mirror of
https://github.com/QuantumPackage/qp2.git
synced 2024-12-22 11:33:29 +01:00
commit
2b6ca938c8
@ -8,7 +8,7 @@ qpsh
|
||||
|
||||
|
||||
:command:`qpsh` is the |qp| shell. It is a Bash shell with all the
|
||||
required evironment variables loaded, a modified prompt, and the
|
||||
required environment variables loaded, a modified prompt, and the
|
||||
:ref:`qp` command.
|
||||
|
||||
|
||||
|
@ -58,52 +58,70 @@ end = struct
|
||||
;;
|
||||
|
||||
let read_ao_prim_num () =
|
||||
Ezfio.get_ao_basis_ao_prim_num ()
|
||||
|> Ezfio.flattened_ezfio
|
||||
|> Array.map AO_prim_number.of_int
|
||||
if Ezfio.has_ao_basis_ao_prim_num () then
|
||||
Ezfio.get_ao_basis_ao_prim_num ()
|
||||
|> Ezfio.flattened_ezfio
|
||||
|> Array.map AO_prim_number.of_int
|
||||
else
|
||||
[||]
|
||||
;;
|
||||
|
||||
let read_ao_prim_num_max () =
|
||||
Ezfio.get_ao_basis_ao_prim_num ()
|
||||
|> Ezfio.flattened_ezfio
|
||||
|> Array.fold_left (fun x y -> if x>y then x else y) 0
|
||||
|> AO_prim_number.of_int
|
||||
if Ezfio.has_ao_basis_ao_prim_num () then
|
||||
Ezfio.get_ao_basis_ao_prim_num ()
|
||||
|> Ezfio.flattened_ezfio
|
||||
|> Array.fold_left (fun x y -> if x>y then x else y) 0
|
||||
|> AO_prim_number.of_int
|
||||
else
|
||||
AO_prim_number.of_int 0
|
||||
;;
|
||||
|
||||
let read_ao_nucl () =
|
||||
let nmax = Nucl_number.get_max () in
|
||||
Ezfio.get_ao_basis_ao_nucl ()
|
||||
|> Ezfio.flattened_ezfio
|
||||
|> Array.map (fun x-> Nucl_number.of_int ~max:nmax x)
|
||||
if Ezfio.has_ao_basis_ao_nucl () then
|
||||
let nmax = Nucl_number.get_max () in
|
||||
Ezfio.get_ao_basis_ao_nucl ()
|
||||
|> Ezfio.flattened_ezfio
|
||||
|> Array.map (fun x-> Nucl_number.of_int ~max:nmax x)
|
||||
else
|
||||
[||]
|
||||
;;
|
||||
|
||||
let read_ao_power () =
|
||||
let x = Ezfio.get_ao_basis_ao_power () in
|
||||
let dim = x.Ezfio.dim.(0) in
|
||||
let data = Ezfio.flattened_ezfio x in
|
||||
let result = Array.init dim (fun x -> "") in
|
||||
for i=1 to dim
|
||||
do
|
||||
if (data.(i-1) > 0) then
|
||||
result.(i-1) <- result.(i-1)^"x"^(string_of_int data.(i-1));
|
||||
if (data.(dim+i-1) > 0) then
|
||||
result.(i-1) <- result.(i-1)^"y"^(string_of_int data.(dim+i-1));
|
||||
if (data.(2*dim+i-1) > 0) then
|
||||
result.(i-1) <- result.(i-1)^"z"^(string_of_int data.(2*dim+i-1));
|
||||
done;
|
||||
Array.map Angmom.Xyz.of_string result
|
||||
if Ezfio.has_ao_basis_ao_power () then
|
||||
let x = Ezfio.get_ao_basis_ao_power () in
|
||||
let dim = x.Ezfio.dim.(0) in
|
||||
let data = Ezfio.flattened_ezfio x in
|
||||
let result = Array.init dim (fun x -> "") in
|
||||
for i=1 to dim
|
||||
do
|
||||
if (data.(i-1) > 0) then
|
||||
result.(i-1) <- result.(i-1)^"x"^(string_of_int data.(i-1));
|
||||
if (data.(dim+i-1) > 0) then
|
||||
result.(i-1) <- result.(i-1)^"y"^(string_of_int data.(dim+i-1));
|
||||
if (data.(2*dim+i-1) > 0) then
|
||||
result.(i-1) <- result.(i-1)^"z"^(string_of_int data.(2*dim+i-1));
|
||||
done;
|
||||
Array.map Angmom.Xyz.of_string result
|
||||
else
|
||||
[||]
|
||||
;;
|
||||
|
||||
let read_ao_coef () =
|
||||
Ezfio.get_ao_basis_ao_coef ()
|
||||
|> Ezfio.flattened_ezfio
|
||||
|> Array.map AO_coef.of_float
|
||||
if Ezfio.has_ao_basis_ao_coef () then
|
||||
Ezfio.get_ao_basis_ao_coef ()
|
||||
|> Ezfio.flattened_ezfio
|
||||
|> Array.map AO_coef.of_float
|
||||
else
|
||||
[||]
|
||||
;;
|
||||
|
||||
let read_ao_expo () =
|
||||
Ezfio.get_ao_basis_ao_expo ()
|
||||
|> Ezfio.flattened_ezfio
|
||||
|> Array.map AO_expo.of_float
|
||||
if Ezfio.has_ao_basis_ao_expo () then
|
||||
Ezfio.get_ao_basis_ao_expo ()
|
||||
|> Ezfio.flattened_ezfio
|
||||
|> Array.map AO_expo.of_float
|
||||
else
|
||||
[||]
|
||||
;;
|
||||
|
||||
let read_ao_cartesian () =
|
||||
|
@ -132,6 +132,7 @@ let run slave ?prefix exe ezfio_file =
|
||||
(** Run executable *)
|
||||
let prefix =
|
||||
match prefix with
|
||||
| Some "gdb" -> "gdb --args "
|
||||
| Some x -> x^" "
|
||||
| None -> ""
|
||||
and exe =
|
||||
|
@ -155,6 +155,7 @@ subroutine run_stochastic_cipsi
|
||||
call pt2_alloc(pt2_data_err, N_states)
|
||||
call ZMQ_pt2(E_tc, pt2_data, pt2_data_err, relative_error,0) ! Stochastic PT2 and selection
|
||||
call diagonalize_CI_tc_bi_ortho(ndet, E_tc,norm)
|
||||
call print_summary_tc(psi_energy_with_nucl_rep, pt2_data, pt2_data_err, N_det, N_configuration, N_states, psi_s2)
|
||||
call pt2_dealloc(pt2_data)
|
||||
call pt2_dealloc(pt2_data_err)
|
||||
|
||||
|
@ -1,7 +1,25 @@
|
||||
[log_jpsi]
|
||||
type: logical
|
||||
doc: If |true|, the Jpsi is taken as log(1+psi_cor)
|
||||
interface: ezfio,provider,ocaml
|
||||
default: False
|
||||
|
||||
|
||||
[mu_of_r_tc]
|
||||
type: character*(32)
|
||||
doc: type of the mu(r): [ Standard | Erfmu | Erfmugauss ]
|
||||
interface: ezfio,provider,ocaml
|
||||
default: Standard
|
||||
|
||||
[mu_of_r_av]
|
||||
type: logical
|
||||
doc: If |true|, take the second formula for mu(r)
|
||||
interface: ezfio,provider,ocaml
|
||||
default: False
|
||||
|
||||
[j2e_type]
|
||||
type: character*(32)
|
||||
doc: type of the 2e-Jastrow: [ None | Mu | Mu_Nu | Mur | Boys | Boys_Handy | Qmckl ]
|
||||
doc: type of the 2e-Jastrow: [ None | Mu | Mugauss | Mu_Nu | Mur | Murgauss | Bump | Boys | Boys_Handy | Qmckl ]
|
||||
interface: ezfio,provider,ocaml
|
||||
default: Mu
|
||||
|
||||
|
@ -4,3 +4,4 @@ jastrow
|
||||
ao_tc_eff_map
|
||||
bi_ortho_mos
|
||||
trexio
|
||||
mu_of_r
|
||||
|
28
plugins/local/non_h_ints_mu/deb_deriv_mu.irp.f
Normal file
28
plugins/local/non_h_ints_mu/deb_deriv_mu.irp.f
Normal file
@ -0,0 +1,28 @@
|
||||
program test_j_mu_of_r
|
||||
implicit none
|
||||
double precision :: x,mu_min,dmu,mu_max, mu, mu_p, mu_m
|
||||
double precision :: j_simple,j_p, j_m,numeric_d_mu,d_dx_mu
|
||||
double precision :: accu
|
||||
integer :: npt,i
|
||||
npt = 1000
|
||||
mu_min = 0.3d0
|
||||
mu_max = 10.d0
|
||||
dmu = (mu_max - mu_min)/dble(npt)
|
||||
x = 0.7d0
|
||||
mu = mu_min
|
||||
do i = 1, npt
|
||||
call get_deriv_mu_j12(x,mu,d_dx_mu)
|
||||
mu_p = mu + dmu
|
||||
mu_m = mu - dmu
|
||||
j_p = j_simple(x,mu_p)
|
||||
j_m = j_simple(x,mu_m)
|
||||
numeric_d_mu = 0.5d0 * (j_p - j_m)/dmu
|
||||
print*,mu
|
||||
print*,numeric_d_mu,d_dx_mu,dabs(d_dx_mu-numeric_d_mu)
|
||||
accu += dabs(d_dx_mu-numeric_d_mu)
|
||||
mu += dmu
|
||||
enddo
|
||||
accu *= dmu
|
||||
print*,'accu = ',accu
|
||||
end
|
||||
|
98
plugins/local/non_h_ints_mu/deb_j_bump.irp.f
Normal file
98
plugins/local/non_h_ints_mu/deb_j_bump.irp.f
Normal file
@ -0,0 +1,98 @@
|
||||
program test_j_mu_of_r
|
||||
implicit none
|
||||
! call routine_test_mu_of_r
|
||||
call routine_test_mu_of_r_tot
|
||||
end
|
||||
|
||||
subroutine routine_test_mu_of_r_tot
|
||||
implicit none
|
||||
integer :: ipoint,k
|
||||
double precision :: r2(3), weight, dr, r1(3), r1bis(3)
|
||||
double precision :: accu_grad(3)
|
||||
double precision :: jast,grad_jast_mu_r1(3),j_bump
|
||||
double precision :: jast_p,jast_m,num_grad_jast_mu_r1(3)
|
||||
|
||||
dr = 0.00001d0
|
||||
r2 = 0.d0
|
||||
r2(1) = 0.5d0
|
||||
r2(2) = -0.1d0
|
||||
r2(3) = 1.0d0
|
||||
accu_grad = 0.d0
|
||||
do ipoint = 1, n_points_final_grid
|
||||
r1(1:3) = final_grid_points(1:3,ipoint)
|
||||
weight = final_weight_at_r_vector(ipoint)
|
||||
! call grad_j_sum_mu_of_r(r1,r2,jast,grad_jast_mu_r1)
|
||||
call get_grad_j_bump_mu_of_r(r1,r2,grad_jast_mu_r1)
|
||||
double precision :: norm,error
|
||||
norm = 0.D0
|
||||
do k = 1, 3
|
||||
r1bis= r1
|
||||
r1bis(k) += dr
|
||||
jast_p = j_bump(r1bis,r2,a_boys)
|
||||
|
||||
r1bis= r1
|
||||
r1bis(k) -= dr
|
||||
jast_m = j_bump(r1bis,r2,a_boys)
|
||||
|
||||
num_grad_jast_mu_r1(k) = (jast_p - jast_m)/(2.d0* dr)
|
||||
norm += num_grad_jast_mu_r1(k)*num_grad_jast_mu_r1(k)
|
||||
enddo
|
||||
error = 0.d0
|
||||
do k = 1, 3
|
||||
error += dabs(grad_jast_mu_r1(k) - num_grad_jast_mu_r1(k))
|
||||
enddo
|
||||
error *= 0.33333333d0
|
||||
norm = dsqrt(norm)
|
||||
if(norm.gt.1.d-05)then
|
||||
if(dabs(error/norm).gt.dr)then
|
||||
print*,'/////'
|
||||
print*,error,norm
|
||||
print*,grad_jast_mu_r1
|
||||
print*,num_grad_jast_mu_r1
|
||||
endif
|
||||
endif
|
||||
do k = 1,3
|
||||
accu_grad(k) += weight * dabs(grad_jast_mu_r1(k) - num_grad_jast_mu_r1(k))
|
||||
enddo
|
||||
enddo
|
||||
print*,'accu_grad = '
|
||||
print*, accu_grad
|
||||
|
||||
end
|
||||
|
||||
subroutine routine_test_mu_of_r
|
||||
implicit none
|
||||
integer :: ipoint,k
|
||||
double precision :: weight, dr, r1(3), r1bis(3),accu_grad(3),num_grad_mu_r1(3)
|
||||
double precision :: mu_r1,dm_r1, mu_der_r1(3), grad_dm_r1(3)
|
||||
double precision :: mu_der_rp(3), grad_dm_rp(3),mu_rp
|
||||
double precision :: mu_der_rm(3), grad_dm_rm(3),mu_rm
|
||||
|
||||
dr = 0.0001d0
|
||||
accu_grad = 0.d0
|
||||
do ipoint = 1, n_points_final_grid
|
||||
r1(1:3) = final_grid_points(1:3,ipoint)
|
||||
weight = final_weight_at_r_vector(ipoint)
|
||||
call grad_mu_of_r_mean_field(r1,mu_r1,dm_r1, mu_der_r1, grad_dm_r1)
|
||||
do k = 1, 3
|
||||
r1bis= r1
|
||||
r1bis(k) += dr
|
||||
call grad_mu_of_r_mean_field(r1bis,mu_rp, dm_r1, mu_der_rp, grad_dm_r1)
|
||||
|
||||
r1bis= r1
|
||||
r1bis(k) -= dr
|
||||
call grad_mu_of_r_mean_field(r1bis,mu_rm, dm_r1, mu_der_rm, grad_dm_r1)
|
||||
num_grad_mu_r1(k) = (mu_rp - mu_rm)/(2.d0* dr)
|
||||
! print*,jast_mu_r1_p,jast_mu_r1_m
|
||||
enddo
|
||||
print*,'/////'
|
||||
print*,mu_der_r1
|
||||
print*,num_grad_mu_r1
|
||||
do k = 1,3
|
||||
accu_grad(k) += weight * dabs(mu_der_r1(k) - num_grad_mu_r1(k))
|
||||
enddo
|
||||
enddo
|
||||
print*,'accu_grad = '
|
||||
print*, accu_grad
|
||||
|
||||
end
|
62
plugins/local/non_h_ints_mu/deb_j_gauss.irp.f
Normal file
62
plugins/local/non_h_ints_mu/deb_j_gauss.irp.f
Normal file
@ -0,0 +1,62 @@
|
||||
program test_j_mu_of_r
|
||||
implicit none
|
||||
! call routine_test_mu_of_r
|
||||
call routine_test_mu_of_r_tot
|
||||
end
|
||||
|
||||
subroutine routine_test_mu_of_r_tot
|
||||
implicit none
|
||||
integer :: ipoint,k
|
||||
double precision :: r2(3), weight, dr, r1(3), r1bis(3)
|
||||
double precision :: accu_grad(3)
|
||||
double precision :: jast,grad_jast(3),j_bump,j12_mu
|
||||
double precision :: jast_p,jast_m,num_grad_jast(3)
|
||||
|
||||
dr = 0.00001d0
|
||||
r2 = 0.d0
|
||||
r2(1) = 0.5d0
|
||||
r2(2) = -0.1d0
|
||||
r2(3) = 1.0d0
|
||||
accu_grad = 0.d0
|
||||
do ipoint = 1, n_points_final_grid
|
||||
r1(1:3) = final_grid_points(1:3,ipoint)
|
||||
weight = final_weight_at_r_vector(ipoint)
|
||||
call grad1_j12_mu(r1, r2, grad_jast)
|
||||
grad_jast = - grad_jast
|
||||
double precision :: norm,error
|
||||
norm = 0.D0
|
||||
do k = 1, 3
|
||||
r1bis= r1
|
||||
r1bis(k) += dr
|
||||
jast_p = j12_mu(r1bis, r2)
|
||||
|
||||
r1bis= r1
|
||||
r1bis(k) -= dr
|
||||
jast_m = j12_mu(r1bis, r2)
|
||||
|
||||
num_grad_jast(k) = (jast_p - jast_m)/(2.d0* dr)
|
||||
norm += num_grad_jast(k)*num_grad_jast(k)
|
||||
enddo
|
||||
error = 0.d0
|
||||
do k = 1, 3
|
||||
error += dabs(grad_jast(k) - num_grad_jast(k))
|
||||
enddo
|
||||
error *= 0.33333333d0
|
||||
norm = dsqrt(norm)
|
||||
if(norm.gt.1.d-05)then
|
||||
if(dabs(error/norm).gt.dr)then
|
||||
print*,'/////'
|
||||
print*,error,norm
|
||||
print*,grad_jast
|
||||
print*,num_grad_jast
|
||||
endif
|
||||
endif
|
||||
do k = 1,3
|
||||
accu_grad(k) += weight * dabs(grad_jast(k) - num_grad_jast(k))
|
||||
enddo
|
||||
enddo
|
||||
print*,'accu_grad = '
|
||||
print*, accu_grad
|
||||
|
||||
end
|
||||
|
97
plugins/local/non_h_ints_mu/deb_j_mu_of_r.irp.f
Normal file
97
plugins/local/non_h_ints_mu/deb_j_mu_of_r.irp.f
Normal file
@ -0,0 +1,97 @@
|
||||
program test_j_mu_of_r
|
||||
implicit none
|
||||
! call routine_test_mu_of_r
|
||||
call routine_test_mu_of_r_tot
|
||||
end
|
||||
|
||||
subroutine routine_test_mu_of_r_tot
|
||||
implicit none
|
||||
integer :: ipoint,k
|
||||
double precision :: r2(3), weight, dr, r1(3), r1bis(3)
|
||||
double precision :: accu_grad(3)
|
||||
double precision :: jast,grad_jast_mu_r1(3)
|
||||
double precision :: jast_p,jast_m,num_grad_jast_mu_r1(3)
|
||||
|
||||
dr = 0.000001d0
|
||||
r2 = 0.d0
|
||||
r2(1) = 0.5d0
|
||||
r2(2) = -0.1d0
|
||||
r2(3) = 1.0d0
|
||||
accu_grad = 0.d0
|
||||
do ipoint = 1, n_points_final_grid
|
||||
r1(1:3) = final_grid_points(1:3,ipoint)
|
||||
weight = final_weight_at_r_vector(ipoint)
|
||||
call grad_j_sum_mu_of_r(r1,r2,jast,grad_jast_mu_r1)
|
||||
double precision :: norm,error
|
||||
norm = 0.D0
|
||||
do k = 1, 3
|
||||
r1bis= r1
|
||||
r1bis(k) += dr
|
||||
call get_j_sum_mu_of_r(r1bis,r2,jast_p)
|
||||
|
||||
r1bis= r1
|
||||
r1bis(k) -= dr
|
||||
call get_j_sum_mu_of_r(r1bis,r2,jast_m)
|
||||
|
||||
num_grad_jast_mu_r1(k) = (jast_p - jast_m)/(2.d0* dr)
|
||||
norm += num_grad_jast_mu_r1(k)*num_grad_jast_mu_r1(k)
|
||||
enddo
|
||||
error = 0.d0
|
||||
do k = 1, 3
|
||||
error += dabs(grad_jast_mu_r1(k) - num_grad_jast_mu_r1(k))
|
||||
enddo
|
||||
error *= 0.33333333d0
|
||||
norm = dsqrt(norm)
|
||||
if(norm.gt.1.d-05)then
|
||||
if(dabs(error/norm).gt.10.d0*dr)then
|
||||
print*,'/////'
|
||||
print*,error,norm,dabs(error/norm)
|
||||
print*,grad_jast_mu_r1
|
||||
print*,num_grad_jast_mu_r1
|
||||
endif
|
||||
endif
|
||||
do k = 1,3
|
||||
accu_grad(k) += weight * dabs(grad_jast_mu_r1(k) - num_grad_jast_mu_r1(k))
|
||||
enddo
|
||||
enddo
|
||||
print*,'accu_grad = '
|
||||
print*, accu_grad
|
||||
|
||||
end
|
||||
|
||||
subroutine routine_test_mu_of_r
|
||||
implicit none
|
||||
integer :: ipoint,k
|
||||
double precision :: weight, dr, r1(3), r1bis(3),accu_grad(3),num_grad_mu_r1(3)
|
||||
double precision :: mu_r1,dm_r1, mu_der_r1(3), grad_dm_r1(3)
|
||||
double precision :: mu_der_rp(3), grad_dm_rp(3),mu_rp
|
||||
double precision :: mu_der_rm(3), grad_dm_rm(3),mu_rm
|
||||
|
||||
dr = 0.0001d0
|
||||
accu_grad = 0.d0
|
||||
do ipoint = 1, n_points_final_grid
|
||||
r1(1:3) = final_grid_points(1:3,ipoint)
|
||||
weight = final_weight_at_r_vector(ipoint)
|
||||
call grad_mu_of_r_mean_field(r1,mu_r1,dm_r1, mu_der_r1, grad_dm_r1)
|
||||
do k = 1, 3
|
||||
r1bis= r1
|
||||
r1bis(k) += dr
|
||||
call grad_mu_of_r_mean_field(r1bis,mu_rp, dm_r1, mu_der_rp, grad_dm_r1)
|
||||
|
||||
r1bis= r1
|
||||
r1bis(k) -= dr
|
||||
call grad_mu_of_r_mean_field(r1bis,mu_rm, dm_r1, mu_der_rm, grad_dm_r1)
|
||||
num_grad_mu_r1(k) = (mu_rp - mu_rm)/(2.d0* dr)
|
||||
! print*,jast_mu_r1_p,jast_mu_r1_m
|
||||
enddo
|
||||
print*,'/////'
|
||||
print*,mu_der_r1
|
||||
print*,num_grad_mu_r1
|
||||
do k = 1,3
|
||||
accu_grad(k) += weight * dabs(mu_der_r1(k) - num_grad_mu_r1(k))
|
||||
enddo
|
||||
enddo
|
||||
print*,'accu_grad = '
|
||||
print*, accu_grad
|
||||
|
||||
end
|
131
plugins/local/non_h_ints_mu/deb_j_psi.irp.f
Normal file
131
plugins/local/non_h_ints_mu/deb_j_psi.irp.f
Normal file
@ -0,0 +1,131 @@
|
||||
program test_j_mu_of_r
|
||||
implicit none
|
||||
call routine_deb_j_psi
|
||||
! call routine_deb_denom
|
||||
end
|
||||
|
||||
subroutine routine_deb_j_psi
|
||||
implicit none
|
||||
integer :: ipoint,k
|
||||
double precision :: r2(3), weight, dr, r1(3), r1bis(3)
|
||||
double precision :: accu_grad(3)
|
||||
double precision :: jast,grad_jast(3),j_bump,jastrow_psi,grad_jast_bis(3)
|
||||
double precision :: jast_p,jast_m,num_grad_jast(3)
|
||||
|
||||
dr = 0.00001d0
|
||||
r2 = 0.d0
|
||||
r2(1) = 0.5d0
|
||||
r2(2) = -0.1d0
|
||||
r2(3) = 1.0d0
|
||||
accu_grad = 0.d0
|
||||
do ipoint = 1, n_points_final_grid
|
||||
r1(1:3) = final_grid_points(1:3,ipoint)
|
||||
weight = final_weight_at_r_vector(ipoint)
|
||||
call get_grad_r1_jastrow_psi(r1,r2,grad_jast,jast)
|
||||
! grad_jast = - grad_jast
|
||||
double precision :: norm,error
|
||||
norm = 0.D0
|
||||
do k = 1, 3
|
||||
r1bis= r1
|
||||
r1bis(k) += dr
|
||||
call get_grad_r1_jastrow_psi(r1bis,r2,grad_jast_bis,jast_p)
|
||||
|
||||
r1bis= r1
|
||||
r1bis(k) -= dr
|
||||
call get_grad_r1_jastrow_psi(r1bis,r2,grad_jast_bis,jast_m)
|
||||
|
||||
num_grad_jast(k) = (jast_p - jast_m)/(2.d0* dr)
|
||||
norm += num_grad_jast(k)*num_grad_jast(k)
|
||||
enddo
|
||||
error = 0.d0
|
||||
do k = 1, 3
|
||||
error += dabs(grad_jast(k) - num_grad_jast(k))
|
||||
enddo
|
||||
error *= 0.33333333d0
|
||||
norm = dsqrt(norm)
|
||||
if(norm.gt.1.d-05)then
|
||||
if(dabs(error/norm).gt.dr)then
|
||||
print*,'/////'
|
||||
print*,error,norm
|
||||
print*,grad_jast
|
||||
print*,num_grad_jast
|
||||
endif
|
||||
endif
|
||||
do k = 1,3
|
||||
accu_grad(k) += weight * dabs(grad_jast(k) - num_grad_jast(k))
|
||||
enddo
|
||||
enddo
|
||||
print*,'accu_grad = '
|
||||
print*, accu_grad
|
||||
|
||||
end
|
||||
|
||||
|
||||
subroutine routine_deb_denom
|
||||
implicit none
|
||||
integer :: ipoint,k,i,j
|
||||
double precision :: r2(3), weight, dr, r1(3), r1bis(3)
|
||||
double precision :: accu_grad(3)
|
||||
double precision :: jast,grad_jast(3),j_bump,jastrow_psi,grad_jast_bis(3)
|
||||
double precision :: jast_p,jast_m,num_grad_jast(3)
|
||||
|
||||
dr = 0.00001d0
|
||||
r2 = 0.d0
|
||||
r2(1) = 0.5d0
|
||||
r2(2) = -0.1d0
|
||||
r2(3) = 1.0d0
|
||||
double precision, allocatable :: mos_array_r1(:), mos_array_r2(:)
|
||||
double precision, allocatable :: mos_grad_array_r1(:,:),mos_grad_array_r2(:,:)
|
||||
allocate(mos_array_r1(mo_num), mos_array_r2(mo_num))
|
||||
allocate(mos_grad_array_r1(3,mo_num), mos_grad_array_r2(3,mo_num))
|
||||
do i = 1, 1
|
||||
do j = 1, 1
|
||||
accu_grad = 0.d0
|
||||
call give_all_mos_and_grad_at_r(r2,mos_array_r2,mos_grad_array_r2)
|
||||
do ipoint = 1, n_points_final_grid
|
||||
r1(1:3) = final_grid_points(1:3,ipoint)
|
||||
weight = final_weight_at_r_vector(ipoint)
|
||||
call give_all_mos_and_grad_at_r(r1,mos_array_r1,mos_grad_array_r1)
|
||||
call denom_jpsi(i,j,a_boys, mos_array_r1,mos_grad_array_r1,mos_array_r2,jast, grad_jast)
|
||||
double precision :: norm,error
|
||||
norm = 0.D0
|
||||
do k = 1, 3
|
||||
r1bis= r1
|
||||
r1bis(k) += dr
|
||||
call give_all_mos_and_grad_at_r(r1bis,mos_array_r1,mos_grad_array_r1)
|
||||
call denom_jpsi(i,j,a_boys, mos_array_r1,mos_grad_array_r1,mos_array_r2,jast_p, grad_jast_bis)
|
||||
|
||||
r1bis= r1
|
||||
r1bis(k) -= dr
|
||||
call give_all_mos_and_grad_at_r(r1bis,mos_array_r1,mos_grad_array_r1)
|
||||
call denom_jpsi(i,j,a_boys, mos_array_r1,mos_grad_array_r1,mos_array_r2,jast_m, grad_jast_bis)
|
||||
|
||||
num_grad_jast(k) = (jast_p - jast_m)/(2.d0* dr)
|
||||
norm += num_grad_jast(k)*num_grad_jast(k)
|
||||
enddo
|
||||
error = 0.d0
|
||||
do k = 1, 3
|
||||
error += dabs(grad_jast(k) - num_grad_jast(k))
|
||||
enddo
|
||||
error *= 0.33333333d0
|
||||
norm = dsqrt(norm)
|
||||
if(norm.gt.1.d-05)then
|
||||
if(dabs(error/norm).gt.dr)then
|
||||
print*,'/////'
|
||||
print*,error,norm
|
||||
print*,grad_jast
|
||||
print*,num_grad_jast
|
||||
endif
|
||||
endif
|
||||
do k = 1,3
|
||||
accu_grad(k) += weight * dabs(grad_jast(k) - num_grad_jast(k))
|
||||
enddo
|
||||
enddo
|
||||
print*,'i,j = ',i,j
|
||||
print*,'accu_grad = '
|
||||
print*, accu_grad
|
||||
enddo
|
||||
enddo
|
||||
|
||||
end
|
||||
|
90
plugins/local/non_h_ints_mu/j_bump.irp.f
Normal file
90
plugins/local/non_h_ints_mu/j_bump.irp.f
Normal file
@ -0,0 +1,90 @@
|
||||
double precision function wigner_radius(rho)
|
||||
implicit none
|
||||
include 'constants.include.F'
|
||||
double precision, intent(in) :: rho
|
||||
wigner_radius = 4.d0 * pi * rho * 0.333333333333d0
|
||||
wigner_radius = wigner_radius**(-0.3333333d0)
|
||||
end
|
||||
|
||||
double precision function j_bump(r1,r2,a)
|
||||
implicit none
|
||||
include 'constants.include.F'
|
||||
double precision, intent(in) :: r1(3),r2(3),a
|
||||
double precision :: inv_a,factor,x_scaled,scalar
|
||||
double precision :: r12
|
||||
r12 = (r1(1) - r2(1))*(r1(1) - r2(1))
|
||||
r12 += (r1(2) - r2(2))*(r1(2) - r2(2))
|
||||
r12 += (r1(3) - r2(3))*(r1(3) - r2(3))
|
||||
r12 = dsqrt(r12)
|
||||
inv_a = 1.d0/a
|
||||
x_scaled = r12*inv_a*inv_sq_pi
|
||||
x_scaled*= x_scaled
|
||||
j_bump = 0.5d0 * (r12-a) * dexp(-x_scaled)
|
||||
end
|
||||
|
||||
subroutine get_grad_j_bump(x,a,grad)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! gradient of the Jastrow with a bump
|
||||
!
|
||||
! j(x,a) = 1/2 * (x-a)* exp[-(x/(a*sqrt(pi)))^2]
|
||||
!
|
||||
! d/dx j(x,a) = 1/(2 pi a^2) * exp[-(x/(a*sqrt(pi)))^2] * (pi a^2 + 2 a x - 2x^2)
|
||||
END_DOC
|
||||
include 'constants.include.F'
|
||||
double precision, intent(in) :: x,a
|
||||
double precision, intent(out) :: grad
|
||||
double precision :: inv_a,factor,x_scaled,scalar
|
||||
inv_a = 1.d0/a
|
||||
factor = 0.5d0*inv_pi*inv_a*inv_a
|
||||
x_scaled = x*inv_a*inv_sq_pi
|
||||
x_scaled*= x_scaled
|
||||
grad = factor * dexp(-x_scaled) * (pi*a*a + 2.d0 * a*x - 2.d0*x*x)
|
||||
end
|
||||
|
||||
subroutine get_d_da_j_bump(x,a,d_da)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Derivative with respect by to the parameter "a" of the Jastrow with a bump
|
||||
!
|
||||
! j(x,a) = 1/2 * (x-a)* exp[-(x/(a*sqrt(pi)))^2]
|
||||
!
|
||||
! d/da j(x,a) = - 1/(pi*a^3) * exp[-(x/(a*sqrt(pi)))^2] * (-2 x^3 + 2 a x^2 + pi a^x3)
|
||||
END_DOC
|
||||
include 'constants.include.F'
|
||||
double precision, intent(in) :: x,a
|
||||
double precision, intent(out) :: d_da
|
||||
double precision :: factor, inv_a,x_scaled,scalar
|
||||
inv_a = 1.d0/a
|
||||
factor = inv_a*inv_a*inv_a*inv_pi
|
||||
x_scaled = x*inv_a*inv_sq_pi
|
||||
x_scaled*= x_scaled
|
||||
d_da = factor * dexp(-x_scaled) * (-2.d0 * x*x*x + 2.d0*x*x*a+pi*a*a*a)
|
||||
end
|
||||
|
||||
subroutine get_grad_j_bump_mu_of_r(r1,r2,grad_j_bump)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! d/dx1 j(x,a(r1,r2)) where j(x,a) is the Jastrow with a bump
|
||||
!
|
||||
! j(x,a) = 1/2 * (x-a)* exp[-(x/(a*sqrt(pi)))^2]
|
||||
!
|
||||
! a(r1,r2) = [rho(r1) a(r1) + rho(r2) a(r2)]/[rho(r1) + rho(r2)]
|
||||
!
|
||||
! d/dx1 j(x,a) = d/dx1 j(x,a(r1,r2))
|
||||
END_DOC
|
||||
double precision, intent(in) :: r1(3),r2(3)
|
||||
double precision, intent(out):: grad_j_bump(3)
|
||||
double precision :: r12,r12_vec(3),grad_scal,inv_r12
|
||||
r12_vec = r1 - r2
|
||||
r12 = (r1(1) - r2(1))*(r1(1) - r2(1))
|
||||
r12 += (r1(2) - r2(2))*(r1(2) - r2(2))
|
||||
r12 += (r1(3) - r2(3))*(r1(3) - r2(3))
|
||||
r12 = dsqrt(r12)
|
||||
call get_grad_j_bump(r12,a_boys,grad_scal)
|
||||
if(r12.lt.1.d-10)then
|
||||
grad_j_bump = 0.d0
|
||||
else
|
||||
grad_j_bump = grad_scal * r12_vec/r12
|
||||
endif
|
||||
end
|
@ -31,7 +31,7 @@
|
||||
grad1_u12_squared_num = 0.d0
|
||||
|
||||
if( ((j2e_type .eq. "Mu") .and. (env_type .eq. "None")) .or. &
|
||||
(j2e_type .eq. "Mur") ) then
|
||||
(j2e_type .eq. "Mur").or.(j2e_type .eq. "Mugauss") .or. (j2e_type .eq. "Murgauss")) then
|
||||
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
|
306
plugins/local/non_h_ints_mu/jast_deriv_mu_of_r.irp.f
Normal file
306
plugins/local/non_h_ints_mu/jast_deriv_mu_of_r.irp.f
Normal file
@ -0,0 +1,306 @@
|
||||
subroutine get_j_sum_mu_of_r(r1,r2,jast)
|
||||
implicit none
|
||||
double precision, intent(in) :: r1(3),r2(3)
|
||||
double precision, intent(out):: jast
|
||||
double precision :: mu_r1, dm_r1, grad_mu_r1(3), grad_dm_r1(3), j_mu_r1
|
||||
double precision :: mu_r2, dm_r2, grad_mu_r2(3), grad_dm_r2(3), j_mu_r2
|
||||
double precision :: j12_mu_input,mu_tot,r12,j_simple
|
||||
jast = 0.d0
|
||||
if(murho_type==0)then
|
||||
! J(r1,r2) = [rho(r1) * j(mu(r1),r12) + rho(r2) * j(mu(r2),r12)] / [rho(r1) + rho(r2)]
|
||||
call grad_mu_of_r_mean_field(r1,mu_r1, dm_r1, grad_mu_r1, grad_dm_r1)
|
||||
call grad_mu_of_r_mean_field(r2,mu_r2, dm_r2, grad_mu_r2, grad_dm_r2)
|
||||
j_mu_r1 = j12_mu_input(r1, r2, mu_r1)
|
||||
j_mu_r2 = j12_mu_input(r1, r2, mu_r2)
|
||||
if(dm_r1 + dm_r2.lt.1.d-7)return
|
||||
jast = (dm_r1 * j_mu_r1 + dm_r2 * j_mu_r2) / (dm_r1 + dm_r2)
|
||||
else if(murho_type==1)then
|
||||
! J(r1,r2) = j(0.5 * (mu(r1)+mu(r2)),r12), MU(r1,r2) = 0.5 *(mu(r1)+mu(r2))
|
||||
call grad_mu_of_r_mean_field(r1,mu_r1, dm_r1, grad_mu_r1, grad_dm_r1)
|
||||
call grad_mu_of_r_mean_field(r2,mu_r2, dm_r2, grad_mu_r2, grad_dm_r2)
|
||||
mu_tot = 0.5d0 * (mu_r1 + mu_r2)
|
||||
jast = j12_mu_input(r1, r2, mu_tot)
|
||||
else if(murho_type==2)then
|
||||
! MU(r1,r2) = (rho(1) * mu(r1)+ rho(2) * mu(r2))/(rho(1)+rho(2))
|
||||
! J(r1,r2) = j(MU(r1,r2),r12)
|
||||
call grad_mu_of_r_mean_field(r1,mu_r1, dm_r1, grad_mu_r1, grad_dm_r1)
|
||||
call grad_mu_of_r_mean_field(r2,mu_r2, dm_r2, grad_mu_r2, grad_dm_r2)
|
||||
double precision :: mu_tmp, dm_tot, dm_tot_inv
|
||||
dm_tot = dm_r1**a_boys + dm_r2**a_boys ! rho(1)**alpha+rho(2)**alpha
|
||||
if(dm_tot.lt.1.d-12)then
|
||||
dm_tot_inv = 1.d+12
|
||||
else
|
||||
dm_tot_inv = 1.d0/dm_tot
|
||||
endif
|
||||
mu_tmp = dm_r1**a_boys * mu_r1 + dm_r2**a_boys * mu_r2 !rho(1)**alpha * mu(r1)+ rho(2)**alpha * mu(r2)
|
||||
mu_tot = nu_erf * mu_tmp*dm_tot_inv !
|
||||
r12 = (r1(1) - r2(1)) * (r1(1) - r2(1))
|
||||
r12 += (r1(2) - r2(2)) * (r1(2) - r2(2))
|
||||
r12 += (r1(3) - r2(3)) * (r1(3) - r2(3))
|
||||
r12 = dsqrt(r12)
|
||||
jast = j_simple(r12,mu_tot)
|
||||
endif
|
||||
|
||||
end
|
||||
|
||||
subroutine grad_j_sum_mu_of_r(r1,r2,jast,grad_jast)
|
||||
implicit none
|
||||
include 'constants.include.F'
|
||||
BEGIN_DOC
|
||||
END_DOC
|
||||
double precision, intent(in) :: r1(3),r2(3)
|
||||
double precision, intent(out):: jast, grad_jast(3)
|
||||
jast = 0.d0
|
||||
grad_jast = 0.d0
|
||||
double precision :: num, denom, grad_num(3), grad_denom(3)
|
||||
double precision :: j_r1, grad_j_r1(3),j_r2, grad_j_r2(3)
|
||||
double precision :: dm_r1, grad_dm_r1(3), grad_jmu_r2(3)
|
||||
double precision :: dm_r2, grad_dm_r2(3),mu_r2, grad_mu_r2(3),mu_r1
|
||||
double precision :: j12_mu_input,r12,grad_mu_r1(3),grad_jmu_r1(3)
|
||||
double precision :: mu_tot,dx,dy,dz,r12_vec(3),d_dmu_j,d_dr12_j
|
||||
|
||||
dx = r1(1) - r2(1)
|
||||
dy = r1(2) - r2(2)
|
||||
dz = r1(3) - r2(3)
|
||||
|
||||
r12 = dsqrt(dx * dx + dy * dy + dz * dz)
|
||||
if(r12.gt.1.d-10)then
|
||||
r12_vec(1) = dx
|
||||
r12_vec(2) = dy
|
||||
r12_vec(3) = dz
|
||||
r12_vec *= 1.d0/r12
|
||||
! r12_vec = grad_r1 (r12)
|
||||
else
|
||||
r12 = 1.d-10
|
||||
r12_vec = 0.d0
|
||||
endif
|
||||
|
||||
if(murho_type==0)then
|
||||
! J(r1,r2) = [rho(r1) * j(mu(r1),r12) + rho(r2) * j(mu(r2),r12)] / [rho(r1) + rho(r2)]
|
||||
!
