsQ))then
|
||||
! SOMO
|
||||
if(POPCNT(Jsomo) .ge. NSOMOMin) then
|
||||
NalphaIcfg += 1
|
||||
alphasIcfg_list(1,1,idxI,NalphaIcfg) = Icfg(1,1)
|
||||
alphasIcfg_list(1,2,idxI,NalphaIcfg) = Icfg(1,2)
|
||||
NalphaIcfg_list(idxI) = NalphaIcfg
|
||||
endif
|
||||
endif
|
||||
|
||||
NalphaIcfg = 0
|
||||
enddo ! end loop idxI
|
||||
call wall_time(t1)
|
||||
print *, 'Preparation : ', t1 - t0
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
subroutine obtain_associated_alphaI(idxI, Icfg, alphasIcfg, NalphaIcfg)
|
||||
implicit none
|
||||
use bitmasks
|
||||
BEGIN_DOC
|
||||
! Documentation for alphasI
|
||||
! Returns the associated alpha's for
|
||||
! the input configuration Icfg.
|
||||
END_DOC
|
||||
|
||||
integer,intent(in) :: idxI ! The id of the Ith CFG
|
||||
integer(bit_kind),intent(in) :: Icfg(N_int,2)
|
||||
integer,intent(out) :: NalphaIcfg
|
||||
integer(bit_kind),intent(out) :: alphasIcfg(N_int,2,*)
|
||||
logical,dimension(:,:),allocatable :: tableUniqueAlphas
|
||||
integer :: listholes(mo_num)
|
||||
integer :: holetype(mo_num) ! 1-> SOMO 2->DOMO
|
||||
integer :: nholes
|
||||
integer :: nvmos
|
||||
integer :: listvmos(mo_num)
|
||||
integer :: vmotype(mo_num) ! 1 -> VMO 2 -> SOMO
|
||||
integer*8 :: Idomo
|
||||
integer*8 :: Isomo
|
||||
integer*8 :: Jdomo
|
||||
integer*8 :: Jsomo
|
||||
integer*8 :: diffSOMO
|
||||
integer*8 :: diffDOMO
|
||||
integer*8 :: xordiffSOMODOMO
|
||||
integer :: ndiffSOMO
|
||||
integer :: ndiffDOMO
|
||||
integer :: nxordiffSOMODOMO
|
||||
integer :: ndiffAll
|
||||
integer :: i, ii
|
||||
integer :: j, jj
|
||||
integer :: k, kk
|
||||
integer :: kstart
|
||||
integer :: kend
|
||||
integer :: Nsomo_I
|
||||
integer :: hole
|
||||
integer :: p
|
||||
integer :: q
|
||||
integer :: countalphas
|
||||
logical :: pqAlreadyGenQ
|
||||
logical :: pqExistsQ
|
||||
logical :: ppExistsQ
|
||||
Isomo = iand(act_bitmask(1,1),Icfg(1,1))
|
||||
Idomo = iand(act_bitmask(1,1),Icfg(1,2))
|
||||
!print*,"Input cfg"
|
||||
!call debug_spindet(Isomo,1)
|
||||
!call debug_spindet(Idomo,1)
|
||||
|
||||
! find out all pq holes possible
|
||||
nholes = 0
|
||||
! holes in SOMO
|
||||
do ii = 1,n_act_orb
|
||||
i = list_act(ii)
|
||||
if(POPCNT(IAND(Isomo,IBSET(0_8,i-1))) .EQ. 1) then
|
||||
nholes += 1
|
||||
listholes(nholes) = i
|
||||
holetype(nholes) = 1
|
||||
endif
|
||||
end do
|
||||
! holes in DOMO
|
||||
do ii = 1,n_act_orb
|
||||
i = list_act(ii)
|
||||
if(POPCNT(IAND(Idomo,IBSET(0_8,i-1))) .EQ. 1) then
|
||||
nholes += 1
|
||||
listholes(nholes) = i
|
||||
holetype(nholes) = 2
|
||||
endif
|
||||
end do
|
||||
|
||||
! find vmos
|
||||
listvmos = -1
|
||||
vmotype = -1
|
||||
nvmos = 0
|
||||
do ii = 1,n_act_orb
|
||||
i = list_act(ii)
|
||||
!print *,i,IBSET(0,i-1),POPCNT(IAND(Isomo,(IBSET(0_8,i-1)))), POPCNT(IAND(Idomo,(IBSET(0_8,i-1))))
|
||||
if(POPCNT(IAND(Isomo,(IBSET(0_8,i-1)))) .EQ. 0 .AND. POPCNT(IAND(Idomo,(IBSET(0_8,i-1)))) .EQ. 0) then
|
||||
nvmos += 1
|
||||
listvmos(nvmos) = i
|
||||
vmotype(nvmos) = 1
|
||||
else if(POPCNT(IAND(Isomo,(IBSET(0_8,i-1)))) .EQ. 1 .AND. POPCNT(IAND(Idomo,(IBSET(0_8,i-1)))) .EQ. 0 ) then
|
||||
nvmos += 1
|
||||
listvmos(nvmos) = i
|
||||
vmotype(nvmos) = 2
|
||||
end if
|
||||
end do
|
||||
|
||||
!print *,"Nvmo=",nvmos
|
||||
!print *,listvmos
|
||||
!print *,vmotype
|
||||
|
||||
allocate(tableUniqueAlphas(mo_num,mo_num))
|
||||
tableUniqueAlphas = .FALSE.
|
||||
|
||||
! Now find the allowed (p,q) excitations
|
||||
Isomo = iand(act_bitmask(1,1),Icfg(1,1))
|
||||
Idomo = iand(act_bitmask(1,1),Icfg(1,2))
|
||||
Nsomo_I = POPCNT(Isomo)
|
||||
if(Nsomo_I .EQ. 0) then
|
||||
kstart = 1
|
||||
else
|
||||
kstart = cfg_seniority_index(max(NSOMOMin,Nsomo_I-2))
|
||||
endif
|
||||
kend = idxI-1
|
||||
!print *,"Isomo"
|
||||
!call debug_spindet(Isomo,1)
|
||||
!call debug_spindet(Idomo,1)
|
||||
|
||||
!print *,"Nholes=",nholes," Nvmos=",nvmos, " idxi=",idxI
|
||||
!do i = 1,nholes
|
||||
! print *,i,"->",listholes(i)
|
||||
!enddo
|
||||
!do i = 1,nvmos
|
||||
! print *,i,"->",listvmos(i)
|
||||
!enddo
|
||||
|
||||
do i = 1,nholes
|
||||
p = listholes(i)
|
||||
do j = 1,nvmos
|
||||
q = listvmos(j)
|
||||
if(p .EQ. q) cycle
|
||||
if(holetype(i) .EQ. 1 .AND. vmotype(j) .EQ. 1) then
|
||||
! SOMO -> VMO
|
||||
Jsomo = IBCLR(Isomo,p-1)
|
||||
Jsomo = IBSET(Jsomo,q-1)
|
||||
Jdomo = Idomo
|
||||
kstart = max(1,cfg_seniority_index(max(NSOMOMin,Nsomo_I-2)))
|
||||
kend = idxI-1
|
||||
else if(holetype(i) .EQ. 1 .AND. vmotype(j) .EQ. 2) then
|
||||
! SOMO -> SOMO
|
||||
Jsomo = IBCLR(Isomo,p-1)
|
||||
Jsomo = IBCLR(Jsomo,q-1)
|
||||
Jdomo = IBSET(Idomo,q-1)
|
||||
kstart = max(1,cfg_seniority_index(max(NSOMOMin,Nsomo_I-4)))
|
||||
kend = idxI-1
|
||||
else if(holetype(i) .EQ. 2 .AND. vmotype(j) .EQ. 1) then
|
||||
! DOMO -> VMO
|
||||
Jsomo = IBSET(Isomo,p-1)
|
||||
Jsomo = IBSET(Jsomo,q-1)
|
||||
Jdomo = IBCLR(Idomo,p-1)
|
||||
kstart = cfg_seniority_index(Nsomo_I)
|
||||
kend = idxI-1
|
||||
else if(holetype(i) .EQ. 2 .AND. vmotype(j) .EQ. 2) then
|
||||
! DOMO -> SOMO
|
||||
Jsomo = IBSET(Isomo,p-1)
|
||||
Jsomo = IBCLR(Jsomo,q-1)
|
||||
Jdomo = IBCLR(Idomo,p-1)
|
||||
Jdomo = IBSET(Jdomo,q-1)
|
||||
kstart = max(1,cfg_seniority_index(max(NSOMOMin,Nsomo_I-2)))
|
||||
kend = idxI-1
|
||||
else
|
||||
print*,"Something went wrong in obtain_associated_alphaI"
|
||||
endif
|
||||
|
||||
! Again, we don't have to search from 1
|
||||
! we just use seniortiy to find the
|
||||
! first index with NSOMO - 2 to NSOMO + 2
|
||||
! this is what is done in kstart, kend
|
||||
|
||||
pqAlreadyGenQ = .FALSE.
|
||||
! First check if it can be generated before
|
||||
do k = kstart, kend
|
||||
diffSOMO = IEOR(Jsomo,iand(act_bitmask(1,1),psi_configuration(1,1,k)))
|
||||
ndiffSOMO = POPCNT(diffSOMO)
|
||||
if((ndiffSOMO .NE. 0) .AND. (ndiffSOMO .NE. 2)) cycle
|
||||
diffDOMO = IEOR(Jdomo,iand(act_bitmask(1,1),psi_configuration(1,2,k)))
|
||||
xordiffSOMODOMO = IEOR(diffSOMO,diffDOMO)
|
||||
ndiffDOMO = POPCNT(diffDOMO)
|
||||
nxordiffSOMODOMO = POPCNT(xordiffSOMODOMO)
|
||||
nxordiffSOMODOMO += ndiffSOMO + ndiffDOMO
|
||||
!if(POPCNT(IEOR(diffSOMO,diffDOMO)) .LE. 1 .AND. ndiffDOMO .LT. 3) then
|
||||
if((ndiffSOMO+ndiffDOMO) .EQ. 0) then
|
||||
pqAlreadyGenQ = .TRUE.
|
||||
ppExistsQ = .TRUE.
|
||||
EXIT
|
||||
endif
|
||||
if((nxordiffSOMODOMO .EQ. 4) .AND. ndiffSOMO .EQ. 2) then
|
||||
pqAlreadyGenQ = .TRUE.
|
||||
!EXIT
|
||||
!ppExistsQ = .TRUE.
|
||||
!print *,i,k,ndiffSOMO,ndiffDOMO
|
||||
!call debug_spindet(Jsomo,1)
|
||||
!call debug_spindet(Jdomo,1)
|
||||
!call debug_spindet(iand(reunion_of_act_virt_bitmask(1,1),psi_configuration(1,1,k)),1)
|
||||
!call debug_spindet(iand(reunion_of_act_virt_bitmask(1,1),psi_configuration(1,2,k)),1)
|
||||
EXIT
|
||||
endif
|
||||
end do
|
||||
|
||||
!print *,"(,",p,",",q,")",pqAlreadyGenQ
|
||||
|
||||
if(pqAlreadyGenQ) cycle
|
||||
|
||||
pqExistsQ = .FALSE.
|
||||
! now check if this exists in the selected list
|
||||
!do k = idxI+1, N_configuration
|
||||
! diffSOMO = IEOR(OR(reunion_of_act_virt_bitmask(1,1),Jsomo),psi_configuration(1,1,k))
|
||||
! diffDOMO = IEOR(OR(reunion_of_act_virt_bitmask(1,1),Jdomo),psi_configuration(1,2,k))
|
||||
! ndiffSOMO = POPCNT(diffSOMO)
|
||||
! ndiffDOMO = POPCNT(diffDOMO)
|
||||
! if((ndiffSOMO + ndiffDOMO) .EQ. 0) then
|
||||
! pqExistsQ = .TRUE.
|
||||
! EXIT
|
||||
! endif
|
||||
!end do
|
||||
|
||||
if(.NOT. pqExistsQ) then
|
||||
tableUniqueAlphas(p,q) = .TRUE.
|
||||
!print *,p,q
|
||||
!call debug_spindet(Jsomo,1)
|
||||
!call debug_spindet(Jdomo,1)
|
||||
endif
|
||||
end do
|
||||
end do
|
||||
|
||||
!print *,tableUniqueAlphas(:,:)
|
||||
|
||||
! prune list of alphas
|
||||
Isomo = Icfg(1,1)
|
||||
Idomo = Icfg(1,2)
|
||||
Jsomo = Icfg(1,1)
|
||||
Jdomo = Icfg(1,2)
|
||||
NalphaIcfg = 0
|
||||
do i = 1, nholes
|
||||
p = listholes(i)
|
||||
do j = 1, nvmos
|
||||
q = listvmos(j)
|
||||
if(p .EQ. q) cycle
|
||||
if(tableUniqueAlphas(p,q)) then
|
||||
if(holetype(i) .EQ. 1 .AND. vmotype(j) .EQ. 1) then
|
||||
! SOMO -> VMO
|
||||
Jsomo = IBCLR(Isomo,p-1)
|
||||
Jsomo = IBSET(Jsomo,q-1)
|
||||
Jdomo = Idomo
|
||||
else if(holetype(i) .EQ. 1 .AND. vmotype(j) .EQ. 2) then
|
||||
! SOMO -> SOMO
|
||||
Jsomo = IBCLR(Isomo,p-1)
|
||||
Jsomo = IBCLR(Jsomo,q-1)
|
||||
Jdomo = IBSET(Idomo,q-1)
|
||||
else if(holetype(i) .EQ. 2 .AND. vmotype(j) .EQ. 1) then
|
||||
! DOMO -> VMO
|
||||
Jsomo = IBSET(Isomo,p-1)
|
||||
Jsomo = IBSET(Jsomo,q-1)
|
||||
Jdomo = IBCLR(Idomo,p-1)
|
||||
else if(holetype(i) .EQ. 2 .AND. vmotype(j) .EQ. 2) then
|
||||
! DOMO -> SOMO
|
||||
Jsomo = IBSET(Isomo,p-1)
|
||||
Jsomo = IBCLR(Jsomo,q-1)
|
||||
Jdomo = IBCLR(Idomo,p-1)
|
||||
Jdomo = IBSET(Jdomo,q-1)
|
||||
else
|
||||
print*,"Something went wrong in obtain_associated_alphaI"
|
||||
endif
|
||||
|
||||
! SOMO
|
||||
NalphaIcfg += 1
|
||||
!print *,i,j,"|",NalphaIcfg
|
||||
alphasIcfg(1,1,NalphaIcfg) = Jsomo
|
||||
alphasIcfg(1,2,NalphaIcfg) = IOR(Jdomo,ISHFT(1_8,n_core_orb)-1)
|
||||
!print *,"I = ",idxI, " Na=",NalphaIcfg," - ",Jsomo, IOR(Jdomo,ISHFT(1_8,n_core_orb)-1)
|
||||
endif
|
||||
end do
|
||||
end do
|
||||
|
||||
! Check if this Icfg has been previously generated as a mono
|
||||
ppExistsQ = .False.
|
||||
Isomo = iand(act_bitmask(1,1),Icfg(1,1))
|
||||
Idomo = iand(act_bitmask(1,1),Icfg(1,2))
|
||||
do k = 1, idxI-1
|
||||
diffSOMO = IEOR(Isomo,iand(act_bitmask(1,1),psi_configuration(1,1,k)))
|
||||
diffDOMO = IEOR(Idomo,iand(act_bitmask(1,1),psi_configuration(1,2,k)))
|
||||
xordiffSOMODOMO = IEOR(diffSOMO,diffDOMO)
|
||||
ndiffSOMO = POPCNT(diffSOMO)
|
||||
ndiffDOMO = POPCNT(diffDOMO)
|
||||
nxordiffSOMODOMO = POPCNT(xordiffSOMODOMO)
|
||||
if((ndiffSOMO+ndiffDOMO+nxordiffSOMODOMO .EQ. 4) .AND. ndiffSOMO .EQ. 2) then
|
||||
ppExistsQ = .TRUE.
|
||||
EXIT
|
||||
endif
|
||||
end do
|
||||
! Diagonal part (pp,qq)
|
||||
if(nholes > 0 .AND. (.NOT. ppExistsQ))then
|
||||
! SOMO
|
||||
NalphaIcfg += 1
|
||||
!print *,p,q,"|",holetype(i),vmotype(j),NalphaIcfg
|
||||
!call debug_spindet(Idomo,1)
|
||||
!call debug_spindet(Jdomo,1)
|
||||
alphasIcfg(1,1,NalphaIcfg) = Icfg(1,1)
|
||||
alphasIcfg(1,2,NalphaIcfg) = Icfg(1,2)
|
||||
endif
|
||||
|
||||
end subroutine
|
||||
|
||||
function getNSOMO(Icfg) result(NSOMO)
|
||||
implicit none
|
||||
integer(bit_kind),intent(in) :: Icfg(N_int,2)
|
||||
@ -8,98 +597,3 @@
|
||||
NSOMO += POPCNT(Icfg(i,1))
|
||||
enddo
|
||||
end function getNSOMO
|
||||
|
||||
subroutine convertOrbIdsToModelSpaceIds(Ialpha, Jcfg, p, q, extype, pmodel, qmodel)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! This function converts the orbital ids
|
||||
! in real space to those used in model space
|
||||
! in order to identify the matrices required
|
||||
! for the calculation of MEs.
|
||||
!
|
||||
! The type of excitations are ordered as follows:
|
||||
! Type 1 - SOMO -> SOMO
|
||||
! Type 2 - DOMO -> VMO
|
||||
! Type 3 - SOMO -> VMO
|
||||
! Type 4 - DOMO -> SOMO
|
||||
END_DOC
|
||||
integer(bit_kind),intent(in) :: Ialpha(N_int,2)
|
||||
integer(bit_kind),intent(in) :: Jcfg(N_int,2)
|
||||
integer,intent(in) :: p,q
|
||||
integer,intent(in) :: extype
|
||||
integer,intent(out) :: pmodel,qmodel
|
||||
integer*8 :: Isomo
|
||||
integer*8 :: Idomo
|
||||
integer*8 :: Jsomo
|
||||
integer*8 :: Jdomo
|
||||
integer*8 :: mask
|
||||
integer*8 :: Isomotmp
|
||||
integer*8 :: Jsomotmp
|
||||
integer :: pos0,pos0prev
|
||||
|
||||
! TODO Flag (print) when model space indices is > 64
|
||||
Isomo = Ialpha(1,1)
|
||||
Idomo = Ialpha(1,2)
|
||||
Jsomo = Jcfg(1,1)
|
||||
Jdomo = Jcfg(1,2)
|
||||
pos0prev = 0
|
||||
pmodel = p
|
||||
qmodel = q
|
||||
|
||||
if(p .EQ. q) then
|
||||
pmodel = 1
|
||||
qmodel = 1
|
||||
else
|
||||
!print *,"input pq=",p,q,"extype=",extype
|
||||
!call debug_spindet(Isomo,1)
|
||||
!call debug_spindet(Idomo,1)
|
||||
!call debug_spindet(Jsomo,1)
|
||||
!call debug_spindet(Jdomo,1)
|
||||
select case(extype)
|
||||
case (1)
|
||||
! SOMO -> SOMO
|
||||
! remove all domos
|
||||
!print *,"type -> SOMO -> SOMO"
|
||||
mask = ISHFT(1_8,p) - 1
|
||||
Isomotmp = IAND(Isomo,mask)
|
||||
pmodel = POPCNT(mask) - POPCNT(XOR(Isomotmp,mask))
|
||||
mask = ISHFT(1_8,q) - 1
|
||||
Isomotmp = IAND(Isomo,mask)
|
||||
qmodel = POPCNT(mask) - POPCNT(XOR(Isomotmp,mask))
|
||||
case (2)
|
||||
! DOMO -> VMO
|
||||
! remove all domos except one at p
|
||||
!print *,"type -> DOMO -> VMO"
|
||||
mask = ISHFT(1_8,p) - 1
|
||||
Jsomotmp = IAND(Jsomo,mask)
|
||||
pmodel = POPCNT(mask) - POPCNT(XOR(Jsomotmp,mask))
|
||||
mask = ISHFT(1_8,q) - 1
|
||||
Jsomotmp = IAND(Jsomo,mask)
|
||||
qmodel = POPCNT(mask) - POPCNT(XOR(Jsomotmp,mask))
|
||||
case (3)
|
||||
! SOMO -> VMO
|
||||
!print *,"type -> SOMO -> VMO"
|
||||
!Isomo = IEOR(Isomo,Jsomo)
|
||||
mask = ISHFT(1_8,p) - 1
|
||||
Isomo = IAND(Isomo,mask)
|
||||
pmodel = POPCNT(mask) - POPCNT(XOR(Isomo,mask))
|
||||
mask = ISHFT(1_8,q) - 1
|
||||
Jsomo = IAND(Jsomo,mask)
|
||||
qmodel = POPCNT(mask) - POPCNT(XOR(Jsomo,mask))
|
||||
case (4)
|
||||
! DOMO -> SOMO
|
||||
! remove all domos except one at p
|
||||
!print *,"type -> DOMO -> SOMO"
|
||||
!Isomo = IEOR(Isomo,Jsomo)
|
||||
mask = ISHFT(1_8,p) - 1
|
||||
Jsomo = IAND(Jsomo,mask)
|
||||
pmodel = POPCNT(mask) - POPCNT(XOR(Jsomo,mask))
|
||||
mask = ISHFT(1_8,q) - 1
|
||||
Isomo = IAND(Isomo,mask)
|
||||
qmodel = POPCNT(mask) - POPCNT(XOR(Isomo,mask))
|
||||
case default
|
||||
print *,"something is wrong in convertOrbIdsToModelSpaceIds"
|
||||
end select
|
||||
endif
|
||||
!print *,p,q,"model ids=",pmodel,qmodel
|
||||
end subroutine convertOrbIdsToModelSpaceIds
|
||||
|
@ -458,8 +458,9 @@ end
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ integer, cfg_seniority_index, (0:elec_num) ]
|
||||
BEGIN_PROVIDER [ integer, cfg_seniority_index, (0:elec_num+2) ]
|
||||
&BEGIN_PROVIDER [ integer, cfg_nsomo_max ]
|
||||
&BEGIN_PROVIDER [ integer, cfg_nsomo_min ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Returns the index in psi_configuration of the first cfg with
|
||||
@ -467,9 +468,10 @@ END_PROVIDER
|
||||
!
|
||||
! cfg_nsomo_max : Max number of SOMO in the current wave function
|
||||
END_DOC
|
||||
integer :: i, k, s, sold
|
||||
integer :: i, k, s, sold, soldmin
|
||||
cfg_seniority_index(:) = -1
|
||||
sold = -1
|
||||
soldmin = 2000
|
||||
cfg_nsomo_max = 0
|
||||
do i=1,N_configuration
|
||||
s = 0
|
||||
@ -482,6 +484,10 @@ END_PROVIDER
|
||||
cfg_seniority_index(s) = i
|
||||
cfg_nsomo_max = s
|
||||
endif
|
||||
if (soldmin .GT. s ) then
|
||||
soldmin = s
|
||||
cfg_nsomo_min = s
|
||||
endif
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
@ -743,41 +749,112 @@ BEGIN_PROVIDER [ integer(bit_kind), dominant_dets_of_cfgs, (N_int,2,N_dominant_d
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
subroutine binary_search_cfg(cfgInp,addcfg)
|
||||
subroutine binary_search_cfg(cfgInp,addcfg,bit_tmp)
|
||||
use bitmasks
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Documentation for binary_search
|
||||
!
|
||||
! Does a binary search to find
|
||||
!
|
||||
! Does a binary search to find
|
||||
! the address of a configuration in a list of
|
||||
! configurations.
|
||||
END_DOC
|
||||
integer(bit_kind), intent(in) :: cfgInp(N_int,2)
|
||||
integer , intent(out) :: addcfg
|
||||
integer :: i,j,k,r,l
|
||||
integer*8 :: key, key2
|
||||
logical :: found
|
||||
!integer*8, allocatable :: bit_tmp(:)
|
||||
!integer*8, external :: configuration_search_key
|
||||
integer*8, intent(in) :: bit_tmp(0:N_configuration+1)
|
||||
|
||||
!allocate(bit_tmp(0:N_configuration))
|
||||
!bit_tmp(0) = 0
|
||||
do i=1,N_configuration
|
||||
!bit_tmp(i) = configuration_search_key(psi_configuration(1,1,i),N_int)
|
||||
found = .True.
|
||||
do k=1,N_int
|
||||
found = found .and. (psi_configuration(k,1,i) == cfgInp(k,1)) &
|
||||
.and. (psi_configuration(k,2,i) == cfgInp(k,2))
|
||||
enddo
|
||||
if (found) then
|
||||
addcfg = i
|
||||
exit
|
||||
logical :: found
|
||||
integer :: l, r, j, k
|
||||
integer*8 :: key
|
||||
|
||||
integer*8, external :: configuration_search_key
|
||||
|
||||
key = configuration_search_key(cfgInp,N_int)
|
||||
|
||||
! Binary search
|
||||
l = 0
|
||||
r = N_configuration+1
|
||||
IRP_IF WITHOUT_SHIFTRL
|
||||
j = ishft(r-l,-1)
|
||||
IRP_ELSE
|
||||
j = shiftr(r-l,1)
|
||||
IRP_ENDIF
|
||||
do while (j>=1)
|
||||
j = j+l
|
||||
if (bit_tmp(j) == key) then
|
||||
! Find 1st element which matches the key
|
||||
if (j > 1) then
|
||||
do while (j>1 .and. bit_tmp(j-1) == key)
|
||||
j = j-1
|
||||
enddo
|
||||
endif
|
||||
! Find correct element matching the key
|
||||
do while (bit_tmp(j) == key)
|
||||
found = .True.
|
||||
do k=1,N_int
|
||||
found = found .and. (psi_configuration(k,1,j) == cfgInp(k,1))&
|
||||
.and. (psi_configuration(k,2,j) == cfgInp(k,2))
|
||||
enddo
|
||||
if (found) then
|
||||
addcfg = j
|
||||
return
|
||||
endif
|
||||
j = j+1
|
||||
enddo
|
||||
addcfg = -1
|
||||
return
|
||||
else if (bit_tmp(j) > key) then
|
||||
r = j
|
||||
else
|
||||
l = j
|
||||
endif
|
||||
IRP_IF WITHOUT_SHIFTRL
|
||||
j = ishft(r-l,-1)
|
||||
IRP_ELSE
|
||||
j = shiftr(r-l,1)
|
||||
IRP_ENDIF
|
||||
enddo
|
||||
|
||||
addcfg = -1
|
||||
return
|
||||
|
||||
end subroutine
|
||||
|
||||
!subroutine binary_search_cfg(cfgInp,addcfg)
|
||||
! use bitmasks
|
||||
! implicit none
|
||||
! BEGIN_DOC
|
||||
! ! Documentation for binary_search
|
||||
! !
|
||||
! ! Does a binary search to find
|
||||
! ! the address of a configuration in a list of
|
||||
! ! configurations.
|
||||
! END_DOC
|
||||
! integer(bit_kind), intent(in) :: cfgInp(N_int,2)
|
||||
! integer , intent(out) :: addcfg
|
||||
! integer :: i,j,k,r,l
|
||||
! integer*8 :: key, key2
|
||||
! logical :: found
|
||||
! !integer*8, allocatable :: bit_tmp(:)
|
||||
! !integer*8, external :: configuration_search_key
|
||||
!
|
||||
! !allocate(bit_tmp(0:N_configuration))
|
||||
! !bit_tmp(0) = 0
|
||||
! do i=1,N_configuration
|
||||
! !bit_tmp(i) = configuration_search_key(psi_configuration(1,1,i),N_int)
|
||||
! found = .True.
|
||||
! do k=1,N_int
|
||||
! found = found .and. (psi_configuration(k,1,i) == cfgInp(k,1)) &
|
||||
! .and. (psi_configuration(k,2,i) == cfgInp(k,2))
|
||||
! enddo
|
||||
! if (found) then
|
||||
! addcfg = i
|
||||
! exit
|
||||
! endif
|
||||
! enddo
|
||||
!
|
||||
!end subroutine
|
||||
!
|
||||
BEGIN_PROVIDER [ integer, psi_configuration_to_psi_det, (2,N_configuration) ]
|
||||
&BEGIN_PROVIDER [ integer, psi_configuration_to_psi_det_data, (N_det) ]
|
||||
|
||||
|
@ -1,3 +1,16 @@
|
||||
BEGIN_PROVIDER [ double precision, psi_csf_coef, (N_csf, N_states) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Wafe function in CSF basis
|
||||
END_DOC
|
||||
|
||||
double precision, allocatable :: buffer(:,:)
|
||||
allocate ( buffer(N_det, N_states) )
|
||||
buffer(1:N_det, 1:N_states) = psi_coef(1:N_det, 1:N_states)
|
||||
call convertWFfromDETtoCSF(N_states, buffer, psi_csf_coef)
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
subroutine convertWFfromDETtoCSF(N_st,psi_coef_det_in, psi_coef_cfg_out)
|
||||
use cfunctions
|
||||
use bitmasks
|
||||
@ -12,7 +25,7 @@ subroutine convertWFfromDETtoCSF(N_st,psi_coef_det_in, psi_coef_cfg_out)
|
||||
double precision, intent(out) :: psi_coef_cfg_out(n_CSF,N_st)
|
||||
integer*8 :: Isomo, Idomo, mask
|
||||
integer(bit_kind) :: Ialpha(N_int) ,Ibeta(N_int)
|
||||
integer :: rows, cols, i, j, k
|
||||
integer :: rows, cols, i, j, k, salpha
|
||||
integer :: startdet, enddet
|
||||
integer :: ndetI
|
||||
integer :: getNSOMO
|
||||
@ -26,6 +39,8 @@ subroutine convertWFfromDETtoCSF(N_st,psi_coef_det_in, psi_coef_cfg_out)
|
||||
|
||||
integer s, bfIcfg
|
||||
integer countcsf
|
||||
integer MS
|
||||
MS = elec_alpha_num-elec_beta_num
|
||||
countcsf = 0
|
||||
phasedet = 1.0d0
|
||||
do i = 1,N_configuration
|
||||
@ -44,12 +59,19 @@ subroutine convertWFfromDETtoCSF(N_st,psi_coef_det_in, psi_coef_cfg_out)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
s = 0
|
||||
s = 0 ! s == total number of SOMOs
|
||||
do k=1,N_int
|
||||
if (psi_configuration(k,1,i) == 0_bit_kind) cycle
|
||||
s = s + popcnt(psi_configuration(k,1,i))
|
||||
enddo
|
||||
bfIcfg = max(1,nint((binom(s,(s+1)/2)-binom(s,((s+1)/2)+1))))
|
||||
|
||||
if(iand(s,1) .EQ. 0) then
|
||||
salpha = (s + MS)/2
|
||||
bfIcfg = max(1,nint((binom(s,salpha)-binom(s,salpha+1))))
|
||||
else
|
||||
salpha = (s + MS)/2
|
||||
bfIcfg = max(1,nint((binom(s,salpha)-binom(s,salpha+1))))
|
||||
endif
|
||||
|
||||
! perhaps blocking with CFGs of same seniority
|
||||
! can be more efficient
|
||||
@ -80,7 +102,7 @@ subroutine convertWFfromCSFtoDET(N_st,psi_coef_cfg_in, psi_coef_det)
|
||||
double precision,intent(in) :: psi_coef_cfg_in(n_CSF,N_st)
|
||||
double precision,intent(out) :: psi_coef_det(N_det,N_st)
|
||||
double precision :: tmp_psi_coef_det(maxDetDimPerBF,N_st)
|
||||
integer :: s, bfIcfg
|
||||
integer :: s, bfIcfg, salpha
|
||||
integer :: countcsf
|
||||
integer(bit_kind) :: Ialpha(N_int), Ibeta(N_int)
|
||||
integer :: rows, cols, i, j, k
|
||||
@ -91,6 +113,8 @@ subroutine convertWFfromCSFtoDET(N_st,psi_coef_cfg_in, psi_coef_det)
|
||||
double precision,allocatable :: tempCoeff (:,:)
|
||||
double precision :: phasedet
|
||||
integer :: idx
|
||||
integer MS
|
||||
MS = elec_alpha_num-elec_beta_num
|
||||
|
||||
countcsf = 0
|
||||
|
||||
@ -104,7 +128,8 @@ subroutine convertWFfromCSFtoDET(N_st,psi_coef_cfg_in, psi_coef_det)
|
||||
if (psi_configuration(k,1,i) == 0_bit_kind) cycle
|
||||
s = s + popcnt(psi_configuration(k,1,i))
|
||||
enddo
|
||||
bfIcfg = max(1,nint((binom(s,(s+1)/2)-binom(s,((s+1)/2)+1))))
|
||||
salpha = (s + MS)/2
|
||||
bfIcfg = max(1,nint((binom(s,salpha)-binom(s,salpha+1))))
|
||||
|
||||
allocate(tempCoeff(bfIcfg,N_st))
|
||||
|
||||
|
@ -226,7 +226,7 @@ subroutine generate_all_singles_cfg(cfg,singles,n_singles,Nint)
|
||||
enddo
|
||||
end
|
||||
|
||||
subroutine generate_all_singles_cfg_with_type(cfgInp,singles,idxs_singles,pq_singles,ex_type_singles,n_singles,Nint)
|
||||
subroutine generate_all_singles_cfg_with_type(bit_tmp,cfgInp,singles,idxs_singles,pq_singles,ex_type_singles,n_singles,Nint)
|
||||
implicit none
|
||||
use bitmasks
|
||||
BEGIN_DOC
|
||||
@ -238,6 +238,7 @@ subroutine generate_all_singles_cfg_with_type(cfgInp,singles,idxs_singles,pq_sin
|
||||
! ex_type_singles : on output contains type of excitations :
|
||||
!
|
||||
END_DOC
|
||||
integer*8, intent(in) :: bit_tmp(0:N_configuration+1)
|
||||
integer, intent(in) :: Nint
|
||||
integer, intent(inout) :: n_singles
|
||||
integer, intent(out) :: idxs_singles(*)
|
||||
@ -248,20 +249,26 @@ subroutine generate_all_singles_cfg_with_type(cfgInp,singles,idxs_singles,pq_sin
|
||||
integer(bit_kind) :: Jdet(Nint,2)
|
||||
|
||||
integer :: i,k, n_singles_ma, i_hole, i_particle, ex_type, addcfg
|
||||
integer :: ii,kk
|
||||
integer(bit_kind) :: single(Nint,2)
|
||||
logical :: i_ok
|
||||
|
||||
|
||||
n_singles = 0
|
||||
!TODO
|
||||
!Make list of Somo and Domo for holes
|
||||
!Make list of Unocc and Somo for particles
|
||||
do i_hole = 1+n_core_orb, n_core_orb + n_act_orb
|
||||
do i_particle = 1+n_core_orb, n_core_orb + n_act_orb
|
||||
!do i_hole = 1+n_core_orb, n_core_orb + n_act_orb
|
||||
do ii = 1, n_act_orb
|
||||
i_hole = list_act(ii)
|
||||
!do i_particle = 1+n_core_orb, n_core_orb + n_act_orb
|
||||
do kk = 1, n_act_orb
|
||||
i_particle = list_act(kk)
|
||||
if(i_hole .EQ. i_particle) cycle
|
||||
addcfg = -1
|
||||
call do_single_excitation_cfg_with_type(cfgInp,single,i_hole,i_particle,ex_type,i_ok)
|
||||
if (i_ok) then
|
||||
call binary_search_cfg(single,addcfg)
|
||||
call binary_search_cfg(single,addcfg,bit_tmp)
|
||||
if(addcfg .EQ. -1) cycle
|
||||
n_singles = n_singles + 1
|
||||
do k=1,Nint
|
||||
|
397
src/csf/obtain_I_foralpha.irp.f
Normal file
397
src/csf/obtain_I_foralpha.irp.f
Normal file
@ -0,0 +1,397 @@
|
||||
subroutine obtain_connected_J_givenI(idxI, givenI, connectedI, idxs_connectedI, nconnectedI,ntotalconnectedI)
|
||||
implicit none
|
||||
use bitmasks
|
||||
BEGIN_DOC
|
||||
! Documentation for obtain_connected_I_foralpha
|
||||
! This function returns all those selected configurations
|
||||
! which are connected to the input configuration
|
||||
! givenI by a single excitation.
|
||||
!
|
||||
! The type of excitations are ordered as follows:
|
||||
! Type 1 - SOMO -> SOMO
|
||||
! Type 2 - DOMO -> VMO
|
||||
! Type 3 - SOMO -> VMO
|
||||
! Type 4 - DOMO -> SOMO
|
||||
!
|
||||
! Order of operators
|
||||
! \alpha> = a^\dag_p a_q |I> = E_pq |I>
|
||||
END_DOC
|
||||
integer ,intent(in) :: idxI
|
||||
integer(bit_kind),intent(in) :: givenI(N_int,2)
|
||||
integer(bit_kind),intent(out) :: connectedI(N_int,2,*)
|
||||
integer ,intent(out) :: idxs_connectedI(*)
|
||||
integer,intent(out) :: nconnectedI
|
||||
integer,intent(out) :: ntotalconnectedI
|
||||
integer*8 :: Idomo
|
||||
integer*8 :: Isomo
|
||||
integer*8 :: Jdomo
|
||||
integer*8 :: Jsomo
|
||||
integer*8 :: IJsomo
|
||||
integer*8 :: diffSOMO
|
||||
integer*8 :: diffDOMO
|
||||
integer*8 :: xordiffSOMODOMO
|
||||
integer :: ndiffSOMO
|
||||
integer :: ndiffDOMO
|
||||
integer :: nxordiffSOMODOMO
|
||||
integer :: iii,ii,i,j,k,l,p,q,nsomoJ,nsomoalpha,starti,endi,extyp,nholes
|
||||
integer :: listholes(mo_num)
|
||||
integer :: holetype(mo_num)
|
||||
integer :: end_index
|
||||
integer :: Nsomo_I
|
||||
|
||||
!
|
||||
! 2 2 1 1 0 0 : 1 1 0 0 0 0
|
||||
! 0 0 1 1 0 0
|
||||
!
|
||||
! 2 1 1 1 1 0 : 1 0 0 0 0 0
|
||||
! 0 1 1 1 1 0
|
||||
!xorS 0 1 0 0 1 0 : 2
|
||||
!xorD 0 1 0 0 0 0 : 1
|
||||
!xorSD 0 0 0 0 1 0 : 1
|
||||
! -----
|
||||
! 4
|
||||
! 1 1 1 1 1 1 : 0 0 0 0 0 0
|
||||
! 1 1 1 1 1 1
|
||||
! 1 1 0 0 1 1 : 4
|
||||
! 1 1 0 0 0 0 : 2
|
||||
! 0 0 0 0 1 1 : 2
|
||||
! -----
|
||||
! 8
|
||||
!
|
||||
|
||||
nconnectedI = 0
|
||||
ntotalconnectedI = 0
|
||||
end_index = N_configuration
|
||||
|
||||
! Since CFGs are sorted wrt to seniority
|
||||
! we don't have to search the full CFG list
|
||||
Isomo = givenI(1,1)
|
||||
Idomo = givenI(1,2)
|
||||
Nsomo_I = POPCNT(Isomo)
|
||||
end_index = min(N_configuration,cfg_seniority_index(min(Nsomo_I+6,elec_num))-1)
|
||||
if(end_index .LT. 0) end_index= N_configuration
|
||||
!end_index = N_configuration
|
||||
!print *,"Start and End = ",idxI, end_index
|
||||
|
||||
|
||||
p = 0
|
||||
q = 0
|
||||
do i=idxI,end_index
|
||||
!if(.True.) then
|
||||
! nconnectedI += 1
|
||||
! connectedI(:,:,nconnectedI) = psi_configuration(:,:,i)
|
||||
! idxs_connectedI(nconnectedI)=i
|
||||
! cycle
|
||||
!endif
|
||||
Isomo = givenI(1,1)
|
||||
Idomo = givenI(1,2)
|
||||
Jsomo = psi_configuration(1,1,i)
|
||||
Jdomo = psi_configuration(1,2,i)
|
||||
diffSOMO = IEOR(Isomo,Jsomo)
|
||||
ndiffSOMO = POPCNT(diffSOMO)
|
||||
diffDOMO = IEOR(Idomo,Jdomo)
|
||||
xordiffSOMODOMO = IEOR(diffSOMO,diffDOMO)
|
||||
ndiffDOMO = POPCNT(diffDOMO)
|
||||
nxordiffSOMODOMO = POPCNT(xordiffSOMODOMO)
|
||||
nxordiffSOMODOMO += ndiffSOMO + ndiffDOMO
|
||||
if((nxordiffSOMODOMO .EQ. 4) .AND. ndiffSOMO .EQ. 2) then
|
||||
!-------
|
||||
! MONO |
|
||||
!-------
|
||||
nconnectedI += 1
|
||||
connectedI(:,:,nconnectedI) = psi_configuration(:,:,i)
|
||||
idxs_connectedI(nconnectedI)=i
|
||||
ntotalconnectedI += max(1,(psi_config_data(i,2)-psi_config_data(i,1)+1))
|
||||
else if((nxordiffSOMODOMO .EQ. 8) .AND. ndiffSOMO .EQ. 4) then
|
||||
!----------------------------
|
||||
! DOMO -> VMO + DOMO -> VMO |
|
||||
!----------------------------
|
||||
nconnectedI += 1
|
||||
connectedI(:,:,nconnectedI) = psi_configuration(:,:,i)
|
||||
idxs_connectedI(nconnectedI)=i
|
||||
ntotalconnectedI += max(1,(psi_config_data(i,2)-psi_config_data(i,1)+1))
|
||||
else if((nxordiffSOMODOMO .EQ. 6) .AND. ndiffSOMO .EQ. 2) then
|
||||
!----------------------------
|
||||
! DOUBLE
|
||||
!----------------------------
|
||||
nconnectedI += 1
|
||||
connectedI(:,:,nconnectedI) = psi_configuration(:,:,i)
|
||||
idxs_connectedI(nconnectedI)=i
|
||||
ntotalconnectedI += max(1,(psi_config_data(i,2)-psi_config_data(i,1)+1))
|
||||
else if((nxordiffSOMODOMO .EQ. 2) .AND. ndiffSOMO .EQ. 3) then
|
||||
!-----------------
|
||||
! DOUBLE
|
||||
!-----------------
|
||||
nconnectedI += 1
|
||||
connectedI(:,:,nconnectedI) = psi_configuration(:,:,i)
|
||||
idxs_connectedI(nconnectedI)=i
|
||||
ntotalconnectedI += max(1,(psi_config_data(i,2)-psi_config_data(i,1)+1))
|
||||
else if((nxordiffSOMODOMO .EQ. 4) .AND. ndiffSOMO .EQ. 0) then
|
||||
!-----------------
|
||||
! DOUBLE
|
||||
!-----------------
|
||||
nconnectedI += 1
|
||||
connectedI(:,:,nconnectedI) = psi_configuration(:,:,i)
|
||||
idxs_connectedI(nconnectedI)=i
|
||||
ntotalconnectedI += max(1,(psi_config_data(i,2)-psi_config_data(i,1)+1))
|
||||
else if((ndiffSOMO + ndiffDOMO) .EQ. 0) then
|
||||
!--------
|
||||
! I = I |
|
||||
!--------
|
||||
nconnectedI += 1
|
||||
connectedI(:,:,nconnectedI) = psi_configuration(:,:,i)
|
||||
idxs_connectedI(nconnectedI)= i
|
||||
! find out all pq holes possible
|
||||
nholes = 0
|
||||
! holes in SOMO
|
||||
Isomo = psi_configuration(1,1,i)
|
||||
Idomo = psi_configuration(1,2,i)
|
||||
do iii = 1,n_act_orb
|
||||
ii = list_act(iii)
|
||||
if(POPCNT(IAND(Isomo,IBSET(0_8,ii-1))) .EQ. 1) then
|
||||
nholes += 1
|
||||
listholes(nholes) = ii
|
||||
holetype(nholes) = 1
|
||||
endif
|
||||
end do
|
||||
! holes in DOMO
|
||||
do iii = 1,n_act_orb
|
||||
ii = list_act(iii)
|
||||
if(POPCNT(IAND(Idomo,IBSET(0_8,ii-1))) .EQ. 1) then
|
||||
nholes += 1
|
||||
listholes(nholes) = ii
|
||||
holetype(nholes) = 2
|
||||
endif
|
||||
end do
|
||||
ntotalconnectedI += max(1,(psi_config_data(i,2)-psi_config_data(i,1)+1)*nholes)
|
||||
endif
|
||||
end do
|
||||
|
||||
end subroutine obtain_connected_J_givenI
|
||||
|
||||
subroutine obtain_connected_I_foralpha(idxI, Ialpha, connectedI, idxs_connectedI, nconnectedI, excitationIds, excitationTypes, diagfactors)
|
||||
implicit none
|
||||
use bitmasks
|
||||
BEGIN_DOC
|
||||
! Documentation for obtain_connected_I_foralpha
|
||||
! This function returns all those selected configurations
|
||||
! which are connected to the input configuration
|
||||
! Ialpha by a single excitation.
|
||||
!
|
||||
! The type of excitations are ordered as follows:
|
||||
! Type 1 - SOMO -> SOMO
|
||||
! Type 2 - DOMO -> VMO
|
||||
! Type 3 - SOMO -> VMO
|
||||
! Type 4 - DOMO -> SOMO
|
||||
!
|
||||
! Order of operators
|
||||
! \alpha> = a^\dag_p a_q |I> = E_pq |I>
|
||||
END_DOC
|
||||
integer ,intent(in) :: idxI
|
||||
integer(bit_kind),intent(in) :: Ialpha(N_int,2)
|
||||
integer(bit_kind),intent(out) :: connectedI(N_int,2,*)
|
||||
integer ,intent(out) :: idxs_connectedI(*)
|
||||
integer,intent(out) :: nconnectedI
|
||||
integer,intent(out) :: excitationIds(2,*)
|
||||
integer,intent(out) :: excitationTypes(*)
|
||||
real*8 ,intent(out) :: diagfactors(*)
|
||||
integer*8 :: Idomo
|
||||
integer*8 :: Isomo
|
||||
integer*8 :: Jdomo
|
||||
integer*8 :: Jsomo
|
||||
integer*8 :: IJsomo
|
||||
integer*8 :: diffSOMO
|
||||
integer*8 :: diffDOMO
|
||||
integer*8 :: xordiffSOMODOMO
|
||||
integer :: ndiffSOMO
|
||||
integer :: ndiffDOMO
|
||||
integer :: nxordiffSOMODOMO
|
||||
integer :: iii,ii,i,j,k,l,p,q,nsomoJ,nsomoalpha,starti,endi,extyp,nholes
|
||||
integer :: listholes(mo_num)
|
||||
integer :: holetype(mo_num)
|
||||
integer :: end_index
|
||||
integer :: Nsomo_alpha
|
||||
integer*8 :: MS
|
||||
MS = elec_alpha_num-elec_beta_num
|
||||
|
||||
nconnectedI = 0
|
||||
end_index = N_configuration
|
||||
|
||||
! Since CFGs are sorted wrt to seniority
|
||||
! we don't have to search the full CFG list
|
||||
Isomo = Ialpha(1,1)
|
||||
Idomo = Ialpha(1,2)
|
||||
Nsomo_alpha = POPCNT(Isomo)
|
||||
end_index = min(N_configuration,cfg_seniority_index(min(Nsomo_alpha+4,elec_num))-1)
|
||||
if(end_index .LT. 0) end_index= N_configuration
|
||||
end_index = N_configuration
|
||||
|
||||
|
||||
p = 0
|
||||
q = 0
|
||||
if (N_int > 1) stop 'obtain_connected_i_foralpha : N_int > 1'
|
||||
do i=idxI,end_index
|
||||
Isomo = Ialpha(1,1)
|
||||
Idomo = Ialpha(1,2)
|
||||
Jsomo = psi_configuration(1,1,i)
|
||||
Jdomo = psi_configuration(1,2,i)
|
||||
! Check for Minimal alpha electrons (MS)
|
||||
if(POPCNT(Isomo).lt.MS)then
|
||||
cycle
|
||||
endif
|
||||
diffSOMO = IEOR(Isomo,Jsomo)
|
||||
ndiffSOMO = POPCNT(diffSOMO)
|
||||
!if(idxI.eq.1)then
|
||||
! print *," \t idxI=",i," diffS=",ndiffSOMO," popJs=", POPCNT(Jsomo)," popIs=",POPCNT(Isomo)
|
||||
!endif
|
||||
diffDOMO = IEOR(Idomo,Jdomo)
|
||||
xordiffSOMODOMO = IEOR(diffSOMO,diffDOMO)
|
||||
ndiffDOMO = POPCNT(diffDOMO)
|
||||
nxordiffSOMODOMO = POPCNT(xordiffSOMODOMO)
|
||||
nxordiffSOMODOMO += ndiffSOMO + ndiffDOMO
|
||||
if((nxordiffSOMODOMO .EQ. 4) .AND. ndiffSOMO .EQ. 2) then
|
||||
select case(ndiffDOMO)
|
||||
case (0)
|
||||
! SOMO -> VMO
|
||||
!print *,"obt SOMO -> VMO"
|
||||
extyp = 3
|
||||
IJsomo = IEOR(Isomo, Jsomo)
|
||||
!IRP_IF WITHOUT_TRAILZ
|
||||
! p = (popcnt(ieor( IAND(Isomo,IJsomo) , IAND(Isomo,IJsomo) -1))-1) + 1
|
||||
!IRP_ELSE
|
||||
p = TRAILZ(IAND(Isomo,IJsomo)) + 1
|
||||
!IRP_ENDIF
|
||||
IJsomo = IBCLR(IJsomo,p-1)
|
||||
!IRP_IF WITHOUT_TRAILZ
|
||||
! q = (popcnt(ieor(IJsomo,IJsomo-1))-1) + 1
|
||||
!IRP_ELSE
|
||||
q = TRAILZ(IJsomo) + 1
|
||||
!IRP_ENDIF
|
||||
case (1)
|
||||
! DOMO -> VMO
|
||||
! or
|
||||
! SOMO -> SOMO
|
||||
nsomoJ = POPCNT(Jsomo)
|
||||
nsomoalpha = POPCNT(Isomo)
|
||||
if(nsomoJ .GT. nsomoalpha) then
|
||||
! DOMO -> VMO
|
||||
!print *,"obt DOMO -> VMO"
|
||||
extyp = 2
|
||||
!IRP_IF WITHOUT_TRAILZ
|
||||
! p = (popcnt(ieor( IEOR(Idomo,Jdomo),IEOR(Idomo,Jdomo) -1))-1) + 1
|
||||
!IRP_ELSE
|
||||
p = TRAILZ(IEOR(Idomo,Jdomo)) + 1
|
||||
!IRP_ENDIF
|
||||
Isomo = IEOR(Isomo, Jsomo)
|
||||
Isomo = IBCLR(Isomo,p-1)
|
||||
!IRP_IF WITHOUT_TRAILZ
|
||||
! q = (popcnt(ieor(Isomo,Isomo-1))-1) + 1
|
||||
!IRP_ELSE
|
||||
q = TRAILZ(Isomo) + 1
|
||||
!IRP_ENDIF
|
||||
else
|
||||
! SOMO -> SOMO
|
||||
!print *,"obt SOMO -> SOMO"
|
||||
extyp = 1
|
||||
!IRP_IF WITHOUT_TRAILZ
|
||||
! q = (popcnt(ieor( IEOR(Idomo,Jdomo), IEOR(Idomo,Jdomo)-1))-1) + 1
|
||||
!IRP_ELSE
|
||||
q = TRAILZ(IEOR(Idomo,Jdomo)) + 1
|
||||
!IRP_ENDIF
|
||||
Isomo = IEOR(Isomo, Jsomo)
|
||||
Isomo = IBCLR(Isomo,q-1)
|
||||
!IRP_IF WITHOUT_TRAILZ
|
||||
! p = (popcnt(ieor(Isomo,Isomo-1))-1) + 1
|
||||
!IRP_ELSE
|
||||
p = TRAILZ(Isomo) + 1
|
||||
!IRP_ENDIF
|
||||
! Check for Minimal alpha electrons (MS)
|
||||
!if(POPCNT(Isomo).lt.MS)then
|
||||
! cycle
|
||||
!endif
|
||||
end if
|
||||
case (2)
|
||||
! DOMO -> SOMO
|
||||
!print *,"obt DOMO -> SOMO"
|
||||
extyp = 4
|
||||
IJsomo = IEOR(Isomo, Jsomo)
|
||||
!IRP_IF WITHOUT_TRAILZ
|
||||
! p = (popcnt(ieor( IAND(Jsomo,IJsomo), IAND(Jsomo,IJsomo)-1))-1) + 1
|
||||
!IRP_ELSE
|
||||
p = TRAILZ(IAND(Jsomo,IJsomo)) + 1
|
||||
!IRP_ENDIF
|
||||
IJsomo = IBCLR(IJsomo,p-1)
|
||||
!IRP_IF WITHOUT_TRAILZ
|
||||
! q = (popcnt(ieor( IJsomo , IJsomo -1))-1) + 1
|
||||
!IRP_ELSE
|
||||
q = TRAILZ(IJsomo) + 1
|
||||
!IRP_ENDIF
|
||||
case default
|
||||
print *,"something went wront in get connectedI"
|
||||
end select
|
||||
starti = psi_config_data(i,1)
|
||||
endi = psi_config_data(i,2)
|
||||
nconnectedI += 1
|
||||
do k=1,N_int
|
||||
connectedI(k,1,nconnectedI) = psi_configuration(k,1,i)
|
||||
connectedI(k,2,nconnectedI) = psi_configuration(k,2,i)
|
||||
enddo
|
||||
idxs_connectedI(nconnectedI)=starti
|
||||
excitationIds(1,nconnectedI)=p
|
||||
excitationIds(2,nconnectedI)=q
|
||||
excitationTypes(nconnectedI) = extyp
|
||||
diagfactors(nconnectedI) = 1.0d0
|
||||
else if((ndiffSOMO + ndiffDOMO) .EQ. 0) then
|
||||
! find out all pq holes possible
|
||||
nholes = 0
|
||||
! holes in SOMO
|
||||
Isomo = psi_configuration(1,1,i)
|
||||
Idomo = psi_configuration(1,2,i)
|
||||
do iii = 1,n_act_orb
|
||||
ii = list_act(iii)
|
||||
if(POPCNT(IAND(Isomo,IBSET(0_8,ii-1))) .EQ. 1) then
|
||||
nholes += 1
|
||||
listholes(nholes) = ii
|
||||
holetype(nholes) = 1
|
||||
endif
|
||||
end do
|
||||
! holes in DOMO
|
||||
do iii = 1,n_act_orb
|
||||
ii = list_act(iii)
|
||||
if(POPCNT(IAND(Idomo,IBSET(0_8,ii-1))) .EQ. 1) then
|
||||
nholes += 1
|
||||
listholes(nholes) = ii
|
||||
holetype(nholes) = 2
|
||||
endif
|
||||
end do
|
||||
|
||||
do k=1,nholes
|
||||
p = listholes(k)
|
||||
q = p
|
||||
extyp = 1
|
||||
if(holetype(k) .EQ. 1) then
|
||||
starti = psi_config_data(i,1)
|
||||
endi = psi_config_data(i,2)
|
||||
nconnectedI += 1
|
||||
connectedI(:,:,nconnectedI) = psi_configuration(:,:,i)
|
||||
idxs_connectedI(nconnectedI)=starti
|
||||
excitationIds(1,nconnectedI)=p
|
||||
excitationIds(2,nconnectedI)=q
|
||||
excitationTypes(nconnectedI) = extyp
|
||||
diagfactors(nconnectedI) = 1.0d0
|
||||
else
|
||||
starti = psi_config_data(i,1)
|
||||
endi = psi_config_data(i,2)
|
||||
nconnectedI += 1
|
||||
connectedI(:,:,nconnectedI) = psi_configuration(:,:,i)
|
||||
idxs_connectedI(nconnectedI)=starti
|
||||
excitationIds(1,nconnectedI)=p
|
||||
excitationIds(2,nconnectedI)=q
|
||||
excitationTypes(nconnectedI) = extyp
|
||||
diagfactors(nconnectedI) = 2.0d0
|
||||
endif
|
||||
enddo
|
||||
endif
|
||||
end do
|
||||
|
||||
end subroutine obtain_connected_I_foralpha
|
File diff suppressed because it is too large
Load Diff
@ -1,3 +1,4 @@
|
||||
#include <assert.h>
|
||||
#include "tree_utils.h"
|
||||
|
||||
void buildTree(Tree *bftree,
|
||||
@ -52,6 +53,7 @@ void buildTreeDriver(Tree *bftree, int NSOMO, int MS, int *NBF){
|
||||
int icpl = 0; // keep track of the ith ms (cannot be -ve)
|
||||
int addr = 0; // Counts the total BF's
|
||||
|
||||
assert(bftree->rootNode->addr == 0);
|
||||
buildTree(bftree, &(bftree->rootNode), isomo, izeros, icpl, NSOMO, MS);
|
||||
|
||||
*NBF = bftree->rootNode->addr;
|
||||
@ -264,6 +266,8 @@ void genDetBasis(Tree *dettree, int Isomo, int MS, int *ndets){
|
||||
int NSOMO=0;
|
||||
getSetBits(Isomo, &NSOMO);
|
||||
genDetsDriver(dettree, NSOMO, MS, ndets);
|
||||
// Closed shell case
|
||||
if(NSOMO==0) (*ndets) = 1;
|
||||
|
||||
}
|
||||
|
||||
@ -311,3 +315,13 @@ void callBlasMatxMat(double *A, int rowA, int colA, double *B, int rowB, int col
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
void printRealMatrix(double *orthoMatrix, int rows, int cols){
|
||||
int i,j;
|
||||
for(i=0;i<rows;++i){
|
||||
for(j=0;j<cols;++j){
|
||||
printf(" %3.5f ",orthoMatrix[i*cols + j]);
|
||||
}
|
||||
printf("\n");
|
||||
}
|
||||
}
|
||||
|
@ -47,6 +47,7 @@ void generateAllBFs(int64_t Isomo, int64_t MS, Tree *bftree, int *NBF, int *NSOM
|
||||
void getSetBits(int64_t n, int *nsetbits);
|
||||
void getOverlapMatrix(int64_t Isomo, int64_t MS, double **overlapMatrixptr, int *rows, int *cols, int *NSOMOout);
|
||||
void getOverlapMatrix_withDet(double *bftodetmatrixI, int rowsbftodetI, int colsbftodetI, int64_t Isomo, int64_t MS, double **overlapMatrixI, int *rowsI, int *colsI, int *NSOMO);
|
||||
void gramSchmidt_qp(double *overlapMatrix, int rows, int cols, double *orthoMatrix);
|
||||
void gramSchmidt(double *overlapMatrix, int rows, int cols, double *orthoMatrix);
|
||||
|
||||
|
||||
|
@ -27,7 +27,7 @@ subroutine davidson_general_ext_rout(u_in,H_jj,Dress_jj,energies,sze,N_st,N_st_d
|
||||
double precision, intent(in) :: H_jj(sze),Dress_jj(sze)
|
||||
double precision, intent(inout) :: u_in(sze,N_st_diag_in)
|
||||
double precision, intent(out) :: energies(N_st)
|
||||
external hcalc
|
||||
external :: hcalc
|
||||
|
||||
integer :: iter, N_st_diag
|
||||
integer :: i,j,k,l,m
|
||||
@ -207,7 +207,7 @@ subroutine davidson_general_ext_rout(u_in,H_jj,Dress_jj,energies,sze,N_st,N_st_d
|
||||
enddo
|
||||
! Normalize all states
|
||||
do k=1,N_st_diag
|
||||
call normalize(u_in(1,k),sze)
|
||||
call normalize(u_in(:,k),sze)
|
||||
enddo
|
||||
|
||||
! Copy from the guess input "u_in" to the working vectors "U"
|
||||
@ -238,10 +238,10 @@ subroutine davidson_general_ext_rout(u_in,H_jj,Dress_jj,energies,sze,N_st,N_st_d
|
||||
call ortho_qr(U,size(U,1),sze,shift2)
|
||||
! it does W = H U with W(sze,N_st_diag),U(sze,N_st_diag)
|
||||
! where sze is the size of the vector, N_st_diag is the number of states
|
||||
call hcalc(W(1,shift+1),U(1,shift+1),N_st_diag,sze)
|
||||
call hcalc(W(:,shift+1),U(:,shift+1),N_st_diag,sze)
|
||||
! Compute then the DIAGONAL PART OF THE DRESSING
|
||||
! <i|W_k> += Dress_jj(i) * <i|U>
|
||||
call dressing_diag_uv(W(1,shift+1),U(1,shift+1),Dress_jj,N_st_diag_in,sze)
|
||||
call dressing_diag_uv(W(:,shift+1),U(:,shift+1),Dress_jj,N_st_diag_in,sze)
|
||||
else
|
||||
! Already computed in update below
|
||||
continue
|
||||
@ -303,9 +303,9 @@ subroutine davidson_general_ext_rout(u_in,H_jj,Dress_jj,energies,sze,N_st,N_st_d
|
||||
! --------------------------------------------------
|
||||
|
||||
call dgemm('N','N', sze, N_st_diag, shift2, &
|
||||
1.d0, U, size(U,1), y, size(y,1), 0.d0, U(1,shift2+1), size(U,1))
|
||||
1.d0, U, size(U,1), y, size(y,1), 0.d0, U(:,shift2+1), size(U,1))
|
||||
call dgemm('N','N', sze, N_st_diag, shift2, &
|
||||
1.d0, W, size(W,1), y, size(y,1), 0.d0, W(1,shift2+1), size(W,1))
|
||||
1.d0, W, size(W,1), y, size(y,1), 0.d0, W(:,shift2+1), size(W,1))
|
||||
|
||||
! Compute residual vector and davidson step
|
||||
! -----------------------------------------
|
||||
@ -319,7 +319,7 @@ subroutine davidson_general_ext_rout(u_in,H_jj,Dress_jj,energies,sze,N_st,N_st_d
|
||||
enddo
|
||||
|
||||
if (k <= N_st) then
|
||||
residual_norm(k) = u_dot_u(U(1,shift2+k),sze)
|
||||
residual_norm(k) = u_dot_u(U(:,shift2+k),sze)
|
||||
to_print(1,k) = lambda(k)
|
||||
to_print(2,k) = residual_norm(k)
|
||||
endif
|
||||
|
@ -0,0 +1,500 @@
|
||||
|
||||
! ---
|
||||
|
||||
subroutine davidson_general_diag_dressed_ext_rout_nonsym_b1space(u_in, H_jj, Dress_jj,energies, sze, N_st, N_st_diag_in, converged, hcalc)
|
||||
|
||||
use mmap_module
|
||||
|
||||
BEGIN_DOC
|
||||
! Generic modified-Davidson diagonalization
|
||||
!
|
||||
! H_jj : specific diagonal H matrix elements to diagonalize de Davidson
|
||||
!
|
||||
! u_in : guess coefficients on the various states. Overwritten on exit by right eigenvectors
|
||||
!
|
||||
! sze : Number of determinants
|
||||
!
|
||||
! N_st : Number of eigenstates
|
||||
!
|
||||
! N_st_diag_in : Number of states in which H is diagonalized. Assumed > N_st
|
||||
!
|
||||
! Initial guess vectors are not necessarily orthonormal
|
||||
!
|
||||
! hcalc subroutine to compute W = H U (see routine hcalc_template for template of input/output)
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
|
||||
integer, intent(in) :: sze, N_st, N_st_diag_in
|
||||
double precision, intent(in) :: H_jj(sze),Dress_jj(sze)
|
||||
logical, intent(inout) :: converged
|
||||
double precision, intent(inout) :: u_in(sze,N_st_diag_in)
|
||||
double precision, intent(out) :: energies(N_st)
|
||||
external hcalc
|
||||
|
||||
character*(16384) :: write_buffer
|
||||
integer :: iter, N_st_diag
|
||||
integer :: i, j, k, l, m
|
||||
integer :: iter2, itertot
|
||||
logical :: disk_based
|
||||
integer :: shift, shift2, itermax
|
||||
integer :: nproc_target
|
||||
integer :: order(N_st_diag_in)
|
||||
double precision :: to_print(2,N_st)
|
||||
double precision :: r1, r2, alpha
|
||||
double precision :: cpu, wall
|
||||
double precision :: cmax
|
||||
double precision :: energy_shift(N_st_diag_in*davidson_sze_max)
|
||||
double precision, allocatable :: U(:,:)
|
||||
double precision, allocatable :: y(:,:), h(:,:), lambda(:)
|
||||
double precision, allocatable :: residual_norm(:)
|
||||
|
||||
double precision :: lambda_tmp
|
||||
integer, allocatable :: i_omax(:)
|
||||
double precision, allocatable :: U_tmp(:), overlap(:)
|
||||
|
||||
double precision, allocatable :: W(:,:)
|
||||
!double precision, pointer :: W(:,:)
|
||||
double precision, external :: u_dot_v, u_dot_u
|
||||
|
||||
|
||||
include 'constants.include.F'
|
||||
|
||||
N_st_diag = N_st_diag_in
|
||||
! print*,'trial vector'
|
||||
do i = 1, sze
|
||||
if(isnan(u_in(i,1)))then
|
||||
print*,'pb in input vector of davidson_general_ext_rout_nonsym_b1space'
|
||||
print*,i,u_in(i,1)
|
||||
stop
|
||||
else if (dabs(u_in(i,1)).lt.1.d-16)then
|
||||
u_in(i,1) = 0.d0
|
||||
endif
|
||||
enddo
|
||||
|
||||
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: U, W, y, h, lambda
|
||||
if(N_st_diag*3 > sze) then
|
||||
print *, 'error in Davidson :'
|
||||
print *, 'Increase n_det_max_full to ', N_st_diag*3
|
||||
stop -1
|
||||
endif
|
||||
|
||||
itermax = max(2, min(davidson_sze_max, sze/N_st_diag)) + 1
|
||||
|
||||
provide threshold_nonsym_davidson
|
||||
call write_time(6)
|
||||
write(6,'(A)') ''
|
||||
write(6,'(A)') 'Davidson Diagonalization'
|
||||
write(6,'(A)') '------------------------'
|
||||
write(6,'(A)') ''
|
||||
|
||||
|
||||
! Find max number of cores to fit in memory
|
||||
! -----------------------------------------
|
||||
|
||||
nproc_target = nproc
|
||||
double precision :: rss
|
||||
integer :: maxab
|
||||
maxab = sze
|
||||
|
||||
m=1
|
||||
disk_based = .False.
|
||||
call resident_memory(rss)
|
||||
do
|
||||
r1 = 8.d0 * &! bytes
|
||||
( dble(sze)*(N_st_diag*itermax) &! U
|
||||
+ 1.d0*dble(sze*m)*(N_st_diag*itermax) &! W
|
||||
+ 2.d0*(N_st_diag*itermax)**2 &! h,y
|
||||
+ 2.d0*(N_st_diag*itermax) &! s2,lambda
|
||||
+ 1.d0*(N_st_diag) &! residual_norm
|
||||
! In H_S2_u_0_nstates_zmq
|
||||
+ 3.d0*(N_st_diag*N_det) &! u_t, v_t, s_t on collector
|
||||
+ 3.d0*(N_st_diag*N_det) &! u_t, v_t, s_t on slave
|
||||
+ 0.5d0*maxab &! idx0 in H_S2_u_0_nstates_openmp_work_*
|
||||
+ nproc_target * &! In OMP section
|
||||
( 1.d0*(N_int*maxab) &! buffer
|
||||
+ 3.5d0*(maxab) ) &! singles_a, singles_b, doubles, idx
|
||||
) / 1024.d0**3
|
||||
|
||||
if(nproc_target == 0) then
|
||||
call check_mem(r1, irp_here)
|
||||
nproc_target = 1
|
||||
exit
|
||||
endif
|
||||
|
||||
if(r1+rss < qp_max_mem) then
|
||||
exit
|
||||
endif
|
||||
|
||||
if(itermax > 4) then
|
||||
itermax = itermax - 1
|
||||
else if (m==1.and.disk_based_davidson) then
|
||||
m = 0
|
||||
disk_based = .True.