|
||||
! = num(r1,r2) / denom(r1,r2)
|
||||
!
|
||||
! d/dx1 J(r1,r2) = [denom(r1,r2) X d/dx1 num(r1,r2) - num(r1,r2) X d/dx1 denom(r1,r2) ] / denom(r1,r2)^2
|
||||
!
|
||||
! d/dx1 num(r1,r2) = j(mu(r1),r12)*d/dx1 rho(r1) + rho(r1) * d/dx1 j(mu(r1),r12)
|
||||
! + rho(r2) d/dx1 j(mu(r2),r12)
|
||||
! d/dx1 denom(r1,r2) = d/dx1 rho(r1)
|
||||
call grad_j_mu_of_r_1(r1,r2,j_r1, grad_j_r1,dm_r1, grad_dm_r1)
|
||||
call grad_mu_of_r_mean_field(r2,mu_r2, dm_r2, grad_mu_r2, grad_dm_r2)
|
||||
j_r2 = j12_mu_input(r1, r2, mu_r2) ! j(mu(r2),r1,r2)
|
||||
num = dm_r1 * j_r1 + dm_r2 * j_r2
|
||||
denom = dm_r1 + dm_r2
|
||||
if(denom.lt.1.d-7)return
|
||||
jast = num / denom
|
||||
|
||||
grad_denom = grad_dm_r1
|
||||
call grad_j12_mu_input(r1, r2, mu_r2, grad_jmu_r2,r12)
|
||||
grad_num = j_r1 * grad_dm_r1 + dm_r1 * grad_j_r1 + dm_r2 * grad_jmu_r2
|
||||
grad_jast = (grad_num * denom - num * grad_denom)/(denom*denom)
|
||||
else if(murho_type==1)then
|
||||
! J(r1,r2) = j(0.5 * (mu(r1)+mu(r2)),r12), MU(r1,r2) = 0.5 *(mu(r1)+mu(r2))
|
||||
!
|
||||
! d/dx1 J(r1,r2) = d/dx1 j(MU(r1,r2),r12)|MU=cst
|
||||
! + d/dMU [j(MU,r12)]
|
||||
! x d/d(mu(r1)) MU(r1,r2)
|
||||
! x d/dx1 mu(r1)
|
||||
! = 0.5 * (1 - erf(MU(r1,r2) *r12))/r12 * (x1 - x2) == grad_jmu_r1
|
||||
! + e^{-(r12*MU(r1,r2))^2}/(2 sqrt(pi) * MU(r1,r2)^2)
|
||||
! x 0.5
|
||||
! x d/dx1 mu(r1)
|
||||
call grad_mu_of_r_mean_field(r1,mu_r1, dm_r1, grad_mu_r1, grad_dm_r1)
|
||||
call grad_mu_of_r_mean_field(r2,mu_r2, dm_r2, grad_mu_r2, grad_dm_r2)
|
||||
mu_tot = 0.5d0 * (mu_r1 + mu_r2)
|
||||
call grad_j12_mu_input(r1, r2, mu_tot, grad_jmu_r1,r12)
|
||||
grad_jast = grad_jmu_r1
|
||||
grad_jast+= dexp(-r12*mu_tot*r12*mu_tot) * inv_sq_pi_2 /(mu_tot* mu_tot) * 0.5d0 * grad_mu_r1
|
||||
else if(murho_type==2)then
|
||||
! MU(r1,r2) = beta * (rho(1)**alpha * mu(r1)+ rho(2)**alpha * mu(r2))/(rho(1)**alpha+rho(2)**alpha)
|
||||
! J(r1,r2) = j(MU(r1,r2),r12)
|
||||
!
|
||||
! d/dx1 J(r1,r2) = d/dx1 j(MU(r1,r2),r12)|MU=cst
|
||||
! + d/dMU [j(MU,r12)]
|
||||
! x d/d(mu(r1)) MU(r1,r2)
|
||||
! x d/dx1 mu(r1)
|
||||
! = 0.5 * (1 - erf(MU(r1,r2) *r12))/r12 * (x1 - x2) == grad_jmu_r1
|
||||
! + 0.5 e^{-(r12*MU(r1,r2))^2}/(2 sqrt(pi) * MU(r1,r2)^2)
|
||||
! x d/dx1 MU(r1,r2)
|
||||
! with d/dx1 MU(r1,r2) = beta * {[mu(1) d/dx1 [rho(1)**alpha] + rho(1)**alpha * d/dx1 mu(1)](rho(1)**alpha+rho(2)**alpha)
|
||||
! - MU(1,2) d/dx1 [rho(1)]**alpha}/(rho(1)**alpha+rho(2)**alpha)^2
|
||||
! d/dx1 [rho(1)]**alpha = alpha [rho(1)]**(alpha-1) d/dx1 rho(1)
|
||||
!
|
||||
call grad_mu_of_r_mean_field(r1,mu_r1, dm_r1, grad_mu_r1, grad_dm_r1)
|
||||
call grad_mu_of_r_mean_field(r2,mu_r2, dm_r2, grad_mu_r2, grad_dm_r2)
|
||||
double precision :: dm_tot,dm_tot_inv,grad_mu_tot(3),mu_tmp,grad_dm_r1_alpha(3),d_dx_j
|
||||
dm_tot = dm_r1**a_boys + dm_r2**a_boys ! rho(1)**alpha+rho(2)**alpha
|
||||
grad_dm_r1_alpha = a_boys * dm_r1**(a_boys-1) * grad_dm_r1
|
||||
if(dm_tot.lt.1.d-12)then
|
||||
dm_tot_inv = 1.d+12
|
||||
else
|
||||
dm_tot_inv = 1.d0/dm_tot
|
||||
endif
|
||||
mu_tmp = dm_r1**a_boys * mu_r1 + dm_r2**a_boys * mu_r2 !rho(1)**alpha * mu(r1)+ rho(2)**alpha * mu(r2)
|
||||
mu_tot = nu_erf * mu_tmp*dm_tot_inv !
|
||||
grad_mu_tot = ( mu_r1 * grad_dm_r1_alpha + dm_r1**a_boys * grad_mu_r1 ) * dm_tot &
|
||||
- mu_tmp * grad_dm_r1_alpha
|
||||
grad_mu_tot *= dm_tot_inv * dm_tot_inv * nu_erf
|
||||
call get_deriv_r12_j12(r12,mu_tot,d_dr12_j) ! d/dr12 j(MU(r1,r2,r12)
|
||||
! d/dx1 j(MU(r1,r2),r12) | MU(r1,r2) = cst
|
||||
! d/dr12 j(MU(r1,r2,r12) x d/dx1 r12
|
||||
grad_jmu_r1 = d_dr12_j * r12_vec
|
||||
! call grad_j12_mu_input(r1, r2, mu_tot, grad_jmu_r1,r12)
|
||||
grad_jast = grad_jmu_r1
|
||||
! d/dMU j(MU(r1,r2),r12)
|
||||
call get_deriv_mu_j12(r12,mu_tot,d_dmu_j)
|
||||
grad_jast+= d_dmu_j * grad_mu_tot
|
||||
else if(murho_type==-1)then
|
||||
! J(r1,r2) = 0.5 * [j(mu(r1),r12) + j(mu(r2),r12)]
|
||||
!
|
||||
! d/dx1 J(r1,r2) = 0.5 * (d/dx1 j(mu(r1),r12) + d/dx1 j(mu(r2),r12))
|
||||
call grad_j_mu_of_r_1(r1,r2,j_r1, grad_j_r1,dm_r1, grad_dm_r1)
|
||||
call grad_mu_of_r_mean_field(r2,mu_r2, dm_r2, grad_mu_r2, grad_dm_r2)
|
||||
j_r2 = j12_mu_input(r1, r2, mu_r2) ! j(mu(r2),r1,r2)
|
||||
call grad_j12_mu_input(r1, r2, mu_r2, grad_jmu_r2,r12)
|
||||
jast = 0.5d0 * (j_r1 + j_r2)
|
||||
grad_jast = 0.5d0 * (grad_j_r1 + grad_jmu_r2)
|
||||
|
||||
endif
|
||||
|
||||
end
|
||||
|
||||
subroutine grad_j_mu_of_r_1(r1,r2,jast, grad_jast, dm_r1, grad_dm_r1)
|
||||
implicit none
|
||||
include 'constants.include.F'
|
||||
BEGIN_DOC
|
||||
! grad_r1 of j(mu(r1),r12)
|
||||
!
|
||||
!
|
||||
! d/dx1 j(mu(r1),r12) = exp(-(mu(r1)*r12)**2) /(2 *sqrt(pi) * mu(r1)**2 ) d/dx1 mu(r1)
|
||||
! + d/dx1 j(mu(r1),r12)
|
||||
!
|
||||
! with
|
||||
!
|
||||
! j(mu,r12) = 1/2 r12 (1 - erf(mu r12)) - 1/2 (sqrt(pi) * mu) e^{-(mu*r12)^2}
|
||||
!
|
||||
! and d/dx1 j(mu,r12) = 0.5 * (1 - erf(mu *r12))/r12 * (x1 - x2)
|
||||
!
|
||||
! d/d mu j(mu,r12) = e^{-(r12*mu)^2}/(2 sqrt(pi) * mu^2)
|
||||
!
|
||||
! here mu(r1) is obtained by MU MEAN FIELD
|
||||
END_DOC
|
||||
double precision, intent(in) :: r1(3),r2(3)
|
||||
double precision, intent(out):: jast, grad_jast(3),dm_r1, grad_dm_r1(3)
|
||||
double precision :: dx, dy, dz, r12, mu_der(3)
|
||||
double precision :: mu_tmp, tmp, grad(3), mu_val
|
||||
jast = 0.d0
|
||||
grad = 0.d0
|
||||
|
||||
dx = r1(1) - r2(1)
|
||||
dy = r1(2) - r2(2)
|
||||
dz = r1(3) - r2(3)
|
||||
r12 = dsqrt(dx * dx + dy * dy + dz * dz)
|
||||
! get mu(r1) == mu_val and its gradient d/dx1 mu(r1) == mu_der
|
||||
call grad_mu_of_r_mean_field(r1,mu_val, dm_r1, mu_der, grad_dm_r1)
|
||||
mu_tmp = mu_val * r12
|
||||
! evalulation of the jastrow j(mu(r1),r12)
|
||||
jast = 0.5d0 * r12 * (1.d0 - derf(mu_tmp)) - inv_sq_pi_2 * dexp(-mu_tmp*mu_tmp) / mu_val
|
||||
|
||||
! tmp = exp(-(mu(r1)*r12)**2) /(2 *sqrt(pi) * mu(r1)**2 )
|
||||
tmp = inv_sq_pi_2 * dexp(-mu_tmp*mu_tmp) / (mu_val * mu_val)
|
||||
! grad =
|
||||
grad(1) = tmp * mu_der(1)
|
||||
grad(2) = tmp * mu_der(2)
|
||||
grad(3) = tmp * mu_der(3)
|
||||
|
||||
if(r12 .lt. 1d-10) return
|
||||
tmp = 0.5d0 * (1.d0 - derf(mu_tmp)) / r12 ! d/dx1 j(mu(r1),r12)
|
||||
grad(1) = grad(1) + tmp * dx
|
||||
grad(2) = grad(2) + tmp * dy
|
||||
grad(3) = grad(3) + tmp * dz
|
||||
|
||||
grad_jast = grad
|
||||
end
|
||||
|
||||
! ---
|
||||
|
||||
double precision function j12_mu_input(r1, r2, mu)
|
||||
|
||||
BEGIN_DOC
|
||||
! j(mu,r12) = 1/2 r12 (1 - erf(mu r12)) - 1/2 (sqrt(pi) * mu) e^{-(mu*r12)^2}
|
||||
END_DOC
|
||||
include 'constants.include.F'
|
||||
|
||||
implicit none
|
||||
double precision, intent(in) :: r1(3), r2(3), mu
|
||||
double precision :: mu_tmp, r12
|
||||
|
||||
r12 = dsqrt( (r1(1) - r2(1)) * (r1(1) - r2(1)) &
|
||||
+ (r1(2) - r2(2)) * (r1(2) - r2(2)) &
|
||||
+ (r1(3) - r2(3)) * (r1(3) - r2(3)) )
|
||||
mu_tmp = mu * r12
|
||||
|
||||
j12_mu_input = 0.5d0 * r12 * (1.d0 - derf(mu_tmp)) - inv_sq_pi_2 * dexp(-mu_tmp*mu_tmp) / mu
|
||||
|
||||
end
|
||||
|
||||
subroutine grad_j12_mu_input(r1, r2, mu, grad_jmu,r12)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! grad_jmu = d/dx1 j(mu,r12) assuming mu=cst(r1)
|
||||
!
|
||||
! = 0.5/r_12 * (x_1 - x_2) * [1 - erf(mu*r12)]
|
||||
END_DOC
|
||||
double precision, intent(in) :: r1(3), r2(3), mu
|
||||
double precision, intent(out):: grad_jmu(3),r12
|
||||
double precision :: mu_tmp, dx, dy, dz, grad(3), tmp
|
||||
grad_jmu = 0.d0
|
||||
dx = r1(1) - r2(1)
|
||||
dy = r1(2) - r2(2)
|
||||
dz = r1(3) - r2(3)
|
||||
r12 = dsqrt(dx * dx + dy * dy + dz * dz)
|
||||
if(r12 .lt. 1d-10) return
|
||||
mu_tmp = mu * r12
|
||||
tmp = 0.5d0 * (1.d0 - derf(mu_tmp)) / r12 ! d/dx1 j(mu(r1),r12)
|
||||
grad(1) = tmp * dx
|
||||
grad(2) = tmp * dy
|
||||
grad(3) = tmp * dz
|
||||
|
||||
grad_jmu = grad
|
||||
end
|
||||
|
||||
subroutine j12_and_grad_j12_mu_input(r1, r2, mu, jmu, grad_jmu)
|
||||
implicit none
|
||||
include 'constants.include.F'
|
||||
BEGIN_DOC
|
||||
! jmu = j(mu,r12)
|
||||
! grad_jmu = d/dx1 j(mu,r12) assuming mu=cst(r1)
|
||||
!
|
||||
! = 0.5/r_12 * (x_1 - x_2) * [1 - erf(mu*r12)]
|
||||
END_DOC
|
||||
double precision, intent(in) :: r1(3), r2(3), mu
|
||||
double precision, intent(out):: grad_jmu(3), jmu
|
||||
double precision :: mu_tmp, r12, dx, dy, dz, grad(3), tmp
|
||||
double precision :: erfc_mur12,inv_mu
|
||||
inv_mu = 1.d0/mu
|
||||
|
||||
grad_jmu = 0.d0 ! initialization when r12 --> 0
|
||||
jmu = - inv_sq_pi_2 * inv_mu ! initialization when r12 --> 0
|
||||
|
||||
dx = r1(1) - r2(1)
|
||||
dy = r1(2) - r2(2)
|
||||
dz = r1(3) - r2(3)
|
||||
r12 = dsqrt(dx * dx + dy * dy + dz * dz)
|
||||
if(r12 .lt. 1d-10) return
|
||||
erfc_mur12 = (1.d0 - derf(mu_tmp))
|
||||
mu_tmp = mu * r12
|
||||
tmp = 0.5d0 * erfc_mur12 / r12 ! d/dx1 j(mu(r1),r12)
|
||||
grad(1) = tmp * dx
|
||||
grad(2) = tmp * dy
|
||||
grad(3) = tmp * dz
|
||||
|
||||
grad_jmu = grad
|
||||
|
||||
jmu= 0.5d0 * r12 * erfc_mur12 - inv_sq_pi_2 * dexp(-mu_tmp*mu_tmp) * inv_mu
|
||||
|
||||
|
||||
end
|
@ -1,8 +1,73 @@
|
||||
subroutine get_deriv_r12_j12(x,mu,d_dx_j)
|
||||
implicit none
|
||||
include 'constants.include.F'
|
||||
BEGIN_DOC
|
||||
! d/dr12 j(mu,r12)
|
||||
END_DOC
|
||||
double precision, intent(in) :: x,mu
|
||||
double precision, intent(out) :: d_dx_j
|
||||
|
||||
d_dx_j = 0.d0
|
||||
if(x .lt. 1d-10) return
|
||||
if(j2e_type .eq. "Mu" .or. j2e_type .eq. "Mur") then
|
||||
d_dx_j = 0.5d0 * (1.d0 - derf(mu * x))
|
||||
else if(j2e_type .eq. "Mugauss" .or. j2e_type .eq. "Murgauss" ) then
|
||||
double precision :: x_tmp
|
||||
x_tmp = mu * x
|
||||
! gradient of j(mu,x)
|
||||
d_dx_j = 0.5d0 * (1.d0 - derf(x_tmp))
|
||||
|
||||
! gradient of gaussian additional term
|
||||
x_tmp *= alpha_mu_gauss
|
||||
x_tmp *= x_tmp
|
||||
d_dx_j += -0.5d0 * mu * c_mu_gauss * x * dexp(-x_tmp)
|
||||
else
|
||||
print *, ' Error in get_deriv_r12_j12: Unknown j2e_type = ', j2e_type
|
||||
stop
|
||||
endif
|
||||
end
|
||||
|
||||
|
||||
subroutine get_deriv_mu_j12(x,mu,d_d_mu)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! d/dmu j(mu,r12)
|
||||
END_DOC
|
||||
include 'constants.include.F'
|
||||
double precision, intent(in) :: x,mu
|
||||
double precision, intent(out) :: d_d_mu
|
||||
double precision :: x_tmp,inv_mu_2,inv_alpha_2
|
||||
|
||||
d_d_mu = 0.d0
|
||||
if(x .lt. 1d-10) return
|
||||
x_tmp = x*mu
|
||||
if(mu.lt.1.d-10) return
|
||||
inv_mu_2 = mu*mu
|
||||
inv_mu_2 = 1.d0/inv_mu_2
|
||||
if(j2e_type .eq. "Mu" .or. j2e_type .eq. "Mur") then
|
||||
! e^{-(r12*mu)^2}/(2 sqrt(pi) * mu^2)
|
||||
d_d_mu = dexp(-x_tmp*x_tmp) * inv_sq_pi_2 * inv_mu_2
|
||||
else if(j2e_type .eq. "Mugauss" .or. j2e_type .eq. "Murgauss" ) then
|
||||
d_d_mu = dexp(-x_tmp*x_tmp) * inv_sq_pi_2 * inv_mu_2
|
||||
inv_alpha_2 = 1.d0/alpha_mu_gauss
|
||||
inv_alpha_2 *= inv_alpha_2
|
||||
x_tmp *= alpha_mu_gauss
|
||||
x_tmp *= x_tmp
|
||||
d_d_mu += -0.25d0 * c_mu_gauss*inv_alpha_2*dexp(-x_tmp) * (1.d0 + 2.d0 * x_tmp) * inv_mu_2
|
||||
else
|
||||
print *, ' Error in get_deriv_r12_j12: Unknown j2e_type = ', j2e_type
|
||||
stop
|
||||
endif
|
||||
end
|
||||
|
||||
|
||||
! ---
|
||||
|
||||
double precision function j12_mu(r1, r2)
|
||||
|
||||
BEGIN_DOC
|
||||
! j(mu,r12) = 1/2 r12 (1 - erf(mu r12)) - 1/2 (sqrt(pi) * mu) e^{-(mu*r12)^2}
|
||||
END_DOC
|
||||
include 'constants.include.F'
|
||||
|
||||
implicit none
|
||||
@ -18,6 +83,18 @@ double precision function j12_mu(r1, r2)
|
||||
|
||||
j12_mu = 0.5d0 * r12 * (1.d0 - derf(mu_tmp)) - inv_sq_pi_2 * dexp(-mu_tmp*mu_tmp) / mu_erf
|
||||
|
||||
else if(j2e_type .eq. "Mugauss") then
|
||||
|
||||
r12 = dsqrt( (r1(1) - r2(1)) * (r1(1) - r2(1)) &
|
||||
+ (r1(2) - r2(2)) * (r1(2) - r2(2)) &
|
||||
+ (r1(3) - r2(3)) * (r1(3) - r2(3)) )
|
||||
double precision :: r12_tmp
|
||||
r12_tmp = mu_erf * r12
|
||||
|
||||
j12_mu = 0.5d0 * r12 * (1.d0 - derf(r12_tmp)) - inv_sq_pi_2 * dexp(-r12_tmp*r12_tmp) / mu_erf
|
||||
r12_tmp *= alpha_mu_gauss
|
||||
j12_mu += 0.25d0 * c_mu_gauss / (alpha_mu_gauss*alpha_mu_gauss*mu_erf) * dexp(-r12_tmp*r12_tmp)
|
||||
|
||||
else
|
||||
|
||||
print *, ' Error in j12_mu: Unknown j2e_type = ', j2e_type
|
||||
@ -57,7 +134,7 @@ subroutine grad1_j12_mu(r1, r2, grad)
|
||||
|
||||
grad = 0.d0
|
||||
|
||||
if(j2e_type .eq. "Mu") then
|
||||
if(j2e_type .eq. "Mu".or.j2e_type .eq. "Mugauss") then
|
||||
|
||||
dx = r1(1) - r2(1)
|
||||
dy = r1(2) - r2(2)
|
||||
@ -66,31 +143,42 @@ subroutine grad1_j12_mu(r1, r2, grad)
|
||||
r12 = dsqrt(dx * dx + dy * dy + dz * dz)
|
||||
if(r12 .lt. 1d-10) return
|
||||
|
||||
tmp = 0.5d0 * (1.d0 - derf(mu_erf * r12)) / r12
|
||||
call get_deriv_r12_j12(r12,mu_erf,tmp)
|
||||
! tmp = 0.5d0 * (1.d0 - derf(mu_erf * r12)) / r12
|
||||
|
||||
grad(1) = tmp * dx
|
||||
grad(2) = tmp * dy
|
||||
grad(3) = tmp * dz
|
||||
grad *= 1.d0/r12
|
||||
|
||||
elseif(j2e_type .eq. "Mur") then
|
||||
elseif(j2e_type .eq. "Mur" .or. j2e_type .eq. "Murgauss") then
|
||||
double precision :: jast
|
||||
call grad_j_sum_mu_of_r(r1,r2,jast,grad)
|
||||
|
||||
dx = r1(1) - r2(1)
|
||||
dy = r1(2) - r2(2)
|
||||
dz = r1(3) - r2(3)
|
||||
r12 = dsqrt(dx * dx + dy * dy + dz * dz)
|
||||
elseif(j2e_type .eq. "Bump") then
|
||||
double precision ::grad_jast(3)
|
||||
call get_grad_j_bump_mu_of_r(r1,r2,grad_jast)
|
||||
dx = r1(1) - r2(1)
|
||||
dy = r1(2) - r2(2)
|
||||
dz = r1(3) - r2(3)
|
||||
|
||||
call mu_r_val_and_grad(r1, r2, mu_val, mu_der)
|
||||
mu_tmp = mu_val * r12
|
||||
tmp = inv_sq_pi_2 * dexp(-mu_tmp*mu_tmp) / (mu_val * mu_val)
|
||||
grad(1) = tmp * mu_der(1)
|
||||
grad(2) = tmp * mu_der(2)
|
||||
grad(3) = tmp * mu_der(3)
|
||||
r12 = dsqrt(dx * dx + dy * dy + dz * dz)
|
||||
if(r12 .lt. 1d-10) then
|
||||
grad(1) = 0.d0
|
||||
grad(2) = 0.d0
|
||||
grad(3) = 0.d0
|
||||
return
|
||||
endif
|
||||
|
||||
tmp = 0.5d0 * (1.d0 - derf(mu_erf * r12)) / r12
|
||||
|
||||
grad(1) = 0.5d0 * tmp * dx
|
||||
grad(2) = 0.5d0 * tmp * dy
|
||||
grad(3) = 0.5d0 * tmp * dz
|
||||
grad(1) += 0.5d0 * grad_jast(1)
|
||||
grad(2) += 0.5d0 * grad_jast(2)
|
||||
grad(3) += 0.5d0 * grad_jast(3)
|
||||
|
||||
if(r12 .lt. 1d-10) return
|
||||
tmp = 0.5d0 * (1.d0 - derf(mu_tmp)) / r12
|
||||
grad(1) = grad(1) + tmp * dx
|
||||
grad(2) = grad(2) + tmp * dy
|
||||
grad(3) = grad(3) + tmp * dz
|
||||
|
||||
else
|
||||
|
||||
@ -369,7 +457,18 @@ end
|
||||
! ---
|
||||
|
||||
subroutine mu_r_val_and_grad(r1, r2, mu_val, mu_der)
|
||||
|
||||
BEGIN_DOC
|
||||
! various flavours of mu(r1,r2)
|
||||
! depends on essentially the density and other related quantities
|
||||
!
|
||||
! change the variable "murho_type" to change type
|
||||
!
|
||||
! murho_type == -1 :: mu(r1,r2) = (rho(r1) mu_mf(r1) + rho(r2) mu_mf(r2))/[rho(r1)+rho(r2)]
|
||||
!
|
||||
! == 0 :: mu(r1,r2) = (sqrt(rho(r1)) mu_mf(r1) + sqrt(rho(r2)) mu_mf(r2))/[sqrt(rho(r1))+sqrt(rho(r2))]
|
||||
!
|
||||
! == -2 :: mu(r1,r2) = 0.5(mu_mf(r1) + mu_mf(r2))
|
||||
END_DOC
|
||||
implicit none
|
||||
double precision, intent(in) :: r1(3), r2(3)
|
||||
double precision, intent(out) :: mu_val, mu_der(3)
|
||||
@ -379,11 +478,50 @@ subroutine mu_r_val_and_grad(r1, r2, mu_val, mu_der)
|
||||
double precision :: rho1, grad_rho1(3),rho2,rho_tot,inv_rho_tot
|
||||
double precision :: f_rho1, f_rho2, d_drho_f_rho1
|
||||
double precision :: d_dx1_f_rho1(3),d_dx_rho_f_rho(3),nume
|
||||
double precision :: mu_mf_r1, dm_r1, grad_mu_mf_r1(3), grad_dm_r1(3)
|
||||
double precision :: mu_mf_r2, dm_r2, grad_mu_mf_r2(3), grad_dm_r2(3)
|
||||
|
||||
double precision :: num, denom, grad_denom(3), grad_num(3)
|
||||
double precision :: dsqrt_dm_r1
|
||||
|
||||
PROVIDE murho_type
|
||||
PROVIDE mu_r_ct mu_erf
|
||||
|
||||
if(murho_type .eq. 1) then
|
||||
if(murho_type .eq. 0) then
|
||||
call grad_mu_of_r_mean_field(r1,mu_mf_r1, dm_r1, grad_mu_mf_r1, grad_dm_r1)
|
||||
call grad_mu_of_r_mean_field(r2,mu_mf_r2, dm_r2, grad_mu_mf_r2, grad_dm_r2)
|
||||
dsqrt_dm_r1 = dsqrt(dm_r1)
|
||||
denom = (dsqrt_dm_r1 + dsqrt(dm_r2) )
|
||||
if(denom.lt.1.d-7)then
|
||||
mu_val = 1.d+10
|
||||
mu_der = 0.d0
|
||||
return
|
||||
endif
|
||||
num = (dsqrt(dm_r1) * mu_mf_r1 + dsqrt(dm_r2) * mu_mf_r2)
|
||||
mu_val = num / denom
|
||||
grad_denom = grad_dm_r1/dsqrt_dm_r1
|
||||
grad_num = dsqrt(dm_r1) * grad_mu_mf_r1 + mu_mf_r1 * grad_dm_r1
|
||||
mu_der = (grad_num * denom - num * grad_denom)/(denom*denom)
|
||||
else if(murho_type .eq. -1) then
|
||||
call grad_mu_of_r_mean_field(r1,mu_mf_r1, dm_r1, grad_mu_mf_r1, grad_dm_r1)
|
||||
call grad_mu_of_r_mean_field(r2,mu_mf_r2, dm_r2, grad_mu_mf_r2, grad_dm_r2)
|
||||
denom = (dm_r1 + dm_r2 )
|
||||
if(denom.lt.1.d-7)then
|
||||
mu_val = 1.d+10
|
||||
mu_der = 0.d0
|
||||
return
|
||||
endif
|
||||
num = (dm_r1 * mu_mf_r1 + dm_r2 * mu_mf_r2)
|
||||
mu_val = num / denom
|
||||
grad_denom = grad_dm_r1
|
||||
grad_num = dm_r1 * grad_mu_mf_r1 + mu_mf_r1 * grad_dm_r1
|
||||
mu_der = (grad_num * denom - num * grad_denom)/(denom*denom)
|
||||
else if(murho_type .eq. -2) then
|
||||
call grad_mu_of_r_mean_field(r1,mu_mf_r1, dm_r1, grad_mu_mf_r1, grad_dm_r1)
|
||||
call grad_mu_of_r_mean_field(r2,mu_mf_r2, dm_r2, grad_mu_mf_r2, grad_dm_r2)
|
||||
mu_val = 0.5d0 * (mu_mf_r1 + mu_mf_r2)
|
||||
mu_der = 0.5d0 * grad_mu_mf_r1
|
||||
else if(murho_type .eq. 1) then
|
||||
|
||||
!
|
||||
! r = 0.5 (r1 + r2)
|
||||
|
@ -33,8 +33,12 @@ subroutine get_grad1_u12_withsq_r1_seq(ipoint, n_grid2, resx, resy, resz, res)
|
||||
r1(2) = final_grid_points(2,ipoint)
|
||||
r1(3) = final_grid_points(3,ipoint)
|
||||
|
||||
if( (j2e_type .eq. "Mu") .or. &
|
||||
(j2e_type .eq. "Mur") .or. &
|
||||
if( (j2e_type .eq. "Mu") .or. &
|
||||
(j2e_type .eq. "Mur") .or. &
|
||||
(j2e_type .eq. "Jpsi") .or. &
|
||||
(j2e_type .eq. "Mugauss") .or. &
|
||||
(j2e_type .eq. "Murgauss") .or. &
|
||||
(j2e_type .eq. "Bump") .or. &
|
||||
(j2e_type .eq. "Boys") ) then
|
||||
|
||||
if(env_type .eq. "None") then
|
||||
@ -206,7 +210,43 @@ subroutine grad1_j12_r1_seq(r1, n_grid2, gradx, grady, gradz)
|
||||
gradz(jpoint) = tmp * dz
|
||||
enddo
|
||||
|
||||
elseif(j2e_type .eq. "Mur") then
|
||||
else if(j2e_type .eq. "Mugauss") then
|
||||
|
||||
! d/dx1 j(mu,r12) = 0.5 * [(1 - erf(mu * r12)) / r12 - mu*c*r12*exp(-(mu*alpha*r12)^2] * (x1 - x2)
|
||||
|
||||
do jpoint = 1, n_points_extra_final_grid ! r2
|
||||
|
||||
r2(1) = final_grid_points_extra(1,jpoint)
|
||||
r2(2) = final_grid_points_extra(2,jpoint)
|
||||
r2(3) = final_grid_points_extra(3,jpoint)
|
||||
|
||||
dx = r1(1) - r2(1)
|
||||
dy = r1(2) - r2(2)
|
||||
dz = r1(3) - r2(3)
|
||||
|
||||
r12 = dsqrt(dx * dx + dy * dy + dz * dz)
|
||||
if(r12 .lt. 1d-10) then
|
||||
gradx(jpoint) = 0.d0
|
||||
grady(jpoint) = 0.d0
|
||||
gradz(jpoint) = 0.d0
|
||||
cycle
|
||||
endif
|
||||
|
||||
double precision :: r12_tmp
|
||||
r12_tmp = mu_erf * r12
|
||||
! gradient of j(mu,r12)
|
||||
tmp = 0.5d0 * (1.d0 - derf(r12_tmp)) / r12
|
||||
! gradient of gaussian additional term
|
||||
r12_tmp *= alpha_mu_gauss
|
||||
r12_tmp *= r12_tmp
|
||||
tmp += -0.5d0 * mu_erf * c_mu_gauss * r12 * dexp(-r12_tmp)/r12
|
||||
|
||||
gradx(jpoint) = tmp * dx
|
||||
grady(jpoint) = tmp * dy
|
||||
gradz(jpoint) = tmp * dz
|
||||
enddo
|
||||
|
||||
elseif(j2e_type .eq. "Mur".or.j2e_type .eq. "Murgauss") then
|
||||
|
||||
! d/dx1 j(mu(r1,r2),r12) = exp(-(mu(r1,r2)*r12)**2) /(2 *sqrt(pi) * mu(r1,r2)**2 ) d/dx1 mu(r1,r2)
|
||||
! + 0.5 * (1 - erf(mu(r1,r2) *r12))/r12 * (x1 - x2)
|
||||
@ -216,19 +256,28 @@ subroutine grad1_j12_r1_seq(r1, n_grid2, gradx, grady, gradz)
|
||||
r2(1) = final_grid_points_extra(1,jpoint)
|
||||
r2(2) = final_grid_points_extra(2,jpoint)
|
||||
r2(3) = final_grid_points_extra(3,jpoint)
|
||||
double precision :: jast, grad_jast(3)
|
||||
call grad_j_sum_mu_of_r(r1,r2,jast,grad_jast)
|
||||
gradx(jpoint) = grad_jast(1)
|
||||
grady(jpoint) = grad_jast(2)
|
||||
gradz(jpoint) = grad_jast(3)
|
||||
enddo
|
||||
elseif(j2e_type .eq. "Bump") then
|
||||
|
||||
! d/dx1 jbump(r1,r2)
|
||||
|
||||
do jpoint = 1, n_points_extra_final_grid ! r2
|
||||
|
||||
r2(1) = final_grid_points_extra(1,jpoint)
|
||||
r2(2) = final_grid_points_extra(2,jpoint)
|
||||
r2(3) = final_grid_points_extra(3,jpoint)
|
||||
call get_grad_j_bump_mu_of_r(r1,r2,grad_jast)
|
||||
|
||||
dx = r1(1) - r2(1)
|
||||
dy = r1(2) - r2(2)
|
||||
dz = r1(3) - r2(3)
|
||||
|
||||
dx = r1(1) - r2(1)
|
||||
dy = r1(2) - r2(2)
|
||||
dz = r1(3) - r2(3)
|
||||
r12 = dsqrt(dx * dx + dy * dy + dz * dz)
|
||||
|
||||
call mu_r_val_and_grad(r1, r2, mu_val, mu_der)
|
||||
mu_tmp = mu_val * r12
|
||||
tmp = inv_sq_pi_2 * dexp(-mu_tmp*mu_tmp) / (mu_val * mu_val)
|
||||
gradx(jpoint) = tmp * mu_der(1)
|
||||
grady(jpoint) = tmp * mu_der(2)
|
||||
gradz(jpoint) = tmp * mu_der(3)
|
||||
|
||||
if(r12 .lt. 1d-10) then
|
||||
gradx(jpoint) = 0.d0
|
||||
grady(jpoint) = 0.d0
|
||||
@ -236,11 +285,17 @@ subroutine grad1_j12_r1_seq(r1, n_grid2, gradx, grady, gradz)
|
||||
cycle
|
||||
endif
|
||||
|
||||
tmp = 0.5d0 * (1.d0 - derf(mu_tmp)) / r12
|
||||
tmp = 0.5d0 * (1.d0 - derf(mu_erf * r12)) / r12
|
||||
|
||||
gradx(jpoint) = gradx(jpoint) + tmp * dx
|
||||
grady(jpoint) = grady(jpoint) + tmp * dy
|
||||
gradz(jpoint) = gradz(jpoint) + tmp * dz
|
||||
gradx(jpoint) = 0.5d0 * tmp * dx
|
||||
grady(jpoint) = 0.5d0 * tmp * dy
|
||||
gradz(jpoint) = 0.5d0 * tmp * dz
|
||||
gradx(jpoint) += 0.5d0 * grad_jast(1)
|
||||
grady(jpoint) += 0.5d0 * grad_jast(2)
|
||||
gradz(jpoint) += 0.5d0 * grad_jast(3)
|
||||
! gradx(jpoint) = grad_jast(1)
|
||||
! grady(jpoint) = grad_jast(2)
|
||||
! gradz(jpoint) = grad_jast(3)
|
||||
enddo
|
||||
|
||||
elseif(j2e_type .eq. "Boys") then
|
||||
@ -363,6 +418,17 @@ subroutine grad1_j12_r1_seq(r1, n_grid2, gradx, grady, gradz)
|
||||
enddo ! i_nucl
|
||||
enddo ! jpoint
|
||||
|
||||
elseif(j2e_type .eq. "Jpsi") then
|
||||
double precision :: grad_j_psi_r1(3),jast_psi
|
||||
do jpoint = 1, n_points_extra_final_grid ! r2
|
||||
r2(1) = final_grid_points_extra(1,jpoint)
|
||||
r2(2) = final_grid_points_extra(2,jpoint)
|
||||
r2(3) = final_grid_points_extra(3,jpoint)
|
||||
call get_grad_r1_jastrow_psi(r1,r2,grad_j_psi_r1,jast_psi)
|
||||
gradx(jpoint) = grad_j_psi_r1(1)
|
||||
grady(jpoint) = grad_j_psi_r1(2)
|
||||
gradz(jpoint) = grad_j_psi_r1(3)
|
||||
enddo
|
||||
else
|
||||
|
||||
print *, ' Error in grad1_j12_r1_seq: Unknown j2e_type = ', j2e_type
|
||||
@ -666,8 +732,12 @@ subroutine get_grad1_u12_2e_r1_seq(ipoint, n_grid2, resx, resy, resz)
|
||||
r1(2) = final_grid_points(2,ipoint)
|
||||
r1(3) = final_grid_points(3,ipoint)
|
||||
|
||||
if( (j2e_type .eq. "Mu") .or. &
|
||||
(j2e_type .eq. "Mur") .or. &
|
||||
if( (j2e_type .eq. "Mu") .or. &
|
||||
(j2e_type .eq. "Mugauss") .or. &
|
||||
(j2e_type .eq. "Mur") .or. &
|
||||
(j2e_type .eq. "Jpsi") .or. &
|
||||
(j2e_type .eq. "Murgauss") .or. &
|
||||
(j2e_type .eq. "Bump") .or. &
|
||||
(j2e_type .eq. "Boys") ) then
|
||||
|
||||
if(env_type .eq. "None") then
|
||||
@ -784,8 +854,11 @@ subroutine get_u12_2e_r1_seq(ipoint, n_grid2, res)
|
||||
r1(2) = final_grid_points(2,ipoint)
|
||||
r1(3) = final_grid_points(3,ipoint)
|
||||
|
||||
if( (j2e_type .eq. "Mu") .or. &
|
||||
(j2e_type .eq. "Mur") .or. &
|
||||
if( (j2e_type .eq. "Mu") .or. &
|
||||
(j2e_type .eq. "Mur") .or. &
|
||||
(j2e_type .eq. "Mugauss") .or. &
|
||||
(j2e_type .eq. "Murgauss") .or. &
|
||||
(j2e_type .eq. "Mugauss") .or. &
|
||||
(j2e_type .eq. "Boys") ) then
|
||||
|
||||
if(env_type .eq. "None") then
|
||||
|
124
plugins/local/non_h_ints_mu/jastrow_psi.irp.f
Normal file
124
plugins/local/non_h_ints_mu/jastrow_psi.irp.f
Normal file
@ -0,0 +1,124 @@
|
||||
BEGIN_PROVIDER [ double precision, c_ij_ab_jastrow, (mo_num, mo_num, elec_alpha_num, elec_beta_num)]
|
||||
implicit none
|
||||
integer :: iunit, getUnitAndOpen
|
||||
c_ij_ab_jastrow = 0.d0
|
||||
iunit = getUnitAndOpen(trim(ezfio_work_dir)//'c_ij_ab', 'R')
|
||||
read(iunit) c_ij_ab_jastrow
|
||||
close(iunit)
|
||||
print*,'c_ij_ab_jastrow = '
|
||||
integer :: i,j,a,b
|
||||
do i = 1, elec_beta_num ! r2
|
||||
do j = 1, elec_alpha_num ! r1
|
||||
do a = elec_beta_num+1, mo_num ! r2
|
||||
do b = elec_alpha_num+1, mo_num ! r1
|
||||
! print*,b,a,j,i
|
||||
print*,c_ij_ab_jastrow(b,a,j,i),b,a,j,i
|
||||
if(dabs(c_ij_ab_jastrow(b,a,j,i)).lt.1.d-12)then
|
||||
c_ij_ab_jastrow(b,a,j,i) = 0.d0
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
double precision function jastrow_psi(r1,r2)
|
||||
implicit none
|
||||
double precision, intent(in) :: r1(3), r2(3)
|
||||
integer :: i,j,a,b
|
||||
double precision, allocatable :: mos_array_r1(:), mos_array_r2(:)
|
||||
allocate(mos_array_r1(mo_num), mos_array_r2(mo_num))
|
||||
call give_all_mos_at_r(r1,mos_array_r1)
|
||||
call give_all_mos_at_r(r2,mos_array_r2)
|
||||
double precision :: eps,coef, numerator,denominator
|
||||
double precision :: phi_i_phi_j
|
||||
eps = a_boys
|
||||
jastrow_psi= 0.d0
|
||||
do i = 1, elec_beta_num ! r1
|
||||
do j = 1, elec_alpha_num ! r2
|
||||
phi_i_phi_j = mos_array_r1(i) * mos_array_r2(j) + eps
|
||||
denominator = 1.d0/phi_i_phi_j
|
||||
do a = elec_beta_num+1, mo_num ! r1
|
||||
do b = elec_alpha_num+1, mo_num ! r2
|
||||
coef = c_ij_ab_jastrow(b,a,j,i)
|
||||
numerator = mos_array_r2(b) * mos_array_r1(a)
|
||||
jastrow_psi += coef * numerator*denominator
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
end
|
||||
|
||||
subroutine get_grad_r1_jastrow_psi(r1,r2,grad_j_psi_r1,jast)
|
||||
implicit none
|
||||
double precision, intent(in) :: r1(3), r2(3)
|
||||
double precision, intent(out):: grad_j_psi_r1(3),jast
|
||||
integer :: i,j,a,b
|
||||
double precision, allocatable :: mos_array_r1(:), mos_array_r2(:)
|
||||
double precision, allocatable :: mos_grad_array_r1(:,:),mos_grad_array_r2(:,:)
|
||||
double precision :: num_j, denom_j, num_j_grad(3), denom_j_grad(3),delta,coef
|
||||
double precision :: inv_denom_j
|
||||
allocate(mos_array_r1(mo_num), mos_array_r2(mo_num))
|
||||
allocate(mos_grad_array_r1(3,mo_num), mos_grad_array_r2(3,mo_num))
|
||||
delta = a_boys
|
||||
call give_all_mos_and_grad_at_r(r1,mos_array_r1,mos_grad_array_r1)
|
||||
call give_all_mos_and_grad_at_r(r2,mos_array_r2,mos_grad_array_r2)
|
||||
grad_j_psi_r1 = 0.d0
|
||||
jast = 0.d0
|
||||
do i = 1, elec_beta_num ! r1
|
||||
do j = 1, elec_alpha_num ! r2
|
||||
call denom_jpsi(i,j,delta,mos_array_r1,mos_grad_array_r1,mos_array_r2,denom_j, denom_j_grad)
|
||||
inv_denom_j = 1.d0/denom_j
|
||||
do a = elec_beta_num+1, mo_num ! r1
|
||||
do b = elec_alpha_num+1, mo_num ! r2
|
||||
call numerator_psi(a,b,mos_array_r1,mos_grad_array_r1,mos_array_r2,num_j, num_j_grad)
|
||||
coef = c_ij_ab_jastrow(b,a,j,i)
|
||||
jast += coef * num_j * inv_denom_j
|
||||
grad_j_psi_r1 += coef * (num_j_grad * denom_j - num_j * denom_j_grad) * inv_denom_j * inv_denom_j
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
if(jast.lt.-1.d0.or.dabs(jast).gt.1.d0)then
|
||||
print*,'pb ! '
|
||||
print*,jast
|
||||
print*,dsqrt(r1(1)**2+r1(2)**2+r1(3)**2),dsqrt(r2(1)**2+r2(2)**2+r2(3)**2)
|
||||
print*,r1
|
||||
! print*,mos_array_r1(1:2)
|
||||
print*,r2
|
||||
! print*,mos_array_r2(1:2)
|
||||
stop
|
||||
endif
|
||||
if(log_jpsi)then
|
||||
grad_j_psi_r1 = grad_j_psi_r1/(1.d0 + jast)
|
||||
endif
|
||||
|
||||
end
|
||||
|
||||
|
||||
subroutine denom_jpsi(i,j,delta,mos_array_r1,mos_grad_array_r1,mos_array_r2,denom, grad_denom)
|
||||
implicit none
|
||||
integer, intent(in) :: i,j
|
||||
double precision, intent(in) :: mos_array_r1(mo_num),mos_grad_array_r1(3,mo_num),mos_array_r2(mo_num),delta
|
||||
double precision, intent(out) :: denom, grad_denom(3)
|
||||
double precision :: coef,phi_i_phi_j,inv_phi_i_phi_j,inv_phi_i_phi_j_2
|
||||
phi_i_phi_j = mos_array_r1(i) * mos_array_r2(j)
|
||||
if(phi_i_phi_j /= 0.d0)then
|
||||
inv_phi_i_phi_j = 1.d0/phi_i_phi_j
|
||||
inv_phi_i_phi_j_2 = 1.d0/(phi_i_phi_j * phi_i_phi_j)
|
||||
else
|
||||
inv_phi_i_phi_j = huge(1.0)
|
||||
inv_phi_i_phi_j_2 = huge(1.d0)
|
||||
endif
|
||||
denom = phi_i_phi_j + delta * inv_phi_i_phi_j
|
||||
grad_denom(:) = (1.d0 - delta*inv_phi_i_phi_j_2) * mos_array_r2(j) * mos_grad_array_r1(:,i)
|
||||
end
|
||||
|
||||
subroutine numerator_psi(a,b,mos_array_r1,mos_grad_array_r1,mos_array_r2,num, grad_num)
|
||||
implicit none
|
||||
integer, intent(in) :: a,b
|
||||
double precision, intent(in) :: mos_array_r1(mo_num),mos_grad_array_r1(3,mo_num),mos_array_r2(mo_num)
|
||||
double precision, intent(out) :: num, grad_num(3)
|
||||
num = mos_array_r1(a) * mos_array_r2(b)
|
||||
grad_num(:) = mos_array_r2(b) * mos_grad_array_r1(:,a)
|
||||
end
|
43
plugins/local/non_h_ints_mu/mu_of_r.irp.f
Normal file
43
plugins/local/non_h_ints_mu/mu_of_r.irp.f
Normal file
@ -0,0 +1,43 @@
|
||||
|
||||
subroutine grad_mu_of_r_mean_field(r,mu_mf, dm, grad_mu_mf, grad_dm)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! returns the value and gradients of the mu(r) mean field, together with the HF density and its gradients.
|
||||
END_DOC
|
||||
include 'constants.include.F'
|
||||
double precision, intent(in) :: r(3)
|
||||
double precision, intent(out):: grad_mu_mf(3), grad_dm(3)
|
||||
double precision, intent(out):: mu_mf, dm
|
||||
double precision :: grad_f_mf_ab(3), grad_two_bod_dens(3),grad_dm_a(3), grad_dm_b(3)
|
||||
double precision :: f_mf_ab,two_bod_dens, dm_a, dm_b
|
||||
|
||||
double precision :: dist
|
||||
call get_grad_f_mf_ab(r,grad_f_mf_ab, grad_two_bod_dens,f_mf_ab,two_bod_dens, dm_a, dm_b,grad_dm_a, grad_dm_b)
|
||||
|
||||
dm = dm_a + dm_b
|
||||
grad_dm(1:3) = grad_dm_a(1:3) + grad_dm_b(1:3)
|
||||
|
||||
if(dabs(two_bod_dens).lt.1.d-10)then
|
||||
mu_mf = 1.d+10
|
||||
grad_mu_mf = 0.d0
|
||||
else
|
||||
if(mu_of_r_tc=="Erfmu")then
|
||||
mu_mf = 0.3333333333d0 * sqpi * (f_mf_ab/two_bod_dens + 0.25d0)
|
||||
grad_mu_mf(1:3) = 0.3333333333d0 * sqpi * (grad_f_mf_ab(1:3) * two_bod_dens - f_mf_ab * grad_two_bod_dens(1:3))&
|
||||
/(two_bod_dens*two_bod_dens)
|
||||
else if(mu_of_r_tc=="Standard")then
|
||||
mu_mf = 0.5d0 * sqpi * f_mf_ab/two_bod_dens
|
||||
grad_mu_mf(1:3) = 0.5d0 * sqpi * (grad_f_mf_ab(1:3) * two_bod_dens - f_mf_ab * grad_two_bod_dens(1:3))&
|
||||
/(two_bod_dens*two_bod_dens)
|
||||
else if(mu_of_r_tc=="Erfmugauss")then
|
||||
mu_mf = (f_mf_ab/two_bod_dens + 0.25d0)/c_mu_gauss_tot
|
||||
grad_mu_mf(1:3) = 1.d0/c_mu_gauss_tot* (grad_f_mf_ab(1:3) * two_bod_dens - f_mf_ab * grad_two_bod_dens(1:3))&
|
||||
/(two_bod_dens*two_bod_dens)
|
||||
else
|
||||
print*,'Wrong value for mu_of_r_tc !'
|
||||
stop
|
||||
endif
|
||||
endif
|
||||
|
||||
end
|
||||
|
@ -57,6 +57,9 @@ end
|
||||
|
||||
subroutine get_grad_f_mf_ab(r,grad_f_mf_ab, grad_two_bod_dens,f_mf_ab,two_bod_dens, dm_a, dm_b,grad_dm_a, grad_dm_b)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! gradient of mu(r) mean field, together with the gradient of the one- and two-body HF density.
|
||||
END_DOC
|
||||
double precision, intent(in) :: r(3)
|
||||
double precision, intent(out) :: f_mf_ab, two_bod_dens
|
||||
double precision, intent(out) :: grad_two_bod_dens(3), grad_f_mf_ab(3)
|
||||
@ -146,26 +149,18 @@ subroutine mu_of_r_mean_field(r,mu_mf, dm)
|
||||
endif
|
||||
end
|
||||
|
||||
subroutine grad_mu_of_r_mean_field(r,mu_mf, dm, grad_mu_mf, grad_dm)
|
||||
subroutine mu_of_r_mean_field_tc(r,mu_mf, dm)
|
||||
implicit none
|
||||
include 'constants.include.F'
|
||||
include 'constants.include.F'
|
||||
double precision, intent(in) :: r(3)
|
||||
double precision, intent(out):: grad_mu_mf(3), grad_dm(3)
|
||||
double precision, intent(out):: mu_mf, dm
|
||||
double precision :: grad_f_mf_ab(3), grad_two_bod_dens(3),grad_dm_a(3), grad_dm_b(3)
|
||||
double precision :: f_mf_ab,two_bod_dens, dm_a, dm_b
|
||||
call get_grad_f_mf_ab(r,grad_f_mf_ab, grad_two_bod_dens,f_mf_ab,two_bod_dens, dm_a, dm_b,grad_dm_a, grad_dm_b)
|
||||
|
||||
call get_f_mf_ab(r,f_mf_ab,two_bod_dens, dm_a, dm_b)
|
||||
dm = dm_a + dm_b
|
||||
grad_dm(1:3) = grad_dm_a(1:3) + grad_dm_b(1:3)
|
||||
|
||||
if(dabs(two_bod_dens).lt.1.d-10)then
|
||||
mu_mf = 1.d+10
|
||||
grad_mu_mf = 0.d0
|
||||
else
|
||||
mu_mf = 0.5d0 * sqpi * f_mf_ab/two_bod_dens
|
||||
grad_mu_mf(1:3) = 0.5d0 * sqpi * (grad_f_mf_ab(1:3) * two_bod_dens - f_mf_ab * grad_two_bod_dens(1:3))&
|
||||
/(two_bod_dens*two_bod_dens)
|
||||
mu_mf = 0.3333333333d0 * sqpi * (f_mf_ab/two_bod_dens + 0.25d0)
|
||||
endif
|
||||
|
||||
end
|
||||
|
59
plugins/local/non_h_ints_mu/plot_j_gauss.irp.f
Normal file
59
plugins/local/non_h_ints_mu/plot_j_gauss.irp.f
Normal file
@ -0,0 +1,59 @@
|
||||
program plot_j_gauss
|
||||
implicit none
|
||||
double precision :: xmin, xmax, x, dx
|
||||
double precision :: mu_min, mu_max, mu, d_mu
|
||||
double precision :: pot_j_gauss,j_mu_simple,j_gauss_simple,pot_j_mu
|
||||
double precision, allocatable :: mu_tab(:),j_mu(:),j_mu_gauss(:)
|
||||
double precision, allocatable :: w_mu(:), w_mu_gauss(:)
|
||||
|
||||
character*(128) :: output
|
||||
integer :: getUnitAndOpen
|
||||
integer :: i_unit_output_wee_gauss,i_unit_output_wee_mu
|
||||
integer :: i_unit_output_j_gauss,i_unit_output_j_mu
|
||||
output=trim(ezfio_filename)//'.w_ee_mu_gauss'
|
||||
i_unit_output_wee_gauss = getUnitAndOpen(output,'w')
|
||||
output=trim(ezfio_filename)//'.w_ee_mu'
|
||||
i_unit_output_wee_mu = getUnitAndOpen(output,'w')
|
||||
output=trim(ezfio_filename)//'.j_mu_gauss'
|
||||
i_unit_output_j_gauss = getUnitAndOpen(output,'w')
|
||||
output=trim(ezfio_filename)//'.j_mu'
|
||||
i_unit_output_j_mu = getUnitAndOpen(output,'w')
|
||||
|
||||
integer :: npt, i, j, n_mu
|
||||
n_mu = 3
|
||||
allocate(mu_tab(n_mu),j_mu(n_mu),j_mu_gauss(n_mu),w_mu(n_mu), w_mu_gauss(n_mu))
|
||||
mu_min = 0.5d0
|
||||
mu_max = 2.d0
|
||||
d_mu = (mu_max - mu_min)/dble(n_mu)
|
||||
mu = mu_min
|
||||
do i = 1, n_mu
|
||||
mu_tab(i) = mu
|
||||
print*,'mu = ',mu
|
||||
mu += d_mu
|
||||
enddo
|
||||
mu_tab(1) = 0.9d0
|
||||
mu_tab(2) = 0.95d0
|
||||
mu_tab(3) = 1.d0
|
||||
|
||||
xmin = 0.01d0
|
||||
xmax = 10.d0
|
||||
npt = 1000
|
||||
dx = (xmax - xmin)/dble(npt)
|
||||
x = xmin
|
||||
do i = 1, npt
|
||||
do j = 1, n_mu
|
||||
mu = mu_tab(j)
|
||||
w_mu_gauss(j) = pot_j_gauss(x,mu)
|
||||
w_mu(j) = pot_j_mu(x,mu)
|
||||
j_mu(j) = j_mu_simple(x,mu)
|
||||
j_mu_gauss(j) = j_gauss_simple(x,mu) + j_mu(j)
|
||||
enddo
|
||||
write(i_unit_output_wee_gauss,'(100(F16.10,X))')x,w_mu_gauss(:)
|
||||
write(i_unit_output_wee_mu,'(100(F16.10,X))')x,w_mu(:)
|
||||
write(i_unit_output_j_gauss,'(100(F16.10,X))')x,j_mu_gauss(:)
|
||||
write(i_unit_output_j_mu,'(100(F16.10,X))')x,j_mu(:)
|
||||
x += dx
|
||||
enddo
|
||||
|
||||
|
||||
end
|
19
plugins/local/non_h_ints_mu/plot_mo.irp.f
Normal file
19
plugins/local/non_h_ints_mu/plot_mo.irp.f
Normal file
@ -0,0 +1,19 @@
|
||||
program plot_mo
|
||||
implicit none
|
||||
integer :: i,npt
|
||||
double precision :: xmin,xmax,dx,r(3)
|
||||
double precision,allocatable :: mos_array(:)
|
||||
allocate(mos_array(mo_num))
|
||||
npt = 10000
|
||||
xmin =0.d0
|
||||
xmax =10.d0
|
||||
dx=(xmax-xmin)/dble(npt)
|
||||
r=0.d0
|
||||
r(1) = xmin
|
||||
do i = 1, npt
|
||||
call give_all_mos_at_r(r,mos_array)
|
||||
write(33,'(100(F16.10,X))')r(1),mos_array(1),mos_array(2),mos_array(3)
|
||||
r(1) += dx
|
||||
enddo
|
||||
|
||||
end
|
@ -16,15 +16,16 @@ subroutine routine_print
|
||||
integer :: ipoint,nx,i
|
||||
double precision :: xmax,xmin,r(3),dx,sigma
|
||||
double precision :: mu_val, mu_der(3),dm_a,dm_b,grad,grad_dm_a(3), grad_dm_b(3)
|
||||
xmax = 5.D0
|
||||
xmin = -5.D0
|
||||
xmax = 3.9D0
|
||||
xmin = -3.9D0
|
||||
nx = 10000
|
||||
dx = (xmax - xmin)/dble(nx)
|
||||
r = 0.d0
|
||||
r(1) = xmin
|
||||
do ipoint = 1, nx
|
||||
call mu_r_val_and_grad(r, r, mu_val, mu_der)
|
||||
call density_and_grad_alpha_beta(r,dm_a,dm_b, grad_dm_a, grad_dm_b)
|
||||
! call mu_r_val_and_grad(r, r, mu_val, mu_der)
|
||||
call grad_mu_of_r_mean_field(r,mu_val, dm_a, mu_der, grad_dm_a)
|
||||
! call density_and_grad_alpha_beta(r,dm_a,dm_b, grad_dm_a, grad_dm_b)
|
||||
sigma = 0.d0
|
||||
do i = 1,3
|
||||
sigma += grad_dm_a(i)**2
|
||||
@ -32,7 +33,8 @@ subroutine routine_print
|
||||
sigma=dsqrt(sigma)
|
||||
grad = mu_der(1)**2 + mu_der(2)**2 + mu_der(3)**2
|
||||
grad = dsqrt(grad)
|
||||
write(i_unit_output,'(100(F16.7,X))')r(1),mu_val,dm_a+dm_b,grad,sigma/dm_a
|
||||
print*,r(1),mu_val
|
||||
write(i_unit_output,'(100(F16.7,X))')r(1),mu_val,dm_a,grad,sigma/dm_a
|
||||
r(1) += dx
|
||||
enddo
|
||||
end
|
||||
|
146
plugins/local/non_h_ints_mu/pot_j_gauss.irp.f
Normal file
146
plugins/local/non_h_ints_mu/pot_j_gauss.irp.f
Normal file
@ -0,0 +1,146 @@
|
||||
double precision function j_simple(x,mu)
|
||||
implicit none
|
||||
double precision, intent(in) :: x,mu
|
||||
double precision :: j_mu_simple,j_gauss_simple
|
||||
if(j2e_type .eq. "Mu".or.j2e_type .eq. "Mur") then
|
||||
j_simple = j_mu_simple(x,mu)
|
||||
else if(j2e_type .eq. "Mugauss".or.j2e_type .eq. "Murgauss") then
|
||||
j_simple = j_gauss_simple(x,mu) + j_mu_simple(x,mu)
|
||||
endif
|
||||
end
|
||||
|
||||
|
||||
double precision function j_mu_simple(x,mu)
|
||||
implicit none
|
||||
double precision, intent(in):: x,mu
|
||||
include 'constants.include.F'
|
||||
BEGIN_DOC
|
||||
! j_mu(mu,x) = 0.5 x (1 - erf(mu x)) - 1/[2 sqrt(pi)mu] exp(-(x*mu)^2)
|
||||
END_DOC
|
||||
j_mu_simple = 0.5d0 * x * (1.D0 - derf(mu*x)) - 0.5d0 * inv_sq_pi/mu * dexp(-x*mu*x*mu)
|
||||
|
||||
end
|
||||
|
||||
double precision function j_gauss_simple(x,mu)
|
||||
implicit none
|
||||
double precision, intent(in):: x,mu
|
||||
include 'constants.include.F'
|
||||
BEGIN_DOC
|
||||
! j_mu(mu,x) = c/[4 alpha^2 mu] exp(-(alpha * mu * x)^2)
|
||||
! with c = 27/(8 sqrt(pi)), alpha=3/2
|
||||
END_DOC
|
||||
double precision :: x_tmp
|
||||
x_tmp = alpha_mu_gauss * mu * x
|
||||
j_gauss_simple = 0.25d0 * c_mu_gauss / (alpha_mu_gauss*alpha_mu_gauss*mu) * dexp(-x_tmp*x_tmp)
|
||||
|
||||
end
|
||||
|
||||
double precision function j_mu_deriv(x,mu)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! d/dx j_mu(mu,x) = d/dx 0.5 x (1 - erf(mu x)) - 1/[2 sqrt(pi)mu] exp(-(x*mu)^2)
|
||||
! = 0.5*(1 - erf(mu x))
|
||||
END_DOC
|
||||
include 'constants.include.F'
|
||||
double precision, intent(in) :: x,mu
|
||||
j_mu_deriv = 0.5d0 * (1.d0 - derf(mu*x))
|
||||
end
|
||||
|
||||
double precision function j_mu_deriv_2(x,mu)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! d^2/dx^2 j_mu(mu,x) = d^2/dx^2 0.5 x (1 - erf(mu x)) - 1/[2 sqrt(pi)mu] exp(-(x*mu)^2)
|
||||
! = -mu/sqrt(pi) * exp(-(mu x)^2)
|
||||
END_DOC
|
||||
include 'constants.include.F'
|
||||
double precision, intent(in) :: x,mu
|
||||
j_mu_deriv_2 = - mu * inv_sq_pi * dexp(-x*mu*x*mu)
|
||||
end
|
||||
|
||||
double precision function j_gauss_deriv(x,mu)
|
||||
implicit none
|
||||
include 'constants.include.F'
|
||||
double precision, intent(in) :: x,mu
|
||||
BEGIN_DOC
|
||||
! d/dx j_gauss(mu,x) = d/dx c/[4 alpha^2 mu] exp(-(alpha * mu * x)^2)
|
||||
! with c = 27/(8 sqrt(pi)), alpha=3/2
|
||||
! = -0.5 * mu * c * x * exp(-(alpha * mu * x)^2)
|
||||
END_DOC
|
||||
double precision :: x_tmp
|
||||
x_tmp = alpha_mu_gauss * mu * x
|
||||
j_gauss_deriv = -0.5d0 * mu * c_mu_gauss * x * exp(-x_tmp*x_tmp)
|
||||
end
|
||||
|
||||
double precision function j_gauss_deriv_2(x,mu)
|
||||
implicit none
|
||||
include 'constants.include.F'
|
||||
double precision, intent(in) :: x,mu
|
||||
BEGIN_DOC
|
||||
! d/dx j_gauss(mu,x) = d/dx c/[4 alpha^2 mu] exp(-(alpha * mu * x)^2)
|
||||
! with c = 27/(8 sqrt(pi)), alpha=3/2
|
||||
! = 0.5 * mu * c * exp(-(alpha * mu * x)^2) * (2 (alpha*mu*x)^2 - 1)
|
||||
END_DOC
|
||||
double precision :: x_tmp
|
||||
x_tmp = alpha_mu_gauss * mu * x
|
||||
x_tmp = x_tmp * x_tmp
|
||||
j_gauss_deriv_2 = 0.5d0 * mu * c_mu_gauss * exp(-x_tmp) * (2.d0*x_tmp - 1.d0)
|
||||
end
|
||||
|
||||
double precision function j_erf_gauss_deriv(x,mu)
|
||||
implicit none
|
||||
double precision, intent(in) :: x,mu
|
||||
BEGIN_DOC
|
||||
! d/dx (j_gauss(mu,x)+j_mu(mu,x))
|
||||
END_DOC
|
||||
double precision :: j_gauss_deriv,j_mu_deriv
|
||||
j_erf_gauss_deriv = j_gauss_deriv(x,mu)+j_mu_deriv(x,mu)
|
||||
end
|
||||
|
||||
double precision function j_erf_gauss_deriv_2(x,mu)
|
||||
implicit none
|
||||
double precision, intent(in) :: x,mu
|
||||
BEGIN_DOC
|
||||
! d^2/dx^2 (j_gauss(mu,x)+j_mu(mu,x))
|
||||
END_DOC
|
||||
double precision :: j_gauss_deriv_2,j_mu_deriv_2
|
||||
j_erf_gauss_deriv_2 = j_gauss_deriv_2(x,mu)+j_mu_deriv_2(x,mu)
|
||||
end
|
||||
|
||||
|
||||
double precision function pot_j_gauss(x,mu)
|
||||
implicit none
|
||||
double precision, intent(in) :: x,mu
|
||||
BEGIN_DOC
|
||||
! effective scalar potential associated with the erf_gauss correlation factor
|
||||
!
|
||||
! 1/x( 1 - 2 * d/dx j_erf_gauss(x,mu)) - d^2/dx^2 j_erf_gauss(x,mu)) - d/dx d/dx (j_erf_gauss(x,mu))^2
|
||||
END_DOC
|
||||
double precision :: j_erf_gauss_deriv_2,j_erf_gauss_deriv
|
||||
double precision :: deriv_1, deriv_2
|
||||
pot_j_gauss = 0.d0
|
||||
if(x.ne.0.d0)then
|
||||
deriv_1 = j_erf_gauss_deriv(x,mu)
|
||||
deriv_2 = j_erf_gauss_deriv_2(x,mu)
|
||||
pot_j_gauss = 1.d0/x * (1.d0 - 2.d0 * deriv_1) - deriv_1 * deriv_1 - deriv_2
|
||||
endif
|
||||
|
||||
end
|
||||
|
||||
double precision function pot_j_mu(x,mu)
|
||||
implicit none
|
||||
double precision, intent(in) :: x,mu
|
||||
BEGIN_DOC
|
||||
! effective scalar potential associated with the correlation factor
|
||||
!
|
||||
! 1/x( 1 - 2 * d/dx j_erf(x,mu)) - d^2/dx^2 j_erf(x,mu)) - d/dx d/dx (j_erf(x,mu))^2
|
||||
END_DOC
|
||||
double precision :: j_mu_deriv_2,j_mu_deriv
|
||||
double precision :: deriv_1, deriv_2
|
||||
pot_j_mu = 0.d0
|
||||
if(x.ne.0.d0)then
|
||||
deriv_1 = j_mu_deriv(x,mu)
|
||||
deriv_2 = j_mu_deriv_2(x,mu)
|
||||
pot_j_mu= 1.d0/x * (1.d0 - 2.d0 * deriv_1) - deriv_1 * deriv_1 - deriv_2
|
||||
endif
|
||||
|
||||
end
|
15
plugins/local/non_h_ints_mu/print_jastrow_psi.irp.f
Normal file
15
plugins/local/non_h_ints_mu/print_jastrow_psi.irp.f
Normal file
@ -0,0 +1,15 @@
|
||||
program print_j_psi
|
||||
implicit none
|
||||
integer :: i,j,a,b
|
||||
do i = 1, elec_beta_num ! r2
|
||||
do j = 1, elec_alpha_num ! r1
|
||||
do a = elec_beta_num+1, mo_num ! r2
|
||||
do b = elec_alpha_num+1, mo_num ! r1
|
||||
print*,b,a,j,i
|
||||
print*,c_ij_ab_jastrow(b,a,j,i)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
end
|
@ -127,8 +127,8 @@ BEGIN_PROVIDER [double precision, int2_grad1_u12_ao, (ao_num, ao_num, n_points_f
|
||||
! TODO combine 1shot & int2_grad1_u12_ao_num
|
||||
PROVIDE int2_grad1_u12_ao_num
|
||||
int2_grad1_u12_ao = int2_grad1_u12_ao_num
|
||||
!PROVIDE int2_grad1_u12_ao_num_1shot
|
||||
!int2_grad1_u12_ao = int2_grad1_u12_ao_num_1shot
|
||||
! PROVIDE int2_grad1_u12_ao_num_1shot
|
||||
! int2_grad1_u12_ao = int2_grad1_u12_ao_num_1shot
|
||||
endif
|
||||
|
||||
elseif(tc_integ_type .eq. "semi-analytic") then
|
||||
|
157
plugins/local/non_h_ints_mu/test_mu_of_r_tc.irp.f
Normal file
157
plugins/local/non_h_ints_mu/test_mu_of_r_tc.irp.f
Normal file
@ -0,0 +1,157 @@
|
||||
program test_mu_of_r_tc
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! TODO
|
||||
END_DOC
|
||||
! You specify that you want to avoid any contribution from
|
||||
! orbitals coming from core
|
||||
call test_grad_f_mean_field
|
||||
call test_grad_mu_mf
|
||||
call plot_mu_of_r_mf
|
||||
end
|
||||
|
||||
|
||||
subroutine test_grad_f_mean_field
|
||||
implicit none
|
||||
integer :: i_point,k
|
||||
double precision :: weight,r(3)
|
||||
double precision :: grad_f_mf_ab(3), grad_two_bod_dens(3)
|
||||
double precision :: grad_dm_a(3), grad_dm_b(3)
|
||||
double precision :: f_mf_ab,two_bod_dens, dm_a, dm_b
|
||||
|
||||
double precision :: num_grad_f_mf_ab(3), num_grad_two_bod_dens(3)
|
||||
double precision :: num_grad_dm_a(3), num_grad_dm_b(3)
|
||||
double precision :: f_mf_ab_p,f_mf_ab_m
|
||||
double precision :: two_bod_dens_p, two_bod_dens_m
|
||||
double precision :: dm_a_p, dm_a_m
|
||||
double precision :: dm_b_p, dm_b_m
|
||||
double precision :: rbis(3), dr
|
||||
double precision :: accu_grad_f_mf_ab(3),accu_grad_two_bod_dens(3)
|
||||
double precision :: accu_grad_dm_a(3),accu_grad_dm_b(3)
|
||||
double precision :: accu_f_mf_ab, accu_two_bod_dens, accu_dm_a, accu_dm_b
|
||||
dr = 0.00001d0
|
||||
accu_f_mf_ab = 0.d0
|
||||
accu_two_bod_dens = 0.d0
|
||||
accu_dm_a = 0.d0
|
||||
accu_dm_b = 0.d0
|
||||
|
||||
accu_grad_f_mf_ab = 0.d0
|
||||
accu_grad_two_bod_dens = 0.d0
|
||||
accu_grad_dm_a = 0.d0
|
||||
accu_grad_dm_b = 0.d0
|
||||
do i_point = 1, n_points_final_grid
|
||||
r(1:3) = final_grid_points(1:3,i_point)
|
||||
weight = final_weight_at_r_vector(i_point)
|
||||
call get_grad_f_mf_ab(r,grad_f_mf_ab, grad_two_bod_dens,f_mf_ab,two_bod_dens, dm_a, dm_b,grad_dm_a, grad_dm_b)
|
||||
call get_f_mf_ab(r,f_mf_ab_p,two_bod_dens_p, dm_a_p, dm_b_p)
|
||||
accu_f_mf_ab += weight * dabs(f_mf_ab - f_mf_ab_p)
|
||||
accu_two_bod_dens += weight * dabs(two_bod_dens - two_bod_dens_p)
|
||||
accu_dm_a += weight*dabs(dm_a - dm_a_p)
|
||||
accu_dm_b += weight*dabs(dm_b - dm_b_p)
|
||||
do k = 1, 3
|
||||
rbis = r
|
||||
rbis(k) += dr
|
||||
call get_f_mf_ab(rbis,f_mf_ab_p,two_bod_dens_p, dm_a_p, dm_b_p)
|
||||
rbis = r
|
||||
rbis(k) -= dr
|
||||
call get_f_mf_ab(rbis,f_mf_ab_m,two_bod_dens_m, dm_a_m, dm_b_m)
|
||||
num_grad_f_mf_ab(k) = (f_mf_ab_p - f_mf_ab_m)/(2.d0*dr)
|
||||
num_grad_two_bod_dens(k) = (two_bod_dens_p - two_bod_dens_m)/(2.d0*dr)
|
||||
num_grad_dm_a(k) = (dm_a_p - dm_a_m)/(2.d0*dr)
|
||||
num_grad_dm_b(k) = (dm_b_p - dm_b_m)/(2.d0*dr)
|
||||
enddo
|
||||
do k = 1, 3
|
||||
accu_grad_f_mf_ab(k) += weight * dabs(grad_f_mf_ab(k) - num_grad_f_mf_ab(k))
|
||||
accu_grad_two_bod_dens(k) += weight * dabs(grad_two_bod_dens(k) - num_grad_two_bod_dens(k))
|
||||
accu_grad_dm_a(k) += weight * dabs(grad_dm_a(k) - num_grad_dm_a(k))
|
||||
accu_grad_dm_b(k) += weight * dabs(grad_dm_b(k) - num_grad_dm_b(k))
|
||||
enddo
|
||||
enddo
|
||||
print*,'accu_f_mf_ab = ',accu_f_mf_ab
|
||||
print*,'accu_two_bod_dens = ',accu_two_bod_dens
|
||||
print*,'accu_dm_a = ',accu_dm_a
|
||||
print*,'accu_dm_b = ',accu_dm_b
|
||||
print*,'accu_grad_f_mf_ab = '
|
||||
print*,accu_grad_f_mf_ab
|
||||
print*,'accu_grad_two_bod_dens = '
|
||||
print*,accu_grad_two_bod_dens
|
||||
print*,'accu_dm_a = '
|
||||
print*,accu_grad_dm_a
|
||||
print*,'accu_dm_b = '
|
||||
print*,accu_grad_dm_b
|
||||
|
||||
end
|
||||
|
||||
subroutine test_grad_mu_mf
|
||||
implicit none
|
||||
integer :: i_point,k
|
||||
double precision :: weight,r(3),rbis(3)
|
||||
double precision :: mu_mf, dm,grad_mu_mf(3), grad_dm(3)
|
||||
double precision :: mu_mf_p, mu_mf_m, dm_m, dm_p, num_grad_mu_mf(3),dr, num_grad_dm(3)
|
||||
double precision :: accu_mu, accu_dm, accu_grad_dm(3), accu_grad_mu_mf(3)
|
||||
dr = 0.00001d0
|
||||
accu_grad_mu_mf = 0.d0
|
||||
accu_mu = 0.d0
|
||||
accu_grad_dm = 0.d0
|
||||
accu_dm = 0.d0
|
||||
do i_point = 1, n_points_final_grid
|
||||
r(1:3) = final_grid_points(1:3,i_point)
|
||||
weight = final_weight_at_r_vector(i_point)
|
||||
call grad_mu_of_r_mean_field(r,mu_mf, dm, grad_mu_mf, grad_dm)
|
||||
call mu_of_r_mean_field(r,mu_mf_p, dm_p)
|
||||
accu_mu += weight*dabs(mu_mf_p - mu_mf)
|
||||
accu_dm += weight*dabs(dm_p - dm)
|
||||
do k = 1, 3
|
||||
rbis = r
|
||||
rbis(k) += dr
|
||||
call mu_of_r_mean_field(rbis,mu_mf_p, dm_p)
|
||||
rbis = r
|
||||
rbis(k) -= dr
|
||||
call mu_of_r_mean_field(rbis,mu_mf_m, dm_m)
|
||||
|
||||
num_grad_mu_mf(k) = (mu_mf_p - mu_mf_m)/(2.d0*dr)
|
||||
num_grad_dm(k) = (dm_p - dm_m)/(2.d0*dr)
|
||||
enddo
|
||||
do k = 1, 3
|
||||
accu_grad_dm(k)+= weight *dabs(num_grad_dm(k) - grad_dm(k))
|
||||
accu_grad_mu_mf(k)+= weight *dabs(num_grad_mu_mf(k) - grad_mu_mf(k))
|
||||
enddo
|
||||
enddo
|
||||
print*,'accu_mu = ',accu_mu
|
||||
print*,'accu_dm = ',accu_dm
|
||||
print*,'accu_grad_dm = '
|
||||
print*, accu_grad_dm
|
||||
print*,'accu_grad_mu_mf = '
|
||||
print*, accu_grad_mu_mf
|
||||
|
||||
end
|
||||
|
||||
subroutine plot_mu_of_r_mf
|
||||
implicit none
|
||||
include 'constants.include.F'
|
||||
integer :: ipoint,npoint
|
||||
double precision :: dx,r(3),xmax,xmin
|
||||
double precision :: accu_mu,accu_nelec,mu_mf, dm,mu_mf_tc
|
||||
character*(128) :: output
|
||||
integer :: i_unit_output,getUnitAndOpen
|
||||
output=trim(ezfio_filename)//'.mu_mf'
|
||||
i_unit_output = getUnitAndOpen(output,'w')
|
||||
xmax = 5.D0
|
||||
xmin = 0.d0
|
||||
npoint = 10000
|
||||
dx = (xmax - xmin)/dble(npoint)
|
||||
r = 0.d0
|
||||
r(1) = xmin
|
||||
accu_mu = 0.d0
|
||||
accu_nelec = 0.d0
|
||||
do ipoint = 1, npoint
|
||||
call mu_of_r_mean_field(r,mu_mf, dm)
|
||||
call mu_of_r_mean_field_tc(r,mu_mf_tc, dm)
|
||||
write(i_unit_output,'(100(F16.10,X))')r(1),mu_mf,mu_mf_tc,dm
|
||||
accu_mu += mu_mf * dm * r(1)**2*dx*4.D0*pi
|
||||
accu_nelec += dm * r(1)**2*dx*4.D0*pi
|
||||
r(1) += dx
|
||||
enddo
|
||||
print*,'nelec = ',accu_nelec
|
||||
print*,'mu average = ',accu_mu/accu_nelec
|
||||
end
|
@ -9,5 +9,5 @@ then
|
||||
fi
|
||||
|
||||
rm -rf ${PWD}/CuTC
|
||||
rm ${QP_ROOT}/lib/libcutcint.so
|
||||
rm -f ${QP_ROOT}/lib/libcutcint.so
|
||||
|
||||
|
@ -230,7 +230,7 @@ default: 70
|
||||
type: character*(32)
|
||||
doc: approach used to evaluate TC integrals [ analytic | numeric | semi-analytic ]
|
||||
interface: ezfio,ocaml,provider
|
||||
default: semi-analytic
|
||||
default: numeric
|
||||
|
||||
[minimize_lr_angles]
|
||||
type: logical
|
||||
|
2
scripts/import_champ_jastrow.py
Executable file → Normal file
2
scripts/import_champ_jastrow.py
Executable file → Normal file
@ -45,7 +45,7 @@ if __name__ == '__main__':
|
||||
jastrow_file = sys.argv[2]
|
||||
jastrow = import_jastrow(jastrow_file)
|
||||
print (jastrow)
|
||||
ezfio.set_jastrow_jast_type("Qmckl")
|
||||
ezfio.set_jastrow_j2e_type("Qmckl")
|
||||
ezfio.set_jastrow_jast_qmckl_type_nucl_num(jastrow['type_num'])
|
||||
charges = ezfio.get_nuclei_nucl_charge()
|
||||
types = {}
|
||||
|
@ -261,13 +261,10 @@ def write_ezfio(trexio_filename, filename):
|
||||
except:
|
||||
cartesian = True
|
||||
|
||||
if not cartesian:
|
||||
raise TypeError('Only cartesian TREXIO files can be converted')
|
||||
|
||||
ao_num = trexio.read_ao_num(trexio_file)
|
||||
ezfio.set_ao_basis_ao_num(ao_num)
|
||||
|
||||
if shell_num > 0:
|
||||
if cartesian and shell_num > 0:
|
||||
ao_shell = trexio.read_ao_shell(trexio_file)
|
||||
at = [ nucl_index[i]+1 for i in ao_shell ]
|
||||
ezfio.set_ao_basis_ao_nucl(at)
|
||||
@ -330,7 +327,7 @@ def write_ezfio(trexio_filename, filename):
|
||||
print("OK")
|
||||
|
||||
else:
|
||||
print("None")
|
||||
print("None: integrals should be also imported using qp run import_trexio_integrals")
|
||||
|
||||
|
||||
# _
|
||||
|
@ -111,8 +111,9 @@ complex*16 function NAI_pol_mult_cosgtos(A_center, B_center, power_A, power_B, a
|
||||
complex*16 :: accu, P_center(3)
|
||||
complex*16 :: d(0:n_pt_in)
|
||||
|
||||
complex*16 :: V_n_e_cosgtos
|
||||
complex*16 :: crint
|
||||
complex*16, external :: V_n_e_cosgtos
|
||||
complex*16, external :: crint_2
|
||||
complex*16, external :: crint_sum_2
|
||||
|
||||
if ( (A_center(1)/=B_center(1)) .or. (A_center(2)/=B_center(2)) .or. (A_center(3)/=B_center(3)) .or. &
|
||||
(A_center(1)/=C_center(1)) .or. (A_center(2)/=C_center(2)) .or. (A_center(3)/=C_center(3)) ) then
|
||||
@ -158,27 +159,27 @@ complex*16 function NAI_pol_mult_cosgtos(A_center, B_center, power_A, power_B, a
|
||||
|
||||
n_pt = 2 * ( (power_A(1) + power_B(1)) + (power_A(2) + power_B(2)) + (power_A(3) + power_B(3)) )
|
||||
if(n_pt == 0) then
|
||||
NAI_pol_mult_cosgtos = coeff * crint(0, const)
|
||||
NAI_pol_mult_cosgtos = coeff * crint_2(0, const)
|
||||
return
|
||||
endif
|
||||
|
||||
call give_cpolynomial_mult_center_one_e( A_center, B_center, alpha, beta &
|
||||
, power_A, power_B, C_center, n_pt_in, d, n_pt_out)
|
||||
call give_cpolynomial_mult_center_one_e(A_center, B_center, alpha, beta, &
|
||||
power_A, power_B, C_center, n_pt_in, d, n_pt_out)
|
||||
|
||||
if(n_pt_out < 0) then
|
||||
NAI_pol_mult_cosgtos = (0.d0, 0.d0)
|
||||
return
|
||||
endif
|
||||
|
||||
accu = (0.d0, 0.d0)
|
||||
do i = 0, n_pt_out, 2
|
||||
accu += crint(shiftr(i, 1), const) * d(i)
|
||||
|
||||
! print *, shiftr(i, 1), real(const), real(d(i)), real(crint(shiftr(i, 1), const))
|
||||
enddo
|
||||
!accu = (0.d0, 0.d0)
|
||||
!do i = 0, n_pt_out, 2
|
||||
! accu += crint_2(shiftr(i, 1), const) * d(i)
|
||||
!enddo
|
||||
accu = crint_sum_2(n_pt_out, const, d)
|
||||
NAI_pol_mult_cosgtos = accu * coeff
|
||||
|
||||
end function NAI_pol_mult_cosgtos
|
||||
return
|
||||
end
|
||||
|
||||
! ---
|
||||
|
||||
@ -312,7 +313,7 @@ subroutine give_cpolynomial_mult_center_one_e( A_center, B_center, alpha, beta &
|
||||
d(i) = d1(i)
|
||||
enddo
|
||||
|
||||
end subroutine give_cpolynomial_mult_center_one_e
|
||||
end
|
||||
|
||||
! ---
|
||||
|
||||
@ -405,7 +406,7 @@ recursive subroutine I_x1_pol_mult_one_e_cosgtos(a, c, R1x, R1xp, R2x, d, nd, n_
|
||||
|
||||
endif
|
||||
|
||||
end subroutine I_x1_pol_mult_one_e_cosgtos
|
||||
end
|
||||
|
||||
! ---
|
||||
|
||||
@ -467,7 +468,7 @@ recursive subroutine I_x2_pol_mult_one_e_cosgtos(c, R1x, R1xp, R2x, d, nd, dim)
|
||||
|
||||
endif
|
||||
|
||||
end subroutine I_x2_pol_mult_one_e_cosgtos
|
||||
end
|
||||
|
||||
! ---
|
||||
|
||||
@ -502,7 +503,7 @@ complex*16 function V_n_e_cosgtos(a_x, a_y, a_z, b_x, b_y, b_z, alpha, beta)
|
||||
* V_theta(a_z + b_z, a_x + b_x + a_y + b_y + 1)
|
||||
endif
|
||||
|
||||
end function V_n_e_cosgtos
|
||||
end
|
||||
|
||||
! ---
|
||||
|
||||
@ -529,7 +530,7 @@ complex*16 function V_r_cosgtos(n, alpha)
|
||||
V_r_cosgtos = sqpi * fact(n) / fact(shiftr(n, 1)) * (0.5d0/zsqrt(alpha))**(n+1)
|
||||
endif
|
||||
|
||||
end function V_r_cosgtos
|
||||
end
|
||||
|
||||
! ---
|
||||
|
||||
|
@ -73,14 +73,13 @@ END_PROVIDER
|
||||
integer, external :: getUnitAndOpen
|
||||
integer :: iunit, ierr
|
||||
|
||||
ndim8 = ao_num*ao_num*1_8
|
||||
ndim8 = ao_num*ao_num*1_8+1
|
||||
double precision :: wall0,wall1
|
||||
|
||||
type(c_ptr) :: c_pointer(2)
|
||||
integer :: fd(2)
|
||||
type(mmap_type) :: map
|
||||
|
||||
PROVIDE nproc ao_cholesky_threshold do_direct_integrals qp_max_mem
|
||||
PROVIDE nucl_coord ao_two_e_integral_schwartz
|
||||
PROVIDE nucl_coord
|
||||
call set_multiple_levels_omp(.False.)