|
||||
itermax = 6
|
||||
else
|
||||
nproc_target = nproc_target - 1
|
||||
endif
|
||||
|
||||
enddo
|
||||
|
||||
nthreads_davidson = nproc_target
|
||||
TOUCH nthreads_davidson
|
||||
|
||||
call write_int(6, N_st, 'Number of states')
|
||||
call write_int(6, N_st_diag, 'Number of states in diagonalization')
|
||||
call write_int(6, sze, 'Number of basis functions')
|
||||
call write_int(6, nproc_target, 'Number of threads for diagonalization')
|
||||
call write_double(6, r1, 'Memory(Gb)')
|
||||
if(disk_based) then
|
||||
print *, 'Using swap space to reduce RAM'
|
||||
endif
|
||||
|
||||
!---------------
|
||||
|
||||
write(6,'(A)') ''
|
||||
write_buffer = '====='
|
||||
do i=1,N_st
|
||||
write_buffer = trim(write_buffer)//' ================ ==========='
|
||||
enddo
|
||||
write(6,'(A)') write_buffer(1:6+41*N_st)
|
||||
write_buffer = 'Iter'
|
||||
do i=1,N_st
|
||||
write_buffer = trim(write_buffer)//' Energy Residual '
|
||||
enddo
|
||||
write(6,'(A)') write_buffer(1:6+41*N_st)
|
||||
write_buffer = '====='
|
||||
do i=1,N_st
|
||||
write_buffer = trim(write_buffer)//' ================ ==========='
|
||||
enddo
|
||||
write(6,'(A)') write_buffer(1:6+41*N_st)
|
||||
|
||||
! ---
|
||||
|
||||
|
||||
allocate( W(sze,N_st_diag*itermax) )
|
||||
|
||||
allocate( &
|
||||
! Large
|
||||
U(sze,N_st_diag*itermax), &
|
||||
! Small
|
||||
h(N_st_diag*itermax,N_st_diag*itermax), &
|
||||
y(N_st_diag*itermax,N_st_diag*itermax), &
|
||||
lambda(N_st_diag*itermax), &
|
||||
residual_norm(N_st_diag), &
|
||||
i_omax(N_st) &
|
||||
)
|
||||
|
||||
U = 0.d0
|
||||
h = 0.d0
|
||||
y = 0.d0
|
||||
lambda = 0.d0
|
||||
residual_norm = 0.d0
|
||||
|
||||
|
||||
ASSERT (N_st > 0)
|
||||
ASSERT (N_st_diag >= N_st)
|
||||
ASSERT (sze > 0)
|
||||
|
||||
! Davidson iterations
|
||||
! ===================
|
||||
|
||||
converged = .False.
|
||||
|
||||
! Initialize from N_st to N_st_diag with gaussian random numbers
|
||||
! to be sure to have overlap with any eigenvectors
|
||||
do k = N_st+1, N_st_diag
|
||||
u_in(k,k) = 10.d0
|
||||
do i = 1, sze
|
||||
call random_number(r1)
|
||||
call random_number(r2)
|
||||
r1 = dsqrt(-2.d0*dlog(r1))
|
||||
r2 = dtwo_pi*r2
|
||||
u_in(i,k) = r1*dcos(r2)
|
||||
enddo
|
||||
enddo
|
||||
! Normalize all states
|
||||
do k = 1, N_st_diag
|
||||
call normalize(u_in(1,k), sze)
|
||||
enddo
|
||||
|
||||
! Copy from the guess input "u_in" to the working vectors "U"
|
||||
do k = 1, N_st_diag
|
||||
do i = 1, sze
|
||||
U(i,k) = u_in(i,k)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! ---
|
||||
|
||||
itertot = 0
|
||||
|
||||
do while (.not.converged)
|
||||
|
||||
itertot = itertot + 1
|
||||
if(itertot == 8) then
|
||||
exit
|
||||
endif
|
||||
|
||||
do iter = 1, itermax-1
|
||||
|
||||
shift = N_st_diag * (iter-1)
|
||||
shift2 = N_st_diag * iter
|
||||
|
||||
if( (iter > 1) .or. (itertot == 1) ) then
|
||||
|
||||
! Gram-Schmidt to orthogonalize all new guess with the previous vectors
|
||||
call ortho_qr(U, size(U, 1), sze, shift2)
|
||||
call ortho_qr(U, size(U, 1), sze, shift2)
|
||||
|
||||
! W = H U
|
||||
call hcalc(W(1,shift+1), U(1,shift+1), N_st_diag, sze)
|
||||
call dress_calc(W(1,shift+1), Dress_jj, U(1,shift+1), N_st_diag, sze)
|
||||
|
||||
else
|
||||
|
||||
! Already computed in update below
|
||||
continue
|
||||
endif
|
||||
|
||||
! Compute h_kl = <u_k | W_l> = <u_k| H |u_l>
|
||||
! -------------------------------------------
|
||||
call dgemm( 'T', 'N', shift2, shift2, sze, 1.d0 &
|
||||
, U, size(U, 1), W, size(W, 1) &
|
||||
, 0.d0, h, size(h, 1) )
|
||||
|
||||
|
||||
! Diagonalize h y = lambda y
|
||||
! ---------------------------
|
||||
call diag_nonsym_right(shift2, h(1,1), size(h, 1), y(1,1), size(y, 1), lambda(1), size(lambda, 1))
|
||||
|
||||
|
||||
! Express eigenvectors of h in the determinant basis:
|
||||
! ---------------------------------------------------
|
||||
|
||||
! y(:,k) = rk
|
||||
! U(:,k) = Bk
|
||||
! U(:,shift2+k) = Rk = Bk x rk
|
||||
call dgemm( 'N', 'N', sze, N_st_diag, shift2, 1.d0 &
|
||||
, U, size(U, 1), y, size(y, 1) &
|
||||
, 0.d0, U(1,shift2+1), size(U, 1) )
|
||||
|
||||
do k = 1, N_st_diag
|
||||
call normalize(U(1,shift2+k), sze)
|
||||
enddo
|
||||
|
||||
! ---
|
||||
! select the max overlap
|
||||
|
||||
!
|
||||
! start test ------------------------------------------------------------------------
|
||||
!
|
||||
!double precision, allocatable :: Utest(:,:), Otest(:)
|
||||
!allocate( Utest(sze,shift2), Otest(shift2) )
|
||||
|
||||
!call dgemm( 'N', 'N', sze, shift2, shift2, 1.d0 &
|
||||
! , U, size(U, 1), y, size(y, 1), 0.d0, Utest(1,1), size(Utest, 1) )
|
||||
!do k = 1, shift2
|
||||
! call normalize(Utest(1,k), sze)
|
||||
!enddo
|
||||
!do j = 1, sze
|
||||
! write(455, '(100(1X, F16.10))') (Utest(j,k), k=1,shift2)
|
||||
!enddo
|
||||
|
||||
!do k = 1, shift2
|
||||
! Otest(k) = 0.d0
|
||||
! do i = 1, sze
|
||||
! Otest(k) += Utest(i,k) * u_in(i,1)
|
||||
! enddo
|
||||
! Otest(k) = dabs(Otest(k))
|
||||
! print *, ' Otest =', k, Otest(k), lambda(k)
|
||||
!enddo
|
||||
|
||||
!deallocate(Utest, Otest)
|
||||
!
|
||||
! end test ------------------------------------------------------------------------
|
||||
!
|
||||
|
||||
! TODO
|
||||
! state_following is more efficient
|
||||
do l = 1, N_st
|
||||
|
||||
allocate( overlap(N_st_diag) )
|
||||
|
||||
do k = 1, N_st_diag
|
||||
overlap(k) = 0.d0
|
||||
do i = 1, sze
|
||||
overlap(k) = overlap(k) + U(i,shift2+k) * u_in(i,l)
|
||||
enddo
|
||||
overlap(k) = dabs(overlap(k))
|
||||
!print *, ' overlap =', k, overlap(k)
|
||||
enddo
|
||||
|
||||
lambda_tmp = 0.d0
|
||||
do k = 1, N_st_diag
|
||||
if(overlap(k) .gt. lambda_tmp) then
|
||||
i_omax(l) = k
|
||||
lambda_tmp = overlap(k)
|
||||
endif
|
||||
enddo
|
||||
|
||||
deallocate(overlap)
|
||||
|
||||
if(lambda_tmp .lt. 0.7d0) then
|
||||
print *, ' very small overlap ...', l, i_omax(l)
|
||||
print *, ' max overlap = ', lambda_tmp
|
||||
stop
|
||||
endif
|
||||
|
||||
if(i_omax(l) .ne. l) then
|
||||
print *, ' !!! WARNONG !!!'
|
||||
print *, ' index of state', l, i_omax(l)
|
||||
endif
|
||||
enddo
|
||||
|
||||
! y(:,k) = rk
|
||||
! W(:,k) = H x Bk
|
||||
! W(:,shift2+k) = H x Bk x rk
|
||||
! = Wk
|
||||
call dgemm( 'N', 'N', sze, N_st_diag, shift2, 1.d0 &
|
||||
, W, size(W, 1), y, size(y, 1) &
|
||||
, 0.d0, W(1,shift2+1), size(W, 1) )
|
||||
|
||||
! ---
|
||||
|
||||
! Compute residual vector and davidson step
|
||||
! -----------------------------------------
|
||||
|
||||
!$OMP PARALLEL DO DEFAULT(SHARED) PRIVATE(i,k)
|
||||
do k = 1, N_st_diag
|
||||
do i = 1, sze
|
||||
U(i,shift2+k) = (lambda(k) * U(i,shift2+k) - W(i,shift2+k)) / max(H_jj(i)-lambda(k), 1.d-2)
|
||||
enddo
|
||||
if(k <= N_st) then
|
||||
l = k
|
||||
residual_norm(k) = u_dot_u(U(1,shift2+l), sze)
|
||||
to_print(1,k) = lambda(l)
|
||||
to_print(2,k) = residual_norm(l)
|
||||
endif
|
||||
enddo
|
||||
!$OMP END PARALLEL DO
|
||||
!residual_norm(1) = u_dot_u(U(1,shift2+1), sze)
|
||||
!to_print(1,1) = lambda(1)
|
||||
!to_print(2,1) = residual_norm(1)
|
||||
|
||||
|
||||
if( (itertot > 1) .and. (iter == 1) ) then
|
||||
!don't print
|
||||
continue
|
||||
else
|
||||
write(*, '(1X, I3, 1X, 100(1X, F16.10, 1X, F16.10, 1X, F16.10))') iter-1, to_print(1:2,1:N_st)
|
||||
endif
|
||||
|
||||
! Check convergence
|
||||
if(iter > 1) then
|
||||
converged = dabs(maxval(residual_norm(1:N_st))) < threshold_nonsym_davidson
|
||||
endif
|
||||
|
||||
do k = 1, N_st
|
||||
if(residual_norm(k) > 1.e8) then
|
||||
print *, 'Davidson failed'
|
||||
stop -1
|
||||
endif
|
||||
enddo
|
||||
if(converged) then
|
||||
exit
|
||||
endif
|
||||
|
||||
logical, external :: qp_stop
|
||||
if(qp_stop()) then
|
||||
converged = .True.
|
||||
exit
|
||||
endif
|
||||
|
||||
enddo ! loop over iter
|
||||
|
||||
|
||||
! Re-contract U and update W
|
||||
! --------------------------------
|
||||
|
||||
call dgemm( 'N', 'N', sze, N_st_diag, shift2, 1.d0 &
|
||||
, W, size(W, 1), y, size(y, 1) &
|
||||
, 0.d0, u_in, size(u_in, 1) )
|
||||
do k = 1, N_st_diag
|
||||
do i = 1, sze
|
||||
W(i,k) = u_in(i,k)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
call dgemm( 'N', 'N', sze, N_st_diag, shift2, 1.d0 &
|
||||
, U, size(U, 1), y, size(y, 1) &
|
||||
, 0.d0, u_in, size(u_in, 1) )
|
||||
do k = 1, N_st_diag
|
||||
do i = 1, sze
|
||||
U(i,k) = u_in(i,k)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
call ortho_qr(U, size(U, 1), sze, N_st_diag)
|
||||
call ortho_qr(U, size(U, 1), sze, N_st_diag)
|
||||
do j = 1, N_st_diag
|
||||
k = 1
|
||||
do while( (k < sze) .and. (U(k,j) == 0.d0) )
|
||||
k = k+1
|
||||
enddo
|
||||
if(U(k,j) * u_in(k,j) < 0.d0) then
|
||||
do i = 1, sze
|
||||
W(i,j) = -W(i,j)
|
||||
enddo
|
||||
endif
|
||||
enddo
|
||||
|
||||
enddo ! loop over while
|
||||
|
||||
! ---
|
||||
|
||||
do k = 1, N_st
|
||||
energies(k) = lambda(k)
|
||||
enddo
|
||||
write_buffer = '====='
|
||||
do i = 1, N_st
|
||||
write_buffer = trim(write_buffer)//' ================ ==========='
|
||||
enddo
|
||||
write(6,'(A)') trim(write_buffer)
|
||||
write(6,'(A)') ''
|
||||
call write_time(6)
|
||||
|
||||
deallocate(W)
|
||||
deallocate(U, h, y, lambda, residual_norm, i_omax)
|
||||
|
||||
FREE nthreads_davidson
|
||||
|
||||
end subroutine davidson_general_ext_rout_nonsym_b1space
|
||||
|
||||
! ---
|
||||
|
||||
subroutine dress_calc(v,dress,u,N_st,sze)
|
||||
use bitmasks
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Routine that computed the action of the diagonal dressing dress
|
||||
!
|
||||
! WARNING :: v is not initialiazed !!!
|
||||
END_DOC
|
||||
integer, intent(in) :: N_st,sze
|
||||
double precision, intent(in) :: u(sze,N_st),dress(sze)
|
||||
double precision, intent(inout) :: v(sze,N_st)
|
||||
integer :: i,istate
|
||||
|
||||
do istate = 1, N_st
|
||||
do i = 1, sze
|
||||
v(i,istate) += dress(i) * u(i,istate)
|
||||
enddo
|
||||
enddo
|
||||
end
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
@ -31,7 +31,8 @@ subroutine dav_double_dressed(u_in,H_jj,Dress_jj,Dressing_vec,idx_dress,energies
|
||||
double precision, intent(inout) :: u_in(sze,N_st_diag)
|
||||
double precision, intent(out) :: energies(N_st_diag)
|
||||
logical, intent(out) :: converged
|
||||
external hcalc
|
||||
|
||||
external :: hcalc
|
||||
|
||||
double precision, allocatable :: H_jj_tmp(:)
|
||||
ASSERT (N_st > 0)
|
||||
@ -224,7 +225,7 @@ subroutine dav_double_dressed(u_in,H_jj,Dress_jj,Dressing_vec,idx_dress,energies
|
||||
u_in(k,k) = u_in(k,k) + 10.d0
|
||||
enddo
|
||||
do k=1,N_st_diag_in
|
||||
call normalize(u_in(1,k),sze)
|
||||
call normalize(u_in(:,k),sze)
|
||||
enddo
|
||||
|
||||
do k=1,N_st_diag_in
|
||||
@ -248,10 +249,10 @@ subroutine dav_double_dressed(u_in,H_jj,Dress_jj,Dressing_vec,idx_dress,energies
|
||||
if ((iter > 1).or.(itertot == 1)) then
|
||||
! Compute |W_k> = \sum_i |i><i|H|u_k>
|
||||
! -----------------------------------
|
||||
call hcalc(W(1,shift+1),U(1,shift+1),N_st_diag_in,sze)
|
||||
call hcalc(W(:,shift+1),U(:,shift+1),N_st_diag_in,sze)
|
||||
! Compute then the DIAGONAL PART OF THE DRESSING
|
||||
! <i|W_k> += Dress_jj(i) * <i|U>
|
||||
call dressing_diag_uv(W(1,shift+1),U(1,shift+1),Dress_jj,N_st_diag_in,sze)
|
||||
call dressing_diag_uv(W(:,shift+1),U(:,shift+1),Dress_jj,N_st_diag_in,sze)
|
||||
else
|
||||
! Already computed in update below
|
||||
continue
|
||||
@ -275,20 +276,20 @@ subroutine dav_double_dressed(u_in,H_jj,Dress_jj,Dressing_vec,idx_dress,energies
|
||||
!
|
||||
! call dgemm('T','N', N_st, N_st_diag_in, sze, 1.d0, &
|
||||
! psi_coef, size(psi_coef,1), &
|
||||
! U(1,shift+1), size(U,1), 0.d0, s_tmp, size(s_tmp,1))
|
||||
! U(:,shift+1), size(U,1), 0.d0, s_tmp, size(s_tmp,1))
|
||||
!
|
||||
! call dgemm('N','N', sze, N_st_diag_in, N_st, 1.0d0, &
|
||||
! Dressing_vec, size(Dressing_vec,1), s_tmp, size(s_tmp,1), &
|
||||
! 1.d0, W(1,shift+1), size(W,1))
|
||||
! 1.d0, W(:,shift+1), size(W,1))
|
||||
!
|
||||
!
|
||||
! call dgemm('T','N', N_st, N_st_diag_in, sze, 1.d0, &
|
||||
! Dressing_vec, size(Dressing_vec,1), &
|
||||
! U(1,shift+1), size(U,1), 0.d0, s_tmp, size(s_tmp,1))
|
||||
! U(:,shift+1), size(U,1), 0.d0, s_tmp, size(s_tmp,1))
|
||||
!
|
||||
! call dgemm('N','N', sze, N_st_diag_in, N_st, 1.0d0, &
|
||||
! psi_coef, size(psi_coef,1), s_tmp, size(s_tmp,1), &
|
||||
! 1.d0, W(1,shift+1), size(W,1))
|
||||
! 1.d0, W(:,shift+1), size(W,1))
|
||||
!
|
||||
endif
|
||||
|
||||
@ -376,9 +377,9 @@ subroutine dav_double_dressed(u_in,H_jj,Dress_jj,Dressing_vec,idx_dress,energies
|
||||
! --------------------------------------------------
|
||||
|
||||
call dgemm('N','N', sze, N_st_diag_in, shift2, &
|
||||
1.d0, U, size(U,1), y, size(y,1), 0.d0, U(1,shift2+1), size(U,1))
|
||||
1.d0, U, size(U,1), y, size(y,1), 0.d0, U(:,shift2+1), size(U,1))
|
||||
call dgemm('N','N', sze, N_st_diag_in, shift2, &
|
||||
1.d0, W, size(W,1), y, size(y,1), 0.d0, W(1,shift2+1), size(W,1))
|
||||
1.d0, W, size(W,1), y, size(y,1), 0.d0, W(:,shift2+1), size(W,1))
|
||||
|
||||
! Compute residual vector and davidson step
|
||||
! -----------------------------------------
|
||||
@ -392,7 +393,7 @@ subroutine dav_double_dressed(u_in,H_jj,Dress_jj,Dressing_vec,idx_dress,energies
|
||||
enddo
|
||||
|
||||
if (k <= N_st) then
|
||||
residual_norm(k) = u_dot_u(U(1,shift2+k),sze)
|
||||
residual_norm(k) = u_dot_u(U(:,shift2+k),sze)
|
||||
to_print(1,k) = lambda(k)
|
||||
to_print(2,k) = residual_norm(k)
|
||||
endif
|
||||
|
@ -214,7 +214,7 @@ subroutine davidson_general_ext_rout_dressed(u_in,H_jj,energies,sze,N_st,N_st_di
|
||||
enddo
|
||||
! Normalize all states
|
||||
do k=1,N_st_diag
|
||||
call normalize(u_in(1,k),sze)
|
||||
call normalize(u_in(:,k),sze)
|
||||
enddo
|
||||
! Copy from the guess input "u_in" to the working vectors "U"
|
||||
|
||||
@ -244,7 +244,7 @@ subroutine davidson_general_ext_rout_dressed(u_in,H_jj,energies,sze,N_st,N_st_di
|
||||
call ortho_qr(U,size(U,1),sze,shift2)
|
||||
! it does W = H U with W(sze,N_st_diag),U(sze,N_st_diag)
|
||||
! where sze is the size of the vector, N_st_diag is the number of states
|
||||
call hcalc(W(1,shift+1),U(1,shift+1),N_st_diag,sze)
|
||||
call hcalc(W(:,shift+1),U(:,shift+1),N_st_diag,sze)
|
||||
else
|
||||
! Already computed in update below
|
||||
continue
|
||||
@ -268,20 +268,20 @@ subroutine davidson_general_ext_rout_dressed(u_in,H_jj,energies,sze,N_st,N_st_di
|
||||
stop
|
||||
! call dgemm('T','N', N_st, N_st_diag, sze, 1.d0, &
|
||||
! psi_coef, size(psi_coef,1), &
|
||||
! U(1,shift+1), size(U,1), 0.d0, s_tmp, size(s_tmp,1))
|
||||
! U(:,shift+1), size(U,1), 0.d0, s_tmp, size(s_tmp,1))
|
||||
!
|
||||
! call dgemm('N','N', sze, N_st_diag, N_st, 1.0d0, &
|
||||
! dressing_vec, size(dressing_vec,1), s_tmp, size(s_tmp,1), &
|
||||
! 1.d0, W(1,shift+1), size(W,1))
|
||||
! 1.d0, W(:,shift+1), size(W,1))
|
||||
!
|
||||
!
|
||||
! call dgemm('T','N', N_st, N_st_diag, sze, 1.d0, &
|
||||
! dressing_vec, size(dressing_vec,1), &
|
||||
! U(1,shift+1), size(U,1), 0.d0, s_tmp, size(s_tmp,1))
|
||||
! U(:,shift+1), size(U,1), 0.d0, s_tmp, size(s_tmp,1))
|
||||
!
|
||||
! call dgemm('N','N', sze, N_st_diag, N_st, 1.0d0, &
|
||||
! psi_coef, size(psi_coef,1), s_tmp, size(s_tmp,1), &
|
||||
! 1.d0, W(1,shift+1), size(W,1))
|
||||
! 1.d0, W(:,shift+1), size(W,1))
|
||||
|
||||
endif
|
||||
endif
|
||||
@ -370,9 +370,9 @@ subroutine davidson_general_ext_rout_dressed(u_in,H_jj,energies,sze,N_st,N_st_di
|
||||
! --------------------------------------------------
|
||||
|
||||
call dgemm('N','N', sze, N_st_diag, shift2, &
|
||||
1.d0, U, size(U,1), y, size(y,1), 0.d0, U(1,shift2+1), size(U,1))
|
||||
1.d0, U, size(U,1), y, size(y,1), 0.d0, U(:,shift2+1), size(U,1))
|
||||
call dgemm('N','N', sze, N_st_diag, shift2, &
|
||||
1.d0, W, size(W,1), y, size(y,1), 0.d0, W(1,shift2+1), size(W,1))
|
||||
1.d0, W, size(W,1), y, size(y,1), 0.d0, W(:,shift2+1), size(W,1))
|
||||
|
||||
! Compute residual vector and davidson step
|
||||
! -----------------------------------------
|
||||
@ -386,7 +386,7 @@ subroutine davidson_general_ext_rout_dressed(u_in,H_jj,energies,sze,N_st,N_st_di
|
||||
enddo
|
||||
|
||||
if (k <= N_st) then
|
||||
residual_norm(k) = u_dot_u(U(1,shift2+k),sze)
|
||||
residual_norm(k) = u_dot_u(U(:,shift2+k),sze)
|
||||
to_print(1,k) = lambda(k)
|
||||
to_print(2,k) = residual_norm(k)
|
||||
endif
|
||||
|
@ -196,7 +196,7 @@ subroutine davidson_general_ext_rout(u_in,H_jj,energies,sze,N_st,N_st_diag_in,co
|
||||
enddo
|
||||
! Normalize all states
|
||||
do k=1,N_st_diag
|
||||
call normalize(u_in(1,k),sze)
|
||||
call normalize(u_in(:,k),sze)
|
||||
enddo
|
||||
|
||||
! Copy from the guess input "u_in" to the working vectors "U"
|
||||
@ -226,7 +226,7 @@ subroutine davidson_general_ext_rout(u_in,H_jj,energies,sze,N_st,N_st_diag_in,co
|
||||
call ortho_qr(U,size(U,1),sze,shift2)
|
||||
! it does W = H U with W(sze,N_st_diag),U(sze,N_st_diag)
|
||||
! where sze is the size of the vector, N_st_diag is the number of states
|
||||
call hcalc(W(1,shift+1),U(1,shift+1),N_st_diag,sze)
|
||||
call hcalc(W(:,shift+1),U(:,shift+1),N_st_diag,sze)
|
||||
else
|
||||
! Already computed in update below
|
||||
continue
|
||||
@ -288,9 +288,9 @@ subroutine davidson_general_ext_rout(u_in,H_jj,energies,sze,N_st,N_st_diag_in,co
|
||||
! --------------------------------------------------
|
||||
|
||||
call dgemm('N','N', sze, N_st_diag, shift2, &
|
||||
1.d0, U, size(U,1), y, size(y,1), 0.d0, U(1,shift2+1), size(U,1))
|
||||
1.d0, U, size(U,1), y, size(y,1), 0.d0, U(:,shift2+1), size(U,1))
|
||||
call dgemm('N','N', sze, N_st_diag, shift2, &
|
||||
1.d0, W, size(W,1), y, size(y,1), 0.d0, W(1,shift2+1), size(W,1))
|
||||
1.d0, W, size(W,1), y, size(y,1), 0.d0, W(:,shift2+1), size(W,1))
|
||||
|
||||
! Compute residual vector and davidson step
|
||||
! -----------------------------------------
|
||||
@ -304,7 +304,7 @@ subroutine davidson_general_ext_rout(u_in,H_jj,energies,sze,N_st,N_st_diag_in,co
|
||||
enddo
|
||||
|
||||
if (k <= N_st) then
|
||||
residual_norm(k) = u_dot_u(U(1,shift2+k),sze)
|
||||
residual_norm(k) = u_dot_u(U(:,shift2+k),sze)
|
||||
to_print(1,k) = lambda(k)
|
||||
to_print(2,k) = residual_norm(k)
|
||||
endif
|
||||
|
@ -206,7 +206,7 @@ subroutine davidson_general(u_in,H_jj,energies,dim_in,sze,N_st,N_st_diag_in,conv
|
||||
enddo
|
||||
! Normalize all states
|
||||
do k=1,N_st_diag
|
||||
call normalize(u_in(1,k),sze)
|
||||
call normalize(u_in(:,k),sze)
|
||||
enddo
|
||||
|
||||
! Copy from the guess input "u_in" to the working vectors "U"
|
||||
@ -236,8 +236,8 @@ subroutine davidson_general(u_in,H_jj,energies,dim_in,sze,N_st,N_st_diag_in,conv
|
||||
call ortho_qr(U,size(U,1),sze,shift2)
|
||||
call ortho_qr(U,size(U,1),sze,shift2)
|
||||
|
||||
! call H_S2_u_0_nstates_openmp(W(1,shift+1),U(1,shift+1),N_st_diag,sze)
|
||||
call hpsi(W(1,shift+1),U(1,shift+1),N_st_diag,sze,h_mat)
|
||||
! call H_S2_u_0_nstates_openmp(W(:,shift+1),U(:,shift+1),N_st_diag,sze)
|
||||
call hpsi(W(:,shift+1),U(:,shift+1),N_st_diag,sze,h_mat)
|
||||
else
|
||||
! Already computed in update below
|
||||
continue
|
||||
@ -299,9 +299,9 @@ subroutine davidson_general(u_in,H_jj,energies,dim_in,sze,N_st,N_st_diag_in,conv
|
||||
! --------------------------------------------------
|
||||
|
||||
call dgemm('N','N', sze, N_st_diag, shift2, &
|
||||
1.d0, U, size(U,1), y, size(y,1), 0.d0, U(1,shift2+1), size(U,1))
|
||||
1.d0, U, size(U,1), y, size(y,1), 0.d0, U(:,shift2+1), size(U,1))
|
||||
call dgemm('N','N', sze, N_st_diag, shift2, &
|
||||
1.d0, W, size(W,1), y, size(y,1), 0.d0, W(1,shift2+1), size(W,1))
|
||||
1.d0, W, size(W,1), y, size(y,1), 0.d0, W(:,shift2+1), size(W,1))
|
||||
|
||||
! Compute residual vector and davidson step
|
||||
! -----------------------------------------
|
||||
@ -315,7 +315,7 @@ subroutine davidson_general(u_in,H_jj,energies,dim_in,sze,N_st,N_st_diag_in,conv
|
||||
enddo
|
||||
|
||||
if (k <= N_st) then
|
||||
residual_norm(k) = u_dot_u(U(1,shift2+k),sze)
|
||||
residual_norm(k) = u_dot_u(U(:,shift2+k),sze)
|
||||
to_print(1,k) = lambda(k)
|
||||
to_print(2,k) = residual_norm(k)
|
||||
endif
|
||||
|
624
src/davidson/diagonalization_hcfg.irp.f
Normal file
624
src/davidson/diagonalization_hcfg.irp.f
Normal file
@ -0,0 +1,624 @@
|
||||
subroutine davidson_diag_h_cfg(dets_in,u_in,dim_in,energies,sze,sze_csf,N_st,N_st_diag,Nint,dressing_state,converged)
|
||||
use bitmasks
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Davidson diagonalization.
|
||||
!
|
||||
! dets_in : bitmasks corresponding to determinants
|
||||
!
|
||||
! u_in : guess coefficients on the various states. Overwritten
|
||||
! on exit
|
||||
!
|
||||
! dim_in : leftmost dimension of u_in
|
||||
!
|
||||
! sze : Number of determinants
|
||||
!
|
||||
! N_st : Number of eigenstates
|
||||
!
|
||||
END_DOC
|
||||
integer, intent(in) :: dim_in, sze, sze_csf, N_st, N_st_diag, Nint
|
||||
integer(bit_kind), intent(in) :: dets_in(Nint,2,sze)
|
||||
double precision, intent(inout) :: u_in(dim_in,N_st_diag)
|
||||
double precision, intent(out) :: energies(N_st_diag)
|
||||
integer, intent(in) :: dressing_state
|
||||
logical, intent(out) :: converged
|
||||
double precision, allocatable :: H_jj(:)
|
||||
|
||||
double precision, external :: diag_H_mat_elem, diag_S_mat_elem
|
||||
integer :: i,k
|
||||
ASSERT (N_st > 0)
|
||||
ASSERT (sze > 0)
|
||||
ASSERT (Nint > 0)
|
||||
ASSERT (Nint == N_int)
|
||||
PROVIDE mo_two_e_integrals_in_map
|
||||
allocate(H_jj(sze))
|
||||
|
||||
H_jj(1) = diag_h_mat_elem(dets_in(1,1,1),Nint)
|
||||
!$OMP PARALLEL DEFAULT(NONE) &
|
||||
!$OMP SHARED(sze,H_jj, dets_in,Nint) &
|
||||
!$OMP PRIVATE(i)
|
||||
!$OMP DO SCHEDULE(static)
|
||||
do i=2,sze
|
||||
H_jj(i) = diag_H_mat_elem(dets_in(1,1,i),Nint)
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
if (dressing_state > 0) then
|
||||
do k=1,N_st
|
||||
do i=1,sze
|
||||
H_jj(i) += u_in(i,k) * dressing_column_h(i,k)
|
||||
enddo
|
||||
enddo
|
||||
endif
|
||||
|
||||
call davidson_diag_cfg_hjj(dets_in,u_in,H_jj,energies,dim_in,sze,sze_csf,N_st,N_st_diag,Nint,dressing_state,converged)
|
||||
deallocate(H_jj)
|
||||
end
|
||||
|
||||
|
||||
subroutine davidson_diag_cfg_hjj(dets_in,u_in,H_jj,energies,dim_in,sze,sze_csf,N_st,N_st_diag_in,Nint,dressing_state,converged)
|
||||
use bitmasks
|
||||
use mmap_module
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Davidson diagonalization with specific diagonal elements of the H matrix
|
||||
!
|
||||
! H_jj : specific diagonal H matrix elements to diagonalize de Davidson
|
||||
!
|
||||
! dets_in : bitmasks corresponding to determinants
|
||||
!
|
||||
! u_in : guess coefficients on the various states. Overwritten
|
||||
! on exit
|
||||
!
|
||||
! dim_in : leftmost dimension of u_in
|
||||
!
|
||||
! sze : Number of determinants
|
||||
!
|
||||
! N_st : Number of eigenstates
|
||||
!
|
||||
! N_st_diag_in : Number of states in which H is diagonalized. Assumed > sze
|
||||
!
|
||||
END_DOC
|
||||
integer, intent(in) :: dim_in, sze, sze_csf, N_st, N_st_diag_in, Nint
|
||||
integer(bit_kind), intent(in) :: dets_in(Nint,2,sze)
|
||||
double precision, intent(in) :: H_jj(sze)
|
||||
integer, intent(in) :: dressing_state
|
||||
double precision, intent(inout) :: u_in(dim_in,N_st_diag_in)
|
||||
double precision, intent(out) :: energies(N_st_diag_in)
|
||||
|
||||
integer :: iter, N_st_diag
|
||||
integer :: i,j,k,l,m,kk,ii,ll
|
||||
logical, intent(inout) :: converged
|
||||
|
||||
double precision, external :: u_dot_v, u_dot_u
|
||||
|
||||
integer :: k_pairs, kl
|
||||
|
||||
integer :: iter2, itertot
|
||||
double precision, allocatable :: y(:,:), h(:,:), lambda(:)
|
||||
double precision, allocatable :: s_tmp(:,:)
|
||||
double precision :: diag_h_mat_elem
|
||||
double precision, allocatable :: residual_norm(:)
|
||||
character*(16384) :: write_buffer
|
||||
double precision :: to_print(2,N_st)
|
||||
double precision :: cpu, wall
|
||||
integer :: shift, shift2, itermax, istate
|
||||
double precision :: r1, r2, alpha
|
||||
logical :: state_ok(N_st_diag_in*davidson_sze_max)
|
||||
integer :: nproc_target
|
||||
integer :: order(N_st_diag_in)
|
||||
double precision :: cmax
|
||||
double precision, allocatable :: U(:,:), U_csf(:,:), overlap(:,:)
|
||||
double precision, allocatable :: tmpU(:,:), tmpW(:,:)
|
||||
double precision, pointer :: W(:,:), W_csf(:,:)
|
||||
logical :: disk_based
|
||||
double precision :: energy_shift(N_st_diag_in*davidson_sze_max)
|
||||
|
||||
include 'constants.include.F'
|
||||
|
||||
N_st_diag = N_st_diag_in
|
||||
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: U, W, y, h, lambda
|
||||
if (N_st_diag*3 > sze) then
|
||||
print *, 'error in Davidson :'
|
||||
print *, 'Increase n_det_max_full to ', N_st_diag*3
|
||||
stop -1
|
||||
endif
|
||||
|
||||
itermax = max(2,min(davidson_sze_max, sze/N_st_diag))+1
|
||||
itertot = 0
|
||||
|
||||
if (state_following) then
|
||||
allocate(overlap(N_st_diag*itermax, N_st_diag*itermax))
|
||||
else
|
||||
allocate(overlap(1,1)) ! avoid 'if' for deallocate
|
||||
endif
|
||||
overlap = 0.d0
|
||||
|
||||
PROVIDE nuclear_repulsion expected_s2 psi_bilinear_matrix_order psi_bilinear_matrix_order_reverse threshold_davidson_pt2 threshold_davidson_from_pt2
|
||||
|
||||
call write_time(6)
|
||||
write(6,'(A)') ''
|
||||
write(6,'(A)') 'Davidson Diagonalization'
|
||||
write(6,'(A)') '------------------------'
|
||||
write(6,'(A)') ''
|
||||
|
||||
! Find max number of cores to fit in memory
|
||||
! -----------------------------------------
|
||||
|
||||
nproc_target = nproc
|
||||
double precision :: rss
|
||||
integer :: maxab
|
||||
maxab = max(N_det_alpha_unique, N_det_beta_unique)+1
|
||||
|
||||
m=1
|
||||
disk_based = .False.
|
||||
call resident_memory(rss)
|
||||
do
|
||||
r1 = 8.d0 * &! bytes
|
||||
( dble(sze)*(N_st_diag) &! U
|
||||
+ dble(sze_csf)*(N_st_diag*itermax) &! U_csf
|
||||
+ dble(sze)*(N_st_diag) &! W
|
||||
+ dble(sze_csf)*(N_st_diag*itermax) &! W_csf
|
||||
+ 3.0d0*(N_st_diag*itermax)**2 &! h,y,s_tmp
|
||||
+ 1.d0*(N_st_diag*itermax) &! lambda
|
||||
+ 1.d0*(N_st_diag) &! residual_norm
|
||||
! In H_u_0_nstates_zmq
|
||||
+ 2.d0*(N_st_diag*N_det) &! u_t, v_t, on collector
|
||||
+ 2.d0*(N_st_diag*N_det) &! u_t, v_t, on slave
|
||||
+ 0.5d0*maxab &! idx0 in H_u_0_nstates_openmp_work_*
|
||||
+ nproc_target * &! In OMP section
|
||||
( 1.d0*(N_int*maxab) &! buffer
|
||||
+ 3.5d0*(maxab) ) &! singles_a, singles_b, doubles, idx
|
||||
) / 1024.d0**3
|
||||
|
||||
if (nproc_target == 0) then
|
||||
call check_mem(r1,irp_here)
|
||||
nproc_target = 1
|
||||
exit
|
||||
endif
|
||||
|
||||
if (r1+rss < qp_max_mem) then
|
||||
exit
|
||||
endif
|
||||
|
||||
if (itermax > 4) then
|
||||
itermax = itermax - 1
|
||||
else if (m==1.and.disk_based_davidson) then
|
||||
m=0
|
||||
disk_based = .True.
|
||||
itermax = 6
|
||||
else
|
||||
nproc_target = nproc_target - 1
|
||||
endif
|
||||
|
||||
enddo
|
||||
nthreads_davidson = nproc_target
|
||||
TOUCH nthreads_davidson
|
||||
call write_int(6,N_st,'Number of states')
|
||||
call write_int(6,N_st_diag,'Number of states in diagonalization')
|
||||
call write_int(6,sze,'Number of determinants')
|
||||
call write_int(6,sze_csf,'Number of CSFs')
|
||||
call write_int(6,nproc_target,'Number of threads for diagonalization')
|
||||
call write_double(6, r1, 'Memory(Gb)')
|
||||
if (disk_based) then
|
||||
print *, 'Using swap space to reduce RAM'
|
||||
endif
|
||||
|
||||
!---------------
|
||||
|
||||
write(6,'(A)') ''
|
||||
write_buffer = '====='
|
||||
do i=1,N_st
|
||||
write_buffer = trim(write_buffer)//' ================ ==========='
|
||||
enddo
|
||||
write(6,'(A)') write_buffer(1:6+41*N_st)
|
||||
write_buffer = 'Iter'
|
||||
do i=1,N_st
|
||||
write_buffer = trim(write_buffer)//' Energy Residual '
|
||||
enddo
|
||||
write(6,'(A)') write_buffer(1:6+41*N_st)
|
||||
write_buffer = '====='
|
||||
do i=1,N_st
|
||||
write_buffer = trim(write_buffer)//' ================ ==========='
|
||||
enddo
|
||||
write(6,'(A)') write_buffer(1:6+41*N_st)
|
||||
|
||||
|
||||
if (disk_based) then
|
||||
! Create memory-mapped files for W and S
|
||||
type(c_ptr) :: ptr_w, ptr_s
|
||||
integer :: fd_s, fd_w
|
||||
call mmap(trim(ezfio_work_dir)//'davidson_w', (/int(sze,8),int(N_st_diag*itermax,8)/),&
|
||||
8, fd_w, .False., ptr_w)
|
||||
call c_f_pointer(ptr_w, W_csf, (/sze_csf,N_st_diag*itermax/))
|
||||
else
|
||||
allocate(W(sze,N_st_diag),W_csf(sze_csf,N_st_diag*itermax))
|
||||
endif
|
||||
|
||||
allocate( &
|
||||
! Large
|
||||
U(sze,N_st_diag), &
|
||||
U_csf(sze_csf,N_st_diag*itermax), &
|
||||
|
||||
! Small
|
||||
h(N_st_diag*itermax,N_st_diag*itermax), &
|
||||
y(N_st_diag*itermax,N_st_diag*itermax), &
|
||||
s_tmp(N_st_diag*itermax,N_st_diag*itermax), &
|
||||
residual_norm(N_st_diag), &
|
||||
lambda(N_st_diag*itermax))
|
||||
|
||||
|
||||
h = 0.d0
|
||||
U = 0.d0
|
||||
y = 0.d0
|
||||
s_tmp = 0.d0
|
||||
|
||||
|
||||
ASSERT (N_st > 0)
|
||||
ASSERT (N_st_diag >= N_st)
|
||||
ASSERT (sze > 0)
|
||||
ASSERT (Nint > 0)
|
||||
ASSERT (Nint == N_int)
|
||||
|
||||
! Davidson iterations
|
||||
! ===================
|
||||
|
||||
converged = .False.
|
||||
call convertWFfromDETtoCSF(N_st_diag,u_in(1,1),U_csf(1,1))
|
||||
do k=N_st+1,N_st_diag
|
||||
do i=1,sze_csf
|
||||
call random_number(r1)
|
||||
call random_number(r2)
|
||||
r1 = dsqrt(-2.d0*dlog(r1))
|
||||
r2 = dtwo_pi*r2
|
||||
U_csf(i,k) = r1*dcos(r2) * u_csf(i,k-N_st)
|
||||
enddo
|
||||
U_csf(k,k) = u_csf(k,k) + 10.d0
|
||||
enddo
|
||||
do k=1,N_st_diag
|
||||
call normalize(U_csf(1,k),sze_csf)
|
||||
enddo
|
||||
call convertWFfromCSFtoDET(N_st_diag,U_csf(1,1),U(1,1))
|
||||
|
||||
do while (.not.converged)
|
||||
itertot = itertot+1
|
||||
if (itertot == 8) then
|
||||
exit
|
||||
endif
|
||||
|
||||
do iter=1,itermax-1
|
||||
|
||||
shift = N_st_diag*(iter-1)
|
||||
shift2 = N_st_diag*iter
|
||||
|
||||
! if ((iter > 1).or.(itertot == 1)) then
|
||||
! Compute |W_k> = \sum_i |i><i|H|u_k>
|
||||
! -----------------------------------
|
||||
|
||||
!call convertWFfromCSFtoDET(N_st_diag,U_csf(1,shift+1),U)
|
||||
PROVIDE mo_two_e_integrals_in_map mo_integrals_map big_array_exchange_integrals
|
||||
if ((sze > 100000).and.distributed_davidson) then
|
||||
!call H_u_0_nstates_zmq (W,U,N_st_diag,sze)
|
||||
allocate(tmpW(N_st_diag,sze_csf))
|
||||
allocate(tmpU(N_st_diag,sze_csf))
|
||||
do kk=1,N_st_diag
|
||||
do ii=1,sze_csf
|
||||
tmpU(kk,ii) = U_csf(ii,shift+kk)
|
||||
enddo
|
||||
enddo
|
||||
call calculate_sigma_vector_cfg_nst_naive_store(tmpW,tmpU,N_st_diag,sze_csf,1,sze_csf,0,1)
|
||||
do kk=1,N_st_diag
|
||||
do ii=1,sze_csf
|
||||
W_csf(ii,shift+kk)=tmpW(kk,ii)
|
||||
enddo
|
||||
enddo
|
||||
deallocate(tmpW)
|
||||
deallocate(tmpU)
|
||||
else
|
||||
!call H_u_0_nstates_openmp(W,U,N_st_diag,sze)
|
||||
allocate(tmpW(N_st_diag,sze_csf))
|
||||
allocate(tmpU(N_st_diag,sze_csf))
|
||||
do kk=1,N_st_diag
|
||||
do ii=1,sze_csf
|
||||
tmpU(kk,ii) = U_csf(ii,shift+kk)
|
||||
enddo
|
||||
enddo
|
||||
!tmpU =0.0d0
|
||||
!tmpU(1,2)=1.0d0
|
||||
double precision :: irp_rdtsc
|
||||
double precision :: ticks_0, ticks_1
|
||||
integer*8 :: irp_imax
|
||||
irp_imax = 1
|
||||
!ticks_0 = irp_rdtsc()
|
||||
call calculate_sigma_vector_cfg_nst_naive_store(tmpW,tmpU,N_st_diag,sze_csf,1,sze_csf,0,1)
|
||||
!ticks_1 = irp_rdtsc()
|
||||
!print *,' ----Cycles:',(ticks_1-ticks_0)/dble(irp_imax)," ----"
|
||||
do kk=1,N_st_diag
|
||||
do ii=1,sze_csf
|
||||
W_csf(ii,shift+kk)=tmpW(kk,ii)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
!U_csf = 0.0d0
|
||||
!U_csf(1,1) = 1.0d0
|
||||
!u_in = 0.0d0
|
||||
!call convertWFfromCSFtoDET(N_st_diag,tmpU,U2)
|
||||
!call H_u_0_nstates_openmp(u_in,U2,N_st_diag,sze)
|
||||
!call convertWFfromDETtoCSF(N_st_diag,u_in(1,1),W_csf2(1,1))
|
||||
!do i=1,sze_csf
|
||||
! print *,"I=",i," qp=",W_csf2(i,1)," my=",W_csf(i,1)," diff=",dabs(W_csf2(i,1))-dabs(W_csf(i,1))
|
||||
! if(dabs(dabs(W_csf2(i,1))-dabs(W_csf(i,1))) .gt. 1.0e-10)then
|
||||
! print *,"somo=",psi_configuration(1,1,i)," domo=",psi_configuration(1,2,i)," diff=",dabs(W_csf2(i,1))-dabs(W_csf(i,1))
|
||||
! endif
|
||||
!end do
|
||||
!stop
|
||||
deallocate(tmpW)
|
||||
deallocate(tmpU)
|
||||
endif
|
||||
! else
|
||||
! ! Already computed in update below
|
||||
! continue
|
||||
! endif
|
||||
|
||||
if (dressing_state > 0) then
|
||||
|
||||
if (N_st == 1) then
|
||||
|
||||
l = dressed_column_idx(1)
|
||||
double precision :: f
|
||||
f = 1.0d0/psi_coef(l,1)
|
||||
do istate=1,N_st_diag
|
||||
do i=1,sze
|
||||
W(i,istate) += dressing_column_h(i,1) *f * U(l,istate)
|
||||
W(l,istate) += dressing_column_h(i,1) *f * U(i,istate)
|
||||
enddo
|
||||
|
||||
enddo
|
||||
|
||||
else
|
||||
|
||||
call dgemm('T','N', N_st, N_st_diag, sze, 1.d0, &
|
||||
psi_coef, size(psi_coef,1), &
|
||||
U(1,1), size(U,1), 0.d0, s_tmp, size(s_tmp,1))
|
||||
|
||||
call dgemm('N','N', sze, N_st_diag, N_st, 1.0d0, &
|
||||
dressing_column_h, size(dressing_column_h,1), s_tmp, size(s_tmp,1), &
|
||||
1.d0, W(1,1), size(W,1))
|
||||
|
||||
|
||||
call dgemm('T','N', N_st, N_st_diag, sze, 1.d0, &
|
||||
dressing_column_h, size(dressing_column_h,1), &
|
||||
U(1,1), size(U,1), 0.d0, s_tmp, size(s_tmp,1))
|
||||
|
||||
call dgemm('N','N', sze, N_st_diag, N_st, 1.0d0, &
|
||||
psi_coef, size(psi_coef,1), s_tmp, size(s_tmp,1), &
|
||||
1.d0, W(1,1), size(W,1))
|
||||
|
||||
endif
|
||||
endif
|
||||
|
||||
!call convertWFfromDETtoCSF(N_st_diag,W,W_csf(1,shift+1))
|
||||
|
||||
! Compute h_kl = <u_k | W_l> = <u_k| H |u_l>
|
||||
! -------------------------------------------
|
||||
|
||||
call dgemm('T','N', shift2, shift2, sze_csf, &
|
||||
1.d0, U_csf, size(U_csf,1), W_csf, size(W_csf,1), &
|
||||
0.d0, h, size(h,1))
|
||||
call dgemm('T','N', shift2, shift2, sze_csf, &
|
||||
1.d0, U_csf, size(U_csf,1), U_csf, size(U_csf,1), &
|
||||
0.d0, s_tmp, size(s_tmp,1))
|
||||
|
||||
! Diagonalize h
|
||||
! ---------------
|
||||
|
||||
integer :: lwork, info
|
||||
double precision, allocatable :: work(:)
|
||||
|
||||
y = h
|
||||
lwork = -1
|
||||
allocate(work(1))
|
||||
call dsygv(1,'V','U',shift2,y,size(y,1), &
|
||||
s_tmp,size(s_tmp,1), lambda, work,lwork,info)
|
||||
lwork = int(work(1))
|
||||
deallocate(work)
|
||||
allocate(work(lwork))
|
||||
call dsygv(1,'V','U',shift2,y,size(y,1), &
|
||||
s_tmp,size(s_tmp,1), lambda, work,lwork,info)
|
||||
deallocate(work)
|
||||
if (info /= 0) then
|
||||
stop 'DSYGV Diagonalization failed'
|
||||
endif
|
||||
|
||||
! Compute Energy for each eigenvector
|
||||
! -----------------------------------
|
||||
|
||||
call dgemm('N','N',shift2,shift2,shift2, &
|
||||
1.d0, h, size(h,1), y, size(y,1), &
|
||||
0.d0, s_tmp, size(s_tmp,1))
|
||||
|
||||
call dgemm('T','N',shift2,shift2,shift2, &
|
||||
1.d0, y, size(y,1), s_tmp, size(s_tmp,1), &
|
||||
0.d0, h, size(h,1))
|
||||
|
||||
do k=1,shift2
|
||||
lambda(k) = h(k,k)
|
||||
enddo
|
||||
|
||||
if (state_following) then
|
||||
|
||||
overlap = -1.d0
|
||||
do i=1,shift2
|
||||
do k=1,shift2
|
||||
overlap(k,i) = dabs(y(k,i))
|
||||
enddo
|
||||
enddo
|
||||
do k=1,N_st
|
||||
cmax = -1.d0
|
||||
do i=1,N_st
|
||||
if (overlap(i,k) > cmax) then
|
||||
cmax = overlap(i,k)
|
||||
order(k) = i
|
||||
endif
|
||||
enddo
|
||||
do i=1,N_st_diag
|
||||
overlap(order(k),i) = -1.d0
|
||||
enddo
|
||||
enddo
|
||||
overlap = y
|
||||
do k=1,N_st
|
||||
l = order(k)
|
||||
if (k /= l) then
|
||||
y(1:shift2,k) = overlap(1:shift2,l)
|
||||
endif
|
||||
enddo
|
||||
do k=1,N_st
|
||||
overlap(k,1) = lambda(k)
|
||||
enddo
|
||||
|
||||
endif
|
||||
|
||||
|
||||
! Express eigenvectors of h in the csf basis
|
||||
! ------------------------------------------
|
||||
|
||||
call dgemm('N','N', sze_csf, N_st_diag, shift2, &
|
||||
1.d0, U_csf, size(U_csf,1), y, size(y,1), 0.d0, U_csf(1,shift2+1), size(U_csf,1))
|
||||
call convertWFfromCSFtoDET(N_st_diag,U_csf(1,shift2+1),U)
|
||||
|
||||
call dgemm('N','N', sze_csf, N_st_diag, shift2, &
|
||||
1.d0, W_csf, size(W_csf,1), y, size(y,1), 0.d0, W_csf(1,shift2+1), size(W_csf,1))
|
||||
call convertWFfromCSFtoDET(N_st_diag,W_csf(1,shift2+1),W)
|
||||
|
||||
! Compute residual vector and davidson step
|
||||
! -----------------------------------------
|
||||
|
||||
!if (without_diagonal) then
|
||||
!$OMP PARALLEL DO DEFAULT(SHARED) PRIVATE(i,k)
|
||||
do k=1,N_st_diag
|
||||
do i=1,sze
|
||||
U(i,k) = (lambda(k) * U(i,k) - W(i,k) ) &
|
||||
/max(H_jj(i) - lambda (k),1.d-2)
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END PARALLEL DO
|
||||
!else
|
||||
! !$OMP PARALLEL DO DEFAULT(SHARED) PRIVATE(i,k)
|
||||
! do k=1,N_st_diag
|
||||
! do i=1,sze
|
||||
! U(i,k) = (lambda(k) * U(i,k) - W(i,k) )
|
||||
! enddo
|
||||
! enddo
|
||||
! !$OMP END PARALLEL DO
|
||||
!endif
|
||||
|
||||
do k=1,N_st
|
||||
residual_norm(k) = u_dot_u(U(1,k),sze)
|
||||
to_print(1,k) = lambda(k) + nuclear_repulsion
|
||||
to_print(2,k) = residual_norm(k)
|
||||
enddo
|
||||
call convertWFfromDETtoCSF(N_st_diag,U,U_csf(1,shift2+1))
|
||||
|
||||
if ((itertot>1).and.(iter == 1)) then
|
||||
!don't print
|
||||
continue
|
||||
else
|
||||
write(*,'(1X,I3,1X,100(1X,F16.10,1X,E11.3))') iter-1, to_print(1:2,1:N_st)
|
||||
endif
|
||||
|
||||
! Check convergence
|
||||
if (iter > 1) then
|
||||
if (threshold_davidson_from_pt2) then
|
||||
converged = dabs(maxval(residual_norm(1:N_st))) < threshold_davidson_pt2
|
||||
else
|
||||
converged = dabs(maxval(residual_norm(1:N_st))) < threshold_davidson
|
||||
endif
|
||||
endif
|
||||
|
||||
do k=1,N_st
|
||||
if (residual_norm(k) > 1.d8) then
|
||||
print *, 'Davidson failed'
|
||||
stop -1
|
||||
endif
|
||||
enddo
|
||||
if (converged) then
|
||||
exit
|
||||
endif
|
||||
|
||||
logical, external :: qp_stop
|
||||
if (qp_stop()) then
|
||||
converged = .True.
|
||||
exit
|
||||
endif
|
||||
|
||||
|
||||
enddo
|
||||
|
||||
! Re-contract U
|
||||
! -------------
|
||||
|
||||
call dgemm('N','N', sze_csf, N_st_diag, shift2, 1.d0, &
|
||||
W_csf, size(W_csf,1), y, size(y,1), 0.d0, u_in, size(u_in,1))
|
||||
do k=1,N_st_diag
|
||||
do i=1,sze_csf
|
||||
W_csf(i,k) = u_in(i,k)
|
||||
enddo
|
||||
enddo
|
||||
call convertWFfromCSFtoDET(N_st_diag,W_csf,W)
|
||||
|
||||
call dgemm('N','N', sze_csf, N_st_diag, shift2, 1.d0, &
|
||||
U_csf, size(U_csf,1), y, size(y,1), 0.d0, u_in, size(u_in,1))
|
||||
do k=1,N_st_diag
|
||||
do i=1,sze_csf
|
||||
U_csf(i,k) = u_in(i,k)
|
||||
enddo
|
||||
enddo
|
||||
call convertWFfromCSFtoDET(N_st_diag,U_csf,U)
|
||||
|
||||
enddo
|
||||
|
||||
|
||||
call nullify_small_elements(sze,N_st_diag,U,size(U,1),threshold_davidson_pt2)
|
||||
do k=1,N_st_diag
|
||||
do i=1,sze
|
||||
u_in(i,k) = U(i,k)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
do k=1,N_st_diag
|
||||
energies(k) = lambda(k)
|
||||
enddo
|
||||
write_buffer = '======'
|
||||
do i=1,N_st
|
||||
write_buffer = trim(write_buffer)//' ================ ==========='
|
||||
enddo
|
||||
write(6,'(A)') trim(write_buffer)
|
||||
write(6,'(A)') ''
|
||||
call write_time(6)
|
||||
|
||||
if (disk_based)then
|
||||
! Remove temp files
|
||||
integer, external :: getUnitAndOpen
|
||||
call munmap( (/int(sze,8),int(N_st_diag*itermax,8)/), 8, fd_w, ptr_w )
|
||||
fd_w = getUnitAndOpen(trim(ezfio_work_dir)//'davidson_w','r')
|
||||
close(fd_w,status='delete')
|
||||
else
|
||||
deallocate(W, W_csf)
|
||||
endif
|
||||
|
||||
deallocate ( &
|
||||
residual_norm, &
|
||||
U, U_csf, overlap, &
|
||||
h, y, s_tmp, &
|
||||
lambda &
|
||||
)
|
||||
FREE nthreads_davidson
|
||||
end
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
@ -89,7 +89,7 @@ subroutine davidson_diag_csf_hjj(dets_in,u_in,H_jj,energies,dim_in,sze,sze_csf,N
|
||||
double precision, intent(out) :: energies(N_st_diag_in)
|
||||
|
||||
integer :: iter, N_st_diag
|
||||
integer :: i,j,k,l,m
|
||||
integer :: i,j,k,l,m,kk
|
||||
logical, intent(inout) :: converged
|
||||
|
||||
double precision, external :: u_dot_v, u_dot_u
|
||||
|
@ -154,7 +154,7 @@ subroutine davidson_diag_hjj_sjj(dets_in,u_in,H_jj,s2_out,energies,dim_in,sze,N_
|
||||
character*(16384) :: write_buffer
|
||||
double precision :: to_print(3,N_st)
|
||||
double precision :: cpu, wall
|
||||
integer :: shift, shift2, itermax, istate
|
||||
integer :: shift, shift2, itermax, istate, ii
|
||||
double precision :: r1, r2, alpha
|
||||
logical :: state_ok(N_st_diag_in*davidson_sze_max)
|
||||
integer :: nproc_target
|
||||
@ -361,7 +361,14 @@ subroutine davidson_diag_hjj_sjj(dets_in,u_in,H_jj,s2_out,energies,dim_in,sze,N_
|
||||
if ((sze > 100000).and.distributed_davidson) then
|
||||
call H_S2_u_0_nstates_zmq (W(1,shift+1),S_d,U(1,shift+1),N_st_diag,sze)
|
||||
else
|
||||
double precision :: irp_rdtsc
|
||||
double precision :: ticks_0, ticks_1
|
||||
integer*8 :: irp_imax
|
||||
irp_imax = 1
|
||||
!ticks_0 = irp_rdtsc()
|
||||
call H_S2_u_0_nstates_openmp(W(1,shift+1),S_d,U(1,shift+1),N_st_diag,sze)
|
||||
!ticks_1 = irp_rdtsc()
|
||||
!print *,' ----Cycles:',(ticks_1-ticks_0)/dble(irp_imax)," ----"
|
||||
endif
|
||||
S(1:sze,shift+1:shift+N_st_diag) = real(S_d(1:sze,1:N_st_diag))
|
||||
else
|
||||
|
@ -1,9 +1,20 @@
|
||||
BEGIN_PROVIDER [ character*(3), sigma_vector_algorithm ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! If 'det', use <Psi_det|H|Psi_det> in Davidson
|
||||
!
|
||||
! If 'cfg', use <Psi_csf|H|Psi_csf> in Davidson
|
||||
END_DOC
|
||||
sigma_vector_algorithm = 'det'
|
||||
!sigma_vector_algorithm = 'cfg'
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ double precision, CI_energy, (N_states_diag) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! :c:data:`n_states` lowest eigenvalues of the |CI| matrix
|
||||
END_DOC
|
||||
PROVIDE distributed_davidson
|
||||
|
||||
integer :: j
|
||||
character*(8) :: st
|
||||
@ -61,7 +72,7 @@ END_PROVIDER
|
||||
if (diag_algorithm == 'Davidson') then
|
||||
|
||||
if (do_csf) then
|
||||
! if (sigma_vector_algorithm == 'det') then
|
||||
if (sigma_vector_algorithm == 'det') then
|
||||
call davidson_diag_H_csf (psi_det, &
|
||||
CI_eigenvectors, &
|
||||
size(CI_eigenvectors,1), &
|
||||
@ -73,14 +84,14 @@ END_PROVIDER
|
||||
N_int, &
|
||||
0, &
|
||||
converged)
|
||||
! else if (sigma_vector_algorithm == 'cfg') then
|
||||
! call davidson_diag_H_csf(psi_det,CI_eigenvectors, &
|
||||
! size(CI_eigenvectors,1),CI_electronic_energy, &
|
||||
! N_det,N_csf,min(N_det,N_states),min(N_det,N_states_diag),N_int,0,converged)
|
||||
! else
|
||||
! print *, irp_here
|
||||
! stop 'bug'
|
||||
! endif
|
||||
else if (sigma_vector_algorithm == 'cfg') then
|
||||
call davidson_diag_H_cfg(psi_det,CI_eigenvectors, &
|
||||
size(CI_eigenvectors,1),CI_electronic_energy, &
|
||||
N_det,N_csf,min(N_det,N_states),min(N_det,N_states_diag),N_int,0,converged)
|
||||
else
|
||||
print *, irp_here
|
||||
stop 'bug'
|
||||
endif
|
||||
else
|
||||
call davidson_diag_HS2(psi_det, &
|
||||
CI_eigenvectors, &
|
||||
|
@ -136,9 +136,8 @@ doc: If |true|, discard any Slater determinants with an interaction smaller than
|
||||
interface: ezfio,provider,ocaml
|
||||
default: False
|
||||
|
||||
|
||||
[thresh_save_wf]
|
||||
[save_threshold]
|
||||
type: Threshold
|
||||
doc: Thresholds to save wave function
|
||||
doc: Cut-off to apply to the CI coefficients when the wave function is stored
|
||||
interface: ezfio,provider,ocaml
|
||||
default: 1.e-15
|
||||
default: 1.e-14
|
||||
|
@ -67,6 +67,7 @@ subroutine ec_md_on_top_PBE_mu_corrected(mu,r,two_dm,eps_c_md_on_top_PBE)
|
||||
double precision :: pi
|
||||
pi = 4.d0 * datan(1.d0)
|
||||
mu_correction_of_on_top = on_top / ( 1.d0 + 2.d0/(dsqrt(pi)*mu) )
|
||||
! mu_correction_of_on_top = on_top * dexp(-1.d0/(dsqrt(pi)*mu))
|
||||
mu_correction_of_on_top = max(mu_correction_of_on_top ,1.d-15)
|
||||
end
|
||||
|
||||
|
54
src/mo_localization/EZFIO.cfg
Normal file
54
src/mo_localization/EZFIO.cfg
Normal file
@ -0,0 +1,54 @@
|
||||
[localization_method]
|
||||
type: character*(32)
|
||||
doc: Method for the orbital localization. boys : Foster-Boys, pipek : Pipek-Mezey.
|
||||
interface: ezfio,provider,ocaml
|
||||
default: boys
|
||||
|
||||
[localization_max_nb_iter]
|
||||
type: integer
|
||||
doc: Maximal number of iterations for the orbital localization.
|
||||
interface: ezfio,provider,ocaml
|
||||
default: 1000
|
||||
|
||||
[localization_use_hessian]
|
||||
type: logical
|
||||
doc: If true, it uses the trust region algorithm with the gradient and the diagonal of the hessian. Else it computes the rotation between each pair of MOs that should be applied to maximize/minimize the localization criterion. The last option requieres a way smaller amount of memory but is not easy to converge.
|
||||
interface: ezfio,provider,ocaml
|
||||
default: true
|
||||
|
||||
[security_mo_class]
|
||||
type: logical
|
||||
doc: If true, call abort if the number of active orbital or the number of core + active orbitals is equal to the number of molecular orbitals, else uses the actual mo_class. It is a security if you forget to set the mo_class before the localization.
|
||||
interface: ezfio,provider,ocaml
|
||||
default: true
|
||||
|
||||
[thresh_loc_max_elem_grad]
|
||||
type: double precision
|
||||
doc: Threshold for the convergence, the localization exits when the largest element in the gradient is smaller than thresh_localization_max_elem_grad.
|
||||
interface: ezfio,provider,ocaml
|
||||
default: 1.e-6
|
||||
|
||||
[kick_in_mos]
|
||||
type: logical
|
||||
doc: If True, it applies a rotation of an angle angle_pre_rot between the MOs of a same mo_class before the localization.
|
||||
interface: ezfio,provider,ocaml
|
||||
default: true
|
||||
|
||||
[angle_pre_rot]
|
||||
type: double precision
|
||||
doc: To define the angle for the rotation of the MOs before the localization (in rad).
|
||||
interface: ezfio,provider,ocaml
|
||||
default: 0.1
|
||||
|
||||
[sort_mos_by_e]
|
||||
type: logical
|
||||
doc: If True, the MOs are sorted using the diagonal elements of the Fock matrix.
|
||||
interface: ezfio,provider,ocaml
|
||||
default: false
|
||||
|
||||
[debug_hf]
|
||||
type: logical
|
||||
doc: If True, prints the HF energy before/after the different steps of the localization. Only for debugging.
|
||||
interface: ezfio,provider,ocaml
|
||||
default: false
|
||||
|
2
src/mo_localization/NEED
Normal file
2
src/mo_localization/NEED
Normal file
@ -0,0 +1,2 @@
|
||||
hartree_fock
|
||||
utils_trust_region
|
108
src/mo_localization/README.md
Normal file
108
src/mo_localization/README.md
Normal file
@ -0,0 +1,108 @@
|
||||
# mo_localization
|
||||
|
||||
Some parameters can be changed with qp edit in the mo_localization section
|
||||
(cf below). Similarly for the trust region parameters in the
|
||||
utils_trust_region section. The localization without the trust region
|
||||
is not available for the moment.
|
||||
|
||||
The irf.f files can be generated from the org ones using emacs.
|
||||
If you modify the .org files, don't forget to do (you need emacs):
|
||||
```
|
||||
./TANGLE_org_mode.sh
|
||||
ninja
|
||||
```
|
||||
|
||||
# Orbital localisation
|
||||
To localize the MOs:
|
||||
```
|
||||
qp run localization
|
||||
```
|
||||
After that the ezfio directory contains the localized MOs
|
||||
|
||||
But to do so the mo_class must be defined before, run
|
||||
```
|
||||
qp set_mo_class -q
|
||||
```
|
||||
for more information or
|
||||
```
|
||||
qp set_mo_class -c [] -a [] -v [] -i [] -d []
|
||||
```
|
||||
to set the mo classes. We don't care about the name of the
|
||||
mo classes. The algorithm just localizes all the MOs of
|
||||
a given class between them, for all the classes, except the deleted MOs.
|
||||
|
||||
If you just on kind of mo class to localize all the MOs between them
|
||||
you have to put:
|
||||
```
|
||||
qp set mo_localization security_mo_class false
|
||||
```
|
||||
|
||||
Before the localization, a kick is done for each mo class
|
||||
(except the deleted ones) to break the MOs. This is done by
|
||||
doing a rotation between the MOs.
|
||||
This feature can be removed by setting:
|
||||
```
|
||||
qp set mo_localization kick_in_mos false
|
||||
```
|
||||
and the default angle for the rotation can be changed with:
|
||||
```
|
||||
qp set mo_localization angle_pre_rot 1e-3 # or something else
|
||||
```
|
||||
|
||||
After the localization, the MOs of each class (except the deleted ones)
|
||||
can be sorted between them using the diagonal elements of
|
||||
the fock matrix with:
|
||||
```
|
||||
qp set mo_localization sort_mos_by_e true
|
||||
```
|
||||
|
||||
You can check the Hartree-Fock energy before/during/after the localization
|
||||
by putting (only for debugging):
|
||||
```
|
||||
qp set mo_localization debug_hf true
|
||||
```
|
||||
|
||||
## Foster-Boys & Pipek-Mezey
|
||||
Foster-Boys:
|
||||
```
|
||||
qp set mo_localization localization_method boys
|
||||
```
|
||||
|
||||
Pipek-Mezey:
|
||||
```
|
||||
qp set mo_localization localization_method pipek
|
||||
```
|
||||
|
||||
# Break the spatial symmetry of the MOs
|
||||
To break the spatial symmetry of the MOs:
|
||||
```
|
||||
qp run break_spatial_sym
|
||||
```
|
||||
The default angle for the rotations is too big for this kind of
|
||||
application, a value between 1e-3 and 1e-6 should break the spatial
|
||||
symmetry with just a small change in the energy:
|
||||
```
|
||||
qp set mo_localization angle_pre_rot 1e-3
|
||||
```
|
||||
|
||||
# With or without hessian + trust region
|
||||
With hessian + trust region
|
||||
```
|
||||
qp set mo_localization localisation_use_hessian true
|
||||
```
|
||||
It uses the trust region algorithm with the diagonal of the hessian of the
|
||||
localization criterion with respect to the MO rotations.