|
||||
|
||||
call wall_time(wall0)
|
||||
@ -143,19 +142,21 @@ END_PROVIDER
|
||||
|
||||
if (do_direct_integrals) then
|
||||
!$OMP PARALLEL DO DEFAULT(SHARED) PRIVATE(i8) SCHEDULE(dynamic,21)
|
||||
do i8=ndim8,1,-1
|
||||
do i8=ndim8-1,1,-1
|
||||
D(i8) = ao_two_e_integral(addr1(i8), addr2(i8), &
|
||||
addr1(i8), addr2(i8))
|
||||
enddo
|
||||
!$OMP END PARALLEL DO
|
||||
else
|
||||
!$OMP PARALLEL DO DEFAULT(SHARED) PRIVATE(i8) SCHEDULE(dynamic,21)
|
||||
do i8=ndim8,1,-1
|
||||
do i8=ndim8-1,1,-1
|
||||
D(i8) = get_ao_two_e_integral(addr1(i8), addr1(i8), &
|
||||
addr2(i8), addr2(i8), ao_integrals_map)
|
||||
enddo
|
||||
!$OMP END PARALLEL DO
|
||||
endif
|
||||
! Just to guarentee termination
|
||||
D(ndim8) = 0.d0
|
||||
|
||||
D_sorted(:) = -D(:)
|
||||
call dsort_noidx_big(D_sorted,ndim8)
|
||||
@ -179,14 +180,9 @@ END_PROVIDER
|
||||
if (elec_num > 10) then
|
||||
rank_max = min(np,20*elec_num*elec_num)
|
||||
endif
|
||||
call mmap(trim(ezfio_work_dir)//'cholesky_ao_tmp', (/ ndim8, rank_max /), 8, fd(1), .False., .True., c_pointer(1))
|
||||
call c_f_pointer(c_pointer(1), L, (/ ndim8, rank_max /))
|
||||
|
||||
! Deleting the file while it is open makes the file invisible on the filesystem,
|
||||
! and automatically deleted, even if the program crashes
|
||||
iunit = getUnitAndOpen(trim(ezfio_work_dir)//'cholesky_ao_tmp', 'R')
|
||||
close(iunit,status='delete')
|
||||
|
||||
call mmap_create_d('', (/ ndim8, rank_max /), .False., .True., map)
|
||||
L => map%d2
|
||||
|
||||
! 3.
|
||||
N = 0
|
||||
@ -205,6 +201,7 @@ END_PROVIDER
|
||||
i = i+1
|
||||
|
||||
|
||||
|
||||
block_size = max(N,24)
|
||||
|
||||
! Determine nq so that Delta fits in memory
|
||||
@ -314,9 +311,10 @@ END_PROVIDER
|
||||
! g.
|
||||
|
||||
iblock = 0
|
||||
|
||||
do j=1,nq
|
||||
|
||||
if ( (Qmax <= Dmin).or.(N+j*1_8 > ndim8) ) exit
|
||||
if ( (Qmax < Dmin).or.(N+j*1_8 > ndim8) ) exit
|
||||
|
||||
! i.
|
||||
rank = N+j
|
||||
@ -476,7 +474,7 @@ END_PROVIDER
|
||||
enddo
|
||||
!$OMP END PARALLEL DO
|
||||
|
||||
call munmap( (/ ndim8, rank_max /), 8, fd(1), c_pointer(1) )
|
||||
call mmap_destroy(map)
|
||||
|
||||
cholesky_ao_num = rank
|
||||
|
||||
|
@ -35,11 +35,9 @@ double precision function ao_two_e_integral_cosgtos(i, j, k, l)
|
||||
|
||||
if(ao_prim_num(i) * ao_prim_num(j) * ao_prim_num(k) * ao_prim_num(l) > 1024) then
|
||||
|
||||
!print *, ' with shwartz acc '
|
||||
ao_two_e_integral_cosgtos = ao_2e_cosgtos_schwartz_accel(i, j, k, l)
|
||||
|
||||
else
|
||||
!print *, ' without shwartz acc '
|
||||
|
||||
dim1 = n_pt_max_integrals
|
||||
|
||||
@ -51,7 +49,6 @@ double precision function ao_two_e_integral_cosgtos(i, j, k, l)
|
||||
ao_two_e_integral_cosgtos = 0.d0
|
||||
|
||||
if(num_i /= num_j .or. num_k /= num_l .or. num_j /= num_k) then
|
||||
!print *, ' not the same center'
|
||||
|
||||
do p = 1, 3
|
||||
I_power(p) = ao_power(i,p)
|
||||
@ -72,72 +69,22 @@ double precision function ao_two_e_integral_cosgtos(i, j, k, l)
|
||||
coef2 = coef1 * ao_coef_norm_ord_transp_cosgtos(q,j)
|
||||
expo2 = ao_expo_ord_transp_cosgtos(q,j)
|
||||
|
||||
call give_explicit_cpoly_and_cgaussian( P1_new, P1_center, pp1, fact_p1, iorder_p1 &
|
||||
, expo1, expo2, I_power, J_power, I_center, J_center, dim1 )
|
||||
call give_explicit_cpoly_and_cgaussian(P1_new, P1_center, pp1, fact_p1, iorder_p1, &
|
||||
expo1, expo2, I_power, J_power, I_center, J_center, dim1)
|
||||
p1_inv = (1.d0,0.d0) / pp1
|
||||
|
||||
call give_explicit_cpoly_and_cgaussian( P2_new, P2_center, pp2, fact_p2, iorder_p2 &
|
||||
, conjg(expo1), expo2, I_power, J_power, I_center, J_center, dim1 )
|
||||
call give_explicit_cpoly_and_cgaussian(P2_new, P2_center, pp2, fact_p2, iorder_p2, &
|
||||
conjg(expo1), expo2, I_power, J_power, I_center, J_center, dim1)
|
||||
p2_inv = (1.d0,0.d0) / pp2
|
||||
|
||||
call give_explicit_cpoly_and_cgaussian( P3_new, P3_center, pp3, fact_p3, iorder_p3 &
|
||||
, expo1, conjg(expo2), I_power, J_power, I_center, J_center, dim1 )
|
||||
call give_explicit_cpoly_and_cgaussian(P3_new, P3_center, pp3, fact_p3, iorder_p3, &
|
||||
expo1, conjg(expo2), I_power, J_power, I_center, J_center, dim1)
|
||||
p3_inv = (1.d0,0.d0) / pp3
|
||||
|
||||
call give_explicit_cpoly_and_cgaussian( P4_new, P4_center, pp4, fact_p4, iorder_p4 &
|
||||
, conjg(expo1), conjg(expo2), I_power, J_power, I_center, J_center, dim1 )
|
||||
call give_explicit_cpoly_and_cgaussian(P4_new, P4_center, pp4, fact_p4, iorder_p4, &
|
||||
conjg(expo1), conjg(expo2), I_power, J_power, I_center, J_center, dim1)
|
||||
p4_inv = (1.d0,0.d0) / pp4
|
||||
|
||||
!integer :: ii
|
||||
!do ii = 1, 3
|
||||
! print *, 'fact_p1', fact_p1
|
||||
! print *, 'fact_p2', fact_p2
|
||||
! print *, 'fact_p3', fact_p3
|
||||
! print *, 'fact_p4', fact_p4
|
||||
! !print *, pp1, p1_inv
|
||||
! !print *, pp2, p2_inv
|
||||
! !print *, pp3, p3_inv
|
||||
! !print *, pp4, p4_inv
|
||||
!enddo
|
||||
! if( abs(aimag(P1_center(ii))) .gt. 0.d0 ) then
|
||||
! print *, ' P_1 is complex !!'
|
||||
! print *, P1_center
|
||||
! print *, expo1, expo2
|
||||
! print *, conjg(expo1), conjg(expo2)
|
||||
! stop
|
||||
! endif
|
||||
! if( abs(aimag(P2_center(ii))) .gt. 0.d0 ) then
|
||||
! print *, ' P_2 is complex !!'
|
||||
! print *, P2_center
|
||||
! print *, ' old expos:'
|
||||
! print *, expo1, expo2
|
||||
! print *, conjg(expo1), conjg(expo2)
|
||||
! print *, ' new expo:'
|
||||
! print *, pp2, p2_inv
|
||||
! print *, ' factor:'
|
||||
! print *, fact_p2
|
||||
! print *, ' old centers:'
|
||||
! print *, I_center, J_center
|
||||
! print *, ' powers:'
|
||||
! print *, I_power, J_power
|
||||
! stop
|
||||
! endif
|
||||
! if( abs(aimag(P3_center(ii))) .gt. 0.d0 ) then
|
||||
! print *, ' P_3 is complex !!'
|
||||
! print *, P3_center
|
||||
! print *, expo1, expo2
|
||||
! print *, conjg(expo1), conjg(expo2)
|
||||
! stop
|
||||
! endif
|
||||
! if( abs(aimag(P4_center(ii))) .gt. 0.d0 ) then
|
||||
! print *, ' P_4 is complex !!'
|
||||
! print *, P4_center
|
||||
! print *, expo1, expo2
|
||||
! print *, conjg(expo1), conjg(expo2)
|
||||
! stop
|
||||
! endif
|
||||
!enddo
|
||||
|
||||
do r = 1, ao_prim_num(k)
|
||||
coef3 = coef2 * ao_coef_norm_ord_transp_cosgtos(r,k)
|
||||
expo3 = ao_expo_ord_transp_cosgtos(r,k)
|
||||
@ -146,74 +93,47 @@ double precision function ao_two_e_integral_cosgtos(i, j, k, l)
|
||||
coef4 = coef3 * ao_coef_norm_ord_transp_cosgtos(s,l)
|
||||
expo4 = ao_expo_ord_transp_cosgtos(s,l)
|
||||
|
||||
call give_explicit_cpoly_and_cgaussian( Q1_new, Q1_center, qq1, fact_q1, iorder_q1 &
|
||||
, expo3, expo4, K_power, L_power, K_center, L_center, dim1 )
|
||||
call give_explicit_cpoly_and_cgaussian(Q1_new, Q1_center, qq1, fact_q1, iorder_q1, &
|
||||
expo3, expo4, K_power, L_power, K_center, L_center, dim1)
|
||||
q1_inv = (1.d0,0.d0) / qq1
|
||||
|
||||
call give_explicit_cpoly_and_cgaussian( Q2_new, Q2_center, qq2, fact_q2, iorder_q2 &
|
||||
, conjg(expo3), expo4, K_power, L_power, K_center, L_center, dim1 )
|
||||
call give_explicit_cpoly_and_cgaussian(Q2_new, Q2_center, qq2, fact_q2, iorder_q2, &
|
||||
conjg(expo3), expo4, K_power, L_power, K_center, L_center, dim1)
|
||||
q2_inv = (1.d0,0.d0) / qq2
|
||||
|
||||
!do ii = 1, 3
|
||||
! !print *, qq1, q1_inv
|
||||
! !print *, qq2, q2_inv
|
||||
! print *, 'fact_q1', fact_q1
|
||||
! print *, 'fact_q2', fact_q2
|
||||
!enddo
|
||||
! if( abs(aimag(Q1_center(ii))) .gt. 0.d0 ) then
|
||||
! print *, ' Q_1 is complex !!'
|
||||
! print *, Q1_center
|
||||
! print *, expo3, expo4
|
||||
! print *, conjg(expo3), conjg(expo4)
|
||||
! stop
|
||||
! endif
|
||||
! if( abs(aimag(Q2_center(ii))) .gt. 0.d0 ) then
|
||||
! print *, ' Q_2 is complex !!'
|
||||
! print *, Q2_center
|
||||
! print *, expo3, expo4
|
||||
! print *, conjg(expo3), conjg(expo4)
|
||||
! stop
|
||||
! endif
|
||||
!enddo
|
||||
integral1 = general_primitive_integral_cosgtos(dim1, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p1, &
|
||||
Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q1)
|
||||
|
||||
integral2 = general_primitive_integral_cosgtos(dim1, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p1, &
|
||||
Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q2)
|
||||
|
||||
integral1 = general_primitive_integral_cosgtos( dim1, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p1 &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q1 )
|
||||
integral3 = general_primitive_integral_cosgtos(dim1, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p2, &
|
||||
Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q1)
|
||||
|
||||
integral2 = general_primitive_integral_cosgtos( dim1, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p1 &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q2 )
|
||||
integral4 = general_primitive_integral_cosgtos(dim1, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p2, &
|
||||
Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q2)
|
||||
|
||||
integral3 = general_primitive_integral_cosgtos( dim1, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p2 &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q1 )
|
||||
integral5 = general_primitive_integral_cosgtos(dim1, P3_new, P3_center, fact_p3, pp3, p3_inv, iorder_p3, &
|
||||
Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q1)
|
||||
|
||||
integral4 = general_primitive_integral_cosgtos( dim1, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p2 &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q2 )
|
||||
integral6 = general_primitive_integral_cosgtos(dim1, P3_new, P3_center, fact_p3, pp3, p3_inv, iorder_p3, &
|
||||
Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q2)
|
||||
|
||||
integral5 = general_primitive_integral_cosgtos( dim1, P3_new, P3_center, fact_p3, pp3, p3_inv, iorder_p3 &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q1 )
|
||||
integral7 = general_primitive_integral_cosgtos(dim1, P4_new, P4_center, fact_p4, pp4, p4_inv, iorder_p4, &
|
||||
Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q1)
|
||||
|
||||
integral6 = general_primitive_integral_cosgtos( dim1, P3_new, P3_center, fact_p3, pp3, p3_inv, iorder_p3 &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q2 )
|
||||
|
||||
integral7 = general_primitive_integral_cosgtos( dim1, P4_new, P4_center, fact_p4, pp4, p4_inv, iorder_p4 &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q1 )
|
||||
|
||||
integral8 = general_primitive_integral_cosgtos( dim1, P4_new, P4_center, fact_p4, pp4, p4_inv, iorder_p4 &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q2 )
|
||||
integral8 = general_primitive_integral_cosgtos(dim1, P4_new, P4_center, fact_p4, pp4, p4_inv, iorder_p4, &
|
||||
Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q2)
|
||||
|
||||
integral_tot = integral1 + integral2 + integral3 + integral4 + integral5 + integral6 + integral7 + integral8
|
||||
|
||||
!integral_tot = integral1
|
||||
!print*, integral_tot
|
||||
|
||||
ao_two_e_integral_cosgtos = ao_two_e_integral_cosgtos + coef4 * 2.d0 * real(integral_tot)
|
||||
enddo ! s
|
||||
enddo ! r
|
||||
enddo ! q
|
||||
enddo ! p
|
||||
enddo ! r
|
||||
enddo ! q
|
||||
enddo ! p
|
||||
|
||||
else
|
||||
!print *, ' the same center'
|
||||
|
||||
do p = 1, 3
|
||||
I_power(p) = ao_power(i,p)
|
||||
@ -290,7 +210,7 @@ double precision function ao_two_e_integral_cosgtos(i, j, k, l)
|
||||
endif
|
||||
endif
|
||||
|
||||
end function ao_two_e_integral_cosgtos
|
||||
end
|
||||
|
||||
! ---
|
||||
|
||||
@ -326,8 +246,8 @@ double precision function ao_2e_cosgtos_schwartz_accel(i, j, k, l)
|
||||
double precision :: thr
|
||||
double precision :: schwartz_ij
|
||||
|
||||
complex*16 :: ERI_cosgtos
|
||||
complex*16 :: general_primitive_integral_cosgtos
|
||||
complex*16, external :: ERI_cosgtos
|
||||
complex*16, external :: general_primitive_integral_cosgtos
|
||||
|
||||
ao_2e_cosgtos_schwartz_accel = 0.d0
|
||||
|
||||
@ -341,7 +261,7 @@ double precision function ao_2e_cosgtos_schwartz_accel(i, j, k, l)
|
||||
|
||||
thr = ao_integrals_threshold*ao_integrals_threshold
|
||||
|
||||
allocate( schwartz_kl(0:ao_prim_num(l),0:ao_prim_num(k)) )
|
||||
allocate(schwartz_kl(0:ao_prim_num(l),0:ao_prim_num(k)))
|
||||
|
||||
if(num_i /= num_j .or. num_k /= num_l .or. num_j /= num_k) then
|
||||
|
||||
@ -366,45 +286,45 @@ double precision function ao_2e_cosgtos_schwartz_accel(i, j, k, l)
|
||||
coef2 = coef1 * ao_coef_norm_ord_transp_cosgtos(s,l) * ao_coef_norm_ord_transp_cosgtos(s,l)
|
||||
expo2 = ao_expo_ord_transp_cosgtos(s,l)
|
||||
|
||||
call give_explicit_cpoly_and_cgaussian( P1_new, P1_center, pp1, fact_p1, iorder_p1 &
|
||||
, expo1, expo2, K_power, L_power, K_center, L_center, dim1 )
|
||||
call give_explicit_cpoly_and_cgaussian(P1_new, P1_center, pp1, fact_p1, iorder_p1, &
|
||||
expo1, expo2, K_power, L_power, K_center, L_center, dim1)
|
||||
p1_inv = (1.d0,0.d0) / pp1
|
||||
|
||||
call give_explicit_cpoly_and_cgaussian( P2_new, P2_center, pp2, fact_p2, iorder_p2 &
|
||||
, conjg(expo1), expo2, K_power, L_power, K_center, L_center, dim1 )
|
||||
call give_explicit_cpoly_and_cgaussian(P2_new, P2_center, pp2, fact_p2, iorder_p2, &
|
||||
conjg(expo1), expo2, K_power, L_power, K_center, L_center, dim1)
|
||||
p2_inv = (1.d0,0.d0) / pp2
|
||||
|
||||
call give_explicit_cpoly_and_cgaussian( P3_new, P3_center, pp3, fact_p3, iorder_p3 &
|
||||
, expo1, conjg(expo2), K_power, L_power, K_center, L_center, dim1 )
|
||||
call give_explicit_cpoly_and_cgaussian(P3_new, P3_center, pp3, fact_p3, iorder_p3, &
|
||||
expo1, conjg(expo2), K_power, L_power, K_center, L_center, dim1)
|
||||
p3_inv = (1.d0,0.d0) / pp3
|
||||
|
||||
call give_explicit_cpoly_and_cgaussian( P4_new, P4_center, pp4, fact_p4, iorder_p4 &
|
||||
, conjg(expo1), conjg(expo2), K_power, L_power, K_center, L_center, dim1 )
|
||||
call give_explicit_cpoly_and_cgaussian(P4_new, P4_center, pp4, fact_p4, iorder_p4, &
|
||||
conjg(expo1), conjg(expo2), K_power, L_power, K_center, L_center, dim1)
|
||||
p4_inv = (1.d0,0.d0) / pp4
|
||||
|
||||
integral1 = general_primitive_integral_cosgtos( dim1, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p1 )
|
||||
integral1 = general_primitive_integral_cosgtos(dim1, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p1, &
|
||||
P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p1)
|
||||
|
||||
integral2 = general_primitive_integral_cosgtos( dim1, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p2 )
|
||||
integral2 = general_primitive_integral_cosgtos(dim1, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p1, &
|
||||
P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p2)
|
||||
|
||||
integral3 = general_primitive_integral_cosgtos( dim1, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p2 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p1 )
|
||||
integral3 = general_primitive_integral_cosgtos(dim1, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p2, &
|
||||
P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p1)
|
||||
|
||||
integral4 = general_primitive_integral_cosgtos( dim1, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p2 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p2 )
|
||||
integral4 = general_primitive_integral_cosgtos(dim1, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p2, &
|
||||
P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p2)
|
||||
|
||||
integral5 = general_primitive_integral_cosgtos( dim1, P3_new, P3_center, fact_p3, pp3, p3_inv, iorder_p3 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p1 )
|
||||
integral5 = general_primitive_integral_cosgtos(dim1, P3_new, P3_center, fact_p3, pp3, p3_inv, iorder_p3, &
|
||||
P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p1)
|
||||
|
||||
integral6 = general_primitive_integral_cosgtos( dim1, P3_new, P3_center, fact_p3, pp3, p3_inv, iorder_p3 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p2 )
|
||||
integral6 = general_primitive_integral_cosgtos(dim1, P3_new, P3_center, fact_p3, pp3, p3_inv, iorder_p3, &
|
||||
P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p2)
|
||||
|
||||
integral7 = general_primitive_integral_cosgtos( dim1, P4_new, P4_center, fact_p4, pp4, p4_inv, iorder_p4 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p1 )
|
||||
integral7 = general_primitive_integral_cosgtos(dim1, P4_new, P4_center, fact_p4, pp4, p4_inv, iorder_p4, &
|
||||
P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p1)
|
||||
|
||||
integral8 = general_primitive_integral_cosgtos( dim1, P4_new, P4_center, fact_p4, pp4, p4_inv, iorder_p4 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p2 )
|
||||
integral8 = general_primitive_integral_cosgtos(dim1, P4_new, P4_center, fact_p4, pp4, p4_inv, iorder_p4, &
|
||||
P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p2)
|
||||
|
||||
integral_tot = integral1 + integral2 + integral3 + integral4 + integral5 + integral6 + integral7 + integral8
|
||||
|
||||
@ -544,41 +464,45 @@ double precision function ao_2e_cosgtos_schwartz_accel(i, j, k, l)
|
||||
coef2 = coef1 * ao_coef_norm_ord_transp_cosgtos(s,l) * ao_coef_norm_ord_transp_cosgtos(s,l)
|
||||
expo2 = ao_expo_ord_transp_cosgtos(s,l)
|
||||
|
||||
integral1 = ERI_cosgtos( expo1, expo2, expo1, expo2 &
|
||||
, K_power(1), L_power(1), K_power(1), L_power(1) &
|
||||
, K_power(2), L_power(2), K_power(2), L_power(2) &
|
||||
, K_power(3), L_power(3), K_power(3), L_power(3) )
|
||||
integral2 = ERI_cosgtos( expo1, expo2, conjg(expo1), expo2 &
|
||||
, K_power(1), L_power(1), K_power(1), L_power(1) &
|
||||
, K_power(2), L_power(2), K_power(2), L_power(2) &
|
||||
, K_power(3), L_power(3), K_power(3), L_power(3) )
|
||||
integral1 = ERI_cosgtos(expo1, expo2, expo1, expo2, &
|
||||
K_power(1), L_power(1), K_power(1), L_power(1), &
|
||||
K_power(2), L_power(2), K_power(2), L_power(2), &
|
||||
K_power(3), L_power(3), K_power(3), L_power(3))
|
||||
|
||||
integral3 = ERI_cosgtos( conjg(expo1), expo2, expo1, expo2 &
|
||||
, K_power(1), L_power(1), K_power(1), L_power(1) &
|
||||
, K_power(2), L_power(2), K_power(2), L_power(2) &
|
||||
, K_power(3), L_power(3), K_power(3), L_power(3) )
|
||||
integral4 = ERI_cosgtos( conjg(expo1), expo2, conjg(expo1), expo2 &
|
||||
, K_power(1), L_power(1), K_power(1), L_power(1) &
|
||||
, K_power(2), L_power(2), K_power(2), L_power(2) &
|
||||
, K_power(3), L_power(3), K_power(3), L_power(3) )
|
||||
integral2 = ERI_cosgtos(expo1, expo2, conjg(expo1), expo2, &
|
||||
K_power(1), L_power(1), K_power(1), L_power(1), &
|
||||
K_power(2), L_power(2), K_power(2), L_power(2), &
|
||||
K_power(3), L_power(3), K_power(3), L_power(3))
|
||||
|
||||
integral5 = ERI_cosgtos( expo1, conjg(expo2), expo1, expo2 &
|
||||
, K_power(1), L_power(1), K_power(1), L_power(1) &
|
||||
, K_power(2), L_power(2), K_power(2), L_power(2) &
|
||||
, K_power(3), L_power(3), K_power(3), L_power(3) )
|
||||
integral6 = ERI_cosgtos( expo1, conjg(expo2), conjg(expo1), expo2 &
|
||||
, K_power(1), L_power(1), K_power(1), L_power(1) &
|
||||
, K_power(2), L_power(2), K_power(2), L_power(2) &
|
||||
, K_power(3), L_power(3), K_power(3), L_power(3) )
|
||||
integral3 = ERI_cosgtos(conjg(expo1), expo2, expo1, expo2, &
|
||||
K_power(1), L_power(1), K_power(1), L_power(1), &
|
||||
K_power(2), L_power(2), K_power(2), L_power(2), &
|
||||
K_power(3), L_power(3), K_power(3), L_power(3))
|
||||
|
||||
integral7 = ERI_cosgtos( conjg(expo1), conjg(expo2), expo1, expo2 &
|
||||
, K_power(1), L_power(1), K_power(1), L_power(1) &
|
||||
, K_power(2), L_power(2), K_power(2), L_power(2) &
|
||||
, K_power(3), L_power(3), K_power(3), L_power(3) )
|
||||
integral8 = ERI_cosgtos( conjg(expo1), conjg(expo2), conjg(expo1), expo2 &
|
||||
, K_power(1), L_power(1), K_power(1), L_power(1) &
|
||||
, K_power(2), L_power(2), K_power(2), L_power(2) &
|
||||
, K_power(3), L_power(3), K_power(3), L_power(3) )
|
||||
integral4 = ERI_cosgtos(conjg(expo1), expo2, conjg(expo1), expo2, &
|
||||
K_power(1), L_power(1), K_power(1), L_power(1), &
|
||||
K_power(2), L_power(2), K_power(2), L_power(2), &
|
||||
K_power(3), L_power(3), K_power(3), L_power(3))
|
||||
|
||||
integral5 = ERI_cosgtos(expo1, conjg(expo2), expo1, expo2, &
|
||||
K_power(1), L_power(1), K_power(1), L_power(1), &
|
||||
K_power(2), L_power(2), K_power(2), L_power(2), &
|
||||
K_power(3), L_power(3), K_power(3), L_power(3))
|
||||
|
||||
integral6 = ERI_cosgtos(expo1, conjg(expo2), conjg(expo1), expo2, &
|
||||
K_power(1), L_power(1), K_power(1), L_power(1), &
|
||||
K_power(2), L_power(2), K_power(2), L_power(2), &
|
||||
K_power(3), L_power(3), K_power(3), L_power(3))
|
||||
|
||||
integral7 = ERI_cosgtos(conjg(expo1), conjg(expo2), expo1, expo2, &
|
||||
K_power(1), L_power(1), K_power(1), L_power(1), &
|
||||
K_power(2), L_power(2), K_power(2), L_power(2), &
|
||||
K_power(3), L_power(3), K_power(3), L_power(3))
|
||||
|
||||
integral8 = ERI_cosgtos(conjg(expo1), conjg(expo2), conjg(expo1), expo2, &
|
||||
K_power(1), L_power(1), K_power(1), L_power(1), &
|
||||
K_power(2), L_power(2), K_power(2), L_power(2), &
|
||||
K_power(3), L_power(3), K_power(3), L_power(3))
|
||||
|
||||
integral_tot = integral1 + integral2 + integral3 + integral4 + integral5 + integral6 + integral7 + integral8
|
||||
|
||||
@ -598,45 +522,45 @@ double precision function ao_2e_cosgtos_schwartz_accel(i, j, k, l)
|
||||
coef2 = coef1 * ao_coef_norm_ord_transp_cosgtos(q,j)
|
||||
expo2 = ao_expo_ord_transp_cosgtos(q,j)
|
||||
|
||||
integral1 = ERI_cosgtos( expo1, expo2, expo1, expo2 &
|
||||
, I_power(1), J_power(1), I_power(1), J_power(1) &
|
||||
, I_power(2), J_power(2), I_power(2), J_power(2) &
|
||||
, I_power(3), J_power(3), I_power(3), J_power(3) )
|
||||
integral1 = ERI_cosgtos(expo1, expo2, expo1, expo2, &
|
||||
I_power(1), J_power(1), I_power(1), J_power(1), &
|
||||
I_power(2), J_power(2), I_power(2), J_power(2), &
|
||||
I_power(3), J_power(3), I_power(3), J_power(3))
|
||||
|
||||
integral2 = ERI_cosgtos( expo1, expo2, conjg(expo1), expo2 &
|
||||
, I_power(1), J_power(1), I_power(1), J_power(1) &
|
||||
, I_power(2), J_power(2), I_power(2), J_power(2) &
|
||||
, I_power(3), J_power(3), I_power(3), J_power(3) )
|
||||
integral2 = ERI_cosgtos(expo1, expo2, conjg(expo1), expo2, &
|
||||
I_power(1), J_power(1), I_power(1), J_power(1), &
|
||||
I_power(2), J_power(2), I_power(2), J_power(2), &
|
||||
I_power(3), J_power(3), I_power(3), J_power(3))
|
||||
|
||||
integral3 = ERI_cosgtos( conjg(expo1), expo2, expo1, expo2 &
|
||||
, I_power(1), J_power(1), I_power(1), J_power(1) &
|
||||
, I_power(2), J_power(2), I_power(2), J_power(2) &
|
||||
, I_power(3), J_power(3), I_power(3), J_power(3) )
|
||||
integral3 = ERI_cosgtos(conjg(expo1), expo2, expo1, expo2, &
|
||||
I_power(1), J_power(1), I_power(1), J_power(1), &
|
||||
I_power(2), J_power(2), I_power(2), J_power(2), &
|
||||
I_power(3), J_power(3), I_power(3), J_power(3))
|
||||
|
||||
integral4 = ERI_cosgtos( conjg(expo1), expo2, conjg(expo1), expo2 &
|
||||
, I_power(1), J_power(1), I_power(1), J_power(1) &
|
||||
, I_power(2), J_power(2), I_power(2), J_power(2) &
|
||||
, I_power(3), J_power(3), I_power(3), J_power(3) )
|
||||
integral4 = ERI_cosgtos(conjg(expo1), expo2, conjg(expo1), expo2, &
|
||||
I_power(1), J_power(1), I_power(1), J_power(1), &
|
||||
I_power(2), J_power(2), I_power(2), J_power(2), &
|
||||
I_power(3), J_power(3), I_power(3), J_power(3))
|
||||
|
||||
integral5 = ERI_cosgtos( expo1, conjg(expo2), expo1, expo2 &
|
||||
, I_power(1), J_power(1), I_power(1), J_power(1) &
|
||||
, I_power(2), J_power(2), I_power(2), J_power(2) &
|
||||
, I_power(3), J_power(3), I_power(3), J_power(3) )
|
||||
integral5 = ERI_cosgtos(expo1, conjg(expo2), expo1, expo2, &
|
||||
I_power(1), J_power(1), I_power(1), J_power(1), &
|
||||
I_power(2), J_power(2), I_power(2), J_power(2), &
|
||||
I_power(3), J_power(3), I_power(3), J_power(3))
|
||||
|
||||
integral6 = ERI_cosgtos( expo1, conjg(expo2), conjg(expo1), expo2 &
|
||||
, I_power(1), J_power(1), I_power(1), J_power(1) &
|
||||
, I_power(2), J_power(2), I_power(2), J_power(2) &
|
||||
, I_power(3), J_power(3), I_power(3), J_power(3) )
|
||||
integral6 = ERI_cosgtos(expo1, conjg(expo2), conjg(expo1), expo2, &
|
||||
I_power(1), J_power(1), I_power(1), J_power(1), &
|
||||
I_power(2), J_power(2), I_power(2), J_power(2), &
|
||||
I_power(3), J_power(3), I_power(3), J_power(3))
|
||||
|
||||
integral7 = ERI_cosgtos( conjg(expo1), conjg(expo2), expo1, expo2 &
|
||||
, I_power(1), J_power(1), I_power(1), J_power(1) &
|
||||
, I_power(2), J_power(2), I_power(2), J_power(2) &
|
||||
, I_power(3), J_power(3), I_power(3), J_power(3) )
|
||||
integral7 = ERI_cosgtos(conjg(expo1), conjg(expo2), expo1, expo2, &
|
||||
I_power(1), J_power(1), I_power(1), J_power(1), &
|
||||
I_power(2), J_power(2), I_power(2), J_power(2), &
|
||||
I_power(3), J_power(3), I_power(3), J_power(3))
|
||||
|
||||
integral8 = ERI_cosgtos( conjg(expo1), conjg(expo2), conjg(expo1), expo2 &
|
||||
, I_power(1), J_power(1), I_power(1), J_power(1) &
|
||||
, I_power(2), J_power(2), I_power(2), J_power(2) &
|
||||
, I_power(3), J_power(3), I_power(3), J_power(3) )
|
||||
integral8 = ERI_cosgtos(conjg(expo1), conjg(expo2), conjg(expo1), expo2, &
|
||||
I_power(1), J_power(1), I_power(1), J_power(1), &
|
||||
I_power(2), J_power(2), I_power(2), J_power(2), &
|
||||
I_power(3), J_power(3), I_power(3), J_power(3))
|
||||
|
||||
integral_tot = integral1 + integral2 + integral3 + integral4 + integral5 + integral6 + integral7 + integral8
|
||||
|
||||
@ -655,45 +579,45 @@ double precision function ao_2e_cosgtos_schwartz_accel(i, j, k, l)
|
||||
coef4 = coef3 * ao_coef_norm_ord_transp_cosgtos(s,l)
|
||||
expo4 = ao_expo_ord_transp_cosgtos(s,l)
|
||||
|
||||
integral1 = ERI_cosgtos( expo1, expo2, expo3, expo4 &
|
||||
, I_power(1), J_power(1), K_power(1), L_power(1) &
|
||||
, I_power(2), J_power(2), K_power(2), L_power(2) &
|
||||
, I_power(3), J_power(3), K_power(3), L_power(3) )
|
||||
integral1 = ERI_cosgtos(expo1, expo2, expo3, expo4, &
|
||||
I_power(1), J_power(1), K_power(1), L_power(1), &
|
||||
I_power(2), J_power(2), K_power(2), L_power(2), &
|
||||
I_power(3), J_power(3), K_power(3), L_power(3))
|
||||
|
||||
integral2 = ERI_cosgtos( expo1, expo2, conjg(expo3), expo4 &
|
||||
, I_power(1), J_power(1), K_power(1), L_power(1) &
|
||||
, I_power(2), J_power(2), K_power(2), L_power(2) &
|
||||
, I_power(3), J_power(3), K_power(3), L_power(3) )
|
||||
integral2 = ERI_cosgtos(expo1, expo2, conjg(expo3), expo4, &
|
||||
I_power(1), J_power(1), K_power(1), L_power(1), &
|
||||
I_power(2), J_power(2), K_power(2), L_power(2), &
|
||||
I_power(3), J_power(3), K_power(3), L_power(3))
|
||||
|
||||
integral3 = ERI_cosgtos( conjg(expo1), expo2, expo3, expo4 &
|
||||
, I_power(1), J_power(1), K_power(1), L_power(1) &
|
||||
, I_power(2), J_power(2), K_power(2), L_power(2) &
|
||||
, I_power(3), J_power(3), K_power(3), L_power(3) )
|
||||
integral3 = ERI_cosgtos(conjg(expo1), expo2, expo3, expo4, &
|
||||
I_power(1), J_power(1), K_power(1), L_power(1), &
|
||||
I_power(2), J_power(2), K_power(2), L_power(2), &
|
||||
I_power(3), J_power(3), K_power(3), L_power(3))
|
||||
|
||||
integral4 = ERI_cosgtos( conjg(expo1), expo2, conjg(expo3), expo4 &
|
||||
, I_power(1), J_power(1), K_power(1), L_power(1) &
|
||||
, I_power(2), J_power(2), K_power(2), L_power(2) &
|
||||
, I_power(3), J_power(3), K_power(3), L_power(3) )
|
||||
integral4 = ERI_cosgtos(conjg(expo1), expo2, conjg(expo3), expo4, &
|
||||
I_power(1), J_power(1), K_power(1), L_power(1), &
|
||||
I_power(2), J_power(2), K_power(2), L_power(2), &
|
||||
I_power(3), J_power(3), K_power(3), L_power(3))
|
||||
|
||||
integral5 = ERI_cosgtos( expo1, conjg(expo2), expo3, expo4 &
|
||||
, I_power(1), J_power(1), K_power(1), L_power(1) &
|
||||
, I_power(2), J_power(2), K_power(2), L_power(2) &
|
||||
, I_power(3), J_power(3), K_power(3), L_power(3) )
|
||||
integral5 = ERI_cosgtos(expo1, conjg(expo2), expo3, expo4, &
|
||||
I_power(1), J_power(1), K_power(1), L_power(1), &
|
||||
I_power(2), J_power(2), K_power(2), L_power(2), &
|
||||
I_power(3), J_power(3), K_power(3), L_power(3))
|
||||
|
||||
integral6 = ERI_cosgtos( expo1, conjg(expo2), conjg(expo3), expo4 &
|
||||
, I_power(1), J_power(1), K_power(1), L_power(1) &
|
||||
, I_power(2), J_power(2), K_power(2), L_power(2) &
|
||||
, I_power(3), J_power(3), K_power(3), L_power(3) )
|
||||
integral6 = ERI_cosgtos(expo1, conjg(expo2), conjg(expo3), expo4, &
|
||||
I_power(1), J_power(1), K_power(1), L_power(1), &
|
||||
I_power(2), J_power(2), K_power(2), L_power(2), &
|
||||
I_power(3), J_power(3), K_power(3), L_power(3))
|
||||
|
||||
integral7 = ERI_cosgtos( conjg(expo1), conjg(expo2), expo3, expo4 &
|
||||
, I_power(1), J_power(1), K_power(1), L_power(1) &
|
||||
, I_power(2), J_power(2), K_power(2), L_power(2) &
|
||||
, I_power(3), J_power(3), K_power(3), L_power(3) )
|
||||
integral7 = ERI_cosgtos(conjg(expo1), conjg(expo2), expo3, expo4, &
|
||||
I_power(1), J_power(1), K_power(1), L_power(1), &
|
||||
I_power(2), J_power(2), K_power(2), L_power(2), &
|
||||
I_power(3), J_power(3), K_power(3), L_power(3))
|
||||
|
||||
integral8 = ERI_cosgtos( conjg(expo1), conjg(expo2), conjg(expo3), expo4 &
|
||||
, I_power(1), J_power(1), K_power(1), L_power(1) &
|
||||
, I_power(2), J_power(2), K_power(2), L_power(2) &
|
||||
, I_power(3), J_power(3), K_power(3), L_power(3) )
|
||||
integral8 = ERI_cosgtos(conjg(expo1), conjg(expo2), conjg(expo3), expo4, &
|
||||
I_power(1), J_power(1), K_power(1), L_power(1), &
|
||||
I_power(2), J_power(2), K_power(2), L_power(2), &
|
||||
I_power(3), J_power(3), K_power(3), L_power(3))
|
||||
|
||||
integral_tot = integral1 + integral2 + integral3 + integral4 + integral5 + integral6 + integral7 + integral8
|
||||
|
||||
@ -707,11 +631,11 @@ double precision function ao_2e_cosgtos_schwartz_accel(i, j, k, l)
|
||||
|
||||
deallocate(schwartz_kl)
|
||||
|
||||
end function ao_2e_cosgtos_schwartz_accel
|
||||
end
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [ double precision, ao_2e_cosgtos_schwartz, (ao_num,ao_num)]
|
||||
BEGIN_PROVIDER [double precision, ao_2e_cosgtos_schwartz, (ao_num, ao_num)]
|
||||
|
||||
BEGIN_DOC
|
||||
! Needed to compute Schwartz inequalities
|
||||
@ -739,8 +663,8 @@ END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
||||
complex*16 function general_primitive_integral_cosgtos( dim, P_new, P_center, fact_p, p, p_inv, iorder_p &
|
||||
, Q_new, Q_center, fact_q, q, q_inv, iorder_q )
|
||||
complex*16 function general_primitive_integral_cosgtos(dim, P_new, P_center, fact_p, p, p_inv, iorder_p, &
|
||||
Q_new, Q_center, fact_q, q, q_inv, iorder_q)
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
@ -765,7 +689,7 @@ complex*16 function general_primitive_integral_cosgtos( dim, P_new, P_center, fa
|
||||
complex*16 :: dx(0:max_dim), Ix_pol(0:max_dim), dy(0:max_dim), Iy_pol(0:max_dim), dz(0:max_dim), Iz_pol(0:max_dim)
|
||||
complex*16 :: d1(0:max_dim), d_poly(0:max_dim)
|
||||
|
||||
complex*16 :: crint_sum
|
||||
complex*16 :: crint_sum_2
|
||||
|
||||
|
||||
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: dx, Ix_pol, dy, Iy_pol, dz, Iz_pol
|
||||
@ -912,13 +836,11 @@ complex*16 function general_primitive_integral_cosgtos( dim, P_new, P_center, fa
|
||||
!DIR$ FORCEINLINE
|
||||
call multiply_cpoly(d_poly, n_pt_tmp, Iz_pol, n_Iz, d1, n_pt_out)
|
||||
|
||||
accu = crint_sum(n_pt_out, const, d1)
|
||||
! print *, n_pt_out, real(d1(0:n_pt_out))
|
||||
! print *, real(accu)
|
||||
accu = crint_sum_2(n_pt_out, const, d1)
|
||||
|
||||
general_primitive_integral_cosgtos = fact_p * fact_q * accu * pi_5_2 * p_inv * q_inv / sq_ppq
|
||||
|
||||
end function general_primitive_integral_cosgtos
|
||||
end
|
||||
|
||||
! ---
|
||||
|
||||
@ -994,7 +916,7 @@ complex*16 function ERI_cosgtos(alpha, beta, delta, gama, a_x, b_x, c_x, d_x, a_
|
||||
|
||||
ERI_cosgtos = I_f * coeff
|
||||
|
||||
end function ERI_cosgtos
|
||||
end
|
||||
|
||||
! ---
|
||||
|
||||
@ -1076,7 +998,7 @@ subroutine integrale_new_cosgtos(I_f, a_x, b_x, c_x, d_x, a_y, b_y, c_y, d_y, a_
|
||||
I_f += gauleg_w(i, j) * t1(i)
|
||||
enddo
|
||||
|
||||
end subroutine integrale_new_cosgtos
|
||||
end
|
||||
|
||||
! ---
|
||||
|
||||
@ -1123,7 +1045,7 @@ recursive subroutine I_x1_new_cosgtos(a, c, B_10, B_01, B_00, res, n_pt)
|
||||
|
||||
endif
|
||||
|
||||
end subroutine I_x1_new_cosgtos
|
||||
end
|
||||
|
||||
! ---
|
||||
|
||||
@ -1163,7 +1085,7 @@ recursive subroutine I_x2_new_cosgtos(c, B_10, B_01, B_00, res, n_pt)
|
||||
|
||||
endif
|
||||
|
||||
end subroutine I_x2_new_cosgtos
|
||||
end
|
||||
|
||||
! ---
|
||||
|
||||
@ -1234,7 +1156,7 @@ subroutine give_cpolynom_mult_center_x( P_center, Q_center, a_x, d_x, p, q, n_pt
|
||||
return
|
||||
endif
|
||||
|
||||
end subroutine give_cpolynom_mult_center_x
|
||||
end
|
||||
|
||||
! ---
|
||||
|
||||
@ -1277,7 +1199,7 @@ subroutine I_x1_pol_mult_cosgtos(a, c, B_10, B_01, B_00, C_00, D_00, d, nd, n_pt
|
||||
|
||||
endif
|
||||
|
||||
end subroutine I_x1_pol_mult_cosgtos
|
||||
end
|
||||
|
||||
! ---
|
||||
|
||||
@ -1370,7 +1292,7 @@ recursive subroutine I_x1_pol_mult_recurs_cosgtos(a, c, B_10, B_01, B_00, C_00,
|
||||
!DIR$ FORCEINLINE
|
||||
call multiply_cpoly(Y, ny, C_00, 2, d, nd)
|
||||
|
||||
end subroutine I_x1_pol_mult_recurs_cosgtos
|
||||
end
|
||||
|
||||
! ---
|
||||
|
||||
@ -1426,7 +1348,7 @@ recursive subroutine I_x1_pol_mult_a1_cosgtos(c,B_10,B_01,B_00,C_00,D_00,d,nd,n_
|
||||
!DIR$ FORCEINLINE
|
||||
call multiply_cpoly(Y, ny, C_00, 2, d, nd)
|
||||
|
||||
end subroutine I_x1_pol_mult_a1_cosgtos
|
||||
end
|
||||
|
||||
! ---
|
||||
|
||||
@ -1490,7 +1412,7 @@ recursive subroutine I_x1_pol_mult_a2_cosgtos(c, B_10, B_01, B_00, C_00, D_00, d
|
||||
!DIR$ FORCEINLINE
|
||||
call multiply_cpoly(Y, ny, C_00, 2, d, nd)
|
||||
|
||||
end subroutine I_x1_pol_mult_a2_cosgtos
|
||||
end
|
||||
|
||||
! ---
|
||||
|
||||
@ -1575,7 +1497,7 @@ recursive subroutine I_x2_pol_mult_cosgtos(c, B_10, B_01, B_00, C_00, D_00, d, n
|
||||
|
||||
end select
|
||||
|
||||
end subroutine I_x2_pol_mult_cosgtos
|
||||
end
|
||||
|
||||
! ---
|
||||
|
||||
|
@ -1,6 +1,22 @@
|
||||
|
||||
! ---
|
||||
|
||||
logical function do_schwartz_accel(i,j,k,l)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! If true, use Schwatrz to accelerate direct integral calculation
|
||||
END_DOC
|
||||
integer, intent(in) :: i, j, k, l
|
||||
if (do_ao_cholesky) then
|
||||
do_schwartz_accel = .False.