|
||||
|
||||
Without the hessian and the trust region
|
||||
```
|
||||
qp set mo_localization localisation_use_hessian false
|
||||
```
|
||||
By doing so it does not require to store the hessian but the
|
||||
convergence is not easy, in particular for virtual MOs.
|
||||
It seems that it not possible to converge with Pipek-Mezey
|
||||
localization with this approach.
|
||||
|
||||
# Further improvements:
|
||||
- Cleaner repo
|
||||
- Correction of the errors in the documentations
|
||||
- option with/without trust region
|
7
src/mo_localization/TANGLE_org_mode.sh
Executable file
7
src/mo_localization/TANGLE_org_mode.sh
Executable file
@ -0,0 +1,7 @@
|
||||
#!/bin/sh
|
||||
|
||||
list='ls *.org'
|
||||
for element in $list
|
||||
do
|
||||
emacs --batch $element -f org-babel-tangle
|
||||
done
|
42
src/mo_localization/break_spatial_sym.irp.f
Normal file
42
src/mo_localization/break_spatial_sym.irp.f
Normal file
@ -0,0 +1,42 @@
|
||||
! ! A small program to break the spatial symmetry of the MOs.
|
||||
|
||||
! ! You have to defined your MO classes or set security_mo_class to false
|
||||
! ! with:
|
||||
! ! qp set orbital_optimization security_mo_class false
|
||||
|
||||
! ! The default angle for the rotations is too big for this kind of
|
||||
! ! application, a value between 1e-3 and 1e-6 should break the spatial
|
||||
! ! symmetry with just a small change in the energy.
|
||||
|
||||
|
||||
program break_spatial_sym
|
||||
|
||||
!BEGIN_DOC
|
||||
! Break the symmetry of the MOs with a rotation
|
||||
!END_DOC
|
||||
|
||||
implicit none
|
||||
|
||||
kick_in_mos = .True.
|
||||
TOUCH kick_in_mos
|
||||
|
||||
print*, 'Security mo_class:', security_mo_class
|
||||
|
||||
! The default mo_classes are setted only if the MOs to localize are not specified
|
||||
if (security_mo_class .and. (dim_list_act_orb == mo_num .or. &
|
||||
dim_list_core_orb + dim_list_act_orb == mo_num)) then
|
||||
|
||||
print*, 'WARNING'
|
||||
print*, 'You must set different mo_class with qp set_mo_class'
|
||||
print*, 'If you want to kick all the orbitals:'
|
||||
print*, 'qp set orbital_optimization security_mo_class false'
|
||||
print*, ''
|
||||
print*, 'abort'
|
||||
|
||||
call abort
|
||||
|
||||
endif
|
||||
|
||||
call apply_pre_rotation
|
||||
|
||||
end
|
43
src/mo_localization/break_spatial_sym.org
Normal file
43
src/mo_localization/break_spatial_sym.org
Normal file
@ -0,0 +1,43 @@
|
||||
! A small program to break the spatial symmetry of the MOs.
|
||||
|
||||
! You have to defined your MO classes or set security_mo_class to false
|
||||
! with:
|
||||
! qp set orbital_optimization security_mo_class false
|
||||
|
||||
! The default angle for the rotations is too big for this kind of
|
||||
! application, a value between 1e-3 and 1e-6 should break the spatial
|
||||
! symmetry with just a small change in the energy.
|
||||
|
||||
#+BEGIN_SRC f90 :comments org :tangle break_spatial_sym.irp.f
|
||||
program break_spatial_sym
|
||||
|
||||
!BEGIN_DOC
|
||||
! Break the symmetry of the MOs with a rotation
|
||||
!END_DOC
|
||||
|
||||
implicit none
|
||||
|
||||
kick_in_mos = .True.
|
||||
TOUCH kick_in_mos
|
||||
|
||||
print*, 'Security mo_class:', security_mo_class
|
||||
|
||||
! The default mo_classes are setted only if the MOs to localize are not specified
|
||||
if (security_mo_class .and. (dim_list_act_orb == mo_num .or. &
|
||||
dim_list_core_orb + dim_list_act_orb == mo_num)) then
|
||||
|
||||
print*, 'WARNING'
|
||||
print*, 'You must set different mo_class with qp set_mo_class'
|
||||
print*, 'If you want to kick all the orbitals:'
|
||||
print*, 'qp set orbital_optimization security_mo_class false'
|
||||
print*, ''
|
||||
print*, 'abort'
|
||||
|
||||
call abort
|
||||
|
||||
endif
|
||||
|
||||
call apply_pre_rotation
|
||||
|
||||
end
|
||||
#+END_SRC
|
62
src/mo_localization/debug_gradient_loc.irp.f
Normal file
62
src/mo_localization/debug_gradient_loc.irp.f
Normal file
@ -0,0 +1,62 @@
|
||||
program debug_gradient_loc
|
||||
|
||||
!BEGIN_DOC
|
||||
! Check if the gradient is correct
|
||||
!END_DOC
|
||||
|
||||
implicit none
|
||||
|
||||
integer :: list_size, n
|
||||
integer, allocatable :: list(:)
|
||||
double precision, allocatable :: v_grad(:), v_grad2(:)
|
||||
double precision :: norm, max_elem, threshold, max_error
|
||||
integer :: i, nb_error
|
||||
|
||||
threshold = 1d-12
|
||||
|
||||
list = list_act
|
||||
list_size = dim_list_act_orb
|
||||
|
||||
n = list_size*(list_size-1)/2
|
||||
|
||||
allocate(v_grad(n),v_grad2(n))
|
||||
|
||||
if (localization_method == 'boys') then
|
||||
print*,'Foster-Boys'
|
||||
call gradient_FB(n,list_size,list,v_grad,max_elem,norm)
|
||||
call gradient_FB_omp(n,list_size,list,v_grad2,max_elem,norm)
|
||||
elseif (localization_method == 'pipek') then
|
||||
print*,'Pipek-Mezey'
|
||||
call gradient_PM(n,list_size,list,v_grad,max_elem,norm)
|
||||
call gradient_PM(n,list_size,list,v_grad2,max_elem,norm)
|
||||
else
|
||||
print*,'Unknown localization_method, please select boys or pipek'
|
||||
call abort
|
||||
endif
|
||||
|
||||
do i = 1, n
|
||||
print*,i,v_grad(i)
|
||||
enddo
|
||||
|
||||
v_grad = v_grad - v_grad2
|
||||
|
||||
nb_error = 0
|
||||
max_elem = 0d0
|
||||
|
||||
do i = 1, n
|
||||
if (dabs(v_grad(i)) > threshold) then
|
||||
print*,v_grad(i)
|
||||
nb_error = nb_error + 1
|
||||
if (dabs(v_grad(i)) > max_elem) then
|
||||
max_elem = v_grad(i)
|
||||
endif
|
||||
endif
|
||||
enddo
|
||||
|
||||
print*,'Threshold error', threshold
|
||||
print*, 'Nb error', nb_error
|
||||
print*,'Max error', max_elem
|
||||
|
||||
deallocate(v_grad,v_grad2)
|
||||
|
||||
end
|
64
src/mo_localization/debug_gradient_loc.org
Normal file
64
src/mo_localization/debug_gradient_loc.org
Normal file
@ -0,0 +1,64 @@
|
||||
#+BEGIN_SRC f90 :comments org :tangle debug_gradient_loc.irp.f
|
||||
program debug_gradient_loc
|
||||
|
||||
!BEGIN_DOC
|
||||
! Check if the gradient is correct
|
||||
!END_DOC
|
||||
|
||||
implicit none
|
||||
|
||||
integer :: list_size, n
|
||||
integer, allocatable :: list(:)
|
||||
double precision, allocatable :: v_grad(:), v_grad2(:)
|
||||
double precision :: norm, max_elem, threshold, max_error
|
||||
integer :: i, nb_error
|
||||
|
||||
threshold = 1d-12
|
||||
|
||||
list = list_act
|
||||
list_size = dim_list_act_orb
|
||||
|
||||
n = list_size*(list_size-1)/2
|
||||
|
||||
allocate(v_grad(n),v_grad2(n))
|
||||
|
||||
if (localization_method == 'boys') then
|
||||
print*,'Foster-Boys'
|
||||
call gradient_FB(n,list_size,list,v_grad,max_elem,norm)
|
||||
call gradient_FB_omp(n,list_size,list,v_grad2,max_elem,norm)
|
||||
elseif (localization_method == 'pipek') then
|
||||
print*,'Pipek-Mezey'
|
||||
call gradient_PM(n,list_size,list,v_grad,max_elem,norm)
|
||||
call gradient_PM(n,list_size,list,v_grad2,max_elem,norm)
|
||||
else
|
||||
print*,'Unknown localization_method, please select boys or pipek'
|
||||
call abort
|
||||
endif
|
||||
|
||||
do i = 1, n
|
||||
print*,i,v_grad(i)
|
||||
enddo
|
||||
|
||||
v_grad = v_grad - v_grad2
|
||||
|
||||
nb_error = 0
|
||||
max_elem = 0d0
|
||||
|
||||
do i = 1, n
|
||||
if (dabs(v_grad(i)) > threshold) then
|
||||
print*,v_grad(i)
|
||||
nb_error = nb_error + 1
|
||||
if (dabs(v_grad(i)) > max_elem) then
|
||||
max_elem = v_grad(i)
|
||||
endif
|
||||
endif
|
||||
enddo
|
||||
|
||||
print*,'Threshold error', threshold
|
||||
print*, 'Nb error', nb_error
|
||||
print*,'Max error', max_elem
|
||||
|
||||
deallocate(v_grad,v_grad2)
|
||||
|
||||
end
|
||||
#+END_SRC
|
62
src/mo_localization/debug_hessian_loc.irp.f
Normal file
62
src/mo_localization/debug_hessian_loc.irp.f
Normal file
@ -0,0 +1,62 @@
|
||||
program debug_hessian_loc
|
||||
|
||||
!BEGIN_DOC
|
||||
! Check if the hessian is correct
|
||||
!END_DOC
|
||||
|
||||
implicit none
|
||||
|
||||
integer :: list_size, n
|
||||
integer, allocatable :: list(:)
|
||||
double precision, allocatable :: H(:,:), H2(:,:)
|
||||
double precision :: threshold, max_error, max_elem
|
||||
integer :: i, nb_error
|
||||
|
||||
threshold = 1d-12
|
||||
|
||||
list = list_act
|
||||
list_size = dim_list_act_orb
|
||||
|
||||
n = list_size*(list_size-1)/2
|
||||
|
||||
allocate(H(n,n),H2(n,n))
|
||||
|
||||
if (localization_method == 'boys') then
|
||||
print*,'Foster-Boys'
|
||||
call hessian_FB(n,list_size,list,H)
|
||||
call hessian_FB_omp(n,list_size,list,H2)
|
||||
elseif(localization_method == 'pipek') then
|
||||
print*,'Pipek-Mezey'
|
||||
call hessian_PM(n,list_size,list,H)
|
||||
call hessian_PM(n,list_size,list,H2)
|
||||
else
|
||||
print*,'Unknown localization_method, please select boys or pipek'
|
||||
call abort
|
||||
endif
|
||||
|
||||
do i = 1, n
|
||||
print*,i,H(i,i)
|
||||
enddo
|
||||
|
||||
H = H - H2
|
||||
|
||||
nb_error = 0
|
||||
max_elem = 0d0
|
||||
|
||||
do i = 1, n
|
||||
if (dabs(H(i,i)) > threshold) then
|
||||
print*,H(i,i)
|
||||
nb_error = nb_error + 1
|
||||
if (dabs(H(i,i)) > max_elem) then
|
||||
max_elem = H(i,i)
|
||||
endif
|
||||
endif
|
||||
enddo
|
||||
|
||||
print*,'Threshold error', threshold
|
||||
print*, 'Nb error', nb_error
|
||||
print*,'Max error', max_elem
|
||||
|
||||
deallocate(H,H2)
|
||||
|
||||
end
|
64
src/mo_localization/debug_hessian_loc.org
Normal file
64
src/mo_localization/debug_hessian_loc.org
Normal file
@ -0,0 +1,64 @@
|
||||
#+BEGIN_SRC f90 :comments org :tangle debug_hessian_loc.irp.f
|
||||
program debug_hessian_loc
|
||||
|
||||
!BEGIN_DOC
|
||||
! Check if the hessian is correct
|
||||
!END_DOC
|
||||
|
||||
implicit none
|
||||
|
||||
integer :: list_size, n
|
||||
integer, allocatable :: list(:)
|
||||
double precision, allocatable :: H(:,:), H2(:,:)
|
||||
double precision :: threshold, max_error, max_elem
|
||||
integer :: i, nb_error
|
||||
|
||||
threshold = 1d-12
|
||||
|
||||
list = list_act
|
||||
list_size = dim_list_act_orb
|
||||
|
||||
n = list_size*(list_size-1)/2
|
||||
|
||||
allocate(H(n,n),H2(n,n))
|
||||
|
||||
if (localization_method == 'boys') then
|
||||
print*,'Foster-Boys'
|
||||
call hessian_FB(n,list_size,list,H)
|
||||
call hessian_FB_omp(n,list_size,list,H2)
|
||||
elseif(localization_method == 'pipek') then
|
||||
print*,'Pipek-Mezey'
|
||||
call hessian_PM(n,list_size,list,H)
|
||||
call hessian_PM(n,list_size,list,H2)
|
||||
else
|
||||
print*,'Unknown localization_method, please select boys or pipek'
|
||||
call abort
|
||||
endif
|
||||
|
||||
do i = 1, n
|
||||
print*,i,H(i,i)
|
||||
enddo
|
||||
|
||||
H = H - H2
|
||||
|
||||
nb_error = 0
|
||||
max_elem = 0d0
|
||||
|
||||
do i = 1, n
|
||||
if (dabs(H(i,i)) > threshold) then
|
||||
print*,H(i,i)
|
||||
nb_error = nb_error + 1
|
||||
if (dabs(H(i,i)) > max_elem) then
|
||||
max_elem = H(i,i)
|
||||
endif
|
||||
endif
|
||||
enddo
|
||||
|
||||
print*,'Threshold error', threshold
|
||||
print*, 'Nb error', nb_error
|
||||
print*,'Max error', max_elem
|
||||
|
||||
deallocate(H,H2)
|
||||
|
||||
end
|
||||
#+END_SRC
|
31
src/mo_localization/kick_the_mos.irp.f
Normal file
31
src/mo_localization/kick_the_mos.irp.f
Normal file
@ -0,0 +1,31 @@
|
||||
program kick_the_mos
|
||||
|
||||
!BEGIN_DOC
|
||||
! To do a small rotation of the MOs
|
||||
!END_DOC
|
||||
|
||||
implicit none
|
||||
|
||||
kick_in_mos = .True.
|
||||
TOUCH kick_in_mos
|
||||
|
||||
print*, 'Security mo_class:', security_mo_class
|
||||
|
||||
! The default mo_classes are setted only if the MOs to localize are not specified
|
||||
if (security_mo_class .and. (dim_list_act_orb == mo_num .or. &
|
||||
dim_list_core_orb + dim_list_act_orb == mo_num)) then
|
||||
|
||||
print*, 'WARNING'
|
||||
print*, 'You must set different mo_class with qp set_mo_class'
|
||||
print*, 'If you want to kick all the orbital:'
|
||||
print*, 'qp set Orbital_optimization security_mo_class false'
|
||||
print*, ''
|
||||
print*, 'abort'
|
||||
|
||||
call abort
|
||||
|
||||
endif
|
||||
|
||||
call apply_pre_rotation
|
||||
|
||||
end
|
33
src/mo_localization/kick_the_mos.org
Normal file
33
src/mo_localization/kick_the_mos.org
Normal file
@ -0,0 +1,33 @@
|
||||
#+BEGIN_SRC f90 :comments org :tangle kick_the_mos.irp.f
|
||||
program kick_the_mos
|
||||
|
||||
!BEGIN_DOC
|
||||
! To do a small rotation of the MOs
|
||||
!END_DOC
|
||||
|
||||
implicit none
|
||||
|
||||
kick_in_mos = .True.
|
||||
TOUCH kick_in_mos
|
||||
|
||||
print*, 'Security mo_class:', security_mo_class
|
||||
|
||||
! The default mo_classes are setted only if the MOs to localize are not specified
|
||||
if (security_mo_class .and. (dim_list_act_orb == mo_num .or. &
|
||||
dim_list_core_orb + dim_list_act_orb == mo_num)) then
|
||||
|
||||
print*, 'WARNING'
|
||||
print*, 'You must set different mo_class with qp set_mo_class'
|
||||
print*, 'If you want to kick all the orbital:'
|
||||
print*, 'qp set Orbital_optimization security_mo_class false'
|
||||
print*, ''
|
||||
print*, 'abort'
|
||||
|
||||
call abort
|
||||
|
||||
endif
|
||||
|
||||
call apply_pre_rotation
|
||||
|
||||
end
|
||||
#+END_SRC
|
531
src/mo_localization/localization.irp.f
Normal file
531
src/mo_localization/localization.irp.f
Normal file
@ -0,0 +1,531 @@
|
||||
program localization
|
||||
call run_localization
|
||||
end
|
||||
|
||||
|
||||
|
||||
|
||||
! Variables:
|
||||
! | pre_rot(mo_num, mo_num) | double precision | Matrix for the pre rotation |
|
||||
! | R(mo_num,mo_num) | double precision | Rotation matrix |
|
||||
! | tmp_R(:,:) | double precision | Rottation matrix in a subsapce |
|
||||
! | prev_mos(ao_num, mo_num) | double precision | Previous mo_coef |
|
||||
! | spatial_extent(mo_num) | double precision | Spatial extent of the orbitals |
|
||||
! | criterion | double precision | Localization criterion |
|
||||
! | prev_criterion | double precision | Previous criterion |
|
||||
! | criterion_model | double precision | Estimated next criterion |
|
||||
! | rho | double precision | Ratio to measure the agreement between the model |
|
||||
! | | | and the reality |
|
||||
! | delta | double precision | Radisu of the trust region |
|
||||
! | norm_grad | double precision | Norm of the gradient |
|
||||
! | info | integer | for dsyev from Lapack |
|
||||
! | max_elem | double precision | maximal element in the gradient |
|
||||
! | v_grad(:) | double precision | Gradient |
|
||||
! | H(:,:) | double precision | Hessian (diagonal) |
|
||||
! | e_val(:) | double precision | Eigenvalues of the hessian |
|
||||
! | W(:,:) | double precision | Eigenvectors of the hessian |
|
||||
! | tmp_x(:) | double precision | Step in 1D (in a subaspace) |
|
||||
! | tmp_m_x(:,:) | double precision | Step in 2D (in a subaspace) |
|
||||
! | tmp_list(:) | double precision | List of MOs in a mo_class |
|
||||
! | i,j,k | integer | Indexes in the full MO space |
|
||||
! | tmp_i, tmp_j, tmp_k | integer | Indexes in a subspace |
|
||||
! | l | integer | Index for the mo_class |
|
||||
! | key(:) | integer | Key to sort the eigenvalues of the hessian |
|
||||
! | nb_iter | integer | Number of iterations |
|
||||
! | must_exit | logical | To exit the trust region loop |
|
||||
! | cancel_step | logical | To cancel a step |
|
||||
! | not_*converged | logical | To localize the different mo classes |
|
||||
! | t* | double precision | To measure the time |
|
||||
! | n | integer | mo_num*(mo_num-1)/2, number of orbital parameters |
|
||||
! | tmp_n | integer | dim_subspace*(dim_subspace-1)/2 |
|
||||
! | | | Number of dimension in the subspace |
|
||||
|
||||
! Variables in qp_edit for the localization:
|
||||
! | localization_method |
|
||||
! | localization_max_nb_iter |
|
||||
! | default_mo_class |
|
||||
! | thresh_loc_max_elem_grad |
|
||||
! | kick_in_mos |
|
||||
! | angle_pre_rot |
|
||||
|
||||
! + all the variables for the trust region
|
||||
|
||||
! Cf. qp_edit orbital optimization
|
||||
|
||||
|
||||
subroutine run_localization
|
||||
|
||||
include 'pi.h'
|
||||
|
||||
BEGIN_DOC
|
||||
! Orbital localization
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
|
||||
! Variables
|
||||
double precision, allocatable :: pre_rot(:,:), R(:,:)
|
||||
double precision, allocatable :: prev_mos(:,:), spatial_extent(:), tmp_R(:,:)
|
||||
double precision :: criterion, norm_grad
|
||||
integer :: i,j,k,l,p, tmp_i, tmp_j, tmp_k
|
||||
integer :: info
|
||||
integer :: n, tmp_n, tmp_list_size
|
||||
double precision, allocatable :: v_grad(:), H(:,:), tmp_m_x(:,:), tmp_x(:),W(:,:),e_val(:)
|
||||
double precision :: max_elem, t1, t2, t3, t4, t5, t6
|
||||
integer, allocatable :: tmp_list(:), key(:)
|
||||
double precision :: prev_criterion, rho, delta, criterion_model
|
||||
integer :: nb_iter, nb_sub_iter
|
||||
logical :: not_converged, not_core_converged
|
||||
logical :: not_act_converged, not_inact_converged, not_virt_converged
|
||||
logical :: use_trust_region, must_exit, cancel_step,enforce_step_cancellation
|
||||
|
||||
n = mo_num*(mo_num-1)/2
|
||||
|
||||
! Allocation
|
||||
allocate(spatial_extent(mo_num))
|
||||
allocate(pre_rot(mo_num, mo_num), R(mo_num, mo_num))
|
||||
allocate(prev_mos(ao_num, mo_num))
|
||||
|
||||
! Locality before the localization
|
||||
call compute_spatial_extent(spatial_extent)
|
||||
|
||||
! Choice of the method (with qp_edit)
|
||||
print*,''
|
||||
print*,'Localization method:',localization_method
|
||||
if (localization_method == 'boys') then
|
||||
print*,'Foster-Boys localization'
|
||||
elseif (localization_method == 'pipek') then
|
||||
print*,'Pipek-Mezey localization'
|
||||
else
|
||||
print*,'Unknown localization_method, please select boys or pipek'
|
||||
call abort
|
||||
endif
|
||||
print*,''
|
||||
|
||||
! Localization criterion (FB, PM, ...) for each mo_class
|
||||
print*,'### Before the pre rotation'
|
||||
|
||||
! Debug
|
||||
if (debug_hf) then
|
||||
print*,'HF energy:', HF_energy
|
||||
endif
|
||||
|
||||
do l = 1, 4
|
||||
if (l==1) then ! core
|
||||
tmp_list_size = dim_list_core_orb
|
||||
elseif (l==2) then ! act
|
||||
tmp_list_size = dim_list_act_orb
|
||||
elseif (l==3) then ! inact
|
||||
tmp_list_size = dim_list_inact_orb
|
||||
else ! virt
|
||||
tmp_list_size = dim_list_virt_orb
|
||||
endif
|
||||
|
||||
! Allocation tmp array
|
||||
allocate(tmp_list(tmp_list_size))
|
||||
|
||||
! To give the list of MOs in a mo_class
|
||||
if (l==1) then ! core
|
||||
tmp_list = list_core
|
||||
elseif (l==2) then
|
||||
tmp_list = list_act
|
||||
elseif (l==3) then
|
||||
tmp_list = list_inact
|
||||
else
|
||||
tmp_list = list_virt
|
||||
endif
|
||||
|
||||
if (tmp_list_size >= 2) then
|
||||
call criterion_localization(tmp_list_size, tmp_list,criterion)
|
||||
print*,'Criterion:', criterion, mo_class(tmp_list(1))
|
||||
endif
|
||||
|
||||
deallocate(tmp_list)
|
||||
|
||||
enddo
|
||||
|
||||
! Debug
|
||||
!print*,'HF', HF_energy
|
||||
|
||||
print*, 'Security mo_class:', security_mo_class
|
||||
|
||||
! The default mo_classes are setted only if the MOs to localize are not specified
|
||||
if (security_mo_class .and. (n_act_orb == mo_num .or. &
|
||||
n_core_orb + n_act_orb == mo_num)) then
|
||||
|
||||
print*, 'WARNING'
|
||||
print*, 'You must set different mo_class with qp set_mo_class'
|
||||
print*, 'If you want to localize all the orbitals:'
|
||||
print*, 'qp set Orbital_optimization security_mo_class false'
|
||||
print*, ''
|
||||
print*, 'abort'
|
||||
|
||||
call abort
|
||||
|
||||
endif
|
||||
|
||||
! Loc
|
||||
|
||||
! Pre rotation, to give a little kick in the MOs
|
||||
call apply_pre_rotation()
|
||||
|
||||
! Criterion after the pre rotation
|
||||
! Localization criterion (FB, PM, ...) for each mo_class
|
||||
print*,'### After the pre rotation'
|
||||
|
||||
! Debug
|
||||
if (debug_hf) then
|
||||
touch mo_coef
|
||||
print*,'HF energy:', HF_energy
|
||||
endif
|
||||
|
||||
do l = 1, 4
|
||||
if (l==1) then ! core
|
||||
tmp_list_size = dim_list_core_orb
|
||||
elseif (l==2) then ! act
|
||||
tmp_list_size = dim_list_act_orb
|
||||
elseif (l==3) then ! inact
|
||||
tmp_list_size = dim_list_inact_orb
|
||||
else ! virt
|
||||
tmp_list_size = dim_list_virt_orb
|
||||
endif
|
||||
|
||||
if (tmp_list_size >= 2) then
|
||||
! Allocation tmp array
|
||||
allocate(tmp_list(tmp_list_size))
|
||||
|
||||
! To give the list of MOs in a mo_class
|
||||
if (l==1) then ! core
|
||||
tmp_list = list_core
|
||||
elseif (l==2) then
|
||||
tmp_list = list_act
|
||||
elseif (l==3) then
|
||||
tmp_list = list_inact
|
||||
else
|
||||
tmp_list = list_virt
|
||||
endif
|
||||
|
||||
call criterion_localization(tmp_list_size, tmp_list,criterion)
|
||||
print*,'Criterion:', criterion, trim(mo_class(tmp_list(1)))
|
||||
|
||||
deallocate(tmp_list)
|
||||
endif
|
||||
|
||||
enddo
|
||||
|
||||
! Debug
|
||||
!print*,'HF', HF_energy
|
||||
|
||||
print*,''
|
||||
print*,'========================'
|
||||
print*,' Orbital localization'
|
||||
print*,'========================'
|
||||
print*,''
|
||||
|
||||
!Initialization
|
||||
not_converged = .TRUE.
|
||||
|
||||
! To do the localization only if there is at least 2 MOs
|
||||
if (dim_list_core_orb >= 2) then
|
||||
not_core_converged = .TRUE.
|
||||
else
|
||||
not_core_converged = .FALSE.
|
||||
endif
|
||||
|
||||
if (dim_list_act_orb >= 2) then
|
||||
not_act_converged = .TRUE.
|
||||
else
|
||||
not_act_converged = .FALSE.
|
||||
endif
|
||||
|
||||
if (dim_list_inact_orb >= 2) then
|
||||
not_inact_converged = .TRUE.
|
||||
else
|
||||
not_inact_converged = .FALSE.
|
||||
endif
|
||||
|
||||
if (dim_list_virt_orb >= 2) then
|
||||
not_virt_converged = .TRUE.
|
||||
else
|
||||
not_virt_converged = .FALSE.
|
||||
endif
|
||||
|
||||
! Loop over the mo_classes
|
||||
do l = 1, 4
|
||||
|
||||
if (l==1) then ! core
|
||||
not_converged = not_core_converged
|
||||
tmp_list_size = dim_list_core_orb
|
||||
elseif (l==2) then ! act
|
||||
not_converged = not_act_converged
|
||||
tmp_list_size = dim_list_act_orb
|
||||
elseif (l==3) then ! inact
|
||||
not_converged = not_inact_converged
|
||||
tmp_list_size = dim_list_inact_orb
|
||||
else ! virt
|
||||
not_converged = not_virt_converged
|
||||
tmp_list_size = dim_list_virt_orb
|
||||
endif
|
||||
|
||||
! Next iteration if converged = true
|
||||
if (.not. not_converged) then
|
||||
cycle
|
||||
endif
|
||||
|
||||
! Allocation tmp array
|
||||
allocate(tmp_list(tmp_list_size))
|
||||
|
||||
! To give the list of MOs in a mo_class
|
||||
if (l==1) then ! core
|
||||
tmp_list = list_core
|
||||
elseif (l==2) then
|
||||
tmp_list = list_act
|
||||
elseif (l==3) then
|
||||
tmp_list = list_inact
|
||||
else
|
||||
tmp_list = list_virt
|
||||
endif
|
||||
|
||||
! Display
|
||||
if (not_converged) then
|
||||
print*,''
|
||||
print*,'###', trim(mo_class(tmp_list(1))), 'MOs ###'
|
||||
print*,''
|
||||
endif
|
||||
|
||||
! Size for the 2D -> 1D transformation
|
||||
tmp_n = tmp_list_size * (tmp_list_size - 1)/2
|
||||
|
||||
! Without hessian + trust region
|
||||
if (.not. localization_use_hessian) then
|
||||
|
||||
! Allocation of temporary arrays
|
||||
allocate(v_grad(tmp_n), tmp_m_x(tmp_list_size, tmp_list_size))
|
||||
allocate(tmp_R(tmp_list_size, tmp_list_size), tmp_x(tmp_n))
|
||||
|
||||
! Criterion
|
||||
call criterion_localization(tmp_list_size, tmp_list, prev_criterion)
|
||||
|
||||
! Init
|
||||
nb_iter = 0
|
||||
delta = 1d0
|
||||
|
||||
!Loop
|
||||
do while (not_converged)
|
||||
|
||||
print*,''
|
||||
print*,'***********************'
|
||||
print*,'Iteration', nb_iter
|
||||
print*,'***********************'
|
||||
print*,''
|
||||
|
||||
! Angles of rotation
|
||||
call theta_localization(tmp_list, tmp_list_size, tmp_m_x, max_elem)
|
||||
tmp_m_x = - tmp_m_x * delta
|
||||
|
||||
! Rotation submatrix
|
||||
call rotation_matrix(tmp_m_x, tmp_list_size, tmp_R, tmp_list_size, tmp_list_size, &
|
||||
info, enforce_step_cancellation)
|
||||
|
||||
! To ensure that the rotation matrix is unitary
|
||||
if (enforce_step_cancellation) then
|
||||
print*, 'Step cancellation, too large error in the rotation matrix'
|
||||
delta = delta * 0.5d0
|
||||
cycle
|
||||
else
|
||||
delta = min(delta * 2d0, 1d0)
|
||||
endif
|
||||
|
||||
! Full rotation matrix and application of the rotation
|
||||
call sub_to_full_rotation_matrix(tmp_list_size, tmp_list, tmp_R, R)
|
||||
call apply_mo_rotation(R, prev_mos)
|
||||
|
||||
! Update the needed data
|
||||
call update_data_localization()
|
||||
|
||||
! New criterion
|
||||
call criterion_localization(tmp_list_size, tmp_list, criterion)
|
||||
print*,'Criterion:', trim(mo_class(tmp_list(1))), nb_iter, criterion
|
||||
print*,'Max elem :', max_elem
|
||||
print*,'Delta :', delta
|
||||
|
||||
nb_iter = nb_iter + 1
|
||||
|
||||
! Exit
|
||||
if (nb_iter >= localization_max_nb_iter .or. dabs(max_elem) < thresh_loc_max_elem_grad) then
|
||||
not_converged = .False.
|
||||
endif
|
||||
enddo
|
||||
|
||||
! Save the changes
|
||||
call update_data_localization()
|
||||
call save_mos()
|
||||
TOUCH mo_coef
|
||||
|
||||
! Deallocate
|
||||
deallocate(v_grad, tmp_m_x, tmp_list)
|
||||
deallocate(tmp_R, tmp_x)
|
||||
|
||||
! Trust region
|
||||
else
|
||||
|
||||
! Allocation of temporary arrays
|
||||
allocate(v_grad(tmp_n), H(tmp_n, tmp_n), tmp_m_x(tmp_list_size, tmp_list_size))
|
||||
allocate(tmp_R(tmp_list_size, tmp_list_size))
|
||||
allocate(tmp_x(tmp_n), W(tmp_n,tmp_n), e_val(tmp_n), key(tmp_n))
|
||||
|
||||
! ### Initialization ###
|
||||
delta = 0d0 ! can be deleted (normally)
|
||||
nb_iter = 0 ! Must start at 0 !!!
|
||||
rho = 0.5d0 ! Must be 0.5
|
||||
|
||||
! Compute the criterion before the loop
|
||||
call criterion_localization(tmp_list_size, tmp_list, prev_criterion)
|
||||
|
||||
! Loop until the convergence
|
||||
do while (not_converged)
|
||||
|
||||
print*,''
|
||||
print*,'***********************'
|
||||
print*,'Iteration', nb_iter
|
||||
print*,'***********************'
|
||||
print*,''
|
||||
|
||||
! Gradient
|
||||
call gradient_localization(tmp_n, tmp_list_size, tmp_list, v_grad, max_elem, norm_grad)
|
||||
! Diagonal hessian
|
||||
call hessian_localization(tmp_n, tmp_list_size, tmp_list, H)
|
||||
|
||||
! Diagonalization of the diagonal hessian by hands
|
||||
!call diagonalization_hessian(tmp_n,H,e_val,w)
|
||||
do i = 1, tmp_n
|
||||
e_val(i) = H(i,i)
|
||||
enddo
|
||||
|
||||
! Key list for dsort
|
||||
do i = 1, tmp_n
|
||||
key(i) = i
|
||||
enddo
|
||||
|
||||
! Sort of the eigenvalues
|
||||
call dsort(e_val, key, tmp_n)
|
||||
|
||||
! Eigenvectors
|
||||
W = 0d0
|
||||
do i = 1, tmp_n
|
||||
j = key(i)
|
||||
W(j,i) = 1d0
|
||||
enddo
|
||||
|
||||
! To enter in the loop just after
|
||||
cancel_step = .True.
|
||||
nb_sub_iter = 0
|
||||
|
||||
! Loop to reduce the trust radius until the criterion decreases and rho >= thresh_rho
|
||||
do while (cancel_step)
|
||||
print*,'-----------------------------'
|
||||
print*, mo_class(tmp_list(1))
|
||||
print*,'Iteration:', nb_iter
|
||||
print*,'Sub iteration:', nb_sub_iter
|
||||
print*,'-----------------------------'
|
||||
|
||||
! Hessian,gradient,Criterion -> x
|
||||
call trust_region_step_w_expected_e(tmp_n, H, W, e_val, v_grad, prev_criterion, &
|
||||
rho, nb_iter, delta, criterion_model, tmp_x, must_exit)
|
||||
|
||||
! Internal loop exit condition
|
||||
if (must_exit) then
|
||||
print*,'trust_region_step_w_expected_e sent: Exit'
|
||||
exit
|
||||
endif
|
||||
|
||||
! 1D tmp -> 2D tmp
|
||||
call vec_to_mat_v2(tmp_n, tmp_list_size, tmp_x, tmp_m_x)
|
||||
|
||||
! Rotation submatrix (square matrix tmp_list_size by tmp_list_size)
|
||||
call rotation_matrix(tmp_m_x, tmp_list_size, tmp_R, tmp_list_size, tmp_list_size, &
|
||||
info, enforce_step_cancellation)
|
||||
|
||||
if (enforce_step_cancellation) then
|
||||
print*, 'Step cancellation, too large error in the rotation matrix'
|
||||
rho = 0d0
|
||||
cycle
|
||||
endif
|
||||
|
||||
! tmp_R to R, subspace to full space
|
||||
call sub_to_full_rotation_matrix(tmp_list_size, tmp_list, tmp_R, R)
|
||||
|
||||
! Rotation of the MOs
|
||||
call apply_mo_rotation(R, prev_mos)
|
||||
|
||||
! Update the things related to mo_coef
|
||||
call update_data_localization()
|
||||
|
||||
! Update the criterion
|
||||
call criterion_localization(tmp_list_size, tmp_list, criterion)
|
||||
print*,'Criterion:', trim(mo_class(tmp_list(1))), nb_iter, criterion
|
||||
|
||||
! Criterion -> step accepted or rejected
|
||||
call trust_region_is_step_cancelled(nb_iter, prev_criterion, criterion, &
|
||||
criterion_model, rho, cancel_step)
|
||||
|
||||
! Cancellation of the step, previous MOs
|
||||
if (cancel_step) then
|
||||
mo_coef = prev_mos
|
||||
endif
|
||||
|
||||
nb_sub_iter = nb_sub_iter + 1
|
||||
enddo
|
||||
!call save_mos() !### depend of the time for 1 iteration
|
||||
|
||||
! To exit the external loop if must_exti = .True.
|
||||
if (must_exit) then
|
||||
exit
|
||||
endif
|
||||
|
||||
! Step accepted, nb iteration + 1
|
||||
nb_iter = nb_iter + 1
|
||||
|
||||
! External loop exit conditions
|
||||
if (DABS(max_elem) < thresh_loc_max_elem_grad) then
|
||||
not_converged = .False.
|
||||
endif
|
||||
if (nb_iter > localization_max_nb_iter) then
|
||||
not_converged = .False.
|
||||
endif
|
||||
enddo
|
||||
|
||||
! Deallocation of temporary arrays
|
||||
deallocate(v_grad, H, tmp_m_x, tmp_R, tmp_list, tmp_x, W, e_val, key)
|
||||
|
||||
! Save the MOs
|
||||
call save_mos()
|
||||
TOUCH mo_coef
|
||||
|
||||
! Debug
|
||||
if (debug_hf) then
|
||||
touch mo_coef
|
||||
print*,'HF energy:', HF_energy
|
||||
endif
|
||||
|
||||
endif
|
||||
enddo
|
||||
|
||||
|
||||
TOUCH mo_coef
|
||||
|
||||
! To sort the MOs using the diagonal elements of the Fock matrix
|
||||
if (sort_mos_by_e) then
|
||||
call run_sort_by_fock_energies()
|
||||
endif
|
||||
|
||||
! Debug
|
||||
if (debug_hf) then
|
||||
touch mo_coef
|
||||
print*,'HF energy:', HF_energy
|
||||
endif
|
||||
|
||||
! Locality after the localization
|
||||
call compute_spatial_extent(spatial_extent)
|
||||
|
||||
end
|
2860
src/mo_localization/localization.org
Normal file
2860
src/mo_localization/localization.org
Normal file
File diff suppressed because it is too large
Load Diff
2055
src/mo_localization/localization_sub.irp.f
Normal file
2055
src/mo_localization/localization_sub.irp.f
Normal file
File diff suppressed because it is too large
Load Diff
@ -59,3 +59,45 @@ BEGIN_PROVIDER [ double precision, h_core_ri, (mo_num, mo_num) ]
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ double precision, h_act_ri, (mo_num, mo_num) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Active Hamiltonian with 3-index exchange integrals:
|
||||
!
|
||||
! $\tilde{h}{pq} = h_{pq} - \frac{1}{2}\sum_{k} g(pk,kq)$
|
||||
END_DOC
|
||||
|
||||
integer :: i,j, k
|
||||
integer :: p,q, r
|
||||
! core-core contribution
|
||||
h_act_ri = core_fock_operator
|
||||
!print *,' Bef----hact(1,14)=',h_act_ri(4,14)
|
||||
! act-act contribution
|
||||
do p=1,n_act_orb
|
||||
j=list_act(p)
|
||||
do q=1,n_act_orb
|
||||
i=list_act(q)
|
||||
h_act_ri(i,j) = mo_one_e_integrals(i,j)
|
||||
enddo
|
||||
do r=1,n_act_orb
|
||||
k=list_act(r)
|
||||
do q=1,n_act_orb
|
||||
i=list_act(q)
|
||||
h_act_ri(i,j) = h_act_ri(i,j) - 0.5 * big_array_exchange_integrals(k,i,j)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
! core-act contribution
|
||||
!do p=1,n_act_orb
|
||||
! j=list_core(p)
|
||||
! do k=1,n_core_orb
|
||||
! do q=1,n_act_orb
|
||||
! i=list_act(q)
|
||||
! h_act_ri(i,j) = h_act_ri(i,j) - 0.5 * big_array_exchange_integrals(k,i,j)
|
||||
! enddo
|
||||
! enddo
|
||||
!enddo
|
||||
!print *,' Aft----hact(1,14)=',h_act_ri(4,14), mo_one_e_integrals(4,14)
|
||||
END_PROVIDER
|
||||
|
||||
|
@ -49,6 +49,8 @@ subroutine diag_htilde_three_body_ints_bi_ort(Nint, key_i, hthree)
|
||||
|
||||
if(Ne(1)+Ne(2).ge.3)then
|
||||
!! ! alpha/alpha/beta three-body
|
||||
double precision :: accu
|
||||
accu = 0.d0
|
||||
do i = 1, Ne(1)
|
||||
ii = occ(i,1)
|
||||
do j = i+1, Ne(1)
|
||||
@ -60,11 +62,14 @@ subroutine diag_htilde_three_body_ints_bi_ort(Nint, key_i, hthree)
|
||||
direct_int = three_e_3_idx_direct_bi_ort(mm,jj,ii) ! USES 3-IDX TENSOR
|
||||
exchange_int = three_e_3_idx_exch12_bi_ort(mm,jj,ii) ! USES 3-IDX TENSOR
|
||||
hthree += direct_int - exchange_int
|
||||
accu += direct_int - exchange_int
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
print*,'aab = ',accu
|
||||
|
||||
! beta/beta/alpha three-body
|
||||
accu = 0.d0
|
||||
do i = 1, Ne(2)
|
||||
ii = occ(i,2)
|
||||
do j = i+1, Ne(2)
|
||||
@ -74,11 +79,14 @@ subroutine diag_htilde_three_body_ints_bi_ort(Nint, key_i, hthree)
|
||||
direct_int = three_e_3_idx_direct_bi_ort(mm,jj,ii)
|
||||
exchange_int = three_e_3_idx_exch12_bi_ort(mm,jj,ii)
|
||||
hthree += direct_int - exchange_int
|
||||
accu += direct_int - exchange_int
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
print*,'abb = ',accu
|
||||
|
||||
! alpha/alpha/alpha three-body
|
||||
accu = 0.d0
|
||||
do i = 1, Ne(1)
|
||||
ii = occ(i,1) ! 1
|
||||
do j = i+1, Ne(1)
|
||||
@ -87,11 +95,14 @@ subroutine diag_htilde_three_body_ints_bi_ort(Nint, key_i, hthree)
|
||||
mm = occ(m,1) ! 3
|
||||
! ref = sym_3_e_int_from_6_idx_tensor(mm,jj,ii,mm,jj,ii) USES THE 6 IDX TENSOR
|
||||
hthree += three_e_diag_parrallel_spin(mm,jj,ii) ! USES ONLY 3-IDX TENSORS
|
||||
accu += three_e_diag_parrallel_spin(mm,jj,ii)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
print*,'aaa = ',accu
|
||||
|
||||
! beta/beta/beta three-body
|
||||
accu = 0.d0
|
||||
do i = 1, Ne(2)
|
||||
ii = occ(i,2) ! 1
|
||||
do j = i+1, Ne(2)
|
||||
@ -100,9 +111,11 @@ subroutine diag_htilde_three_body_ints_bi_ort(Nint, key_i, hthree)
|
||||
mm = occ(m,2) ! 3
|
||||
! ref = sym_3_e_int_from_6_idx_tensor(mm,jj,ii,mm,jj,ii) USES THE 6 IDX TENSOR
|
||||
hthree += three_e_diag_parrallel_spin(mm,jj,ii) ! USES ONLY 3-IDX TENSORS
|
||||
accu += three_e_diag_parrallel_spin(mm,jj,ii)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
print*,'bbb = ',accu
|
||||
endif
|
||||
|
||||
end
|
||||
|
@ -2,44 +2,79 @@
|
||||
&BEGIN_PROVIDER [ double precision, leigvec_tc_cisd_sc2_bi_ortho, (N_det,N_states)]
|
||||
&BEGIN_PROVIDER [ double precision, eigval_tc_cisd_sc2_bi_ortho, (N_states)]
|
||||
implicit none
|
||||
integer :: it,n_real,degree,i
|
||||
double precision :: e_before, e_current,thr, hmono,htwoe,hthree
|
||||
integer :: it,n_real,degree,i,istate
|
||||
double precision :: e_before, e_current,thr, hmono,htwoe,hthree,accu
|
||||
double precision, allocatable :: e_corr_dets(:),h0j(:), h_sc2(:,:), dressing_dets(:)
|
||||
double precision, allocatable :: leigvec_tc_bi_orth_tmp(:,:),reigvec_tc_bi_orth_tmp(:,:),eigval_right_tmp(:)
|
||||
allocate(leigvec_tc_bi_orth_tmp(N_det,N_det),reigvec_tc_bi_orth_tmp(N_det,N_det),eigval_right_tmp(N_det))
|
||||
allocate(e_corr_dets(N_det),h0j(N_det),h_sc2(N_det,N_det),dressing_dets(N_det))
|
||||
allocate(H_jj(N_det),vec_tmp(N_det,n_states_diag),eigval_tmp(N_states))
|
||||
dressing_dets = 0.d0
|
||||
do i = 1, N_det
|
||||
call htilde_mu_mat_bi_ortho_tot(psi_det(1,1,i), psi_det(1,1,i), N_int, H_jj(i))
|
||||
call get_excitation_degree(HF_bitmask,psi_det(1,1,i),degree,N_int)
|
||||
if(degree == 1 .or. degree == 2)then
|
||||
call htilde_mu_mat_bi_ortho(HF_bitmask,psi_det(1,1,i),N_int,hmono,htwoe,hthree,h0j(i))
|
||||
endif
|
||||
enddo
|
||||
reigvec_tc_bi_orth_tmp = 0.d0
|
||||
do i = 1, N_det
|
||||
e_corr_dets(i) = reigvec_tc_bi_orth(i,1) * h0j(i)/reigvec_tc_bi_orth(1,1)
|
||||
reigvec_tc_bi_orth_tmp(i,1) = psi_r_coef_bi_ortho(i,1)
|
||||
enddo
|
||||
print*,'Starting from ',eigval_right_tc_bi_orth(1)
|
||||
vec_tmp = 0.d0
|
||||
do istate = 1, N_states
|
||||
vec_tmp(:,istate) = reigvec_tc_bi_orth_tmp(:,istate)
|
||||
enddo
|
||||
do istate = N_states+1, n_states_diag
|
||||
vec_tmp(istate,istate) = 1.d0
|
||||
enddo
|
||||
print*,'Diagonalizing the TC CISD '
|
||||
call davidson_general_diag_dressed_ext_rout_nonsym_b1space(vec_tmp, H_jj, dressing_dets,eigval_tmp, N_det, n_states, n_states_diag, converged, htc_bi_ortho_calc_tdav)
|
||||
do i = 1, N_det
|
||||
e_corr_dets(i) = reigvec_tc_bi_orth_tmp(i,1) * h0j(i)/reigvec_tc_bi_orth_tmp(1,1)
|
||||
enddo
|
||||
E_before = eigval_tmp(1)
|
||||
print*,'Starting from ',E_before
|
||||
|
||||
e_before = 0.d0
|
||||
e_current = 10.d0
|
||||
thr = 1.d-5
|
||||
it = 0
|
||||
dressing_dets = 0.d0
|
||||
double precision, allocatable :: H_jj(:),vec_tmp(:,:),eigval_tmp(:)
|
||||
external htc_bi_ortho_calc_tdav
|
||||
external htcdag_bi_ortho_calc_tdav
|
||||
logical :: converged
|
||||
do while (dabs(E_before-E_current).gt.thr)
|
||||
it += 1
|
||||
E_before = E_current
|
||||
h_sc2 = htilde_matrix_elmt_bi_ortho
|
||||
! h_sc2 = htilde_matrix_elmt_bi_ortho
|
||||
call get_cisd_sc2_dressing(psi_det,e_corr_dets,N_det,dressing_dets)
|
||||
do i = 1, N_det
|
||||
print*,'dressing_dets(i) = ',dressing_dets(i)
|
||||
! print*,'dressing_dets(i) = ',dressing_dets(i)
|
||||
h_sc2(i,i) += dressing_dets(i)
|
||||
enddo
|
||||
call non_hrmt_real_diag(N_det,h_sc2,&
|
||||
leigvec_tc_bi_orth_tmp,reigvec_tc_bi_orth_tmp,&
|
||||
n_real,eigval_right_tmp)
|
||||
print*,'********************'
|
||||
print*,'iteration ',it
|
||||
! call non_hrmt_real_diag(N_det,h_sc2,&
|
||||
! leigvec_tc_bi_orth_tmp,reigvec_tc_bi_orth_tmp,&
|
||||
! n_real,eigval_right_tmp)
|
||||
! print*,'eigval_right_tmp(1)',eigval_right_tmp(1)
|
||||
vec_tmp = 0.d0
|
||||
do istate = 1, N_states
|
||||
vec_tmp(:,istate) = reigvec_tc_bi_orth_tmp(:,istate)
|
||||
enddo
|
||||
do istate = N_states+1, n_states_diag
|
||||
vec_tmp(istate,istate) = 1.d0
|
||||
enddo
|
||||
call davidson_general_diag_dressed_ext_rout_nonsym_b1space(vec_tmp, H_jj, dressing_dets,eigval_tmp, N_det, n_states, n_states_diag, converged, htc_bi_ortho_calc_tdav)
|
||||
print*,'outside Davidson'
|
||||
print*,'eigval_tmp(1) = ',eigval_tmp(1)
|
||||
do i = 1, N_det
|
||||
reigvec_tc_bi_orth_tmp(i,1) = vec_tmp(i,1)
|
||||
e_corr_dets(i) = reigvec_tc_bi_orth_tmp(i,1) * h0j(i)/reigvec_tc_bi_orth_tmp(1,1)
|
||||
enddo
|
||||
E_current = eigval_right_tmp(1)
|
||||
! E_current = eigval_right_tmp(1)
|
||||
E_current = eigval_tmp(1)
|
||||
print*,'it, E(SC)^2 = ',it,E_current
|
||||
enddo
|
||||
eigval_tc_cisd_sc2_bi_ortho(1:N_states) = eigval_right_tmp(1:N_states)
|
||||
|
@ -13,105 +13,44 @@ program test_tc_fock
|
||||
|
||||
!call routine_1
|
||||
!call routine_2
|
||||
call routine_3()
|
||||
! call routine_3()
|
||||
|
||||
call test_3e
|
||||
end
|
||||
|
||||
! ---
|
||||
|
||||
subroutine routine_0
|
||||
subroutine test_3e
|
||||
implicit none
|
||||
use bitmasks ! you need to include the bitmasks_module.f90 features
|
||||
integer :: i,a,j,m,i_ok
|
||||
integer :: exc(0:2,2,2),h1,p1,s1,h2,p2,s2,degree
|
||||
|
||||
integer(bit_kind), allocatable :: det_i(:,:)
|
||||
double precision :: hmono,htwoe,hthree,htilde_ij,phase
|
||||
double precision :: same, op, tot, accu
|
||||
allocate(det_i(N_int,2))
|
||||
s1 = 1
|
||||
accu = 0.d0
|
||||
do i = 1, elec_alpha_num ! occupied
|
||||
do a = elec_alpha_num+1, mo_num ! virtual
|
||||
det_i = ref_bitmask
|
||||
call do_single_excitation(det_i,i,a,s1,i_ok)
|
||||
if(i_ok == -1)then
|
||||
print*,'PB !!'