|
||||
else
|
||||
do_schwartz_accel = (ao_prim_num(i) * ao_prim_num(j) * &
|
||||
ao_prim_num(k) * ao_prim_num(l) > 1024 )
|
||||
endif
|
||||
|
||||
end function
|
||||
|
||||
|
||||
double precision function ao_two_e_integral(i, j, k, l)
|
||||
|
||||
BEGIN_DOC
|
||||
@ -25,6 +41,7 @@ double precision function ao_two_e_integral(i, j, k, l)
|
||||
double precision, external :: ao_two_e_integral_cosgtos
|
||||
double precision, external :: ao_two_e_integral_schwartz_accel
|
||||
|
||||
logical, external :: do_schwartz_accel
|
||||
|
||||
if(use_cosgtos) then
|
||||
!print *, ' use_cosgtos for ao_two_e_integral ?', use_cosgtos
|
||||
@ -35,7 +52,7 @@ double precision function ao_two_e_integral(i, j, k, l)
|
||||
|
||||
ao_two_e_integral = ao_two_e_integral_erf(i, j, k, l)
|
||||
|
||||
else if (ao_prim_num(i) * ao_prim_num(j) * ao_prim_num(k) * ao_prim_num(l) > 1024 ) then
|
||||
else if (do_schwartz_accel(i,j,k,l)) then
|
||||
|
||||
ao_two_e_integral = ao_two_e_integral_schwartz_accel(i,j,k,l)
|
||||
|
||||
|
@ -154,14 +154,14 @@ subroutine run_ccsd_space_orb
|
||||
|
||||
allocate(all_err(nO*nV+nO*nO*nV*(nV*1_8),cc_diis_depth), all_t(nO*nV+nO*nO*nV*(nV*1_8),cc_diis_depth))
|
||||
!$OMP PARALLEL PRIVATE(i,j) DEFAULT(SHARED)
|
||||
!$OMP DO COLLAPSE(2)
|
||||
do j=1,cc_diis_depth
|
||||
!$OMP DO
|
||||
do i=1, size(all_err,1)
|
||||
all_err(i,j) = 0d0
|
||||
all_t(i,j) = 0d0
|
||||
enddo
|
||||
!$OMP END DO NOWAIT
|
||||
enddo
|
||||
!$OMP END DO NOWAIT
|
||||
!$OMP END PARALLEL
|
||||
endif
|
||||
|
||||
@ -237,6 +237,7 @@ subroutine run_ccsd_space_orb
|
||||
call update_t2(nO,nV,cc_space_f_o,cc_space_f_v,r2%f,t2%f)
|
||||
else
|
||||
print*,'Unkown cc_method_method: '//cc_update_method
|
||||
call abort
|
||||
endif
|
||||
|
||||
call update_tau_space(nO,nV,t1%f,t1,t2,tau)
|
||||
|
@ -223,12 +223,11 @@ subroutine davidson_diag_hjj_sjj(dets_in,u_in,H_jj,s2_out,energies,dim_in,sze,N_
|
||||
exit
|
||||
endif
|
||||
|
||||
if (itermax > 4) then
|
||||
itermax = itermax - 1
|
||||
else if (m==1.and.disk_based_davidson) then
|
||||
if (disk_based_davidson) then
|
||||
m=0
|
||||
disk_based = .True.
|
||||
itermax = 6
|
||||
else if (itermax > 4) then
|
||||
itermax = itermax - 1
|
||||
else
|
||||
nproc_target = nproc_target - 1
|
||||
endif
|
||||
@ -267,14 +266,12 @@ subroutine davidson_diag_hjj_sjj(dets_in,u_in,H_jj,s2_out,energies,dim_in,sze,N_
|
||||
|
||||
if (disk_based) then
|
||||
! Create memory-mapped files for W and S
|
||||
type(c_ptr) :: ptr_w, ptr_s
|
||||
integer :: fd_s, fd_w
|
||||
call mmap(trim(ezfio_work_dir)//'davidson_w', (/int(sze,8),int(N_st_diag*itermax,8)/),&
|
||||
8, fd_w, .False., .True., ptr_w)
|
||||
call mmap(trim(ezfio_work_dir)//'davidson_s', (/int(sze,8),int(N_st_diag*itermax,8)/),&
|
||||
4, fd_s, .False., .True., ptr_s)
|
||||
call c_f_pointer(ptr_w, w, (/sze,N_st_diag*itermax/))
|
||||
call c_f_pointer(ptr_s, s, (/sze,N_st_diag*itermax/))
|
||||
type(mmap_type) :: map_s, map_w
|
||||
|
||||
call mmap_create_d('', (/ 1_8*sze, 1_8*N_st_diag*itermax /), .False., .True., map_w)
|
||||
call mmap_create_s('', (/ 1_8*sze, 1_8*N_st_diag*itermax /), .False., .True., map_s)
|
||||
w => map_w%d2
|
||||
s => map_s%s2
|
||||
else
|
||||
allocate(W(sze,N_st_diag*itermax), S(sze,N_st_diag*itermax))
|
||||
endif
|
||||
@ -755,13 +752,8 @@ subroutine davidson_diag_hjj_sjj(dets_in,u_in,H_jj,s2_out,energies,dim_in,sze,N_
|
||||
|
||||
if (disk_based)then
|
||||
! Remove temp files
|
||||
integer, external :: getUnitAndOpen
|
||||
call munmap( (/int(sze,8),int(N_st_diag*itermax,8)/), 8, fd_w, ptr_w )
|
||||
fd_w = getUnitAndOpen(trim(ezfio_work_dir)//'davidson_w','r')
|
||||
close(fd_w,status='delete')
|
||||
call munmap( (/int(sze,8),int(N_st_diag*itermax,8)/), 4, fd_s, ptr_s )
|
||||
fd_s = getUnitAndOpen(trim(ezfio_work_dir)//'davidson_s','r')
|
||||
close(fd_s,status='delete')
|
||||
call mmap_destroy(map_w)
|
||||
call mmap_destroy(map_s)
|
||||
else
|
||||
deallocate(W,S)
|
||||
endif
|
||||
@ -774,6 +766,7 @@ subroutine davidson_diag_hjj_sjj(dets_in,u_in,H_jj,s2_out,energies,dim_in,sze,N_
|
||||
lambda &
|
||||
)
|
||||
FREE nthreads_davidson
|
||||
|
||||
end
|
||||
|
||||
|
||||
|
@ -330,6 +330,10 @@ END_PROVIDER
|
||||
deallocate(eigenvectors,eigenvalues)
|
||||
endif
|
||||
|
||||
! ! Dominant determinants for each states
|
||||
! call print_dominant_det(psi_det,CI_eigenvectors,N_det,N_states,N_int)
|
||||
! call wf_overlap(psi_det,psi_coef,N_states,N_det,psi_det,CI_eigenvectors,N_states,N_det)
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
subroutine diagonalize_CI
|
||||
|
@ -179,10 +179,12 @@ subroutine H_u_0_nstates_openmp_work_$N_int(v_t,u_t,N_st,sze,istart,iend,ishift,
|
||||
!
|
||||
! compute_singles = (mem+rss > qp_max_mem)
|
||||
!
|
||||
! if (.not.compute_singles) then
|
||||
! provide singles_beta_csc
|
||||
! endif
|
||||
compute_singles=.True.
|
||||
compute_singles=.True.
|
||||
|
||||
if (.not.compute_singles) then
|
||||
provide singles_alpha_csc singles_beta_csc
|
||||
endif
|
||||
|
||||
|
||||
|
||||
maxab = max(N_det_alpha_unique, N_det_beta_unique)+1
|
||||
@ -287,8 +289,7 @@ compute_singles=.True.
|
||||
|
||||
tmp_det2(1:$N_int,2) = psi_det_beta_unique(1:$N_int, lcol)
|
||||
|
||||
!---
|
||||
! if (compute_singles) then
|
||||
if (compute_singles) then
|
||||
|
||||
l_a = psi_bilinear_matrix_columns_loc(lcol)
|
||||
ASSERT (l_a <= N_det)
|
||||
@ -311,69 +312,67 @@ compute_singles=.True.
|
||||
buffer, idx, tmp_det(1,1), j, &
|
||||
singles_a, n_singles_a )
|
||||
|
||||
!-----
|
||||
! else
|
||||
!
|
||||
! ! Search for singles
|
||||
!
|
||||
!call cpu_time(time0)
|
||||
! ! Right boundary
|
||||
! l_a = psi_bilinear_matrix_columns_loc(lcol+1)-1
|
||||
! ASSERT (l_a <= N_det)
|
||||
! do j=1,psi_bilinear_matrix_columns_loc(lcol+1) - psi_bilinear_matrix_columns_loc(lcol)
|
||||
! lrow = psi_bilinear_matrix_rows(l_a)
|
||||
! ASSERT (lrow <= N_det_alpha_unique)
|
||||
!
|
||||
! left = singles_alpha_csc_idx(krow)
|
||||
! right_max = -1_8
|
||||
! right = singles_alpha_csc_idx(krow+1)
|
||||
! do while (right-left>0_8)
|
||||
! k8 = shiftr(right+left,1)
|
||||
! if (singles_alpha_csc(k8) > lrow) then
|
||||
! right = k8
|
||||
! else if (singles_alpha_csc(k8) < lrow) then
|
||||
! left = k8 + 1_8
|
||||
! else
|
||||
! right_max = k8+1_8
|
||||
! exit
|
||||
! endif
|
||||
! enddo
|
||||
! if (right_max > 0_8) exit
|
||||
! l_a = l_a-1
|
||||
! enddo
|
||||
! if (right_max < 0_8) right_max = singles_alpha_csc_idx(krow)
|
||||
!
|
||||
! ! Search
|
||||
! n_singles_a = 0
|
||||
! l_a = psi_bilinear_matrix_columns_loc(lcol)
|
||||
! ASSERT (l_a <= N_det)
|
||||
!
|
||||
! last_found = singles_alpha_csc_idx(krow)
|
||||
! do j=1,psi_bilinear_matrix_columns_loc(lcol+1) - psi_bilinear_matrix_columns_loc(lcol)
|
||||
! lrow = psi_bilinear_matrix_rows(l_a)
|
||||
! ASSERT (lrow <= N_det_alpha_unique)
|
||||
!
|
||||
! left = last_found
|
||||
! right = right_max
|
||||
! do while (right-left>0_8)
|
||||
! k8 = shiftr(right+left,1)
|
||||
! if (singles_alpha_csc(k8) > lrow) then
|
||||
! right = k8
|
||||
! else if (singles_alpha_csc(k8) < lrow) then
|
||||
! left = k8 + 1_8
|
||||
! else
|
||||
! n_singles_a += 1
|
||||
! singles_a(n_singles_a) = l_a
|
||||
! last_found = k8+1_8
|
||||
! exit
|
||||
! endif
|
||||
! enddo
|
||||
! l_a = l_a+1
|
||||
! enddo
|
||||
! j = j-1
|
||||
!
|
||||
! endif
|
||||
!-----
|
||||
else
|
||||
|
||||
! Search for singles
|
||||
|
||||
! Right boundary
|
||||
l_a = psi_bilinear_matrix_columns_loc(lcol+1)-1
|
||||
ASSERT (l_a <= N_det)
|
||||
do j=1,psi_bilinear_matrix_columns_loc(lcol+1) - psi_bilinear_matrix_columns_loc(lcol)
|
||||
lrow = psi_bilinear_matrix_rows(l_a)
|
||||
ASSERT (lrow <= N_det_alpha_unique)
|
||||
|
||||
left = singles_alpha_csc_idx(krow)
|
||||
right_max = -1_8
|
||||
right = singles_alpha_csc_idx(krow+1)
|
||||
do while (right-left>0_8)
|
||||
k8 = shiftr(right+left,1)
|
||||
if (singles_alpha_csc(k8) > lrow) then
|
||||
right = k8
|
||||
else if (singles_alpha_csc(k8) < lrow) then
|
||||
left = k8 + 1_8
|
||||
else
|
||||
right_max = k8+1_8
|
||||
exit
|
||||
endif
|
||||
enddo
|
||||
if (right_max > 0_8) exit
|
||||
l_a = l_a-1
|
||||
enddo
|
||||
if (right_max < 0_8) right_max = singles_alpha_csc_idx(krow)
|
||||
|
||||
! Search
|
||||
n_singles_a = 0
|
||||
l_a = psi_bilinear_matrix_columns_loc(lcol)
|
||||
ASSERT (l_a <= N_det)
|
||||
|
||||
last_found = singles_alpha_csc_idx(krow)
|
||||
do j=1,psi_bilinear_matrix_columns_loc(lcol+1) - psi_bilinear_matrix_columns_loc(lcol)
|
||||
lrow = psi_bilinear_matrix_rows(l_a)
|
||||
ASSERT (lrow <= N_det_alpha_unique)
|
||||
|
||||
left = last_found
|
||||
right = right_max
|
||||
do while (right-left>0_8)
|
||||
k8 = shiftr(right+left,1)
|
||||
if (singles_alpha_csc(k8) > lrow) then
|
||||
right = k8
|
||||
else if (singles_alpha_csc(k8) < lrow) then
|
||||
left = k8 + 1_8
|
||||
else
|
||||
n_singles_a += 1
|
||||
singles_a(n_singles_a) = l_a
|
||||
last_found = k8+1_8
|
||||
exit
|
||||
endif
|
||||
enddo
|
||||
l_a = l_a+1
|
||||
enddo
|
||||
j = j-1
|
||||
|
||||
endif
|
||||
|
||||
|
||||
! Loop over alpha singles
|
||||
! -----------------------
|
||||
|
@ -218,10 +218,13 @@ subroutine H_S2_u_0_nstates_openmp_work_$N_int(v_t,s_t,u_t,N_st,sze,istart,iend,
|
||||
!
|
||||
! compute_singles = (mem+rss > qp_max_mem)
|
||||
!
|
||||
! if (.not.compute_singles) then
|
||||
! provide singles_beta_csc
|
||||
! endif
|
||||
compute_singles=.True.
|
||||
compute_singles=.True.
|
||||
|
||||
if (.not.compute_singles) then
|
||||
provide singles_alpha_csc
|
||||
provide singles_beta_csc
|
||||
endif
|
||||
|
||||
|
||||
|
||||
maxab = max(N_det_alpha_unique, N_det_beta_unique)+1
|
||||
@ -314,6 +317,7 @@ compute_singles=.True.
|
||||
singles_b(n_singles_b) = singles_beta_csc(k8)
|
||||
enddo
|
||||
endif
|
||||
|
||||
endif
|
||||
kcol_prev = kcol
|
||||
|
||||
@ -326,8 +330,7 @@ compute_singles=.True.
|
||||
|
||||
tmp_det2(1:$N_int,2) = psi_det_beta_unique(1:$N_int, lcol)
|
||||
|
||||
!---
|
||||
! if (compute_singles) then
|
||||
if (compute_singles) then
|
||||
|
||||
l_a = psi_bilinear_matrix_columns_loc(lcol)
|
||||
ASSERT (l_a <= N_det)
|
||||
@ -352,69 +355,66 @@ compute_singles=.True.
|
||||
buffer, idx, tmp_det(1,1), j, &
|
||||
singles_a, n_singles_a )
|
||||
|
||||
!-----
|
||||
! else
|
||||
!
|
||||
! ! Search for singles
|
||||
!
|
||||
!call cpu_time(time0)
|
||||
! ! Right boundary
|
||||
! l_a = psi_bilinear_matrix_columns_loc(lcol+1)-1
|
||||
! ASSERT (l_a <= N_det)
|
||||
! do j=1,psi_bilinear_matrix_columns_loc(lcol+1) - psi_bilinear_matrix_columns_loc(lcol)
|
||||
! lrow = psi_bilinear_matrix_rows(l_a)
|
||||
! ASSERT (lrow <= N_det_alpha_unique)
|
||||
!
|
||||
! left = singles_alpha_csc_idx(krow)
|
||||
! right_max = -1_8
|
||||
! right = singles_alpha_csc_idx(krow+1)
|
||||
! do while (right-left>0_8)
|
||||
! k8 = shiftr(right+left,1)
|
||||
! if (singles_alpha_csc(k8) > lrow) then
|
||||
! right = k8
|
||||
! else if (singles_alpha_csc(k8) < lrow) then
|
||||
! left = k8 + 1_8
|
||||
! else
|
||||
! right_max = k8+1_8
|
||||
! exit
|
||||
! endif
|
||||
! enddo
|
||||
! if (right_max > 0_8) exit
|
||||
! l_a = l_a-1
|
||||
! enddo
|
||||
! if (right_max < 0_8) right_max = singles_alpha_csc_idx(krow)
|
||||
!
|
||||
! ! Search
|
||||
! n_singles_a = 0
|
||||
! l_a = psi_bilinear_matrix_columns_loc(lcol)
|
||||
! ASSERT (l_a <= N_det)
|
||||
!
|
||||
! last_found = singles_alpha_csc_idx(krow)
|
||||
! do j=1,psi_bilinear_matrix_columns_loc(lcol+1) - psi_bilinear_matrix_columns_loc(lcol)
|
||||
! lrow = psi_bilinear_matrix_rows(l_a)
|
||||
! ASSERT (lrow <= N_det_alpha_unique)
|
||||
!
|
||||
! left = last_found
|
||||
! right = right_max
|
||||
! do while (right-left>0_8)
|
||||
! k8 = shiftr(right+left,1)
|
||||
! if (singles_alpha_csc(k8) > lrow) then
|
||||
! right = k8
|
||||
! else if (singles_alpha_csc(k8) < lrow) then
|
||||
! left = k8 + 1_8
|
||||
! else
|
||||
! n_singles_a += 1
|
||||
! singles_a(n_singles_a) = l_a
|
||||
! last_found = k8+1_8
|
||||
! exit
|
||||
! endif
|
||||
! enddo
|
||||
! l_a = l_a+1
|
||||
! enddo
|
||||
! j = j-1
|
||||
!
|
||||
! endif
|
||||
!-----
|
||||
else
|
||||
|
||||
! Search for singles
|
||||
|
||||
! Right boundary
|
||||
l_a = psi_bilinear_matrix_columns_loc(lcol+1)-1
|
||||
ASSERT (l_a <= N_det)
|
||||
do j=1,psi_bilinear_matrix_columns_loc(lcol+1) - psi_bilinear_matrix_columns_loc(lcol)
|
||||
lrow = psi_bilinear_matrix_rows(l_a)
|
||||
ASSERT (lrow <= N_det_alpha_unique)
|
||||
|
||||
left = singles_alpha_csc_idx(krow)
|
||||
right_max = -1_8
|
||||
right = singles_alpha_csc_idx(krow+1)
|
||||
do while (right-left>0_8)
|
||||
k8 = shiftr(right+left,1)
|
||||
if (singles_alpha_csc(k8) > lrow) then
|
||||
right = k8
|
||||
else if (singles_alpha_csc(k8) < lrow) then
|
||||
left = k8 + 1_8
|
||||
else
|
||||
right_max = k8+1_8
|
||||
exit
|
||||
endif
|
||||
enddo
|
||||
if (right_max > 0_8) exit
|
||||
l_a = l_a-1
|
||||
enddo
|
||||
if (right_max < 0_8) right_max = singles_alpha_csc_idx(krow)
|
||||
|
||||
! Search
|
||||
n_singles_a = 0
|
||||
l_a = psi_bilinear_matrix_columns_loc(lcol)
|
||||
ASSERT (l_a <= N_det)
|
||||
|
||||
last_found = singles_alpha_csc_idx(krow)
|
||||
do j=1,psi_bilinear_matrix_columns_loc(lcol+1) - psi_bilinear_matrix_columns_loc(lcol)
|
||||
lrow = psi_bilinear_matrix_rows(l_a)
|
||||
ASSERT (lrow <= N_det_alpha_unique)
|
||||
|
||||
left = last_found
|
||||
right = right_max
|
||||
do while (right-left>0_8)
|
||||
k8 = shiftr(right+left,1)
|
||||
if (singles_alpha_csc(k8) > lrow) then
|
||||
right = k8
|
||||
else if (singles_alpha_csc(k8) < lrow) then
|
||||
left = k8 + 1_8
|
||||
else
|
||||
n_singles_a += 1
|
||||
singles_a(n_singles_a) = l_a
|
||||
last_found = k8+1_8
|
||||
exit
|
||||
endif
|
||||
enddo
|
||||
l_a = l_a+1
|
||||
enddo
|
||||
j = j-1
|
||||
|
||||
endif
|
||||
|
||||
! Loop over alpha singles
|
||||
! -----------------------
|
||||
|
@ -48,7 +48,7 @@ default: false
|
||||
|
||||
[distributed_davidson]
|
||||
type: logical
|
||||
doc: If |true|, use the distributed algorithm
|
||||
default: True
|
||||
doc: If |true|, use the distributed algorithm. If you plan to run multi-node calculations, set this to true before running.
|
||||
default: False
|
||||
interface: ezfio,provider,ocaml
|
||||
|
||||
|
@ -33,7 +33,7 @@ subroutine generate_cas_space
|
||||
print *, 'CAS(', n_alpha_act+n_beta_act, ', ', n_act_orb, ')'
|
||||
print *, ''
|
||||
|
||||
n_det_alpha_unique = binom_int(n_act_orb, n_alpha_act)
|
||||
n_det_alpha_unique = int(binom_int(n_act_orb, n_alpha_act),4)
|
||||
TOUCH n_det_alpha_unique
|
||||
|
||||
n = n_alpha_act
|
||||
@ -56,7 +56,7 @@ subroutine generate_cas_space
|
||||
u = ior(t1,t2)
|
||||
enddo
|
||||
|
||||
n_det_beta_unique = binom_int(n_act_orb, n_beta_act)
|
||||
n_det_beta_unique = int(binom_int(n_act_orb, n_beta_act),4)
|
||||
TOUCH n_det_beta_unique
|
||||
|
||||
n = n_beta_act
|
||||
|
@ -30,31 +30,30 @@
|
||||
ref_bitmask_energy += mo_one_e_integrals(occ(i,1),occ(i,1)) + mo_one_e_integrals(occ(i,2),occ(i,2))
|
||||
ref_bitmask_kinetic_energy += mo_kinetic_integrals(occ(i,1),occ(i,1)) + mo_kinetic_integrals(occ(i,2),occ(i,2))
|
||||
ref_bitmask_n_e_energy += mo_integrals_n_e(occ(i,1),occ(i,1)) + mo_integrals_n_e(occ(i,2),occ(i,2))
|
||||
do j = i+1, elec_alpha_num
|
||||
ref_bitmask_two_e_energy += mo_two_e_integrals_jj_anti(occ(j,1),occ(i,1))
|
||||
ref_bitmask_energy += mo_two_e_integrals_jj_anti(occ(j,1),occ(i,1))
|
||||
enddo
|
||||
do j= 1, elec_alpha_num
|
||||
ref_bitmask_two_e_energy += mo_two_e_integrals_jj(occ(j,1),occ(i,2))
|
||||
ref_bitmask_energy += mo_two_e_integrals_jj(occ(j,1),occ(i,2))
|
||||
enddo
|
||||
do j = i+1, elec_beta_num
|
||||
ref_bitmask_two_e_energy += mo_two_e_integrals_jj_anti(occ(j,2),occ(i,2))
|
||||
ref_bitmask_energy += mo_two_e_integrals_jj_anti(occ(j,2),occ(i,2))
|
||||
enddo
|
||||
enddo
|
||||
|
||||
do i = elec_beta_num+1,elec_alpha_num
|
||||
ref_bitmask_energy += mo_one_e_integrals(occ(i,1),occ(i,1))
|
||||
ref_bitmask_kinetic_energy += mo_kinetic_integrals(occ(i,1),occ(i,1))
|
||||
ref_bitmask_n_e_energy += mo_integrals_n_e(occ(i,1),occ(i,1))
|
||||
enddo
|
||||
|
||||
do j= 1, elec_alpha_num
|
||||
do i = j+1, elec_alpha_num
|
||||
ref_bitmask_two_e_energy += mo_two_e_integrals_jj_anti(occ(i,1),occ(j,1))
|
||||
ref_bitmask_energy += mo_two_e_integrals_jj_anti(occ(i,1),occ(j,1))
|
||||
do j = i+1, elec_alpha_num
|
||||
ref_bitmask_two_e_energy += mo_two_e_integrals_jj_anti(occ(j,1),occ(i,1))
|
||||
ref_bitmask_energy += mo_two_e_integrals_jj_anti(occ(j,1),occ(i,1))
|
||||
enddo
|
||||
enddo
|
||||
|
||||
do j= 1, elec_beta_num
|
||||
do i = j+1, elec_beta_num
|
||||
ref_bitmask_two_e_energy += mo_two_e_integrals_jj_anti(occ(i,2),occ(j,2))
|
||||
ref_bitmask_energy += mo_two_e_integrals_jj_anti(occ(i,2),occ(j,2))
|
||||
enddo
|
||||
do i= 1, elec_alpha_num
|
||||
ref_bitmask_two_e_energy += mo_two_e_integrals_jj(occ(i,1),occ(j,2))
|
||||
ref_bitmask_energy += mo_two_e_integrals_jj(occ(i,1),occ(j,2))
|
||||
enddo
|
||||
enddo
|
||||
ref_bitmask_one_e_energy = ref_bitmask_kinetic_energy + ref_bitmask_n_e_energy
|
||||
|
||||
ref_bitmask_energy_ab = 0.d0
|
||||
|
@ -910,6 +910,8 @@ subroutine copy_psi_bilinear_to_psi(psi, isize)
|
||||
end
|
||||
|
||||
|
||||
use mmap_module
|
||||
|
||||
BEGIN_PROVIDER [ integer*8, singles_alpha_csc_idx, (N_det_alpha_unique+1) ]
|
||||
&BEGIN_PROVIDER [ integer*8, singles_alpha_csc_size ]
|
||||
implicit none
|
||||
@ -925,12 +927,11 @@ end
|
||||
idx0(i) = i
|
||||
enddo
|
||||
|
||||
!$OMP PARALLEL DEFAULT(NONE) &
|
||||
!$OMP SHARED(N_det_alpha_unique, psi_det_alpha_unique, &
|
||||
!$OMP idx0, N_int, singles_alpha_csc, &
|
||||
!$OMP elec_alpha_num, mo_num, singles_alpha_csc_idx) &
|
||||
!$OMP PARALLEL DEFAULT(NONE) &
|
||||
!$OMP SHARED(N_det_alpha_unique, psi_det_alpha_unique, &
|
||||
!$OMP idx0, N_int, singles_alpha_csc_idx) &
|
||||
!$OMP PRIVATE(i,s,j)
|
||||
allocate (s(elec_alpha_num * (mo_num-elec_alpha_num) ))
|
||||
allocate (s(N_det_alpha_unique))
|
||||
!$OMP DO SCHEDULE(static,64)
|
||||
do i=1, N_det_alpha_unique
|
||||
call get_all_spin_singles( &
|
||||
@ -966,7 +967,7 @@ BEGIN_PROVIDER [ integer, singles_alpha_csc, (singles_alpha_csc_size) ]
|
||||
!$OMP PARALLEL DO DEFAULT(NONE) &
|
||||
!$OMP SHARED(N_det_alpha_unique, psi_det_alpha_unique, &
|
||||
!$OMP idx0, N_int, singles_alpha_csc, singles_alpha_csc_idx)&
|
||||
!$OMP PRIVATE(i,k) SCHEDULE(static,1)
|
||||
!$OMP PRIVATE(i,k) SCHEDULE(static)
|
||||
do i=1, N_det_alpha_unique
|
||||
call get_all_spin_singles( &
|
||||
psi_det_alpha_unique, idx0, psi_det_alpha_unique(1,i), N_int,&
|
||||
@ -978,7 +979,36 @@ BEGIN_PROVIDER [ integer, singles_alpha_csc, (singles_alpha_csc_size) ]
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ type(mmap_type), singles_alpha_csc_map ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Indices of all single excitations
|
||||
END_DOC
|
||||
integer :: i, k
|
||||
integer, allocatable :: idx0(:)
|
||||
|
||||
call mmap_create_i('', (/ 1_8*singles_alpha_csc_size /), &
|
||||
.False., .False., singles_alpha_csc_map)
|
||||
|
||||
allocate (idx0(N_det_alpha_unique))
|
||||
do i=1, N_det_alpha_unique
|
||||
idx0(i) = i
|
||||
enddo
|
||||
|
||||
!$OMP PARALLEL DO DEFAULT(NONE) &
|
||||
!$OMP SHARED(N_det_alpha_unique, psi_det_alpha_unique, &
|
||||
!$OMP idx0, N_int, singles_alpha_csc_map, singles_alpha_csc_idx)&
|
||||
!$OMP PRIVATE(i,k) SCHEDULE(static)
|
||||
do i=1, N_det_alpha_unique
|
||||
call get_all_spin_singles( &
|
||||
psi_det_alpha_unique, idx0, psi_det_alpha_unique(1,i), N_int, N_det_alpha_unique, &
|
||||
singles_alpha_csc_map%i1(singles_alpha_csc_idx(i):singles_alpha_csc_idx(i)+N_det_alpha_unique-1),&
|
||||
k)
|
||||
enddo
|
||||
!$OMP END PARALLEL DO
|
||||
deallocate(idx0)
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ integer*8, singles_beta_csc_idx, (N_det_beta_unique+1) ]
|
||||
@ -996,13 +1026,12 @@ END_PROVIDER
|
||||
idx0(i) = i
|
||||
enddo
|
||||
|
||||
!$OMP PARALLEL DEFAULT(NONE) &
|
||||
!$OMP PARALLEL DEFAULT(NONE) &
|
||||
!$OMP SHARED(N_det_beta_unique, psi_det_beta_unique, &
|
||||
!$OMP idx0, N_int, singles_beta_csc, &
|
||||
!$OMP elec_beta_num, mo_num, singles_beta_csc_idx) &
|
||||
!$OMP idx0, N_int, singles_beta_csc_idx) &
|
||||
!$OMP PRIVATE(i,s,j)
|
||||
allocate (s(elec_beta_num*(mo_num-elec_beta_num)))
|
||||
!$OMP DO SCHEDULE(static,1)
|
||||
allocate (s(N_det_beta_unique))
|
||||
!$OMP DO SCHEDULE(static)
|
||||
do i=1, N_det_beta_unique
|
||||
call get_all_spin_singles( &
|
||||
psi_det_beta_unique, idx0, psi_det_beta_unique(1,i), N_int,&
|
||||
@ -1037,7 +1066,7 @@ BEGIN_PROVIDER [ integer, singles_beta_csc, (singles_beta_csc_size) ]
|
||||
!$OMP PARALLEL DO DEFAULT(NONE) &
|
||||
!$OMP SHARED(N_det_beta_unique, psi_det_beta_unique, &
|
||||
!$OMP idx0, N_int, singles_beta_csc, singles_beta_csc_idx)&
|
||||
!$OMP PRIVATE(i,k) SCHEDULE(static,64)
|
||||
!$OMP PRIVATE(i,k) SCHEDULE(static)
|
||||
do i=1, N_det_beta_unique
|
||||
call get_all_spin_singles( &
|
||||
psi_det_beta_unique, idx0, psi_det_beta_unique(1,i), N_int,&
|
||||
@ -1049,6 +1078,37 @@ BEGIN_PROVIDER [ integer, singles_beta_csc, (singles_beta_csc_size) ]
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ type(mmap_type), singles_beta_csc_map ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Indices of all single excitations
|
||||
END_DOC
|
||||
integer :: i, k
|
||||
integer, allocatable :: idx0(:)
|
||||
|
||||
call mmap_create_i('', (/ 1_8*singles_beta_csc_size /), &
|
||||
.False., .False., singles_beta_csc_map)
|
||||
|
||||
allocate (idx0(N_det_beta_unique))
|
||||
do i=1, N_det_beta_unique
|
||||
idx0(i) = i
|
||||
enddo
|
||||
|
||||
!$OMP PARALLEL DO DEFAULT(NONE) &
|
||||
!$OMP SHARED(N_det_beta_unique, psi_det_beta_unique, &
|
||||
!$OMP idx0, N_int, singles_beta_csc_map, singles_beta_csc_idx)&
|
||||
!$OMP PRIVATE(i,k) SCHEDULE(static)
|
||||
do i=1, N_det_beta_unique
|
||||
call get_all_spin_singles( &
|
||||
psi_det_beta_unique, idx0, psi_det_beta_unique(1,i), N_int, N_det_beta_unique, &
|
||||
singles_beta_csc_map%i1(singles_beta_csc_idx(i):singles_beta_csc_idx(i)+N_det_beta_unique-1),&
|
||||
k)
|
||||
enddo
|
||||
!$OMP END PARALLEL DO
|
||||
deallocate(idx0)
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
|
||||
|
||||
@ -1111,16 +1171,16 @@ subroutine get_all_spin_singles_1(buffer, idx, spindet, size_buffer, singles, n_
|
||||
integer :: i
|
||||
integer(bit_kind) :: v
|
||||
integer :: degree
|
||||
integer :: add_single(0:64) = (/ 0, 0, 1, 0, 0, (0, i=1,60) /)
|
||||
include 'utils/constants.include.F'
|
||||
|
||||
n_singles = 1
|
||||
n_singles = 0
|
||||
do i=1,size_buffer
|
||||
degree = popcnt(xor( spindet, buffer(i) ))
|
||||
singles(n_singles) = idx(i)
|
||||
n_singles = n_singles+add_single(degree)
|
||||
if (degree == 2) then
|
||||
n_singles = n_singles+1
|
||||
singles(n_singles) = idx(i)
|
||||
endif
|
||||
enddo
|
||||
n_singles = n_singles-1
|
||||
|
||||
end
|
||||
|
||||
@ -1142,15 +1202,15 @@ subroutine get_all_spin_doubles_1(buffer, idx, spindet, size_buffer, doubles, n_
|
||||
integer :: i
|
||||
include 'utils/constants.include.F'
|
||||
integer :: degree
|
||||
integer :: add_double(0:64) = (/ 0, 0, 0, 0, 1, (0, i=1,60) /)
|
||||
|
||||
n_doubles = 1
|
||||
n_doubles = 0
|
||||
do i=1,size_buffer
|
||||
degree = popcnt(xor( spindet, buffer(i) ))
|
||||
doubles(n_doubles) = idx(i)
|
||||
n_doubles = n_doubles+add_double(degree)
|
||||
if (degree == 4) then
|
||||
n_doubles = n_doubles+1
|
||||
doubles(n_doubles) = idx(i)
|
||||
endif
|
||||
enddo
|
||||
n_doubles = n_doubles-1
|
||||
|
||||
end
|
||||
|
||||
@ -1181,8 +1241,8 @@ subroutine get_all_spin_singles_and_doubles_$N_int(buffer, idx, spindet, size_bu
|
||||
integer(bit_kind) :: xorvec($N_int)
|
||||
integer :: degree
|
||||
|
||||
n_singles = 1
|
||||
n_doubles = 1
|
||||
n_singles = 0
|
||||
n_doubles = 0
|
||||
do i=1,size_buffer
|
||||
|
||||
do k=1,$N_int
|
||||
@ -1196,16 +1256,14 @@ subroutine get_all_spin_singles_and_doubles_$N_int(buffer, idx, spindet, size_bu
|
||||
enddo
|
||||
|
||||
if ( degree == 4 ) then
|
||||
doubles(n_doubles) = idx(i)
|
||||
n_doubles = n_doubles+1
|
||||
doubles(n_doubles) = idx(i)
|
||||
else if ( degree == 2 ) then
|
||||
singles(n_singles) = idx(i)
|
||||
n_singles = n_singles+1
|
||||
singles(n_singles) = idx(i)
|
||||
endif
|
||||
|
||||
enddo
|
||||
n_singles = n_singles-1
|
||||
n_doubles = n_doubles-1
|
||||
|
||||
end
|
||||
|
||||
@ -1230,7 +1288,7 @@ subroutine get_all_spin_singles_$N_int(buffer, idx, spindet, size_buffer, single
|
||||
integer(bit_kind) :: xorvec($N_int)
|
||||
integer :: degree
|
||||
|
||||
n_singles = 1
|
||||
n_singles = 0
|
||||
do i=1,size_buffer
|
||||
|
||||
do k=1,$N_int
|
||||
@ -1247,11 +1305,10 @@ subroutine get_all_spin_singles_$N_int(buffer, idx, spindet, size_buffer, single
|
||||
cycle
|
||||
endif
|
||||
|
||||
singles(n_singles) = idx(i)
|
||||
n_singles = n_singles+1
|
||||
singles(n_singles) = idx(i)
|
||||
|
||||
enddo
|
||||
n_singles = n_singles-1
|
||||
|
||||
end
|
||||
|
||||
@ -1275,7 +1332,7 @@ subroutine get_all_spin_doubles_$N_int(buffer, idx, spindet, size_buffer, double
|
||||
include 'utils/constants.include.F'
|
||||
integer(bit_kind) :: xorvec($N_int)
|
||||
|
||||
n_doubles = 1
|
||||
n_doubles = 0
|
||||
do i=1,size_buffer
|
||||
|
||||
do k=1,$N_int
|
||||
@ -1292,13 +1349,11 @@ subroutine get_all_spin_doubles_$N_int(buffer, idx, spindet, size_buffer, double
|
||||
cycle
|
||||
endif
|
||||
|
||||
doubles(n_doubles) = idx(i)
|
||||
n_doubles = n_doubles+1
|
||||
doubles(n_doubles) = idx(i)
|
||||
|
||||
enddo
|
||||
|
||||
n_doubles = n_doubles-1
|
||||
|
||||
end
|
||||
|
||||
SUBST [ N_int ]
|
||||
|
@ -60,3 +60,16 @@ BEGIN_PROVIDER [ character*(1024), ezfio_work_dir ]
|
||||
ezfio_work_dir = trim(ezfio_filename)//'/work/'
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ character*(1024), ezfio_work_dir_pid ]
|
||||
use c_functions
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! EZFIO/work/pid_
|
||||
END_DOC
|
||||
character*(32) :: pid_str
|
||||
integer :: getpid
|
||||
|
||||
write(pid_str,*) getpid()
|
||||
ezfio_work_dir_pid = trim(ezfio_work_dir)//'/'//trim(pid_str)//'_'
|
||||
END_PROVIDER
|
||||
|
||||
|
@ -143,7 +143,7 @@ module gpu
|
||||
b, ldb, c, ldc) bind(C, name='gpu_dgeam')
|
||||
import
|
||||
type(c_ptr), value, intent(in) :: handle
|
||||
character(c_char), intent(in), value :: transa, transb
|
||||
character(c_char), intent(in) :: transa, transb
|
||||
integer(c_int64_t), intent(in), value :: m, n, lda, ldb, ldc
|
||||
real(c_double), intent(in) :: alpha, beta
|
||||
type(c_ptr), value :: a, b, c
|
||||
@ -153,7 +153,7 @@ module gpu
|
||||
b, ldb, c, ldc) bind(C, name='gpu_sgeam')
|
||||
import
|
||||
type(c_ptr), value, intent(in) :: handle
|
||||
character(c_char), intent(in), value :: transa, transb
|
||||
character(c_char), intent(in) :: transa, transb
|
||||
integer(c_int64_t), intent(in), value :: m, n, lda, ldb, ldc
|
||||
real(c_float), intent(in) :: alpha, beta
|
||||
real(c_float) :: a, b, c
|
||||
@ -194,7 +194,7 @@ module gpu
|
||||
b, ldb, beta, c, ldc) bind(C, name='gpu_sgemm')
|
||||
import
|
||||
type(c_ptr), value, intent(in) :: handle
|
||||
character(c_char), intent(in), value :: transa, transb
|
||||
character(c_char), intent(in) :: transa, transb
|
||||
integer(c_int64_t), intent(in), value :: m, n, k, lda, ldb, ldc
|
||||
real(c_float), intent(in) :: alpha, beta
|
||||
real(c_float) :: a, b, c
|
||||
@ -268,8 +268,12 @@ module gpu
|
||||
implicit none
|
||||
type(gpu_double1), intent(inout) :: ptr
|
||||
integer, intent(in) :: s
|
||||
integer*8 :: s_8, n
|
||||
|
||||
call gpu_allocate_c(ptr%c, s*8_8)
|
||||
s_8 = s
|
||||
n = s_8 * 8_8
|
||||
|
||||
call gpu_allocate_c(ptr%c, n)
|
||||
call c_f_pointer(ptr%c, ptr%f, (/ s /))
|
||||
end subroutine
|
||||
|
||||
@ -277,8 +281,13 @@ module gpu
|
||||
implicit none
|
||||
type(gpu_double2), intent(inout) :: ptr
|
||||
integer, intent(in) :: s1, s2
|
||||
integer*8 :: s1_8, s2_8, n
|
||||
|
||||
call gpu_allocate_c(ptr%c, s1*s2*8_8)
|
||||
s1_8 = s1
|
||||
s2_8 = s2
|
||||
n = s1_8 * s2_8 * 8_8
|
||||
|
||||
call gpu_allocate_c(ptr%c, n)
|
||||
call c_f_pointer(ptr%c, ptr%f, (/ s1, s2 /))
|
||||
end subroutine
|
||||
|
||||
@ -286,8 +295,14 @@ module gpu
|
||||
implicit none
|
||||
type(gpu_double3), intent(inout) :: ptr
|
||||
integer, intent(in) :: s1, s2, s3
|
||||
integer*8 :: s1_8, s2_8, s3_8, n
|
||||
|
||||
call gpu_allocate_c(ptr%c, s1*s2*s3*8_8)
|
||||
s1_8 = s1
|
||||
s2_8 = s2
|
||||
s3_8 = s3
|
||||
n = s1_8 * s2_8 * s3_8 * 8_8
|
||||
|
||||
call gpu_allocate_c(ptr%c, n)
|
||||
call c_f_pointer(ptr%c, ptr%f, (/ s1, s2, s3 /))
|
||||
end subroutine
|
||||
|
||||
@ -295,8 +310,15 @@ module gpu
|
||||
implicit none
|
||||
type(gpu_double4), intent(inout) :: ptr
|
||||
integer, intent(in) :: s1, s2, s3, s4
|
||||
integer*8 :: s1_8, s2_8, s3_8, s4_8, n
|
||||
|
||||
call gpu_allocate_c(ptr%c, s1*s2*s3*s4*8_8)
|
||||
s1_8 = s1
|
||||
s2_8 = s2
|
||||
s3_8 = s3
|
||||
s4_8 = s4
|
||||
n = s1_8 * s2_8 * s3_8 * s4_8 * 8_8
|
||||
|
||||
call gpu_allocate_c(ptr%c, n)
|
||||
call c_f_pointer(ptr%c, ptr%f, (/ s1, s2, s3, s4 /))
|
||||
end subroutine
|
||||
|
||||
@ -304,8 +326,16 @@ module gpu
|
||||
implicit none
|
||||
type(gpu_double5), intent(inout) :: ptr
|
||||
integer, intent(in) :: s1, s2, s3, s4, s5
|
||||
integer*8 :: s1_8, s2_8, s3_8, s4_8, s5_8, n
|
||||
|
||||
call gpu_allocate_c(ptr%c, s1*s2*s3*s4*s5*8_8)
|
||||
s1_8 = s1
|
||||
s2_8 = s2
|
||||
s3_8 = s3
|
||||
s4_8 = s4
|
||||
s5_8 = s5
|
||||
n = s1_8 * s2_8 * s3_8 * s4_8 * s5_8 * 8_8
|
||||
|
||||
call gpu_allocate_c(ptr%c, n)
|
||||
call c_f_pointer(ptr%c, ptr%f, (/ s1, s2, s3, s4, s5 /))
|
||||
end subroutine
|
||||
|
||||
@ -313,8 +343,17 @@ module gpu
|
||||
implicit none
|
||||
type(gpu_double6), intent(inout) :: ptr
|
||||
integer, intent(in) :: s1, s2, s3, s4, s5, s6
|
||||
integer*8 :: s1_8, s2_8, s3_8, s4_8, s5_8, s6_8, n
|
||||
|
||||
call gpu_allocate_c(ptr%c, s1*s2*s3*s4*s5*s6*8_8)
|
||||
s1_8 = s1
|
||||
s2_8 = s2
|
||||
s3_8 = s3
|
||||
s4_8 = s4
|
||||
s5_8 = s5
|
||||
s6_8 = s6
|
||||
n = s1_8 * s2_8 * s3_8 * s4_8 * s5_8 * s6_8 * 8_8
|
||||
|
||||
call gpu_allocate_c(ptr%c, n)
|
||||
call c_f_pointer(ptr%c, ptr%f, (/ s1, s2, s3, s4, s5, s6 /))
|
||||
end subroutine
|
||||
|
||||
|
188
src/hartree_fock/deb_ao_2e_int.irp.f
Normal file
188
src/hartree_fock/deb_ao_2e_int.irp.f
Normal file
@ -0,0 +1,188 @@
|
||||
|
||||
program deb_ao_2e_int
|
||||
|
||||
!call check_ao_two_e_integral_cosgtos()
|
||||
call check_crint1()
|
||||
!call check_crint2()
|
||||
|
||||
end
|
||||
|
||||
! ---
|
||||
|
||||
subroutine check_ao_two_e_integral_cosgtos()
|
||||
|
||||
implicit none
|
||||
|
||||
integer :: i, j, k, l
|
||||
double precision :: tmp1, tmp2
|
||||
double precision :: acc, nrm, dif
|
||||
|
||||
double precision, external :: ao_two_e_integral
|
||||
double precision, external :: ao_two_e_integral_cosgtos
|
||||
|
||||
acc = 0.d0
|
||||
nrm = 0.d0
|
||||
|
||||
i = 1
|
||||
j = 6
|
||||
k = 1
|
||||
l = 16
|
||||
! do i = 1, ao_num
|
||||
! do k = 1, ao_num
|
||||
! do j = 1, ao_num
|
||||
! do l = 1, ao_num
|
||||
|
||||
tmp1 = ao_two_e_integral (i, j, k, l)
|
||||
tmp2 = ao_two_e_integral_cosgtos(i, j, k, l)
|
||||
|
||||
dif = dabs(tmp1 - tmp2)
|
||||
if(dif .gt. 1d-12) then
|
||||
print*, ' error on:', i, j, k, l
|
||||
print*, tmp1, tmp2, dif
|
||||
stop
|
||||
endif
|
||||
|
||||
! acc += dif
|
||||
! nrm += dabs(tmp1)
|
||||
! enddo
|
||||
! enddo
|
||||
! enddo
|
||||
! enddo
|
||||
|
||||
print *, ' acc (%) = ', dif * 100.d0 / nrm
|
||||
|
||||
end
|
||||
|
||||
! ---
|
||||
|
||||
subroutine check_crint1()
|
||||
|
||||
implicit none
|
||||
integer :: i, n, i_rho
|
||||
double precision :: dif_thr
|
||||
double precision :: dif_re, dif_im, acc_re, nrm_re, acc_im, nrm_im
|
||||
complex*16 :: rho_test(1:10) = (/ (1d-12, 0.d0), &
|
||||
(+1d-9, +1d-6), &
|
||||
(-1d-6, -1d-5), &
|
||||
(+1d-3, -1d-2), &
|
||||
(-1d-1, +1d-1), &
|
||||
(+1d-0, +1d-1), &
|
||||
(-1d+1, +1d+1), &
|
||||
(+1d+2, +1d+1), &
|
||||
(-1d+3, +1d+2), &
|
||||
(+1d+4, +1d+4) /)
|
||||
complex*16 :: rho
|
||||
complex*16 :: int_an, int_nm
|
||||
double precision, external :: rint
|
||||
complex*16, external :: crint_1, crint_2, crint_quad
|
||||
|
||||
n = 10
|
||||
dif_thr = 1d-7
|
||||
|
||||
do i_rho = 8, 10
|
||||
!do i_rho = 7, 7
|
||||
|
||||
!rho = (-10.d0, 0.1d0)
|
||||
!rho = (+10.d0, 0.1d0)
|
||||
rho = rho_test(i_rho)
|
||||
print*, "rho = ", real(rho), aimag(rho)
|
||||
|
||||
acc_re = 0.d0
|
||||
nrm_re = 0.d0
|
||||
acc_im = 0.d0
|
||||
nrm_im = 0.d0
|
||||
do i = 0, n
|
||||
!int_an = crint_1 (i, rho)
|
||||
int_an = crint_2 (i, rho)
|
||||
int_nm = crint_quad(i, rho)
|
||||
|
||||
dif_re = dabs(real(int_an) - real(int_nm))
|
||||
dif_im = dabs(aimag(int_an) - aimag(int_nm))
|
||||
|
||||
if((dif_re .gt. dif_thr) .or. (dif_im .gt. dif_thr)) then
|
||||
print*, ' error on i =', i
|
||||
print*, real(int_an), real(int_nm), dif_re
|
||||
print*, aimag(int_an), aimag(int_nm), dif_im
|
||||
!print*, rint(i, real(rho))
|
||||
print*, crint_1(i, rho)
|
||||
!print*, crint_2(i, rho)
|
||||
stop
|
||||
endif
|
||||
acc_re += dif_re
|
||||
nrm_re += dabs(real(int_nm))
|
||||
acc_im += dif_im
|
||||
nrm_im += dabs(aimag(int_nm))
|
||||
enddo
|
||||
|
||||
print*, "accuracy on real part (%):", 100.d0 * acc_re / (nrm_re+1d-15)
|
||||
print*, "accuracy on imag part (%):", 100.d0 * acc_im / (nrm_im+1d-15)
|
||||
enddo
|
||||
|
||||
end
|
||||
|
||||
! ---
|
||||
|
||||
subroutine check_crint2()
|
||||
|
||||
implicit none
|
||||
|
||||
integer :: i, n, i_rho
|
||||
double precision :: dif_thr
|
||||
double precision :: dif_re, dif_im, acc_re, nrm_re, acc_im, nrm_im
|
||||
complex*16 :: rho_test(1:10) = (/ (1d-12, 0.d0), &
|
||||
(+1d-9, +1d-6), &
|
||||
(-1d-6, -1d-5), &
|
||||
(+1d-3, -1d-2), &
|
||||
(-1d-1, +1d-1), &
|
||||
(+1d-0, +1d-1), &
|
||||
(-1d+1, +1d+1), &
|
||||
(+1d+2, +1d+1), &
|
||||
(-1d+3, +1d+2), &
|
||||
(+1d+4, +1d+4) /)
|
||||
complex*16 :: rho
|
||||
complex*16 :: int_an, int_nm
|
||||
complex*16, external :: crint_1, crint_2
|
||||
|
||||
n = 30
|
||||
dif_thr = 1d-12
|
||||
|
||||
do i_rho = 1, 10
|
||||
rho = rho_test(i_rho)
|
||||
print*, "rho = ", real(rho), aimag(rho)
|
||||
|
||||
acc_re = 0.d0
|
||||
nrm_re = 0.d0
|
||||
acc_im = 0.d0
|
||||
nrm_im = 0.d0
|
||||
do i = 0, n
|
||||
int_an = crint_1(i, rho)
|
||||
int_nm = crint_2(i, rho)
|
||||
|
||||
dif_re = dabs(real(int_an) - real(int_nm))
|
||||
!if(dif_re .gt. dif_thr) then
|
||||
! print*, ' error in real part:', i
|
||||
! print*, real(int_an), real(int_nm), dif_re
|
||||
! stop
|
||||
!endif
|
||||
acc_re += dif_re
|
||||
nrm_re += dabs(real(int_nm))
|
||||
|
||||
dif_im = dabs(aimag(int_an) - aimag(int_nm))
|
||||
!if(dif_im .gt. dif_thr) then
|
||||
! print*, ' error in imag part:', i
|
||||
! print*, aimag(int_an), aimag(int_nm), dif_im
|
||||
! stop
|
||||
!endif
|
||||
acc_im += dif_im
|
||||
nrm_im += dabs(aimag(int_nm))
|
||||
enddo
|
||||
|
||||
print*, "accuracy on real part (%):", 100.d0 * acc_re / (nrm_re+1d-15)
|
||||
print*, "accuracy on imag part (%):", 100.d0 * acc_im / (nrm_im+1d-15)
|
||||
enddo
|
||||
|
||||
end
|
||||
|
||||
! ---
|
||||
|
||||
|
@ -19,16 +19,41 @@ END_PROVIDER
|
||||
! Hartree-Fock energy containing the nuclear repulsion, and its one- and two-body components.
|
||||
END_DOC
|
||||
integer :: i,j
|
||||
HF_energy = nuclear_repulsion
|
||||
double precision :: tmp1, tmp2
|
||||
HF_energy = 0.d0
|
||||
HF_two_electron_energy = 0.d0
|
||||
HF_one_electron_energy = 0.d0
|
||||
do j=1,ao_num
|
||||
do i=1,ao_num
|
||||
HF_two_electron_energy += 0.5d0 * ( ao_two_e_integral_alpha(i,j) * SCF_density_matrix_ao_alpha(i,j) &
|
||||
+ao_two_e_integral_beta(i,j) * SCF_density_matrix_ao_beta(i,j) )
|
||||
HF_one_electron_energy += ao_one_e_integrals(i,j) * (SCF_density_matrix_ao_alpha(i,j) + SCF_density_matrix_ao_beta (i,j) )
|
||||
tmp1 = 0.5d0 * ( ao_two_e_integral_alpha(i,j) * SCF_density_matrix_ao_alpha(i,j) &
|
||||
+ao_two_e_integral_beta (i,j) * SCF_density_matrix_ao_beta (i,j) )
|
||||
tmp2 = ao_one_e_integrals(i,j) * (SCF_density_matrix_ao_alpha(i,j) + SCF_density_matrix_ao_beta (i,j) )
|
||||
HF_two_electron_energy += tmp1
|
||||
HF_one_electron_energy += tmp2
|
||||
HF_energy += tmp1 + tmp2
|
||||
enddo
|
||||
enddo
|
||||
HF_energy += nuclear_repulsion
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ double precision, HF_kinetic_energy]
|
||||
&BEGIN_PROVIDER [ double precision, HF_n_e_energy]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Hartree-Fock energy containing the nuclear repulsion, and its one- and two-body components.
|
||||
END_DOC
|
||||
integer :: i,j
|
||||
double precision :: tmp1, tmp2
|
||||
HF_n_e_energy = 0.d0
|
||||
HF_kinetic_energy = 0.d0
|
||||
do j=1,ao_num
|
||||
do i=1,ao_num
|
||||
tmp1 = ao_integrals_n_e(i,j) * (SCF_density_matrix_ao_alpha(i,j) + SCF_density_matrix_ao_beta (i,j) )
|
||||
tmp2 = ao_kinetic_integrals(i,j) * (SCF_density_matrix_ao_alpha(i,j) + SCF_density_matrix_ao_beta (i,j) )
|
||||
HF_n_e_energy += tmp1
|
||||
HF_kinetic_energy += tmp2
|
||||
enddo
|
||||
enddo
|
||||
HF_energy += HF_two_electron_energy + HF_one_electron_energy
|
||||
END_PROVIDER
|
||||
|
||||
|
@ -1,114 +0,0 @@
|
||||
|
||||
program print_scf_int
|
||||
|
||||
call main()
|
||||
|
||||
end
|
||||
|
||||
subroutine main()
|
||||
|
||||
implicit none
|
||||
integer :: i, j, k, l
|
||||
|
||||
print *, " Hcore:"
|
||||
do j = 1, ao_num
|
||||
do i = 1, ao_num
|
||||
print *, i, j, ao_one_e_integrals(i,j)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
print *, " P:"
|
||||
do j = 1, ao_num
|
||||
do i = 1, ao_num
|
||||
print *, i, j, SCF_density_matrix_ao_alpha(i,j)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
|
||||
double precision :: integ, density_a, density_b, density
|
||||
double precision :: J_scf(ao_num, ao_num)
|
||||
double precision :: K_scf(ao_num, ao_num)
|
||||
|
||||
|
||||
double precision, external :: get_ao_two_e_integral
|
||||
PROVIDE ao_integrals_map
|
||||
|
||||
print *, " J:"
|
||||
!do j = 1, ao_num
|
||||
! do l = 1, ao_num
|
||||
! do i = 1, ao_num
|
||||
! do k = 1, ao_num
|
||||
! ! < 1:k, 2:l | 1:i, 2:j >
|
||||
! print *, '< k l | i j >', k, l, i, j
|
||||
! print *, get_ao_two_e_integral(i, j, k, l, ao_integrals_map)
|
||||
! enddo
|
||||
! enddo
|
||||
! enddo
|
||||
!enddo
|
||||
|
||||
!do k = 1, ao_num
|
||||
! do i = 1, ao_num
|
||||
! do j = 1, ao_num
|
||||
! do l = 1, ao_num
|
||||
! ! ( 1:k, 1:i | 2:l, 2:j )
|
||||
! print *, '(k i | l j)', k, i, l, j
|
||||
! print *, get_ao_two_e_integral(l, j, k, i, ao_integrals_map)
|
||||
! enddo
|
||||
! enddo
|
||||
! print *, ''
|
||||
! enddo
|
||||
!enddo
|
||||
|
||||
J_scf = 0.d0
|
||||
K_scf = 0.d0
|
||||
do i = 1, ao_num
|
||||
do k = 1, ao_num
|
||||
do j = 1, ao_num
|
||||
do l = 1, ao_num
|
||||
|
||||
density_a = SCF_density_matrix_ao_alpha(l,j)
|
||||
density_b = SCF_density_matrix_ao_beta (l,j)
|
||||
density = density_a + density_b
|
||||
|
||||
integ = get_ao_two_e_integral(l, j, k, i, ao_integrals_map)
|
||||
J_scf(k,i) += density * integ
|
||||
integ = get_ao_two_e_integral(l, i, k, j, ao_integrals_map)
|
||||
K_scf(k,i) -= density_a * integ
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
print *, 'J x P'
|
||||
do i = 1, ao_num
|
||||
do k = 1, ao_num
|
||||
print *, k, i, J_scf(k,i)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
print *, ''
|
||||
print *, 'K x P'
|
||||
do i = 1, ao_num
|
||||
do k = 1, ao_num
|
||||
print *, k, i, K_scf(k,i)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
print *, ''
|
||||
print *, 'F in AO'
|
||||
do i = 1, ao_num
|
||||
do k = 1, ao_num
|
||||
print *, k, i, Fock_matrix_ao(k,i)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
print *, ''
|
||||
print *, 'F in MO'
|
||||
do i = 1, ao_num
|
||||
do k = 1, ao_num
|
||||
print *, k, i, 2.d0 * Fock_matrix_mo_alpha(k,i)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
end
|
||||
|
@ -277,7 +277,7 @@ subroutine ao_to_mo(A_ao,LDA_ao,A_mo,LDA_mo)
|
||||
T, ao_num, &
|
||||
0.d0, A_mo, size(A_mo,1))
|
||||
|
||||
call restore_symmetry(mo_num,mo_num,A_mo,size(A_mo,1),1.d-12)
|
||||
call restore_symmetry(mo_num,mo_num,A_mo,size(A_mo,1),1.d-15)
|
||||
deallocate(T)
|
||||
end
|
||||
|
||||
|
@ -18,6 +18,6 @@ BEGIN_PROVIDER [ double precision, mo_one_e_integrals,(mo_num,mo_num)]
|
||||
call ezfio_set_mo_one_e_ints_mo_one_e_integrals(mo_one_e_integrals)
|
||||
print *, 'MO one-e integrals written to disk'
|
||||
ENDIF
|
||||
call nullify_small_elements(mo_num,mo_num,mo_one_e_integrals,size(mo_one_e_integrals,1),1.d-10)
|
||||
call nullify_small_elements(mo_num,mo_num,mo_one_e_integrals,size(mo_one_e_integrals,1),1.d-15)
|
||||
|
||||
END_PROVIDER
|
||||
|
@ -70,6 +70,10 @@ BEGIN_PROVIDER [ logical, mo_two_e_integrals_in_map ]
|
||||
else
|
||||
call add_integrals_to_map(full_ijkl_bitmask_4)
|
||||
endif
|
||||
double precision, external :: map_mb
|
||||
print*,'Molecular integrals provided:'
|
||||
print*,' Size of MO map ', map_mb(mo_integrals_map) ,'MB'
|
||||
print*,' Number of MO integrals: ', mo_map_size
|
||||
endif
|
||||
|
||||
call wall_time(wall_2)
|
||||
@ -78,10 +82,6 @@ BEGIN_PROVIDER [ logical, mo_two_e_integrals_in_map ]
|
||||
integer*8 :: get_mo_map_size, mo_map_size
|
||||
mo_map_size = get_mo_map_size()
|
||||
|
||||
double precision, external :: map_mb
|
||||
print*,'Molecular integrals provided:'
|
||||
print*,' Size of MO map ', map_mb(mo_integrals_map) ,'MB'
|
||||
print*,' Number of MO integrals: ', mo_map_size
|
||||
print*,' cpu time :',cpu_2 - cpu_1, 's'
|
||||
print*,' wall time :',wall_2 - wall_1, 's ( x ', (cpu_2-cpu_1)/(wall_2-wall_1), ')'
|
||||
|
||||
|
@ -100,7 +100,7 @@ subroutine print_transition_dipole_moment
|
||||
dip_str = d_x**2 + d_y**2 + d_z**2
|
||||
d = multi_s_dipole_moment(istate,jstate)
|
||||
f = 2d0/3d0 * d * d * dabs(ci_energy_no_diag(istate) - ci_energy_no_diag(jstate))
|
||||
write(*,'(I4,I4,A4,I3,6(F12.6))') (istate-1), (jstate-1), ' ->', (istate-1), d_x, d_y, d_z, d, dip_str, f
|
||||
write(*,'(I4,I4,A4,I3,6(F12.6))') (jstate -1) * (2*N_states-jstate)/2 + istate - jstate, (jstate-1), ' ->', (istate-1), d_x, d_y, d_z, d, dip_str, f
|
||||
enddo
|
||||
enddo
|
||||
|
||||
@ -117,7 +117,7 @@ subroutine print_transition_dipole_moment
|
||||
dip_str = d_x**2 + d_y**2 + d_z**2
|
||||
f = 2d0/3d0 * d * d * dabs(ci_energy_no_diag(istate) - ci_energy_no_diag(jstate))
|
||||
d = multi_s_dipole_moment(istate,jstate) * au_to_D
|
||||
write(*,'(I4,I4,A4,I3,6(F12.6))') (istate-1), (jstate-1), ' ->', (istate-1), d_x, d_y, d_z, d, dip_str, f
|
||||
write(*,'(I4,I4,A4,I3,6(F12.6))') (jstate -1) * (2*N_states-jstate)/2 + istate - jstate, (jstate-1), ' ->', (istate-1), d_x, d_y, d_z, d, dip_str, f
|
||||
enddo
|
||||
enddo
|
||||
print*,'=============================================='
|
||||
@ -181,10 +181,9 @@ subroutine print_oscillator_strength
|
||||
! Mixed gauge
|
||||
f_m = 2d0/3d0 * d * v
|
||||
|
||||
write(*,'(A19,I3,A9,F10.6,A5,F7.1,A10,F9.6,A6,F9.6,A6,F9.6,A8,F7.3)') ' # Transition n.', (istate-1), ': Excit.=', dabs((ci_energy_no_diag(istate) - ci_energy_no_diag(jstate)))*ha_to_ev, &
|
||||
write(*,'(A19,I3,A9,F10.6,A5,F7.1,A10,F9.6,A6,F9.6,A6,F9.6,A8,F7.3)') ' # Transition n.', (jstate -1) * (2*N_states-jstate)/2 + istate - jstate, ': Excit.=', dabs((ci_energy_no_diag(istate) - ci_energy_no_diag(jstate)))*ha_to_ev, &
|
||||
' eV ( ',dabs((ci_energy_no_diag(istate) - ci_energy_no_diag(jstate)))*Ha_to_nm,' nm), f_l=',f_l, ', f_v=', f_v, ', f_m=', f_m, ', <S^2>=', s2_values(istate)
|
||||
!write(*,'(I4,I4,A4,I3,A6,F6.1,A6,F6.1)') (istate-1), (jstate-1), ' ->', (istate-1), ', %T1=', percent_exc(2,istate), ', %T2=',percent_exc(3,istate)
|
||||
|
||||
enddo
|
||||
enddo
|
||||
|
||||
|
@ -12,15 +12,12 @@ program projected_operators
|
||||
mu_of_r_potential = "cas_full"
|
||||
touch mu_of_r_potential
|
||||
print*,'Using Valence Only functions'
|
||||
! call test_f_HF_valence_ab
|
||||
! call routine_full_mos
|
||||
! call test_f_ii_valence_ab
|
||||
! call test_f_ia_valence_ab
|
||||
! call test_f_ii_ia_aa_valence_ab
|
||||
! call test
|
||||
! call test_f_mean_field
|
||||
! call test_grad_f_mean_field
|
||||
call test_grad_mu_mf
|
||||
call test_f_HF_valence_ab
|
||||
call routine_full_mos
|
||||
call test_f_ii_valence_ab
|
||||
call test_f_ia_valence_ab
|
||||
call test_f_ii_ia_aa_valence_ab
|
||||
call test
|
||||
end
|
||||
|
||||
|
||||
@ -39,138 +36,3 @@ subroutine test
|
||||
|
||||
end
|
||||
|
||||
subroutine test_f_mean_field
|
||||
implicit none
|
||||
integer :: i_point
|
||||
double precision :: weight,r(3)
|
||||
double precision :: ref_f, new_f, accu_f
|
||||
double precision :: ref_two_dens, new_two_dens, accu_two_dens, dm_a, dm_b
|
||||
accu_f = 0.d0
|
||||
accu_two_dens = 0.d0
|
||||
do i_point = 1, n_points_final_grid
|
||||
r(1:3) = final_grid_points(1:3,i_point)
|
||||
weight = final_weight_at_r_vector(i_point)
|
||||
call get_f_mf_ab(r,new_f,new_two_dens, dm_a, dm_b)
|
||||
call f_HF_valence_ab(r,r,ref_f,ref_two_dens)
|
||||
accu_f += weight * dabs(new_f- ref_f)
|
||||
accu_two_dens += weight * dabs(new_two_dens - ref_two_dens)
|
||||
enddo
|
||||
print*,'accu_f = ',accu_f
|
||||
print*,'accu_two_dens = ',accu_two_dens
|
||||
|
||||
end
|
||||
|
||||
subroutine test_grad_f_mean_field
|
||||
implicit none
|
||||
integer :: i_point,k
|
||||
double precision :: weight,r(3)
|
||||
double precision :: grad_f_mf_ab(3), grad_two_bod_dens(3)
|
||||
double precision :: grad_dm_a(3), grad_dm_b(3)
|
||||
double precision :: f_mf_ab,two_bod_dens, dm_a, dm_b
|
||||
|
||||
double precision :: num_grad_f_mf_ab(3), num_grad_two_bod_dens(3)
|
||||
double precision :: num_grad_dm_a(3), num_grad_dm_b(3)
|
||||
double precision :: f_mf_ab_p,f_mf_ab_m
|
||||
double precision :: two_bod_dens_p, two_bod_dens_m
|
||||
double precision :: dm_a_p, dm_a_m
|
||||
double precision :: dm_b_p, dm_b_m
|
||||
double precision :: rbis(3), dr
|
||||
double precision :: accu_grad_f_mf_ab(3),accu_grad_two_bod_dens(3)
|
||||
double precision :: accu_grad_dm_a(3),accu_grad_dm_b(3)
|
||||
double precision :: accu_f_mf_ab, accu_two_bod_dens, accu_dm_a, accu_dm_b
|
||||
dr = 0.00001d0
|
||||
accu_f_mf_ab = 0.d0
|
||||
accu_two_bod_dens = 0.d0
|
||||
accu_dm_a = 0.d0
|
||||
accu_dm_b = 0.d0
|
||||
|
||||
accu_grad_f_mf_ab = 0.d0
|
||||
accu_grad_two_bod_dens = 0.d0
|
||||
accu_grad_dm_a = 0.d0
|
||||
accu_grad_dm_b = 0.d0
|
||||
do i_point = 1, n_points_final_grid
|
||||
r(1:3) = final_grid_points(1:3,i_point)
|
||||
weight = final_weight_at_r_vector(i_point)
|
||||
call get_grad_f_mf_ab(r,grad_f_mf_ab, grad_two_bod_dens,f_mf_ab,two_bod_dens, dm_a, dm_b,grad_dm_a, grad_dm_b)
|
||||
call get_f_mf_ab(r,f_mf_ab_p,two_bod_dens_p, dm_a_p, dm_b_p)
|
||||
accu_f_mf_ab += weight * dabs(f_mf_ab - f_mf_ab_p)
|
||||
accu_two_bod_dens += weight * dabs(two_bod_dens - two_bod_dens_p)
|
||||
accu_dm_a += weight*dabs(dm_a - dm_a_p)
|
||||
accu_dm_b += weight*dabs(dm_b - dm_b_p)
|
||||
do k = 1, 3
|
||||
rbis = r
|
||||
rbis(k) += dr
|
||||
call get_f_mf_ab(rbis,f_mf_ab_p,two_bod_dens_p, dm_a_p, dm_b_p)
|
||||
rbis = r
|
||||
rbis(k) -= dr
|
||||
call get_f_mf_ab(rbis,f_mf_ab_m,two_bod_dens_m, dm_a_m, dm_b_m)
|
||||
num_grad_f_mf_ab(k) = (f_mf_ab_p - f_mf_ab_m)/(2.d0*dr)
|
||||
num_grad_two_bod_dens(k) = (two_bod_dens_p - two_bod_dens_m)/(2.d0*dr)
|
||||
num_grad_dm_a(k) = (dm_a_p - dm_a_m)/(2.d0*dr)
|
||||
num_grad_dm_b(k) = (dm_b_p - dm_b_m)/(2.d0*dr)
|
||||
enddo
|
||||
do k = 1, 3
|
||||
accu_grad_f_mf_ab(k) += weight * dabs(grad_f_mf_ab(k) - num_grad_f_mf_ab(k))
|
||||
accu_grad_two_bod_dens(k) += weight * dabs(grad_two_bod_dens(k) - num_grad_two_bod_dens(k))
|
||||
accu_grad_dm_a(k) += weight * dabs(grad_dm_a(k) - num_grad_dm_a(k))
|
||||
accu_grad_dm_b(k) += weight * dabs(grad_dm_b(k) - num_grad_dm_b(k))
|
||||
enddo
|
||||
enddo
|
||||
print*,'accu_f_mf_ab = ',accu_f_mf_ab
|
||||
print*,'accu_two_bod_dens = ',accu_two_bod_dens
|
||||
print*,'accu_dm_a = ',accu_dm_a
|
||||
print*,'accu_dm_b = ',accu_dm_b
|
||||
print*,'accu_grad_f_mf_ab = '
|
||||
print*,accu_grad_f_mf_ab
|
||||
print*,'accu_grad_two_bod_dens = '
|
||||
print*,accu_grad_two_bod_dens
|
||||
print*,'accu_dm_a = '
|
||||
print*,accu_grad_dm_a
|
||||
print*,'accu_dm_b = '
|
||||
print*,accu_grad_dm_b
|
||||
|
||||
end
|
||||
|
||||
subroutine test_grad_mu_mf
|
||||
implicit none
|
||||
integer :: i_point,k
|
||||
double precision :: weight,r(3),rbis(3)
|
||||
double precision :: mu_mf, dm,grad_mu_mf(3), grad_dm(3)
|
||||
double precision :: mu_mf_p, mu_mf_m, dm_m, dm_p, num_grad_mu_mf(3),dr, num_grad_dm(3)
|
||||
double precision :: accu_mu, accu_dm, accu_grad_dm(3), accu_grad_mu_mf(3)
|
||||
dr = 0.00001d0
|
||||
accu_grad_mu_mf = 0.d0
|
||||
accu_mu = 0.d0
|
||||
accu_grad_dm = 0.d0
|
||||
accu_dm = 0.d0
|
||||
do i_point = 1, n_points_final_grid
|
||||
r(1:3) = final_grid_points(1:3,i_point)
|
||||
weight = final_weight_at_r_vector(i_point)
|
||||
call grad_mu_of_r_mean_field(r,mu_mf, dm, grad_mu_mf, grad_dm)
|
||||
call mu_of_r_mean_field(r,mu_mf_p, dm_p)
|
||||
accu_mu += weight*dabs(mu_mf_p - mu_mf)
|
||||
accu_dm += weight*dabs(dm_p - dm)
|
||||
do k = 1, 3
|
||||
rbis = r
|
||||
rbis(k) += dr
|
||||
call mu_of_r_mean_field(rbis,mu_mf_p, dm_p)
|
||||
rbis = r
|
||||
rbis(k) -= dr
|
||||
call mu_of_r_mean_field(rbis,mu_mf_m, dm_m)
|
||||
|
||||
num_grad_mu_mf(k) = (mu_mf_p - mu_mf_m)/(2.d0*dr)
|
||||
num_grad_dm(k) = (dm_p - dm_m)/(2.d0*dr)
|
||||
enddo
|
||||
do k = 1, 3
|
||||
accu_grad_dm(k)+= weight *dabs(num_grad_dm(k) - grad_dm(k))
|
||||
accu_grad_mu_mf(k)+= weight *dabs(num_grad_mu_mf(k) - grad_mu_mf(k))
|
||||
enddo
|
||||
enddo
|
||||
print*,'accu_mu = ',accu_mu
|
||||
print*,'accu_dm = ',accu_dm
|
||||
print*,'accu_grad_dm = '
|
||||
print*, accu_grad_dm
|
||||
print*,'accu_grad_mu_mf = '
|
||||
print*, accu_grad_mu_mf
|
||||
|
||||
end
|
||||
|
@ -45,6 +45,12 @@ type: double precision
|
||||
doc: Calculated HF energy
|
||||
interface: ezfio
|
||||
|
||||
[do_mom]
|
||||
type: logical
|
||||
doc: If true, this will run a MOM calculation. The overlap will be computed at each step with respect to the initial MOs. After an initial Hartree-Fock calculation, the guess can be created by swapping molecular orbitals through the qp run swap_mos command.