|
||||
print*,i,a
|
||||
stop
|
||||
endif
|
||||
! call debug_det(det_i,N_int)
|
||||
call get_excitation(ref_bitmask,det_i,exc,degree,phase,N_int)
|
||||
call htilde_mu_mat_bi_ortho(det_i,ref_bitmask,N_int,hmono,htwoe,hthree,htilde_ij)
|
||||
op = fock_3_mat_a_op_sh_bi_orth(a,i)
|
||||
same = fock_3_mat_a_sa_sh_bi_orth(a,i)
|
||||
! same = 0.d0
|
||||
tot = same + op
|
||||
if(dabs(tot - phase*hthree).gt.1.d-10)then
|
||||
print*,'------'
|
||||
print*,i,a,phase
|
||||
print*,'hthree = ',phase*hthree
|
||||
print*,'fock = ',tot
|
||||
print*,'same,op= ',same,op
|
||||
print*,dabs(tot - phase*hthree)
|
||||
stop
|
||||
endif
|
||||
accu += dabs(tot - phase*hthree)
|
||||
enddo
|
||||
enddo
|
||||
double precision :: integral_aaa,integral_aab,integral_abb,integral_bbb,accu
|
||||
double precision :: hmono, htwoe, hthree, htot
|
||||
call htilde_mu_mat_bi_ortho(ref_bitmask, ref_bitmask, N_int, hmono, htwoe, hthree, htot)
|
||||
! call diag_htilde_three_body_ints_bi_ort(N_int, ref_bitmask, hthree)
|
||||
print*,'hmono = ',hmono
|
||||
print*,'htwoe = ',htwoe
|
||||
print*,'hthree= ',hthree
|
||||
print*,'htot = ',htot
|
||||
print*,''
|
||||
print*,''
|
||||
print*,'TC_one= ',TC_HF_one_electron_energy
|
||||
print*,'TC_two= ',TC_HF_two_e_energy
|
||||
print*,'TC_3e = ',diag_three_elem_hf
|
||||
print*,'TC_tot= ',TC_HF_energy
|
||||
print*,''
|
||||
print*,''
|
||||
call give_aaa_contrib(integral_aaa)
|
||||
print*,'integral_aaa = ',integral_aaa
|
||||
call give_aab_contrib(integral_aab)
|
||||
print*,'integral_aab = ',integral_aab
|
||||
call give_abb_contrib(integral_abb)
|
||||
print*,'integral_abb = ',integral_abb
|
||||
call give_bbb_contrib(integral_bbb)
|
||||
print*,'integral_bbb = ',integral_bbb
|
||||
accu = integral_aaa + integral_aab + integral_abb + integral_bbb
|
||||
print*,'accu = ',accu
|
||||
print*,'delta = ',hthree - accu
|
||||
|
||||
end subroutine routine_0
|
||||
|
||||
! ---
|
||||
|
||||
subroutine routine_1
|
||||
|
||||
implicit none
|
||||
integer :: i, a
|
||||
double precision :: accu
|
||||
|
||||
accu = 0.d0
|
||||
do i = 1, mo_num
|
||||
do a = 1, mo_num
|
||||
accu += dabs( fock_3_mat_a_op_sh_bi_orth_old(a,i) - fock_3_mat_a_op_sh_bi_orth(a,i) )
|
||||
!if(dabs( fock_3_mat_a_op_sh_bi_orth_old(a,i) - fock_3_mat_a_op_sh_bi_orth(a,i) ) .gt. 1.d-10)then
|
||||
print*, i, a
|
||||
print*, dabs( fock_3_mat_a_op_sh_bi_orth_old(a,i) - fock_3_mat_a_op_sh_bi_orth(a,i) ) &
|
||||
, fock_3_mat_a_op_sh_bi_orth_old(a,i), fock_3_mat_a_op_sh_bi_orth(a,i)
|
||||
!endif
|
||||
enddo
|
||||
enddo
|
||||
|
||||
print *, 'accu = ', accu
|
||||
|
||||
end subroutine routine_1
|
||||
|
||||
! ---
|
||||
|
||||
subroutine routine_2
|
||||
|
||||
implicit none
|
||||
integer :: i, a
|
||||
double precision :: accu
|
||||
|
||||
accu = 0.d0
|
||||
do i = 1, mo_num
|
||||
do a = 1, mo_num
|
||||
accu += dabs( fock_3_mat_a_sa_sh_bi_orth_old(a,i) - fock_3_mat_a_sa_sh_bi_orth(a,i) )
|
||||
!if(dabs( fock_3_mat_a_sa_sh_bi_orth_old(a,i) - fock_3_mat_a_sa_sh_bi_orth(a,i) ) .gt. 1.d-10)then
|
||||
print*, i, a
|
||||
print*, dabs( fock_3_mat_a_sa_sh_bi_orth_old(a,i) - fock_3_mat_a_sa_sh_bi_orth(a,i) ) &
|
||||
, fock_3_mat_a_sa_sh_bi_orth_old(a,i), fock_3_mat_a_sa_sh_bi_orth(a,i)
|
||||
!endif
|
||||
enddo
|
||||
enddo
|
||||
|
||||
print *, 'accu = ', accu
|
||||
|
||||
end subroutine routine_2
|
||||
|
||||
! ---
|
||||
end
|
||||
|
||||
subroutine routine_3()
|
||||
|
||||
|
@ -74,39 +74,46 @@ BEGIN_PROVIDER [double precision, diag_three_elem_hf]
|
||||
implicit none
|
||||
integer :: i,j,k,ipoint,mm
|
||||
double precision :: contrib,weight,four_third,one_third,two_third,exchange_int_231
|
||||
if(.not.bi_ortho)then
|
||||
if(three_body_h_tc)then
|
||||
one_third = 1.d0/3.d0
|
||||
two_third = 2.d0/3.d0
|
||||
four_third = 4.d0/3.d0
|
||||
print*,'providing diag_three_elem_hf'
|
||||
if(.not.three_body_h_tc)then
|
||||
diag_three_elem_hf = 0.d0
|
||||
do i = 1, elec_beta_num
|
||||
do j = 1, elec_beta_num
|
||||
do k = 1, elec_beta_num
|
||||
call give_integrals_3_body(k,j,i,j,i,k,exchange_int_231)
|
||||
diag_three_elem_hf += two_third * exchange_int_231
|
||||
else
|
||||
if(.not.bi_ortho)then
|
||||
one_third = 1.d0/3.d0
|
||||
two_third = 2.d0/3.d0
|
||||
four_third = 4.d0/3.d0
|
||||
diag_three_elem_hf = 0.d0
|
||||
do i = 1, elec_beta_num
|
||||
do j = 1, elec_beta_num
|
||||
do k = 1, elec_beta_num
|
||||
call give_integrals_3_body(k,j,i,j,i,k,exchange_int_231)
|
||||
diag_three_elem_hf += two_third * exchange_int_231
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
do mm = 1, 3
|
||||
do ipoint = 1, n_points_final_grid
|
||||
weight = final_weight_at_r_vector(ipoint)
|
||||
contrib = 3.d0 * fock_3_w_kk_sum(ipoint,mm) * fock_3_rho_beta(ipoint) * fock_3_w_kk_sum(ipoint,mm) &
|
||||
-2.d0 * fock_3_w_kl_mo_k_mo_l(ipoint,mm) * fock_3_w_kk_sum(ipoint,mm) &
|
||||
-1.d0 * fock_3_rho_beta(ipoint) * fock_3_w_kl_w_kl(ipoint,mm)
|
||||
contrib *= four_third
|
||||
contrib += -two_third * fock_3_rho_beta(ipoint) * fock_3_w_kl_w_kl(ipoint,mm) &
|
||||
- four_third * fock_3_w_kk_sum(ipoint,mm) * fock_3_w_kl_mo_k_mo_l(ipoint,mm)
|
||||
diag_three_elem_hf += weight * contrib
|
||||
do mm = 1, 3
|
||||
do ipoint = 1, n_points_final_grid
|
||||
weight = final_weight_at_r_vector(ipoint)
|
||||
contrib = 3.d0 * fock_3_w_kk_sum(ipoint,mm) * fock_3_rho_beta(ipoint) * fock_3_w_kk_sum(ipoint,mm) &
|
||||
-2.d0 * fock_3_w_kl_mo_k_mo_l(ipoint,mm) * fock_3_w_kk_sum(ipoint,mm) &
|
||||
-1.d0 * fock_3_rho_beta(ipoint) * fock_3_w_kl_w_kl(ipoint,mm)
|
||||
contrib *= four_third
|
||||
contrib += -two_third * fock_3_rho_beta(ipoint) * fock_3_w_kl_w_kl(ipoint,mm) &
|
||||
- four_third * fock_3_w_kk_sum(ipoint,mm) * fock_3_w_kl_mo_k_mo_l(ipoint,mm)
|
||||
diag_three_elem_hf += weight * contrib
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
diag_three_elem_hf = - diag_three_elem_hf
|
||||
else
|
||||
diag_three_elem_hf = 0.D0
|
||||
diag_three_elem_hf = - diag_three_elem_hf
|
||||
else
|
||||
double precision :: integral_aaa,hthree, integral_aab,integral_abb,integral_bbb
|
||||
provide mo_l_coef mo_r_coef
|
||||
call give_aaa_contrib(integral_aaa)
|
||||
call give_aab_contrib(integral_aab)
|
||||
call give_abb_contrib(integral_abb)
|
||||
call give_bbb_contrib(integral_bbb)
|
||||
diag_three_elem_hf = integral_aaa + integral_aab + integral_abb + integral_bbb
|
||||
endif
|
||||
else
|
||||
diag_three_elem_hf = 0.D0
|
||||
endif
|
||||
endif
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
|
@ -1,160 +1,178 @@
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [ double precision, fock_3_mat_a_op_sh_bi_orth_old, (mo_num, mo_num)]
|
||||
|
||||
BEGIN_DOC
|
||||
! Fock matrix for opposite spin contribution for bi ortho
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
integer :: j, m, i, a
|
||||
double precision :: direct_int, exch_int
|
||||
|
||||
fock_3_mat_a_op_sh_bi_orth_old = 0.d0
|
||||
|
||||
do i = 1, mo_num ! alpha single excitation
|
||||
do a = 1, mo_num ! alpha single excitation
|
||||
|
||||
! ---
|
||||
|
||||
do j = 1, elec_beta_num
|
||||
do m = 1, elec_beta_num
|
||||
call give_integrals_3_body_bi_ort(a, m, j, i, m, j, direct_int)
|
||||
fock_3_mat_a_op_sh_bi_orth_old(a,i) += 1.d0 * direct_int
|
||||
call give_integrals_3_body_bi_ort(a, m, j, j, m, i, exch_int)
|
||||
fock_3_mat_a_op_sh_bi_orth_old(a,i) += -1.d0 * exch_int
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! ---
|
||||
|
||||
do j = 1, elec_beta_num ! beta
|
||||
do m = j+1, elec_beta_num ! beta
|
||||
call give_integrals_3_body_bi_ort(a, m, j, i, m, j, direct_int)
|
||||
fock_3_mat_a_op_sh_bi_orth_old(a,i) += 1.d0 * direct_int
|
||||
call give_integrals_3_body_bi_ort(a, m, j, i, j, m, exch_int)
|
||||
fock_3_mat_a_op_sh_bi_orth_old(a,i) += -1.d0 * exch_int
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [ double precision, fock_a_abb_3e_bi_orth_old, (mo_num, mo_num)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! fock_a_abb_3e_bi_orth_old(a,i) = bi-ortho 3-e Fock matrix for alpha electrons from alpha,beta,beta contribution
|
||||
END_DOC
|
||||
fock_a_abb_3e_bi_orth_old = 0.d0
|
||||
integer :: i,a,j,k
|
||||
double precision :: direct_int, exch_23_int
|
||||
do i = 1, mo_num
|
||||
do a = 1, mo_num
|
||||
|
||||
do j = 1, elec_beta_num
|
||||
do k = j+1, elec_beta_num
|
||||
! see contrib_3e_soo
|
||||
call give_integrals_3_body_bi_ort(a, k, j, i, k, j, direct_int) ! < a k j | i k j >
|
||||
call give_integrals_3_body_bi_ort(a, k, j, i, j, k, exch_23_int)! < a k j | i j k > : E_23
|
||||
fock_a_abb_3e_bi_orth_old(a,i) += direct_int - exch_23_int
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
fock_3_mat_a_op_sh_bi_orth_old = - fock_3_mat_a_op_sh_bi_orth_old
|
||||
|
||||
enddo
|
||||
enddo
|
||||
fock_a_abb_3e_bi_orth_old = - fock_a_abb_3e_bi_orth_old
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [ double precision, fock_3_mat_a_op_sh_bi_orth, (mo_num, mo_num)]
|
||||
|
||||
BEGIN_DOC
|
||||
! Fock matrix for opposite spin contribution for bi ortho
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
integer :: i, a
|
||||
double precision :: integral1, integral2, integral3
|
||||
|
||||
fock_3_mat_a_op_sh_bi_orth = 0.d0
|
||||
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (i, a, integral1, integral2, integral3) &
|
||||
!$OMP SHARED (mo_num, fock_3_mat_a_op_sh_bi_orth)
|
||||
!$OMP DO SCHEDULE (dynamic)
|
||||
do i = 1, mo_num ! alpha single excitation
|
||||
do a = 1, mo_num ! alpha single excitation
|
||||
|
||||
call direct_term_imj_bi_ortho(a, i, integral1)
|
||||
call exch_term_jmi_bi_ortho (a, i, integral2)
|
||||
call exch_term_ijm_bi_ortho (a, i, integral3)
|
||||
|
||||
fock_3_mat_a_op_sh_bi_orth(a,i) += 1.5d0 * integral1 - integral2 - 0.5d0 * integral3
|
||||
BEGIN_PROVIDER [ double precision, fock_a_aba_3e_bi_orth_old, (mo_num, mo_num)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! fock_a_aba_3e_bi_orth_old(a,i) = bi-ortho 3-e Fock matrix for alpha electrons from alpha,alpha,beta contribution
|
||||
END_DOC
|
||||
fock_a_aba_3e_bi_orth_old = 0.d0
|
||||
integer :: i,a,j,k
|
||||
double precision :: direct_int, exch_13_int
|
||||
do i = 1, mo_num
|
||||
do a = 1, mo_num
|
||||
|
||||
do j = 1, elec_alpha_num ! a
|
||||
do k = 1, elec_beta_num ! b
|
||||
! a b a a b a
|
||||
call give_integrals_3_body_bi_ort(a, k, j, i, k, j, direct_int )! < a k j | i k j >
|
||||
call give_integrals_3_body_bi_ort(a, k, j, j, k, i, exch_13_int)! < a k j | j k i > : E_13
|
||||
fock_a_aba_3e_bi_orth_old(a,i) += direct_int - exch_13_int
|
||||
enddo
|
||||
enddo
|
||||
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
fock_3_mat_a_op_sh_bi_orth = - fock_3_mat_a_op_sh_bi_orth
|
||||
|
||||
enddo
|
||||
fock_a_aba_3e_bi_orth_old = - fock_a_aba_3e_bi_orth_old
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [ double precision, fock_3_mat_a_sa_sh_bi_orth_old, (mo_num, mo_num)]
|
||||
|
||||
BEGIN_DOC
|
||||
! Fock matrix for same spin contribution for bi ortho
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
integer :: j, m, i, a
|
||||
double precision :: direct_int, cyclic_1, cyclic_2, non_cyclic_1, non_cyclic_2, non_cyclic_3
|
||||
|
||||
fock_3_mat_a_sa_sh_bi_orth_old = 0.d0
|
||||
|
||||
do i = 1, mo_num
|
||||
do a = 1, mo_num
|
||||
do j = 1, elec_beta_num
|
||||
do m = j+1, elec_beta_num
|
||||
|
||||
call give_integrals_3_body_bi_ort(a, m, j, i, m, j, direct_int)
|
||||
call give_integrals_3_body_bi_ort(a, m, j, j, i, m, cyclic_1)
|
||||
call give_integrals_3_body_bi_ort(a, m, j, m, j, i, cyclic_2)
|
||||
fock_3_mat_a_sa_sh_bi_orth_old(a,i) += direct_int + cyclic_1 + cyclic_2
|
||||
|
||||
call give_integrals_3_body_bi_ort(a, m, j, j, m, i, non_cyclic_1)
|
||||
call give_integrals_3_body_bi_ort(a, m, j, i, j, m, non_cyclic_2)
|
||||
call give_integrals_3_body_bi_ort(a, m, j, m, i, j, non_cyclic_3)
|
||||
fock_3_mat_a_sa_sh_bi_orth_old(a,i) += -1.d0 * (non_cyclic_1 + non_cyclic_2 + non_cyclic_3)
|
||||
|
||||
enddo
|
||||
enddo
|
||||
BEGIN_PROVIDER [ double precision, fock_a_aaa_3e_bi_orth_old, (mo_num, mo_num)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! fock_a_aaa_3e_bi_orth_old(a,i) = bi-ortho 3-e Fock matrix for alpha electrons from alpha,alpha,alpha contribution
|
||||
END_DOC
|
||||
fock_a_aaa_3e_bi_orth_old = 0.d0
|
||||
integer :: i,a,j,k
|
||||
double precision :: direct_int, exch_13_int, exch_23_int, exch_12_int, c_3_int, c_minus_3_int
|
||||
do i = 1, mo_num
|
||||
do a = 1, mo_num
|
||||
|
||||
do j = 1, elec_alpha_num
|
||||
do k = j+1, elec_alpha_num
|
||||
! positive terms :: cycle contrib
|
||||
call give_integrals_3_body_bi_ort(a, k, j, i, k, j, direct_int )!!! < a k j | i k j >
|
||||
call give_integrals_3_body_bi_ort(a, k, j, j, i, k, c_3_int) ! < a k j | j i k >
|
||||
call give_integrals_3_body_bi_ort(a, k, j, k, j, i, c_minus_3_int)! < a k j | k j i >
|
||||
fock_a_aaa_3e_bi_orth_old(a,i) += direct_int + c_3_int + c_minus_3_int
|
||||
! negative terms :: exchange contrib
|
||||
call give_integrals_3_body_bi_ort(a, k, j, j, k, i, exch_13_int)!!! < a k j | j k i > : E_13
|
||||
call give_integrals_3_body_bi_ort(a, k, j, i, j, k, exch_23_int)!!! < a k j | i j k > : E_23
|
||||
call give_integrals_3_body_bi_ort(a, k, j, k, i, j, exch_12_int)!!! < a k j | k i j > : E_12
|
||||
fock_a_aaa_3e_bi_orth_old(a,i) += - exch_13_int - exch_23_int - exch_12_int
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
fock_3_mat_a_sa_sh_bi_orth_old = -fock_3_mat_a_sa_sh_bi_orth_old
|
||||
enddo
|
||||
enddo
|
||||
fock_a_aaa_3e_bi_orth_old = - fock_a_aaa_3e_bi_orth_old
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [double precision, fock_a_tot_3e_bi_orth_old, (mo_num, mo_num)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! fock_a_tot_3e_bi_orth_old = bi-ortho 3-e Fock matrix for alpha electrons from all possible spin contributions
|
||||
END_DOC
|
||||
fock_a_tot_3e_bi_orth_old = fock_a_abb_3e_bi_orth_old + fock_a_aba_3e_bi_orth_old + fock_a_aaa_3e_bi_orth_old
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [ double precision, fock_3_mat_a_sa_sh_bi_orth, (mo_num, mo_num)]
|
||||
|
||||
BEGIN_DOC
|
||||
! Fock matrix for same spin contribution for bi ortho
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
integer :: j, m, i, a
|
||||
double precision :: integral1, integral2, integral3, integral4
|
||||
|
||||
fock_3_mat_a_sa_sh_bi_orth = 0.d0
|
||||
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (i, a, integral1, integral2, integral3, integral4) &
|
||||
!$OMP SHARED (mo_num, fock_3_mat_a_sa_sh_bi_orth)
|
||||
!$OMP DO SCHEDULE (dynamic)
|
||||
do i = 1, mo_num
|
||||
do a = 1, mo_num
|
||||
call direct_term_imj_bi_ortho(a, i, integral1)
|
||||
call cyclic_term_jim_bi_ortho(a, i, integral2)
|
||||
call exch_term_jmi_bi_ortho (a, i, integral3)
|
||||
call exch_term_ijm_bi_ortho (a, i, integral4)
|
||||
fock_3_mat_a_sa_sh_bi_orth(a,i) += 0.5d0 * (integral1 - integral4) + integral2 - integral3
|
||||
BEGIN_PROVIDER [ double precision, fock_b_baa_3e_bi_orth_old, (mo_num, mo_num)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! fock_b_baa_3e_bi_orth_old(a,i) = bi-ortho 3-e Fock matrix for beta electrons from beta,alpha,alpha contribution
|
||||
END_DOC
|
||||
fock_b_baa_3e_bi_orth_old = 0.d0
|
||||
integer :: i,a,j,k
|
||||
double precision :: direct_int, exch_23_int
|
||||
do i = 1, mo_num
|
||||
do a = 1, mo_num
|
||||
|
||||
do j = 1, elec_alpha_num
|
||||
do k = j+1, elec_alpha_num
|
||||
call give_integrals_3_body_bi_ort(a, k, j, i, k, j, direct_int) ! < a k j | i k j >
|
||||
call give_integrals_3_body_bi_ort(a, k, j, i, j, k, exch_23_int)! < a k j | i j k > : E_23
|
||||
fock_b_baa_3e_bi_orth_old(a,i) += direct_int - exch_23_int
|
||||
enddo
|
||||
enddo
|
||||
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
fock_3_mat_a_sa_sh_bi_orth = -fock_3_mat_a_sa_sh_bi_orth
|
||||
|
||||
enddo
|
||||
fock_b_baa_3e_bi_orth_old = - fock_b_baa_3e_bi_orth_old
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
BEGIN_PROVIDER [ double precision, fock_b_bab_3e_bi_orth_old, (mo_num, mo_num)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! fock_b_bab_3e_bi_orth_old(a,i) = bi-ortho 3-e Fock matrix for beta electrons from beta,alpha,beta contribution
|
||||
END_DOC
|
||||
fock_b_bab_3e_bi_orth_old = 0.d0
|
||||
integer :: i,a,j,k
|
||||
double precision :: direct_int, exch_13_int
|
||||
do i = 1, mo_num
|
||||
do a = 1, mo_num
|
||||
|
||||
do j = 1, elec_beta_num
|
||||
do k = 1, elec_alpha_num
|
||||
! b a b b a b
|
||||
call give_integrals_3_body_bi_ort(a, k, j, i, k, j, direct_int) ! < a k j | i k j >
|
||||
call give_integrals_3_body_bi_ort(a, k, j, j, k, i, exch_13_int)! < a k j | j k i > : E_13
|
||||
fock_b_bab_3e_bi_orth_old(a,i) += direct_int - exch_13_int
|
||||
enddo
|
||||
enddo
|
||||
|
||||
enddo
|
||||
enddo
|
||||
fock_b_bab_3e_bi_orth_old = - fock_b_bab_3e_bi_orth_old
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ double precision, fock_b_bbb_3e_bi_orth_old, (mo_num, mo_num)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! fock_b_bbb_3e_bi_orth_old(a,i) = bi-ortho 3-e Fock matrix for alpha electrons from alpha,alpha,alpha contribution
|
||||
END_DOC
|
||||
fock_b_bbb_3e_bi_orth_old = 0.d0
|
||||
integer :: i,a,j,k
|
||||
double precision :: direct_int, exch_13_int, exch_23_int, exch_12_int, c_3_int, c_minus_3_int
|
||||
do i = 1, mo_num
|
||||
do a = 1, mo_num
|
||||
|
||||
do j = 1, elec_beta_num
|
||||
do k = j+1, elec_beta_num
|
||||
! positive terms :: cycle contrib
|
||||
call give_integrals_3_body_bi_ort(a, k, j, i, k, j, direct_int )!!! < a k j | i k j >
|
||||
call give_integrals_3_body_bi_ort(a, k, j, j, i, k, c_3_int) ! < a k j | j i k >
|
||||
call give_integrals_3_body_bi_ort(a, k, j, k, j, i, c_minus_3_int)! < a k j | k j i >
|
||||
fock_b_bbb_3e_bi_orth_old(a,i) += direct_int + c_3_int + c_minus_3_int
|
||||
! negative terms :: exchange contrib
|
||||
call give_integrals_3_body_bi_ort(a, k, j, j, k, i, exch_13_int)!!! < a k j | j k i > : E_13
|
||||
call give_integrals_3_body_bi_ort(a, k, j, i, j, k, exch_23_int)!!! < a k j | i j k > : E_23
|
||||
call give_integrals_3_body_bi_ort(a, k, j, k, i, j, exch_12_int)!!! < a k j | k i j > : E_12
|
||||
fock_b_bbb_3e_bi_orth_old(a,i) += - exch_13_int - exch_23_int - exch_12_int
|
||||
enddo
|
||||
enddo
|
||||
|
||||
enddo
|
||||
enddo
|
||||
fock_b_bbb_3e_bi_orth_old = - fock_b_bbb_3e_bi_orth_old
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ double precision, fock_b_tot_3e_bi_orth_old, (mo_num, mo_num)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! fock_b_tot_3e_bi_orth_old = bi-ortho 3-e Fock matrix for alpha electrons from all possible spin contributions
|
||||
END_DOC
|
||||
fock_b_tot_3e_bi_orth_old = fock_b_bbb_3e_bi_orth_old + fock_b_bab_3e_bi_orth_old + fock_b_baa_3e_bi_orth_old
|
||||
|
||||
END_PROVIDER
|
||||
|
@ -1,177 +0,0 @@
|
||||
BEGIN_PROVIDER [ double precision, fock_a_abb_3e_bi_orth, (mo_num, mo_num)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! fock_a_abb_3e_bi_orth(a,i) = bi-ortho 3-e Fock matrix for alpha electrons from alpha,beta,beta contribution
|
||||
END_DOC
|
||||
fock_a_abb_3e_bi_orth = 0.d0
|
||||
integer :: i,a,j,k
|
||||
double precision :: direct_int, exch_23_int
|
||||
do i = 1, mo_num
|
||||
do a = 1, mo_num
|
||||
|
||||
do j = 1, elec_beta_num
|
||||
do k = j+1, elec_beta_num
|
||||
call give_integrals_3_body_bi_ort(a, k, j, i, k, j, direct_int) ! < a k j | i k j >
|
||||
call give_integrals_3_body_bi_ort(a, k, j, i, j, k, exch_23_int)! < a k j | i j k > : E_23
|
||||
fock_a_abb_3e_bi_orth(a,i) += direct_int - exch_23_int
|
||||
enddo
|
||||
enddo
|
||||
|
||||
enddo
|
||||
enddo
|
||||
fock_a_abb_3e_bi_orth = - fock_a_abb_3e_bi_orth
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ double precision, fock_a_aba_3e_bi_orth, (mo_num, mo_num)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! fock_a_aba_3e_bi_orth(a,i) = bi-ortho 3-e Fock matrix for alpha electrons from alpha,alpha,beta contribution
|
||||
END_DOC
|
||||
fock_a_aba_3e_bi_orth = 0.d0
|
||||
integer :: i,a,j,k
|
||||
double precision :: direct_int, exch_13_int
|
||||
do i = 1, mo_num
|
||||
do a = 1, mo_num
|
||||
|
||||
do j = 1, elec_alpha_num ! a
|
||||
do k = 1, elec_beta_num ! b
|
||||
! a b a a b a
|
||||
call give_integrals_3_body_bi_ort(a, k, j, i, k, j, direct_int )! < a k j | i k j >
|
||||
call give_integrals_3_body_bi_ort(a, k, j, j, k, i, exch_13_int)! < a k j | j k i > : E_13
|
||||
fock_a_aba_3e_bi_orth(a,i) += direct_int - exch_13_int
|
||||
enddo
|
||||
enddo
|
||||
|
||||
enddo
|
||||
enddo
|
||||
fock_a_aba_3e_bi_orth = - fock_a_aba_3e_bi_orth
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ double precision, fock_a_aaa_3e_bi_orth, (mo_num, mo_num)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! fock_a_aaa_3e_bi_orth(a,i) = bi-ortho 3-e Fock matrix for alpha electrons from alpha,alpha,alpha contribution
|
||||
END_DOC
|
||||
fock_a_aaa_3e_bi_orth = 0.d0
|
||||
integer :: i,a,j,k
|
||||
double precision :: direct_int, exch_13_int, exch_23_int, exch_12_int, c_3_int, c_minus_3_int
|
||||
do i = 1, mo_num
|
||||
do a = 1, mo_num
|
||||
|
||||
do j = 1, elec_alpha_num
|
||||
do k = j+1, elec_alpha_num
|
||||
! positive terms :: cycle contrib
|
||||
call give_integrals_3_body_bi_ort(a, k, j, i, k, j, direct_int )!!! < a k j | i k j >
|
||||
call give_integrals_3_body_bi_ort(a, k, j, j, i, k, c_3_int) ! < a k j | j i k >
|
||||
call give_integrals_3_body_bi_ort(a, k, j, k, j, i, c_minus_3_int)! < a k j | k j i >
|
||||
fock_a_aaa_3e_bi_orth(a,i) += direct_int + c_3_int + c_minus_3_int
|
||||
! negative terms :: exchange contrib
|
||||
call give_integrals_3_body_bi_ort(a, k, j, j, k, i, exch_13_int)!!! < a k j | j k i > : E_13
|
||||
call give_integrals_3_body_bi_ort(a, k, j, i, j, k, exch_23_int)!!! < a k j | i j k > : E_23
|
||||
call give_integrals_3_body_bi_ort(a, k, j, k, i, j, exch_12_int)!!! < a k j | k i j > : E_12
|
||||
fock_a_aaa_3e_bi_orth(a,i) += - exch_13_int - exch_23_int - exch_12_int
|
||||
enddo
|
||||
enddo
|
||||
|
||||
enddo
|
||||
enddo
|
||||
fock_a_aaa_3e_bi_orth = - fock_a_aaa_3e_bi_orth
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [double precision, fock_a_tot_3e_bi_orth, (mo_num, mo_num)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! fock_a_tot_3e_bi_orth = bi-ortho 3-e Fock matrix for alpha electrons from all possible spin contributions
|
||||
END_DOC
|
||||
fock_a_tot_3e_bi_orth = fock_a_abb_3e_bi_orth + fock_a_aba_3e_bi_orth + fock_a_aaa_3e_bi_orth
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ double precision, fock_b_baa_3e_bi_orth, (mo_num, mo_num)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! fock_b_baa_3e_bi_orth(a,i) = bi-ortho 3-e Fock matrix for beta electrons from beta,alpha,alpha contribution
|
||||
END_DOC
|
||||
fock_b_baa_3e_bi_orth = 0.d0
|
||||
integer :: i,a,j,k
|
||||
double precision :: direct_int, exch_23_int
|
||||
do i = 1, mo_num
|
||||
do a = 1, mo_num
|
||||
|
||||
do j = 1, elec_alpha_num
|
||||
do k = j+1, elec_alpha_num
|
||||
call give_integrals_3_body_bi_ort(a, k, j, i, k, j, direct_int) ! < a k j | i k j >
|
||||
call give_integrals_3_body_bi_ort(a, k, j, i, j, k, exch_23_int)! < a k j | i j k > : E_23
|
||||
fock_b_baa_3e_bi_orth(a,i) += direct_int - exch_23_int
|
||||
enddo
|
||||
enddo
|
||||
|
||||
enddo
|
||||
enddo
|
||||
fock_b_baa_3e_bi_orth = - fock_b_baa_3e_bi_orth
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ double precision, fock_b_bab_3e_bi_orth, (mo_num, mo_num)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! fock_b_bab_3e_bi_orth(a,i) = bi-ortho 3-e Fock matrix for beta electrons from beta,alpha,beta contribution
|
||||
END_DOC
|
||||
fock_b_bab_3e_bi_orth = 0.d0
|
||||
integer :: i,a,j,k
|
||||
double precision :: direct_int, exch_13_int
|
||||
do i = 1, mo_num
|
||||
do a = 1, mo_num
|
||||
|
||||
do j = 1, elec_beta_num
|
||||
do k = 1, elec_alpha_num
|
||||
! b a b b a b
|
||||
call give_integrals_3_body_bi_ort(a, k, j, i, k, j, direct_int) ! < a k j | i k j >
|
||||
call give_integrals_3_body_bi_ort(a, k, j, j, k, i, exch_13_int)! < a k j | j k i > : E_13
|
||||
fock_b_bab_3e_bi_orth(a,i) += direct_int - exch_13_int
|
||||
enddo
|
||||
enddo
|
||||
|
||||
enddo
|
||||
enddo
|
||||
fock_b_bab_3e_bi_orth = - fock_b_bab_3e_bi_orth
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ double precision, fock_b_bbb_3e_bi_orth, (mo_num, mo_num)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! fock_b_bbb_3e_bi_orth(a,i) = bi-ortho 3-e Fock matrix for alpha electrons from alpha,alpha,alpha contribution
|
||||
END_DOC
|
||||
fock_b_bbb_3e_bi_orth = 0.d0
|
||||
integer :: i,a,j,k
|
||||
double precision :: direct_int, exch_13_int, exch_23_int, exch_12_int, c_3_int, c_minus_3_int
|
||||
do i = 1, mo_num
|
||||
do a = 1, mo_num
|
||||
|
||||
do j = 1, elec_beta_num
|
||||
do k = j+1, elec_beta_num
|
||||
! positive terms :: cycle contrib
|
||||
call give_integrals_3_body_bi_ort(a, k, j, i, k, j, direct_int )!!! < a k j | i k j >
|
||||
call give_integrals_3_body_bi_ort(a, k, j, j, i, k, c_3_int) ! < a k j | j i k >
|
||||
call give_integrals_3_body_bi_ort(a, k, j, k, j, i, c_minus_3_int)! < a k j | k j i >
|
||||
fock_b_bbb_3e_bi_orth(a,i) += direct_int + c_3_int + c_minus_3_int
|
||||
! negative terms :: exchange contrib
|
||||
call give_integrals_3_body_bi_ort(a, k, j, j, k, i, exch_13_int)!!! < a k j | j k i > : E_13
|
||||
call give_integrals_3_body_bi_ort(a, k, j, i, j, k, exch_23_int)!!! < a k j | i j k > : E_23
|
||||
call give_integrals_3_body_bi_ort(a, k, j, k, i, j, exch_12_int)!!! < a k j | k i j > : E_12
|
||||
fock_b_bbb_3e_bi_orth(a,i) += - exch_13_int - exch_23_int - exch_12_int
|
||||
enddo
|
||||
enddo
|
||||
|
||||
enddo
|
||||
enddo
|
||||
fock_b_bbb_3e_bi_orth = - fock_b_bbb_3e_bi_orth
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ double precision, fock_b_tot_3e_bi_orth, (mo_num, mo_num)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! fock_b_tot_3e_bi_orth = bi-ortho 3-e Fock matrix for alpha electrons from all possible spin contributions
|
||||
END_DOC
|
||||
fock_b_tot_3e_bi_orth = fock_b_bbb_3e_bi_orth + fock_b_bab_3e_bi_orth + fock_b_baa_3e_bi_orth
|
||||
|
||||
END_PROVIDER
|
202
src/tc_scf/fock_three_bi_ortho_new_new.irp.f
Normal file
202
src/tc_scf/fock_three_bi_ortho_new_new.irp.f
Normal file
@ -0,0 +1,202 @@
|
||||
|
||||
BEGIN_PROVIDER [double precision, fock_a_tot_3e_bi_orth, (mo_num, mo_num)]
|
||||
implicit none
|
||||
integer :: i,a,j,k
|
||||
double precision :: contrib_sss, contrib_sos, contrib_soo,contrib
|
||||
fock_a_tot_3e_bi_orth = 0.d0
|
||||
do i = 1, mo_num
|
||||
do a = 1, mo_num
|
||||
fock_a_tot_3e_bi_orth(a,i) += fock_cs_3e_bi_orth(a,i)
|
||||
fock_a_tot_3e_bi_orth(a,i) += fock_a_tmp1_bi_ortho(a,i)
|
||||
fock_a_tot_3e_bi_orth(a,i) += fock_a_tmp2_bi_ortho(a,i)
|
||||
enddo
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [double precision, fock_b_tot_3e_bi_orth, (mo_num, mo_num)]
|
||||
implicit none
|
||||
integer :: i,a,j,k
|
||||
double precision :: contrib_sss, contrib_sos, contrib_soo,contrib
|
||||
fock_b_tot_3e_bi_orth = 0.d0
|
||||
do i = 1, mo_num
|
||||
do a = 1, mo_num
|
||||
fock_b_tot_3e_bi_orth(a,i) += fock_cs_3e_bi_orth(a,i)
|
||||
fock_b_tot_3e_bi_orth(a,i) += fock_b_tmp2_bi_ortho(a,i)
|
||||
fock_b_tot_3e_bi_orth(a,i) += fock_b_tmp1_bi_ortho(a,i)
|
||||
enddo
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [double precision, fock_cs_3e_bi_orth, (mo_num, mo_num)]
|
||||
implicit none
|
||||
integer :: i,a,j,k
|
||||
double precision :: contrib_sss, contrib_sos, contrib_soo, contrib
|
||||
double precision :: direct_int, exch_13_int, exch_23_int, exch_12_int, c_3_int, c_minus_3_int
|
||||
double precision :: new
|
||||
fock_cs_3e_bi_orth = 0.d0
|
||||
do i = 1, mo_num
|
||||
do a = 1, mo_num
|
||||
|
||||
do j = 1, elec_beta_num
|
||||
do k = 1, elec_beta_num
|
||||
! call contrib_3e_sss(a,i,j,k,contrib_sss)
|
||||
! call contrib_3e_soo(a,i,j,k,contrib_soo)
|
||||
! call contrib_3e_sos(a,i,j,k,contrib_sos)
|
||||
! contrib = 0.5d0 * (contrib_sss + contrib_soo) + contrib_sos
|
||||
|
||||
call give_integrals_3_body_bi_ort(a, k, j, i, k, j, direct_int )!!! < a k j | i k j >
|
||||
call give_integrals_3_body_bi_ort(a, k, j, j, i, k, c_3_int) ! < a k j | j i k >
|
||||
call give_integrals_3_body_bi_ort(a, k, j, k, j, i, c_minus_3_int)! < a k j | k j i >
|
||||
! negative terms :: exchange contrib
|
||||
call give_integrals_3_body_bi_ort(a, k, j, j, k, i, exch_13_int)!!! < a k j | j k i > : E_13
|
||||
call give_integrals_3_body_bi_ort(a, k, j, i, j, k, exch_23_int)!!! < a k j | i j k > : E_23
|
||||
call give_integrals_3_body_bi_ort(a, k, j, k, i, j, exch_12_int)!!! < a k j | k i j > : E_12
|
||||
new = 2.d0 * direct_int + 0.5d0 * (c_3_int + c_minus_3_int - exch_12_int) &
|
||||
-1.5d0 * exch_13_int - exch_23_int
|
||||
fock_cs_3e_bi_orth(a,i) += new
|
||||
enddo
|
||||
enddo
|
||||
|
||||
enddo
|
||||
enddo
|
||||
fock_cs_3e_bi_orth = - fock_cs_3e_bi_orth
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [double precision, fock_a_tmp1_bi_ortho, (mo_num, mo_num)]
|
||||
implicit none
|
||||
integer :: i,a,j,k
|
||||
double precision :: contrib_sss, contrib_sos, contrib_soo, contrib
|
||||
double precision :: direct_int, exch_13_int, exch_23_int, exch_12_int, c_3_int, c_minus_3_int
|
||||
double precision :: new
|
||||
fock_a_tmp1_bi_ortho = 0.d0
|
||||
do i = 1, mo_num
|
||||
do a = 1, mo_num
|
||||
|
||||
do j = elec_beta_num + 1, elec_alpha_num
|
||||
do k = 1, elec_beta_num
|
||||
call give_integrals_3_body_bi_ort(a, k, j, i, k, j, direct_int )!!! < a k j | i k j >
|
||||
call give_integrals_3_body_bi_ort(a, k, j, j, i, k, c_3_int) ! < a k j | j i k >
|
||||
call give_integrals_3_body_bi_ort(a, k, j, k, j, i, c_minus_3_int)! < a k j | k j i >
|
||||
call give_integrals_3_body_bi_ort(a, k, j, j, k, i, exch_13_int)!!! < a k j | j k i > : E_13
|
||||
call give_integrals_3_body_bi_ort(a, k, j, i, j, k, exch_23_int)!!! < a k j | i j k > : E_23
|
||||
call give_integrals_3_body_bi_ort(a, k, j, k, i, j, exch_12_int)!!! < a k j | k i j > : E_12
|
||||
fock_a_tmp1_bi_ortho(a,i) += 1.5d0 * (direct_int - exch_13_int) &
|
||||
+ 0.5d0 * (c_3_int + c_minus_3_int - exch_23_int - exch_12_int)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
enddo
|
||||
enddo
|
||||
fock_a_tmp1_bi_ortho = - fock_a_tmp1_bi_ortho
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [double precision, fock_a_tmp2_bi_ortho, (mo_num, mo_num)]
|
||||
implicit none
|
||||
integer :: i,a,j,k
|
||||
double precision :: contrib_sss
|
||||
fock_a_tmp2_bi_ortho = 0.d0
|
||||
do i = 1, mo_num
|
||||
do a = 1, mo_num
|
||||
do j = 1, elec_alpha_num
|
||||
do k = elec_beta_num+1, elec_alpha_num
|
||||
call contrib_3e_sss(a,i,j,k,contrib_sss)
|
||||
fock_a_tmp2_bi_ortho(a,i) += 0.5d0 * contrib_sss
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
BEGIN_PROVIDER [double precision, fock_b_tmp1_bi_ortho, (mo_num, mo_num)]
|
||||
implicit none
|
||||
integer :: i,a,j,k
|
||||
double precision :: direct_int, exch_13_int, exch_23_int, exch_12_int
|
||||
double precision :: new
|
||||
fock_b_tmp1_bi_ortho = 0.d0
|
||||
do i = 1, mo_num
|
||||
do a = 1, mo_num
|
||||
|
||||
do j = 1, elec_beta_num
|
||||
do k = elec_beta_num+1, elec_alpha_num
|
||||
call give_integrals_3_body_bi_ort(a, k, j, i, k, j, direct_int )!!! < a k j | i k j >
|
||||
call give_integrals_3_body_bi_ort(a, k, j, j, k, i, exch_13_int)!!! < a k j | j k i > : E_13
|
||||
call give_integrals_3_body_bi_ort(a, k, j, i, j, k, exch_23_int)!!! < a k j | i j k > : E_23
|
||||
fock_b_tmp1_bi_ortho(a,i) += 1.5d0 * direct_int - 0.5d0 * exch_23_int - exch_13_int
|
||||
enddo
|
||||
enddo
|
||||
|
||||
enddo
|
||||
enddo
|
||||
fock_b_tmp1_bi_ortho = - fock_b_tmp1_bi_ortho
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [double precision, fock_b_tmp2_bi_ortho, (mo_num, mo_num)]
|
||||
implicit none
|
||||
integer :: i,a,j,k
|
||||
double precision :: contrib_soo
|
||||
fock_b_tmp2_bi_ortho = 0.d0
|
||||
do i = 1, mo_num
|
||||
do a = 1, mo_num
|
||||
do j = elec_beta_num + 1, elec_alpha_num
|
||||
do k = 1, elec_alpha_num
|
||||
call contrib_3e_soo(a,i,j,k,contrib_soo)
|
||||
fock_b_tmp2_bi_ortho(a,i) += 0.5d0 * contrib_soo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
subroutine contrib_3e_sss(a,i,j,k,integral)
|
||||
implicit none
|
||||
integer, intent(in) :: a,i,j,k
|
||||
BEGIN_DOC
|
||||
! returns the pure same spin contribution to F(a,i) from two orbitals j,k
|
||||
END_DOC
|
||||
double precision, intent(out) :: integral
|
||||
double precision :: direct_int, exch_13_int, exch_23_int, exch_12_int, c_3_int, c_minus_3_int
|
||||
call give_integrals_3_body_bi_ort(a, k, j, i, k, j, direct_int )!!! < a k j | i k j >
|
||||
call give_integrals_3_body_bi_ort(a, k, j, j, i, k, c_3_int) ! < a k j | j i k >
|
||||
call give_integrals_3_body_bi_ort(a, k, j, k, j, i, c_minus_3_int)! < a k j | k j i >
|
||||
integral = direct_int + c_3_int + c_minus_3_int
|
||||
! negative terms :: exchange contrib
|
||||
call give_integrals_3_body_bi_ort(a, k, j, j, k, i, exch_13_int)!!! < a k j | j k i > : E_13
|
||||
call give_integrals_3_body_bi_ort(a, k, j, i, j, k, exch_23_int)!!! < a k j | i j k > : E_23
|
||||
call give_integrals_3_body_bi_ort(a, k, j, k, i, j, exch_12_int)!!! < a k j | k i j > : E_12
|
||||
integral += - exch_13_int - exch_23_int - exch_12_int
|
||||
integral = -integral
|
||||
end
|
||||
|
||||
subroutine contrib_3e_soo(a,i,j,k,integral)
|
||||
implicit none
|
||||
integer, intent(in) :: a,i,j,k
|
||||
BEGIN_DOC
|
||||
! returns the same spin / opposite spin / opposite spin contribution to F(a,i) from two orbitals j,k
|
||||
END_DOC
|
||||
double precision, intent(out) :: integral
|
||||
double precision :: direct_int, exch_23_int
|
||||
call give_integrals_3_body_bi_ort(a, k, j, i, k, j, direct_int) ! < a k j | i k j >
|
||||
call give_integrals_3_body_bi_ort(a, k, j, i, j, k, exch_23_int)! < a k j | i j k > : E_23
|
||||
integral = direct_int - exch_23_int
|
||||
integral = -integral
|
||||
end
|
||||
|
||||
subroutine contrib_3e_sos(a,i,j,k,integral)
|
||||
implicit none
|
||||
integer, intent(in) :: a,i,j,k
|
||||
BEGIN_DOC
|
||||
! returns the same spin / opposite spin / same spin contribution to F(a,i) from two orbitals j,k
|
||||
END_DOC
|
||||
double precision, intent(out) :: integral
|
||||
double precision :: direct_int, exch_13_int
|
||||
call give_integrals_3_body_bi_ort(a, k, j, i, k, j, direct_int )! < a k j | i k j >
|
||||
call give_integrals_3_body_bi_ort(a, k, j, j, k, i, exch_13_int)! < a k j | j k i > : E_13
|
||||
integral = direct_int - exch_13_int
|
||||
integral = -integral
|
||||
end
|
@ -81,8 +81,8 @@ subroutine routine_scf()
|
||||
print*,'TC HF total energy = ', TC_HF_energy
|
||||
print*,'TC HF 1 e energy = ', TC_HF_one_electron_energy
|
||||
print*,'TC HF 2 e energy = ', TC_HF_two_e_energy
|
||||
if(.not. bi_ortho)then
|
||||
print*,'TC HF 3 body = ', diag_three_elem_hf
|
||||
if(three_body_h_tc)then
|
||||
print*,'TC HF 3 body = ', diag_three_elem_hf
|
||||
endif
|
||||
print*,'***'
|
||||
e_delta = 10.d0
|
||||
@ -124,6 +124,9 @@ subroutine routine_scf()
|
||||
print*,'TC HF total energy = ', TC_HF_energy
|
||||
print*,'TC HF 1 e energy = ', TC_HF_one_electron_energy
|
||||
print*,'TC HF 2 non hermit = ', TC_HF_two_e_energy
|
||||
if(three_body_h_tc)then
|
||||
print*,'TC HF 3 body = ', diag_three_elem_hf
|
||||
endif
|
||||
print*,'***'
|
||||
e_delta = dabs( TC_HF_energy - e_save )
|
||||
print*, 'it, delta E = ', it, e_delta
|
||||
|
174
src/tc_scf/three_e_energy_bi_ortho.irp.f
Normal file
174
src/tc_scf/three_e_energy_bi_ortho.irp.f
Normal file
@ -0,0 +1,174 @@
|
||||
|
||||
subroutine contrib_3e_diag_sss(i,j,k,integral)
|
||||
implicit none
|
||||
integer, intent(in) :: i,j,k
|
||||
BEGIN_DOC
|
||||
! returns the pure same spin contribution to diagonal matrix element of 3e term
|
||||
END_DOC
|
||||
double precision, intent(out) :: integral
|
||||
double precision :: direct_int, exch_13_int, exch_23_int, exch_12_int, c_3_int, c_minus_3_int
|
||||
call give_integrals_3_body_bi_ort(i, k, j, i, k, j, direct_int )!!! < i k j | i k j >
|
||||
call give_integrals_3_body_bi_ort(i, k, j, j, i, k, c_3_int) ! < i k j | j i k >
|
||||
call give_integrals_3_body_bi_ort(i, k, j, k, j, i, c_minus_3_int)! < i k j | k j i >
|
||||
integral = direct_int + c_3_int + c_minus_3_int
|
||||
! negative terms :: exchange contrib
|
||||
call give_integrals_3_body_bi_ort(i, k, j, j, k, i, exch_13_int)!!! < i k j | j k i > : E_13
|
||||
call give_integrals_3_body_bi_ort(i, k, j, i, j, k, exch_23_int)!!! < i k j | i j k > : E_23
|
||||
call give_integrals_3_body_bi_ort(i, k, j, k, i, j, exch_12_int)!!! < i k j | k i j > : E_12
|
||||
integral += - exch_13_int - exch_23_int - exch_12_int
|
||||
integral = -integral
|
||||
end
|
||||
|
||||
subroutine contrib_3e_diag_soo(i,j,k,integral)
|
||||
implicit none
|
||||
integer, intent(in) :: i,j,k
|
||||
BEGIN_DOC
|
||||
! returns the pure same spin contribution to diagonal matrix element of 3e term
|
||||
END_DOC
|
||||
double precision, intent(out) :: integral
|
||||
double precision :: direct_int, exch_23_int
|
||||
call give_integrals_3_body_bi_ort(i, k, j, i, k, j, direct_int) ! < i k j | i k j >
|
||||
call give_integrals_3_body_bi_ort(i, k, j, i, j, k, exch_23_int)! < i k j | i j k > : E_23
|
||||
integral = direct_int - exch_23_int
|
||||
integral = -integral
|
||||
end
|
||||
|
||||
|
||||
subroutine give_aaa_contrib_bis(integral_aaa)
|
||||
implicit none
|
||||
double precision, intent(out) :: integral_aaa
|
||||
double precision :: integral
|
||||
integer :: i,j,k
|
||||
integral_aaa = 0.d0
|
||||
do i = 1, elec_alpha_num
|
||||
do j = i+1, elec_alpha_num
|
||||
do k = j+1, elec_alpha_num
|
||||
call contrib_3e_diag_sss(i,j,k,integral)
|
||||
integral_aaa += integral
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
end
|
||||
|
||||
subroutine give_aaa_contrib(integral_aaa)
|
||||
implicit none
|
||||
double precision, intent(out) :: integral_aaa
|
||||
double precision :: integral
|
||||
integer :: i,j,k
|
||||
integral_aaa = 0.d0
|
||||
do i = 1, elec_alpha_num
|
||||
do j = 1, elec_alpha_num
|
||||
do k = 1, elec_alpha_num
|
||||
call contrib_3e_diag_sss(i,j,k,integral)
|
||||
integral_aaa += integral
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
integral_aaa *= 1.d0/6.d0
|
||||
end
|
||||
|
||||
|
||||
subroutine give_aab_contrib(integral_aab)
|
||||
implicit none
|
||||
double precision, intent(out) :: integral_aab
|
||||
double precision :: integral
|
||||
integer :: i,j,k
|
||||
integral_aab = 0.d0
|
||||
do i = 1, elec_beta_num
|
||||
do j = 1, elec_alpha_num
|
||||
do k = 1, elec_alpha_num
|
||||
call contrib_3e_diag_soo(i,j,k,integral)
|
||||
integral_aab += integral
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
integral_aab *= 0.5d0
|
||||
end
|
||||
|
||||
|
||||
subroutine give_aab_contrib_bis(integral_aab)
|
||||
implicit none
|
||||
double precision, intent(out) :: integral_aab
|
||||
double precision :: integral
|
||||
integer :: i,j,k
|
||||
integral_aab = 0.d0
|
||||
do i = 1, elec_beta_num
|
||||
do j = 1, elec_alpha_num
|
||||
do k = j+1, elec_alpha_num
|
||||
call contrib_3e_diag_soo(i,j,k,integral)
|
||||
integral_aab += integral
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
end
|
||||
|
||||
|
||||
subroutine give_abb_contrib(integral_abb)
|
||||
implicit none
|
||||
double precision, intent(out) :: integral_abb
|
||||
double precision :: integral
|
||||
integer :: i,j,k
|
||||
integral_abb = 0.d0
|
||||
do i = 1, elec_alpha_num
|
||||
do j = 1, elec_beta_num
|
||||
do k = 1, elec_beta_num
|
||||
call contrib_3e_diag_soo(i,j,k,integral)
|
||||
integral_abb += integral
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
integral_abb *= 0.5d0
|
||||
end
|
||||
|
||||
subroutine give_abb_contrib_bis(integral_abb)
|
||||
implicit none
|
||||
double precision, intent(out) :: integral_abb
|
||||
double precision :: integral
|
||||
integer :: i,j,k
|
||||
integral_abb = 0.d0
|
||||
do i = 1, elec_alpha_num
|
||||
do j = 1, elec_beta_num
|
||||
do k = j+1, elec_beta_num
|
||||
call contrib_3e_diag_soo(i,j,k,integral)
|
||||
integral_abb += integral
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
end
|
||||
|
||||
subroutine give_bbb_contrib_bis(integral_bbb)
|
||||
implicit none
|
||||
double precision, intent(out) :: integral_bbb
|
||||
double precision :: integral
|
||||
integer :: i,j,k
|
||||
integral_bbb = 0.d0
|
||||
do i = 1, elec_beta_num
|
||||
do j = i+1, elec_beta_num
|
||||
do k = j+1, elec_beta_num
|
||||
call contrib_3e_diag_sss(i,j,k,integral)
|
||||
integral_bbb += integral
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
end
|
||||
|
||||
subroutine give_bbb_contrib(integral_bbb)
|
||||
implicit none
|
||||
double precision, intent(out) :: integral_bbb
|
||||
double precision :: integral
|
||||
integer :: i,j,k
|
||||
integral_bbb = 0.d0
|
||||
do i = 1, elec_beta_num
|
||||
do j = 1, elec_beta_num
|
||||
do k = 1, elec_beta_num
|
||||
call contrib_3e_diag_sss(i,j,k,integral)
|
||||
integral_bbb += integral
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
integral_bbb *= 1.d0/6.d0
|
||||
end
|
||||
|
||||
|
@ -56,7 +56,7 @@ subroutine give_explicit_poly_and_gaussian(P_new,P_center,p,fact_k,iorder,alpha,
|
||||
! * [ sum (l_y = 0,i_order(2)) P_new(l_y,2) * (y-P_center(2))^l_y ] exp (- p (y-P_center(2))^2 )
|
||||
! * [ sum (l_z = 0,i_order(3)) P_new(l_z,3) * (z-P_center(3))^l_z ] exp (- p (z-P_center(3))^2 )
|
||||
!
|
||||
! WARNING ::: IF fact_k is too smal then:
|
||||
! WARNING ::: IF fact_k is too smal then:
|
||||
! returns a "s" function centered in zero
|
||||
! with an inifinite exponent and a zero polynom coef
|
||||
END_DOC
|
||||
@ -86,13 +86,11 @@ subroutine give_explicit_poly_and_gaussian(P_new,P_center,p,fact_k,iorder,alpha,
|
||||
!DIR$ FORCEINLINE
|
||||
call gaussian_product(alpha,A_center,beta,B_center,fact_k,p,P_center)
|
||||
if (fact_k < thresh) then
|
||||
! IF fact_k is too smal then:
|
||||
! IF fact_k is too smal then:
|
||||
! returns a "s" function centered in zero
|
||||
! with an inifinite exponent and a zero polynom coef
|
||||
P_center = 0.d0
|
||||
p = 1.d+15
|
||||
P_new = 0.d0
|
||||
iorder = 0
|
||||
fact_k = 0.d0
|
||||
return
|
||||
endif
|
||||
@ -129,6 +127,91 @@ subroutine give_explicit_poly_and_gaussian(P_new,P_center,p,fact_k,iorder,alpha,
|
||||
|
||||
end
|
||||
|
||||
!---
|
||||
|
||||
subroutine give_explicit_poly_and_gaussian_v(P_new, ldp, P_center,p,fact_k,iorder,alpha,beta,a,b,A_center,B_center,n_points)
|
||||
BEGIN_DOC
|
||||
! Transforms the product of
|
||||
! (x-x_A)^a(1) (x-x_B)^b(1) (x-x_A)^a(2) (y-y_B)^b(2) (z-z_A)^a(3) (z-z_B)^b(3) exp(-(r-A)^2 alpha) exp(-(r-B)^2 beta)
|
||||
! into
|
||||
! fact_k * [ sum (l_x = 0,i_order(1)) P_new(l_x,1) * (x-P_center(1))^l_x ] exp (- p (x-P_center(1))^2 )
|
||||
! * [ sum (l_y = 0,i_order(2)) P_new(l_y,2) * (y-P_center(2))^l_y ] exp (- p (y-P_center(2))^2 )
|
||||
! * [ sum (l_z = 0,i_order(3)) P_new(l_z,3) * (z-P_center(3))^l_z ] exp (- p (z-P_center(3))^2 )
|
||||
!
|
||||
! WARNING :: : IF fact_k is too smal then:
|
||||
! returns a "s" function centered in zero
|
||||
! with an inifinite exponent and a zero polynom coef
|
||||
END_DOC
|
||||
implicit none
|
||||
include 'constants.include.F'
|
||||
integer, intent(in) :: n_points, ldp
|
||||
integer, intent(in) :: a(3),b(3) ! powers : (x-xa)**a_x = (x-A(1))**a(1)
|
||||
double precision, intent(in) :: alpha, beta ! exponents
|
||||
double precision, intent(in) :: A_center(n_points,3) ! A center
|
||||
double precision, intent(in) :: B_center (3) ! B center
|
||||
double precision, intent(out) :: P_center(n_points,3) ! new center
|
||||
double precision, intent(out) :: p ! new exponent
|
||||
double precision, intent(out) :: fact_k(n_points) ! constant factor
|
||||
double precision, intent(out) :: P_new(n_points,0:ldp,3)! polynomial
|
||||
integer, intent(out) :: iorder(3) ! i_order(i) = order of the polynomials
|
||||
|
||||
double precision, allocatable :: P_a(:,:,:), P_b(:,:,:)
|
||||
|
||||
integer :: n_new,i,j, ipoint, lda, ldb, xyz
|
||||
|
||||
call gaussian_product_v(alpha,A_center,beta,B_center,fact_k,p,P_center,n_points)
|
||||
|
||||
if ( ior(ior(b(1),b(2)),b(3)) == 0 ) then ! b == (0,0,0)
|
||||
|
||||
lda = maxval(a)
|
||||
ldb = 0
|
||||
allocate(P_a(n_points,0:lda,3), P_b(n_points,0:0,3))
|
||||
|
||||
call recentered_poly2_v0(P_a,lda,A_center,P_center,a,P_b,B_center,P_center,n_points)
|
||||
|
||||
iorder(1:3) = a(1:3)
|
||||
do ipoint=1,n_points
|
||||
do xyz=1,3
|
||||
P_new(ipoint,0,xyz) = P_a(ipoint,0,xyz) * P_b(ipoint,0,xyz)
|
||||
do i=1,a(xyz)
|
||||
P_new(ipoint,i,xyz) = P_new(ipoint,i,xyz) + P_b(ipoint,0,xyz) * P_a(ipoint,i,xyz)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
return
|
||||
|
||||
endif
|
||||
|
||||
lda = maxval(a)
|
||||
ldb = maxval(b)
|
||||
allocate(P_a(n_points,0:lda,3), P_b(n_points,0:ldb,3))
|
||||
|
||||
call recentered_poly2_v(P_a,lda,A_center,P_center,a,P_b,ldb,B_center,P_center,b,n_points)
|
||||
|
||||
iorder(1:3) = a(1:3) + b(1:3)
|
||||
|
||||
do xyz=1,3
|
||||
if (b(xyz) == 0) then
|
||||
do ipoint=1,n_points
|
||||
P_new(ipoint,0,xyz) = P_a(ipoint,0,xyz) * P_b(ipoint,0,xyz)
|
||||
do i=1,a(xyz)
|
||||
P_new(ipoint,i,xyz) = P_new(ipoint,i,xyz) + P_b(ipoint,0,xyz) * P_a(ipoint,i,xyz)
|
||||
enddo
|
||||
enddo
|
||||
else
|
||||
do i=0,iorder(xyz)
|
||||
do ipoint=1,n_points
|
||||
P_new(ipoint,i,xyz) = 0.d0
|
||||
enddo
|
||||
enddo
|
||||
call multiply_poly_v(P_a(1,0,xyz), a(xyz),P_b(1,0,xyz),b(xyz),P_new(1,0,xyz),ldp,n_points)
|
||||
endif
|
||||
enddo
|
||||
|
||||
end
|
||||
|
||||
!-
|
||||
|
||||
subroutine give_explicit_poly_and_gaussian_double(P_new,P_center,p,fact_k,iorder,alpha,beta,gama,a,b,A_center,B_center,Nucl_center,dim)
|
||||
BEGIN_DOC
|
||||
@ -231,6 +314,59 @@ subroutine gaussian_product(a,xa,b,xb,k,p,xp)
|
||||
xp(3) = (a*xa(3)+b*xb(3))*p_inv
|
||||
end subroutine
|
||||
|
||||
!---
|
||||
subroutine gaussian_product_v(a,xa,b,xb,k,p,xp,n_points)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Gaussian product in 1D.
|
||||
! e^{-a (x-x_A)^2} e^{-b (x-x_B)^2} = K_{ab}^x e^{-p (x-x_P)^2}
|
||||
! Using multiple A centers
|
||||
END_DOC
|
||||
|
||||
integer, intent(in) :: n_points
|
||||
double precision, intent(in) :: a,b ! Exponents
|
||||
double precision, intent(in) :: xa(n_points,3),xb(3) ! Centers
|
||||
double precision, intent(out) :: p ! New exponent
|
||||
double precision, intent(out) :: xp(n_points,3) ! New center
|
||||
double precision, intent(out) :: k(n_points) ! Constant
|
||||
|
||||
double precision :: p_inv
|
||||
|
||||
integer :: ipoint
|
||||
ASSERT (a>0.)
|
||||
ASSERT (b>0.)
|
||||
|
||||
double precision :: xab(3), ab, ap, bp, bpxb(3)
|
||||
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: xab
|
||||
|
||||
p = a+b
|
||||
p_inv = 1.d0/(a+b)
|
||||
ab = a*b*p_inv
|
||||
ap = a*p_inv
|
||||
bp = b*p_inv
|
||||
bpxb(1) = bp*xb(1)
|
||||
bpxb(2) = bp*xb(2)
|
||||
bpxb(3) = bp*xb(3)
|
||||
|
||||
do ipoint=1,n_points
|
||||
xab(1) = xa(ipoint,1)-xb(1)
|
||||
xab(2) = xa(ipoint,2)-xb(2)
|
||||
xab(3) = xa(ipoint,3)-xb(3)
|
||||
k(ipoint) = ab*(xab(1)*xab(1)+xab(2)*xab(2)+xab(3)*xab(3))
|
||||
if (k(ipoint) > 40.d0) then
|
||||
k(ipoint)=0.d0
|
||||
xp(ipoint,1) = 0.d0
|
||||
xp(ipoint,2) = 0.d0
|
||||
xp(ipoint,3) = 0.d0
|
||||
else
|
||||
k(ipoint) = dexp(-k(ipoint))
|
||||
xp(ipoint,1) = ap*xa(ipoint,1)+bpxb(1)
|
||||
xp(ipoint,2) = ap*xa(ipoint,2)+bpxb(2)
|
||||
xp(ipoint,3) = ap*xa(ipoint,3)+bpxb(3)
|
||||
endif
|
||||
enddo
|
||||
end subroutine
|
||||
|
||||
|
||||
|
||||
|
||||
@ -269,6 +405,46 @@ subroutine gaussian_product_x(a,xa,b,xb,k,p,xp)
|
||||
end subroutine
|
||||
|
||||
|
||||
!-
|
||||
|
||||
subroutine gaussian_product_x_v(a,xa,b,xb,k,p,xp,n_points)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Gaussian product in 1D with multiple xa
|
||||
! e^{-a (x-x_A)^2} e^{-b (x-x_B)^2} = K_{ab}^x e^{-p (x-x_P)^2}
|
||||
END_DOC
|
||||
|
||||
integer, intent(in) :: n_points
|
||||
double precision , intent(in) :: a,b ! Exponents
|
||||
double precision , intent(in) :: xa(n_points),xb ! Centers
|
||||
double precision , intent(out) :: p(n_points) ! New exponent
|
||||
double precision , intent(out) :: xp(n_points) ! New center
|
||||
double precision , intent(out) :: k(n_points) ! Constant
|
||||
|
||||
double precision :: p_inv
|
||||
integer :: ipoint
|
||||
|
||||
ASSERT (a>0.)
|
||||
ASSERT (b>0.)
|
||||
|
||||
double precision :: xab, ab
|
||||
|
||||
p = a+b
|
||||
p_inv = 1.d0/(a+b)
|
||||
ab = a*b*p_inv
|
||||
do ipoint = 1, n_points
|
||||
xab = xa(ipoint)-xb
|
||||
k(ipoint) = ab*xab*xab
|
||||
if (k(ipoint) > 40.d0) then
|
||||
k(ipoint)=0.d0
|
||||
cycle
|
||||
endif
|
||||
k(ipoint) = exp(-k(ipoint))
|
||||
xp(ipoint) = (a*xa(ipoint)+b*xb)*p_inv
|
||||
enddo
|
||||
end subroutine
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
@ -313,6 +489,45 @@ subroutine multiply_poly(b,nb,c,nc,d,nd)
|
||||
|
||||
end
|
||||
|
||||
subroutine multiply_poly_v(b,nb,c,nc,d,nd,n_points)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Multiply pairs of polynomials
|
||||
! D(t) += B(t)*C(t)
|
||||
END_DOC
|
||||
|
||||
integer, intent(in) :: nb, nc, n_points
|
||||
integer, intent(in) :: nd
|
||||
double precision, intent(in) :: b(n_points,0:nb), c(n_points,0:nc)
|
||||
double precision, intent(inout) :: d(n_points,0:nd)
|
||||
|
||||
integer :: ib, ic, id, k, ipoint
|
||||
if (nd < nb+nc) then
|
||||
print *, nd, nb, nc
|
||||
print *, irp_here, ': nd < nb+nc'
|
||||
stop 1
|
||||
endif
|
||||
|
||||
do ic = 0,nc
|
||||
do ipoint=1, n_points
|
||||
d(ipoint,ic) = d(ipoint,ic) + c(ipoint,ic) * b(ipoint,0)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
do ib=1,nb
|
||||
do ipoint=1, n_points
|
||||
d(ipoint, ib) = d(ipoint, ib) + c(ipoint,0) * b(ipoint, ib)
|
||||
enddo
|
||||
do ic = 1,nc
|
||||
do ipoint=1, n_points
|
||||
d(ipoint, ib+ic) = d(ipoint, ib+ic) + c(ipoint,ic) * b(ipoint, ib)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
end
|
||||
|
||||
|
||||
subroutine add_poly(b,nb,c,nc,d,nd)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
@ -404,22 +619,152 @@ subroutine recentered_poly2(P_new,x_A,x_P,a,P_new2,x_B,x_Q,b)
|
||||
do i = minab+1,min(b,20)
|
||||
P_new2(i) = binom_transp(b-i,b) * pows_b(b-i)
|
||||
enddo
|
||||
do i = 101,a
|
||||
do i = 21,a
|
||||
P_new(i) = binom_func(a,a-i) * pows_a(a-i)
|
||||
enddo
|
||||
do i = 101,b
|
||||
do i = 21,b
|
||||
P_new2(i) = binom_func(b,b-i) * pows_b(b-i)
|
||||
enddo
|
||||
end
|
||||
|
||||
subroutine pol_modif_center(A_center, B_center, iorder, A_pol, B_pol)
|
||||
!-
|
||||
subroutine recentered_poly2_v(P_new,lda,x_A,x_P,a,P_new2,ldb,x_B,x_Q,b,n_points)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Recenter two polynomials
|
||||
END_DOC
|
||||
integer, intent(in) :: a(3),b(3), n_points, lda, ldb
|
||||
double precision, intent(in) :: x_A(n_points,3),x_P(n_points,3),x_B(3),x_Q(n_points,3)
|
||||
double precision, intent(out) :: P_new(n_points,0:lda,3),P_new2(n_points,0:ldb,3)
|
||||
double precision :: binom_func
|
||||
integer :: i,j,k,l, minab(3), maxab(3),ipoint, xyz
|
||||
double precision, allocatable :: pows_a(:,:), pows_b(:,:)
|
||||
double precision :: fa, fb
|
||||
|
||||
maxab(1:3) = max(a(1:3),b(1:3))
|
||||
minab(1:3) = max(min(a(1:3),b(1:3)),(/0,0,0/))
|
||||
|
||||
allocate( pows_a(n_points,-2:maxval(maxab)+4), pows_b(n_points,-2:maxval(maxab)+4) )
|
||||
|
||||
|
||||
do xyz=1,3
|
||||
if ((a(xyz)<0).or.(b(xyz)<0) ) cycle
|
||||
do ipoint=1,n_points
|
||||
pows_a(ipoint,0) = 1.d0
|
||||
pows_a(ipoint,1) = (x_P(ipoint,xyz) - x_A(ipoint,xyz))
|
||||
pows_b(ipoint,0) = 1.d0
|
||||
pows_b(ipoint,1) = (x_Q(ipoint,xyz) - x_B(xyz))
|
||||
enddo
|
||||
do i = 2,maxab(xyz)
|
||||
do ipoint=1,n_points
|
||||
pows_a(ipoint,i) = pows_a(ipoint,i-1)*pows_a(ipoint,1)
|
||||
pows_b(ipoint,i) = pows_b(ipoint,i-1)*pows_b(ipoint,1)
|
||||
enddo
|
||||
enddo
|
||||
do ipoint=1,n_points
|
||||
P_new (ipoint,0,xyz) = pows_a(ipoint,a(xyz))
|
||||
P_new2(ipoint,0,xyz) = pows_b(ipoint,b(xyz))
|
||||
enddo
|
||||
do i = 1,min(minab(xyz),20)
|
||||
fa = binom_transp(a(xyz)-i,a(xyz))
|
||||
fb = binom_transp(b(xyz)-i,b(xyz))
|
||||
do ipoint=1,n_points
|
||||
P_new (ipoint,i,xyz) = fa * pows_a(ipoint,a(xyz)-i)
|
||||
P_new2(ipoint,i,xyz) = fb * pows_b(ipoint,b(xyz)-i)
|
||||
enddo
|
||||
enddo
|
||||
do i = minab(xyz)+1,min(a(xyz),20)
|
||||
fa = binom_transp(a(xyz)-i,a(xyz))
|
||||
do ipoint=1,n_points
|
||||
P_new (ipoint,i,xyz) = fa * pows_a(ipoint,a(xyz)-i)
|
||||
enddo
|
||||
enddo
|
||||
do i = minab(xyz)+1,min(b(xyz),20)
|
||||
fb = binom_transp(b(xyz)-i,b(xyz))
|
||||
do ipoint=1,n_points
|
||||
P_new2(ipoint,i,xyz) = fb * pows_b(ipoint,b(xyz)-i)
|
||||
enddo
|
||||
enddo
|
||||
do i = 21,a(xyz)
|
||||
fa = binom_func(a(xyz),a(xyz)-i)
|
||||
do ipoint=1,n_points
|
||||
P_new (ipoint,i,xyz) = fa * pows_a(ipoint,a(xyz)-i)
|
||||
enddo
|
||||
enddo
|
||||
do i = 21,b(xyz)
|
||||
fb = binom_func(b(xyz),b(xyz)-i)
|
||||
do ipoint=1,n_points
|
||||
P_new2(ipoint,i,xyz) = fb * pows_b(ipoint,b(xyz)-i)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
end
|
||||
|
||||
|
||||
subroutine recentered_poly2_v0(P_new,lda,x_A,x_P,a,P_new2,x_B,x_Q,n_points)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Recenter two polynomials. Special case for b=(0,0,0)
|
||||
END_DOC
|
||||
integer, intent(in) :: a(3), n_points, lda
|
||||
double precision, intent(in) :: x_A(n_points,3),x_P(n_points,3),x_B(3),x_Q(n_points,3)
|
||||
double precision, intent(out) :: P_new(n_points,0:lda,3),P_new2(n_points,3)
|
||||
double precision :: binom_func
|
||||
integer :: i,j,k,l, xyz, ipoint, maxab(3)
|
||||
double precision, allocatable :: pows_a(:,:), pows_b(:,:)
|
||||
double precision :: fa
|
||||
|
||||
maxab(1:3) = max(a(1:3),(/0,0,0/))
|
||||
|
||||
allocate( pows_a(n_points,-2:maxval(maxab)+4), pows_b(n_points,-2:maxval(maxab)+4) )
|
||||
|
||||
do xyz=1,3
|
||||
if (a(xyz)<0) cycle
|
||||
do ipoint=1,n_points
|
||||
pows_a(ipoint,0) = 1.d0
|
||||
pows_a(ipoint,1) = (x_P(ipoint,xyz) - x_A(ipoint,xyz))
|
||||
pows_b(ipoint,0) = 1.d0
|
||||
pows_b(ipoint,1) = (x_Q(ipoint,xyz) - x_B(xyz))
|
||||
enddo
|
||||
do i = 2,maxab(xyz)
|
||||
do ipoint=1,n_points
|
||||
pows_a(ipoint,i) = pows_a(ipoint,i-1)*pows_a(ipoint,1)
|
||||
pows_b(ipoint,i) = pows_b(ipoint,i-1)*pows_b(ipoint,1)
|
||||
enddo
|
||||
enddo
|
||||
do ipoint=1,n_points
|
||||
P_new (ipoint,0,xyz) = pows_a(ipoint,a(xyz))
|
||||
P_new2(ipoint,xyz) = pows_b(ipoint,0)
|
||||
enddo
|
||||
do i = 1,min(a(xyz),20)
|
||||
fa = binom_transp(a(xyz)-i,a(xyz))
|
||||
do ipoint=1,n_points
|
||||
P_new (ipoint,i,xyz) = fa * pows_a(ipoint,a(xyz)-i)
|
||||
enddo
|
||||
enddo
|
||||
do i = 21,a(xyz)
|
||||
fa = binom_func(a(xyz),a(xyz)-i)
|
||||
do ipoint=1,n_points
|
||||
P_new (ipoint,i,xyz) = fa * pows_a(ipoint,a(xyz)-i)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
enddo !xyz
|
||||
|
||||
deallocate(pows_a, pows_b)
|
||||
end
|
||||
|
||||
!--
|
||||
!--
|
||||
|
||||
subroutine pol_modif_center(A_center, B_center, iorder, A_pol, B_pol)
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
!
|
||||
! Transform the pol centerd on A:
|
||||
! [ \sum_i ax_i (x-x_A)^i ] [ \sum_j ay_j (y-y_A)^j ] [ \sum_k az_k (z-z_A)^k ]
|
||||
! [ \sum_i ax_i (x-x_A)^i ] [ \sum_j ay_j (y-y_A)^j ] [ \sum_k az_k (z-z_A)^k ]
|
||||
! to a pol centered on B
|
||||
! [ \sum_i bx_i (x-x_B)^i ] [ \sum_j by_j (y-y_B)^j ] [ \sum_k bz_k (z-z_B)^k ]
|
||||
! [ \sum_i bx_i (x-x_B)^i ] [ \sum_j by_j (y-y_B)^j ] [ \sum_k bz_k (z-z_B)^k ]
|
||||
!
|
||||
END_DOC
|
||||
|
||||
@ -437,7 +782,7 @@ subroutine pol_modif_center(A_center, B_center, iorder, A_pol, B_pol)
|
||||
|
||||
do i = 1, 3
|
||||
Lmax = iorder(i)
|
||||
call pol_modif_center_x( A_center(i), B_center(i), Lmax, A_pol(0:Lmax, i), B_pol(0:Lmax, i) )
|
||||
call pol_modif_center_x( A_center(i), B_center(i), Lmax, A_pol(0:Lmax, i), B_pol(0:Lmax, i) )
|
||||
enddo
|
||||
|
||||
return
|
||||
@ -445,14 +790,14 @@ end subroutine pol_modif_center
|
||||
|
||||
|
||||
|
||||
subroutine pol_modif_center_x(A_center, B_center, iorder, A_pol, B_pol)
|
||||
subroutine pol_modif_center_x(A_center, B_center, iorder, A_pol, B_pol)
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
!
|
||||
! Transform the pol centerd on A:
|
||||
! [ \sum_i ax_i (x-x_A)^i ]
|
||||
! [ \sum_i ax_i (x-x_A)^i ]
|
||||
! to a pol centered on B
|
||||
! [ \sum_i bx_i (x-x_B)^i ]
|
||||
! [ \sum_i bx_i (x-x_B)^i ]
|
||||
!
|
||||
! bx_i = \sum_{j=i}^{iorder} ax_j (x_B - x_A)^(j-i) j! / [ i! (j-i)! ]
|
||||
! = \sum_{j=i}^{iorder} ax_j (x_B - x_A)^(j-i) binom_func(j,i)
|
||||
@ -591,7 +936,7 @@ double precision function rint_sum(n_pt_out,rho,d1)
|
||||
u_inv=1.d0/dsqrt(rho)
|
||||
u=rho*u_inv
|
||||
rint_sum=0.5d0*u_inv*sqpi*derf(u) *d1(0)
|
||||
! print *, 0, d1(0), 0.5d0*u_inv*sqpi*derf(u)
|
||||
! print *, 0, d1(0), 0.5d0*u_inv*sqpi*derf(u)
|
||||
endif
|
||||
|
||||
do i=2,n_pt_out,2
|
||||
|
@ -1136,6 +1136,104 @@ subroutine ortho_svd(A,LDA,m,n)
|
||||
|
||||
end
|
||||
|
||||
! QR to orthonormalize CSFs does not work :-(
|
||||
!subroutine ortho_qr_withB(A,LDA,B,m,n)
|
||||
! implicit none
|
||||
! BEGIN_DOC
|
||||
! ! Orthogonalization using Q.R factorization
|
||||
! !
|
||||
! ! A : Overlap Matrix
|
||||
! !
|
||||
! ! LDA : leftmost dimension of A
|
||||
! !
|
||||
! ! m : Number of rows of A
|
||||
! !
|
||||
! ! n : Number of columns of A
|
||||
! !
|
||||
! ! B : Output orthogonal basis
|
||||
! !
|
||||
! END_DOC
|
||||
! integer, intent(in) :: m,n, LDA
|
||||
! double precision, intent(inout) :: A(LDA,n)
|
||||
! double precision, intent(inout) :: B(LDA,n)
|
||||
!
|
||||
! integer :: LWORK, INFO
|
||||
! integer, allocatable :: jpvt(:)
|
||||
! double precision, allocatable :: TAU(:), WORK(:)
|
||||
! double precision, allocatable :: C(:,:)
|
||||
! double precision :: norm
|
||||
! integer :: i,j
|
||||
!
|
||||
! allocate (TAU(min(m,n)), WORK(1))
|
||||
! allocate (jpvt(n))
|
||||
! !print *," In function ortho"
|
||||
! B = A
|
||||
!
|
||||
! jpvt(1:n)=1
|
||||
!
|
||||
! LWORK=-1
|
||||
! call dgeqp3( m, n, A, LDA, jpvt, TAU, WORK, LWORK, INFO )
|
||||
!
|
||||
! ! /!\ int(WORK(1)) becomes negative when WORK(1) > 2147483648
|
||||
! LWORK=max(n,int(WORK(1)))
|
||||
!
|
||||
! deallocate(WORK)
|
||||
! allocate(WORK(LWORK))
|
||||
! call dgeqp3(m, n, A, LDA, jpvt, TAU, WORK, LWORK, INFO )
|
||||
! print *,A
|
||||
! print *,jpvt
|
||||
! deallocate(WORK,TAU)
|
||||
! !stop
|
||||
!
|
||||
! !LWORK=-1
|
||||
! !call dgeqrf( m, n, A, LDA, TAU, WORK, LWORK, INFO )
|
||||
! !! /!\ int(WORK(1)) becomes negative when WORK(1) > 2147483648
|
||||
! !LWORK=max(n,int(WORK(1)))
|
||||
!
|
||||
! !deallocate(WORK)
|
||||
! !allocate(WORK(LWORK))
|
||||
! !call dgeqrf(m, n, A, LDA, TAU, WORK, LWORK, INFO )
|
||||
!
|
||||
! !LWORK=-1
|
||||
! !call dorgqr(m, n, n, A, LDA, TAU, WORK, LWORK, INFO)
|
||||
! !! /!\ int(WORK(1)) becomes negative when WORK(1) > 2147483648
|
||||
! !LWORK=max(n,int(WORK(1)))
|
||||
!
|
||||
! !deallocate(WORK)
|
||||
! !allocate(WORK(LWORK))
|
||||
! !call dorgqr(m, n, n, A, LDA, TAU, WORK, LWORK, INFO)
|
||||
! !
|
||||
! !allocate(C(LDA,n))
|
||||
! !call dgemm('N','N',m,n,n,1.0d0,B,LDA,A,LDA,0.0d0,C,LDA)
|
||||
! !norm = 0.0d0
|
||||
! !B = 0.0d0
|
||||
! !!print *,C
|
||||
! !do i=1,m
|
||||
! ! norm = 0.0d0
|
||||
! ! do j=1,n
|
||||
! ! norm = norm + C(j,i)*C(j,i)
|
||||
! ! end do
|
||||
! ! norm = 1.0d0/dsqrt(norm)
|
||||
! ! do j=1,n
|
||||
! ! B(j,i) = C(j,i)
|
||||
! ! end do
|
||||
! !end do
|
||||
! !print *,B
|
||||
!
|
||||
!
|
||||
! !deallocate(WORK,TAU)
|
||||
!end
|
||||
|
||||
!subroutine ortho_qr_csf(A, LDA, B, m, n) bind(C, name="ortho_qr_csf")
|
||||
! use iso_c_binding
|
||||
! integer(c_int32_t), value :: LDA
|
||||
! integer(c_int32_t), value :: m
|
||||
! integer(c_int32_t), value :: n
|
||||
! integer(c_int16_t) :: A(LDA,n)
|
||||
! integer(c_int16_t) :: B(LDA,n)
|
||||
! call ortho_qr_withB(A,LDA,B,m,n)
|
||||
!end subroutine ortho_qr_csf
|
||||
|
||||
subroutine ortho_qr(A,LDA,m,n)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
|
297
src/utils/loc.f
297
src/utils/loc.f
@ -1,6 +1,6 @@
|
||||
c************************************************************************
|
||||
subroutine maxovl(n,m,s,t,w)
|
||||
C
|
||||
C
|
||||
C This subprogram contains an iterative procedure to find the
|
||||
C unitary transformation of a set of n vectors which maximizes
|
||||
C the sum of their square overlaps with a set of m reference
|
||||
@ -10,7 +10,7 @@ C S: overlap matrix <ref|vec>
|
||||
C T: rotation matrix
|
||||
C W: new overlap matrix
|
||||
C
|
||||
C
|
||||
C
|
||||
implicit real*8(a-h,o-y),logical*1(z)
|
||||
! parameter (id1=700)
|
||||
! dimension s(id1,id1),t(id1,id1),w(id1,id1)
|
||||
@ -29,23 +29,26 @@ C conv=1.d-6
|
||||
* 5x,'following the principle of maximum overlap with a set of',
|
||||
* i3,' reference vectors'/5x,'required convergence on rotation ',
|
||||
* 'angle =',f13.10///5x,'Starting overlap matrix'/)
|
||||
do 6 i=1,m
|
||||
write (6,145) i
|
||||
6 write (6,150) (s(i,j),j=1,n)
|
||||
do i=1,m
|
||||
write (6,145) i
|
||||
write (6,150) (s(i,j),j=1,n)
|
||||
end do
|
||||
8 mm=m-1
|
||||
if (m.lt.n) mm=m
|
||||
iter=0
|
||||
do 20 j=1,n
|
||||
do 16 i=1,n
|
||||
t(i,j)=0.d0
|
||||
16 continue
|
||||
do 18 i=1,m
|
||||
18 w(i,j)=s(i,j)
|
||||
20 t(j,j)=1.d0
|
||||
do j=1,n
|
||||
do i=1,n
|
||||
t(i,j)=0.d0
|
||||
end do
|
||||
do i=1,m
|
||||
w(i,j)=s(i,j)
|
||||
enddo
|
||||
t(j,j)=1.d0
|
||||
enddo
|
||||
sum=0.d0
|
||||
do 10 i=1,m
|
||||
sum=sum+s(i,i)*s(i,i)
|
||||
10 continue
|
||||
do i=1,m
|
||||
sum=sum+s(i,i)*s(i,i)
|
||||
end do
|
||||
sum=sum/m
|
||||
if (zprt) write (6,12) sum
|
||||
12 format (//5x,'Average square overlap =',f10.6)
|
||||
@ -54,18 +57,18 @@ C conv=1.d-6
|
||||
j=1
|
||||
21 if (j.ge.last) goto 30
|
||||
sum=0.d0
|
||||
|
||||
do 22 i=1,n
|
||||
22 sum=sum+s(i,j)*s(i,j)
|
||||
do i=1,n
|
||||
sum=sum+s(i,j)*s(i,j)
|
||||
enddo
|
||||
if (sum.gt.small) goto 28
|
||||
do 24 i=1,n
|
||||
sij=s(i,j)
|
||||
s(i,j)=-s(i,last)
|
||||
s(i,last)=sij
|
||||
tij=t(i,j)
|
||||
t(i,j)=-t(i,last)
|
||||
t(i,last)=tij
|
||||
24 continue
|
||||
do i=1,n
|
||||
sij=s(i,j)
|
||||
s(i,j)=-s(i,last)
|
||||
s(i,last)=sij
|
||||
tij=t(i,j)
|
||||
t(i,j)=-t(i,last)
|
||||
t(i,last)=tij
|
||||
end do
|
||||
last=last-1
|
||||
goto 21
|
||||
28 j=j+1
|
||||
@ -101,17 +104,18 @@ C conv=1.d-6
|
||||
sine=1.d0
|
||||
34 delta=sine*(a*sine+b*cosine)
|
||||
if (zprt.and.delta.lt.0.d0) write (6,71) i,j,a,b,sine,cosine,delta
|
||||
do 35 k=1,m
|
||||
p=s(k,i)*cosine-s(k,j)*sine
|
||||
q=s(k,i)*sine+s(k,j)*cosine
|
||||
s(k,i)=p
|
||||
35 s(k,j)=q
|
||||
do 40 k=1,n
|
||||
p=t(k,i)*cosine-t(k,j)*sine
|
||||
q=t(k,i)*sine+t(k,j)*cosine
|
||||
t(k,i)=p
|
||||
t(k,j)=q
|
||||
40 continue
|
||||
do k=1,m
|
||||
p=s(k,i)*cosine-s(k,j)*sine
|
||||
q=s(k,i)*sine+s(k,j)*cosine
|
||||
s(k,i)=p
|
||||
s(k,j)=q
|
||||
enddo
|
||||
do k=1,n
|
||||
p=t(k,i)*cosine-t(k,j)*sine
|
||||
q=t(k,i)*sine+t(k,j)*cosine
|
||||
t(k,i)=p
|
||||
t(k,j)=q
|
||||
enddo
|
||||
45 d=dabs(sine)
|
||||
if (d.le.amax) goto 50
|
||||
imax=i
|
||||
@ -132,43 +136,50 @@ C conv=1.d-6
|
||||
* 'in subroutine maxovl ***'//)
|
||||
stop
|
||||
100 continue
|
||||
do 120 j=1,n
|
||||
if (s(j,j).gt.0.d0) goto 120
|
||||
do 105 i=1,m
|
||||
105 s(i,j)=-s(i,j)
|
||||
do 110 i=1,n
|
||||
110 t(i,j)=-t(i,j)
|
||||
120 continue
|
||||
do j=1,n
|
||||
if (s(j,j).gt.0.d0) cycle
|
||||
do i=1,m
|
||||
s(i,j)=-s(i,j)
|
||||
enddo
|
||||
do i=1,n
|
||||
t(i,j)=-t(i,j)
|
||||
enddo
|
||||
enddo
|
||||
sum=0.d0
|
||||
do 125 i=1,m
|
||||
125 sum=sum+s(i,i)*s(i,i)
|
||||
do i=1,m
|
||||
sum=sum+s(i,i)*s(i,i)
|
||||
enddo
|
||||
sum=sum/m
|
||||
do 122 i=1,m
|
||||
do 122 j=1,n
|
||||
sw=s(i,j)
|
||||
s(i,j)=w(i,j)
|
||||
122 w(i,j)=sw
|
||||
do i=1,m
|
||||
do j=1,n
|
||||
sw=s(i,j)
|
||||
s(i,j)=w(i,j)
|
||||
w(i,j)=sw
|
||||
enddo
|
||||
enddo
|
||||
if (.not.zprt) return
|
||||
write (6,12) sum
|
||||
write (6,130)
|
||||
130 format (//5x,'transformation matrix')
|
||||
do 140 i=1,n
|
||||
write (6,145) i
|
||||
140 write (6,150) (t(i,j),j=1,n)
|
||||
do i=1,n
|
||||
write (6,145) i
|
||||
write (6,150) (t(i,j),j=1,n)
|
||||
enddo
|
||||
145 format (i8)
|
||||
150 format (2x,10f12.8)
|
||||
write (6,160)
|
||||
160 format (//5x,'new overlap matrix'/)
|
||||
do 170 i=1,m
|
||||
write (6,145) i
|
||||
170 write (6,150) (w(i,j),j=1,n)
|
||||
do i=1,m
|
||||
write (6,145) i
|
||||
write (6,150) (w(i,j),j=1,n)
|
||||
enddo
|
||||
return
|
||||
end
|
||||
|
||||
|
||||
c************************************************************************
|
||||
subroutine maxovl_no_print(n,m,s,t,w)
|
||||
C
|
||||
C
|
||||
C This subprogram contains an iterative procedure to find the
|
||||
C unitary transformation of a set of n vectors which maximizes
|
||||
C the sum of their square overlaps with a set of m reference
|
||||
@ -178,7 +189,7 @@ C S: overlap matrix <ref|vec>
|
||||
C T: rotation matrix
|
||||
C W: new overlap matrix
|
||||
C
|
||||
C
|
||||
C
|
||||
implicit real*8(a-h,o-y),logical*1(z)
|
||||
parameter (id1=300)
|
||||
dimension s(id1,id1),t(id1,id1),w(id1,id1)
|
||||
@ -193,17 +204,19 @@ C conv=1.d-6
|
||||
8 mm=m-1
|
||||
if (m.lt.n) mm=m
|
||||
iter=0
|
||||
do 20 j=1,n
|
||||
do 16 i=1,n
|
||||
t(i,j)=0.d0
|
||||
16 continue
|
||||
do 18 i=1,m
|
||||
18 w(i,j)=s(i,j)
|
||||
20 t(j,j)=1.d0
|
||||
do j=1,n
|
||||
do i=1,n
|
||||
t(i,j)=0.d0
|
||||
enddo
|
||||
do i=1,m
|
||||
w(i,j)=s(i,j)
|
||||
enddo
|
||||
t(j,j)=1.d0
|
||||
enddo
|
||||
sum=0.d0
|
||||
do 10 i=1,m
|
||||
sum=sum+s(i,i)*s(i,i)
|
||||
10 continue
|
||||
do i=1,m
|
||||
sum=sum+s(i,i)*s(i,i)
|
||||
enddo
|
||||
sum=sum/m
|
||||
12 format (//5x,'Average square overlap =',f10.6)
|
||||
if (n.eq.1) goto 100
|
||||
@ -211,18 +224,19 @@ C conv=1.d-6
|
||||
j=1
|
||||
21 if (j.ge.last) goto 30
|
||||
sum=0.d0
|
||||
|
||||
do 22 i=1,n
|
||||
22 sum=sum+s(i,j)*s(i,j)
|
||||
|
||||
do i=1,n
|
||||
sum=sum+s(i,j)*s(i,j)
|
||||
enddo
|
||||
if (sum.gt.small) goto 28
|
||||
do 24 i=1,n
|
||||
sij=s(i,j)
|
||||
s(i,j)=-s(i,last)
|
||||
s(i,last)=sij
|
||||
tij=t(i,j)
|
||||
t(i,j)=-t(i,last)
|
||||
t(i,last)=tij
|
||||
24 continue
|
||||
do i=1,n
|
||||
sij=s(i,j)
|
||||
s(i,j)=-s(i,last)
|
||||
s(i,last)=sij
|
||||
tij=t(i,j)
|
||||
t(i,j)=-t(i,last)
|
||||
t(i,last)=tij
|
||||
end do
|
||||
last=last-1
|
||||
goto 21
|
||||
28 j=j+1
|
||||
@ -232,50 +246,52 @@ C conv=1.d-6
|
||||
jmax=0
|
||||
dmax=0.d0
|
||||
amax=0.d0
|
||||
do 60 i=1,mm
|
||||
ip=i+1
|
||||
do 50 j=ip,n
|
||||
a=s(i,j)*s(i,j)-s(i,i)*s(i,i)
|
||||
b=-s(i,i)*s(i,j)
|
||||
if (j.gt.m) goto 31
|
||||
a=a+s(j,i)*s(j,i)-s(j,j)*s(j,j)
|
||||
b=b+s(j,i)*s(j,j)
|
||||
31 b=b+b
|
||||
if (a.eq.0.d0) goto 32
|
||||
ba=b/a
|
||||
if (dabs(ba).gt.small) goto 32
|
||||
if (a.gt.0.d0) goto 33
|
||||
tang=-0.5d0*ba
|
||||
cosine=1.d0/dsqrt(1.d0+tang*tang)
|
||||
sine=tang*cosine
|
||||
goto 34
|
||||
32 tang=0.d0
|
||||
if (b.ne.0.d0) tang=(a+dsqrt(a*a+b*b))/b
|
||||
cosine=1.d0/dsqrt(1.d0+tang*tang)
|
||||
sine=tang*cosine
|
||||
goto 34
|
||||
33 cosine=0.d0
|
||||
sine=1.d0
|
||||
34 delta=sine*(a*sine+b*cosine)
|
||||
do 35 k=1,m
|
||||
p=s(k,i)*cosine-s(k,j)*sine
|
||||
q=s(k,i)*sine+s(k,j)*cosine
|
||||
s(k,i)=p
|
||||
35 s(k,j)=q
|
||||
do 40 k=1,n
|
||||
p=t(k,i)*cosine-t(k,j)*sine
|
||||
q=t(k,i)*sine+t(k,j)*cosine
|
||||
t(k,i)=p
|
||||
t(k,j)=q
|
||||
40 continue
|
||||
45 d=dabs(sine)
|
||||
if (d.le.amax) goto 50
|
||||
imax=i
|
||||
jmax=j
|
||||
amax=d
|
||||
dmax=delta
|
||||
50 continue
|
||||
60 continue
|
||||
do i=1,mm
|
||||
ip=i+1
|
||||
do j=ip,n
|
||||
a=s(i,j)*s(i,j)-s(i,i)*s(i,i)
|
||||
b=-s(i,i)*s(i,j)
|
||||
if (j.gt.m) goto 31
|
||||
a=a+s(j,i)*s(j,i)-s(j,j)*s(j,j)
|
||||
b=b+s(j,i)*s(j,j)
|
||||
31 b=b+b
|
||||
if (a.eq.0.d0) goto 32
|
||||
ba=b/a
|
||||
if (dabs(ba).gt.small) goto 32
|
||||
if (a.gt.0.d0) goto 33
|
||||
tang=-0.5d0*ba
|
||||
cosine=1.d0/dsqrt(1.d0+tang*tang)
|
||||
sine=tang*cosine
|
||||
goto 34
|
||||
32 tang=0.d0
|
||||
if (b.ne.0.d0) tang=(a+dsqrt(a*a+b*b))/b
|
||||
cosine=1.d0/dsqrt(1.d0+tang*tang)
|
||||
sine=tang*cosine
|
||||
goto 34
|
||||
33 cosine=0.d0
|
||||
sine=1.d0
|
||||
34 delta=sine*(a*sine+b*cosine)
|
||||
do k=1,m
|
||||
p=s(k,i)*cosine-s(k,j)*sine
|
||||
q=s(k,i)*sine+s(k,j)*cosine
|
||||
s(k,i)=p
|
||||
s(k,j)=q
|
||||
enddo
|
||||
do k=1,n
|
||||
p=t(k,i)*cosine-t(k,j)*sine
|
||||
q=t(k,i)*sine+t(k,j)*cosine
|
||||
t(k,i)=p
|
||||
t(k,j)=q
|
||||
enddo
|
||||
45 d=dabs(sine)
|
||||
if (d.le.amax) goto 50
|
||||
imax=i
|
||||
jmax=j
|
||||
amax=d
|
||||
dmax=delta
|
||||
50 continue
|
||||
end do
|
||||
end do
|
||||
70 format (' iter=',i4,' largest rotation=',f12.8,
|
||||
* ', vectors',i3,' and',i3,', incr. of diag. squares=',g12.5)
|
||||
71 format (' i,j,a,b,sin,cos,delta =',2i3,5f10.5)
|
||||
@ -285,22 +301,27 @@ C conv=1.d-6
|
||||
* 'in subroutine maxovl ***'//)
|
||||
stop
|
||||
100 continue
|
||||
do 120 j=1,n
|
||||
if (s(j,j).gt.0.d0) goto 120
|
||||
do 105 i=1,m
|
||||
105 s(i,j)=-s(i,j)
|
||||
do 110 i=1,n
|
||||
110 t(i,j)=-t(i,j)
|
||||
120 continue
|
||||
do j=1,n
|
||||
if (s(j,j).gt.0.d0) cycle
|
||||
do i=1,m
|
||||
s(i,j)=-s(i,j)
|
||||
enddo
|
||||
do i=1,n
|
||||
t(i,j)=-t(i,j)
|
||||
enddo
|
||||
enddo
|
||||
sum=0.d0
|
||||
do 125 i=1,m
|
||||
125 sum=sum+s(i,i)*s(i,i)
|
||||
do i=1,m
|
||||
sum=sum+s(i,i)*s(i,i)
|
||||
enddo
|
||||
sum=sum/m
|
||||
do 122 i=1,m
|
||||
do 122 j=1,n
|
||||
sw=s(i,j)
|
||||
s(i,j)=w(i,j)
|
||||
122 w(i,j)=sw
|
||||
do i=1,m
|
||||
do j=1,n
|
||||
sw=s(i,j)
|
||||
s(i,j)=w(i,j)
|
||||
w(i,j)=sw
|
||||
enddo
|
||||
enddo
|
||||
return
|
||||
end
|
||||
|
||||
|
@ -238,11 +238,11 @@ subroutine cache_map_sort(map)
|
||||
iorder(i) = i
|
||||
enddo
|
||||
if (cache_key_kind == 2) then
|
||||
call i2radix_sort(map%key,iorder,map%n_elements,-1)
|
||||
call i2sort(map%key,iorder,map%n_elements,-1)
|
||||
else if (cache_key_kind == 4) then
|
||||
call iradix_sort(map%key,iorder,map%n_elements,-1)
|
||||
call isort(map%key,iorder,map%n_elements,-1)
|
||||
else if (cache_key_kind == 8) then
|
||||
call i8radix_sort(map%key,iorder,map%n_elements,-1)
|
||||
call i8sort(map%key,iorder,map%n_elements,-1)
|
||||
endif
|
||||
if (integral_kind == 4) then
|
||||
call set_order(map%value,iorder,map%n_elements)
|
||||
|
@ -92,9 +92,9 @@ subroutine overlap_gaussian_xyz(A_center,B_center,alpha,beta,power_A,&
|
||||
overlap = overlap_x * overlap_y * overlap_z
|
||||
|
||||
end
|
||||
|
||||
|
||||
! ---
|
||||
|
||||
|
||||
subroutine overlap_x_abs(A_center, B_center, alpha, beta, power_A, power_B, overlap_x, lower_exp_val, dx, nx)
|
||||
|
||||
BEGIN_DOC
|
||||
@ -151,4 +151,71 @@ subroutine overlap_x_abs(A_center, B_center, alpha, beta, power_A, power_B, over
|
||||
end
|
||||
|
||||
|
||||
! ---
|
||||
|
||||
subroutine overlap_gaussian_xyz_v(A_center,B_center,alpha,beta,power_A,&
|
||||
power_B,overlap,dim, n_points)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
!.. math::
|
||||
!
|
||||
! S_x = \int (x-A_x)^{a_x} exp(-\alpha(x-A_x)^2) (x-B_x)^{b_x} exp(-beta(x-B_x)^2) dx \\
|
||||
! S = S_x S_y S_z
|
||||
!
|
||||
END_DOC
|
||||
include 'constants.include.F'
|
||||
integer,intent(in) :: dim, n_points
|
||||
double precision,intent(in) :: A_center(n_points,3),B_center(3) ! center of the x1 functions
|
||||
double precision, intent(in) :: alpha,beta
|
||||
integer,intent(in) :: power_A(3), power_B(3) ! power of the x1 functions
|
||||
double precision, intent(out) :: overlap(n_points)
|
||||
double precision :: F_integral_tab(0:max_dim)
|
||||
double precision :: p, overlap_x, overlap_y, overlap_z
|
||||
double precision, allocatable :: P_new(:,:,:),P_center(:,:),fact_p(:), fact_pp(:), pp(:)
|
||||
integer :: iorder_p(3), ipoint, ldp
|
||||
integer :: nmax
|
||||
double precision :: F_integral
|
||||
|
||||
ldp = maxval( power_A(1:3) + power_B(1:3) )
|
||||
allocate(P_new(n_points,0:ldp,3), P_center(n_points,3), fact_p(n_points), &
|
||||
fact_pp(n_points), pp(n_points))
|
||||
|
||||
call give_explicit_poly_and_gaussian_v(P_new, ldp, P_center,p,fact_p,iorder_p,alpha,beta,power_A,power_B,A_center,B_center,n_points)
|
||||
|
||||
nmax = maxval(iorder_p)
|
||||
do i=0, nmax
|
||||
F_integral_tab(i) = F_integral(i,p)
|
||||
enddo
|
||||
|
||||
integer :: i
|
||||
|
||||
call gaussian_product_v(alpha,A_center,beta,B_center,fact_pp,pp,P_center,n_points)
|
||||
|
||||
do ipoint=1,n_points
|
||||
if(fact_p(ipoint).lt.1d-20)then
|
||||
overlap(ipoint) = 1.d-10
|
||||
cycle
|
||||
endif
|
||||
|
||||
overlap_x = P_new(ipoint,0,1) * F_integral_tab(0)
|
||||
do i = 1,iorder_p(1)
|
||||
overlap_x = overlap_x + P_new(ipoint,i,1) * F_integral_tab(i)
|
||||
enddo
|
||||
|
||||
overlap_y = P_new(ipoint,0,2) * F_integral_tab(0)
|
||||
do i = 1,iorder_p(2)
|
||||
overlap_y = overlap_y + P_new(ipoint,i,2) * F_integral_tab(i)
|
||||
enddo
|
||||
|
||||
overlap_z = P_new(ipoint,0,3) * F_integral_tab(0)
|
||||
do i = 1,iorder_p(3)
|
||||
overlap_z = overlap_z + P_new(ipoint,i,3) * F_integral_tab(i)
|
||||
enddo
|
||||
|
||||
overlap(ipoint) = overlap_x * overlap_y * overlap_z * fact_pp(ipoint)
|
||||
enddo
|
||||
|
||||
deallocate(P_new, P_center, fact_p, pp, fact_pp)
|
||||
end
|
||||
|
||||
! ---
|
||||
|
373
src/utils/qsort.c
Normal file
373
src/utils/qsort.c
Normal file
@ -0,0 +1,373 @@
|
||||
/* [[file:~/qp2/src/utils/qsort.org::*Generated%20C%20file][Generated C file:1]] */
|
||||
#include <stdlib.h>
|
||||
#include <stdint.h>
|
||||
|
||||
struct int16_t_comp {
|
||||
int16_t x;
|
||||
int32_t i;
|
||||
};
|
||||
|
||||
int compare_int16_t( const void * l, const void * r )
|
||||
{
|
||||
const int16_t * restrict _l= l;
|
||||
const int16_t * restrict _r= r;
|
||||
if( *_l > *_r ) return 1;
|
||||
if( *_l < *_r ) return -1;
|
||||
return 0;
|
||||
}
|
||||
|
||||
void qsort_int16_t(int16_t* restrict A_in, int32_t* restrict iorder, int32_t isize) {
|
||||
struct int16_t_comp* A = malloc(isize * sizeof(struct int16_t_comp));
|
||||
if (A == NULL) return;
|
||||
|
||||
for (int i=0 ; i<isize ; ++i) {
|
||||
A[i].x = A_in[i];
|
||||
A[i].i = iorder[i];
|
||||
}
|
||||
|
||||
qsort( (void*) A, (size_t) isize, sizeof(struct int16_t_comp), compare_int16_t);
|
||||
|
||||
for (int i=0 ; i<isize ; ++i) {
|
||||
A_in[i] = A[i].x;
|
||||
iorder[i] = A[i].i;
|
||||
}
|
||||
free(A);
|
||||
}
|
||||
|
||||
void qsort_int16_t_noidx(int16_t* A, int32_t isize) {
|
||||
qsort( (void*) A, (size_t) isize, sizeof(int16_t), compare_int16_t);
|
||||
}
|
||||
|
||||
|
||||
struct int16_t_comp_big {
|
||||
int16_t x;
|
||||
int64_t i;
|
||||
};
|
||||
|
||||
int compare_int16_t_big( const void * l, const void * r )
|
||||
{
|
||||
const int16_t * restrict _l= l;
|
||||
const int16_t * restrict _r= r;
|
||||
if( *_l > *_r ) return 1;
|
||||
if( *_l < *_r ) return -1;
|
||||
return 0;
|
||||
}
|
||||
|
||||
void qsort_int16_t_big(int16_t* restrict A_in, int64_t* restrict iorder, int64_t isize) {
|
||||
struct int16_t_comp_big* A = malloc(isize * sizeof(struct int16_t_comp_big));
|
||||
if (A == NULL) return;
|
||||
|
||||
for (int i=0 ; i<isize ; ++i) {
|
||||
A[i].x = A_in[i];
|
||||
A[i].i = iorder[i];
|
||||
}
|
||||
|
||||
qsort( (void*) A, (size_t) isize, sizeof(struct int16_t_comp_big), compare_int16_t_big);
|
||||
|
||||
for (int i=0 ; i<isize ; ++i) {
|
||||
A_in[i] = A[i].x;
|
||||
iorder[i] = A[i].i;
|
||||
}
|
||||
free(A);
|
||||
}
|
||||
|
||||
void qsort_int16_t_noidx_big(int16_t* A, int64_t isize) {
|
||||
qsort( (void*) A, (size_t) isize, sizeof(int16_t), compare_int16_t_big);
|
||||
}
|
||||
|
||||
|
||||
struct int32_t_comp {
|
||||
int32_t x;
|
||||
int32_t i;
|
||||
};
|
||||
|
||||
int compare_int32_t( const void * l, const void * r )
|
||||
{
|
||||
const int32_t * restrict _l= l;
|
||||
const int32_t * restrict _r= r;
|
||||
if( *_l > *_r ) return 1;
|
||||
if( *_l < *_r ) return -1;
|
||||
return 0;
|
||||
}
|
||||
|
||||
void qsort_int32_t(int32_t* restrict A_in, int32_t* restrict iorder, int32_t isize) {
|
||||
struct int32_t_comp* A = malloc(isize * sizeof(struct int32_t_comp));
|
||||
if (A == NULL) return;
|
||||
|
||||
for (int i=0 ; i<isize ; ++i) {
|
||||
A[i].x = A_in[i];
|
||||
A[i].i = iorder[i];
|
||||
}
|
||||
|
||||
qsort( (void*) A, (size_t) isize, sizeof(struct int32_t_comp), compare_int32_t);
|
||||
|
||||
for (int i=0 ; i<isize ; ++i) {
|
||||
A_in[i] = A[i].x;
|
||||
iorder[i] = A[i].i;
|
||||
}
|
||||
free(A);
|
||||
}
|
||||
|
||||
void qsort_int32_t_noidx(int32_t* A, int32_t isize) {
|
||||
qsort( (void*) A, (size_t) isize, sizeof(int32_t), compare_int32_t);
|
||||
}
|
||||
|
||||
|
||||
struct int32_t_comp_big {
|
||||
int32_t x;
|
||||
int64_t i;
|
||||
};
|
||||
|
||||
int compare_int32_t_big( const void * l, const void * r )
|
||||
{
|
||||
const int32_t * restrict _l= l;
|
||||
const int32_t * restrict _r= r;
|
||||
if( *_l > *_r ) return 1;
|
||||
if( *_l < *_r ) return -1;
|
||||
return 0;
|
||||
}
|
||||
|
||||
void qsort_int32_t_big(int32_t* restrict A_in, int64_t* restrict iorder, int64_t isize) {
|
||||
struct int32_t_comp_big* A = malloc(isize * sizeof(struct int32_t_comp_big));
|
||||
if (A == NULL) return;
|
||||
|
||||
for (int i=0 ; i<isize ; ++i) {
|
||||
A[i].x = A_in[i];
|
||||
A[i].i = iorder[i];
|
||||
}
|
||||
|
||||
qsort( (void*) A, (size_t) isize, sizeof(struct int32_t_comp_big), compare_int32_t_big);
|
||||
|
||||
for (int i=0 ; i<isize ; ++i) {
|
||||
A_in[i] = A[i].x;
|
||||
iorder[i] = A[i].i;
|
||||
}
|
||||
free(A);
|
||||
}
|
||||
|
||||
void qsort_int32_t_noidx_big(int32_t* A, int64_t isize) {
|
||||
qsort( (void*) A, (size_t) isize, sizeof(int32_t), compare_int32_t_big);
|
||||
}
|
||||
|
||||
|
||||
struct int64_t_comp {
|
||||
int64_t x;
|
||||
int32_t i;
|
||||
};
|
||||
|
||||
int compare_int64_t( const void * l, const void * r )
|
||||
{
|
||||
const int64_t * restrict _l= l;
|
||||
const int64_t * restrict _r= r;
|
||||
if( *_l > *_r ) return 1;
|
||||
if( *_l < *_r ) return -1;
|
||||
return 0;
|
||||
}
|
||||
|
||||
void qsort_int64_t(int64_t* restrict A_in, int32_t* restrict iorder, int32_t isize) {
|
||||
struct int64_t_comp* A = malloc(isize * sizeof(struct int64_t_comp));
|
||||
if (A == NULL) return;
|
||||
|
||||
for (int i=0 ; i<isize ; ++i) {
|
||||
A[i].x = A_in[i];
|
||||
A[i].i = iorder[i];
|
||||
}
|
||||
|
||||
qsort( (void*) A, (size_t) isize, sizeof(struct int64_t_comp), compare_int64_t);
|
||||
|
||||
for (int i=0 ; i<isize ; ++i) {
|
||||
A_in[i] = A[i].x;
|
||||
iorder[i] = A[i].i;
|
||||
}
|
||||
free(A);
|
||||
}
|
||||
|
||||
void qsort_int64_t_noidx(int64_t* A, int32_t isize) {
|
||||
qsort( (void*) A, (size_t) isize, sizeof(int64_t), compare_int64_t);
|
||||
}
|
||||
|
||||
|
||||
struct int64_t_comp_big {
|
||||
int64_t x;
|
||||
int64_t i;
|
||||
};
|
||||
|
||||
int compare_int64_t_big( const void * l, const void * r )
|
||||
{
|
||||
const int64_t * restrict _l= l;
|
||||
const int64_t * restrict _r= r;
|
||||
if( *_l > *_r ) return 1;
|
||||
if( *_l < *_r ) return -1;
|
||||
return 0;
|
||||
}
|
||||
|
||||
void qsort_int64_t_big(int64_t* restrict A_in, int64_t* restrict iorder, int64_t isize) {
|
||||
struct int64_t_comp_big* A = malloc(isize * sizeof(struct int64_t_comp_big));
|
||||
if (A == NULL) return;
|
||||
|
||||
for (int i=0 ; i<isize ; ++i) {
|
||||
A[i].x = A_in[i];
|
||||
A[i].i = iorder[i];
|
||||
}
|
||||
|
||||
qsort( (void*) A, (size_t) isize, sizeof(struct int64_t_comp_big), compare_int64_t_big);
|
||||
|
||||
for (int i=0 ; i<isize ; ++i) {
|
||||
A_in[i] = A[i].x;
|
||||
iorder[i] = A[i].i;
|
||||
}
|
||||
free(A);
|
||||
}
|
||||
|
||||
void qsort_int64_t_noidx_big(int64_t* A, int64_t isize) {
|
||||
qsort( (void*) A, (size_t) isize, sizeof(int64_t), compare_int64_t_big);
|
||||
}
|
||||
|
||||
|
||||
struct double_comp {
|
||||
double x;
|
||||
int32_t i;
|
||||
};
|
||||
|
||||
int compare_double( const void * l, const void * r )
|
||||
{
|
||||
const double * restrict _l= l;
|
||||
const double * restrict _r= r;
|
||||
if( *_l > *_r ) return 1;
|
||||
if( *_l < *_r ) return -1;
|
||||
return 0;
|
||||
}
|
||||
|
||||
void qsort_double(double* restrict A_in, int32_t* restrict iorder, int32_t isize) {
|
||||
struct double_comp* A = malloc(isize * sizeof(struct double_comp));
|
||||
if (A == NULL) return;
|
||||
|
||||
for (int i=0 ; i<isize ; ++i) {
|
||||
A[i].x = A_in[i];
|
||||
A[i].i = iorder[i];
|
||||
}
|
||||
|
||||
qsort( (void*) A, (size_t) isize, sizeof(struct double_comp), compare_double);
|
||||
|
||||
for (int i=0 ; i<isize ; ++i) {
|
||||
A_in[i] = A[i].x;
|
||||
iorder[i] = A[i].i;
|
||||
}
|
||||
free(A);
|
||||
}
|
||||
|
||||
void qsort_double_noidx(double* A, int32_t isize) {
|
||||
qsort( (void*) A, (size_t) isize, sizeof(double), compare_double);
|
||||
}
|
||||
|
||||
|
||||
struct double_comp_big {
|
||||
double x;
|
||||
int64_t i;
|
||||
};
|
||||
|
||||
int compare_double_big( const void * l, const void * r )
|
||||
{
|
||||
const double * restrict _l= l;
|
||||
const double * restrict _r= r;
|
||||
if( *_l > *_r ) return 1;
|
||||
if( *_l < *_r ) return -1;
|
||||
return 0;
|
||||
}
|
||||
|
||||
void qsort_double_big(double* restrict A_in, int64_t* restrict iorder, int64_t isize) {
|
||||
struct double_comp_big* A = malloc(isize * sizeof(struct double_comp_big));
|
||||
if (A == NULL) return;
|
||||
|
||||
for (int i=0 ; i<isize ; ++i) {
|
||||
A[i].x = A_in[i];
|
||||
A[i].i = iorder[i];
|
||||
}
|
||||
|
||||
qsort( (void*) A, (size_t) isize, sizeof(struct double_comp_big), compare_double_big);
|
||||
|
||||
for (int i=0 ; i<isize ; ++i) {
|
||||
A_in[i] = A[i].x;
|
||||
iorder[i] = A[i].i;
|
||||
}
|
||||
free(A);
|
||||
}
|
||||
|
||||
void qsort_double_noidx_big(double* A, int64_t isize) {
|
||||
qsort( (void*) A, (size_t) isize, sizeof(double), compare_double_big);
|
||||
}
|
||||
|
||||
|
||||
struct float_comp {
|
||||
float x;
|
||||
int32_t i;
|
||||
};
|
||||
|
||||
int compare_float( const void * l, const void * r )
|
||||
{
|
||||
const float * restrict _l= l;
|
||||
const float * restrict _r= r;
|
||||
if( *_l > *_r ) return 1;
|
||||
if( *_l < *_r ) return -1;
|
||||
return 0;
|
||||
}
|
||||
|
||||
void qsort_float(float* restrict A_in, int32_t* restrict iorder, int32_t isize) {
|
||||
struct float_comp* A = malloc(isize * sizeof(struct float_comp));
|
||||
if (A == NULL) return;
|
||||
|
||||
for (int i=0 ; i<isize ; ++i) {
|
||||
A[i].x = A_in[i];
|
||||
A[i].i = iorder[i];
|
||||
}
|
||||
|
||||
qsort( (void*) A, (size_t) isize, sizeof(struct float_comp), compare_float);
|
||||
|
||||
for (int i=0 ; i<isize ; ++i) {
|
||||
A_in[i] = A[i].x;
|
||||
iorder[i] = A[i].i;
|
||||
}
|
||||
free(A);
|
||||
}
|
||||
|
||||
void qsort_float_noidx(float* A, int32_t isize) {
|
||||
qsort( (void*) A, (size_t) isize, sizeof(float), compare_float);
|
||||
}
|
||||
|
||||
|
||||
struct float_comp_big {
|
||||
float x;
|
||||
int64_t i;
|
||||
};
|
||||
|
||||
int compare_float_big( const void * l, const void * r )
|
||||
{
|
||||
const float * restrict _l= l;
|
||||
const float * restrict _r= r;
|
||||
if( *_l > *_r ) return 1;
|
||||
if( *_l < *_r ) return -1;
|
||||
return 0;
|
||||
}
|
||||
|
||||
void qsort_float_big(float* restrict A_in, int64_t* restrict iorder, int64_t isize) {
|
||||
struct float_comp_big* A = malloc(isize * sizeof(struct float_comp_big));
|
||||
if (A == NULL) return;
|
||||
|
||||
for (int i=0 ; i<isize ; ++i) {
|
||||
A[i].x = A_in[i];
|
||||
A[i].i = iorder[i];
|
||||
}
|
||||
|
||||
qsort( (void*) A, (size_t) isize, sizeof(struct float_comp_big), compare_float_big);
|
||||
|
||||
for (int i=0 ; i<isize ; ++i) {
|
||||
A_in[i] = A[i].x;
|
||||
iorder[i] = A[i].i;
|
||||
}
|
||||
free(A);
|
||||
}
|
||||
|
||||
void qsort_float_noidx_big(float* A, int64_t isize) {
|
||||
qsort( (void*) A, (size_t) isize, sizeof(float), compare_float_big);
|
||||
}
|
||||
/* Generated C file:1 ends here */
|
169
src/utils/qsort.org
Normal file
169
src/utils/qsort.org
Normal file
@ -0,0 +1,169 @@
|
||||
#+TITLE: Quick sort binding for Fortran
|
||||
|
||||
* C template
|
||||
|
||||
#+NAME: c_template
|
||||
#+BEGIN_SRC c
|
||||
struct TYPE_comp_big {
|
||||
TYPE x;
|
||||
int32_t i;
|
||||
};
|
||||
|
||||
int compare_TYPE_big( const void * l, const void * r )
|
||||
{
|
||||
const TYPE * restrict _l= l;
|
||||
const TYPE * restrict _r= r;
|
||||
if( *_l > *_r ) return 1;
|
||||
if( *_l < *_r ) return -1;
|
||||
return 0;
|
||||
}
|
||||
|
||||
void qsort_TYPE_big(TYPE* restrict A_in, int32_t* restrict iorder, int32_t isize) {
|
||||
struct TYPE_comp_big* A = malloc(isize * sizeof(struct TYPE_comp_big));
|
||||
if (A == NULL) return;
|
||||
|
||||
for (int i=0 ; i<isize ; ++i) {
|
||||
A[i].x = A_in[i];
|
||||
A[i].i = iorder[i];
|
||||
}
|
||||
|
||||
qsort( (void*) A, (size_t) isize, sizeof(struct TYPE_comp_big), compare_TYPE_big);
|
||||
|
||||
for (int i=0 ; i<isize ; ++i) {
|
||||
A_in[i] = A[i].x;
|
||||
iorder[i] = A[i].i;
|
||||
}
|
||||
free(A);
|
||||
}
|
||||
|
||||
void qsort_TYPE_noidx_big(TYPE* A, int32_t isize) {
|
||||
qsort( (void*) A, (size_t) isize, sizeof(TYPE), compare_TYPE_big);
|
||||
}
|
||||
#+END_SRC
|
||||
|
||||
* Fortran template
|
||||
|
||||
#+NAME:f_template
|
||||
#+BEGIN_SRC f90
|
||||
subroutine Lsort_big_c(A, iorder, isize) bind(C, name="qsort_TYPE_big")
|
||||
use iso_c_binding
|
||||
integer(c_int32_t), value :: isize
|
||||
integer(c_int32_t) :: iorder(isize)
|
||||
real (c_TYPE) :: A(isize)
|
||||
end subroutine Lsort_big_c
|
||||
|
||||
subroutine Lsort_noidx_big_c(A, isize) bind(C, name="qsort_TYPE_noidx_big")
|
||||
use iso_c_binding
|
||||
integer(c_int32_t), value :: isize
|
||||
real (c_TYPE) :: A(isize)
|
||||
end subroutine Lsort_noidx_big_c
|
||||
|
||||
#+END_SRC
|
||||
|
||||
#+NAME:f_template2
|
||||
#+BEGIN_SRC f90
|
||||
subroutine Lsort_big(A, iorder, isize)
|
||||
use qsort_module
|
||||
use iso_c_binding
|
||||
integer(c_int32_t) :: isize
|
||||
integer(c_int32_t) :: iorder(isize)
|
||||
real (c_TYPE) :: A(isize)
|
||||
call Lsort_big_c(A, iorder, isize)
|
||||
end subroutine Lsort_big
|
||||
|
||||
subroutine Lsort_noidx_big(A, isize)
|
||||
use iso_c_binding
|
||||
use qsort_module
|
||||
integer(c_int32_t) :: isize
|
||||
real (c_TYPE) :: A(isize)
|
||||
call Lsort_noidx_big_c(A, isize)
|
||||
end subroutine Lsort_noidx_big
|
||||
|
||||
#+END_SRC
|
||||
|
||||
* Python scripts for type replacements
|
||||
|
||||
#+NAME: replaced
|
||||
#+begin_src python :results output :noweb yes
|
||||
data = """
|
||||
<<c_template>>
|
||||
"""
|
||||
for typ in ["int16_t", "int32_t", "int64_t", "double", "float"]:
|
||||
print( data.replace("TYPE", typ).replace("_big", "") )
|
||||
print( data.replace("int32_t", "int64_t").replace("TYPE", typ) )
|
||||
#+end_src
|
||||
|
||||
#+NAME: replaced_f
|
||||
#+begin_src python :results output :noweb yes
|
||||
data = """
|
||||
<<f_template>>
|
||||
"""
|
||||
c1 = {
|
||||
"int16_t": "i2",
|
||||
"int32_t": "i",
|
||||
"int64_t": "i8",
|
||||
"double": "d",
|
||||
"float": ""
|
||||
}
|
||||
c2 = {
|
||||
"int16_t": "integer",
|
||||
"int32_t": "integer",
|
||||
"int64_t": "integer",
|
||||
"double": "real",
|
||||
"float": "real"
|
||||
}
|
||||
|
||||
for typ in ["int16_t", "int32_t", "int64_t", "double", "float"]:
|
||||
print( data.replace("real",c2[typ]).replace("L",c1[typ]).replace("TYPE", typ).replace("_big", "") )
|
||||
print( data.replace("real",c2[typ]).replace("L",c1[typ]).replace("int32_t", "int64_t").replace("TYPE", typ) )
|
||||
#+end_src
|
||||
|
||||
#+NAME: replaced_f2
|
||||
#+begin_src python :results output :noweb yes
|
||||
data = """
|
||||
<<f_template2>>
|
||||
"""
|
||||
c1 = {
|
||||
"int16_t": "i2",
|
||||
"int32_t": "i",
|
||||
"int64_t": "i8",
|
||||
"double": "d",
|
||||
"float": ""
|
||||
}
|
||||
c2 = {
|
||||
"int16_t": "integer",
|
||||
"int32_t": "integer",
|
||||
"int64_t": "integer",
|
||||
"double": "real",
|
||||
"float": "real"
|
||||
}
|
||||
|
||||
for typ in ["int16_t", "int32_t", "int64_t", "double", "float"]:
|
||||
print( data.replace("real",c2[typ]).replace("L",c1[typ]).replace("TYPE", typ).replace("_big", "") )
|
||||
print( data.replace("real",c2[typ]).replace("L",c1[typ]).replace("int32_t", "int64_t").replace("TYPE", typ) )
|
||||
#+end_src
|
||||
|
||||
* Generated C file
|
||||
|
||||
#+BEGIN_SRC c :comments link :tangle qsort.c :noweb yes
|
||||
#include <stdlib.h>
|
||||
#include <stdint.h>
|
||||
<<replaced()>>
|
||||
#+END_SRC
|
||||
|
||||
* Generated Fortran file
|
||||
|
||||
#+BEGIN_SRC f90 :tangle qsort_module.f90 :noweb yes
|
||||
module qsort_module
|
||||
use iso_c_binding
|
||||
|
||||
interface
|
||||
<<replaced_f()>>
|
||||
end interface
|
||||
|
||||
end module qsort_module
|
||||
|
||||
<<replaced_f2()>>
|
||||
|
||||
#+END_SRC
|
||||
|
347
src/utils/qsort_module.f90
Normal file
347
src/utils/qsort_module.f90
Normal file
@ -0,0 +1,347 @@
|
||||
module qsort_module
|
||||
use iso_c_binding
|
||||
|
||||
interface
|
||||
|
||||
subroutine i2sort_c(A, iorder, isize) bind(C, name="qsort_int16_t")
|
||||
use iso_c_binding
|
||||
integer(c_int32_t), value :: isize
|
||||
integer(c_int32_t) :: iorder(isize)
|
||||
integer (c_int16_t) :: A(isize)
|
||||
end subroutine i2sort_c
|
||||
|
||||
subroutine i2sort_noidx_c(A, isize) bind(C, name="qsort_int16_t_noidx")
|
||||
use iso_c_binding
|
||||
integer(c_int32_t), value :: isize
|
||||
integer (c_int16_t) :: A(isize)
|
||||
end subroutine i2sort_noidx_c
|
||||
|
||||
|
||||
|
||||
subroutine i2sort_big_c(A, iorder, isize) bind(C, name="qsort_int16_t_big")
|
||||
use iso_c_binding
|
||||
integer(c_int64_t), value :: isize
|
||||
integer(c_int64_t) :: iorder(isize)
|
||||
integer (c_int16_t) :: A(isize)
|
||||
end subroutine i2sort_big_c
|
||||
|
||||
subroutine i2sort_noidx_big_c(A, isize) bind(C, name="qsort_int16_t_noidx_big")
|
||||
use iso_c_binding
|
||||
integer(c_int64_t), value :: isize
|
||||
integer (c_int16_t) :: A(isize)
|
||||
end subroutine i2sort_noidx_big_c
|
||||
|
||||
|
||||
|
||||
subroutine isort_c(A, iorder, isize) bind(C, name="qsort_int32_t")
|
||||
use iso_c_binding
|
||||
integer(c_int32_t), value :: isize
|
||||
integer(c_int32_t) :: iorder(isize)
|
||||
integer (c_int32_t) :: A(isize)
|
||||
end subroutine isort_c
|
||||
|
||||
subroutine isort_noidx_c(A, isize) bind(C, name="qsort_int32_t_noidx")
|
||||
use iso_c_binding
|
||||
integer(c_int32_t), value :: isize
|
||||
integer (c_int32_t) :: A(isize)
|
||||
end subroutine isort_noidx_c
|
||||
|
||||
|
||||
|
||||
subroutine isort_big_c(A, iorder, isize) bind(C, name="qsort_int32_t_big")
|
||||
use iso_c_binding
|
||||
integer(c_int64_t), value :: isize
|
||||
integer(c_int64_t) :: iorder(isize)
|
||||
integer (c_int32_t) :: A(isize)
|
||||
end subroutine isort_big_c
|
||||
|
||||
subroutine isort_noidx_big_c(A, isize) bind(C, name="qsort_int32_t_noidx_big")
|
||||
use iso_c_binding
|
||||
integer(c_int64_t), value :: isize
|
||||
integer (c_int32_t) :: A(isize)
|
||||
end subroutine isort_noidx_big_c
|
||||
|
||||
|
||||
|
||||
subroutine i8sort_c(A, iorder, isize) bind(C, name="qsort_int64_t")
|
||||
use iso_c_binding
|
||||
integer(c_int32_t), value :: isize
|
||||
integer(c_int32_t) :: iorder(isize)
|
||||
integer (c_int64_t) :: A(isize)
|
||||
end subroutine i8sort_c
|
||||
|
||||
subroutine i8sort_noidx_c(A, isize) bind(C, name="qsort_int64_t_noidx")
|
||||
use iso_c_binding
|
||||
integer(c_int32_t), value :: isize
|
||||
integer (c_int64_t) :: A(isize)
|
||||
end subroutine i8sort_noidx_c
|
||||
|
||||
|
||||
|
||||
subroutine i8sort_big_c(A, iorder, isize) bind(C, name="qsort_int64_t_big")
|
||||
use iso_c_binding
|
||||
integer(c_int64_t), value :: isize
|
||||
integer(c_int64_t) :: iorder(isize)
|
||||
integer (c_int64_t) :: A(isize)
|
||||
end subroutine i8sort_big_c
|
||||
|
||||
subroutine i8sort_noidx_big_c(A, isize) bind(C, name="qsort_int64_t_noidx_big")
|
||||
use iso_c_binding
|
||||
integer(c_int64_t), value :: isize
|
||||
integer (c_int64_t) :: A(isize)
|
||||
end subroutine i8sort_noidx_big_c
|
||||
|
||||
|
||||
|
||||
subroutine dsort_c(A, iorder, isize) bind(C, name="qsort_double")
|
||||
use iso_c_binding
|
||||
integer(c_int32_t), value :: isize
|
||||
integer(c_int32_t) :: iorder(isize)
|
||||
real (c_double) :: A(isize)
|
||||
end subroutine dsort_c
|
||||
|
||||
subroutine dsort_noidx_c(A, isize) bind(C, name="qsort_double_noidx")
|
||||
use iso_c_binding
|
||||
integer(c_int32_t), value :: isize
|
||||
real (c_double) :: A(isize)
|
||||
end subroutine dsort_noidx_c
|
||||
|
||||
|
||||
|
||||
subroutine dsort_big_c(A, iorder, isize) bind(C, name="qsort_double_big")
|
||||
use iso_c_binding
|
||||
integer(c_int64_t), value :: isize
|
||||
integer(c_int64_t) :: iorder(isize)
|
||||
real (c_double) :: A(isize)
|
||||
end subroutine dsort_big_c
|
||||
|
||||
subroutine dsort_noidx_big_c(A, isize) bind(C, name="qsort_double_noidx_big")
|
||||
use iso_c_binding
|
||||
integer(c_int64_t), value :: isize
|
||||
real (c_double) :: A(isize)
|
||||
end subroutine dsort_noidx_big_c
|
||||
|
||||
|
||||
|
||||
subroutine sort_c(A, iorder, isize) bind(C, name="qsort_float")
|
||||
use iso_c_binding
|
||||
integer(c_int32_t), value :: isize
|
||||
integer(c_int32_t) :: iorder(isize)
|
||||
real (c_float) :: A(isize)
|
||||
end subroutine sort_c
|
||||
|
||||
subroutine sort_noidx_c(A, isize) bind(C, name="qsort_float_noidx")
|
||||
use iso_c_binding
|
||||
integer(c_int32_t), value :: isize
|
||||
real (c_float) :: A(isize)
|
||||
end subroutine sort_noidx_c
|
||||
|
||||
|
||||
|
||||
subroutine sort_big_c(A, iorder, isize) bind(C, name="qsort_float_big")
|
||||
use iso_c_binding
|
||||
integer(c_int64_t), value :: isize
|
||||
integer(c_int64_t) :: iorder(isize)
|
||||
real (c_float) :: A(isize)
|
||||
end subroutine sort_big_c
|
||||
|
||||
subroutine sort_noidx_big_c(A, isize) bind(C, name="qsort_float_noidx_big")
|
||||
use iso_c_binding
|
||||
integer(c_int64_t), value :: isize
|
||||
real (c_float) :: A(isize)
|
||||
end subroutine sort_noidx_big_c
|
||||
|
||||
|
||||
|
||||
end interface
|
||||
|
||||
end module qsort_module
|
||||
|
||||
|
||||
subroutine i2sort(A, iorder, isize)
|
||||
use qsort_module
|
||||
use iso_c_binding
|
||||
integer(c_int32_t) :: isize
|
||||
integer(c_int32_t) :: iorder(isize)
|
||||
integer (c_int16_t) :: A(isize)
|
||||
call i2sort_c(A, iorder, isize)
|
||||
end subroutine i2sort
|
||||
|
||||
subroutine i2sort_noidx(A, isize)
|
||||
use iso_c_binding
|
||||
use qsort_module
|
||||
integer(c_int32_t) :: isize
|
||||
integer (c_int16_t) :: A(isize)
|
||||
call i2sort_noidx_c(A, isize)
|
||||
end subroutine i2sort_noidx
|
||||
|
||||
|
||||
|
||||
subroutine i2sort_big(A, iorder, isize)
|
||||
use qsort_module
|
||||
use iso_c_binding
|
||||
integer(c_int64_t) :: isize
|
||||
integer(c_int64_t) :: iorder(isize)
|
||||
integer (c_int16_t) :: A(isize)
|
||||
call i2sort_big_c(A, iorder, isize)
|
||||
end subroutine i2sort_big
|
||||
|
||||
subroutine i2sort_noidx_big(A, isize)
|
||||
use iso_c_binding
|
||||
use qsort_module
|
||||
integer(c_int64_t) :: isize
|
||||
integer (c_int16_t) :: A(isize)
|
||||
call i2sort_noidx_big_c(A, isize)
|
||||
end subroutine i2sort_noidx_big
|
||||
|
||||
|
||||
|
||||
subroutine isort(A, iorder, isize)
|
||||
use qsort_module
|
||||
use iso_c_binding
|
||||
integer(c_int32_t) :: isize
|
||||
integer(c_int32_t) :: iorder(isize)
|
||||
integer (c_int32_t) :: A(isize)
|
||||
call isort_c(A, iorder, isize)
|
||||
end subroutine isort
|
||||
|
||||
subroutine isort_noidx(A, isize)
|
||||
use iso_c_binding
|
||||
use qsort_module
|
||||
integer(c_int32_t) :: isize
|
||||
integer (c_int32_t) :: A(isize)
|
||||
call isort_noidx_c(A, isize)
|
||||
end subroutine isort_noidx
|
||||
|
||||
|
||||
|
||||
subroutine isort_big(A, iorder, isize)
|
||||
use qsort_module
|
||||
use iso_c_binding
|
||||
integer(c_int64_t) :: isize
|
||||
integer(c_int64_t) :: iorder(isize)
|
||||
integer (c_int32_t) :: A(isize)
|
||||
call isort_big_c(A, iorder, isize)
|
||||
end subroutine isort_big
|
||||
|
||||
subroutine isort_noidx_big(A, isize)
|
||||
use iso_c_binding
|
||||
use qsort_module
|
||||
integer(c_int64_t) :: isize
|
||||
integer (c_int32_t) :: A(isize)
|
||||
call isort_noidx_big_c(A, isize)
|
||||
end subroutine isort_noidx_big
|
||||
|
||||
|
||||
|
||||
subroutine i8sort(A, iorder, isize)
|
||||
use qsort_module
|
||||
use iso_c_binding
|
||||
integer(c_int32_t) :: isize
|
||||
integer(c_int32_t) :: iorder(isize)
|
||||
integer (c_int64_t) :: A(isize)
|
||||
call i8sort_c(A, iorder, isize)
|
||||
end subroutine i8sort
|
||||
|
||||
subroutine i8sort_noidx(A, isize)
|
||||
use iso_c_binding
|
||||
use qsort_module
|
||||
integer(c_int32_t) :: isize
|
||||
integer (c_int64_t) :: A(isize)
|
||||
call i8sort_noidx_c(A, isize)
|
||||
end subroutine i8sort_noidx
|
||||
|
||||
|
||||
|
||||
subroutine i8sort_big(A, iorder, isize)
|
||||
use qsort_module
|
||||
use iso_c_binding
|
||||
integer(c_int64_t) :: isize
|
||||
integer(c_int64_t) :: iorder(isize)
|
||||
integer (c_int64_t) :: A(isize)
|
||||
call i8sort_big_c(A, iorder, isize)
|
||||
end subroutine i8sort_big
|
||||
|
||||
subroutine i8sort_noidx_big(A, isize)
|
||||
use iso_c_binding
|
||||
use qsort_module
|
||||
integer(c_int64_t) :: isize
|
||||
integer (c_int64_t) :: A(isize)
|
||||
call i8sort_noidx_big_c(A, isize)
|
||||
end subroutine i8sort_noidx_big
|
||||
|
||||
|
||||
|
||||
subroutine dsort(A, iorder, isize)
|
||||
use qsort_module
|
||||
use iso_c_binding
|
||||
integer(c_int32_t) :: isize
|
||||
integer(c_int32_t) :: iorder(isize)
|
||||
real (c_double) :: A(isize)
|
||||
call dsort_c(A, iorder, isize)
|
||||
end subroutine dsort
|
||||
|
||||
subroutine dsort_noidx(A, isize)
|
||||
use iso_c_binding
|
||||
use qsort_module
|
||||
integer(c_int32_t) :: isize
|
||||
real (c_double) :: A(isize)
|
||||
call dsort_noidx_c(A, isize)
|
||||
end subroutine dsort_noidx
|
||||
|
||||
|
||||
|
||||
subroutine dsort_big(A, iorder, isize)
|
||||
use qsort_module
|
||||
use iso_c_binding
|
||||
integer(c_int64_t) :: isize
|
||||
integer(c_int64_t) :: iorder(isize)
|
||||
real (c_double) :: A(isize)
|
||||
call dsort_big_c(A, iorder, isize)
|
||||
end subroutine dsort_big
|
||||
|
||||
subroutine dsort_noidx_big(A, isize)
|
||||
use iso_c_binding
|
||||
use qsort_module
|
||||
integer(c_int64_t) :: isize
|
||||
real (c_double) :: A(isize)
|
||||
call dsort_noidx_big_c(A, isize)
|
||||
end subroutine dsort_noidx_big
|
||||
|
||||
|
||||
|
||||
subroutine sort(A, iorder, isize)
|
||||
use qsort_module
|
||||
use iso_c_binding
|
||||
integer(c_int32_t) :: isize
|
||||
integer(c_int32_t) :: iorder(isize)
|
||||
real (c_float) :: A(isize)
|
||||
call sort_c(A, iorder, isize)
|
||||
end subroutine sort
|
||||
|
||||
subroutine sort_noidx(A, isize)
|
||||
use iso_c_binding
|
||||
use qsort_module
|
||||
integer(c_int32_t) :: isize
|
||||
real (c_float) :: A(isize)
|
||||
call sort_noidx_c(A, isize)
|
||||
end subroutine sort_noidx
|
||||
|
||||
|
||||
|
||||
subroutine sort_big(A, iorder, isize)
|
||||
use qsort_module
|
||||
use iso_c_binding
|
||||
integer(c_int64_t) :: isize
|
||||
integer(c_int64_t) :: iorder(isize)
|
||||
real (c_float) :: A(isize)
|
||||
call sort_big_c(A, iorder, isize)
|
||||
end subroutine sort_big
|
||||
|
||||
subroutine sort_noidx_big(A, isize)
|
||||
use iso_c_binding
|
||||
use qsort_module
|
||||
integer(c_int64_t) :: isize
|
||||
real (c_float) :: A(isize)
|
||||
call sort_noidx_big_c(A, isize)
|
||||
end subroutine sort_noidx_big
|
@ -1,222 +1,4 @@
|
||||
BEGIN_TEMPLATE
|
||||
subroutine insertion_$Xsort (x,iorder,isize)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Sort array x(isize) using the insertion sort algorithm.
|
||||
! iorder in input should be (1,2,3,...,isize), and in output
|
||||
! contains the new order of the elements.
|
||||
END_DOC
|
||||
integer,intent(in) :: isize
|
||||
$type,intent(inout) :: x(isize)
|
||||
integer,intent(inout) :: iorder(isize)
|
||||
$type :: xtmp
|
||||
integer :: i, i0, j, jmax
|
||||
|
||||
do i=2,isize
|
||||
xtmp = x(i)
|
||||
i0 = iorder(i)
|
||||
j=i-1
|
||||
do while (j>0)
|
||||
if ((x(j) <= xtmp)) exit
|
||||
x(j+1) = x(j)
|
||||
iorder(j+1) = iorder(j)
|
||||
j=j-1
|
||||
enddo
|
||||
x(j+1) = xtmp
|
||||
iorder(j+1) = i0
|
||||
enddo
|
||||
end subroutine insertion_$Xsort
|
||||
|
||||
subroutine quick_$Xsort(x, iorder, isize)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Sort array x(isize) using the quicksort algorithm.
|
||||
! iorder in input should be (1,2,3,...,isize), and in output
|
||||
! contains the new order of the elements.
|
||||
END_DOC
|
||||
integer,intent(in) :: isize
|
||||
$type,intent(inout) :: x(isize)
|
||||
integer,intent(inout) :: iorder(isize)
|
||||
integer, external :: omp_get_num_threads
|
||||
call rec_$X_quicksort(x,iorder,isize,1,isize,nproc)
|
||||
end
|
||||
|
||||
recursive subroutine rec_$X_quicksort(x, iorder, isize, first, last, level)
|
||||
implicit none
|
||||
integer, intent(in) :: isize, first, last, level
|
||||
integer,intent(inout) :: iorder(isize)
|
||||
$type, intent(inout) :: x(isize)
|
||||
$type :: c, tmp
|
||||
integer :: itmp
|
||||
integer :: i, j
|
||||
|
||||
if(isize<2)return
|
||||
|
||||
c = x( shiftr(first+last,1) )
|
||||
i = first
|
||||
j = last
|
||||
do
|
||||
do while (x(i) < c)
|
||||
i=i+1
|
||||
end do
|
||||
do while (c < x(j))
|
||||
j=j-1
|
||||
end do
|
||||
if (i >= j) exit
|
||||
tmp = x(i)
|
||||
x(i) = x(j)
|
||||
x(j) = tmp
|
||||
itmp = iorder(i)
|
||||
iorder(i) = iorder(j)
|
||||
iorder(j) = itmp
|
||||
i=i+1
|
||||
j=j-1
|
||||
enddo
|
||||
if ( ((i-first <= 10000).and.(last-j <= 10000)).or.(level<=0) ) then
|
||||
if (first < i-1) then
|
||||
call rec_$X_quicksort(x, iorder, isize, first, i-1,level/2)
|
||||
endif
|
||||
if (j+1 < last) then
|
||||
call rec_$X_quicksort(x, iorder, isize, j+1, last,level/2)
|
||||
endif
|
||||
else
|
||||
if (first < i-1) then
|
||||
call rec_$X_quicksort(x, iorder, isize, first, i-1,level/2)
|
||||
endif
|
||||
if (j+1 < last) then
|
||||
call rec_$X_quicksort(x, iorder, isize, j+1, last,level/2)
|
||||
endif
|
||||
endif
|
||||
end
|
||||
|
||||
subroutine heap_$Xsort(x,iorder,isize)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Sort array x(isize) using the heap sort algorithm.
|
||||
! iorder in input should be (1,2,3,...,isize), and in output
|
||||
! contains the new order of the elements.
|
||||
END_DOC
|
||||
integer,intent(in) :: isize
|
||||
$type,intent(inout) :: x(isize)
|
||||
integer,intent(inout) :: iorder(isize)
|
||||
|
||||
integer :: i, k, j, l, i0
|
||||
$type :: xtemp
|
||||
|
||||
l = isize/2+1
|
||||
k = isize
|
||||
do while (.True.)
|
||||
if (l>1) then
|
||||
l=l-1
|
||||
xtemp = x(l)
|
||||
i0 = iorder(l)
|
||||
else
|
||||
xtemp = x(k)
|
||||
i0 = iorder(k)
|
||||
x(k) = x(1)
|
||||
iorder(k) = iorder(1)
|
||||
k = k-1
|
||||
if (k == 1) then
|
||||
x(1) = xtemp
|
||||
iorder(1) = i0
|
||||
exit
|
||||
endif
|
||||
endif
|
||||
i=l
|
||||
j = shiftl(l,1)
|
||||
do while (j<k)
|
||||
if ( x(j) < x(j+1) ) then
|
||||
j=j+1
|
||||
endif
|
||||
if (xtemp < x(j)) then
|
||||
x(i) = x(j)
|
||||
iorder(i) = iorder(j)
|
||||
i = j
|
||||
j = shiftl(j,1)
|
||||
else
|
||||
j = k+1
|
||||
endif
|
||||
enddo
|
||||
if (j==k) then
|
||||
if (xtemp < x(j)) then
|
||||
x(i) = x(j)
|
||||
iorder(i) = iorder(j)
|
||||
i = j
|
||||
j = shiftl(j,1)
|
||||
else
|
||||
j = k+1
|
||||
endif
|
||||
endif
|
||||
x(i) = xtemp
|
||||
iorder(i) = i0
|
||||
enddo
|
||||
end subroutine heap_$Xsort
|
||||
|
||||
subroutine heap_$Xsort_big(x,iorder,isize)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Sort array x(isize) using the heap sort algorithm.
|
||||
! iorder in input should be (1,2,3,...,isize), and in output
|
||||
! contains the new order of the elements.
|
||||
! This is a version for very large arrays where the indices need
|
||||
! to be in integer*8 format
|
||||
END_DOC
|
||||
integer*8,intent(in) :: isize
|
||||
$type,intent(inout) :: x(isize)
|
||||
integer*8,intent(inout) :: iorder(isize)
|
||||
|
||||
integer*8 :: i, k, j, l, i0
|
||||
$type :: xtemp
|
||||
|
||||
l = isize/2+1
|
||||
k = isize
|
||||
do while (.True.)
|
||||
if (l>1) then
|
||||
l=l-1
|
||||
xtemp = x(l)
|
||||
i0 = iorder(l)
|
||||
else
|
||||
xtemp = x(k)
|
||||
i0 = iorder(k)
|
||||
x(k) = x(1)
|
||||
iorder(k) = iorder(1)
|
||||
k = k-1
|
||||
if (k == 1) then
|
||||
x(1) = xtemp
|
||||
iorder(1) = i0
|
||||
exit
|
||||
endif
|
||||
endif
|
||||
i=l
|
||||
j = shiftl(l,1)
|
||||
do while (j<k)
|
||||
if ( x(j) < x(j+1) ) then
|
||||
j=j+1
|
||||
endif
|
||||
if (xtemp < x(j)) then
|
||||
x(i) = x(j)
|
||||
iorder(i) = iorder(j)
|
||||
i = j
|
||||
j = shiftl(j,1)
|
||||
else
|
||||
j = k+1
|
||||
endif
|
||||
enddo
|
||||
if (j==k) then
|
||||
if (xtemp < x(j)) then
|
||||
x(i) = x(j)
|
||||
iorder(i) = iorder(j)
|
||||
i = j
|
||||
j = shiftl(j,1)
|
||||
else
|
||||
j = k+1
|
||||
endif
|
||||
endif
|
||||
x(i) = xtemp
|
||||
iorder(i) = i0
|
||||
enddo
|
||||
|
||||
end subroutine heap_$Xsort_big
|
||||
|
||||
subroutine sorted_$Xnumber(x,isize,n)
|
||||
implicit none
|
||||
@ -250,220 +32,6 @@ SUBST [ X, type ]
|
||||
END_TEMPLATE
|
||||
|
||||
|
||||
!---------------------- INTEL
|
||||
IRP_IF INTEL
|
||||
|
||||
BEGIN_TEMPLATE
|
||||
subroutine $Xsort(x,iorder,isize)
|
||||
use intel
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Sort array x(isize).
|
||||
! iorder in input should be (1,2,3,...,isize), and in output
|
||||
! contains the new order of the elements.
|
||||
END_DOC
|
||||
integer,intent(in) :: isize
|
||||
$type,intent(inout) :: x(isize)
|
||||
integer,intent(inout) :: iorder(isize)
|
||||
integer :: n
|
||||
character, allocatable :: tmp(:)
|
||||
if (isize < 2) return
|
||||
call ippsSortRadixIndexGetBufferSize(isize, $ippsz, n)
|
||||
allocate(tmp(n))
|
||||
call ippsSortRadixIndexAscend_$ityp(x, $n, iorder, isize, tmp)
|
||||
deallocate(tmp)
|
||||
iorder(1:isize) = iorder(1:isize)+1
|
||||
call $Xset_order(x,iorder,isize)
|
||||
end
|
||||
|
||||
subroutine $Xsort_noidx(x,isize)
|
||||
use intel
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Sort array x(isize).
|
||||
! iorder in input should be (1,2,3,...,isize), and in output
|
||||
! contains the new order of the elements.
|
||||
END_DOC
|
||||
integer,intent(in) :: isize
|
||||
$type,intent(inout) :: x(isize)
|
||||
integer :: n
|
||||
character, allocatable :: tmp(:)
|
||||
if (isize < 2) return
|
||||
call ippsSortRadixIndexGetBufferSize(isize, $ippsz, n)
|
||||
allocate(tmp(n))
|
||||
call ippsSortRadixAscend_$ityp_I(x, isize, tmp)
|
||||
deallocate(tmp)
|
||||
end
|
||||
|
||||
SUBST [ X, type, ityp, n, ippsz ]
|
||||
; real ; 32f ; 4 ; 13 ;;
|
||||
i ; integer ; 32s ; 4 ; 11 ;;
|
||||
i2 ; integer*2 ; 16s ; 2 ; 7 ;;
|
||||
END_TEMPLATE
|
||||
|
||||
BEGIN_TEMPLATE
|
||||
|
||||
subroutine $Xsort(x,iorder,isize)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Sort array x(isize).
|
||||
! iorder in input should be (1,2,3,...,isize), and in output
|
||||
! contains the new order of the elements.
|
||||
END_DOC
|
||||
integer,intent(in) :: isize
|
||||
$type,intent(inout) :: x(isize)
|
||||
integer,intent(inout) :: iorder(isize)
|
||||
integer :: n
|
||||
if (isize < 2) then
|
||||
return
|
||||
endif
|
||||
! call sorted_$Xnumber(x,isize,n)
|
||||
! if (isize == n) then
|
||||
! return
|
||||
! endif
|
||||
if ( isize < 32) then
|
||||
call insertion_$Xsort(x,iorder,isize)
|
||||
else
|
||||
! call heap_$Xsort(x,iorder,isize)
|
||||
call quick_$Xsort(x,iorder,isize)
|
||||
endif
|
||||
end subroutine $Xsort
|
||||
|
||||
SUBST [ X, type ]
|
||||
d ; double precision ;;
|
||||
END_TEMPLATE
|
||||
|
||||
BEGIN_TEMPLATE
|
||||
|
||||
subroutine $Xsort(x,iorder,isize)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Sort array x(isize).
|
||||
! iorder in input should be (1,2,3,...,isize), and in output
|
||||
! contains the new order of the elements.
|
||||
END_DOC
|
||||
integer,intent(in) :: isize
|
||||
$type,intent(inout) :: x(isize)
|
||||
integer,intent(inout) :: iorder(isize)
|
||||
integer :: n
|
||||
if (isize < 2) then
|
||||
return
|
||||
endif
|
||||
call sorted_$Xnumber(x,isize,n)
|
||||
if (isize == n) then
|
||||
return
|
||||
endif
|
||||
if ( isize < 32) then
|
||||
call insertion_$Xsort(x,iorder,isize)
|
||||
else
|
||||
call $Xradix_sort(x,iorder,isize,-1)
|
||||
endif
|
||||
end subroutine $Xsort
|
||||
|
||||
SUBST [ X, type ]
|
||||
i8 ; integer*8 ;;
|
||||
END_TEMPLATE
|
||||
|
||||
!---------------------- END INTEL
|
||||
IRP_ELSE
|
||||
!---------------------- NON-INTEL
|
||||
BEGIN_TEMPLATE
|
||||
|
||||
subroutine $Xsort_noidx(x,isize)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Sort array x(isize).
|
||||
END_DOC
|
||||
integer,intent(in) :: isize
|
||||
$type,intent(inout) :: x(isize)
|
||||
integer, allocatable :: iorder(:)
|
||||
integer :: i
|
||||
allocate(iorder(isize))
|
||||
do i=1,isize
|
||||
iorder(i)=i
|
||||
enddo
|
||||
call $Xsort(x,iorder,isize)
|
||||
deallocate(iorder)
|
||||
end subroutine $Xsort_noidx
|
||||
|
||||
SUBST [ X, type ]
|
||||
; real ;;
|
||||
d ; double precision ;;
|
||||
i ; integer ;;
|
||||
i8 ; integer*8 ;;
|
||||
i2 ; integer*2 ;;
|
||||
END_TEMPLATE
|
||||
|
||||
BEGIN_TEMPLATE
|
||||
|
||||
subroutine $Xsort(x,iorder,isize)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Sort array x(isize).
|
||||
! iorder in input should be (1,2,3,...,isize), and in output
|
||||
! contains the new order of the elements.