|
||||
interface: ezfio,provider,ocaml
|
||||
default: False
|
||||
|
||||
[frozen_orb_scf]
|
||||
type: logical
|
||||
doc: If true, leave untouched all the orbitals defined as core and optimize all the orbitals defined as active with qp_set_mo_class
|
||||
|
@ -253,17 +253,18 @@ BEGIN_PROVIDER [ double precision, SCF_energy ]
|
||||
BEGIN_DOC
|
||||
! Hartree-Fock energy
|
||||
END_DOC
|
||||
SCF_energy = nuclear_repulsion
|
||||
|
||||
integer :: i,j
|
||||
|
||||
SCF_energy = 0.d0
|
||||
|
||||
do j=1,ao_num
|
||||
do i=1,ao_num
|
||||
SCF_energy += 0.5d0 * ( &
|
||||
SCF_energy += &
|
||||
(ao_one_e_integrals(i,j) + Fock_matrix_ao_alpha(i,j) ) * SCF_density_matrix_ao_alpha(i,j) +&
|
||||
(ao_one_e_integrals(i,j) + Fock_matrix_ao_beta (i,j) ) * SCF_density_matrix_ao_beta (i,j) )
|
||||
(ao_one_e_integrals(i,j) + Fock_matrix_ao_beta (i,j) ) * SCF_density_matrix_ao_beta (i,j)
|
||||
enddo
|
||||
enddo
|
||||
SCF_energy += extra_e_contrib_density
|
||||
SCF_energy = 0.5d0 * SCF_energy + extra_e_contrib_density + nuclear_repulsion
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
96
src/scf_utils/reorder_mo_max_overlap.irp.f
Normal file
96
src/scf_utils/reorder_mo_max_overlap.irp.f
Normal file
@ -0,0 +1,96 @@
|
||||
subroutine reorder_mo_max_overlap
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! routines that compute the projection of each MO of the current `mo_coef` on the space spanned by the occupied orbitals of `mo_coef_begin_iteration`
|
||||
END_DOC
|
||||
integer :: i,j,k,l
|
||||
double precision, allocatable :: overlap(:,:)
|
||||
double precision, allocatable :: proj(:)
|
||||
integer, allocatable :: iorder(:)
|
||||
double precision, allocatable :: mo_coef_tmp(:,:)
|
||||
double precision, allocatable :: tmp(:,:)
|
||||
allocate(overlap(mo_num,mo_num),proj(mo_num),iorder(mo_num),mo_coef_tmp(ao_num,mo_num),tmp(mo_num,ao_num))
|
||||
|
||||
overlap(:,:) = 0d0
|
||||
mo_coef_tmp(:,:) = 0d0
|
||||
proj(:) = 0d0
|
||||
iorder(:) = 0d0
|
||||
tmp(:,:) = 0d0
|
||||
|
||||
! These matrix products compute the overlap bewteen the initial and the current MOs
|
||||
call dgemm('T','N', mo_num, ao_num, ao_num, 1.d0, &
|
||||
mo_coef_begin_iteration, size(mo_coef_begin_iteration,1), &
|
||||
ao_overlap, size(ao_overlap,1), 0.d0, &
|
||||
tmp, size(tmp,1))
|
||||
|
||||
call dgemm('N','N', mo_num, mo_num, ao_num, 1.d0, &
|
||||
tmp, size(tmp,1), &
|
||||
mo_coef, size(mo_coef, 1), 0.d0, &
|
||||
overlap, size(overlap,1) )
|
||||
|
||||
|
||||
! for each orbital compute the best overlap
|
||||
do i = 1, mo_num
|
||||
iorder(i) = i ! initialize the iorder list as we need it to sort later
|
||||
do j = 1, elec_alpha_num
|
||||
proj(i) += overlap(j,i)*overlap(j,i) ! compute the projection of current orbital i on the occupied space of the initial orbitals
|
||||
enddo
|
||||
proj(i) = dsqrt(proj(i))
|
||||
enddo
|
||||
! sort the list of projection to find the mos with the largest overlap
|
||||
call dsort(proj(:),iorder(:),mo_num)
|
||||
! reorder orbitals according to projection
|
||||
do i=1,mo_num
|
||||
mo_coef_tmp(:,i) = mo_coef(:,iorder(mo_num+1-i))
|
||||
enddo
|
||||
|
||||
! update the orbitals
|
||||
mo_coef(:,:) = mo_coef_tmp(:,:)
|
||||
|
||||
! if the determinant is open-shell we need to make sure that the singly occupied orbital correspond to the initial ones
|
||||
if (elec_alpha_num > elec_beta_num) then
|
||||
double precision, allocatable :: overlap_alpha(:,:)
|
||||
double precision, allocatable :: proj_alpha(:)
|
||||
integer, allocatable :: iorder_alpha(:)
|
||||
allocate(overlap_alpha(mo_num,elec_alpha_num),proj_alpha(elec_alpha_num),iorder_alpha(elec_alpha_num))
|
||||
overlap_alpha(:,:) = 0d0
|
||||
mo_coef_tmp(:,:) = 0d0
|
||||
proj_alpha(:) = 0d0
|
||||
iorder_alpha(:) = 0d0
|
||||
tmp(:,:) = 0d0
|
||||
! These matrix products compute the overlap bewteen the initial and the current MOs
|
||||
call dgemm('T','N', mo_num, ao_num, ao_num, 1.d0, &
|
||||
mo_coef_begin_iteration, size(mo_coef_begin_iteration,1), &
|
||||
ao_overlap, size(ao_overlap,1), 0.d0, &
|
||||
tmp, size(tmp,1))
|
||||
|
||||
call dgemm('N','N', mo_num, elec_alpha_num, ao_num, 1.d0, &
|
||||
tmp, size(tmp,1), &
|
||||
mo_coef, size(mo_coef, 1), 0.d0, &
|
||||
overlap_alpha, size(overlap_alpha,1) )
|
||||
|
||||
do i = 1, elec_alpha_num
|
||||
iorder_alpha(i) = i ! initialize the iorder list as we need it to sort later
|
||||
do j = 1, elec_beta_num
|
||||
proj_alpha(i) += overlap_alpha(j,i)*overlap_alpha(j,i) ! compute the projection of current orbital i on the beta occupied space of the initial orbitals
|
||||
enddo
|
||||
proj_alpha(i) = dsqrt(proj_alpha(i))
|
||||
enddo
|
||||
|
||||
! sort the list of projection to find the mos with the largest overlap
|
||||
call dsort(proj_alpha(:),iorder_alpha(:),elec_alpha_num)
|
||||
! reorder orbitals according to projection
|
||||
do i=1,elec_alpha_num
|
||||
mo_coef_tmp(:,i) = mo_coef(:,iorder_alpha(elec_alpha_num+1-i))
|
||||
enddo
|
||||
do i=1,elec_alpha_num
|
||||
mo_coef(:,i) = mo_coef_tmp(:,i)
|
||||
enddo
|
||||
|
||||
deallocate(overlap_alpha, proj_alpha, iorder_alpha)
|
||||
endif
|
||||
|
||||
deallocate(overlap, proj, iorder, mo_coef_tmp, tmp)
|
||||
|
||||
end
|
||||
|
@ -51,6 +51,11 @@ END_DOC
|
||||
!
|
||||
PROVIDE FPS_SPF_matrix_AO Fock_matrix_AO
|
||||
|
||||
! Initialize MO to run IMOM
|
||||
if(do_mom)then
|
||||
call initialize_mo_coef_begin_iteration
|
||||
endif
|
||||
|
||||
converged = .False.
|
||||
do while ( .not.converged .and. (iteration_SCF < n_it_SCF_max) )
|
||||
|
||||
@ -88,16 +93,17 @@ END_DOC
|
||||
Fock_matrix_AO_beta = Fock_matrix_AO*0.5d0
|
||||
TOUCH Fock_matrix_AO_alpha Fock_matrix_AO_beta
|
||||
|
||||
endif
|
||||
|
||||
endif
|
||||
MO_coef = eigenvectors_Fock_matrix_MO
|
||||
if(do_mom)then
|
||||
call reorder_mo_max_overlap
|
||||
endif
|
||||
if(frozen_orb_scf)then
|
||||
call reorder_core_orb
|
||||
call initialize_mo_coef_begin_iteration
|
||||
call reorder_core_orb
|
||||
call initialize_mo_coef_begin_iteration
|
||||
endif
|
||||
|
||||
TOUCH MO_coef
|
||||
|
||||
! Calculate error vectors
|
||||
|
||||
max_error_DIIS = maxval(Abs(FPS_SPF_Matrix_MO))
|
||||
@ -106,41 +112,46 @@ END_DOC
|
||||
|
||||
energy_SCF = SCF_energy
|
||||
Delta_Energy_SCF = energy_SCF - energy_SCF_previous
|
||||
if ( (SCF_algorithm == 'DIIS').and.(Delta_Energy_SCF > 0.d0) ) then
|
||||
if ( (SCF_algorithm == 'DIIS').and.(Delta_Energy_SCF > 0.d0).and.(.not.do_mom) ) then
|
||||
Fock_matrix_AO(1:ao_num,1:ao_num) = Fock_matrix_DIIS (1:ao_num,1:ao_num,index_dim_DIIS)
|
||||
Fock_matrix_AO_alpha = Fock_matrix_AO*0.5d0
|
||||
Fock_matrix_AO_beta = Fock_matrix_AO*0.5d0
|
||||
TOUCH Fock_matrix_AO_alpha Fock_matrix_AO_beta
|
||||
endif
|
||||
|
||||
double precision :: level_shift_save
|
||||
level_shift_save = level_shift
|
||||
mo_coef_save(1:ao_num,1:mo_num) = mo_coef(1:ao_num,1:mo_num)
|
||||
do while (Delta_energy_SCF > 0.d0)
|
||||
mo_coef(1:ao_num,1:mo_num) = mo_coef_save
|
||||
if (level_shift <= .1d0) then
|
||||
level_shift = 1.d0
|
||||
else
|
||||
level_shift = level_shift * 3.0d0
|
||||
endif
|
||||
TOUCH mo_coef level_shift
|
||||
mo_coef(1:ao_num,1:mo_num) = eigenvectors_Fock_matrix_MO(1:ao_num,1:mo_num)
|
||||
if(frozen_orb_scf)then
|
||||
call reorder_core_orb
|
||||
call initialize_mo_coef_begin_iteration
|
||||
endif
|
||||
TOUCH mo_coef
|
||||
Delta_Energy_SCF = SCF_energy - energy_SCF_previous
|
||||
energy_SCF = SCF_energy
|
||||
if (level_shift-level_shift_save > 40.d0) then
|
||||
level_shift = level_shift_save * 4.d0
|
||||
SOFT_TOUCH level_shift
|
||||
exit
|
||||
endif
|
||||
dim_DIIS=0
|
||||
enddo
|
||||
level_shift = level_shift * 0.5d0
|
||||
SOFT_TOUCH level_shift
|
||||
if (.not.do_mom) then
|
||||
double precision :: level_shift_save
|
||||
level_shift_save = level_shift
|
||||
mo_coef_save(1:ao_num,1:mo_num) = mo_coef(1:ao_num,1:mo_num)
|
||||
do while (Delta_energy_SCF > 0.d0)
|
||||
mo_coef(1:ao_num,1:mo_num) = mo_coef_save
|
||||
if (level_shift <= .1d0) then
|
||||
level_shift = 1.d0
|
||||
else
|
||||
level_shift = level_shift * 3.0d0
|
||||
endif
|
||||
TOUCH mo_coef level_shift
|
||||
mo_coef(1:ao_num,1:mo_num) = eigenvectors_Fock_matrix_MO(1:ao_num,1:mo_num)
|
||||
if(do_mom)then
|
||||
call reorder_mo_max_overlap
|
||||
endif
|
||||
if(frozen_orb_scf)then
|
||||
call reorder_core_orb
|
||||
call initialize_mo_coef_begin_iteration
|
||||
endif
|
||||
TOUCH mo_coef
|
||||
Delta_Energy_SCF = SCF_energy - energy_SCF_previous
|
||||
energy_SCF = SCF_energy
|
||||
if (level_shift-level_shift_save > 40.d0) then
|
||||
level_shift = level_shift_save * 4.d0
|
||||
SOFT_TOUCH level_shift
|
||||
exit
|
||||
endif
|
||||
dim_DIIS=0
|
||||
enddo
|
||||
level_shift = level_shift * 0.5d0
|
||||
SOFT_TOUCH level_shift
|
||||
endif
|
||||
energy_SCF_previous = energy_SCF
|
||||
|
||||
converged = ( (max_error_DIIS <= threshold_DIIS_nonzero) .and. &
|
||||
@ -205,7 +216,7 @@ END_DOC
|
||||
|
||||
if(.not.frozen_orb_scf)then
|
||||
call mo_as_eigvectors_of_mo_matrix(Fock_matrix_mo,size(Fock_matrix_mo,1), &
|
||||
size(Fock_matrix_mo,2),mo_label,1,.true.)
|
||||
size(Fock_matrix_mo,2),mo_label,1,.true.)
|
||||
call restore_symmetry(ao_num, mo_num, mo_coef, size(mo_coef,1), 1.d-10)
|
||||
call orthonormalize_mos
|
||||
endif
|
||||
@ -228,6 +239,9 @@ END_DOC
|
||||
i = j+1
|
||||
enddo
|
||||
|
||||
if(do_mom)then
|
||||
call reorder_mo_max_overlap
|
||||
endif
|
||||
|
||||
call save_mos
|
||||
|
||||
|
@ -15,5 +15,21 @@ end
|
||||
subroutine run
|
||||
implicit none
|
||||
call print_mol_properties
|
||||
print *, psi_energy + nuclear_repulsion
|
||||
print *, psi_energy + nuclear_repulsion
|
||||
call print_energy_components
|
||||
print *, 'E(HF) = ', HF_energy
|
||||
print *, 'E(CI) = ', psi_energy + nuclear_repulsion
|
||||
print *, ''
|
||||
print *, 'E_kin(CI) = ', ref_bitmask_kinetic_energy
|
||||
print *, 'E_kin(HF) = ', HF_kinetic_energy
|
||||
print *, ''
|
||||
print *, 'E_ne (CI) = ', ref_bitmask_n_e_energy
|
||||
print *, 'E_ne (HF) = ', HF_n_e_energy
|
||||
print *, ''
|
||||
print *, 'E_1e (CI) = ', ref_bitmask_one_e_energy
|
||||
print *, 'E_1e (HF) = ', HF_one_electron_energy
|
||||
print *, ''
|
||||
print *, 'E_2e (CI) = ', ref_bitmask_two_e_energy
|
||||
print *, 'E_2e (HF) = ', HF_two_electron_energy
|
||||
|
||||
end
|
||||
|
@ -56,9 +56,14 @@ subroutine routine_s2
|
||||
double precision :: accu(N_states)
|
||||
|
||||
print *, 'Weights of the CFG'
|
||||
do i=1,N_det
|
||||
integer :: step
|
||||
|
||||
step = max(1,N_det/100)
|
||||
do i=1,N_det-1,step
|
||||
print *, i, real(weight_configuration(det_to_configuration(i),:)), real(sum(weight_configuration(det_to_configuration(i),:)))
|
||||
enddo
|
||||
i=N_det
|
||||
print *, i, real(weight_configuration(det_to_configuration(i),:)), real(sum(weight_configuration(det_to_configuration(i),:)))
|
||||
print*, 'Min weight of the configuration?'
|
||||
read(5,*) wmin
|
||||
|
||||
|
@ -46,6 +46,8 @@ subroutine run(f)
|
||||
double precision, allocatable :: tmp(:,:,:)
|
||||
integer*8 :: offset, icount
|
||||
|
||||
integer :: k_num
|
||||
|
||||
integer, external :: getUnitAndOpen
|
||||
|
||||
if (trexio_has_nucleus_repulsion(f) == TREXIO_SUCCESS) then
|
||||
@ -163,46 +165,48 @@ subroutine run(f)
|
||||
|
||||
deallocate(Vi, V, tmp)
|
||||
print *, 'Cholesky AO integrals read from TREXIO file'
|
||||
endif
|
||||
|
||||
rc = trexio_has_ao_2e_int_eri(f)
|
||||
if (rc /= TREXIO_HAS_NOT) then
|
||||
PROVIDE ao_integrals_map
|
||||
else
|
||||
|
||||
BUFSIZE=ao_num**2
|
||||
allocate(buffer_i(BUFSIZE), buffer_values(BUFSIZE))
|
||||
allocate(Vi(4,BUFSIZE), V(BUFSIZE))
|
||||
rc = trexio_has_ao_2e_int_eri(f)
|
||||
if (rc /= TREXIO_HAS_NOT) then
|
||||
PROVIDE ao_integrals_map
|
||||
|
||||
offset = 0_8
|
||||
icount = BUFSIZE
|
||||
rc = TREXIO_SUCCESS
|
||||
do while (icount == size(V))
|
||||
rc = trexio_read_ao_2e_int_eri(f, offset, icount, Vi, V)
|
||||
do m=1,icount
|
||||
i = Vi(1,m)
|
||||
j = Vi(2,m)
|
||||
k = Vi(3,m)
|
||||
l = Vi(4,m)
|
||||
integral = V(m)
|
||||
call two_e_integrals_index(i, j, k, l, buffer_i(m) )
|
||||
buffer_values(m) = integral
|
||||
enddo
|
||||
call insert_into_ao_integrals_map(int(icount,4),buffer_i,buffer_values)
|
||||
offset = offset + icount
|
||||
if (rc /= TREXIO_SUCCESS) then
|
||||
exit
|
||||
endif
|
||||
end do
|
||||
n_integrals = offset
|
||||
BUFSIZE=ao_num**2
|
||||
allocate(buffer_i(BUFSIZE), buffer_values(BUFSIZE))
|
||||
allocate(Vi(4,BUFSIZE), V(BUFSIZE))
|
||||
|
||||
call map_sort(ao_integrals_map)
|
||||
call map_unique(ao_integrals_map)
|
||||
offset = 0_8
|
||||
icount = BUFSIZE
|
||||
rc = TREXIO_SUCCESS
|
||||
do while (icount == size(V))
|
||||
rc = trexio_read_ao_2e_int_eri(f, offset, icount, Vi, V)
|
||||
do m=1,icount
|
||||
i = Vi(1,m)
|
||||
j = Vi(2,m)
|
||||
k = Vi(3,m)
|
||||
l = Vi(4,m)
|
||||
integral = V(m)
|
||||
call two_e_integrals_index(i, j, k, l, buffer_i(m) )
|
||||
buffer_values(m) = integral
|
||||
enddo
|
||||
call insert_into_ao_integrals_map(int(icount,4),buffer_i,buffer_values)
|
||||
offset = offset + icount
|
||||
if (rc /= TREXIO_SUCCESS) then
|
||||
exit
|
||||
endif
|
||||
end do
|
||||
n_integrals = offset
|
||||
|
||||
call map_save_to_disk(trim(ezfio_filename)//'/work/ao_ints',ao_integrals_map)
|
||||
call ezfio_set_ao_two_e_ints_io_ao_two_e_integrals('Read')
|
||||
call map_sort(ao_integrals_map)
|
||||
call map_unique(ao_integrals_map)
|
||||
|
||||
deallocate(buffer_i, buffer_values, Vi, V)
|
||||
print *, 'AO integrals read from TREXIO file'
|
||||
call map_save_to_disk(trim(ezfio_filename)//'/work/ao_ints',ao_integrals_map)
|
||||
call ezfio_set_ao_two_e_ints_io_ao_two_e_integrals('Read')
|
||||
|
||||
deallocate(buffer_i, buffer_values, Vi, V)
|
||||
print *, 'AO integrals read from TREXIO file'
|
||||
endif
|
||||
endif
|
||||
else
|
||||
print *, 'AO integrals not found in TREXIO file'
|
||||
@ -270,44 +274,47 @@ subroutine run(f)
|
||||
|
||||
deallocate(Vi, V, tmp)
|
||||
print *, 'Cholesky MO integrals read from TREXIO file'
|
||||
endif
|
||||
|
||||
rc = trexio_has_mo_2e_int_eri(f)
|
||||
if (rc /= TREXIO_HAS_NOT) then
|
||||
BUFSIZE=mo_num**2
|
||||
allocate(buffer_i(BUFSIZE), buffer_values(BUFSIZE))
|
||||
allocate(Vi(4,BUFSIZE), V(BUFSIZE))
|
||||
else
|
||||
|
||||
rc = trexio_has_mo_2e_int_eri(f)
|
||||
if (rc /= TREXIO_HAS_NOT) then
|
||||
BUFSIZE=mo_num**2
|
||||
allocate(buffer_i(BUFSIZE), buffer_values(BUFSIZE))
|
||||
allocate(Vi(4,BUFSIZE), V(BUFSIZE))
|
||||
|
||||
|
||||
offset = 0_8
|
||||
icount = BUFSIZE
|
||||
rc = TREXIO_SUCCESS
|
||||
do while (icount == size(V))
|
||||
rc = trexio_read_mo_2e_int_eri(f, offset, icount, Vi, V)
|
||||
do m=1,icount
|
||||
i = Vi(1,m)
|
||||
j = Vi(2,m)
|
||||
k = Vi(3,m)
|
||||
l = Vi(4,m)
|
||||
integral = V(m)
|
||||
call two_e_integrals_index(i, j, k, l, buffer_i(m) )
|
||||
buffer_values(m) = integral
|
||||
enddo
|
||||
call map_append(mo_integrals_map, buffer_i, buffer_values, int(icount,4))
|
||||
offset = offset + icount
|
||||
if (rc /= TREXIO_SUCCESS) then
|
||||
exit
|
||||
endif
|
||||
end do
|
||||
n_integrals = offset
|
||||
offset = 0_8
|
||||
icount = BUFSIZE
|
||||
rc = TREXIO_SUCCESS
|
||||
do while (icount == size(V))
|
||||
rc = trexio_read_mo_2e_int_eri(f, offset, icount, Vi, V)
|
||||
do m=1,icount
|
||||
i = Vi(1,m)
|
||||
j = Vi(2,m)
|
||||
k = Vi(3,m)
|
||||
l = Vi(4,m)
|
||||
integral = V(m)
|
||||
call two_e_integrals_index(i, j, k, l, buffer_i(m) )
|
||||
buffer_values(m) = integral
|
||||
enddo
|
||||
call map_append(mo_integrals_map, buffer_i, buffer_values, int(icount,4))
|
||||
offset = offset + icount
|
||||
if (rc /= TREXIO_SUCCESS) then
|
||||
exit
|
||||
endif
|
||||
end do
|
||||
n_integrals = offset
|
||||
|
||||
call map_sort(mo_integrals_map)
|
||||
call map_unique(mo_integrals_map)
|
||||
call map_sort(mo_integrals_map)
|
||||
call map_unique(mo_integrals_map)
|
||||
|
||||
call map_save_to_disk(trim(ezfio_filename)//'/work/mo_ints',mo_integrals_map)
|
||||
call ezfio_set_mo_two_e_ints_io_mo_two_e_integrals('Read')
|
||||
deallocate(buffer_i, buffer_values, Vi, V)
|
||||
print *, 'MO integrals read from TREXIO file'
|
||||
endif
|
||||
|
||||
call map_save_to_disk(trim(ezfio_filename)//'/work/mo_ints',mo_integrals_map)
|
||||
call ezfio_set_mo_two_e_ints_io_mo_two_e_integrals('Read')
|
||||
deallocate(buffer_i, buffer_values, Vi, V)
|
||||
print *, 'MO integrals read from TREXIO file'
|
||||
endif
|
||||
|
||||
else
|
||||
|
@ -56,7 +56,7 @@ subroutine give_explicit_cpoly_and_cgaussian_x(P_new, P_center, p, fact_k, iorde
|
||||
call multiply_cpoly(P_a(0), a, P_b(0), b, P_new(0), n_new)
|
||||
iorder = a + b
|
||||
|
||||
end subroutine give_explicit_cpoly_and_cgaussian_x
|
||||
end
|
||||
|
||||
! ---
|
||||
|
||||
@ -141,7 +141,7 @@ subroutine give_explicit_cpoly_and_cgaussian(P_new, P_center, p, fact_k, iorder,
|
||||
!DIR$ FORCEINLINE
|
||||
call multiply_cpoly(P_a(0,3), a(3), P_b(0,3), b(3), P_new(0,3), n_new)
|
||||
|
||||
end subroutine give_explicit_cpoly_and_cgaussian
|
||||
end
|
||||
|
||||
! ---
|
||||
|
||||
@ -249,7 +249,7 @@ subroutine cgaussian_product(a, xa, b, xb, k, p, xp)
|
||||
xp(2) = ( a * xa(2) + b * xb(2) ) * p_inv
|
||||
xp(3) = ( a * xa(3) + b * xb(3) ) * p_inv
|
||||
|
||||
end subroutine cgaussian_product
|
||||
end
|
||||
|
||||
! ---
|
||||
|
||||
@ -290,7 +290,7 @@ subroutine cgaussian_product_x(a, xa, b, xb, k, p, xp)
|
||||
k = zexp(-k)
|
||||
xp = (a*xa + b*xb) * p_inv
|
||||
|
||||
end subroutine cgaussian_product_x
|
||||
end
|
||||
|
||||
! ---
|
||||
|
||||
@ -338,7 +338,7 @@ subroutine multiply_cpoly(b, nb, c, nc, d, nd)
|
||||
exit
|
||||
enddo
|
||||
|
||||
end subroutine multiply_cpoly
|
||||
end
|
||||
|
||||
! ---
|
||||
|
||||
@ -373,7 +373,7 @@ subroutine add_cpoly(b, nb, c, nc, d, nd)
|
||||
if(nd < 0) exit
|
||||
enddo
|
||||
|
||||
end subroutine add_cpoly
|
||||
end
|
||||
|
||||
! ---
|
||||
|
||||
@ -413,7 +413,7 @@ subroutine add_cpoly_multiply(b, nb, cst, d, nd)
|
||||
|
||||
endif
|
||||
|
||||
end subroutine add_cpoly_multiply
|
||||
end
|
||||
|
||||
! ---
|
||||
|
||||
@ -475,7 +475,7 @@ subroutine recentered_cpoly2(P_A, x_A, x_P, a, P_B, x_B, x_Q, b)
|
||||
P_B(i) = binom_func(b,b-i) * pows_b(b-i)
|
||||
enddo
|
||||
|
||||
end subroutine recentered_cpoly2
|
||||
end
|
||||
|
||||
! ---
|
||||
|
||||
@ -514,267 +514,7 @@ complex*16 function Fc_integral(n, inv_sq_p)
|
||||
|
||||
Fc_integral = sqpi * 0.5d0**n * inv_sq_p**dble(n+1) * fact(n) / fact(shiftr(n, 1))
|
||||
|
||||
end function Fc_integral
|
||||
|
||||
! ---
|
||||
|
||||
complex*16 function crint(n, rho)
|
||||
|
||||
implicit none
|
||||
include 'constants.include.F'
|
||||
|
||||
integer, intent(in) :: n
|
||||
complex*16, intent(in) :: rho
|
||||
|
||||
integer :: i, mmax
|
||||
double precision :: rho_mod, rho_re, rho_im
|
||||
double precision :: sq_rho_re, sq_rho_im
|
||||
double precision :: n_tmp
|
||||
complex*16 :: sq_rho, rho_inv, rho_exp
|
||||
|
||||
complex*16 :: crint_smallz, cpx_erf
|
||||
|
||||
rho_re = REAL (rho)
|
||||
rho_im = AIMAG(rho)
|
||||
rho_mod = dsqrt(rho_re*rho_re + rho_im*rho_im)
|
||||
|
||||
if(rho_mod < 10.d0) then
|
||||
! small z
|
||||
|
||||
if(rho_mod .lt. 1.d-10) then
|
||||
crint = 1.d0 / dble(n + n + 1)
|
||||
else
|
||||
crint = crint_smallz(n, rho)
|
||||
endif
|
||||
|
||||
else
|
||||
! large z
|
||||
|
||||
if(rho_mod .gt. 40.d0) then
|
||||
|
||||
n_tmp = dble(n) + 0.5d0
|
||||
crint = 0.5d0 * gamma(n_tmp) / (rho**n_tmp)
|
||||
|
||||
else
|
||||
|
||||
! get \sqrt(rho)
|
||||
sq_rho_re = sq_op5 * dsqrt(rho_re + rho_mod)
|
||||
sq_rho_im = 0.5d0 * rho_im / sq_rho_re
|
||||
sq_rho = sq_rho_re + (0.d0, 1.d0) * sq_rho_im
|
||||
|
||||
rho_exp = 0.5d0 * zexp(-rho)
|
||||
rho_inv = (1.d0, 0.d0) / rho
|
||||
|
||||
crint = 0.5d0 * sqpi * cpx_erf(sq_rho_re, sq_rho_im) / sq_rho
|
||||
mmax = n
|
||||
if(mmax .gt. 0) then
|
||||
do i = 0, mmax-1
|
||||
crint = ((dble(i) + 0.5d0) * crint - rho_exp) * rho_inv
|
||||
enddo
|
||||
endif
|
||||
|
||||
! ***
|
||||
|
||||
endif
|
||||
|
||||
endif
|
||||
|
||||
! print *, n, real(rho), real(crint)
|
||||
|
||||
end function crint
|
||||
|
||||
! ---
|
||||
|
||||
complex*16 function crint_sum(n_pt_out, rho, d1)
|
||||
|
||||
implicit none
|
||||
include 'constants.include.F'
|
||||
|
||||
integer, intent(in) :: n_pt_out
|
||||
complex*16, intent(in) :: rho, d1(0:n_pt_out)
|
||||
|
||||
integer :: n, i, mmax
|
||||
double precision :: rho_mod, rho_re, rho_im
|
||||
double precision :: sq_rho_re, sq_rho_im
|
||||
complex*16 :: sq_rho, F0
|
||||
complex*16 :: rho_tmp, rho_inv, rho_exp
|
||||
complex*16, allocatable :: Fm(:)
|
||||
|
||||
complex*16 :: crint_smallz, cpx_erf
|
||||
|
||||
rho_re = REAL (rho)
|
||||
rho_im = AIMAG(rho)
|
||||
rho_mod = dsqrt(rho_re*rho_re + rho_im*rho_im)
|
||||
|
||||
if(rho_mod < 10.d0) then
|
||||
! small z
|
||||
|
||||
if(rho_mod .lt. 1.d-10) then
|
||||
|
||||
! print *, ' 111'
|
||||
! print *, ' rho = ', rho
|
||||
|
||||
crint_sum = d1(0)
|
||||
! print *, 0, 1
|
||||
|
||||
do i = 2, n_pt_out, 2
|
||||
|
||||
n = shiftr(i, 1)
|
||||
crint_sum = crint_sum + d1(i) / dble(n+n+1)
|
||||
|
||||
! print *, n, 1.d0 / dble(n+n+1)
|
||||
enddo
|
||||
|
||||
! ***
|
||||
|
||||
else
|
||||
|
||||
! print *, ' 222'
|
||||
! print *, ' rho = ', real(rho)
|
||||
! if(abs(aimag(rho)) .gt. 1d-15) then
|
||||
! print *, ' complex rho', rho
|
||||
! stop
|
||||
! endif
|
||||
|
||||
crint_sum = d1(0) * crint_smallz(0, rho)
|
||||
|
||||
! print *, 0, real(d1(0)), real(crint_smallz(0, rho))
|
||||
! if(abs(aimag(d1(0))) .gt. 1d-15) then
|
||||
! print *, ' complex d1(0)', d1(0)
|
||||
! stop
|
||||
! endif
|
||||
|
||||
do i = 2, n_pt_out, 2
|
||||
n = shiftr(i, 1)
|
||||
crint_sum = crint_sum + d1(i) * crint_smallz(n, rho)
|
||||
|
||||
! print *, n, real(d1(i)), real(crint_smallz(n, rho))
|
||||
! if(abs(aimag(d1(i))) .gt. 1d-15) then
|
||||
! print *, ' complex d1(i)', i, d1(i)
|
||||
! stop
|
||||
! endif
|
||||
|
||||
enddo
|
||||
|
||||
! print *, 'sum = ', real(crint_sum)
|
||||
! if(abs(aimag(crint_sum)) .gt. 1d-15) then
|
||||
! print *, ' complex crint_sum', crint_sum
|
||||
! stop
|
||||
! endif
|
||||
|
||||
! ***
|
||||
|
||||
endif
|
||||
|
||||
else
|
||||
! large z
|
||||
|
||||
if(rho_mod .gt. 40.d0) then
|
||||
|
||||
! print *, ' 333'
|
||||
! print *, ' rho = ', rho
|
||||
|
||||
rho_inv = (1.d0, 0.d0) / rho
|
||||
rho_tmp = 0.5d0 * sqpi * zsqrt(rho_inv)
|
||||
crint_sum = rho_tmp * d1(0)
|
||||
! print *, 0, rho_tmp
|
||||
|
||||
do i = 2, n_pt_out, 2
|
||||
n = shiftr(i, 1)
|
||||
rho_tmp = rho_tmp * (dble(n) + 0.5d0) * rho_inv
|
||||
crint_sum = crint_sum + rho_tmp * d1(i)
|
||||
! print *, n, rho_tmp
|
||||
enddo
|
||||
|
||||
! ***
|
||||
|
||||
else
|
||||
|
||||
! print *, ' 444'
|
||||
! print *, ' rho = ', rho
|
||||
|
||||
! get \sqrt(rho)
|
||||
sq_rho_re = sq_op5 * dsqrt(rho_re + rho_mod)
|
||||
sq_rho_im = 0.5d0 * rho_im / sq_rho_re
|
||||
sq_rho = sq_rho_re + (0.d0, 1.d0) * sq_rho_im
|
||||
!sq_rho = zsqrt(rho)
|
||||
|
||||
|
||||
F0 = 0.5d0 * sqpi * cpx_erf(sq_rho_re, sq_rho_im) / sq_rho
|
||||
crint_sum = F0 * d1(0)
|
||||
! print *, 0, F0
|
||||
|
||||
rho_exp = 0.5d0 * zexp(-rho)
|
||||
rho_inv = (1.d0, 0.d0) / rho
|
||||
|
||||
mmax = shiftr(n_pt_out, 1)
|
||||
if(mmax .gt. 0) then
|
||||
|
||||
allocate( Fm(mmax) )
|
||||
Fm(1:mmax) = (0.d0, 0.d0)
|
||||
|
||||
do n = 0, mmax-1
|
||||
F0 = ((dble(n) + 0.5d0) * F0 - rho_exp) * rho_inv
|
||||
Fm(n+1) = F0
|
||||
! print *, n, F0
|
||||
enddo
|
||||
|
||||
do i = 2, n_pt_out, 2
|
||||
n = shiftr(i, 1)
|
||||
crint_sum = crint_sum + Fm(n) * d1(i)
|
||||
enddo
|
||||
deallocate(Fm)
|
||||
endif
|
||||
|
||||
! ***
|
||||
|
||||
endif
|
||||
|
||||
endif
|
||||
|
||||
end function crint_sum
|
||||
|
||||
! ---
|
||||
|
||||
complex*16 function crint_smallz(n, rho)
|
||||
|
||||
BEGIN_DOC
|
||||
! Standard version of rint
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
integer, intent(in) :: n
|
||||
complex*16, intent(in) :: rho
|
||||
|
||||
integer, parameter :: kmax = 40
|
||||
double precision, parameter :: eps = 1.d-13
|
||||
|
||||
integer :: k
|
||||
double precision :: delta_mod
|
||||
complex*16 :: rho_k, ct, delta_k
|
||||
|
||||
ct = 0.5d0 * zexp(-rho) * gamma(dble(n) + 0.5d0)
|
||||
rho_k = (1.d0, 0.d0)
|
||||
crint_smallz = ct * rho_k / gamma(dble(n) + 1.5d0)
|
||||
|
||||
do k = 1, kmax
|
||||
|
||||
rho_k = rho_k * rho
|
||||
delta_k = ct * rho_k / gamma(dble(n+k) + 1.5d0)
|
||||
crint_smallz = crint_smallz + delta_k
|
||||
|
||||
delta_mod = dsqrt(REAL(delta_k)*REAL(delta_k) + AIMAG(delta_k)*AIMAG(delta_k))
|
||||
if(delta_mod .lt. eps) return
|
||||
enddo
|
||||
|
||||
if(delta_mod > eps) then
|
||||
write(*,*) ' pb in crint_smallz !'