|
||||
END_DOC
|
||||
integer,intent(in) :: isize
|
||||
$type,intent(inout) :: x(isize)
|
||||
integer,intent(inout) :: iorder(isize)
|
||||
integer :: n
|
||||
if (isize < 2) then
|
||||
return
|
||||
endif
|
||||
! call sorted_$Xnumber(x,isize,n)
|
||||
! if (isize == n) then
|
||||
! return
|
||||
! endif
|
||||
if ( isize < 32) then
|
||||
call insertion_$Xsort(x,iorder,isize)
|
||||
else
|
||||
! call heap_$Xsort(x,iorder,isize)
|
||||
call quick_$Xsort(x,iorder,isize)
|
||||
endif
|
||||
end subroutine $Xsort
|
||||
|
||||
SUBST [ X, type ]
|
||||
; real ;;
|
||||
d ; double precision ;;
|
||||
END_TEMPLATE
|
||||
|
||||
BEGIN_TEMPLATE
|
||||
|
||||
subroutine $Xsort(x,iorder,isize)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Sort array x(isize).
|
||||
! iorder in input should be (1,2,3,...,isize), and in output
|
||||
! contains the new order of the elements.
|
||||
END_DOC
|
||||
integer,intent(in) :: isize
|
||||
$type,intent(inout) :: x(isize)
|
||||
integer,intent(inout) :: iorder(isize)
|
||||
integer :: n
|
||||
if (isize < 2) then
|
||||
return
|
||||
endif
|
||||
call sorted_$Xnumber(x,isize,n)
|
||||
if (isize == n) then
|
||||
return
|
||||
endif
|
||||
if ( isize < 32) then
|
||||
call insertion_$Xsort(x,iorder,isize)
|
||||
else
|
||||
call $Xradix_sort(x,iorder,isize,-1)
|
||||
endif
|
||||
end subroutine $Xsort
|
||||
|
||||
SUBST [ X, type ]
|
||||
i ; integer ;;
|
||||
i8 ; integer*8 ;;
|
||||
i2 ; integer*2 ;;
|
||||
END_TEMPLATE
|
||||
|
||||
IRP_ENDIF
|
||||
!---------------------- END NON-INTEL
|
||||
|
||||
|
||||
|
||||
BEGIN_TEMPLATE
|
||||
subroutine $Xset_order(x,iorder,isize)
|
||||
@ -489,47 +57,6 @@ BEGIN_TEMPLATE
|
||||
deallocate(xtmp)
|
||||
end
|
||||
|
||||
SUBST [ X, type ]
|
||||
; real ;;
|
||||
d ; double precision ;;
|
||||
i ; integer ;;
|
||||
i8; integer*8 ;;
|
||||
i2; integer*2 ;;
|
||||
END_TEMPLATE
|
||||
|
||||
|
||||
BEGIN_TEMPLATE
|
||||
subroutine insertion_$Xsort_big (x,iorder,isize)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Sort array x(isize) using the insertion sort algorithm.
|
||||
! iorder in input should be (1,2,3,...,isize), and in output
|
||||
! contains the new order of the elements.
|
||||
! This is a version for very large arrays where the indices need
|
||||
! to be in integer*8 format
|
||||
END_DOC
|
||||
integer*8,intent(in) :: isize
|
||||
$type,intent(inout) :: x(isize)
|
||||
integer*8,intent(inout) :: iorder(isize)
|
||||
$type :: xtmp
|
||||
integer*8 :: i, i0, j, jmax
|
||||
|
||||
do i=2_8,isize
|
||||
xtmp = x(i)
|
||||
i0 = iorder(i)
|
||||
j = i-1_8
|
||||
do while (j>0_8)
|
||||
if (x(j)<=xtmp) exit
|
||||
x(j+1_8) = x(j)
|
||||
iorder(j+1_8) = iorder(j)
|
||||
j = j-1_8
|
||||
enddo
|
||||
x(j+1_8) = xtmp
|
||||
iorder(j+1_8) = i0
|
||||
enddo
|
||||
|
||||
end subroutine insertion_$Xsort_big
|
||||
|
||||
subroutine $Xset_order_big(x,iorder,isize)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
@ -563,223 +90,3 @@ SUBST [ X, type ]
|
||||
END_TEMPLATE
|
||||
|
||||
|
||||
BEGIN_TEMPLATE
|
||||
|
||||
recursive subroutine $Xradix_sort$big(x,iorder,isize,iradix)
|
||||
implicit none
|
||||
|
||||
BEGIN_DOC
|
||||
! Sort integer array x(isize) using the radix sort algorithm.
|
||||
! iorder in input should be (1,2,3,...,isize), and in output
|
||||
! contains the new order of the elements.
|
||||
! iradix should be -1 in input.
|
||||
END_DOC
|
||||
integer*$int_type, intent(in) :: isize
|
||||
integer*$int_type, intent(inout) :: iorder(isize)
|
||||
integer*$type, intent(inout) :: x(isize)
|
||||
integer, intent(in) :: iradix
|
||||
integer :: iradix_new
|
||||
integer*$type, allocatable :: x2(:), x1(:)
|
||||
integer*$type :: i4 ! data type
|
||||
integer*$int_type, allocatable :: iorder1(:),iorder2(:)
|
||||
integer*$int_type :: i0, i1, i2, i3, i ! index type
|
||||
integer*$type :: mask
|
||||
integer :: err
|
||||
!DIR$ ATTRIBUTES ALIGN : 128 :: iorder1,iorder2, x2, x1
|
||||
|
||||
if (isize < 2) then
|
||||
return
|
||||
endif
|
||||
|
||||
if (iradix == -1) then ! Sort Positive and negative
|
||||
|
||||
allocate(x1(isize),iorder1(isize), x2(isize),iorder2(isize),stat=err)
|
||||
if (err /= 0) then
|
||||
print *, irp_here, ': Unable to allocate arrays'
|
||||
stop
|
||||
endif
|
||||
|
||||
i1=1_$int_type
|
||||
i2=1_$int_type
|
||||
do i=1_$int_type,isize
|
||||
if (x(i) < 0_$type) then
|
||||
iorder1(i1) = iorder(i)
|
||||
x1(i1) = -x(i)
|
||||
i1 = i1+1_$int_type
|
||||
else
|
||||
iorder2(i2) = iorder(i)
|
||||
x2(i2) = x(i)
|
||||
i2 = i2+1_$int_type
|
||||
endif
|
||||
enddo
|
||||
i1=i1-1_$int_type
|
||||
i2=i2-1_$int_type
|
||||
|
||||
do i=1_$int_type,i2
|
||||
iorder(i1+i) = iorder2(i)
|
||||
x(i1+i) = x2(i)
|
||||
enddo
|
||||
deallocate(x2,iorder2,stat=err)
|
||||
if (err /= 0) then
|
||||
print *, irp_here, ': Unable to deallocate arrays x2, iorder2'
|
||||
stop
|
||||
endif
|
||||
|
||||
|
||||
if (i1 > 1_$int_type) then
|
||||
call $Xradix_sort$big(x1,iorder1,i1,-2)
|
||||
do i=1_$int_type,i1
|
||||
x(i) = -x1(1_$int_type+i1-i)
|
||||
iorder(i) = iorder1(1_$int_type+i1-i)
|
||||
enddo
|
||||
endif
|
||||
|
||||
if (i2>1_$int_type) then
|
||||
call $Xradix_sort$big(x(i1+1_$int_type),iorder(i1+1_$int_type),i2,-2)
|
||||
endif
|
||||
|
||||
deallocate(x1,iorder1,stat=err)
|
||||
if (err /= 0) then
|
||||
print *, irp_here, ': Unable to deallocate arrays x1, iorder1'
|
||||
stop
|
||||
endif
|
||||
return
|
||||
|
||||
else if (iradix == -2) then ! Positive
|
||||
|
||||
! Find most significant bit
|
||||
|
||||
i0 = 0_$int_type
|
||||
i4 = maxval(x)
|
||||
|
||||
iradix_new = max($integer_size-1-leadz(i4),1)
|
||||
mask = ibset(0_$type,iradix_new)
|
||||
|
||||
allocate(x1(isize),iorder1(isize), x2(isize),iorder2(isize),stat=err)
|
||||
if (err /= 0) then
|
||||
print *, irp_here, ': Unable to allocate arrays'
|
||||
stop
|
||||
endif
|
||||
|
||||
i1=1_$int_type
|
||||
i2=1_$int_type
|
||||
|
||||
do i=1_$int_type,isize
|
||||
if (iand(mask,x(i)) == 0_$type) then
|
||||
iorder1(i1) = iorder(i)
|
||||
x1(i1) = x(i)
|
||||
i1 = i1+1_$int_type
|
||||
else
|
||||
iorder2(i2) = iorder(i)
|
||||
x2(i2) = x(i)
|
||||
i2 = i2+1_$int_type
|
||||
endif
|
||||
enddo
|
||||
i1=i1-1_$int_type
|
||||
i2=i2-1_$int_type
|
||||
|
||||
do i=1_$int_type,i1
|
||||
iorder(i0+i) = iorder1(i)
|
||||
x(i0+i) = x1(i)
|
||||
enddo
|
||||
i0 = i0+i1
|
||||
i3 = i0
|
||||
deallocate(x1,iorder1,stat=err)
|
||||
if (err /= 0) then
|
||||
print *, irp_here, ': Unable to deallocate arrays x1, iorder1'
|
||||
stop
|
||||
endif
|
||||
|
||||
|
||||
do i=1_$int_type,i2
|
||||
iorder(i0+i) = iorder2(i)
|
||||
x(i0+i) = x2(i)
|
||||
enddo
|
||||
i0 = i0+i2
|
||||
deallocate(x2,iorder2,stat=err)
|
||||
if (err /= 0) then
|
||||
print *, irp_here, ': Unable to deallocate arrays x2, iorder2'
|
||||
stop
|
||||
endif
|
||||
|
||||
|
||||
if (i3>1_$int_type) then
|
||||
call $Xradix_sort$big(x,iorder,i3,iradix_new-1)
|
||||
endif
|
||||
|
||||
if (isize-i3>1_$int_type) then
|
||||
call $Xradix_sort$big(x(i3+1_$int_type),iorder(i3+1_$int_type),isize-i3,iradix_new-1)
|
||||
endif
|
||||
|
||||
return
|
||||
endif
|
||||
|
||||
ASSERT (iradix >= 0)
|
||||
|
||||
if (isize < 48) then
|
||||
call insertion_$Xsort$big(x,iorder,isize)
|
||||
return
|
||||
endif
|
||||
|
||||
|
||||
allocate(x2(isize),iorder2(isize),stat=err)
|
||||
if (err /= 0) then
|
||||
print *, irp_here, ': Unable to allocate arrays x1, iorder1'
|
||||
stop
|
||||
endif
|
||||
|
||||
|
||||
mask = ibset(0_$type,iradix)
|
||||
i0=1_$int_type
|
||||
i1=1_$int_type
|
||||
|
||||
do i=1_$int_type,isize
|
||||
if (iand(mask,x(i)) == 0_$type) then
|
||||
iorder(i0) = iorder(i)
|
||||
x(i0) = x(i)
|
||||
i0 = i0+1_$int_type
|
||||
else
|
||||
iorder2(i1) = iorder(i)
|
||||
x2(i1) = x(i)
|
||||
i1 = i1+1_$int_type
|
||||
endif
|
||||
enddo
|
||||
i0=i0-1_$int_type
|
||||
i1=i1-1_$int_type
|
||||
|
||||
do i=1_$int_type,i1
|
||||
iorder(i0+i) = iorder2(i)
|
||||
x(i0+i) = x2(i)
|
||||
enddo
|
||||
|
||||
deallocate(x2,iorder2,stat=err)
|
||||
if (err /= 0) then
|
||||
print *, irp_here, ': Unable to allocate arrays x2, iorder2'
|
||||
stop
|
||||
endif
|
||||
|
||||
|
||||
if (iradix == 0) then
|
||||
return
|
||||
endif
|
||||
|
||||
|
||||
if (i1>1_$int_type) then
|
||||
call $Xradix_sort$big(x(i0+1_$int_type),iorder(i0+1_$int_type),i1,iradix-1)
|
||||
endif
|
||||
if (i0>1) then
|
||||
call $Xradix_sort$big(x,iorder,i0,iradix-1)
|
||||
endif
|
||||
|
||||
end
|
||||
|
||||
SUBST [ X, type, integer_size, is_big, big, int_type ]
|
||||
i ; 4 ; 32 ; .False. ; ; 4 ;;
|
||||
i8 ; 8 ; 64 ; .False. ; ; 4 ;;
|
||||
i2 ; 2 ; 16 ; .False. ; ; 4 ;;
|
||||
i ; 4 ; 32 ; .True. ; _big ; 8 ;;
|
||||
i8 ; 8 ; 64 ; .True. ; _big ; 8 ;;
|
||||
END_TEMPLATE
|
||||
|
||||
|
||||
|
||||
|
@ -430,3 +430,28 @@ subroutine lowercase(txt,n)
|
||||
enddo
|
||||
end
|
||||
|
||||
subroutine v2_over_x(v,x,res)
|
||||
|
||||
!BEGIN_DOC
|
||||
! Two by two diagonalization to avoid the divergence in v^2/x when x goes to 0
|
||||
!END_DOC
|
||||
|
||||
implicit none
|
||||
|
||||
double precision, intent(in) :: v, x
|
||||
double precision, intent(out) :: res
|
||||
|
||||
double precision :: delta_E, tmp, val
|
||||
|
||||
res = 0d0
|
||||
delta_E = x
|
||||
if (v == 0.d0) return
|
||||
|
||||
val = 2d0 * v
|
||||
tmp = dsqrt(delta_E * delta_E + val * val)
|
||||
if (delta_E < 0.d0) then
|
||||
tmp = -tmp
|
||||
endif
|
||||
res = 0.5d0 * (tmp - delta_E)
|
||||
|
||||
end
|
||||
|
89
src/utils_trust_region/EZFIO.cfg
Normal file
89
src/utils_trust_region/EZFIO.cfg
Normal file
@ -0,0 +1,89 @@
|
||||
[thresh_delta]
|
||||
type: double precision
|
||||
doc: Threshold to stop the optimization if the radius of the trust region delta < thresh_delta
|
||||
interface: ezfio,provider,ocaml
|
||||
default: 1.e-10
|
||||
|
||||
[thresh_rho]
|
||||
type: double precision
|
||||
doc: Threshold for the step acceptance in the trust region algorithm, if (rho .geq. thresh_rho) the step is accepted, else the step is cancelled and a smaller step is tried until (rho .geq. thresh_rho)
|
||||
interface: ezfio,provider,ocaml
|
||||
default: 0.1
|
||||
|
||||
[thresh_eig]
|
||||
type: double precision
|
||||
doc: Threshold to consider when an eigenvalue is 0 in the trust region algorithm
|
||||
interface: ezfio,provider,ocaml
|
||||
default: 1.e-12
|
||||
|
||||
[thresh_model]
|
||||
type: double precision
|
||||
doc: If if ABS(criterion - criterion_model) < thresh_model, the program exit the trust region algorithm
|
||||
interface: ezfio,provider,ocaml
|
||||
default: 1.e-12
|
||||
|
||||
[absolute_eig]
|
||||
type: logical
|
||||
doc: If True, the algorithm replace the eigenvalues of the hessian by their absolute value to compute the step (in the trust region)
|
||||
interface: ezfio,provider,ocaml
|
||||
default: false
|
||||
|
||||
[thresh_wtg]
|
||||
type: double precision
|
||||
doc: Threshold in the trust region algorithm to considere when the dot product of the eigenvector W by the gradient v_grad is equal to 0. Must be smaller than thresh_eig by several order of magnitude to avoid numerical problem. If the research of the optimal lambda cannot reach the condition (||x|| .eq. delta) because (||x|| .lt. delta), the reason might be that thresh_wtg is too big or/and thresh_eig is too small
|
||||
interface: ezfio,provider,ocaml
|
||||
default: 1.e-6
|
||||
|
||||
[thresh_wtg2]
|
||||
type: double precision
|
||||
doc: Threshold in the trust region algorithm to considere when the dot product of the eigenvector W by the gradient v_grad is 0 in the case of avoid_saddle .eq. true. There is no particular reason to put a different value that thresh_wtg, but it can be useful one day
|
||||
interface: ezfio,provider,ocaml
|
||||
default: 1.e-6
|
||||
|
||||
[avoid_saddle]
|
||||
type: logical
|
||||
doc: Test to avoid saddle point, active if true
|
||||
interface: ezfio,provider,ocaml
|
||||
default: false
|
||||
|
||||
[version_avoid_saddle]
|
||||
type: integer
|
||||
doc: cf. trust region, not stable
|
||||
interface: ezfio,provider,ocaml
|
||||
default: 3
|
||||
|
||||
[thresh_rho_2]
|
||||
type: double precision
|
||||
doc: Threshold for the step acceptance for the research of lambda in the trust region algorithm, if (rho_2 .geq. thresh_rho_2) the step is accepted, else the step is rejected
|
||||
interface: ezfio,provider,ocaml
|
||||
default: 0.1
|
||||
|
||||
[thresh_cc]
|
||||
type: double precision
|
||||
doc: Threshold to stop the research of the optimal lambda in the trust region algorithm when (dabs(1d0-||x||^2/delta^2) < thresh_cc)
|
||||
interface: ezfio,provider,ocaml
|
||||
default: 1.e-6
|
||||
|
||||
[thresh_model_2]
|
||||
type: double precision
|
||||
doc: if (ABS(criterion - criterion_model) < thresh_model_2), i.e., the difference between the actual criterion and the predicted next criterion, during the research of the optimal lambda in the trust region algorithm it prints a warning
|
||||
interface: ezfio,provider,ocaml
|
||||
default: 1.e-12
|
||||
|
||||
[version_lambda_search]
|
||||
type: integer
|
||||
doc: Research of the optimal lambda in the trust region algorithm to constrain the norm of the step by solving: 1 -> ||x||^2 - delta^2 .eq. 0, 2 -> 1/||x||^2 - 1/delta^2 .eq. 0
|
||||
interface: ezfio,provider,ocaml
|
||||
default: 2
|
||||
|
||||
[nb_it_max_lambda]
|
||||
type: integer
|
||||
doc: Maximal number of iterations for the research of the optimal lambda in the trust region algorithm
|
||||
interface: ezfio,provider,ocaml
|
||||
default: 100
|
||||
|
||||
[nb_it_max_pre_search]
|
||||
type: integer
|
||||
doc: Maximal number of iterations for the pre-research of the optimal lambda in the trust region algorithm
|
||||
interface: ezfio,provider,ocaml
|
||||
default: 40
|
1
src/utils_trust_region/NEED
Normal file
1
src/utils_trust_region/NEED
Normal file
@ -0,0 +1 @@
|
||||
hartree_fock
|
5
src/utils_trust_region/README.rst
Normal file
5
src/utils_trust_region/README.rst
Normal file
@ -0,0 +1,5 @@
|
||||
============
|
||||
trust_region
|
||||
============
|
||||
|
||||
The documentation can be found in the org files.
|
7
src/utils_trust_region/TANGLE_org_mode.sh
Executable file
7
src/utils_trust_region/TANGLE_org_mode.sh
Executable file
@ -0,0 +1,7 @@
|
||||
#!/bin/sh
|
||||
|
||||
list='ls *.org'
|
||||
for element in $list
|
||||
do
|
||||
emacs --batch $element -f org-babel-tangle
|
||||
done
|
248
src/utils_trust_region/algo_trust.irp.f
Normal file
248
src/utils_trust_region/algo_trust.irp.f
Normal file
@ -0,0 +1,248 @@
|
||||
! Algorithm for the trust region
|
||||
|
||||
! step_in_trust_region:
|
||||
! Computes the step in the trust region (delta)
|
||||
! (automatically sets at the iteration 0 and which evolves during the
|
||||
! process in function of the evolution of rho). The step is computing by
|
||||
! constraining its norm with a lagrange multiplier.
|
||||
! Since the calculation of the step is based on the Newton method, an
|
||||
! estimation of the gain in energy is given using the Taylors series
|
||||
! truncated at the second order (criterion_model).
|
||||
! If (DABS(criterion-criterion_model) < 1d-12) then
|
||||
! must_exit = .True.
|
||||
! else
|
||||
! must_exit = .False.
|
||||
|
||||
! This estimation of the gain in energy is used by
|
||||
! is_step_cancel_trust_region to say if the step is accepted or cancelled.
|
||||
|
||||
! If the step must be cancelled, the calculation restart from the same
|
||||
! hessian and gradient and recomputes the step but in a smaller trust
|
||||
! region and so on until the step is accepted. If the step is accepted
|
||||
! the hessian and the gradient are recomputed to produce a new step.
|
||||
|
||||
! Example:
|
||||
|
||||
|
||||
! !### Initialization ###
|
||||
! delta = 0d0
|
||||
! nb_iter = 0 ! Must start at 0 !!!
|
||||
! rho = 0.5d0
|
||||
! not_converged = .True.
|
||||
!
|
||||
! ! ### TODO ###
|
||||
! ! Compute the criterion before the loop
|
||||
! call #your_criterion(prev_criterion)
|
||||
!
|
||||
! do while (not_converged)
|
||||
! ! ### TODO ##
|
||||
! ! Call your gradient
|
||||
! ! Call you hessian
|
||||
! call #your_gradient(v_grad) (1D array)
|
||||
! call #your_hessian(H) (2D array)
|
||||
!
|
||||
! ! ### TODO ###
|
||||
! ! Diagonalization of the hessian
|
||||
! call diagonalization_hessian(n,H,e_val,w)
|
||||
!
|
||||
! cancel_step = .True. ! To enter in the loop just after
|
||||
! ! Loop to Reduce the trust radius until the criterion decreases and rho >= thresh_rho
|
||||
! do while (cancel_step)
|
||||
!
|
||||
! ! Hessian,gradient,Criterion -> x
|
||||
! call trust_region_step_w_expected_e(tmp_n,W,e_val,v_grad,prev_criterion,rho,nb_iter,delta,criterion_model,tmp_x,must_exit)
|
||||
!
|
||||
! if (must_exit) then
|
||||
! ! ### Message ###
|
||||
! ! if step_in_trust_region sets must_exit on true for numerical reasons
|
||||
! print*,'algo_trust1 sends the message : Exit'
|
||||
! !### exit ###
|
||||
! endif
|
||||
!
|
||||
! !### TODO ###
|
||||
! ! Compute x -> m_x
|
||||
! ! Compute m_x -> R
|
||||
! ! Apply R and keep the previous MOs...
|
||||
! ! Update/touch
|
||||
! ! Compute the new criterion/energy -> criterion
|
||||
!
|
||||
! call #your_routine_1D_to_2D_antisymmetric_array(x,m_x)
|
||||
! call #your_routine_2D_antisymmetric_array_to_rotation_matrix(m_x,R)
|
||||
! call #your_routine_to_apply_the_rotation_matrix(R,prev_mos)
|
||||
!
|
||||
! TOUCH #your_variables
|
||||
!
|
||||
! call #your_criterion(criterion)
|
||||
!
|
||||
! ! Criterion -> step accepted or rejected
|
||||
! call trust_region_is_step_cancelled(nb_iter,prev_criterion, criterion, criterion_model,rho,cancel_step)
|
||||
!
|
||||
! ! ### TODO ###
|
||||
! !if (cancel_step) then
|
||||
! ! Cancel the previous step (mo_coef = prev_mos if you keep them...)
|
||||
! !endif
|
||||
! #if (cancel_step) then
|
||||
! #mo_coef = prev_mos
|
||||
! #endif
|
||||
!
|
||||
! enddo
|
||||
!
|
||||
! !call save_mos() !### depend of the time for 1 iteration
|
||||
!
|
||||
! ! To exit the external loop if must_exit = .True.
|
||||
! if (must_exit) then
|
||||
! !### exit ###
|
||||
! endif
|
||||
!
|
||||
! ! Step accepted, nb iteration + 1
|
||||
! nb_iter = nb_iter + 1
|
||||
!
|
||||
! ! ### TODO ###
|
||||
! !if (###Conditions###) then
|
||||
! ! no_converged = .False.
|
||||
! !endif
|
||||
! #if (#your_conditions) then
|
||||
! # not_converged = .False.
|
||||
! #endif
|
||||
!
|
||||
! enddo
|
||||
|
||||
|
||||
|
||||
! Variables:
|
||||
|
||||
! Input:
|
||||
! | n | integer | m*(m-1)/2 |
|
||||
! | m | integer | number of mo in the mo_class |
|
||||
! | H(n,n) | double precision | Hessian |
|
||||
! | v_grad(n) | double precision | Gradient |
|
||||
! | W(n,n) | double precision | Eigenvectors of the hessian |
|
||||
! | e_val(n) | double precision | Eigenvalues of the hessian |
|
||||
! | criterion | double precision | Actual criterion |
|
||||
! | prev_criterion | double precision | Value of the criterion before the first iteration/after the previous iteration |
|
||||
! | rho | double precision | Given by is_step_cancel_trus_region |
|
||||
! | | | Agreement between the real function and the Taylor series (2nd order) |
|
||||
! | nb_iter | integer | Actual number of iterations |
|
||||
|
||||
! Input/output:
|
||||
! | delta | double precision | Radius of the trust region |
|
||||
|
||||
! Output:
|
||||
! | criterion_model | double precision | Predicted criterion after the rotation |
|
||||
! | x(n) | double precision | Step |
|
||||
! | must_exit | logical | If the program must exit the loop |
|
||||
|
||||
|
||||
subroutine trust_region_step_w_expected_e(n,H,W,e_val,v_grad,prev_criterion,rho,nb_iter,delta,criterion_model,x,must_exit)
|
||||
|
||||
include 'pi.h'
|
||||
|
||||
BEGIN_DOC
|
||||
! Compute the step and the expected criterion/energy after the step
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
|
||||
! in
|
||||
integer, intent(in) :: n, nb_iter
|
||||
double precision, intent(in) :: H(n,n), W(n,n), v_grad(n)
|
||||
double precision, intent(in) :: rho, prev_criterion
|
||||
|
||||
! inout
|
||||
double precision, intent(inout) :: delta, e_val(n)
|
||||
|
||||
! out
|
||||
double precision, intent(out) :: criterion_model, x(n)
|
||||
logical, intent(out) :: must_exit
|
||||
|
||||
! internal
|
||||
integer :: info
|
||||
|
||||
must_exit = .False.
|
||||
|
||||
call trust_region_step(n,nb_iter,v_grad,rho,e_val,W,x,delta)
|
||||
|
||||
call trust_region_expected_e(n,v_grad,H,x,prev_criterion,criterion_model)
|
||||
|
||||
! exit if DABS(prev_criterion - criterion_model) < 1d-12
|
||||
if (DABS(prev_criterion - criterion_model) < thresh_model) then
|
||||
print*,''
|
||||
print*,'###############################################################################'
|
||||
print*,'DABS(prev_criterion - criterion_model) <', thresh_model, 'stop the trust region'
|
||||
print*,'###############################################################################'
|
||||
print*,''
|
||||
must_exit = .True.
|
||||
endif
|
||||
|
||||
if (delta < thresh_delta) then
|
||||
print*,''
|
||||
print*,'##############################################'
|
||||
print*,'Delta <', thresh_delta, 'stop the trust region'
|
||||
print*,'##############################################'
|
||||
print*,''
|
||||
must_exit = .True.
|
||||
endif
|
||||
|
||||
! Add after the call to this subroutine, a statement:
|
||||
! "if (must_exit) then
|
||||
! exit
|
||||
! endif"
|
||||
! in order to exit the optimization loop
|
||||
|
||||
end subroutine
|
||||
|
||||
|
||||
|
||||
! Variables:
|
||||
|
||||
! Input:
|
||||
! | nb_iter | integer | actual number of iterations |
|
||||
! | prev_criterion | double precision | criterion before the application of the step x |
|
||||
! | criterion | double precision | criterion after the application of the step x |
|
||||
! | criterion_model | double precision | predicted criterion after the application of x |
|
||||
|
||||
! Output:
|
||||
! | rho | double precision | Agreement between the predicted criterion and the real new criterion |
|
||||
! | cancel_step | logical | If the step must be cancelled |
|
||||
|
||||
|
||||
subroutine trust_region_is_step_cancelled(nb_iter,prev_criterion, criterion, criterion_model,rho,cancel_step)
|
||||
|
||||
include 'pi.h'
|
||||
|
||||
BEGIN_DOC
|
||||
! Compute if the step should be cancelled
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
|
||||
! in
|
||||
double precision, intent(in) :: prev_criterion, criterion, criterion_model
|
||||
|
||||
! inout
|
||||
integer, intent(inout) :: nb_iter
|
||||
|
||||
! out
|
||||
logical, intent(out) :: cancel_step
|
||||
double precision, intent(out) :: rho
|
||||
|
||||
! Computes rho
|
||||
call trust_region_rho(prev_criterion,criterion,criterion_model,rho)
|
||||
|
||||
if (nb_iter == 0) then
|
||||
nb_iter = 1 ! in order to enable the change of delta if the first iteration is cancelled
|
||||
endif
|
||||
|
||||
! If rho < thresh_rho -> give something in output to cancel the step
|
||||
if (rho >= thresh_rho) then !0.1d0) then
|
||||
! The step is accepted
|
||||
cancel_step = .False.
|
||||
else
|
||||
! The step is rejected
|
||||
cancel_step = .True.
|
||||
print*, '***********************'
|
||||
print*, 'Step cancel : rho <', thresh_rho
|
||||
print*, '***********************'
|
||||
endif
|
||||
|
||||
end subroutine
|
593
src/utils_trust_region/algo_trust.org
Normal file
593
src/utils_trust_region/algo_trust.org
Normal file
@ -0,0 +1,593 @@
|
||||
* Algorithm for the trust region
|
||||
|
||||
step_in_trust_region:
|
||||
Computes the step in the trust region (delta)
|
||||
(automatically sets at the iteration 0 and which evolves during the
|
||||
process in function of the evolution of rho). The step is computing by
|
||||
constraining its norm with a lagrange multiplier.
|
||||
Since the calculation of the step is based on the Newton method, an
|
||||
estimation of the gain in energy is given using the Taylors series
|
||||
truncated at the second order (criterion_model).
|
||||
If (DABS(criterion-criterion_model) < 1d-12) then
|
||||
must_exit = .True.
|
||||
else
|
||||
must_exit = .False.
|
||||
|
||||
This estimation of the gain in energy is used by
|
||||
is_step_cancel_trust_region to say if the step is accepted or cancelled.
|
||||
|
||||
If the step must be cancelled, the calculation restart from the same
|
||||
hessian and gradient and recomputes the step but in a smaller trust
|
||||
region and so on until the step is accepted. If the step is accepted
|
||||
the hessian and the gradient are recomputed to produce a new step.
|
||||
|
||||
Example:
|
||||
|
||||
#+BEGIN_SRC f90 :comments org :tangle algo_trust.irp.f
|
||||
! !### Initialization ###
|
||||
! delta = 0d0
|
||||
! nb_iter = 0 ! Must start at 0 !!!
|
||||
! rho = 0.5d0
|
||||
! not_converged = .True.
|
||||
!
|
||||
! ! ### TODO ###
|
||||
! ! Compute the criterion before the loop
|
||||
! call #your_criterion(prev_criterion)
|
||||
!
|
||||
! do while (not_converged)
|
||||
! ! ### TODO ##
|
||||
! ! Call your gradient
|
||||
! ! Call you hessian
|
||||
! call #your_gradient(v_grad) (1D array)
|
||||
! call #your_hessian(H) (2D array)
|
||||
!
|
||||
! ! ### TODO ###
|
||||
! ! Diagonalization of the hessian
|
||||
! call diagonalization_hessian(n,H,e_val,w)
|
||||
!
|
||||
! cancel_step = .True. ! To enter in the loop just after
|
||||
! ! Loop to Reduce the trust radius until the criterion decreases and rho >= thresh_rho
|
||||
! do while (cancel_step)
|
||||
!
|
||||
! ! Hessian,gradient,Criterion -> x
|
||||
! call trust_region_step_w_expected_e(tmp_n,W,e_val,v_grad,prev_criterion,rho,nb_iter,delta,criterion_model,tmp_x,must_exit)
|
||||
!
|
||||
! if (must_exit) then
|
||||
! ! ### Message ###
|
||||
! ! if step_in_trust_region sets must_exit on true for numerical reasons
|
||||
! print*,'algo_trust1 sends the message : Exit'
|
||||
! !### exit ###
|
||||
! endif
|
||||
!
|
||||
! !### TODO ###
|
||||
! ! Compute x -> m_x
|
||||
! ! Compute m_x -> R
|
||||
! ! Apply R and keep the previous MOs...
|
||||
! ! Update/touch
|
||||
! ! Compute the new criterion/energy -> criterion
|
||||
!
|
||||
! call #your_routine_1D_to_2D_antisymmetric_array(x,m_x)
|
||||
! call #your_routine_2D_antisymmetric_array_to_rotation_matrix(m_x,R)
|
||||
! call #your_routine_to_apply_the_rotation_matrix(R,prev_mos)
|
||||
!
|
||||
! TOUCH #your_variables
|
||||
!
|
||||
! call #your_criterion(criterion)
|
||||
!
|
||||
! ! Criterion -> step accepted or rejected
|
||||
! call trust_region_is_step_cancelled(nb_iter,prev_criterion, criterion, criterion_model,rho,cancel_step)
|
||||
!
|
||||
! ! ### TODO ###
|
||||
! !if (cancel_step) then
|
||||
! ! Cancel the previous step (mo_coef = prev_mos if you keep them...)
|
||||
! !endif
|
||||
! #if (cancel_step) then
|
||||
! #mo_coef = prev_mos
|
||||
! #endif
|
||||
!
|
||||
! enddo
|
||||
!
|
||||
! !call save_mos() !### depend of the time for 1 iteration
|
||||
!
|
||||
! ! To exit the external loop if must_exit = .True.
|
||||
! if (must_exit) then
|
||||
! !### exit ###
|
||||
! endif
|
||||
!
|
||||
! ! Step accepted, nb iteration + 1
|
||||
! nb_iter = nb_iter + 1
|
||||
!
|
||||
! ! ### TODO ###
|
||||
! !if (###Conditions###) then
|
||||
! ! no_converged = .False.
|
||||
! !endif
|
||||
! #if (#your_conditions) then
|
||||
! # not_converged = .False.
|
||||
! #endif
|
||||
!
|
||||
! enddo
|
||||
#+END_SRC
|
||||
|
||||
Variables:
|
||||
|
||||
Input:
|
||||
| n | integer | m*(m-1)/2 |
|
||||
| m | integer | number of mo in the mo_class |
|
||||
| H(n,n) | double precision | Hessian |
|
||||
| v_grad(n) | double precision | Gradient |
|
||||
| W(n,n) | double precision | Eigenvectors of the hessian |
|
||||
| e_val(n) | double precision | Eigenvalues of the hessian |
|
||||
| criterion | double precision | Actual criterion |
|
||||
| prev_criterion | double precision | Value of the criterion before the first iteration/after the previous iteration |
|
||||
| rho | double precision | Given by is_step_cancel_trus_region |
|
||||
| | | Agreement between the real function and the Taylor series (2nd order) |
|
||||
| nb_iter | integer | Actual number of iterations |
|
||||
|
||||
Input/output:
|
||||
| delta | double precision | Radius of the trust region |
|
||||
|
||||
Output:
|
||||
| criterion_model | double precision | Predicted criterion after the rotation |
|
||||
| x(n) | double precision | Step |
|
||||
| must_exit | logical | If the program must exit the loop |
|
||||
|
||||
#+BEGIN_SRC f90 :comments org :tangle algo_trust.irp.f
|
||||
subroutine trust_region_step_w_expected_e(n,H,W,e_val,v_grad,prev_criterion,rho,nb_iter,delta,criterion_model,x,must_exit)
|
||||
|
||||
include 'pi.h'
|
||||
|
||||
BEGIN_DOC
|
||||
! Compute the step and the expected criterion/energy after the step
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
|
||||
! in
|
||||
integer, intent(in) :: n, nb_iter
|
||||
double precision, intent(in) :: H(n,n), W(n,n), v_grad(n)
|
||||
double precision, intent(in) :: rho, prev_criterion
|
||||
|
||||
! inout
|
||||
double precision, intent(inout) :: delta, e_val(n)
|
||||
|
||||
! out
|
||||
double precision, intent(out) :: criterion_model, x(n)
|
||||
logical, intent(out) :: must_exit
|
||||
|
||||
! internal
|
||||
integer :: info
|
||||
|
||||
must_exit = .False.
|
||||
|
||||
call trust_region_step(n,nb_iter,v_grad,rho,e_val,W,x,delta)
|
||||
|
||||
call trust_region_expected_e(n,v_grad,H,x,prev_criterion,criterion_model)
|
||||
|
||||
! exit if DABS(prev_criterion - criterion_model) < 1d-12
|
||||
if (DABS(prev_criterion - criterion_model) < thresh_model) then
|
||||
print*,''
|
||||
print*,'###############################################################################'
|
||||
print*,'DABS(prev_criterion - criterion_model) <', thresh_model, 'stop the trust region'
|
||||
print*,'###############################################################################'
|
||||
print*,''
|
||||
must_exit = .True.
|
||||
endif
|
||||
|
||||
if (delta < thresh_delta) then
|
||||
print*,''
|
||||
print*,'##############################################'
|
||||
print*,'Delta <', thresh_delta, 'stop the trust region'
|
||||
print*,'##############################################'
|
||||
print*,''
|
||||
must_exit = .True.
|
||||
endif
|
||||
|
||||
! Add after the call to this subroutine, a statement:
|
||||
! "if (must_exit) then
|
||||
! exit
|
||||
! endif"
|
||||
! in order to exit the optimization loop
|
||||
|
||||
end subroutine
|
||||
#+END_SRC
|
||||
|
||||
Variables:
|
||||
|
||||
Input:
|
||||
| nb_iter | integer | actual number of iterations |
|
||||
| prev_criterion | double precision | criterion before the application of the step x |
|
||||
| criterion | double precision | criterion after the application of the step x |
|
||||
| criterion_model | double precision | predicted criterion after the application of x |
|
||||
|
||||
Output:
|
||||
| rho | double precision | Agreement between the predicted criterion and the real new criterion |
|
||||
| cancel_step | logical | If the step must be cancelled |
|
||||
|
||||
#+BEGIN_SRC f90 :comments org :tangle algo_trust.irp.f
|
||||
subroutine trust_region_is_step_cancelled(nb_iter,prev_criterion, criterion, criterion_model,rho,cancel_step)
|
||||
|
||||
include 'pi.h'
|
||||
|
||||
BEGIN_DOC
|
||||
! Compute if the step should be cancelled
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
|
||||
! in
|
||||
double precision, intent(in) :: prev_criterion, criterion, criterion_model
|
||||
|
||||
! inout
|
||||
integer, intent(inout) :: nb_iter
|
||||
|
||||
! out
|
||||
logical, intent(out) :: cancel_step
|
||||
double precision, intent(out) :: rho
|
||||
|
||||
! Computes rho
|
||||
call trust_region_rho(prev_criterion,criterion,criterion_model,rho)
|
||||
|
||||
if (nb_iter == 0) then
|
||||
nb_iter = 1 ! in order to enable the change of delta if the first iteration is cancelled
|
||||
endif
|
||||
|
||||
! If rho < thresh_rho -> give something in output to cancel the step
|
||||
if (rho >= thresh_rho) then !0.1d0) then
|
||||
! The step is accepted
|
||||
cancel_step = .False.
|
||||
else
|
||||
! The step is rejected
|
||||
cancel_step = .True.
|
||||
print*, '***********************'
|
||||
print*, 'Step cancel : rho <', thresh_rho
|
||||
print*, '***********************'
|
||||
endif
|
||||
|
||||
end subroutine
|
||||
#+END_SRC
|
||||
|
||||
** Template for MOs
|
||||
#+BEGIN_SRC f90 :comments org :tangle trust_region_template_mos.txt
|
||||
subroutine algo_trust_template(tmp_n, tmp_list_size, tmp_list)
|
||||
|
||||
implicit none
|
||||
|
||||
! Variables
|
||||
|
||||
! In
|
||||
integer, intent(in) :: tmp_n, tmp_list_size, tmp_list(tmp_list_size)
|
||||
|
||||
! Out
|
||||
! Rien ou un truc pour savoir si ça c'est bien passé
|
||||
|
||||
! Internal
|
||||
double precision, allocatable :: e_val(:), W(:,:), tmp_R(:,:), R(:,:), tmp_x(:), tmp_m_x(:,:)
|
||||
double precision, allocatable :: prev_mos(:,:)
|
||||
double precision :: criterion, prev_criterion, criterion_model
|
||||
double precision :: delta, rho
|
||||
logical :: not_converged, cancel_step, must_exit, enforce_step_cancellation
|
||||
integer :: nb_iter, info, nb_sub_iter
|
||||
integer :: i,j,tmp_i,tmp_j
|
||||
|
||||
allocate(W(tmp_n, tmp_n),e_val(tmp_n),tmp_x(tmp_n),tmp_m_x(tmp_list_size, tmp_list_size))
|
||||
allocate(tmp_R(tmp_list_size, tmp_list_size), R(mo_num, mo_num))
|
||||
allocate(prev_mos(ao_num, mo_num))
|
||||
|
||||
! Provide the criterion, but unnecessary because it's done
|
||||
! automatically
|
||||
PROVIDE C_PROVIDER H_PROVIDER g_PROVIDER cc_PROVIDER
|
||||
|
||||
! Initialization
|
||||
delta = 0d0
|
||||
nb_iter = 0 ! Must start at 0 !!!
|
||||
rho = 0.5d0 ! Must start at 0.5
|
||||
not_converged = .True. ! Must be true
|
||||
|
||||
! Compute the criterion before the loop
|
||||
prev_criterion = C_PROVIDER
|
||||
|
||||
do while (not_converged)
|
||||
|
||||
print*,''
|
||||
print*,'******************'
|
||||
print*,'Iteration', nb_iter
|
||||
print*,'******************'
|
||||
print*,''
|
||||
|
||||
! The new hessian and gradient are computed at the end of the previous iteration
|
||||
! Diagonalization of the hessian
|
||||
call diagonalization_hessian(tmp_n, H_PROVIDER, e_val, W)
|
||||
|
||||
cancel_step = .True. ! To enter in the loop just after
|
||||
nb_sub_iter = 0
|
||||
|
||||
! Loop to Reduce the trust radius until the criterion decreases and rho >= thresh_rho
|
||||
do while (cancel_step)
|
||||
|
||||
print*,'-----------------------------'
|
||||
print*,'Iteration:', nb_iter
|
||||
print*,'Sub iteration:', nb_sub_iter
|
||||
print*,'-----------------------------'
|
||||
|
||||
! Hessian,gradient,Criterion -> x
|
||||
call trust_region_step_w_expected_e(tmp_n, H_PROVIDER, W, e_val, g_PROVIDER, &
|
||||
prev_criterion, rho, nb_iter, delta, criterion_model, tmp_x, must_exit)
|
||||
|
||||
if (must_exit) then
|
||||
! if step_in_trust_region sets must_exit on true for numerical reasons
|
||||
print*,'trust_region_step_w_expected_e sent the message : Exit'
|
||||
exit
|
||||
endif
|
||||
|
||||
! 1D tmp -> 2D tmp
|
||||
call vec_to_mat_v2(tmp_n, tmp_list_size, tmp_x, tmp_m_x)
|
||||
|
||||
! Rotation submatrix (square matrix tmp_list_size by tmp_list_size)
|
||||
call rotation_matrix(tmp_m_x, tmp_list_size, tmp_R, tmp_list_size, tmp_list_size, info, enforce_step_cancellation)
|
||||
|
||||
if (enforce_step_cancellation) then
|
||||
print*, 'Forces the step cancellation, too large error in the rotation matrix'
|
||||
rho = 0d0
|
||||
cycle
|
||||
endif
|
||||
|
||||
! tmp_R to R, subspace to full space
|
||||
call sub_to_full_rotation_matrix(tmp_list_size, tmp_list, tmp_R, R)
|
||||
|
||||
! Rotation of the MOs
|
||||
call apply_mo_rotation(R, prev_mos)
|
||||
|
||||
! touch mo_coef
|
||||
call clear_mo_map ! Only if you are using the bi-electronic integrals
|
||||
! mo_coef becomes valid
|
||||
! And avoid the recomputation of the providers which depend of mo_coef
|
||||
TOUCH mo_coef C_PROVIDER H_PROVIDER g_PROVIDER cc_PROVIDER
|
||||
|
||||
! To update the other parameters if needed
|
||||
call #update_parameters()
|
||||
|
||||
! To enforce the program to provide new criterion after the update
|
||||
! of the parameters
|
||||
FREE C_PROVIDER
|
||||
PROVIDE C_PROVIDER
|
||||
criterion = C_PROVIDER
|
||||
|
||||
! Criterion -> step accepted or rejected
|
||||
call trust_region_is_step_cancelled(nb_iter, prev_criterion, criterion, criterion_model, rho, cancel_step)
|
||||
|
||||
! Cancellation of the step ?
|
||||
if (cancel_step) then
|
||||
! Replacement by the previous MOs
|
||||
mo_coef = prev_mos
|
||||
! call save_mos() ! depends of the time for 1 iteration
|
||||
|
||||
! No need to clear_mo_map since we don't recompute the gradient and the hessian
|
||||
! mo_coef becomes valid
|
||||
! Avoid the recomputation of the providers which depend of mo_coef
|
||||
TOUCH mo_coef H_PROVIDER g_PROVIDER C_PROVIDER cc_PROVIDER
|
||||
else
|
||||
! The step is accepted:
|
||||
! criterion -> prev criterion
|
||||
|
||||
! The replacement "criterion -> prev criterion" is already done
|
||||
! in trust_region_rho, so if the criterion does not have a reason
|
||||
! to change, it will change nothing for the criterion and will
|
||||
! force the program to provide the new hessian, gradient and
|
||||
! convergence criterion for the next iteration.
|
||||
! But in the case of orbital optimization we diagonalize the CI
|
||||
! matrix after the "FREE" statement, so the criterion will change
|
||||
|
||||
FREE C_PROVIDER H_PROVIDER g_PROVIDER cc_PROVIDER
|
||||
PROVIDE C_PROVIDER H_PROVIDER g_PROVIDER cc_PROVIDER
|
||||
prev_criterion = C_PROVIDER
|
||||
|
||||
endif
|
||||
|
||||
nb_sub_iter = nb_sub_iter + 1
|
||||
enddo
|
||||
|
||||
! call save_mos() ! depends of the time for 1 iteration
|
||||
|
||||
! To exit the external loop if must_exit = .True.
|
||||
if (must_exit) then
|
||||
exit
|
||||
endif
|
||||
|
||||
! Step accepted, nb iteration + 1
|
||||
nb_iter = nb_iter + 1
|
||||
|
||||
! Provide the convergence criterion
|
||||
! Provide the gradient and the hessian for the next iteration
|
||||
PROVIDE cc_PROVIDER
|
||||
|
||||
! To exit
|
||||
if (dabs(cc_PROVIDER) < thresh_opt_max_elem_grad) then
|
||||
not_converged = .False.
|
||||
endif
|
||||
|
||||
if (nb_iter > optimization_max_nb_iter) then
|
||||
not_converged = .False.
|
||||
endif
|
||||
|
||||
if (delta < thresh_delta) then
|
||||
not_converged = .False.
|
||||
endif
|
||||
|
||||
enddo
|
||||
|
||||
! Save the final MOs
|
||||
call save_mos()
|
||||
|
||||
! Diagonalization of the hessian
|
||||
! (To see the eigenvalues at the end of the optimization)
|
||||
call diagonalization_hessian(tmp_n, H_PROVIDER, e_val, W)
|
||||
|
||||
deallocate(e_val, W, tmp_R, R, tmp_x, prev_mos)
|
||||
|
||||
end
|
||||
#+END_SRC
|
||||
|
||||
** Cartesian version
|
||||
#+BEGIN_SRC f90 :comments org :tangle trust_region_template_xyz.txt
|
||||
subroutine algo_trust_cartesian_template(tmp_n)
|
||||
|
||||
implicit none
|
||||
|
||||
! Variables
|
||||
|
||||
! In
|
||||
integer, intent(in) :: tmp_n
|
||||
|
||||
! Out
|
||||
! Rien ou un truc pour savoir si ça c'est bien passé
|
||||
|
||||
! Internal
|
||||
double precision, allocatable :: e_val(:), W(:,:), tmp_x(:)
|
||||
double precision :: criterion, prev_criterion, criterion_model
|
||||
double precision :: delta, rho
|
||||
logical :: not_converged, cancel_step, must_exit
|
||||
integer :: nb_iter, nb_sub_iter
|
||||
integer :: i,j
|
||||
|
||||
allocate(W(tmp_n, tmp_n),e_val(tmp_n),tmp_x(tmp_n))
|
||||
|
||||
PROVIDE C_PROVIDER X_PROVIDER H_PROVIDER g_PROVIDER
|
||||
|
||||
! Initialization
|
||||
delta = 0d0
|
||||
nb_iter = 0 ! Must start at 0 !!!
|
||||
rho = 0.5d0 ! Must start at 0.5
|
||||
not_converged = .True. ! Must be true
|
||||
|
||||
! Compute the criterion before the loop
|
||||
prev_criterion = C_PROVIDER
|
||||
|
||||
do while (not_converged)
|
||||
|
||||
print*,''
|
||||
print*,'******************'
|
||||
print*,'Iteration', nb_iter
|
||||
print*,'******************'
|
||||
print*,''
|
||||
|
||||
if (nb_iter > 0) then
|
||||
PROVIDE H_PROVIDER g_PROVIDER
|
||||
endif
|
||||
|
||||
! Diagonalization of the hessian
|
||||
call diagonalization_hessian(tmp_n, H_PROVIDER, e_val, W)
|
||||
|
||||
cancel_step = .True. ! To enter in the loop just after
|
||||
nb_sub_iter = 0
|
||||
|
||||
! Loop to Reduce the trust radius until the criterion decreases and rho >= thresh_rho
|
||||
do while (cancel_step)
|
||||
|
||||
print*,'-----------------------------'
|
||||
print*,'Iteration:', nb_iter
|
||||
print*,'Sub iteration:', nb_sub_iter
|
||||
print*,'-----------------------------'
|
||||
|
||||
! Hessian,gradient,Criterion -> x
|
||||
call trust_region_step_w_expected_e(tmp_n, H_PROVIDER, W, e_val, g_PROVIDER, &
|
||||
prev_criterion, rho, nb_iter, delta, criterion_model, tmp_x, must_exit)
|
||||
|
||||
if (must_exit) then
|
||||
! if step_in_trust_region sets must_exit on true for numerical reasons
|
||||
print*,'trust_region_step_w_expected_e sent the message : Exit'
|
||||
exit
|
||||
endif
|
||||
|
||||
! New coordinates, check the sign
|
||||
X_PROVIDER = X_PROVIDER - tmp_x
|
||||
|
||||
! touch X_PROVIDER
|
||||
TOUCH X_PROVIDER H_PROVIDER g_PROVIDER cc_PROVIDER
|
||||
|
||||
! To update the other parameters if needed
|
||||
call #update_parameters()
|
||||
|
||||
! New criterion
|
||||
PROVIDE C_PROVIDER ! Unnecessary
|
||||
criterion = C_PROVIDER
|
||||
|
||||
! Criterion -> step accepted or rejected
|
||||
call trust_region_is_step_cancelled(nb_iter, prev_criterion, criterion, criterion_model, rho, cancel_step)
|
||||
|
||||
! Cancel the previous step
|
||||
if (cancel_step) then
|
||||
! Replacement by the previous coordinates, check the sign
|
||||
X_PROVIDER = X_PROVIDER + tmp_x
|
||||
|
||||
! Avoid the recomputation of the hessian and the gradient
|
||||
TOUCH X_PROVIDER H_PROVIDER g_PROVIDER C_PROVIDER cc_PROVIDER
|
||||
endif
|
||||
|
||||
nb_sub_iter = nb_sub_iter + 1
|
||||
enddo
|
||||
|
||||
! To exit the external loop if must_exit = .True.
|
||||
if (must_exit) then
|
||||
exit
|
||||
endif
|
||||
|
||||
! Step accepted, nb iteration + 1
|
||||
nb_iter = nb_iter + 1
|
||||
|
||||
PROVIDE cc_PROVIDER
|
||||
|
||||
! To exit
|
||||
if (dabs(cc_PROVIDER) < thresh_opt_max_elem_grad) then
|
||||
not_converged = .False.
|
||||
endif
|
||||
|
||||
if (nb_iter > optimization_max_nb_iter) then
|
||||
not_converged = .False.
|
||||
endif
|
||||
|
||||
if (delta < thresh_delta) then
|
||||
not_converged = .False.
|
||||
endif
|
||||
|
||||
enddo
|
||||
|
||||
deallocate(e_val, W, tmp_x)
|
||||
|
||||
end
|
||||
#+END_SRC
|
||||
|
||||
** Script template
|
||||
#+BEGIN_SRC bash :tangle script_template_mos.sh
|
||||
#!/bin/bash
|
||||
|
||||
your_file=
|
||||
|
||||
your_C_PROVIDER=
|
||||
your_H_PROVIDER=
|
||||
your_g_PROVIDER=
|
||||
your_cc_PROVIDER=
|
||||
|
||||
sed "s/C_PROVIDER/$your_C_PROVIDER/g" trust_region_template_mos.txt > $your_file
|
||||
sed -i "s/H_PROVIDER/$your_H_PROVIDER/g" $your_file
|
||||
sed -i "s/g_PROVIDER/$your_g_PROVIDER/g" $your_file
|
||||
sed -i "s/cc_PROVIDER/$your_cc_PROVIDER/g" $your_file
|
||||
#+END_SRC
|
||||
|
||||
#+BEGIN_SRC bash :tangle script_template_xyz.sh
|
||||
#!/bin/bash
|
||||
|
||||
your_file=
|
||||
|
||||
your_C_PROVIDER=
|
||||
your_X_PROVIDER=
|
||||
your_H_PROVIDER=
|
||||
your_g_PROVIDER=
|
||||
your_cc_PROVIDER=
|
||||
|
||||
sed "s/C_PROVIDER/$your_C_PROVIDER/g" trust_region_template_xyz.txt > $your_file
|
||||
sed -i "s/X_PROVIDER/$your_X_PROVIDER/g" $your_file
|
||||
sed -i "s/H_PROVIDER/$your_H_PROVIDER/g" $your_file
|
||||
sed -i "s/g_PROVIDER/$your_g_PROVIDER/g" $your_file
|
||||
sed -i "s/cc_PROVIDER/$your_cc_PROVIDER/g" $your_file
|
||||
#+END_SRC
|
||||
|
85
src/utils_trust_region/apply_mo_rotation.irp.f
Normal file
85
src/utils_trust_region/apply_mo_rotation.irp.f
Normal file
@ -0,0 +1,85 @@
|
||||
! Apply MO rotation
|
||||
! Subroutine to apply the rotation matrix to the coefficients of the
|
||||
! MOs.
|
||||
|
||||
! New MOs = Old MOs . Rotation matrix
|
||||
|
||||
! *Compute the new MOs with the previous MOs and a rotation matrix*
|
||||
|
||||
! Provided:
|
||||
! | mo_num | integer | number of MOs |
|
||||
! | ao_num | integer | number of AOs |
|
||||
! | mo_coef(ao_num,mo_num) | double precision | coefficients of the MOs |
|
||||
|
||||
! Intent in:
|
||||
! | R(mo_num,mo_num) | double precision | rotation matrix |
|
||||
|
||||
! Intent out:
|
||||
! | prev_mos(ao_num,mo_num) | double precision | MOs before the rotation |
|
||||
|
||||
! Internal:
|
||||
! | new_mos(ao_num,mo_num) | double precision | MOs after the rotation |
|
||||
! | i,j | integer | indexes |
|
||||
|
||||
subroutine apply_mo_rotation(R,prev_mos)
|
||||
|
||||
include 'pi.h'
|
||||
|
||||
BEGIN_DOC
|
||||
! Compute the new MOs knowing the rotation matrix
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
|
||||
! Variables
|
||||
|
||||
! in
|
||||
double precision, intent(in) :: R(mo_num,mo_num)
|
||||
|
||||
! out
|
||||
double precision, intent(out) :: prev_mos(ao_num,mo_num)
|
||||
|
||||
! internal
|
||||
double precision, allocatable :: new_mos(:,:)
|
||||
integer :: i,j
|
||||
double precision :: t1,t2,t3
|
||||
|
||||
print*,''
|
||||
print*,'---apply_mo_rotation---'
|
||||
|
||||
call wall_time(t1)
|
||||
|
||||
! Allocation
|
||||
allocate(new_mos(ao_num,mo_num))
|
||||
|
||||
! Calculation
|
||||
|
||||
! Product of old MOs (mo_coef) by Rotation matrix (R)
|
||||
call dgemm('N','N',ao_num,mo_num,mo_num,1d0,mo_coef,size(mo_coef,1),R,size(R,1),0d0,new_mos,size(new_mos,1))
|
||||
|
||||
prev_mos = mo_coef
|
||||
mo_coef = new_mos
|
||||
|
||||
!if (debug) then
|
||||
! print*,'New mo_coef : '
|
||||
! do i = 1, mo_num
|
||||
! write(*,'(100(F10.5))') mo_coef(i,:)
|
||||
! enddo
|
||||
!endif
|
||||
|
||||
! Save the new MOs and change the label
|
||||
mo_label = 'MCSCF'
|
||||
!call save_mos
|
||||
call ezfio_set_determinants_mo_label(mo_label)
|
||||
|
||||
!print*,'Done, MOs saved'
|
||||
|
||||
! Deallocation, end
|
||||
deallocate(new_mos)
|
||||
|
||||
call wall_time(t2)
|
||||
t3 = t2 - t1
|
||||
print*,'Time in apply mo rotation:', t3
|
||||
print*,'---End apply_mo_rotation---'
|
||||
|
||||
end subroutine
|
86
src/utils_trust_region/apply_mo_rotation.org
Normal file
86
src/utils_trust_region/apply_mo_rotation.org
Normal file
@ -0,0 +1,86 @@
|
||||
* Apply MO rotation
|
||||
Subroutine to apply the rotation matrix to the coefficients of the
|
||||
MOs.
|
||||
|
||||
New MOs = Old MOs . Rotation matrix
|
||||
|
||||
*Compute the new MOs with the previous MOs and a rotation matrix*
|
||||
|
||||
Provided:
|
||||
| mo_num | integer | number of MOs |
|
||||
| ao_num | integer | number of AOs |
|
||||
| mo_coef(ao_num,mo_num) | double precision | coefficients of the MOs |
|
||||
|
||||
Intent in:
|
||||
| R(mo_num,mo_num) | double precision | rotation matrix |
|
||||
|
||||
Intent out:
|
||||
| prev_mos(ao_num,mo_num) | double precision | MOs before the rotation |
|
||||
|
||||
Internal:
|
||||
| new_mos(ao_num,mo_num) | double precision | MOs after the rotation |
|
||||
| i,j | integer | indexes |
|
||||
#+BEGIN_SRC f90 :comments org :tangle apply_mo_rotation.irp.f
|
||||
subroutine apply_mo_rotation(R,prev_mos)
|
||||
|
||||
include 'pi.h'
|
||||
|
||||
BEGIN_DOC
|
||||
! Compute the new MOs knowing the rotation matrix
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
|
||||
! Variables
|
||||
|
||||
! in
|
||||
double precision, intent(in) :: R(mo_num,mo_num)
|
||||
|
||||
! out
|
||||
double precision, intent(out) :: prev_mos(ao_num,mo_num)
|
||||
|
||||
! internal
|
||||
double precision, allocatable :: new_mos(:,:)
|
||||
integer :: i,j
|
||||
double precision :: t1,t2,t3
|
||||
|
||||
print*,''
|
||||
print*,'---apply_mo_rotation---'
|
||||
|
||||
call wall_time(t1)
|
||||
|
||||
! Allocation
|
||||
allocate(new_mos(ao_num,mo_num))
|
||||
|
||||
! Calculation
|
||||
|
||||
! Product of old MOs (mo_coef) by Rotation matrix (R)
|
||||
call dgemm('N','N',ao_num,mo_num,mo_num,1d0,mo_coef,size(mo_coef,1),R,size(R,1),0d0,new_mos,size(new_mos,1))
|
||||
|
||||
prev_mos = mo_coef
|
||||
mo_coef = new_mos
|
||||
|
||||
!if (debug) then
|
||||
! print*,'New mo_coef : '
|
||||
! do i = 1, mo_num
|
||||
! write(*,'(100(F10.5))') mo_coef(i,:)
|
||||
! enddo
|
||||
!endif
|
||||
|
||||
! Save the new MOs and change the label
|
||||
mo_label = 'MCSCF'
|
||||
!call save_mos
|
||||
call ezfio_set_determinants_mo_label(mo_label)
|
||||
|
||||
!print*,'Done, MOs saved'
|
||||
|
||||
! Deallocation, end
|
||||
deallocate(new_mos)
|
||||
|
||||
call wall_time(t2)
|
||||
t3 = t2 - t1
|
||||
print*,'Time in apply mo rotation:', t3
|
||||
print*,'---End apply_mo_rotation---'
|
||||
|
||||
end subroutine
|
||||
#+END_SRC
|
61
src/utils_trust_region/mat_to_vec_index.irp.f
Normal file
61
src/utils_trust_region/mat_to_vec_index.irp.f
Normal file
@ -0,0 +1,61 @@
|
||||
! Matrix to vector index
|
||||
|
||||
! *Compute the index i of a vector element from the indexes p,q of a
|
||||
! matrix element*
|
||||
|
||||
! Lower diagonal matrix (p,q), p > q -> vector (i)
|
||||
|
||||
! If a matrix is antisymmetric it can be reshaped as a vector. And the
|
||||
! vector can be reshaped as an antisymmetric matrix
|
||||
|
||||
! \begin{align*}
|
||||
! \begin{pmatrix}
|
||||
! 0 & -1 & -2 & -4 \\
|
||||
! 1 & 0 & -3 & -5 \\
|
||||
! 2 & 3 & 0 & -6 \\
|
||||
! 4 & 5 & 6 & 0
|
||||
! \end{pmatrix}
|
||||
! \Leftrightarrow
|
||||
! \begin{pmatrix}
|
||||
! 1 & 2 & 3 & 4 & 5 & 6
|
||||
! \end{pmatrix}
|
||||
! \end{align*}
|
||||
|
||||
! !!! Here the algorithm only work for the lower diagonal !!!
|
||||
|
||||
! Input:
|
||||
! | p,q | integer | indexes of a matrix element in the lower diagonal |
|
||||
! | | | p > q, q -> column |
|
||||
! | | | p -> row, |
|
||||
! | | | q -> column |
|
||||
|
||||
! Input:
|
||||
! | i | integer | corresponding index in the vector |
|
||||
|
||||
|
||||
subroutine mat_to_vec_index(p,q,i)
|
||||
|
||||
include 'pi.h'
|
||||
|
||||
implicit none
|
||||
|
||||
! Variables
|
||||
|
||||
! in
|
||||
integer, intent(in) :: p,q
|
||||
|
||||
! out
|
||||
integer, intent(out) :: i
|
||||
|
||||
! internal
|
||||
integer :: a,b
|
||||
double precision :: da
|
||||
|
||||
! Calculation
|
||||
|
||||
a = p-1
|
||||
b = a*(a-1)/2
|
||||
|
||||
i = q+b
|
||||
|
||||
end subroutine
|
63
src/utils_trust_region/mat_to_vec_index.org
Normal file
63
src/utils_trust_region/mat_to_vec_index.org
Normal file
@ -0,0 +1,63 @@
|
||||
* Matrix to vector index
|
||||
|
||||
*Compute the index i of a vector element from the indexes p,q of a
|
||||
matrix element*
|
||||
|
||||
Lower diagonal matrix (p,q), p > q -> vector (i)
|
||||
|
||||
If a matrix is antisymmetric it can be reshaped as a vector. And the
|
||||
vector can be reshaped as an antisymmetric matrix
|
||||
|
||||
\begin{align*}
|
||||
\begin{pmatrix}
|
||||
0 & -1 & -2 & -4 \\
|
||||
1 & 0 & -3 & -5 \\
|
||||
2 & 3 & 0 & -6 \\
|
||||
4 & 5 & 6 & 0
|
||||
\end{pmatrix}
|
||||
\Leftrightarrow
|
||||
\begin{pmatrix}
|
||||
1 & 2 & 3 & 4 & 5 & 6
|
||||
\end{pmatrix}
|
||||
\end{align*}
|
||||
|
||||
!!! Here the algorithm only work for the lower diagonal !!!
|
||||
|
||||
Input:
|
||||
| p,q | integer | indexes of a matrix element in the lower diagonal |
|
||||
| | | p > q, q -> column |
|
||||
| | | p -> row, |
|
||||
| | | q -> column |
|
||||
|
||||
Input:
|
||||
| i | integer | corresponding index in the vector |
|
||||
|
||||
#+BEGIN_SRC f90 :comments org :tangle mat_to_vec_index.irp.f
|
||||
subroutine mat_to_vec_index(p,q,i)
|
||||
|
||||
include 'pi.h'
|
||||
|
||||
implicit none
|
||||
|
||||
! Variables
|
||||
|
||||
! in
|
||||
integer, intent(in) :: p,q
|
||||
|
||||
! out
|
||||
integer, intent(out) :: i
|
||||
|
||||
! internal
|
||||
integer :: a,b
|
||||
double precision :: da
|
||||
|
||||
! Calculation
|
||||
|
||||
a = p-1
|
||||
b = a*(a-1)/2
|
||||
|
||||
i = q+b
|
||||
|
||||
end subroutine
|
||||
#+END_SRC
|
||||
|
2
src/utils_trust_region/pi.h
Normal file
2
src/utils_trust_region/pi.h
Normal file
@ -0,0 +1,2 @@
|
||||
!logical, parameter :: debug=.False.
|
||||
double precision, parameter :: pi = 3.1415926535897932d0
|
443
src/utils_trust_region/rotation_matrix.irp.f
Normal file
443
src/utils_trust_region/rotation_matrix.irp.f
Normal file
@ -0,0 +1,443 @@
|
||||
! Rotation matrix
|
||||
|
||||
! *Build a rotation matrix from an antisymmetric matrix*
|
||||
|
||||
! Compute a rotation matrix $\textbf{R}$ from an antisymmetric matrix $$\textbf{A}$$ such as :
|
||||
! $$
|
||||
! \textbf{R}=\exp(\textbf{A})
|
||||
! $$
|
||||
|
||||
! So :
|
||||
! \begin{align*}
|
||||
! \textbf{R}=& \exp(\textbf{A}) \\
|
||||
! =& \sum_k^{\infty} \frac{1}{k!}\textbf{A}^k \\
|
||||
! =& \textbf{W} \cdot \cos(\tau) \cdot \textbf{W}^{\dagger} + \textbf{W} \cdot \tau^{-1} \cdot \sin(\tau) \cdot \textbf{W}^{\dagger} \cdot \textbf{A}
|
||||
! \end{align*}
|
||||
|
||||
! With :
|
||||
! $\textbf{W}$ : eigenvectors of $\textbf{A}^2$
|
||||
! $\tau$ : $\sqrt{-x}$
|
||||
! $x$ : eigenvalues of $\textbf{A}^2$
|
||||
|
||||
! Input:
|
||||
! | A(n,n) | double precision | antisymmetric matrix |
|
||||
! | n | integer | number of columns of the A matrix |
|
||||
! | LDA | integer | specifies the leading dimension of A, must be at least max(1,n) |
|
||||
! | LDR | integer | specifies the leading dimension of R, must be at least max(1,n) |
|
||||
|
||||
! Output:
|
||||
! | R(n,n) | double precision | Rotation matrix |
|
||||
! | info | integer | if info = 0, the execution is successful |
|
||||
! | | | if info = k, the k-th parameter has an illegal value |
|
||||
! | | | if info = -k, the algorithm failed |
|
||||
|
||||
! Internal:
|
||||
! | B(n,n) | double precision | B = A.A |
|
||||
! | work(lwork,n) | double precision | work matrix for dysev, dimension max(1,lwork) |
|
||||
! | lwork | integer | dimension of the syev work array >= max(1, 3n-1) |
|
||||
! | W(n,n) | double precision | eigenvectors of B |
|
||||
! | e_val(n) | double precision | eigenvalues of B |
|
||||
! | m_diag(n,n) | double precision | diagonal matrix with the eigenvalues of B |
|
||||
! | cos_tau(n,n) | double precision | diagonal matrix with cos(tau) values |
|
||||
! | sin_tau(n,n) | double precision | diagonal matrix with sin cos(tau) values |
|
||||
! | tau_m1(n,n) | double precision | diagonal matrix with (tau)^-1 values |
|
||||
! | part_1(n,n) | double precision | matrix W.cos_tau.W^t |
|
||||
! | part_1a(n,n) | double precision | matrix cos_tau.W^t |
|
||||
! | part_2(n,n) | double precision | matrix W.tau_m1.sin_tau.W^t.A |
|
||||
! | part_2a(n,n) | double precision | matrix W^t.A |
|
||||
! | part_2b(n,n) | double precision | matrix sin_tau.W^t.A |
|
||||
! | part_2c(n,n) | double precision | matrix tau_m1.sin_tau.W^t.A |
|
||||
! | RR_t(n,n) | double precision | R.R^t must be equal to the identity<=> R.R^t-1=0 <=> norm = 0 |
|
||||
! | norm | integer | norm of R.R^t-1, must be equal to 0 |
|
||||
! | i,j | integer | indexes |
|
||||
|
||||
! Functions:
|
||||
! | dnrm2 | double precision | Lapack function, compute the norm of a matrix |
|
||||
! | disnan | logical | Lapack function, check if an element is NaN |
|
||||
|
||||
|
||||
|
||||
subroutine rotation_matrix(A,LDA,R,LDR,n,info,enforce_step_cancellation)
|
||||
|
||||
implicit none
|
||||
|
||||
BEGIN_DOC
|
||||
! Rotation matrix to rotate the molecular orbitals.
|
||||
! If the rotation is too large the transformation is not unitary and must be cancelled.
|
||||
END_DOC
|
||||
|
||||
include 'pi.h'
|
||||
|
||||
! Variables
|
||||
|
||||
! in
|
||||
integer, intent(in) :: n,LDA,LDR
|
||||
double precision, intent(inout) :: A(LDA,n)
|
||||
|
||||
! out
|
||||
double precision, intent(out) :: R(LDR,n)
|
||||
integer, intent(out) :: info
|
||||
logical, intent(out) :: enforce_step_cancellation
|
||||
|
||||
! internal
|
||||
double precision, allocatable :: B(:,:)
|
||||
double precision, allocatable :: work(:,:)
|
||||
double precision, allocatable :: W(:,:), e_val(:)
|
||||
double precision, allocatable :: m_diag(:,:),cos_tau(:,:),sin_tau(:,:),tau_m1(:,:)
|
||||
double precision, allocatable :: part_1(:,:),part_1a(:,:)
|
||||
double precision, allocatable :: part_2(:,:),part_2a(:,:),part_2b(:,:),part_2c(:,:)
|
||||
double precision, allocatable :: RR_t(:,:)
|
||||
integer :: i,j
|
||||
integer :: info2, lwork ! for dsyev
|
||||
double precision :: norm, max_elem, max_elem_A, t1,t2,t3
|
||||
|
||||
! function
|
||||
double precision :: dnrm2
|
||||
logical :: disnan
|
||||
|
||||
print*,''
|
||||
print*,'---rotation_matrix---'
|
||||
|
||||
call wall_time(t1)
|
||||
|
||||
! Allocation
|
||||
allocate(B(n,n))
|
||||
allocate(m_diag(n,n),cos_tau(n,n),sin_tau(n,n),tau_m1(n,n))
|
||||
allocate(W(n,n),e_val(n))
|
||||
allocate(part_1(n,n),part_1a(n,n))
|
||||
allocate(part_2(n,n),part_2a(n,n),part_2b(n,n),part_2c(n,n))
|
||||
allocate(RR_t(n,n))
|
||||
|
||||
! Pre-conditions
|
||||
|
||||
! Initialization
|
||||
info=0
|
||||
enforce_step_cancellation = .False.
|
||||
|
||||
! Size of matrix A must be at least 1 by 1
|
||||
if (n<1) then
|
||||
info = 3
|
||||
print*, 'WARNING: invalid parameter 5'
|
||||
print*, 'n<1'
|
||||
return
|
||||
endif
|
||||
|
||||
! Leading dimension of A must be >= n
|
||||
if (LDA < n) then
|
||||
info = 25
|
||||
print*, 'WARNING: invalid parameter 2 or 5'
|
||||
print*, 'LDA < n'
|
||||
return
|
||||
endif
|
||||
|
||||
! Leading dimension of A must be >= n
|
||||
if (LDR < n) then
|
||||
info = 4
|
||||
print*, 'WARNING: invalid parameter 4'
|
||||
print*, 'LDR < n'
|
||||
return
|
||||
endif
|
||||
|
||||
! Matrix elements of A must by non-NaN
|
||||
do j = 1, n
|
||||
do i = 1, n
|
||||
if (disnan(A(i,j))) then
|
||||
info=1
|
||||
print*, 'WARNING: invalid parameter 1'
|
||||
print*, 'NaN element in A matrix'
|
||||
return
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
|
||||
do i = 1, n
|
||||
if (A(i,i) /= 0d0) then
|
||||
print*, 'WARNING: matrix A is not antisymmetric'
|
||||
print*, 'Non 0 element on the diagonal', i, A(i,i)
|
||||
call ABORT
|
||||
endif
|
||||
enddo
|
||||
|
||||
do j = 1, n
|
||||
do i = 1, n
|
||||
if (A(i,j)+A(j,i)>1d-16) then
|
||||
print*, 'WANRING: matrix A is not antisymmetric'
|
||||
print*, 'A(i,j) /= - A(j,i):', i,j,A(i,j), A(j,i)
|
||||
print*, 'diff:', A(i,j)+A(j,i)
|
||||
call ABORT
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! Fix for too big elements ! bad idea better to cancel if the error is too big
|
||||
!do j = 1, n
|
||||
! do i = 1, n
|
||||
! A(i,j) = mod(A(i,j),2d0*pi)
|
||||
! if (dabs(A(i,j)) > pi) then
|
||||
! A(i,j) = 0d0
|
||||
! endif
|
||||
! enddo
|
||||
!enddo
|
||||
|
||||
max_elem_A = 0d0
|
||||
do j = 1, n
|
||||
do i = 1, n
|
||||
if (ABS(A(i,j)) > ABS(max_elem_A)) then
|
||||
max_elem_A = A(i,j)
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
print*,'max element in A', max_elem_A
|
||||
|
||||
if (ABS(max_elem_A) > 2 * pi) then
|
||||
print*,''
|
||||
print*,'WARNING: ABS(max_elem_A) > 2 pi '
|
||||
print*,''
|
||||
endif
|
||||
|
||||
! B=A.A
|
||||
! - Calculation of the matrix $\textbf{B} = \textbf{A}^2$
|
||||
! - Diagonalization of $\textbf{B}$
|
||||
! W, the eigenvectors
|
||||
! e_val, the eigenvalues
|
||||
|
||||
|
||||
! Compute B=A.A
|
||||
|
||||
call dgemm('N','N',n,n,n,1d0,A,size(A,1),A,size(A,1),0d0,B,size(B,1))
|
||||
|
||||
! Copy B in W, diagonalization will put the eigenvectors in W
|
||||
W=B
|
||||
|
||||
! Diagonalization of B
|
||||
! Eigenvalues -> e_val
|
||||
! Eigenvectors -> W
|
||||
lwork = 3*n-1
|
||||
allocate(work(lwork,n))
|
||||
|
||||
print*,'Starting diagonalization ...'
|
||||
|
||||
call dsyev('V','U',n,W,size(W,1),e_val,work,lwork,info2)
|
||||
|
||||
deallocate(work)
|
||||
|
||||
if (info2 == 0) then
|
||||
print*, 'Diagonalization : Done'
|
||||
elseif (info2 < 0) then
|
||||
print*, 'WARNING: error in the diagonalization'
|
||||
print*, 'Illegal value of the ', info2,'-th parameter'
|
||||
else
|
||||
print*, "WARNING: Diagonalization failed to converge"
|
||||
endif
|
||||
|
||||
! Tau^-1, cos(tau), sin(tau)
|
||||
! $$\tau = \sqrt{-x}$$
|
||||
! - Calculation of $\cos(\tau)$ $\Leftrightarrow$ $\cos(\sqrt{-x})$
|
||||
! - Calculation of $\sin(\tau)$ $\Leftrightarrow$ $\sin(\sqrt{-x})$
|
||||
! - Calculation of $\tau^{-1}$ $\Leftrightarrow$ $(\sqrt{-x})^{-1}$
|
||||
! These matrices are diagonals
|
||||
|
||||
! Diagonal matrix m_diag
|
||||
do j = 1, n
|
||||
if (e_val(j) >= -1d-12) then !0.d0) then !!! e_avl(i) must be < -1d-12 to avoid numerical problems
|
||||
e_val(j) = 0.d0
|
||||
else
|
||||
e_val(j) = - e_val(j)
|
||||
endif
|
||||
enddo
|
||||
|
||||
m_diag = 0.d0
|
||||
do i = 1, n
|
||||
m_diag(i,i) = e_val(i)
|
||||
enddo
|
||||
|
||||
! cos_tau
|
||||
do j = 1, n
|
||||
do i = 1, n
|
||||
if (i==j) then
|
||||
cos_tau(i,j) = dcos(dsqrt(e_val(i)))
|
||||
else
|
||||
cos_tau(i,j) = 0d0
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! sin_tau
|
||||
do j = 1, n
|
||||
do i = 1, n
|
||||
if (i==j) then
|
||||
sin_tau(i,j) = dsin(dsqrt(e_val(i)))
|
||||
else
|
||||
sin_tau(i,j) = 0d0
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! Debug, display the cos_tau and sin_tau matrix
|
||||
!if (debug) then
|
||||
! print*, 'cos_tau'
|
||||
! do i = 1, n
|
||||
! print*, cos_tau(i,:)
|
||||
! enddo
|
||||
! print*, 'sin_tau'
|
||||
! do i = 1, n
|
||||
! print*, sin_tau(i,:)
|
||||
! enddo
|
||||
!endif
|
||||
|
||||
! tau^-1
|
||||
do j = 1, n
|
||||
do i = 1, n
|
||||
if ((i==j) .and. (e_val(i) > 1d-16)) then!0d0)) then !!! Convergence problem can come from here if the threshold is too big/small
|
||||
tau_m1(i,j) = 1d0/(dsqrt(e_val(i)))
|
||||
else
|
||||
tau_m1(i,j) = 0d0
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
|
||||
max_elem = 0d0
|
||||
do i = 1, n
|
||||
if (ABS(tau_m1(i,i)) > ABS(max_elem)) then
|
||||
max_elem = tau_m1(i,i)
|
||||
endif
|
||||
enddo
|
||||
print*,'max elem tau^-1:', max_elem
|
||||
|
||||
! Debug
|
||||
!print*,'eigenvalues:'
|
||||
!do i = 1, n
|
||||
! print*, e_val(i)
|
||||
!enddo
|
||||
|
||||
!Debug, display tau^-1
|
||||
!if (debug) then
|
||||
! print*, 'tau^-1'
|
||||
! do i = 1, n
|
||||
! print*,tau_m1(i,:)
|
||||
! enddo
|
||||
!endif
|
||||
|
||||
! Rotation matrix
|
||||
! \begin{align*}
|
||||
! \textbf{R} = \textbf{W} \cos(\tau) \textbf{W}^{\dagger} + \textbf{W} \tau^{-1} \sin(\tau) \textbf{W}^{\dagger} \textbf{A}
|
||||
! \end{align*}
|
||||
! \begin{align*}
|
||||
! \textbf{Part1} = \textbf{W} \cos(\tau) \textbf{W}^{\dagger}
|
||||
! \end{align*}
|
||||
! \begin{align*}
|
||||
! \textbf{Part2} = \textbf{W} \tau^{-1} \sin(\tau) \textbf{W}^{\dagger} \textbf{A}
|
||||
! \end{align*}
|
||||
|
||||
! First:
|
||||
! part_1 = dgemm(W, dgemm(cos_tau, W^t))
|
||||
! part_1a = dgemm(cos_tau, W^t)
|
||||
! part_1 = dgemm(W, part_1a)
|
||||
! And:
|
||||
! part_2= dgemm(W, dgemm(tau_m1, dgemm(sin_tau, dgemm(W^t, A))))
|
||||
! part_2a = dgemm(W^t, A)
|
||||
! part_2b = dgemm(sin_tau, part_2a)
|
||||
! part_2c = dgemm(tau_m1, part_2b)
|
||||
! part_2 = dgemm(W, part_2c)
|
||||
! Finally:
|
||||
! Rotation matrix, R = part_1+part_2
|
||||
|
||||
! If $R$ is a rotation matrix:
|
||||
! $R.R^T=R^T.R=\textbf{1}$
|
||||
|
||||
! part_1
|
||||
call dgemm('N','T',n,n,n,1d0,cos_tau,size(cos_tau,1),W,size(W,1),0d0,part_1a,size(part_1a,1))
|
||||
call dgemm('N','N',n,n,n,1d0,W,size(W,1),part_1a,size(part_1a,1),0d0,part_1,size(part_1,1))
|
||||
|
||||
! part_2
|
||||
call dgemm('T','N',n,n,n,1d0,W,size(W,1),A,size(A,1),0d0,part_2a,size(part_2a,1))
|
||||
call dgemm('N','N',n,n,n,1d0,sin_tau,size(sin_tau,1),part_2a,size(part_2a,1),0d0,part_2b,size(part_2b,1))
|
||||
call dgemm('N','N',n,n,n,1d0,tau_m1,size(tau_m1,1),part_2b,size(part_2b,1),0d0,part_2c,size(part_2c,1))
|
||||
call dgemm('N','N',n,n,n,1d0,W,size(W,1),part_2c,size(part_2c,1),0d0,part_2,size(part_2,1))
|
||||
|
||||
! Rotation matrix R
|
||||
R = part_1 + part_2
|
||||
|
||||
! Matrix check
|
||||
! R.R^t and R^t.R must be equal to identity matrix
|
||||
do j = 1, n
|
||||
do i=1,n
|
||||
if (i==j) then
|
||||
RR_t(i,j) = 1d0
|
||||
else
|
||||
RR_t(i,j) = 0d0
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
|
||||
call dgemm('N','T',n,n,n,1d0,R,size(R,1),R,size(R,1),-1d0,RR_t,size(RR_t,1))
|
||||
|
||||
norm = dnrm2(n*n,RR_t,1)
|
||||
print*, 'Rotation matrix check, norm R.R^T = ', norm
|
||||
|
||||
! Debug
|
||||
!if (debug) then
|
||||
! print*, 'RR_t'
|
||||
! do i = 1, n
|
||||
! print*, RR_t(i,:)
|
||||
! enddo
|
||||
!endif
|
||||
|
||||
! Post conditions
|
||||
|
||||
! Check if R.R^T=1
|
||||
max_elem = 0d0
|
||||
do j = 1, n
|
||||
do i = 1, n
|
||||
if (ABS(RR_t(i,j)) > ABS(max_elem)) then
|
||||
max_elem = RR_t(i,j)
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
|
||||
print*, 'Max error in R.R^T:', max_elem
|
||||
print*, 'e_val(1):', e_val(1)
|
||||
print*, 'e_val(n):', e_val(n)
|
||||
print*, 'max elem in A:', max_elem_A
|
||||
|
||||
if (ABS(max_elem) > 1d-12) then
|
||||
print*, 'WARNING: max error in R.R^T > 1d-12'
|
||||
print*, 'Enforce the step cancellation'
|
||||
enforce_step_cancellation = .True.
|
||||
endif
|
||||
|
||||
! Matrix elements of R must by non-NaN
|
||||
do j = 1,n
|
||||
do i = 1,LDR
|
||||
if (disnan(R(i,j))) then
|
||||
info = 666
|
||||
print*, 'NaN in rotation matrix'
|
||||
call ABORT
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! Display
|
||||
!if (debug) then
|
||||
! print*,'Rotation matrix :'
|
||||
! do i = 1, n
|
||||
! write(*,'(100(F10.5))') R(i,:)
|
||||
! enddo
|
||||
!endif
|
||||
|
||||
! Deallocation, end
|
||||
|
||||
deallocate(B)
|
||||
deallocate(m_diag,cos_tau,sin_tau,tau_m1)
|
||||
deallocate(W,e_val)
|
||||
deallocate(part_1,part_1a)
|
||||
deallocate(part_2,part_2a,part_2b,part_2c)
|
||||
deallocate(RR_t)
|
||||
|
||||
call wall_time(t2)
|
||||
t3 = t2-t1
|
||||
print*,'Time in rotation matrix:', t3
|
||||
|
||||
print*,'---End rotation_matrix---'
|
||||
|
||||
end subroutine
|
454
src/utils_trust_region/rotation_matrix.org
Normal file
454
src/utils_trust_region/rotation_matrix.org
Normal file
@ -0,0 +1,454 @@
|
||||
* Rotation matrix
|
||||
|
||||
*Build a rotation matrix from an antisymmetric matrix*
|
||||
|
||||
Compute a rotation matrix $\textbf{R}$ from an antisymmetric matrix $$\textbf{A}$$ such as :
|
||||
$$
|
||||
\textbf{R}=\exp(\textbf{A})
|
||||
$$
|
||||
|
||||
So :
|
||||
\begin{align*}
|
||||
\textbf{R}=& \exp(\textbf{A}) \\
|
||||
=& \sum_k^{\infty} \frac{1}{k!}\textbf{A}^k \\
|
||||
=& \textbf{W} \cdot \cos(\tau) \cdot \textbf{W}^{\dagger} + \textbf{W} \cdot \tau^{-1} \cdot \sin(\tau) \cdot \textbf{W}^{\dagger} \cdot \textbf{A}
|
||||
\end{align*}
|
||||
|
||||
With :
|
||||
$\textbf{W}$ : eigenvectors of $\textbf{A}^2$
|
||||
$\tau$ : $\sqrt{-x}$
|
||||
$x$ : eigenvalues of $\textbf{A}^2$
|
||||
|
||||
Input:
|
||||
| A(n,n) | double precision | antisymmetric matrix |
|
||||
| n | integer | number of columns of the A matrix |
|
||||
| LDA | integer | specifies the leading dimension of A, must be at least max(1,n) |
|
||||
| LDR | integer | specifies the leading dimension of R, must be at least max(1,n) |
|
||||
|
||||
Output:
|
||||
| R(n,n) | double precision | Rotation matrix |
|
||||
| info | integer | if info = 0, the execution is successful |
|
||||
| | | if info = k, the k-th parameter has an illegal value |
|
||||
| | | if info = -k, the algorithm failed |
|
||||
|
||||
Internal:
|
||||
| B(n,n) | double precision | B = A.A |
|
||||
| work(lwork,n) | double precision | work matrix for dysev, dimension max(1,lwork) |
|
||||
| lwork | integer | dimension of the syev work array >= max(1, 3n-1) |
|
||||
| W(n,n) | double precision | eigenvectors of B |
|
||||
| e_val(n) | double precision | eigenvalues of B |
|
||||
| m_diag(n,n) | double precision | diagonal matrix with the eigenvalues of B |
|
||||
| cos_tau(n,n) | double precision | diagonal matrix with cos(tau) values |
|
||||
| sin_tau(n,n) | double precision | diagonal matrix with sin cos(tau) values |
|
||||
| tau_m1(n,n) | double precision | diagonal matrix with (tau)^-1 values |
|
||||
| part_1(n,n) | double precision | matrix W.cos_tau.W^t |
|
||||
| part_1a(n,n) | double precision | matrix cos_tau.W^t |
|
||||
| part_2(n,n) | double precision | matrix W.tau_m1.sin_tau.W^t.A |
|
||||
| part_2a(n,n) | double precision | matrix W^t.A |
|
||||
| part_2b(n,n) | double precision | matrix sin_tau.W^t.A |
|
||||
| part_2c(n,n) | double precision | matrix tau_m1.sin_tau.W^t.A |
|
||||
| RR_t(n,n) | double precision | R.R^t must be equal to the identity<=> R.R^t-1=0 <=> norm = 0 |
|
||||
| norm | integer | norm of R.R^t-1, must be equal to 0 |
|
||||
| i,j | integer | indexes |
|
||||
|
||||
Functions:
|
||||
| dnrm2 | double precision | Lapack function, compute the norm of a matrix |
|
||||
| disnan | logical | Lapack function, check if an element is NaN |
|
||||
|
||||
|
||||
#+BEGIN_SRC f90 :comments org :tangle rotation_matrix.irp.f
|
||||
subroutine rotation_matrix(A,LDA,R,LDR,n,info,enforce_step_cancellation)
|
||||
|
||||
implicit none
|
||||
|
||||
BEGIN_DOC
|
||||
! Rotation matrix to rotate the molecular orbitals.
|
||||
! If the rotation is too large the transformation is not unitary and must be cancelled.
|
||||
END_DOC
|
||||
|
||||
include 'pi.h'
|
||||
|
||||
! Variables
|
||||
|
||||
! in
|
||||
integer, intent(in) :: n,LDA,LDR
|
||||
double precision, intent(inout) :: A(LDA,n)
|
||||
|
||||
! out
|
||||
double precision, intent(out) :: R(LDR,n)
|
||||
integer, intent(out) :: info
|
||||
logical, intent(out) :: enforce_step_cancellation
|
||||
|
||||
! internal
|
||||
double precision, allocatable :: B(:,:)
|
||||
double precision, allocatable :: work(:,:)
|
||||
double precision, allocatable :: W(:,:), e_val(:)
|
||||
double precision, allocatable :: m_diag(:,:),cos_tau(:,:),sin_tau(:,:),tau_m1(:,:)
|
||||
double precision, allocatable :: part_1(:,:),part_1a(:,:)
|
||||
double precision, allocatable :: part_2(:,:),part_2a(:,:),part_2b(:,:),part_2c(:,:)
|
||||
double precision, allocatable :: RR_t(:,:)
|
||||
integer :: i,j
|
||||
integer :: info2, lwork ! for dsyev
|
||||
double precision :: norm, max_elem, max_elem_A, t1,t2,t3
|
||||
|
||||
! function
|
||||
double precision :: dnrm2
|
||||
logical :: disnan
|
||||
|
||||
print*,''
|
||||
print*,'---rotation_matrix---'
|
||||
|
||||
call wall_time(t1)
|
||||
|
||||
! Allocation
|
||||
allocate(B(n,n))
|
||||
allocate(m_diag(n,n),cos_tau(n,n),sin_tau(n,n),tau_m1(n,n))
|
||||
allocate(W(n,n),e_val(n))
|
||||
allocate(part_1(n,n),part_1a(n,n))
|
||||
allocate(part_2(n,n),part_2a(n,n),part_2b(n,n),part_2c(n,n))
|
||||
allocate(RR_t(n,n))
|
||||
#+END_SRC
|
||||
|
||||
** Pre-conditions
|
||||
#+BEGIN_SRC f90 :comments org :tangle rotation_matrix.irp.f
|
||||
! Initialization
|
||||
info=0
|
||||
enforce_step_cancellation = .False.
|
||||
|
||||
! Size of matrix A must be at least 1 by 1
|
||||
if (n<1) then
|
||||
info = 3
|
||||
print*, 'WARNING: invalid parameter 5'
|
||||
print*, 'n<1'
|
||||
return
|
||||
endif
|
||||
|
||||
! Leading dimension of A must be >= n
|
||||
if (LDA < n) then
|
||||
info = 25
|
||||
print*, 'WARNING: invalid parameter 2 or 5'
|
||||
print*, 'LDA < n'
|
||||
return
|
||||
endif
|
||||
|
||||
! Leading dimension of A must be >= n
|
||||
if (LDR < n) then
|
||||
info = 4
|
||||
print*, 'WARNING: invalid parameter 4'
|
||||
print*, 'LDR < n'
|
||||
return
|
||||
endif
|
||||
|
||||
! Matrix elements of A must by non-NaN
|
||||
do j = 1, n
|
||||
do i = 1, n
|
||||
if (disnan(A(i,j))) then
|
||||
info=1
|
||||
print*, 'WARNING: invalid parameter 1'
|
||||
print*, 'NaN element in A matrix'
|
||||
return
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
|
||||
do i = 1, n
|
||||
if (A(i,i) /= 0d0) then
|
||||
print*, 'WARNING: matrix A is not antisymmetric'
|
||||
print*, 'Non 0 element on the diagonal', i, A(i,i)
|
||||
call ABORT
|
||||
endif
|
||||
enddo
|
||||
|
||||
do j = 1, n
|
||||
do i = 1, n
|
||||
if (A(i,j)+A(j,i)>1d-16) then
|
||||
print*, 'WANRING: matrix A is not antisymmetric'
|
||||
print*, 'A(i,j) /= - A(j,i):', i,j,A(i,j), A(j,i)
|
||||
print*, 'diff:', A(i,j)+A(j,i)
|
||||
call ABORT
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! Fix for too big elements ! bad idea better to cancel if the error is too big
|
||||
!do j = 1, n
|
||||
! do i = 1, n
|
||||
! A(i,j) = mod(A(i,j),2d0*pi)
|
||||
! if (dabs(A(i,j)) > pi) then
|
||||
! A(i,j) = 0d0
|
||||
! endif
|
||||
! enddo
|
||||
!enddo
|
||||
|
||||
max_elem_A = 0d0
|
||||
do j = 1, n
|
||||
do i = 1, n
|
||||
if (ABS(A(i,j)) > ABS(max_elem_A)) then
|
||||
max_elem_A = A(i,j)
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
print*,'max element in A', max_elem_A
|
||||
|
||||
if (ABS(max_elem_A) > 2 * pi) then
|
||||
print*,''
|
||||
print*,'WARNING: ABS(max_elem_A) > 2 pi '
|
||||
print*,''
|
||||
endif
|
||||
|
||||
#+END_SRC
|
||||
|
||||
** Calculations
|
||||
|
||||
*** B=A.A
|
||||
- Calculation of the matrix $\textbf{B} = \textbf{A}^2$
|
||||
- Diagonalization of $\textbf{B}$
|
||||
W, the eigenvectors
|
||||
e_val, the eigenvalues
|
||||
|
||||
#+BEGIN_SRC f90 :comments org :tangle rotation_matrix.irp.f
|
||||
! Compute B=A.A
|
||||
|
||||
call dgemm('N','N',n,n,n,1d0,A,size(A,1),A,size(A,1),0d0,B,size(B,1))
|
||||
|
||||
! Copy B in W, diagonalization will put the eigenvectors in W
|
||||
W=B
|
||||
|
||||
! Diagonalization of B
|
||||
! Eigenvalues -> e_val
|
||||
! Eigenvectors -> W
|
||||
lwork = 3*n-1
|
||||
allocate(work(lwork,n))
|
||||
|
||||
print*,'Starting diagonalization ...'
|
||||
|
||||
call dsyev('V','U',n,W,size(W,1),e_val,work,lwork,info2)
|
||||
|
||||
deallocate(work)
|
||||
|
||||
if (info2 == 0) then
|
||||
print*, 'Diagonalization : Done'
|
||||
elseif (info2 < 0) then
|
||||
print*, 'WARNING: error in the diagonalization'
|
||||
print*, 'Illegal value of the ', info2,'-th parameter'
|
||||
else
|
||||
print*, "WARNING: Diagonalization failed to converge"
|
||||
endif
|
||||
#+END_SRC
|
||||
|
||||
*** Tau^-1, cos(tau), sin(tau)
|
||||
$$\tau = \sqrt{-x}$$
|
||||
- Calculation of $\cos(\tau)$ $\Leftrightarrow$ $\cos(\sqrt{-x})$
|
||||
- Calculation of $\sin(\tau)$ $\Leftrightarrow$ $\sin(\sqrt{-x})$
|
||||
- Calculation of $\tau^{-1}$ $\Leftrightarrow$ $(\sqrt{-x})^{-1}$
|
||||
These matrices are diagonals
|
||||
#+BEGIN_SRC f90 :comments org :tangle rotation_matrix.irp.f
|
||||
! Diagonal matrix m_diag
|
||||
do j = 1, n
|
||||
if (e_val(j) >= -1d-12) then !0.d0) then !!! e_avl(i) must be < -1d-12 to avoid numerical problems
|
||||
e_val(j) = 0.d0
|
||||
else
|
||||
e_val(j) = - e_val(j)
|
||||
endif
|
||||
enddo
|
||||
|
||||
m_diag = 0.d0
|
||||
do i = 1, n
|
||||
m_diag(i,i) = e_val(i)
|
||||
enddo
|
||||
|
||||
! cos_tau
|
||||
do j = 1, n
|
||||
do i = 1, n
|
||||
if (i==j) then
|
||||
cos_tau(i,j) = dcos(dsqrt(e_val(i)))
|
||||
else
|
||||
cos_tau(i,j) = 0d0
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! sin_tau
|
||||
do j = 1, n
|
||||
do i = 1, n
|
||||
if (i==j) then
|
||||
sin_tau(i,j) = dsin(dsqrt(e_val(i)))
|
||||
else
|
||||
sin_tau(i,j) = 0d0
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! Debug, display the cos_tau and sin_tau matrix
|
||||
!if (debug) then
|
||||
! print*, 'cos_tau'
|
||||
! do i = 1, n
|
||||
! print*, cos_tau(i,:)
|
||||
! enddo
|
||||
! print*, 'sin_tau'
|
||||
! do i = 1, n
|
||||
! print*, sin_tau(i,:)
|
||||
! enddo
|
||||
!endif
|
||||
|
||||
! tau^-1
|
||||
do j = 1, n
|
||||
do i = 1, n
|
||||
if ((i==j) .and. (e_val(i) > 1d-16)) then!0d0)) then !!! Convergence problem can come from here if the threshold is too big/small
|
||||
tau_m1(i,j) = 1d0/(dsqrt(e_val(i)))
|
||||
else
|
||||
tau_m1(i,j) = 0d0
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
|
||||
max_elem = 0d0
|
||||
do i = 1, n
|
||||
if (ABS(tau_m1(i,i)) > ABS(max_elem)) then
|
||||
max_elem = tau_m1(i,i)
|
||||
endif
|
||||
enddo
|
||||
print*,'max elem tau^-1:', max_elem
|
||||
|
||||
! Debug
|
||||
!print*,'eigenvalues:'
|
||||
!do i = 1, n
|
||||
! print*, e_val(i)
|
||||
!enddo
|
||||
|
||||
!Debug, display tau^-1
|
||||
!if (debug) then
|
||||
! print*, 'tau^-1'
|
||||
! do i = 1, n
|
||||
! print*,tau_m1(i,:)
|
||||
! enddo
|
||||
!endif
|
||||
#+END_SRC
|
||||
|
||||
*** Rotation matrix
|
||||
\begin{align*}
|
||||
\textbf{R} = \textbf{W} \cos(\tau) \textbf{W}^{\dagger} + \textbf{W} \tau^{-1} \sin(\tau) \textbf{W}^{\dagger} \textbf{A}
|
||||
\end{align*}
|
||||
\begin{align*}
|
||||
\textbf{Part1} = \textbf{W} \cos(\tau) \textbf{W}^{\dagger}
|
||||
\end{align*}
|
||||
\begin{align*}
|
||||
\textbf{Part2} = \textbf{W} \tau^{-1} \sin(\tau) \textbf{W}^{\dagger} \textbf{A}
|
||||
\end{align*}
|
||||
|
||||
First:
|
||||
part_1 = dgemm(W, dgemm(cos_tau, W^t))
|
||||
part_1a = dgemm(cos_tau, W^t)
|
||||
part_1 = dgemm(W, part_1a)
|
||||
And:
|
||||
part_2= dgemm(W, dgemm(tau_m1, dgemm(sin_tau, dgemm(W^t, A))))
|
||||
part_2a = dgemm(W^t, A)
|
||||
part_2b = dgemm(sin_tau, part_2a)
|
||||
part_2c = dgemm(tau_m1, part_2b)
|
||||
part_2 = dgemm(W, part_2c)
|
||||
Finally:
|
||||
Rotation matrix, R = part_1+part_2
|
||||
|
||||
If $R$ is a rotation matrix:
|
||||
$R.R^T=R^T.R=\textbf{1}$
|
||||
#+BEGIN_SRC f90 :comments org :tangle rotation_matrix.irp.f
|
||||
! part_1
|
||||
call dgemm('N','T',n,n,n,1d0,cos_tau,size(cos_tau,1),W,size(W,1),0d0,part_1a,size(part_1a,1))
|
||||
call dgemm('N','N',n,n,n,1d0,W,size(W,1),part_1a,size(part_1a,1),0d0,part_1,size(part_1,1))
|
||||
|
||||
! part_2
|
||||
call dgemm('T','N',n,n,n,1d0,W,size(W,1),A,size(A,1),0d0,part_2a,size(part_2a,1))
|
||||
call dgemm('N','N',n,n,n,1d0,sin_tau,size(sin_tau,1),part_2a,size(part_2a,1),0d0,part_2b,size(part_2b,1))
|
||||
call dgemm('N','N',n,n,n,1d0,tau_m1,size(tau_m1,1),part_2b,size(part_2b,1),0d0,part_2c,size(part_2c,1))
|
||||
call dgemm('N','N',n,n,n,1d0,W,size(W,1),part_2c,size(part_2c,1),0d0,part_2,size(part_2,1))
|
||||
|
||||
! Rotation matrix R
|
||||
R = part_1 + part_2
|
||||
|
||||
! Matrix check
|
||||
! R.R^t and R^t.R must be equal to identity matrix
|
||||
do j = 1, n
|
||||
do i=1,n
|
||||
if (i==j) then
|
||||
RR_t(i,j) = 1d0
|
||||
else
|
||||
RR_t(i,j) = 0d0
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
|
||||
call dgemm('N','T',n,n,n,1d0,R,size(R,1),R,size(R,1),-1d0,RR_t,size(RR_t,1))
|
||||
|
||||
norm = dnrm2(n*n,RR_t,1)
|
||||
print*, 'Rotation matrix check, norm R.R^T = ', norm
|
||||
|
||||
! Debug
|
||||
!if (debug) then
|
||||
! print*, 'RR_t'
|
||||
! do i = 1, n
|
||||
! print*, RR_t(i,:)
|
||||
! enddo
|
||||
!endif
|
||||
#+END_SRC
|
||||
|
||||
*** Post conditions
|
||||
#+BEGIN_SRC f90 :comments org :tangle rotation_matrix.irp.f
|
||||
! Check if R.R^T=1
|
||||
max_elem = 0d0
|
||||
do j = 1, n
|
||||
do i = 1, n
|
||||
if (ABS(RR_t(i,j)) > ABS(max_elem)) then
|
||||
max_elem = RR_t(i,j)
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
|
||||
print*, 'Max error in R.R^T:', max_elem
|
||||
print*, 'e_val(1):', e_val(1)
|
||||
print*, 'e_val(n):', e_val(n)
|
||||
print*, 'max elem in A:', max_elem_A
|
||||
|
||||
if (ABS(max_elem) > 1d-12) then
|
||||
print*, 'WARNING: max error in R.R^T > 1d-12'
|
||||
print*, 'Enforce the step cancellation'
|
||||
enforce_step_cancellation = .True.
|
||||
endif
|
||||
|
||||
! Matrix elements of R must by non-NaN
|
||||
do j = 1,n
|
||||
do i = 1,LDR
|
||||
if (disnan(R(i,j))) then
|
||||
info = 666
|
||||
print*, 'NaN in rotation matrix'
|
||||
call ABORT
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! Display
|
||||
!if (debug) then
|
||||
! print*,'Rotation matrix :'
|
||||
! do i = 1, n
|
||||
! write(*,'(100(F10.5))') R(i,:)
|
||||
! enddo
|
||||
!endif
|
||||
#+END_SRC
|
||||
|
||||
** Deallocation, end
|
||||
#+BEGIN_SRC f90 :comments org :tangle rotation_matrix.irp.f
|
||||
deallocate(B)
|
||||
deallocate(m_diag,cos_tau,sin_tau,tau_m1)
|
||||
deallocate(W,e_val)
|
||||
deallocate(part_1,part_1a)
|
||||
deallocate(part_2,part_2a,part_2b,part_2c)
|
||||
deallocate(RR_t)
|
||||
|
||||
call wall_time(t2)
|
||||
t3 = t2-t1
|
||||
print*,'Time in rotation matrix:', t3
|
||||
|
||||
print*,'---End rotation_matrix---'
|
||||
|
||||
end subroutine
|
||||
#+END_SRC
|
||||
|
64
src/utils_trust_region/sub_to_full_rotation_matrix.irp.f
Normal file
64
src/utils_trust_region/sub_to_full_rotation_matrix.irp.f
Normal file
@ -0,0 +1,64 @@
|
||||
! Rotation matrix in a subspace to rotation matrix in the full space
|
||||
|
||||
! Usually, we are using a list of MOs, for exemple the active ones. When
|
||||
! we compute a rotation matrix to rotate the MOs, we just compute a
|
||||
! rotation matrix for these MOs in order to reduce the size of the
|
||||
! matrix which has to be computed. Since the computation of a rotation
|
||||
! matrix scale in $O(N^3)$ with $N$ the number of MOs, it's better to
|
||||
! reuce the number of MOs involved.
|
||||
! After that we replace the rotation matrix in the full space by
|
||||
! building the elements of the rotation matrix in the full space from
|
||||
! the elements of the rotation matrix in the subspace and adding some 0
|
||||
! on the extradiagonal elements and some 1 on the diagonal elements,
|
||||
! for the MOs that are not involved in the rotation.
|
||||
|
||||
! Provided:
|
||||
! | mo_num | integer | Number of MOs |
|
||||
|
||||
! Input:
|
||||
! | m | integer | Size of tmp_list, m <= mo_num |
|
||||
! | tmp_list(m) | integer | List of MOs |
|
||||
! | tmp_R(m,m) | double precision | Rotation matrix in the space of |
|
||||
! | | | the MOs containing by tmp_list |
|
||||
|
||||
! Output:
|
||||
! | R(mo_num,mo_num | double precision | Rotation matrix in the space |
|
||||
! | | | of all the MOs |
|
||||
|
||||
! Internal:
|
||||
! | i,j | integer | indexes in the full space |
|
||||
! | tmp_i,tmp_j | integer | indexes in the subspace |
|
||||
|
||||
|
||||
subroutine sub_to_full_rotation_matrix(m,tmp_list,tmp_R,R)
|
||||
|
||||
BEGIN_DOC
|
||||
! Compute the full rotation matrix from a smaller one
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
|
||||
! in
|
||||
integer, intent(in) :: m, tmp_list(m)
|
||||
double precision, intent(in) :: tmp_R(m,m)
|
||||
|
||||
! out
|
||||
double precision, intent(out) :: R(mo_num,mo_num)
|
||||
|
||||
! internal
|
||||
integer :: i,j,tmp_i,tmp_j
|
||||
|
||||
! tmp_R to R, subspace to full space
|
||||
R = 0d0
|
||||
do i = 1, mo_num
|
||||
R(i,i) = 1d0 ! 1 on the diagonal because it is a rotation matrix, 1 = nothing change for the corresponding orbital
|
||||
enddo
|
||||
do tmp_j = 1, m
|
||||
j = tmp_list(tmp_j)
|
||||
do tmp_i = 1, m
|
||||
i = tmp_list(tmp_i)
|
||||
R(i,j) = tmp_R(tmp_i,tmp_j)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
end
|
65
src/utils_trust_region/sub_to_full_rotation_matrix.org
Normal file
65
src/utils_trust_region/sub_to_full_rotation_matrix.org
Normal file
@ -0,0 +1,65 @@
|
||||
* Rotation matrix in a subspace to rotation matrix in the full space
|
||||
|
||||
Usually, we are using a list of MOs, for exemple the active ones. When
|
||||
we compute a rotation matrix to rotate the MOs, we just compute a
|
||||
rotation matrix for these MOs in order to reduce the size of the
|
||||
matrix which has to be computed. Since the computation of a rotation
|
||||
matrix scale in $O(N^3)$ with $N$ the number of MOs, it's better to
|
||||
reuce the number of MOs involved.
|
||||
After that we replace the rotation matrix in the full space by
|
||||
building the elements of the rotation matrix in the full space from
|
||||
the elements of the rotation matrix in the subspace and adding some 0
|
||||
on the extradiagonal elements and some 1 on the diagonal elements,
|
||||
for the MOs that are not involved in the rotation.
|
||||
|
||||
Provided:
|
||||
| mo_num | integer | Number of MOs |
|
||||
|
||||
Input:
|
||||
| m | integer | Size of tmp_list, m <= mo_num |
|
||||
| tmp_list(m) | integer | List of MOs |
|
||||
| tmp_R(m,m) | double precision | Rotation matrix in the space of |
|
||||
| | | the MOs containing by tmp_list |
|
||||
|
||||
Output:
|
||||
| R(mo_num,mo_num | double precision | Rotation matrix in the space |
|
||||
| | | of all the MOs |
|
||||
|
||||
Internal:
|
||||
| i,j | integer | indexes in the full space |
|
||||
| tmp_i,tmp_j | integer | indexes in the subspace |
|
||||
|
||||
#+BEGIN_SRC f90 :comments org :tangle sub_to_full_rotation_matrix.irp.f
|
||||
subroutine sub_to_full_rotation_matrix(m,tmp_list,tmp_R,R)
|
||||
|
||||
BEGIN_DOC
|
||||
! Compute the full rotation matrix from a smaller one
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
|
||||
! in
|
||||
integer, intent(in) :: m, tmp_list(m)
|
||||
double precision, intent(in) :: tmp_R(m,m)
|
||||
|
||||
! out
|
||||
double precision, intent(out) :: R(mo_num,mo_num)
|
||||
|
||||
! internal
|
||||
integer :: i,j,tmp_i,tmp_j
|
||||
|
||||
! tmp_R to R, subspace to full space
|
||||
R = 0d0
|
||||
do i = 1, mo_num
|
||||
R(i,i) = 1d0 ! 1 on the diagonal because it is a rotation matrix, 1 = nothing change for the corresponding orbital
|
||||
enddo
|
||||
do tmp_j = 1, m
|
||||
j = tmp_list(tmp_j)
|
||||
do tmp_i = 1, m
|
||||
i = tmp_list(tmp_i)
|
||||
R(i,j) = tmp_R(tmp_i,tmp_j)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
end
|
||||
#+END_SRC
|
119
src/utils_trust_region/trust_region_expected_e.irp.f
Normal file
119
src/utils_trust_region/trust_region_expected_e.irp.f
Normal file
@ -0,0 +1,119 @@
|
||||
! Predicted energy : e_model
|
||||
|
||||
! *Compute the energy predicted by the Taylor series*
|
||||
|
||||
! The energy is predicted using a Taylor expansion truncated at te 2nd
|
||||
! order :
|
||||
|
||||
! \begin{align*}
|
||||
! E_{k+1} = E_{k} + \textbf{g}_k^{T} \cdot \textbf{x}_{k+1} + \frac{1}{2} \cdot \textbf{x}_{k+1}^T \cdot \textbf{H}_{k} \cdot \textbf{x}_{k+1} + \mathcal{O}(\textbf{x}_{k+1}^2)
|
||||
! \end{align*}
|
||||
|
||||
! Input:
|
||||
! | n | integer | m*(m-1)/2 |
|
||||
! | v_grad(n) | double precision | gradient |
|
||||
! | H(n,n) | double precision | hessian |
|
||||
! | x(n) | double precision | Step in the trust region |
|
||||
! | prev_energy | double precision | previous energy |
|
||||
|
||||
! Output:
|
||||
! | e_model | double precision | predicted energy after the rotation of the MOs |
|
||||
|
||||
! Internal:
|
||||
! | part_1 | double precision | v_grad^T.x |
|
||||
! | part_2 | double precision | 1/2 . x^T.H.x |
|
||||
! | part_2a | double precision | H.x |
|
||||
! | i,j | integer | indexes |
|
||||
|
||||
! Function:
|
||||
! | ddot | double precision | dot product (Lapack) |
|
||||
|
||||
|
||||
subroutine trust_region_expected_e(n,v_grad,H,x,prev_energy,e_model)
|
||||
|
||||
include 'pi.h'
|
||||
|
||||
BEGIN_DOC
|
||||
! Compute the expected criterion/energy after the application of the step x
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
|
||||
! Variables
|
||||
|
||||
! in
|
||||
integer, intent(in) :: n
|
||||
double precision, intent(in) :: v_grad(n),H(n,n),x(n)
|
||||
double precision, intent(in) :: prev_energy
|
||||
|
||||
! out
|
||||
double precision, intent(out) :: e_model
|
||||
|
||||
! internal
|
||||
double precision :: part_1, part_2, t1,t2,t3
|
||||
double precision, allocatable :: part_2a(:)
|
||||
|
||||
integer :: i,j
|
||||
|
||||
!Function
|
||||
double precision :: ddot
|
||||
|
||||
print*,''
|
||||
print*,'---Trust_e_model---'
|
||||
|
||||
call wall_time(t1)
|
||||
|
||||
! Allocation
|
||||
allocate(part_2a(n))
|
||||
|
||||
! Calculations
|
||||
|
||||
! part_1 corresponds to the product g.x
|
||||
! part_2a corresponds to the product H.x
|
||||
! part_2 corresponds to the product 0.5*(x^T.H.x)
|
||||
|
||||
! TODO: remove the dot products
|
||||
|
||||
|
||||
! Product v_grad.x
|
||||
part_1 = ddot(n,v_grad,1,x,1)
|
||||
|
||||
!if (debug) then
|
||||
print*,'g.x : ', part_1
|
||||
!endif
|
||||
|
||||
! Product H.x
|
||||
call dgemv('N',n,n,1d0,H,size(H,1),x,1,0d0,part_2a,1)
|
||||
|
||||
! Product 1/2 . x^T.H.x
|
||||
part_2 = 0.5d0 * ddot(n,x,1,part_2a,1)
|
||||
|
||||
!if (debug) then
|
||||
print*,'1/2*x^T.H.x : ', part_2
|
||||
!endif
|
||||
|
||||
print*,'prev_energy', prev_energy
|
||||
|
||||
! Sum
|
||||
e_model = prev_energy + part_1 + part_2
|
||||
|
||||
! Writing the predicted energy
|
||||
print*, 'Predicted energy after the rotation : ', e_model
|
||||
print*, 'Previous energy - predicted energy:', prev_energy - e_model
|
||||
|
||||
! Can be deleted, already in another subroutine
|
||||
if (DABS(prev_energy - e_model) < 1d-12 ) then
|
||||
print*,'WARNING: ABS(prev_energy - e_model) < 1d-12'
|
||||
endif
|
||||
|
||||
! Deallocation
|
||||
deallocate(part_2a)
|
||||
|
||||
call wall_time(t2)
|
||||
t3 = t2 - t1
|
||||
print*,'Time in trust e model:', t3
|
||||
|
||||
print*,'---End trust_e_model---'
|
||||
print*,''
|
||||
|
||||
end subroutine
|
121
src/utils_trust_region/trust_region_expected_e.org
Normal file
121
src/utils_trust_region/trust_region_expected_e.org
Normal file
@ -0,0 +1,121 @@
|
||||
* Predicted energy : e_model
|
||||
|
||||
*Compute the energy predicted by the Taylor series*
|
||||
|
||||
The energy is predicted using a Taylor expansion truncated at te 2nd
|
||||
order :
|
||||
|
||||
\begin{align*}
|
||||
E_{k+1} = E_{k} + \textbf{g}_k^{T} \cdot \textbf{x}_{k+1} + \frac{1}{2} \cdot \textbf{x}_{k+1}^T \cdot \textbf{H}_{k} \cdot \textbf{x}_{k+1} + \mathcal{O}(\textbf{x}_{k+1}^2)
|
||||
\end{align*}
|
||||
|
||||
Input:
|
||||
| n | integer | m*(m-1)/2 |
|
||||
| v_grad(n) | double precision | gradient |
|
||||
| H(n,n) | double precision | hessian |
|
||||
| x(n) | double precision | Step in the trust region |
|
||||
| prev_energy | double precision | previous energy |
|
||||
|
||||
Output:
|
||||
| e_model | double precision | predicted energy after the rotation of the MOs |
|
||||
|
||||
Internal:
|
||||
| part_1 | double precision | v_grad^T.x |
|
||||
| part_2 | double precision | 1/2 . x^T.H.x |
|
||||
| part_2a | double precision | H.x |
|
||||
| i,j | integer | indexes |
|
||||
|
||||
Function:
|
||||
| ddot | double precision | dot product (Lapack) |
|
||||
|
||||
#+BEGIN_SRC f90 :comments org :tangle trust_region_expected_e.irp.f
|
||||
subroutine trust_region_expected_e(n,v_grad,H,x,prev_energy,e_model)
|
||||
|
||||
include 'pi.h'
|
||||
|
||||
BEGIN_DOC
|
||||
! Compute the expected criterion/energy after the application of the step x
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
|
||||
! Variables
|
||||
|
||||
! in
|
||||
integer, intent(in) :: n
|
||||
double precision, intent(in) :: v_grad(n),H(n,n),x(n)
|
||||
double precision, intent(in) :: prev_energy
|
||||
|
||||
! out
|
||||
double precision, intent(out) :: e_model
|
||||
|
||||
! internal
|
||||
double precision :: part_1, part_2, t1,t2,t3
|
||||
double precision, allocatable :: part_2a(:)
|
||||
|
||||
integer :: i,j
|
||||
|
||||
!Function
|
||||
double precision :: ddot
|
||||
|
||||
print*,''
|
||||
print*,'---Trust_e_model---'
|
||||
|
||||
call wall_time(t1)
|
||||
|
||||
! Allocation
|
||||
allocate(part_2a(n))
|
||||
#+END_SRC
|
||||
|
||||
** Calculations
|
||||
|
||||
part_1 corresponds to the product g.x
|
||||
part_2a corresponds to the product H.x
|
||||
part_2 corresponds to the product 0.5*(x^T.H.x)
|
||||
|
||||
TODO: remove the dot products
|
||||
|
||||
#+BEGIN_SRC f90 :comments org :tangle trust_region_expected_e.irp.f
|
||||
! Product v_grad.x
|
||||
part_1 = ddot(n,v_grad,1,x,1)
|
||||
|
||||
!if (debug) then
|
||||
print*,'g.x : ', part_1
|
||||
!endif
|
||||
|
||||
! Product H.x
|
||||
call dgemv('N',n,n,1d0,H,size(H,1),x,1,0d0,part_2a,1)
|
||||
|
||||
! Product 1/2 . x^T.H.x
|
||||
part_2 = 0.5d0 * ddot(n,x,1,part_2a,1)
|
||||
|
||||
!if (debug) then
|
||||
print*,'1/2*x^T.H.x : ', part_2
|
||||
!endif
|
||||
|
||||
print*,'prev_energy', prev_energy
|
||||
|
||||
! Sum
|
||||
e_model = prev_energy + part_1 + part_2
|
||||
|
||||
! Writing the predicted energy
|
||||
print*, 'Predicted energy after the rotation : ', e_model
|
||||
print*, 'Previous energy - predicted energy:', prev_energy - e_model
|
||||
|
||||
! Can be deleted, already in another subroutine
|
||||
if (DABS(prev_energy - e_model) < 1d-12 ) then
|
||||
print*,'WARNING: ABS(prev_energy - e_model) < 1d-12'
|
||||
endif
|
||||
|
||||
! Deallocation
|
||||
deallocate(part_2a)
|
||||
|
||||
call wall_time(t2)
|
||||
t3 = t2 - t1
|
||||
print*,'Time in trust e model:', t3
|
||||
|
||||
print*,'---End trust_e_model---'
|
||||
print*,''
|
||||
|
||||
end subroutine
|
||||
#+END_SRC
|
1655
src/utils_trust_region/trust_region_optimal_lambda.irp.f
Normal file
1655
src/utils_trust_region/trust_region_optimal_lambda.irp.f
Normal file
File diff suppressed because it is too large
Load Diff
1665
src/utils_trust_region/trust_region_optimal_lambda.org
Normal file
1665
src/utils_trust_region/trust_region_optimal_lambda.org
Normal file
File diff suppressed because it is too large
Load Diff
121
src/utils_trust_region/trust_region_rho.irp.f
Normal file
121
src/utils_trust_region/trust_region_rho.irp.f
Normal file
@ -0,0 +1,121 @@
|
||||
! Agreement with the model: Rho
|
||||
|
||||
! *Compute the ratio : rho = (prev_energy - energy) / (prev_energy - e_model)*
|
||||
|
||||
! Rho represents the agreement between the model (the predicted energy
|
||||
! by the Taylor expansion truncated at the 2nd order) and the real
|
||||
! energy :
|
||||
|
||||
! \begin{equation}
|
||||
! \rho^{k+1} = \frac{E^{k} - E^{k+1}}{E^{k} - m^{k+1}}
|
||||
! \end{equation}
|
||||
! With :
|
||||
! $E^{k}$ the energy at the previous iteration
|
||||
! $E^{k+1}$ the energy at the actual iteration
|
||||
! $m^{k+1}$ the predicted energy for the actual iteration
|
||||
! (cf. trust_e_model)
|
||||
|
||||
! If $\rho \approx 1$, the agreement is good, contrary to $\rho \approx 0$.
|
||||
! If $\rho \leq 0$ the previous energy is lower than the actual
|
||||
! energy. We have to cancel the last step and use a smaller trust
|
||||
! region.
|
||||
! Here we cancel the last step if $\rho < 0.1$, because even if
|
||||
! the energy decreases, the agreement is bad, i.e., the Taylor expansion
|
||||
! truncated at the second order doesn't represent correctly the energy
|
||||
! landscape. So it's better to cancel the step and restart with a
|
||||
! smaller trust region.
|
||||
|
||||
! Provided in qp_edit:
|
||||
! | thresh_rho |
|
||||
|
||||
! Input:
|
||||
! | prev_energy | double precision | previous energy (energy before the rotation) |
|
||||
! | e_model | double precision | predicted energy after the rotation |
|
||||
|
||||
! Output:
|
||||
! | rho | double precision | the agreement between the model (predicted) and the real energy |
|
||||
! | prev_energy | double precision | if rho >= 0.1 the actual energy becomes the previous energy |
|
||||
! | | | else the previous energy doesn't change |
|
||||
|
||||
! Internal:
|
||||
! | energy | double precision | energy (real) after the rotation |
|
||||
! | i | integer | index |
|
||||
! | t* | double precision | time |
|
||||
|
||||
|
||||
subroutine trust_region_rho(prev_energy, energy,e_model,rho)
|
||||
|
||||
include 'pi.h'
|
||||
|
||||
BEGIN_DOC
|
||||
! Compute rho, the agreement between the predicted criterion/energy and the real one
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
|
||||
! Variables
|
||||
|
||||
! In
|
||||
double precision, intent(inout) :: prev_energy
|
||||
double precision, intent(in) :: e_model, energy
|
||||
|
||||
! Out
|
||||
double precision, intent(out) :: rho
|
||||
|
||||
! Internal
|
||||
double precision :: t1, t2, t3
|
||||
integer :: i
|
||||
|
||||
print*,''
|
||||
print*,'---Rho_model---'
|
||||
|
||||
call wall_time(t1)
|
||||
|
||||
! Rho
|
||||
! \begin{equation}
|
||||
! \rho^{k+1} = \frac{E^{k} - E^{k+1}}{E^{k} - m^{k+1}}
|
||||
! \end{equation}
|
||||
|
||||
! In function of $\rho$ th step can be accepted or cancelled.
|
||||
|
||||
! If we cancel the last step (k+1), the previous energy (k) doesn't
|
||||
! change!
|
||||
! If the step (k+1) is accepted, then the "previous energy" becomes E(k+1)
|
||||
|
||||
|
||||
! Already done in an other subroutine
|
||||
!if (ABS(prev_energy - e_model) < 1d-12) then
|
||||
! print*,'WARNING: prev_energy - e_model < 1d-12'
|
||||
! print*,'=> rho will tend toward infinity'
|
||||
! print*,'Check you convergence criterion !'
|
||||
!endif
|
||||
|
||||
rho = (prev_energy - energy) / (prev_energy - e_model)
|
||||
|
||||
print*, 'previous energy, prev_energy :', prev_energy
|
||||
print*, 'predicted energy, e_model :', e_model
|
||||
print*, 'real energy, energy :', energy
|
||||
print*, 'prev_energy - energy :', prev_energy - energy
|
||||
print*, 'prev_energy - e_model :', prev_energy - e_model
|
||||
print*, 'Rho :', rho
|
||||
print*, 'Threshold for rho:', thresh_rho
|
||||
|
||||
! Modification of prev_energy in function of rho
|
||||
if (rho < thresh_rho) then !0.1) then
|
||||
! the step is cancelled
|
||||
print*, 'Rho <', thresh_rho,', the previous energy does not changed'
|
||||
print*, 'prev_energy :', prev_energy
|
||||
else
|
||||
! the step is accepted
|
||||
prev_energy = energy
|
||||
print*, 'Rho >=', thresh_rho,', energy -> prev_energy :', energy
|
||||
endif
|
||||
|
||||
call wall_time(t2)
|
||||
t3 = t2 - t1
|
||||
print*,'Time in rho model:', t3
|
||||
|
||||
print*,'---End rho_model---'
|
||||
print*,''
|
||||
|
||||
end subroutine
|
123
src/utils_trust_region/trust_region_rho.org
Normal file
123
src/utils_trust_region/trust_region_rho.org
Normal file
@ -0,0 +1,123 @@
|
||||
* Agreement with the model: Rho
|
||||
|
||||
*Compute the ratio : rho = (prev_energy - energy) / (prev_energy - e_model)*
|
||||
|
||||
Rho represents the agreement between the model (the predicted energy
|
||||
by the Taylor expansion truncated at the 2nd order) and the real
|
||||
energy :
|
||||
|
||||
\begin{equation}
|
||||
\rho^{k+1} = \frac{E^{k} - E^{k+1}}{E^{k} - m^{k+1}}
|
||||
\end{equation}
|
||||
With :
|
||||
$E^{k}$ the energy at the previous iteration
|
||||
$E^{k+1}$ the energy at the actual iteration
|
||||
$m^{k+1}$ the predicted energy for the actual iteration
|
||||
(cf. trust_e_model)
|
||||
|
||||
If $\rho \approx 1$, the agreement is good, contrary to $\rho \approx 0$.
|
||||
If $\rho \leq 0$ the previous energy is lower than the actual
|
||||
energy. We have to cancel the last step and use a smaller trust
|
||||
region.
|
||||
Here we cancel the last step if $\rho < 0.1$, because even if
|
||||
the energy decreases, the agreement is bad, i.e., the Taylor expansion
|
||||
truncated at the second order doesn't represent correctly the energy
|
||||
landscape. So it's better to cancel the step and restart with a
|
||||
smaller trust region.
|
||||
|
||||
Provided in qp_edit:
|
||||
| thresh_rho |
|
||||
|
||||
Input:
|
||||
| prev_energy | double precision | previous energy (energy before the rotation) |
|
||||
| e_model | double precision | predicted energy after the rotation |
|
||||
|
||||
Output:
|
||||
| rho | double precision | the agreement between the model (predicted) and the real energy |
|
||||
| prev_energy | double precision | if rho >= 0.1 the actual energy becomes the previous energy |
|
||||
| | | else the previous energy doesn't change |
|
||||
|
||||
Internal:
|
||||
| energy | double precision | energy (real) after the rotation |
|
||||
| i | integer | index |
|
||||
| t* | double precision | time |
|
||||
|
||||
#+BEGIN_SRC f90 :comments org :tangle trust_region_rho.irp.f
|
||||
subroutine trust_region_rho(prev_energy, energy,e_model,rho)
|
||||
|
||||
include 'pi.h'
|
||||
|
||||
BEGIN_DOC
|
||||
! Compute rho, the agreement between the predicted criterion/energy and the real one
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
|
||||
! Variables
|
||||
|
||||
! In
|
||||
double precision, intent(inout) :: prev_energy
|
||||
double precision, intent(in) :: e_model, energy
|
||||
|
||||
! Out
|
||||
double precision, intent(out) :: rho
|
||||
|
||||
! Internal
|
||||
double precision :: t1, t2, t3
|
||||
integer :: i
|
||||
|
||||
print*,''
|
||||
print*,'---Rho_model---'
|
||||
|
||||
call wall_time(t1)
|
||||
#+END_SRC
|
||||
|
||||
** Rho
|
||||
\begin{equation}
|
||||
\rho^{k+1} = \frac{E^{k} - E^{k+1}}{E^{k} - m^{k+1}}
|
||||
\end{equation}
|
||||
|
||||
In function of $\rho$ th step can be accepted or cancelled.
|
||||
|
||||
If we cancel the last step (k+1), the previous energy (k) doesn't
|
||||
change!
|
||||
If the step (k+1) is accepted, then the "previous energy" becomes E(k+1)
|
||||
|
||||
#+BEGIN_SRC f90 :comments org :tangle trust_region_rho.irp.f
|
||||
! Already done in an other subroutine
|
||||
!if (ABS(prev_energy - e_model) < 1d-12) then
|
||||
! print*,'WARNING: prev_energy - e_model < 1d-12'
|
||||
! print*,'=> rho will tend toward infinity'
|
||||
! print*,'Check you convergence criterion !'
|
||||
!endif
|
||||
|
||||
rho = (prev_energy - energy) / (prev_energy - e_model)
|
||||
|
||||
print*, 'previous energy, prev_energy :', prev_energy
|
||||
print*, 'predicted energy, e_model :', e_model
|
||||
print*, 'real energy, energy :', energy
|
||||
print*, 'prev_energy - energy :', prev_energy - energy
|
||||
print*, 'prev_energy - e_model :', prev_energy - e_model
|
||||
print*, 'Rho :', rho
|
||||
print*, 'Threshold for rho:', thresh_rho
|
||||
|
||||
! Modification of prev_energy in function of rho
|
||||
if (rho < thresh_rho) then !0.1) then
|
||||
! the step is cancelled
|
||||
print*, 'Rho <', thresh_rho,', the previous energy does not changed'
|
||||
print*, 'prev_energy :', prev_energy
|
||||
else
|
||||
! the step is accepted
|
||||
prev_energy = energy
|
||||
print*, 'Rho >=', thresh_rho,', energy -> prev_energy :', energy
|
||||
endif
|
||||
|
||||
call wall_time(t2)
|
||||
t3 = t2 - t1
|
||||
print*,'Time in rho model:', t3
|
||||
|
||||
print*,'---End rho_model---'
|
||||
print*,''
|
||||
|
||||
end subroutine
|
||||
#+END_SRC
|
716
src/utils_trust_region/trust_region_step.irp.f
Normal file
716
src/utils_trust_region/trust_region_step.irp.f
Normal file
@ -0,0 +1,716 @@
|
||||
! Trust region
|
||||
|
||||
! *Compute the next step with the trust region algorithm*
|
||||
|
||||
! The Newton method is an iterative method to find a minimum of a given
|
||||
! function. It uses a Taylor series truncated at the second order of the
|
||||
! targeted function and gives its minimizer. The minimizer is taken as
|
||||
! the new position and the same thing is done. And by doing so
|
||||
! iteratively the method find a minimum, a local or global one depending
|
||||
! of the starting point and the convexity/nonconvexity of the targeted
|
||||
! function.
|
||||
|
||||
! The goal of the trust region is to constrain the step size of the
|
||||
! Newton method in a certain area around the actual position, where the
|
||||
! Taylor series is a good approximation of the targeted function. This
|
||||
! area is called the "trust region".
|
||||
|
||||
! In addition, in function of the agreement between the Taylor
|
||||
! development of the energy and the real energy, the size of the trust
|
||||
! region will be updated at each iteration. By doing so, the step sizes
|
||||
! are not too larges. In addition, since we add a criterion to cancel the
|
||||
! step if the energy increases (more precisely if rho < 0.1), so it's
|
||||
! impossible to diverge. \newline
|
||||
|
||||
! References: \newline
|
||||
! Nocedal & Wright, Numerical Optimization, chapter 4 (1999), \newline
|
||||
! https://link.springer.com/book/10.1007/978-0-387-40065-5, \newline
|
||||
! ISBN: 978-0-387-40065-5 \newline
|
||||
|
||||
! By using the first and the second derivatives, the Newton method gives
|
||||
! a step:
|
||||
! \begin{align*}
|
||||
! \textbf{x}_{(k+1)}^{\text{Newton}} = - \textbf{H}_{(k)}^{-1} \cdot
|
||||
! \textbf{g}_{(k)}
|
||||
! \end{align*}
|
||||
! which leads to the minimizer of the Taylor series.
|
||||
! !!! Warning: the Newton method gives the minimizer if and only if
|
||||
! $\textbf{H}$ is positive definite, else it leads to a saddle point !!!
|
||||
! But we want a step $\textbf{x}_{(k+1)}$ with a constraint on its (euclidian) norm:
|
||||
! \begin{align*}
|
||||
! ||\textbf{x}_{(k+1)}|| \leq \Delta_{(k+1)}
|
||||
! \end{align*}
|
||||
! which is equivalent to
|
||||
! \begin{align*}
|
||||
! \textbf{x}_{(k+1)}^T \cdot \textbf{x}_{(k+1)} \leq \Delta_{(k+1)}^2
|
||||
! \end{align*}
|
||||
|
||||
! with: \newline
|
||||
! $\textbf{x}_{(k+1)}$ is the step for the k+1-th iteration (vector of
|
||||
! size n) \newline
|
||||
! $\textbf{H}_{(k)}$ is the hessian at the k-th iteration (n by n
|
||||
! matrix) \newline
|
||||
! $\textbf{g}_{(k)}$ is the gradient at the k-th iteration (vector of
|
||||
! size n) \newline
|
||||
! $\Delta_{(k+1)}$ is the trust radius for the (k+1)-th iteration
|
||||
! \newline
|
||||
|
||||
! Thus we want to constrain the step size $\textbf{x}_{(k+1)}$ into a
|
||||
! hypersphere of radius $\Delta_{(k+1)}$.\newline
|
||||
|
||||
! So, if $||\textbf{x}_{(k+1)}^{\text{Newton}}|| \leq \Delta_{(k)}$ and
|
||||
! $\textbf{H}$ is positive definite, the
|
||||
! solution is the step given by the Newton method
|
||||
! $\textbf{x}_{(k+1)} = \textbf{x}_{(k+1)}^{\text{Newton}}$.
|
||||
! Else we have to constrain the step size. For simplicity we will remove
|
||||
! the index $_{(k)}$ and $_{(k+1)}$. To restict the step size, we have
|
||||
! to put a constraint on $\textbf{x}$ with a Lagrange multiplier.
|
||||
! Starting from the Taylor series of a function E (here, the energy)
|
||||
! truncated at the 2nd order, we have:
|
||||
! \begin{align*}
|
||||
! E(\textbf{x}) = E +\textbf{g}^T \cdot \textbf{x} + \frac{1}{2}
|
||||
! \cdot \textbf{x}^T \cdot \textbf{H} \cdot \textbf{x} +
|
||||
! \mathcal{O}(\textbf{x}^2)
|
||||
! \end{align*}
|
||||
|
||||
! With the constraint on the norm of $\textbf{x}$ we can write the
|
||||
! Lagrangian
|
||||
! \begin{align*}
|
||||
! \mathcal{L}(\textbf{x},\lambda) = E + \textbf{g}^T \cdot \textbf{x}
|
||||
! + \frac{1}{2} \cdot \textbf{x}^T \cdot \textbf{H} \cdot \textbf{x}
|
||||
! + \frac{1}{2} \lambda (\textbf{x}^T \cdot \textbf{x} - \Delta^2)
|
||||
! \end{align*}
|
||||
! Where: \newline
|
||||
! $\lambda$ is the Lagrange multiplier \newline
|
||||
! $E$ is the energy at the k-th iteration $\Leftrightarrow
|
||||
! E(\textbf{x} = \textbf{0})$ \newline
|
||||
|
||||
! To solve this equation, we search a stationary point where the first
|
||||
! derivative of $\mathcal{L}$ with respect to $\textbf{x}$ becomes 0, i.e.
|
||||
! \begin{align*}
|
||||
! \frac{\partial \mathcal{L}(\textbf{x},\lambda)}{\partial \textbf{x}}=0
|
||||
! \end{align*}
|
||||
|
||||
! The derivative is:
|
||||
! \begin{align*}
|
||||
! \frac{\partial \mathcal{L}(\textbf{x},\lambda)}{\partial \textbf{x}}
|
||||
! = \textbf{g} + \textbf{H} \cdot \textbf{x} + \lambda \cdot \textbf{x}
|
||||
! \end{align*}
|
||||
|
||||
! So, we search $\textbf{x}$ such as:
|
||||
! \begin{align*}
|
||||
! \frac{\partial \mathcal{L}(\textbf{x},\lambda)}{\partial \textbf{x}}
|
||||
! = \textbf{g} + \textbf{H} \cdot \textbf{x} + \lambda \cdot \textbf{x} = 0
|
||||
! \end{align*}
|
||||
|
||||
! We can rewrite that as:
|
||||
! \begin{align*}
|
||||
! \textbf{g} + \textbf{H} \cdot \textbf{x} + \lambda \cdot \textbf{x}
|
||||
! = \textbf{g} + (\textbf{H} +\textbf{I} \lambda) \cdot \textbf{x} = 0
|
||||
! \end{align*}
|
||||
! with $\textbf{I}$ is the identity matrix.
|
||||
|
||||
! By doing so, the solution is:
|
||||
! \begin{align*}
|
||||
! (\textbf{H} +\textbf{I} \lambda) \cdot \textbf{x}= -\textbf{g}
|
||||
! \end{align*}
|
||||
! \begin{align*}
|
||||
! \textbf{x}= - (\textbf{H} + \textbf{I} \lambda)^{-1} \cdot \textbf{g}
|
||||
! \end{align*}
|
||||
! with $\textbf{x}^T \textbf{x} = \Delta^2$.
|
||||
|
||||
! We have to solve this previous equation to find this $\textbf{x}$ in the
|
||||
! trust region, i.e. $||\textbf{x}|| = \Delta$. Now, this problem is
|
||||
! just a one dimension problem because we can express $\textbf{x}$ as a
|
||||
! function of $\lambda$:
|
||||
! \begin{align*}
|
||||
! \textbf{x}(\lambda) = - (\textbf{H} + \textbf{I} \lambda)^{-1} \cdot \textbf{g}
|
||||
! \end{align*}
|
||||
|
||||
! We start from the fact that the hessian is diagonalizable. So we have:
|
||||
! \begin{align*}
|
||||
! \textbf{H} = \textbf{W} \cdot \textbf{h} \cdot \textbf{W}^T
|
||||
! \end{align*}
|
||||
! with: \newline
|
||||
! $\textbf{H}$, the hessian matrix \newline
|
||||
! $\textbf{W}$, the matrix containing the eigenvectors \newline
|
||||
! $\textbf{w}_i$, the i-th eigenvector, i.e. i-th column of $\textbf{W}$ \newline
|
||||
! $\textbf{h}$, the matrix containing the eigenvalues in ascending order \newline
|
||||
! $h_i$, the i-th eigenvalue in ascending order \newline
|
||||
|
||||
! Now we use the fact that adding a constant on the diagonal just shifts
|
||||
! the eigenvalues:
|
||||
! \begin{align*}
|
||||
! \textbf{H} + \textbf{I} \lambda = \textbf{W} \cdot (\textbf{h}
|
||||
! +\textbf{I} \lambda) \cdot \textbf{W}^T
|
||||
! \end{align*}
|
||||
|
||||
! By doing so we can express $\textbf{x}$ as a function of $\lambda$
|
||||
! \begin{align*}
|
||||
! \textbf{x}(\lambda) = - \sum_{i=1}^n \frac{\textbf{w}_i^T \cdot
|
||||
! \textbf{g}}{h_i + \lambda} \cdot \textbf{w}_i
|
||||
! \end{align*}
|
||||
! with $\lambda \neq - h_i$.
|
||||
|
||||
! An interesting thing in our case is the norm of $\textbf{x}$,
|
||||
! because we want $||\textbf{x}|| = \Delta$. Due to the orthogonality of
|
||||
! the eigenvectors $\left\{\textbf{w} \right\} _{i=1}^n$ we have:
|
||||
! \begin{align*}
|
||||
! ||\textbf{x}(\lambda)||^2 = \sum_{i=1}^n \frac{(\textbf{w}_i^T \cdot
|
||||
! \textbf{g})^2}{(h_i + \lambda)^2}
|
||||
! \end{align*}
|
||||
|
||||
! So the $||\textbf{x}(\lambda)||^2$ is just a function of $\lambda$.
|
||||
! And if we study the properties of this function we see that:
|
||||
! \begin{align*}
|
||||
! \lim_{\lambda\to\infty} ||\textbf{x}(\lambda)|| = 0
|
||||
! \end{align*}
|
||||
! and if $\textbf{w}_i^T \cdot \textbf{g} \neq 0$:
|
||||
! \begin{align*}
|
||||
! \lim_{\lambda\to -h_i} ||\textbf{x}(\lambda)|| = + \infty
|
||||
! \end{align*}
|
||||
|
||||
! From these limits and knowing that $h_1$ is the lowest eigenvalue, we
|
||||
! can conclude that $||\textbf{x}(\lambda)||$ is a continuous and
|
||||
! strictly decreasing function on the interval $\lambda \in
|
||||
! (-h_1;\infty)$. Thus, there is one $\lambda$ in this interval which
|
||||
! gives $||\textbf{x}(\lambda)|| = \Delta$, consequently there is one
|
||||
! solution.
|
||||
|
||||
! Since $\textbf{x} = - (\textbf{H} + \lambda \textbf{I})^{-1} \cdot
|
||||
! \textbf{g}$ and we want to reduce the norm of $\textbf{x}$, clearly,
|
||||
! $\lambda > 0$ ($\lambda = 0$ is the unconstraint solution). But the
|
||||
! Newton method is only defined for a positive definite hessian matrix,
|
||||
! so $(\textbf{H} + \textbf{I} \lambda)$ must be positive
|
||||
! definite. Consequently, in the case where $\textbf{H}$ is not positive
|
||||
! definite, to ensure the positive definiteness, $\lambda$ must be
|
||||
! greater than $- h_1$.
|
||||
! \begin{align*}
|
||||
! \lambda > 0 \quad \text{and} \quad \lambda \geq - h_1
|
||||
! \end{align*}
|
||||
|
||||
! From that there are five cases:
|
||||
! - if $\textbf{H}$ is positive definite, $-h_1 < 0$, $\lambda \in (0,\infty)$
|
||||
! - if $\textbf{H}$ is not positive definite and $\textbf{w}_1^T \cdot
|
||||
! \textbf{g} \neq 0$, $(\textbf{H} + \textbf{I}
|
||||
! \lambda)$
|
||||
! must be positve definite, $-h_1 > 0$, $\lambda \in (-h_1, \infty)$
|
||||
! - if $\textbf{H}$ is not positive definite , $\textbf{w}_1^T \cdot
|
||||
! \textbf{g} = 0$ and $||\textbf{x}(-h_1)|| > \Delta$ by removing
|
||||
! $j=1$ in the sum, $(\textbf{H} + \textbf{I} \lambda)$ must be
|
||||
! positive definite, $-h_1 > 0$, $\lambda \in (-h_1, \infty$)
|
||||
! - if $\textbf{H}$ is not positive definite , $\textbf{w}_1^T \cdot
|
||||
! \textbf{g} = 0$ and $||\textbf{x}(-h_1)|| \leq \Delta$ by removing
|
||||
! $j=1$ in the sum, $(\textbf{H} + \textbf{I} \lambda)$ must be
|
||||
! positive definite, $-h_1 > 0$, $\lambda = -h_1$). This case is
|
||||
! similar to the case where $\textbf{H}$ and $||\textbf{x}(\lambda =
|
||||
! 0)|| \leq \Delta$
|
||||
! but we can also add to $\textbf{x}$, the first eigenvector $\textbf{W}_1$
|
||||
! time a constant to ensure the condition $||\textbf{x}(\lambda =
|
||||
! -h_1)|| = \Delta$ and escape from the saddle point
|
||||
|
||||
! Thus to find the solution, we can write:
|
||||
! \begin{align*}
|
||||
! ||\textbf{x}(\lambda)|| = \Delta
|
||||
! \end{align*}
|
||||
! \begin{align*}
|
||||
! ||\textbf{x}(\lambda)|| - \Delta = 0
|
||||
! \end{align*}
|
||||
|
||||
! Taking the square of this equation
|
||||
! \begin{align*}
|
||||
! (||\textbf{x}(\lambda)|| - \Delta)^2 = 0
|
||||
! \end{align*}
|
||||
! we have a function with one minimum for the optimal $\lambda$.
|
||||
! Since we have the formula of $||\textbf{x}(\lambda)||^2$, we solve
|
||||
! \begin{align*}
|
||||
! (||\textbf{x}(\lambda)||^2 - \Delta^2)^2 = 0
|
||||
! \end{align*}
|
||||
|
||||
! But in practice, it is more effective to solve:
|
||||
! \begin{align*}
|
||||
! (\frac{1}{||\textbf{x}(\lambda)||^2} - \frac{1}{\Delta^2})^2 = 0
|
||||
! \end{align*}
|
||||
|
||||
! To do that, we just use the Newton method with "trust_newton" using
|
||||
! first and second derivative of $(||\textbf{x}(\lambda)||^2 -
|
||||
! \Delta^2)^2$ with respect to $\textbf{x}$.
|
||||
! This will give the optimal $\lambda$ to compute the
|
||||
! solution $\textbf{x}$ with the formula seen previously:
|
||||
! \begin{align*}
|
||||
! \textbf{x}(\lambda) = - \sum_{i=1}^n \frac{\textbf{w}_i^T \cdot
|
||||
! \textbf{g}}{h_i + \lambda} \cdot \textbf{w}_i
|
||||
! \end{align*}
|
||||
|
||||
! The solution $\textbf{x}(\lambda)$ with the optimal $\lambda$ is our
|
||||
! step to go from the (k)-th to the (k+1)-th iteration, is noted $\textbf{x}^*$.
|
||||
|
||||
|
||||
|
||||
|
||||
! Evolution of the trust region
|
||||
|
||||
! We initialize the trust region at the first iteration using a radius
|
||||
! \begin{align*}
|
||||
! \Delta = ||\textbf{x}(\lambda=0)||
|
||||
! \end{align*}
|
||||
|
||||
! And for the next iteration the trust region will evolves depending of
|
||||
! the agreement of the energy prediction based on the Taylor series
|
||||
! truncated at the 2nd order and the real energy. If the Taylor series
|
||||
! truncated at the 2nd order represents correctly the energy landscape
|
||||
! the trust region will be extent else it will be reduced. In order to
|
||||
! mesure this agreement we use the ratio rho cf. "rho_model" and
|
||||
! "trust_e_model". From that we use the following values:
|
||||
! - if $\rho \geq 0.75$, then $\Delta = 2 \Delta$,
|
||||
! - if $0.5 \geq \rho < 0.75$, then $\Delta = \Delta$,
|
||||
! - if $0.25 \geq \rho < 0.5$, then $\Delta = 0.5 \Delta$,
|
||||
! - if $\rho < 0.25$, then $\Delta = 0.25 \Delta$.
|
||||
|
||||
! In addition, if $\rho < 0.1$ the iteration is cancelled, so it
|
||||
! restarts with a smaller trust region until the energy decreases.
|
||||
|
||||
|
||||
|
||||
|
||||
! Summary
|
||||
|
||||
! To summarize, knowing the hessian (eigenvectors and eigenvalues), the
|
||||
! gradient and the radius of the trust region we can compute the norm of
|
||||
! the Newton step
|
||||
! \begin{align*}
|
||||
! ||\textbf{x}(\lambda = 0)||^2 = ||- \textbf{H}^{-1} \cdot \textbf{g}||^2 = \sum_{i=1}^n
|
||||
! \frac{(\textbf{w}_i^T \cdot \textbf{g})^2}{(h_i + \lambda)^2}, \quad h_i \neq 0
|
||||
! \end{align*}
|
||||
|
||||
! - if $h_1 \geq 0$, $||\textbf{x}(\lambda = 0)|| \leq \Delta$ and
|
||||
! $\textbf{x}(\lambda=0)$ is in the trust region and it is not
|
||||
! necessary to put a constraint on $\textbf{x}$, the solution is the
|
||||
! unconstrained one, $\textbf{x}^* = \textbf{x}(\lambda = 0)$.
|
||||
! - else if $h_1 < 0$, $\textbf{w}_1^T \cdot \textbf{g} = 0$ and
|
||||
! $||\textbf{x}(\lambda = -h_1)|| \leq \Delta$ (by removing $j=1$ in
|
||||
! the sum), the solution is $\textbf{x}^* = \textbf{x}(\lambda =
|
||||
! -h_1)$, similarly to the previous case.
|
||||
! But we can add to $\textbf{x}$, the first eigenvector $\textbf{W}_1$
|
||||
! time a constant to ensure the condition $||\textbf{x}(\lambda =
|
||||
! -h_1)|| = \Delta$ and escape from the saddle point
|
||||
! - else if $h_1 < 0$ and $\textbf{w}_1^T \cdot \textbf{g} \neq 0$ we
|
||||
! have to search $\lambda \in (-h_1, \infty)$ such as
|
||||
! $\textbf{x}(\lambda) = \Delta$ by solving with the Newton method
|
||||
! \begin{align*}
|
||||
! (||\textbf{x}(\lambda)||^2 - \Delta^2)^2 = 0
|
||||
! \end{align*}
|
||||
! or
|
||||
! \begin{align*}
|
||||
! (\frac{1}{||\textbf{x}(\lambda)||^2} - \frac{1}{\Delta^2})^2 = 0
|
||||
! \end{align*}
|
||||
! which is numerically more stable. And finally compute
|
||||
! \begin{align*}
|
||||
! \textbf{x}^* = \textbf{x}(\lambda) = - \sum_{i=1}^n \frac{\textbf{w}_i^T \cdot
|
||||
! \textbf{g}}{h_i + \lambda} \cdot \textbf{w}_i
|
||||
! \end{align*}
|
||||
! - else if $h_1 \geq 0$ and $||\textbf{x}(\lambda = 0)|| > \Delta$ we
|
||||
! do exactly the same thing that the previous case but we search
|
||||
! $\lambda \in (0, \infty)$
|
||||
! - else if $h_1 < 0$ and $\textbf{w}_1^T \cdot \textbf{g} = 0$ and
|
||||
! $||\textbf{x}(\lambda = -h_1)|| > \Delta$ (by removing $j=1$ in the
|
||||
! sum), again we do exactly the same thing that the previous case
|
||||
! searching $\lambda \in (-h_1, \infty)$.
|
||||
|
||||
|
||||
! For the cases where $\textbf{w}_1^T \cdot \textbf{g} = 0$ it is not
|
||||
! necessary in fact to remove the $j = 1$ in the sum since the term
|
||||
! where $h_i - \lambda < 10^{-6}$ are not computed.
|
||||
|
||||
! After that, we take this vector $\textbf{x}^*$, called "x", and we do
|
||||
! the transformation to an antisymmetric matrix $\textbf{X}$, called
|
||||
! m_x. This matrix $\textbf{X}$ will be used to compute a rotation
|
||||
! matrix $\textbf{R}= \exp(\textbf{X})$ in "rotation_matrix".
|
||||
|
||||
! NB:
|
||||
! An improvement can be done using a elleptical trust region.
|
||||
|
||||
|
||||
|
||||
|
||||
! Code
|
||||
|
||||
! Provided:
|
||||
! | mo_num | integer | number of MOs |
|
||||
|
||||
! Cf. qp_edit in orbital optimization section, for some constants/thresholds
|
||||
|
||||
! Input:
|
||||
! | m | integer | number of MOs |
|
||||
! | n | integer | m*(m-1)/2 |
|
||||
! | H(n, n) | double precision | hessian |
|
||||
! | v_grad(n) | double precision | gradient |
|
||||
! | e_val(n) | double precision | eigenvalues of the hessian |
|
||||
! | W(n, n) | double precision | eigenvectors of the hessian |
|
||||
! | rho | double precision | agreement between the model and the reality, |
|
||||
! | | | represents the quality of the energy prediction |
|
||||
! | nb_iter | integer | number of iteration |
|
||||
|
||||
! Input/Ouput:
|
||||
! | delta | double precision | radius of the trust region |
|
||||
|
||||
! Output:
|
||||
! | x(n) | double precision | vector containing the step |
|
||||
|
||||
! Internal:
|
||||
! | accu | double precision | temporary variable to compute the step |
|
||||
! | lambda | double precision | lagrange multiplier |
|
||||
! | trust_radius2 | double precision | square of the radius of the trust region |
|
||||
! | norm2_x | double precision | norm^2 of the vector x |
|
||||
! | norm2_g | double precision | norm^2 of the vector containing the gradient |
|
||||
! | tmp_wtg(n) | double precision | tmp_wtg(i) = w_i^T . g |
|
||||
! | i, j, k | integer | indexes |
|
||||
|
||||
! Function:
|
||||
! | dnrm2 | double precision | Blas function computing the norm |
|
||||
! | f_norm_trust_region_omp | double precision | compute the value of norm(x(lambda)^2) |
|
||||
|
||||
|
||||
subroutine trust_region_step(n,nb_iter,v_grad,rho,e_val,w,x,delta)
|
||||
|
||||
include 'pi.h'
|
||||
|
||||
BEGIN_DOC
|
||||
! Compuet the step in the trust region
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
|
||||
! Variables
|
||||
|
||||
! in
|
||||
integer, intent(in) :: n
|
||||
double precision, intent(in) :: v_grad(n), rho
|
||||
integer, intent(inout) :: nb_iter
|
||||
double precision, intent(in) :: e_val(n), w(n,n)
|
||||
|
||||
! inout
|
||||
double precision, intent(inout) :: delta
|
||||
|
||||
! out
|
||||
double precision, intent(out) :: x(n)
|
||||
|
||||
! Internal
|
||||
double precision :: accu, lambda, trust_radius2
|
||||
double precision :: norm2_x, norm2_g
|
||||
double precision, allocatable :: tmp_wtg(:)
|
||||
integer :: i,j,k
|
||||
double precision :: t1,t2,t3
|
||||
integer :: n_neg_eval
|
||||
|
||||
|
||||
! Functions
|
||||
double precision :: ddot, dnrm2
|
||||
double precision :: f_norm_trust_region_omp
|
||||
|
||||
print*,''
|
||||
print*,'=================='
|
||||
print*,'---Trust_region---'
|
||||
print*,'=================='
|
||||
|
||||
call wall_time(t1)
|
||||
|
||||
! Allocation
|
||||
allocate(tmp_wtg(n))
|
||||
|
||||
! Initialization and norm
|
||||
|
||||
! The norm of the step size will be useful for the trust region
|
||||
! algorithm. We start from a first guess and the radius of the trust
|
||||
! region will evolve during the optimization.
|
||||
|
||||
! avoid_saddle is actually a test to avoid saddle points
|
||||
|
||||
|
||||
! Initialization of the Lagrange multiplier
|
||||
lambda = 0d0
|
||||
|
||||
! List of w^T.g, to avoid the recomputation
|
||||
tmp_wtg = 0d0
|
||||
do j = 1, n
|
||||
do i = 1, n
|
||||
tmp_wtg(j) = tmp_wtg(j) + w(i,j) * v_grad(i)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! Replacement of the small tmp_wtg corresponding to a negative eigenvalue
|
||||
! in the case of avoid_saddle
|
||||
if (avoid_saddle .and. e_val(1) < - thresh_eig) then
|
||||
i = 2
|
||||
! Number of negative eigenvalues
|
||||
do while (e_val(i) < - thresh_eig)
|
||||
if (tmp_wtg(i) < thresh_wtg2) then
|
||||
if (version_avoid_saddle == 1) then
|
||||
tmp_wtg(i) = 1d0
|
||||
elseif (version_avoid_saddle == 2) then
|
||||
tmp_wtg(i) = DABS(e_val(i))
|
||||
elseif (version_avoid_saddle == 3) then
|
||||
tmp_wtg(i) = dsqrt(DABS(e_val(i)))
|
||||
else
|
||||
tmp_wtg(i) = thresh_wtg2
|
||||
endif
|
||||
endif
|
||||
i = i + 1
|
||||
enddo
|
||||
|
||||
! For the fist one it's a little bit different
|
||||
if (tmp_wtg(1) < thresh_wtg2) then
|
||||
tmp_wtg(1) = 0d0
|
||||
endif
|
||||
|
||||
endif
|
||||
|
||||
! Norm^2 of x, ||x||^2
|
||||
norm2_x = f_norm_trust_region_omp(n,e_val,tmp_wtg,0d0)
|
||||
! We just use this norm for the nb_iter = 0 in order to initialize the trust radius delta
|
||||
! We don't care about the sign of the eigenvalue we just want the size of the step in a normal Newton-Raphson algorithm
|
||||
! Anyway if the step is too big it will be reduced
|
||||
print*,'||x||^2 :', norm2_x
|
||||
|
||||
! Norm^2 of the gradient, ||v_grad||^2
|
||||
norm2_g = (dnrm2(n,v_grad,1))**2
|
||||
print*,'||grad||^2 :', norm2_g
|
||||
|
||||
! Trust radius initialization
|
||||
|
||||
! At the first iteration (nb_iter = 0) we initialize the trust region
|
||||
! with the norm of the step generate by the Newton's method ($\textbf{x}_1 =
|
||||
! (\textbf{H}_0)^{-1} \cdot \textbf{g}_0$,
|
||||
! we compute this norm using f_norm_trust_region_omp as explain just
|
||||
! below)
|
||||
|
||||
|
||||
! trust radius
|
||||
if (nb_iter == 0) then
|
||||
trust_radius2 = norm2_x
|
||||
! To avoid infinite loop of cancellation of this first step
|
||||
! without changing delta
|
||||
nb_iter = 1
|
||||
|
||||
! Compute delta, delta = sqrt(trust_radius)
|
||||
delta = dsqrt(trust_radius2)
|
||||
endif
|
||||
|
||||
! Modification of the trust radius
|
||||
|
||||
! In function of rho (which represents the agreement between the model
|
||||
! and the reality, cf. rho_model) the trust region evolves. We update
|
||||
! delta (the radius of the trust region).
|
||||
|
||||
! To avoid too big trust region we put a maximum size.
|
||||
|
||||
|
||||
! Modification of the trust radius in function of rho
|
||||
if (rho >= 0.75d0) then
|
||||
delta = 2d0 * delta
|
||||
elseif (rho >= 0.5d0) then
|
||||
delta = delta
|
||||
elseif (rho >= 0.25d0) then
|
||||
delta = 0.5d0 * delta
|
||||
else
|
||||
delta = 0.25d0 * delta
|
||||
endif
|
||||
|
||||
! Maximum size of the trust region
|
||||
!if (delta > 0.5d0 * n * pi) then
|
||||
! delta = 0.5d0 * n * pi
|
||||
! print*,'Delta > delta_max, delta = 0.5d0 * n * pi'
|
||||
!endif
|
||||
|
||||
if (delta > 1d10) then
|
||||
delta = 1d10
|
||||
endif
|
||||
|
||||
print*, 'Delta :', delta
|
||||
|
||||
! Calculation of the optimal lambda
|
||||
|
||||
! We search the solution of $(||x||^2 - \Delta^2)^2 = 0$
|
||||
! - If $||\textbf{x}|| > \Delta$ or $h_1 < 0$ we have to add a constant
|
||||
! $\lambda > 0 \quad \text{and} \quad \lambda > -h_1$
|
||||
! - If $||\textbf{x}|| \leq \Delta$ and $h_1 \geq 0$ the solution is the
|
||||
! unconstrained one, $\lambda = 0$
|
||||
|
||||
! You will find more details at the beginning
|
||||
|
||||
|
||||
! By giving delta, we search (||x||^2 - delta^2)^2 = 0
|
||||
! and not (||x||^2 - delta)^2 = 0
|
||||
|
||||
! Research of lambda to solve ||x(lambda)|| = Delta
|
||||
|
||||
! Display
|
||||
print*, 'e_val(1) = ', e_val(1)
|
||||
print*, 'w_1^T.g =', tmp_wtg(1)
|
||||
|
||||
! H positive definite
|
||||
if (e_val(1) > - thresh_eig) then
|
||||
norm2_x = f_norm_trust_region_omp(n,e_val,tmp_wtg,0d0)
|
||||
print*, '||x(0)||=', dsqrt(norm2_x)
|
||||
print*, 'Delta=', delta
|
||||
|
||||
! H positive definite, ||x(lambda = 0)|| <= Delta
|
||||
if (dsqrt(norm2_x) <= delta) then
|
||||
print*, 'H positive definite, ||x(lambda = 0)|| <= Delta'
|
||||
print*, 'lambda = 0, no lambda optimization'
|
||||
lambda = 0d0
|
||||
|
||||
! H positive definite, ||x(lambda = 0)|| > Delta
|
||||
else
|
||||
! Constraint solution
|
||||
print*, 'H positive definite, ||x(lambda = 0)|| > Delta'
|
||||
print*,'Computation of the optimal lambda...'
|
||||
call trust_region_optimal_lambda(n,e_val,tmp_wtg,delta,lambda)
|
||||
endif
|
||||
|
||||
! H indefinite
|
||||
else
|
||||
if (DABS(tmp_wtg(1)) < thresh_wtg) then
|
||||
norm2_x = f_norm_trust_region_omp(n,e_val,tmp_wtg, - e_val(1))
|
||||
print*, 'w_1^T.g <', thresh_wtg,', ||x(lambda = -e_val(1))|| =', dsqrt(norm2_x)
|
||||
endif
|
||||
|
||||
! H indefinite, w_1^T.g = 0, ||x(lambda = -e_val(1))|| <= Delta
|
||||
if (dsqrt(norm2_x) <= delta .and. DABS(tmp_wtg(1)) < thresh_wtg) then
|
||||
! Add e_val(1) in order to have (H - e_val(1) I) positive definite
|
||||
print*, 'H indefinite, w_1^T.g = 0, ||x(lambda = -e_val(1))|| <= Delta'
|
||||
print*, 'lambda = -e_val(1), no lambda optimization'
|
||||
lambda = - e_val(1)
|
||||
|
||||
! H indefinite, w_1^T.g = 0, ||x(lambda = -e_val(1))|| > Delta
|
||||
! and
|
||||
! H indefinite, w_1^T.g =/= 0
|
||||
else
|
||||
! Constraint solution/ add lambda
|
||||
if (DABS(tmp_wtg(1)) < thresh_wtg) then
|
||||
print*, 'H indefinite, w_1^T.g = 0, ||x(lambda = -e_val(1))|| > Delta'
|
||||
else
|
||||
print*, 'H indefinite, w_1^T.g =/= 0'
|
||||
endif
|
||||
print*, 'Computation of the optimal lambda...'
|
||||
call trust_region_optimal_lambda(n,e_val,tmp_wtg,delta,lambda)
|
||||
endif
|
||||
|
||||
endif
|
||||
|
||||
! Recomputation of the norm^2 of the step x
|
||||
norm2_x = f_norm_trust_region_omp(n,e_val,tmp_wtg,lambda)
|
||||
print*,''
|
||||
print*,'Summary after the trust region:'
|
||||
print*,'lambda:', lambda
|
||||
print*,'||x||:', dsqrt(norm2_x)
|
||||
print*,'delta:', delta
|
||||
|
||||
! Calculation of the step x
|
||||
|
||||
! x refers to $\textbf{x}^*$
|
||||
! We compute x in function of lambda using its formula :
|
||||
! \begin{align*}
|
||||
! \textbf{x}^* = \textbf{x}(\lambda) = - \sum_{i=1}^n \frac{\textbf{w}_i^T \cdot \textbf{g}}{h_i
|
||||
! + \lambda} \cdot \textbf{w}_i
|
||||
! \end{align*}
|
||||
|
||||
|
||||
! Initialisation
|
||||
x = 0d0
|
||||
|
||||
! Calculation of the step x
|
||||
|
||||
! Normal version
|
||||
if (.not. absolute_eig) then
|
||||
|
||||
do i = 1, n
|
||||
if (DABS(e_val(i)) > thresh_eig .and. DABS(e_val(i)+lambda) > thresh_eig) then
|
||||
do j = 1, n
|
||||
x(j) = x(j) - tmp_wtg(i) * W(j,i) / (e_val(i) + lambda)
|
||||
enddo
|
||||
endif
|
||||
enddo
|
||||
|
||||
! Version to use the absolute value of the eigenvalues
|
||||
else
|
||||
|
||||
do i = 1, n
|
||||
if (DABS(e_val(i)) > thresh_eig) then
|
||||
do j = 1, n
|
||||
x(j) = x(j) - tmp_wtg(i) * W(j,i) / (DABS(e_val(i)) + lambda)
|
||||
enddo
|
||||
endif
|
||||
enddo
|
||||
|
||||
endif
|
||||
|
||||
double precision :: beta, norm_x
|
||||
|
||||
! Test
|
||||
! If w_1^T.g = 0, the lim of ||x(lambda)|| when lambda tend to -e_val(1)
|
||||
! is not + infinity. So ||x(lambda=-e_val(1))|| < delta, we add the first
|
||||
! eigenvectors multiply by a constant to ensure the condition
|
||||
! ||x(lambda=-e_val(1))|| = delta and escape the saddle point
|
||||
if (avoid_saddle .and. e_val(1) < - thresh_eig) then
|
||||
if (tmp_wtg(1) < 1d-15 .and. (1d0 - dsqrt(norm2_x)/delta) > 1d-3 ) then
|
||||
|
||||
! norm of x
|
||||
norm_x = dnrm2(n,x,1)
|
||||
|
||||
! Computes the coefficient for the w_1
|
||||
beta = delta**2 - norm_x**2
|
||||
|
||||
! Updates the step x
|
||||
x = x + W(:,1) * dsqrt(beta)
|
||||
|
||||
! Recomputes the norm to check
|
||||
norm_x = dnrm2(n,x,1)
|
||||
|
||||
print*, 'Add w_1 * dsqrt(delta^2 - ||x||^2):'
|
||||
print*, '||x||', norm_x
|
||||
endif
|
||||
endif
|
||||
|
||||
! Transformation of x
|
||||
|
||||
! x is a vector of size n, so it can be write as a m by m
|
||||
! antisymmetric matrix m_x cf. "mat_to_vec_index" and "vec_to_mat_index".
|
||||
|
||||
|
||||
! ! Step transformation vector -> matrix
|
||||
! ! Vector with n element -> mo_num by mo_num matrix
|
||||
! do j = 1, m
|
||||
! do i = 1, m
|
||||
! if (i>j) then
|
||||
! call mat_to_vec_index(i,j,k)
|
||||
! m_x(i,j) = x(k)
|
||||
! else
|
||||
! m_x(i,j) = 0d0
|
||||
! endif
|
||||
! enddo
|
||||
! enddo
|
||||
!
|
||||
! ! Antisymmetrization of the previous matrix
|
||||
! do j = 1, m
|
||||
! do i = 1, m
|
||||
! if (i<j) then
|
||||
! m_x(i,j) = - m_x(j,i)
|
||||
! endif
|
||||
! enddo
|
||||
! enddo
|
||||
|
||||
! Deallocation, end
|
||||
|
||||
|
||||
deallocate(tmp_wtg)
|
||||
|
||||
call wall_time(t2)
|
||||
t3 = t2 - t1
|
||||
print*,'Time in trust_region:', t3
|
||||
print*,'======================'
|
||||
print*,'---End trust_region---'
|
||||
print*,'======================'
|
||||
print*,''
|
||||
|
||||
end
|
726
src/utils_trust_region/trust_region_step.org
Normal file
726
src/utils_trust_region/trust_region_step.org
Normal file
@ -0,0 +1,726 @@
|
||||
* Trust region
|
||||
|
||||
*Compute the next step with the trust region algorithm*
|
||||
|
||||
The Newton method is an iterative method to find a minimum of a given
|
||||
function. It uses a Taylor series truncated at the second order of the
|
||||
targeted function and gives its minimizer. The minimizer is taken as
|
||||
the new position and the same thing is done. And by doing so
|
||||
iteratively the method find a minimum, a local or global one depending
|
||||
of the starting point and the convexity/nonconvexity of the targeted
|
||||
function.
|
||||
|
||||
The goal of the trust region is to constrain the step size of the
|
||||
Newton method in a certain area around the actual position, where the
|
||||
Taylor series is a good approximation of the targeted function. This
|
||||
area is called the "trust region".
|
||||
|
||||
In addition, in function of the agreement between the Taylor
|
||||
development of the energy and the real energy, the size of the trust
|
||||
region will be updated at each iteration. By doing so, the step sizes
|
||||
are not too larges. In addition, since we add a criterion to cancel the
|
||||
step if the energy increases (more precisely if rho < 0.1), so it's
|
||||
impossible to diverge. \newline
|
||||
|
||||
References: \newline
|
||||
Nocedal & Wright, Numerical Optimization, chapter 4 (1999), \newline
|
||||
https://link.springer.com/book/10.1007/978-0-387-40065-5, \newline
|
||||
ISBN: 978-0-387-40065-5 \newline
|
||||
|
||||
By using the first and the second derivatives, the Newton method gives
|
||||
a step:
|
||||
\begin{align*}
|
||||
\textbf{x}_{(k+1)}^{\text{Newton}} = - \textbf{H}_{(k)}^{-1} \cdot
|
||||
\textbf{g}_{(k)}
|
||||
\end{align*}
|
||||
which leads to the minimizer of the Taylor series.
|
||||
!!! Warning: the Newton method gives the minimizer if and only if
|
||||
$\textbf{H}$ is positive definite, else it leads to a saddle point !!!
|
||||
But we want a step $\textbf{x}_{(k+1)}$ with a constraint on its (euclidian) norm:
|
||||
\begin{align*}
|
||||
||\textbf{x}_{(k+1)}|| \leq \Delta_{(k+1)}
|
||||
\end{align*}
|
||||
which is equivalent to
|
||||
\begin{align*}
|
||||
\textbf{x}_{(k+1)}^T \cdot \textbf{x}_{(k+1)} \leq \Delta_{(k+1)}^2
|
||||
\end{align*}
|
||||
|
||||
with: \newline
|
||||
$\textbf{x}_{(k+1)}$ is the step for the k+1-th iteration (vector of
|
||||
size n) \newline
|
||||
$\textbf{H}_{(k)}$ is the hessian at the k-th iteration (n by n
|
||||
matrix) \newline
|
||||
$\textbf{g}_{(k)}$ is the gradient at the k-th iteration (vector of
|
||||
size n) \newline
|
||||
$\Delta_{(k+1)}$ is the trust radius for the (k+1)-th iteration
|
||||
\newline
|
||||
|
||||
Thus we want to constrain the step size $\textbf{x}_{(k+1)}$ into a
|
||||
hypersphere of radius $\Delta_{(k+1)}$.\newline
|
||||
|
||||
So, if $||\textbf{x}_{(k+1)}^{\text{Newton}}|| \leq \Delta_{(k)}$ and
|
||||
$\textbf{H}$ is positive definite, the
|
||||
solution is the step given by the Newton method
|
||||
$\textbf{x}_{(k+1)} = \textbf{x}_{(k+1)}^{\text{Newton}}$.
|
||||
Else we have to constrain the step size. For simplicity we will remove
|
||||
the index $_{(k)}$ and $_{(k+1)}$. To restict the step size, we have
|
||||
to put a constraint on $\textbf{x}$ with a Lagrange multiplier.
|
||||
Starting from the Taylor series of a function E (here, the energy)
|
||||
truncated at the 2nd order, we have:
|
||||
\begin{align*}
|
||||
E(\textbf{x}) = E +\textbf{g}^T \cdot \textbf{x} + \frac{1}{2}
|
||||
\cdot \textbf{x}^T \cdot \textbf{H} \cdot \textbf{x} +
|
||||
\mathcal{O}(\textbf{x}^2)
|
||||
\end{align*}
|
||||
|
||||
With the constraint on the norm of $\textbf{x}$ we can write the
|
||||
Lagrangian
|
||||
\begin{align*}
|
||||
\mathcal{L}(\textbf{x},\lambda) = E + \textbf{g}^T \cdot \textbf{x}
|
||||
+ \frac{1}{2} \cdot \textbf{x}^T \cdot \textbf{H} \cdot \textbf{x}
|
||||
+ \frac{1}{2} \lambda (\textbf{x}^T \cdot \textbf{x} - \Delta^2)
|
||||
\end{align*}
|
||||
Where: \newline
|
||||
$\lambda$ is the Lagrange multiplier \newline
|
||||
$E$ is the energy at the k-th iteration $\Leftrightarrow
|
||||
E(\textbf{x} = \textbf{0})$ \newline
|
||||
|
||||
To solve this equation, we search a stationary point where the first
|
||||
derivative of $\mathcal{L}$ with respect to $\textbf{x}$ becomes 0, i.e.
|
||||
\begin{align*}
|
||||
\frac{\partial \mathcal{L}(\textbf{x},\lambda)}{\partial \textbf{x}}=0
|
||||
\end{align*}
|
||||
|
||||
The derivative is:
|
||||
\begin{align*}
|
||||
\frac{\partial \mathcal{L}(\textbf{x},\lambda)}{\partial \textbf{x}}
|
||||
= \textbf{g} + \textbf{H} \cdot \textbf{x} + \lambda \cdot \textbf{x}
|
||||
\end{align*}
|
||||
|
||||
So, we search $\textbf{x}$ such as:
|
||||
\begin{align*}
|
||||
\frac{\partial \mathcal{L}(\textbf{x},\lambda)}{\partial \textbf{x}}
|
||||
= \textbf{g} + \textbf{H} \cdot \textbf{x} + \lambda \cdot \textbf{x} = 0
|
||||
\end{align*}
|
||||
|
||||
We can rewrite that as:
|
||||
\begin{align*}
|
||||
\textbf{g} + \textbf{H} \cdot \textbf{x} + \lambda \cdot \textbf{x}
|
||||
= \textbf{g} + (\textbf{H} +\textbf{I} \lambda) \cdot \textbf{x} = 0
|
||||
\end{align*}
|
||||
with $\textbf{I}$ is the identity matrix.
|
||||
|
||||
By doing so, the solution is:
|
||||
\begin{align*}
|
||||
(\textbf{H} +\textbf{I} \lambda) \cdot \textbf{x}= -\textbf{g}
|
||||
\end{align*}
|
||||
\begin{align*}
|
||||
\textbf{x}= - (\textbf{H} + \textbf{I} \lambda)^{-1} \cdot \textbf{g}
|
||||
\end{align*}
|
||||
with $\textbf{x}^T \textbf{x} = \Delta^2$.
|
||||
|
||||
We have to solve this previous equation to find this $\textbf{x}$ in the
|
||||
trust region, i.e. $||\textbf{x}|| = \Delta$. Now, this problem is
|
||||
just a one dimension problem because we can express $\textbf{x}$ as a
|
||||
function of $\lambda$:
|
||||
\begin{align*}
|
||||
\textbf{x}(\lambda) = - (\textbf{H} + \textbf{I} \lambda)^{-1} \cdot \textbf{g}
|
||||
\end{align*}
|
||||
|
||||
We start from the fact that the hessian is diagonalizable. So we have:
|
||||
\begin{align*}
|
||||
\textbf{H} = \textbf{W} \cdot \textbf{h} \cdot \textbf{W}^T
|
||||
\end{align*}
|
||||
with: \newline
|
||||
$\textbf{H}$, the hessian matrix \newline
|
||||
$\textbf{W}$, the matrix containing the eigenvectors \newline
|
||||
$\textbf{w}_i$, the i-th eigenvector, i.e. i-th column of $\textbf{W}$ \newline
|
||||
$\textbf{h}$, the matrix containing the eigenvalues in ascending order \newline
|
||||
$h_i$, the i-th eigenvalue in ascending order \newline
|
||||
|
||||
Now we use the fact that adding a constant on the diagonal just shifts
|
||||
the eigenvalues:
|
||||
\begin{align*}
|
||||
\textbf{H} + \textbf{I} \lambda = \textbf{W} \cdot (\textbf{h}
|
||||
+\textbf{I} \lambda) \cdot \textbf{W}^T
|
||||
\end{align*}
|
||||
|
||||
By doing so we can express $\textbf{x}$ as a function of $\lambda$
|
||||
\begin{align*}
|
||||
\textbf{x}(\lambda) = - \sum_{i=1}^n \frac{\textbf{w}_i^T \cdot
|
||||
\textbf{g}}{h_i + \lambda} \cdot \textbf{w}_i
|
||||
\end{align*}
|
||||
with $\lambda \neq - h_i$.
|
||||
|
||||
An interesting thing in our case is the norm of $\textbf{x}$,
|
||||
because we want $||\textbf{x}|| = \Delta$. Due to the orthogonality of
|
||||
the eigenvectors $\left\{\textbf{w} \right\} _{i=1}^n$ we have:
|
||||
\begin{align*}
|
||||
||\textbf{x}(\lambda)||^2 = \sum_{i=1}^n \frac{(\textbf{w}_i^T \cdot
|
||||
\textbf{g})^2}{(h_i + \lambda)^2}
|
||||
\end{align*}
|
||||
|
||||
So the $||\textbf{x}(\lambda)||^2$ is just a function of $\lambda$.
|
||||
And if we study the properties of this function we see that:
|
||||
\begin{align*}
|
||||
\lim_{\lambda\to\infty} ||\textbf{x}(\lambda)|| = 0
|
||||
\end{align*}
|
||||
and if $\textbf{w}_i^T \cdot \textbf{g} \neq 0$:
|
||||
\begin{align*}
|
||||
\lim_{\lambda\to -h_i} ||\textbf{x}(\lambda)|| = + \infty
|
||||
\end{align*}
|
||||
|
||||
From these limits and knowing that $h_1$ is the lowest eigenvalue, we
|
||||
can conclude that $||\textbf{x}(\lambda)||$ is a continuous and
|
||||
strictly decreasing function on the interval $\lambda \in
|
||||
(-h_1;\infty)$. Thus, there is one $\lambda$ in this interval which
|
||||
gives $||\textbf{x}(\lambda)|| = \Delta$, consequently there is one
|
||||
solution.
|
||||
|
||||
Since $\textbf{x} = - (\textbf{H} + \lambda \textbf{I})^{-1} \cdot
|
||||
\textbf{g}$ and we want to reduce the norm of $\textbf{x}$, clearly,
|
||||
$\lambda > 0$ ($\lambda = 0$ is the unconstraint solution). But the
|
||||
Newton method is only defined for a positive definite hessian matrix,
|
||||
so $(\textbf{H} + \textbf{I} \lambda)$ must be positive
|
||||
definite. Consequently, in the case where $\textbf{H}$ is not positive
|
||||
definite, to ensure the positive definiteness, $\lambda$ must be
|
||||
greater than $- h_1$.
|
||||
\begin{align*}
|
||||
\lambda > 0 \quad \text{and} \quad \lambda \geq - h_1
|
||||
\end{align*}
|
||||
|
||||
From that there are five cases:
|
||||
- if $\textbf{H}$ is positive definite, $-h_1 < 0$, $\lambda \in (0,\infty)$
|
||||
- if $\textbf{H}$ is not positive definite and $\textbf{w}_1^T \cdot
|
||||
\textbf{g} \neq 0$, $(\textbf{H} + \textbf{I}
|
||||
\lambda)$
|
||||
must be positve definite, $-h_1 > 0$, $\lambda \in (-h_1, \infty)$
|
||||
- if $\textbf{H}$ is not positive definite , $\textbf{w}_1^T \cdot
|
||||
\textbf{g} = 0$ and $||\textbf{x}(-h_1)|| > \Delta$ by removing
|
||||
$j=1$ in the sum, $(\textbf{H} + \textbf{I} \lambda)$ must be
|
||||
positive definite, $-h_1 > 0$, $\lambda \in (-h_1, \infty$)
|
||||
- if $\textbf{H}$ is not positive definite , $\textbf{w}_1^T \cdot
|
||||
\textbf{g} = 0$ and $||\textbf{x}(-h_1)|| \leq \Delta$ by removing
|
||||
$j=1$ in the sum, $(\textbf{H} + \textbf{I} \lambda)$ must be
|
||||
positive definite, $-h_1 > 0$, $\lambda = -h_1$). This case is
|
||||
similar to the case where $\textbf{H}$ and $||\textbf{x}(\lambda =
|
||||
0)|| \leq \Delta$
|
||||
but we can also add to $\textbf{x}$, the first eigenvector $\textbf{W}_1$
|
||||
time a constant to ensure the condition $||\textbf{x}(\lambda =
|
||||
-h_1)|| = \Delta$ and escape from the saddle point
|
||||
|
||||
Thus to find the solution, we can write:
|
||||
\begin{align*}
|
||||
||\textbf{x}(\lambda)|| = \Delta
|
||||
\end{align*}
|
||||
\begin{align*}
|
||||
||\textbf{x}(\lambda)|| - \Delta = 0
|
||||
\end{align*}
|
||||
|
||||
Taking the square of this equation
|
||||
\begin{align*}
|
||||
(||\textbf{x}(\lambda)|| - \Delta)^2 = 0
|
||||
\end{align*}
|
||||
we have a function with one minimum for the optimal $\lambda$.
|
||||
Since we have the formula of $||\textbf{x}(\lambda)||^2$, we solve
|
||||
\begin{align*}
|
||||
(||\textbf{x}(\lambda)||^2 - \Delta^2)^2 = 0
|
||||
\end{align*}
|
||||
|
||||
But in practice, it is more effective to solve:
|
||||
\begin{align*}
|
||||
(\frac{1}{||\textbf{x}(\lambda)||^2} - \frac{1}{\Delta^2})^2 = 0
|
||||
\end{align*}
|
||||
|
||||
To do that, we just use the Newton method with "trust_newton" using
|
||||
first and second derivative of $(||\textbf{x}(\lambda)||^2 -
|
||||
\Delta^2)^2$ with respect to $\textbf{x}$.
|
||||
This will give the optimal $\lambda$ to compute the
|
||||
solution $\textbf{x}$ with the formula seen previously:
|
||||
\begin{align*}
|
||||
\textbf{x}(\lambda) = - \sum_{i=1}^n \frac{\textbf{w}_i^T \cdot
|
||||
\textbf{g}}{h_i + \lambda} \cdot \textbf{w}_i
|
||||
\end{align*}
|
||||
|
||||
The solution $\textbf{x}(\lambda)$ with the optimal $\lambda$ is our
|
||||
step to go from the (k)-th to the (k+1)-th iteration, is noted $\textbf{x}^*$.
|
||||
|
||||
#+BEGIN_SRC f90 :comments org :tangle trust_region_step.irp.f
|
||||
#+END_SRC
|
||||
|
||||
** Evolution of the trust region
|
||||
|
||||
We initialize the trust region at the first iteration using a radius
|
||||
\begin{align*}
|
||||
\Delta = ||\textbf{x}(\lambda=0)||
|
||||
\end{align*}
|
||||
|
||||
And for the next iteration the trust region will evolves depending of
|
||||
the agreement of the energy prediction based on the Taylor series
|
||||
truncated at the 2nd order and the real energy. If the Taylor series
|
||||
truncated at the 2nd order represents correctly the energy landscape
|
||||
the trust region will be extent else it will be reduced. In order to
|
||||
mesure this agreement we use the ratio rho cf. "rho_model" and
|
||||
"trust_e_model". From that we use the following values:
|
||||
- if $\rho \geq 0.75$, then $\Delta = 2 \Delta$,
|
||||
- if $0.5 \geq \rho < 0.75$, then $\Delta = \Delta$,
|
||||
- if $0.25 \geq \rho < 0.5$, then $\Delta = 0.5 \Delta$,
|
||||
- if $\rho < 0.25$, then $\Delta = 0.25 \Delta$.
|
||||
|
||||
In addition, if $\rho < 0.1$ the iteration is cancelled, so it
|
||||
restarts with a smaller trust region until the energy decreases.
|
||||
|
||||
#+BEGIN_SRC f90 :comments org :tangle trust_region_step.irp.f
|
||||
#+END_SRC
|
||||
|
||||
** Summary
|
||||
|
||||
To summarize, knowing the hessian (eigenvectors and eigenvalues), the
|
||||
gradient and the radius of the trust region we can compute the norm of
|
||||
the Newton step
|
||||
\begin{align*}
|
||||
||\textbf{x}(\lambda = 0)||^2 = ||- \textbf{H}^{-1} \cdot \textbf{g}||^2 = \sum_{i=1}^n
|
||||
\frac{(\textbf{w}_i^T \cdot \textbf{g})^2}{(h_i + \lambda)^2}, \quad h_i \neq 0
|
||||
\end{align*}
|
||||
|
||||
- if $h_1 \geq 0$, $||\textbf{x}(\lambda = 0)|| \leq \Delta$ and
|
||||
$\textbf{x}(\lambda=0)$ is in the trust region and it is not
|
||||
necessary to put a constraint on $\textbf{x}$, the solution is the
|
||||
unconstrained one, $\textbf{x}^* = \textbf{x}(\lambda = 0)$.
|
||||
- else if $h_1 < 0$, $\textbf{w}_1^T \cdot \textbf{g} = 0$ and
|
||||
$||\textbf{x}(\lambda = -h_1)|| \leq \Delta$ (by removing $j=1$ in
|
||||
the sum), the solution is $\textbf{x}^* = \textbf{x}(\lambda =
|
||||
-h_1)$, similarly to the previous case.
|
||||
But we can add to $\textbf{x}$, the first eigenvector $\textbf{W}_1$
|
||||
time a constant to ensure the condition $||\textbf{x}(\lambda =
|
||||
-h_1)|| = \Delta$ and escape from the saddle point
|
||||
- else if $h_1 < 0$ and $\textbf{w}_1^T \cdot \textbf{g} \neq 0$ we
|
||||
have to search $\lambda \in (-h_1, \infty)$ such as
|
||||
$\textbf{x}(\lambda) = \Delta$ by solving with the Newton method
|
||||
\begin{align*}
|
||||
(||\textbf{x}(\lambda)||^2 - \Delta^2)^2 = 0
|
||||
\end{align*}
|
||||
or
|
||||
\begin{align*}
|
||||
(\frac{1}{||\textbf{x}(\lambda)||^2} - \frac{1}{\Delta^2})^2 = 0
|
||||
\end{align*}
|
||||
which is numerically more stable. And finally compute
|
||||
\begin{align*}
|
||||
\textbf{x}^* = \textbf{x}(\lambda) = - \sum_{i=1}^n \frac{\textbf{w}_i^T \cdot
|
||||
\textbf{g}}{h_i + \lambda} \cdot \textbf{w}_i
|
||||
\end{align*}
|
||||
- else if $h_1 \geq 0$ and $||\textbf{x}(\lambda = 0)|| > \Delta$ we
|
||||
do exactly the same thing that the previous case but we search
|
||||
$\lambda \in (0, \infty)$
|
||||
- else if $h_1 < 0$ and $\textbf{w}_1^T \cdot \textbf{g} = 0$ and
|
||||
$||\textbf{x}(\lambda = -h_1)|| > \Delta$ (by removing $j=1$ in the
|
||||
sum), again we do exactly the same thing that the previous case
|
||||
searching $\lambda \in (-h_1, \infty)$.
|
||||
|
||||
|
||||
For the cases where $\textbf{w}_1^T \cdot \textbf{g} = 0$ it is not
|
||||
necessary in fact to remove the $j = 1$ in the sum since the term
|
||||
where $h_i - \lambda < 10^{-6}$ are not computed.
|
||||
|
||||
After that, we take this vector $\textbf{x}^*$, called "x", and we do
|
||||
the transformation to an antisymmetric matrix $\textbf{X}$, called
|
||||
m_x. This matrix $\textbf{X}$ will be used to compute a rotation
|
||||
matrix $\textbf{R}= \exp(\textbf{X})$ in "rotation_matrix".
|
||||
|
||||
NB:
|
||||
An improvement can be done using a elleptical trust region.
|
||||
|
||||
#+BEGIN_SRC f90 :comments org :tangle trust_region_step.irp.f
|
||||
#+END_SRC
|
||||
|
||||
** Code
|
||||
|
||||
Provided:
|
||||
| mo_num | integer | number of MOs |
|
||||
|
||||
Cf. qp_edit in orbital optimization section, for some constants/thresholds
|
||||
|
||||
Input:
|
||||
| m | integer | number of MOs |
|
||||
| n | integer | m*(m-1)/2 |
|
||||
| H(n, n) | double precision | hessian |
|
||||
| v_grad(n) | double precision | gradient |
|
||||
| e_val(n) | double precision | eigenvalues of the hessian |
|
||||
| W(n, n) | double precision | eigenvectors of the hessian |
|
||||
| rho | double precision | agreement between the model and the reality, |
|
||||
| | | represents the quality of the energy prediction |
|
||||
| nb_iter | integer | number of iteration |
|
||||
|
||||
Input/Ouput:
|
||||
| delta | double precision | radius of the trust region |
|
||||
|
||||
Output:
|
||||
| x(n) | double precision | vector containing the step |
|
||||
|
||||
Internal:
|
||||
| accu | double precision | temporary variable to compute the step |
|
||||
| lambda | double precision | lagrange multiplier |
|
||||
| trust_radius2 | double precision | square of the radius of the trust region |
|
||||
| norm2_x | double precision | norm^2 of the vector x |
|
||||
| norm2_g | double precision | norm^2 of the vector containing the gradient |
|
||||
| tmp_wtg(n) | double precision | tmp_wtg(i) = w_i^T . g |
|
||||
| i, j, k | integer | indexes |
|
||||
|
||||
Function:
|
||||
| dnrm2 | double precision | Blas function computing the norm |
|
||||
| f_norm_trust_region_omp | double precision | compute the value of norm(x(lambda)^2) |
|
||||
|
||||
#+BEGIN_SRC f90 :comments org :tangle trust_region_step.irp.f
|
||||
subroutine trust_region_step(n,nb_iter,v_grad,rho,e_val,w,x,delta)
|
||||
|
||||
include 'pi.h'
|
||||
|
||||
BEGIN_DOC
|
||||
! Compuet the step in the trust region
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
|
||||
! Variables
|
||||
|
||||
! in
|
||||
integer, intent(in) :: n
|
||||
double precision, intent(in) :: v_grad(n), rho
|
||||
integer, intent(inout) :: nb_iter
|
||||
double precision, intent(in) :: e_val(n), w(n,n)
|
||||
|
||||
! inout
|
||||
double precision, intent(inout) :: delta
|
||||
|
||||
! out
|
||||
double precision, intent(out) :: x(n)
|
||||
|
||||
! Internal
|
||||
double precision :: accu, lambda, trust_radius2
|
||||
double precision :: norm2_x, norm2_g
|
||||
double precision, allocatable :: tmp_wtg(:)
|
||||
integer :: i,j,k
|
||||
double precision :: t1,t2,t3
|
||||
integer :: n_neg_eval
|
||||
|
||||
|
||||
! Functions
|
||||
double precision :: ddot, dnrm2
|
||||
double precision :: f_norm_trust_region_omp
|
||||
|
||||
print*,''
|
||||
print*,'=================='
|
||||
print*,'---Trust_region---'
|
||||
print*,'=================='
|
||||
|
||||
call wall_time(t1)
|
||||
|
||||
! Allocation
|
||||
allocate(tmp_wtg(n))
|
||||
#+END_SRC
|
||||
|
||||
|
||||
*** Initialization and norm
|
||||
|
||||
The norm of the step size will be useful for the trust region
|
||||
algorithm. We start from a first guess and the radius of the trust
|
||||
region will evolve during the optimization.
|
||||
|
||||
avoid_saddle is actually a test to avoid saddle points
|
||||
|
||||
#+BEGIN_SRC f90 :comments org :tangle trust_region_step.irp.f
|
||||
! Initialization of the Lagrange multiplier
|
||||
lambda = 0d0
|
||||
|
||||
! List of w^T.g, to avoid the recomputation
|
||||
tmp_wtg = 0d0
|
||||
do j = 1, n
|
||||
do i = 1, n
|
||||
tmp_wtg(j) = tmp_wtg(j) + w(i,j) * v_grad(i)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! Replacement of the small tmp_wtg corresponding to a negative eigenvalue
|
||||
! in the case of avoid_saddle
|
||||
if (avoid_saddle .and. e_val(1) < - thresh_eig) then
|
||||
i = 2
|
||||
! Number of negative eigenvalues
|
||||
do while (e_val(i) < - thresh_eig)
|
||||
if (tmp_wtg(i) < thresh_wtg2) then
|
||||
if (version_avoid_saddle == 1) then
|
||||
tmp_wtg(i) = 1d0
|
||||
elseif (version_avoid_saddle == 2) then
|
||||
tmp_wtg(i) = DABS(e_val(i))
|
||||
elseif (version_avoid_saddle == 3) then
|
||||
tmp_wtg(i) = dsqrt(DABS(e_val(i)))
|
||||
else
|
||||
tmp_wtg(i) = thresh_wtg2
|
||||
endif
|
||||
endif
|
||||
i = i + 1
|
||||
enddo
|
||||
|
||||
! For the fist one it's a little bit different
|
||||
if (tmp_wtg(1) < thresh_wtg2) then
|
||||
tmp_wtg(1) = 0d0
|
||||
endif
|
||||
|
||||
endif
|
||||
|
||||
! Norm^2 of x, ||x||^2
|
||||
norm2_x = f_norm_trust_region_omp(n,e_val,tmp_wtg,0d0)
|
||||
! We just use this norm for the nb_iter = 0 in order to initialize the trust radius delta
|
||||
! We don't care about the sign of the eigenvalue we just want the size of the step in a normal Newton-Raphson algorithm
|
||||
! Anyway if the step is too big it will be reduced
|
||||
print*,'||x||^2 :', norm2_x
|
||||
|
||||
! Norm^2 of the gradient, ||v_grad||^2
|
||||
norm2_g = (dnrm2(n,v_grad,1))**2
|
||||
print*,'||grad||^2 :', norm2_g
|
||||
#+END_SRC
|
||||
|
||||
*** Trust radius initialization
|
||||
|
||||
At the first iteration (nb_iter = 0) we initialize the trust region
|
||||
with the norm of the step generate by the Newton's method ($\textbf{x}_1 =
|
||||
(\textbf{H}_0)^{-1} \cdot \textbf{g}_0$,
|
||||
we compute this norm using f_norm_trust_region_omp as explain just
|
||||
below)
|
||||
|
||||
#+BEGIN_SRC f90 :comments org :tangle trust_region_step.irp.f
|
||||
! trust radius
|
||||
if (nb_iter == 0) then
|
||||
trust_radius2 = norm2_x
|
||||
! To avoid infinite loop of cancellation of this first step
|
||||
! without changing delta
|
||||
nb_iter = 1
|
||||
|
||||
! Compute delta, delta = sqrt(trust_radius)
|
||||
delta = dsqrt(trust_radius2)
|
||||
endif
|
||||
#+END_SRC
|
||||
|
||||
*** Modification of the trust radius
|
||||
|
||||
In function of rho (which represents the agreement between the model
|
||||
and the reality, cf. rho_model) the trust region evolves. We update
|
||||
delta (the radius of the trust region).
|
||||
|
||||
To avoid too big trust region we put a maximum size.
|
||||
|
||||
#+BEGIN_SRC f90 :comments org :tangle trust_region_step.irp.f
|
||||
! Modification of the trust radius in function of rho
|
||||
if (rho >= 0.75d0) then
|
||||
delta = 2d0 * delta
|
||||
elseif (rho >= 0.5d0) then
|
||||
delta = delta
|
||||
elseif (rho >= 0.25d0) then
|
||||
delta = 0.5d0 * delta
|
||||
else
|
||||
delta = 0.25d0 * delta
|
||||
endif
|
||||
|
||||
! Maximum size of the trust region
|
||||
!if (delta > 0.5d0 * n * pi) then
|
||||
! delta = 0.5d0 * n * pi
|
||||
! print*,'Delta > delta_max, delta = 0.5d0 * n * pi'
|
||||
!endif
|
||||
|
||||
if (delta > 1d10) then
|
||||
delta = 1d10
|
||||
endif
|
||||
|
||||
print*, 'Delta :', delta
|
||||
#+END_SRC
|
||||
|
||||
*** Calculation of the optimal lambda
|
||||
|
||||
We search the solution of $(||x||^2 - \Delta^2)^2 = 0$
|
||||
- If $||\textbf{x}|| > \Delta$ or $h_1 < 0$ we have to add a constant
|
||||
$\lambda > 0 \quad \text{and} \quad \lambda > -h_1$
|
||||
- If $||\textbf{x}|| \leq \Delta$ and $h_1 \geq 0$ the solution is the
|
||||
unconstrained one, $\lambda = 0$
|
||||
|
||||
You will find more details at the beginning
|
||||
|
||||
#+BEGIN_SRC f90 :comments org :tangle trust_region_step.irp.f
|
||||
! By giving delta, we search (||x||^2 - delta^2)^2 = 0
|
||||
! and not (||x||^2 - delta)^2 = 0
|
||||
|
||||
! Research of lambda to solve ||x(lambda)|| = Delta
|
||||
|
||||
! Display
|
||||
print*, 'e_val(1) = ', e_val(1)
|
||||
print*, 'w_1^T.g =', tmp_wtg(1)
|
||||
|
||||
! H positive definite
|
||||
if (e_val(1) > - thresh_eig) then
|
||||
norm2_x = f_norm_trust_region_omp(n,e_val,tmp_wtg,0d0)
|
||||
print*, '||x(0)||=', dsqrt(norm2_x)
|
||||
print*, 'Delta=', delta
|
||||
|
||||
! H positive definite, ||x(lambda = 0)|| <= Delta
|
||||
if (dsqrt(norm2_x) <= delta) then
|
||||
print*, 'H positive definite, ||x(lambda = 0)|| <= Delta'
|
||||
print*, 'lambda = 0, no lambda optimization'
|
||||
lambda = 0d0
|
||||
|
||||
! H positive definite, ||x(lambda = 0)|| > Delta
|
||||
else
|
||||
! Constraint solution
|
||||
print*, 'H positive definite, ||x(lambda = 0)|| > Delta'
|
||||
print*,'Computation of the optimal lambda...'
|
||||
call trust_region_optimal_lambda(n,e_val,tmp_wtg,delta,lambda)
|
||||
endif
|
||||
|
||||
! H indefinite
|
||||
else
|
||||
if (DABS(tmp_wtg(1)) < thresh_wtg) then
|
||||
norm2_x = f_norm_trust_region_omp(n,e_val,tmp_wtg, - e_val(1))
|
||||
print*, 'w_1^T.g <', thresh_wtg,', ||x(lambda = -e_val(1))|| =', dsqrt(norm2_x)
|
||||
endif
|
||||
|
||||
! H indefinite, w_1^T.g = 0, ||x(lambda = -e_val(1))|| <= Delta
|
||||
if (dsqrt(norm2_x) <= delta .and. DABS(tmp_wtg(1)) < thresh_wtg) then
|
||||
! Add e_val(1) in order to have (H - e_val(1) I) positive definite
|
||||
print*, 'H indefinite, w_1^T.g = 0, ||x(lambda = -e_val(1))|| <= Delta'
|
||||
print*, 'lambda = -e_val(1), no lambda optimization'
|
||||
lambda = - e_val(1)
|
||||
|
||||
! H indefinite, w_1^T.g = 0, ||x(lambda = -e_val(1))|| > Delta
|
||||
! and
|
||||
! H indefinite, w_1^T.g =/= 0
|
||||
else
|
||||
! Constraint solution/ add lambda
|
||||
if (DABS(tmp_wtg(1)) < thresh_wtg) then
|
||||
print*, 'H indefinite, w_1^T.g = 0, ||x(lambda = -e_val(1))|| > Delta'
|
||||
else
|
||||
print*, 'H indefinite, w_1^T.g =/= 0'
|
||||
endif
|
||||
print*, 'Computation of the optimal lambda...'
|
||||
call trust_region_optimal_lambda(n,e_val,tmp_wtg,delta,lambda)
|
||||
endif
|
||||
|
||||
endif
|
||||
|
||||
! Recomputation of the norm^2 of the step x
|
||||
norm2_x = f_norm_trust_region_omp(n,e_val,tmp_wtg,lambda)
|
||||
print*,''
|
||||
print*,'Summary after the trust region:'
|
||||
print*,'lambda:', lambda
|
||||
print*,'||x||:', dsqrt(norm2_x)
|
||||
print*,'delta:', delta
|
||||
#+END_SRC
|
||||
|
||||
*** Calculation of the step x
|
||||
|
||||
x refers to $\textbf{x}^*$
|
||||
We compute x in function of lambda using its formula :
|
||||
\begin{align*}
|
||||
\textbf{x}^* = \textbf{x}(\lambda) = - \sum_{i=1}^n \frac{\textbf{w}_i^T \cdot \textbf{g}}{h_i
|
||||
+ \lambda} \cdot \textbf{w}_i
|
||||
\end{align*}
|
||||
|
||||
#+BEGIN_SRC f90 :comments org :tangle trust_region_step.irp.f
|
||||
! Initialisation
|
||||
x = 0d0
|
||||
|
||||
! Calculation of the step x
|
||||
|
||||
! Normal version
|
||||
if (.not. absolute_eig) then
|
||||
|
||||
do i = 1, n
|
||||
if (DABS(e_val(i)) > thresh_eig .and. DABS(e_val(i)+lambda) > thresh_eig) then
|
||||
do j = 1, n
|
||||
x(j) = x(j) - tmp_wtg(i) * W(j,i) / (e_val(i) + lambda)
|
||||
enddo
|
||||
endif
|
||||
enddo
|
||||
|
||||
! Version to use the absolute value of the eigenvalues
|
||||
else
|
||||
|
||||
do i = 1, n
|
||||
if (DABS(e_val(i)) > thresh_eig) then
|
||||
do j = 1, n
|
||||
x(j) = x(j) - tmp_wtg(i) * W(j,i) / (DABS(e_val(i)) + lambda)
|
||||
enddo
|
||||
endif
|
||||
enddo
|
||||
|
||||
endif
|
||||
|
||||
double precision :: beta, norm_x
|
||||
|
||||
! Test
|
||||
! If w_1^T.g = 0, the lim of ||x(lambda)|| when lambda tend to -e_val(1)
|
||||
! is not + infinity. So ||x(lambda=-e_val(1))|| < delta, we add the first
|
||||
! eigenvectors multiply by a constant to ensure the condition
|
||||
! ||x(lambda=-e_val(1))|| = delta and escape the saddle point
|
||||
if (avoid_saddle .and. e_val(1) < - thresh_eig) then
|
||||
if (tmp_wtg(1) < 1d-15 .and. (1d0 - dsqrt(norm2_x)/delta) > 1d-3 ) then
|
||||
|
||||
! norm of x
|
||||
norm_x = dnrm2(n,x,1)
|
||||
|
||||
! Computes the coefficient for the w_1
|
||||
beta = delta**2 - norm_x**2
|
||||
|
||||
! Updates the step x
|
||||
x = x + W(:,1) * dsqrt(beta)
|
||||
|
||||
! Recomputes the norm to check
|
||||
norm_x = dnrm2(n,x,1)
|
||||
|
||||
print*, 'Add w_1 * dsqrt(delta^2 - ||x||^2):'
|
||||
print*, '||x||', norm_x
|
||||
endif
|
||||
endif
|
||||
#+END_SRC
|
||||
|
||||
*** Transformation of x
|
||||
|
||||
x is a vector of size n, so it can be write as a m by m
|
||||
antisymmetric matrix m_x cf. "mat_to_vec_index" and "vec_to_mat_index".
|
||||
|
||||
#+BEGIN_SRC f90 :comments org :tangle trust_region_step.irp.f
|
||||
! ! Step transformation vector -> matrix
|
||||
! ! Vector with n element -> mo_num by mo_num matrix
|
||||
! do j = 1, m
|
||||
! do i = 1, m
|
||||
! if (i>j) then
|
||||
! call mat_to_vec_index(i,j,k)
|
||||
! m_x(i,j) = x(k)
|
||||
! else
|
||||
! m_x(i,j) = 0d0
|
||||
! endif
|
||||
! enddo
|
||||
! enddo
|
||||
!
|
||||
! ! Antisymmetrization of the previous matrix
|
||||
! do j = 1, m
|
||||
! do i = 1, m
|
||||
! if (i<j) then
|
||||
! m_x(i,j) = - m_x(j,i)
|
||||
! endif
|
||||
! enddo
|
||||
! enddo
|
||||
#+END_SRC
|
||||
|
||||
*** Deallocation, end
|
||||
|
||||
#+BEGIN_SRC f90 :comments org :tangle trust_region_step.irp.f
|
||||
deallocate(tmp_wtg)
|
||||
|
||||
call wall_time(t2)
|
||||
t3 = t2 - t1
|
||||
print*,'Time in trust_region:', t3
|
||||
print*,'======================'
|
||||
print*,'---End trust_region---'
|
||||
print*,'======================'
|
||||
print*,''
|
||||
|
||||
end
|
||||
#+END_SRC
|
||||
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue
Block a user