|
||||
write(*,*) ' n, rho = ', n, rho
|
||||
write(*,*) ' delta_mod = ', delta_mod
|
||||
stop 1
|
||||
endif
|
||||
|
||||
end function crint_smallz
|
||||
end
|
||||
|
||||
! ---
|
||||
|
||||
|
@ -9,6 +9,9 @@ double precision, parameter :: pi_5_2 = 34.9868366552d0
|
||||
double precision, parameter :: dfour_pi = 4.d0*dacos(-1.d0)
|
||||
double precision, parameter :: dtwo_pi = 2.d0*dacos(-1.d0)
|
||||
double precision, parameter :: inv_sq_pi = 1.d0/dsqrt(dacos(-1.d0))
|
||||
double precision, parameter :: c_mu_gauss = 27.d0/(8.d0*dsqrt(dacos(-1.d0)))
|
||||
double precision, parameter :: c_mu_gauss_tot = 1.5d0*27.d0/(8.d0*dsqrt(dacos(-1.d0)))+3.d0/dsqrt(dacos(-1.d0))
|
||||
double precision, parameter :: alpha_mu_gauss = 1.5d0
|
||||
double precision, parameter :: inv_sq_pi_2 = 0.5d0/dsqrt(dacos(-1.d0))
|
||||
double precision, parameter :: thresh = 1.d-15
|
||||
double precision, parameter :: cx_lda = -0.73855876638202234d0
|
||||
|
543
src/utils/cpx_boys.irp.f
Normal file
543
src/utils/cpx_boys.irp.f
Normal file
@ -0,0 +1,543 @@
|
||||
|
||||
! ---
|
||||
|
||||
complex*16 function crint_1(n, rho)
|
||||
|
||||
implicit none
|
||||
include 'constants.include.F'
|
||||
|
||||
integer, intent(in) :: n
|
||||
complex*16, intent(in) :: rho
|
||||
|
||||
integer :: i, mmax
|
||||
double precision :: rho_mod, rho_re, rho_im
|
||||
double precision :: sq_rho_re, sq_rho_im
|
||||
double precision :: n_tmp
|
||||
complex*16 :: sq_rho, rho_inv, rho_exp
|
||||
|
||||
complex*16 :: crint_smallz, cpx_erf_1
|
||||
complex*16 :: cpx_erf_2
|
||||
|
||||
rho_re = real (rho)
|
||||
rho_im = aimag(rho)
|
||||
rho_mod = dsqrt(rho_re*rho_re + rho_im*rho_im)
|
||||
|
||||
if(rho_mod < 10.d0) then
|
||||
! small z
|
||||
if(rho_mod .lt. 1.d-15) then
|
||||
crint_1 = 1.d0 / dble(n + n + 1)
|
||||
else
|
||||
crint_1 = crint_smallz(n, rho)
|
||||
endif
|
||||
|
||||
else
|
||||
! large z
|
||||
|
||||
if(rho_mod .gt. 40.d0) then
|
||||
|
||||
n_tmp = dble(n) + 0.5d0
|
||||
crint_1 = 0.5d0 * gamma(n_tmp) / (rho**n_tmp)
|
||||
|
||||
else
|
||||
|
||||
! get \sqrt(rho)
|
||||
sq_rho_re = sq_op5 * dsqrt(rho_re + rho_mod)
|
||||
sq_rho_im = 0.5d0 * rho_im / sq_rho_re
|
||||
sq_rho = sq_rho_re + (0.d0, 1.d0) * sq_rho_im
|
||||
|
||||
rho_exp = 0.5d0 * zexp(-rho)
|
||||
rho_inv = (1.d0, 0.d0) / rho
|
||||
|
||||
!print*, sq_rho_re, sq_rho_im
|
||||
!print*, cpx_erf_1(sq_rho_re, sq_rho_im)
|
||||
!print*, cpx_erf_2(sq_rho_re, sq_rho_im)
|
||||
|
||||
crint_1 = 0.5d0 * sqpi * cpx_erf_1(sq_rho_re, sq_rho_im) / sq_rho
|
||||
mmax = n
|
||||
if(mmax .gt. 0) then
|
||||
do i = 0, mmax-1
|
||||
crint_1 = ((dble(i) + 0.5d0) * crint_1 - rho_exp) * rho_inv
|
||||
enddo
|
||||
endif
|
||||
|
||||
endif
|
||||
|
||||
endif
|
||||
|
||||
end
|
||||
|
||||
! ---
|
||||
|
||||
complex*16 function crint_quad(n, rho)
|
||||
|
||||
implicit none
|
||||
|
||||
integer, intent(in) :: n
|
||||
complex*16, intent(in) :: rho
|
||||
|
||||
integer :: i_quad, n_quad
|
||||
double precision :: tmp_inv, tmp
|
||||
|
||||
n_quad = 1000000000
|
||||
tmp_inv = 1.d0 / dble(n_quad)
|
||||
|
||||
!crint_quad = 0.5d0 * zexp(-rho)
|
||||
!do i_quad = 1, n_quad - 1
|
||||
! tmp = tmp_inv * dble(i_quad)
|
||||
! tmp = tmp * tmp
|
||||
! crint_quad += zexp(-rho*tmp) * tmp**n
|
||||
!enddo
|
||||
!crint_quad = crint_quad * tmp_inv
|
||||
|
||||
!crint_quad = 0.5d0 * zexp(-rho)
|
||||
!do i_quad = 1, n_quad - 1
|
||||
! tmp = tmp_inv * dble(i_quad)
|
||||
! crint_quad += zexp(-rho*tmp) * tmp**n / dsqrt(tmp)
|
||||
!enddo
|
||||
!crint_quad = crint_quad * 0.5d0 * tmp_inv
|
||||
|
||||
! Composite Boole's Rule
|
||||
crint_quad = 7.d0 * zexp(-rho)
|
||||
do i_quad = 1, n_quad - 1
|
||||
tmp = tmp_inv * dble(i_quad)
|
||||
tmp = tmp * tmp
|
||||
if(modulo(i_quad, 4) .eq. 0) then
|
||||
crint_quad += 14.d0 * zexp(-rho*tmp) * tmp**n
|
||||
else if(modulo(i_quad, 2) .eq. 0) then
|
||||
crint_quad += 12.d0 * zexp(-rho*tmp) * tmp**n
|
||||
else
|
||||
crint_quad += 32.d0 * zexp(-rho*tmp) * tmp**n
|
||||
endif
|
||||
enddo
|
||||
crint_quad = crint_quad * 2.d0 * tmp_inv / 45.d0
|
||||
|
||||
! Composite Simpson's 3/8 rule
|
||||
!crint_quad = zexp(-rho)
|
||||
!do i_quad = 1, n_quad - 1
|
||||
! tmp = tmp_inv * dble(i_quad)
|
||||
! tmp = tmp * tmp
|
||||
! if(modulo(i_quad, 3) .eq. 0) then
|
||||
! crint_quad += 2.d0 * zexp(-rho*tmp) * tmp**n
|
||||
! else
|
||||
! crint_quad += 3.d0 * zexp(-rho*tmp) * tmp**n
|
||||
! endif
|
||||
!enddo
|
||||
!crint_quad = crint_quad * 3.d0 * tmp_inv / 8.d0
|
||||
|
||||
end
|
||||
|
||||
! ---
|
||||
|
||||
complex*16 function crint_sum_1(n_pt_out, rho, d1)
|
||||
|
||||
implicit none
|
||||
include 'constants.include.F'
|
||||
|
||||
integer, intent(in) :: n_pt_out
|
||||
complex*16, intent(in) :: rho, d1(0:n_pt_out)
|
||||
|
||||
integer :: n, i, mmax
|
||||
double precision :: rho_mod, rho_re, rho_im
|
||||
double precision :: sq_rho_re, sq_rho_im
|
||||
complex*16 :: sq_rho, F0
|
||||
complex*16 :: rho_tmp, rho_inv, rho_exp
|
||||
complex*16, allocatable :: Fm(:)
|
||||
|
||||
complex*16 :: crint_smallz, cpx_erf_1
|
||||
|
||||
|
||||
rho_re = real (rho)
|
||||
rho_im = aimag(rho)
|
||||
rho_mod = dsqrt(rho_re*rho_re + rho_im*rho_im)
|
||||
|
||||
! ! debug
|
||||
! double precision :: d1_real(0:n_pt_out)
|
||||
! double precision :: rint_sum
|
||||
! do i = 0, n_pt_out
|
||||
! d1_real(i) = real(d1(i))
|
||||
! enddo
|
||||
! crint_sum_1 = rint_sum(n_pt_out, rho_re, d1_real)
|
||||
! return
|
||||
|
||||
if(rho_mod < 10.d0) then
|
||||
! small z
|
||||
|
||||
if(rho_mod .lt. 1.d-15) then
|
||||
|
||||
crint_sum_1 = d1(0)
|
||||
do i = 2, n_pt_out, 2
|
||||
n = shiftr(i, 1)
|
||||
crint_sum_1 = crint_sum_1 + d1(i) / dble(n+n+1)
|
||||
enddo
|
||||
|
||||
else
|
||||
|
||||
crint_sum_1 = d1(0) * crint_smallz(0, rho)
|
||||
do i = 2, n_pt_out, 2
|
||||
n = shiftr(i, 1)
|
||||
crint_sum_1 = crint_sum_1 + d1(i) * crint_smallz(n, rho)
|
||||
enddo
|
||||
|
||||
endif
|
||||
|
||||
else
|
||||
! large z
|
||||
|
||||
if(rho_mod .gt. 40.d0) then
|
||||
|
||||
rho_inv = (1.d0, 0.d0) / rho
|
||||
rho_tmp = 0.5d0 * sqpi * zsqrt(rho_inv)
|
||||
|
||||
crint_sum_1 = rho_tmp * d1(0)
|
||||
do i = 2, n_pt_out, 2
|
||||
n = shiftr(i, 1)
|
||||
rho_tmp = rho_tmp * (dble(n) + 0.5d0) * rho_inv
|
||||
crint_sum_1 = crint_sum_1 + rho_tmp * d1(i)
|
||||
enddo
|
||||
|
||||
else
|
||||
|
||||
! get \sqrt(rho)
|
||||
sq_rho_re = sq_op5 * dsqrt(rho_re + rho_mod)
|
||||
sq_rho_im = 0.5d0 * rho_im / sq_rho_re
|
||||
sq_rho = sq_rho_re + (0.d0, 1.d0) * sq_rho_im
|
||||
|
||||
F0 = 0.5d0 * sqpi * cpx_erf_1(sq_rho_re, sq_rho_im) / sq_rho
|
||||
crint_sum_1 = F0 * d1(0)
|
||||
|
||||
rho_exp = 0.5d0 * zexp(-rho)
|
||||
rho_inv = (1.d0, 0.d0) / rho
|
||||
|
||||
mmax = shiftr(n_pt_out, 1)
|
||||
if(mmax .gt. 0) then
|
||||
|
||||
allocate(Fm(mmax))
|
||||
Fm(1:mmax) = (0.d0, 0.d0)
|
||||
|
||||
do n = 0, mmax-1
|
||||
F0 = ((dble(n) + 0.5d0) * F0 - rho_exp) * rho_inv
|
||||
Fm(n+1) = F0
|
||||
enddo
|
||||
|
||||
do i = 2, n_pt_out, 2
|
||||
n = shiftr(i, 1)
|
||||
crint_sum_1 = crint_sum_1 + Fm(n) * d1(i)
|
||||
enddo
|
||||
|
||||
deallocate(Fm)
|
||||
endif
|
||||
|
||||
endif ! rho_mod
|
||||
endif ! rho_mod
|
||||
|
||||
end
|
||||
|
||||
! ---
|
||||
|
||||
complex*16 function crint_smallz(n, rho)
|
||||
|
||||
BEGIN_DOC
|
||||
! Standard version of rint
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
integer, intent(in) :: n
|
||||
complex*16, intent(in) :: rho
|
||||
|
||||
integer, parameter :: kmax = 40
|
||||
double precision, parameter :: eps = 1.d-13
|
||||
|
||||
integer :: k
|
||||
double precision :: delta_mod
|
||||
complex*16 :: rho_k, ct, delta_k
|
||||
|
||||
ct = 0.5d0 * zexp(-rho) * gamma(dble(n) + 0.5d0)
|
||||
crint_smallz = ct / gamma(dble(n) + 1.5d0)
|
||||
|
||||
rho_k = (1.d0, 0.d0)
|
||||
do k = 1, kmax
|
||||
|
||||
rho_k = rho_k * rho
|
||||
delta_k = ct * rho_k / gamma(dble(n+k) + 1.5d0)
|
||||
crint_smallz = crint_smallz + delta_k
|
||||
|
||||
delta_mod = dsqrt(real(delta_k)*real(delta_k) + aimag(delta_k)*aimag(delta_k))
|
||||
if(delta_mod .lt. eps) return
|
||||
enddo
|
||||
|
||||
if(delta_mod > eps) then
|
||||
write(*,*) ' pb in crint_smallz !'
|
||||
write(*,*) ' n, rho = ', n, rho
|
||||
write(*,*) ' delta_mod = ', delta_mod
|
||||
!stop 1
|
||||
endif
|
||||
|
||||
end
|
||||
|
||||
! ---
|
||||
|
||||
complex*16 function crint_2(n, rho)
|
||||
|
||||
implicit none
|
||||
|
||||
integer, intent(in) :: n
|
||||
complex*16, intent(in) :: rho
|
||||
|
||||
double precision :: tmp
|
||||
complex*16 :: rho2
|
||||
complex*16 :: vals(0:n)
|
||||
complex*16, external :: crint_smallz
|
||||
|
||||
if(abs(rho) < 10.d0) then
|
||||
|
||||
if(abs(rho) .lt. 1d-6) then
|
||||
tmp = 2.d0 * dble(n)
|
||||
rho2 = rho * rho
|
||||
crint_2 = 1.d0 / (tmp + 1.d0) &
|
||||
- rho / (tmp + 3.d0) &
|
||||
+ 0.5d0 * rho2 / (tmp + 5.d0) &
|
||||
- 0.16666666666666666d0 * rho * rho2 / (tmp + 7.d0)
|
||||
else
|
||||
crint_2 = crint_smallz(n, rho)
|
||||
endif
|
||||
|
||||
else
|
||||
|
||||
if(real(rho) .ge. 0.d0) then
|
||||
call zboysfun(n, rho, vals)
|
||||
crint_2 = vals(n)
|
||||
else
|
||||
call zboysfunnrp(n, rho, vals)
|
||||
crint_2 = vals(n) * zexp(-rho)
|
||||
endif
|
||||
|
||||
endif
|
||||
|
||||
return
|
||||
end
|
||||
|
||||
! ---
|
||||
|
||||
subroutine zboysfun(n_max, x, vals)
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
! Computes values of the Boys function for n = 0, 1, ..., n_max
|
||||
! for a complex valued argument
|
||||
!
|
||||
! Input: x --- argument, complex*16, Re(x) >= 0
|
||||
! Output: vals --- values of the Boys function, n = 0, 1, ..., n_max
|
||||
!
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
|
||||
integer, intent(in) :: n_max
|
||||
complex*16, intent(in) :: x
|
||||
complex*16, intent(out) :: vals(0:n_max)
|
||||
|
||||
integer :: n
|
||||
complex*16 :: yy, x_inv
|
||||
|
||||
call zboysfun00(x, vals(0))
|
||||
|
||||
yy = 0.5d0 * zexp(-x)
|
||||
x_inv = (1.d0, 0.d0) / x
|
||||
do n = 1, n_max
|
||||
vals(n) = ((dble(n) - 0.5d0) * vals(n-1) - yy) * x_inv
|
||||
enddo
|
||||
|
||||
return
|
||||
end
|
||||
|
||||
! ---
|
||||
|
||||
subroutine zboysfunnrp(n_max, x, vals)
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
! Computes values of e^z F(n,z) for n = 0, 1, ..., n_max
|
||||
! (where F(n,z) are the Boys functions)
|
||||
! for a complex valued argument WITH NEGATIVE REAL PART
|
||||
!
|
||||
! Input: x --- argument, complex *16 Re(x)<=0
|
||||
! Output: vals --- values of e^z F(n,z), n = 0, 1, ..., n_max
|
||||
!
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
|
||||
integer, intent(in) :: n_max
|
||||
complex*16, intent(in) :: x
|
||||
complex*16, intent(out) :: vals(0:n_max)
|
||||
|
||||
integer :: n
|
||||
complex*16 :: x_inv
|
||||
|
||||
call zboysfun00nrp(x, vals(0))
|
||||
|
||||
x_inv = (1.d0, 0.d0) / x
|
||||
do n = 1, n_max
|
||||
vals(n) = ((dble(n) - 0.5d0) * vals(n-1) - 0.5d0) * x_inv
|
||||
enddo
|
||||
|
||||
return
|
||||
end
|
||||
|
||||
! ---
|
||||
|
||||
complex*16 function crint_sum_2(n_pt_out, rho, d1)
|
||||
|
||||
implicit none
|
||||
|
||||
integer, intent(in) :: n_pt_out
|
||||
complex*16, intent(in) :: rho, d1(0:n_pt_out)
|
||||
|
||||
integer :: n, i
|
||||
integer :: n_max
|
||||
|
||||
complex*16, allocatable :: vals(:)
|
||||
|
||||
!complex*16, external :: crint_2
|
||||
!crint_sum_2 = (0.d0, 0.d0)
|
||||
!do i = 0, n_pt_out, 2
|
||||
! n = shiftr(i, 1)
|
||||
! crint_sum_2 = crint_sum_2 + d1(i) * crint_2(n, rho)
|
||||
!enddo
|
||||
|
||||
n_max = shiftr(n_pt_out, 1)
|
||||
|
||||
allocate(vals(0:n_max))
|
||||
call crint_2_vec(n_max, rho, vals)
|
||||
|
||||
crint_sum_2 = d1(0) * vals(0)
|
||||
do i = 2, n_pt_out, 2
|
||||
n = shiftr(i, 1)
|
||||
crint_sum_2 += d1(i) * vals(n)
|
||||
enddo
|
||||
|
||||
deallocate(vals)
|
||||
|
||||
return
|
||||
end
|
||||
|
||||
! ---
|
||||
|
||||
subroutine crint_2_vec(n_max, rho, vals)
|
||||
|
||||
implicit none
|
||||
|
||||
integer, intent(in) :: n_max
|
||||
complex*16, intent(in) :: rho
|
||||
complex*16, intent(out) :: vals(0:n_max)
|
||||
|
||||
integer :: n
|
||||
double precision :: tmp, abs_rho
|
||||
complex*16 :: rho2, rho3, erho
|
||||
|
||||
|
||||
abs_rho = abs(rho)
|
||||
|
||||
if(abs_rho < 10.d0) then
|
||||
|
||||
if(abs_rho .lt. 1d-6) then
|
||||
|
||||
! use finite expansion for very small rho
|
||||
|
||||
! rho^2 / 2
|
||||
rho2 = 0.5d0 * rho * rho
|
||||
! rho^3 / 6
|
||||
rho3 = 0.3333333333333333d0 * rho * rho2
|
||||
|
||||
vals(0) = 1.d0 - 0.3333333333333333d0 * rho + 0.2d0 * rho2 - 0.14285714285714285d0 * rho3
|
||||
do n = 1, n_max
|
||||
tmp = 2.d0 * dble(n)
|
||||
vals(n) = 1.d0 / (tmp + 1.d0) - rho / (tmp + 3.d0) &
|
||||
+ rho2 / (tmp + 5.d0) - rho3 / (tmp + 7.d0)
|
||||
enddo
|
||||
|
||||
else
|
||||
|
||||
call crint_smallz_vec(n_max, rho, vals)
|
||||
|
||||
endif
|
||||
|
||||
else
|
||||
|
||||
if(real(rho) .ge. 0.d0) then
|
||||
|
||||
call zboysfun(n_max, rho, vals)
|
||||
|
||||
else
|
||||
|
||||
call zboysfunnrp(n_max, rho, vals)
|
||||
erho = zexp(-rho)
|
||||
do n = 0, n_max
|
||||
vals(n) = vals(n) * erho
|
||||
enddo
|
||||
|
||||
endif
|
||||
|
||||
endif
|
||||
|
||||
return
|
||||
end
|
||||
|
||||
! ---
|
||||
|
||||
subroutine crint_smallz_vec(n_max, rho, vals)
|
||||
|
||||
BEGIN_DOC
|
||||
! Standard version of rint
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
integer, intent(in) :: n_max
|
||||
complex*16, intent(in) :: rho
|
||||
complex*16, intent(out) :: vals(0:n_max)
|
||||
|
||||
integer, parameter :: kmax = 40
|
||||
double precision, parameter :: eps = 1.d-13
|
||||
|
||||
integer :: k, n
|
||||
complex*16 :: ct, delta_k
|
||||
complex*16 :: rhoe
|
||||
complex*16, allocatable :: rho_k(:)
|
||||
|
||||
|
||||
allocate(rho_k(0:kmax))
|
||||
|
||||
rho_k(0) = (1.d0, 0.d0)
|
||||
do k = 1, kmax
|
||||
rho_k(k) = rho_k(k-1) * rho
|
||||
enddo
|
||||
|
||||
rhoe = 0.5d0 * zexp(-rho)
|
||||
|
||||
do n = 0, n_max
|
||||
|
||||
ct = rhoe * gamma(dble(n) + 0.5d0)
|
||||
vals(n) = ct / gamma(dble(n) + 1.5d0)
|
||||
|
||||
do k = 1, kmax
|
||||
delta_k = ct * rho_k(k) / gamma(dble(n+k) + 1.5d0)
|
||||
vals(n) += delta_k
|
||||
if(abs(delta_k) .lt. eps) then
|
||||
exit
|
||||
endif
|
||||
enddo
|
||||
|
||||
!if(abs(delta_k) > eps) then
|
||||
! write(*,*) ' pb in crint_smallz_vec !'
|
||||
! write(*,*) ' n, rho = ', n, rho
|
||||
! write(*,*) ' |delta_k| = ', abs(delta_k)
|
||||
!endif
|
||||
enddo
|
||||
|
||||
deallocate(rho_k)
|
||||
|
||||
return
|
||||
end
|
||||
|
||||
! ---
|
||||
|
@ -1,7 +1,7 @@
|
||||
|
||||
! ---
|
||||
|
||||
complex*16 function cpx_erf(x, y)
|
||||
complex*16 function cpx_erf_1(x, y)
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
@ -25,25 +25,25 @@ complex*16 function cpx_erf(x, y)
|
||||
|
||||
if(yabs .lt. 1.d-15) then
|
||||
|
||||
cpx_erf = (1.d0, 0.d0) * derf(x)
|
||||
cpx_erf_1 = (1.d0, 0.d0) * derf(x)
|
||||
return
|
||||
|
||||
else
|
||||
|
||||
erf_tmp1 = (1.d0, 0.d0) * derf(x)
|
||||
erf_tmp2 = erf_E(x, yabs) + erf_F(x, yabs)
|
||||
erf_tmp3 = zexp(-(0.d0, 2.d0) * x * yabs) * ( erf_G(x, yabs) + erf_H(x, yabs) )
|
||||
erf_tmp3 = zexp(-(0.d0, 2.d0) * x * yabs) * (erf_G(x, yabs) + erf_H(x, yabs))
|
||||
erf_tot = erf_tmp1 + erf_tmp2 - erf_tmp3
|
||||
|
||||
endif
|
||||
|
||||
if(y .gt. 0.d0) then
|
||||
cpx_erf = erf_tot
|
||||
cpx_erf_1 = erf_tot
|
||||
else
|
||||
cpx_erf = CONJG(erf_tot)
|
||||
cpx_erf_1 = conjg(erf_tot)
|
||||
endif
|
||||
|
||||
end function cpx_erf
|
||||
end
|
||||
|
||||
! ---
|
||||
|
||||
@ -54,7 +54,7 @@ complex*16 function erf_E(x, yabs)
|
||||
|
||||
double precision, intent(in) :: x, yabs
|
||||
|
||||
if( (dabs(x).gt.6.d0) .or. (x==0.d0) ) then
|
||||
if((dabs(x).gt.6.d0) .or. (x==0.d0)) then
|
||||
erf_E = (0.d0, 0.d0)
|
||||
return
|
||||
endif
|
||||
@ -70,7 +70,7 @@ complex*16 function erf_E(x, yabs)
|
||||
|
||||
endif
|
||||
|
||||
end function erf_E
|
||||
end
|
||||
|
||||
! ---
|
||||
|
||||
@ -109,7 +109,7 @@ double precision function erf_F(x, yabs)
|
||||
|
||||
endif
|
||||
|
||||
end function erf_F
|
||||
end
|
||||
|
||||
! ---
|
||||
|
||||
@ -149,7 +149,7 @@ complex*16 function erf_G(x, yabs)
|
||||
|
||||
enddo
|
||||
|
||||
end function erf_G
|
||||
end
|
||||
|
||||
! ---
|
||||
|
||||
@ -172,7 +172,7 @@ complex*16 function erf_H(x, yabs)
|
||||
endif
|
||||
|
||||
|
||||
if( (dabs(x) .lt. 10d0) .and. (yabs .lt. 6.1d0) ) then
|
||||
if((dabs(x) .lt. 10d0) .and. (yabs .lt. 6.1d0)) then
|
||||
|
||||
x2 = x * x
|
||||
ct = 0.5d0 * inv_pi
|
||||
@ -186,7 +186,7 @@ complex*16 function erf_H(x, yabs)
|
||||
tmp2 = dexp(-tmp1-idble*yabs) * (x + (0.d0, 1.d0)*tmp0) / tmp1
|
||||
erf_H = erf_H + tmp2
|
||||
|
||||
tmp_mod = dsqrt(REAL(tmp2)*REAL(tmp2) + AIMAG(tmp2)*AIMAG(tmp2))
|
||||
tmp_mod = dsqrt(real(tmp2)*real(tmp2) + aimag(tmp2)*aimag(tmp2))
|
||||
if(tmp_mod .lt. 1d-15) exit
|
||||
enddo
|
||||
erf_H = ct * erf_H
|
||||
@ -197,8 +197,394 @@ complex*16 function erf_H(x, yabs)
|
||||
|
||||
endif
|
||||
|
||||
end function erf_H
|
||||
end
|
||||
|
||||
! ---
|
||||
|
||||
complex*16 function cpx_erf_2(x, y)
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
! compute erf(z) for z = x + i y
|
||||
!
|
||||
! Beylkin & Sharma, J. Chem. Phys. 155, 174117 (2021)
|
||||
! https://doi.org/10.1063/5.0062444
|
||||
!
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
|
||||
double precision, intent(in) :: x, y
|
||||
|
||||
double precision :: yabs
|
||||
complex*16 :: z
|
||||
|
||||
yabs = dabs(y)
|
||||
|
||||
if(yabs .lt. 1.d-15) then
|
||||
|
||||
cpx_erf_2 = (1.d0, 0.d0) * derf(x)
|
||||
return
|
||||
|
||||
else
|
||||
|
||||
z = x + (0.d0, 1.d0) * y
|
||||
|
||||
if(x .ge. 0.d0) then
|
||||
call zboysfun00(z, cpx_erf_2)
|
||||
else
|
||||
call zboysfun00nrp(z, cpx_erf_2)
|
||||
cpx_erf_2 = cpx_erf_2 * zexp(-z)
|
||||
endif
|
||||
|
||||
endif
|
||||
|
||||
return
|
||||
end
|
||||
|
||||
! ---
|
||||
|
||||
subroutine zboysfun00(z, val)
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
! Computes values of the Boys function for n=0
|
||||
! for a complex valued argument
|
||||
!
|
||||
! Input: z --- argument, complex*16, Real(z) >= 0
|
||||
! Output: val --- value of the Boys function n=0
|
||||
!
|
||||
! Beylkin & Sharma, J. Chem. Phys. 155, 174117 (2021)
|
||||
! https://doi.org/10.1063/5.0062444
|
||||
!
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
|
||||
double precision, parameter :: asymcoef(1:7) = (/ -0.499999999999999799d0, &
|
||||
0.249999999999993161d0, &
|
||||
-0.374999999999766599d0, &
|
||||
0.937499999992027020d0, &
|
||||
-3.28124999972738868d0, &
|
||||
14.7656249906697030d0, &
|
||||
-81.2109371803307752d0 /)
|
||||
|
||||
double precision, parameter :: taylcoef(0:10) = (/ 1.0d0, &
|
||||
-0.333333333333333333d0, &
|
||||
0.1d0, &
|
||||
-0.238095238095238095d-01, &
|
||||
0.462962962962962963d-02, &
|
||||
-0.757575757575757576d-03, &
|
||||
0.106837606837606838d-03, &
|
||||
-0.132275132275132275d-04, &
|
||||
1.458916900093370682d-06, &
|
||||
-1.450385222315046877d-07, &
|
||||
1.3122532963802805073d-08 /)
|
||||
|
||||
double precision, parameter :: sqpio2 = 0.886226925452758014d0
|
||||
|
||||
double precision, parameter :: pp(1:22) = (/ 0.001477878263796956477d0, &
|
||||
0.013317276413725817441d0, &
|
||||
0.037063591452052541530d0, &
|
||||
0.072752512422882761543d0, &
|
||||
0.120236941228785688896d0, &
|
||||
0.179574293958937717967d0, &
|
||||
0.253534046984087292596d0, &
|
||||
0.350388652780721927513d0, &
|
||||
0.482109575931276669313d0, &
|
||||
0.663028993158374107103d0, &
|
||||
0.911814736856590885929d0, &
|
||||
1.2539502287919293d0, &
|
||||
1.7244634233573395d0, &
|
||||
2.3715248262781863d0, &
|
||||
3.2613796996078355d0, &
|
||||
4.485130169059591d0, &
|
||||
6.168062135122484d0, &
|
||||
8.48247187231787d0, &
|
||||
11.665305486296793d0, &
|
||||
16.042417132288328d0, &
|
||||
22.06192951814709d0, &
|
||||
30.340112094708307d0 /)
|
||||
|
||||
double precision, parameter :: ff(1:22) = (/ 0.0866431027201416556d0, &
|
||||
0.0857720608434394764d0, &
|
||||
0.0839350436829178814d0, &
|
||||
0.0809661970413229146d0, &
|
||||
0.0769089548492978618d0, &
|
||||
0.0731552078711821626d0, &
|
||||
0.0726950035163157228d0, &
|
||||
0.0752842556089304050d0, &
|
||||
0.0770943953645196145d0, &
|
||||
0.0754250625677530441d0, &
|
||||
0.0689686192650315305d0, &
|
||||
0.05744480422143023d0, &
|
||||
0.04208199434694545d0, &
|
||||
0.025838539448223282d0, &
|
||||
0.012445024157255563d0, &
|
||||
0.004292541592599837d0, &
|
||||
0.0009354342987735969d0, &
|
||||
0.10840885466502504d-03, &
|
||||
5.271867966761674d-06, &
|
||||
7.765974039750418d-08, &
|
||||
2.2138172422680093d-10, &
|
||||
6.594161760037707d-14 /)
|
||||
|
||||
complex*16, intent(in) :: z
|
||||
complex*16, intent(out) :: val
|
||||
|
||||
integer :: k
|
||||
complex*16 :: z1, zz, y
|
||||
|
||||
zz = zexp(-z)
|
||||
|
||||
if(abs(z) .ge. 100.0d0) then
|
||||
|
||||
! large |z|
|
||||
z1 = 1.0d0 / zsqrt(z)
|
||||
y = 1.0d0 / z
|
||||
val = asymcoef(7)
|
||||
do k = 6, 1, -1
|
||||
val = val * y + asymcoef(k)
|
||||
enddo
|
||||
val = zz * val * y + z1 * sqpio2
|
||||
|
||||
else if(abs(z) .le. 0.35d0) then
|
||||
|
||||
! small |z|
|
||||
val = taylcoef(10) * (1.d0, 0.d0)
|
||||
do k = 9, 0, -1
|
||||
val = val * z + taylcoef(k)
|
||||
enddo
|
||||
|
||||
else
|
||||
|
||||
! intermediate |z|
|
||||
val = sqpio2 / zsqrt(z) - 0.5d0 * zz * sum(ff(1:22)/(z+pp(1:22)))
|
||||
!val = (0.d0, 0.d0)
|
||||
!do k = 1, 22
|
||||
! val += ff(k) / (z + pp(k))
|
||||
!enddo
|
||||
!val = sqpio2 / zsqrt(z) - 0.5d0 * zz * val
|
||||
|
||||
endif
|
||||
|
||||
return
|
||||
end
|
||||
|
||||
! ---
|
||||
|
||||
subroutine zboysfun00nrp(z, val)
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
! Computes values of the exp(z) F(0,z)
|
||||
! (where F(0,z) is the Boys function)
|
||||
! for a complex valued argument with Real(z)<=0
|
||||
!
|
||||
! Input: z --- argument, complex*16, !!! Real(z)<=0 !!!
|
||||
! Output: val --- value of the function !!! exp(z) F(0,z) !!!, where F(0,z) is the Boys function
|
||||
!
|
||||
! Beylkin & Sharma, J. Chem. Phys. 155, 174117 (2021)
|
||||
! https://doi.org/10.1063/5.0062444
|
||||
!
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
|
||||
double precision, parameter :: asymcoef(1:7) = (/ -0.499999999999999799d0, &
|
||||
0.249999999999993161d0, &
|
||||
-0.374999999999766599d0, &
|
||||
0.937499999992027020d0, &
|
||||
-3.28124999972738868d0, &
|
||||
14.7656249906697030d0, &
|
||||
-81.2109371803307752d0 /)
|
||||
|
||||
double precision, parameter :: taylcoef(0:10) = (/ 1.0d0, &
|
||||
-0.333333333333333333d0, &
|
||||
0.1d0, &
|
||||
-0.238095238095238095d-01, &
|
||||
0.462962962962962963d-02, &
|
||||
-0.757575757575757576d-03, &
|
||||
0.106837606837606838d-03, &
|
||||
-0.132275132275132275d-04, &
|
||||
1.458916900093370682d-06, &
|
||||
-1.450385222315046877d-07, &
|
||||
1.3122532963802805073d-08 /)
|
||||
|
||||
double precision, parameter :: tol = 1.0d-03
|
||||
double precision, parameter :: sqpio2 = 0.886226925452758014d0 ! sqrt(pi)/2
|
||||
double precision, parameter :: pi = 3.14159265358979324d0
|
||||
double precision, parameter :: etmax = 25.7903399171930621d0
|
||||
double precision, parameter :: etmax1 = 26.7903399171930621d0
|
||||
complex*16, parameter :: ima = (0.d0, 1.d0)
|
||||
|
||||
double precision, parameter :: pp(1:16) = (/ 0.005299532504175031d0, &
|
||||
0.0277124884633837d0, &
|
||||
0.06718439880608407d0, &
|
||||
0.12229779582249845d0, &
|
||||
0.19106187779867811d0, &
|
||||
0.27099161117138637d0, &
|
||||
0.35919822461037054d0, &
|
||||
0.45249374508118123d0, &
|
||||
0.5475062549188188d0, &
|
||||
0.6408017753896295d0, &
|
||||
0.7290083888286136d0, &
|
||||
0.8089381222013219d0, &
|
||||
0.8777022041775016d0, &
|
||||
0.9328156011939159d0, &
|
||||
0.9722875115366163d0, &
|
||||
0.994700467495825d0 /)
|
||||
|
||||
double precision, parameter :: ww(1:16) = (/ 0.013576229705876844d0, &
|
||||
0.03112676196932382d0, &
|
||||
0.04757925584124612d0, &
|
||||
0.062314485627766904d0, &
|
||||
0.07479799440828848d0, &
|
||||
0.08457825969750153d0, &
|
||||
0.09130170752246194d0, &
|
||||
0.0947253052275344d0, &
|
||||
0.0947253052275344d0, &
|
||||
0.09130170752246194d0, &
|
||||
0.08457825969750153d0, &
|
||||
0.07479799440828848d0, &
|
||||
0.062314485627766904d0, &
|
||||
0.04757925584124612d0, &
|
||||
0.03112676196932382d0, &
|
||||
0.013576229705876844d0 /)
|
||||
|
||||
double precision, parameter :: qq (1:16) = (/ 0.0007243228510223928d0, &
|
||||
0.01980651726441906d0, &
|
||||
0.11641097769229371d0, &
|
||||
0.38573968881461146d0, &
|
||||
0.9414671037609641d0, &
|
||||
1.8939510935716377d0, &
|
||||
3.3275564293459383d0, &
|
||||
5.280587297262129d0, &
|
||||
7.730992222360452d0, &
|
||||
10.590207725831563d0, &
|
||||
13.706359477128965d0, &
|
||||
16.876705473663804d0, &
|
||||
19.867876155236257d0, &
|
||||
22.441333930203022d0, &
|
||||
24.380717439613566d0, &
|
||||
25.51771075067431d0 /)
|
||||
|
||||
|
||||
double precision, parameter :: qq1 (1:16) = (/ 0.0007524078957852004d0,&
|
||||
0.020574499281252233d0, &
|
||||
0.12092472113522865d0, &
|
||||
0.40069643967765295d0, &
|
||||
0.9779717449089211d0, &
|
||||
1.9673875468969015d0, &
|
||||
3.4565797939091802d0, &
|
||||
5.485337886599723d0, &
|
||||
8.030755321535683d0, &
|
||||
11.000834641174064d0, &
|
||||
14.237812708111456d0, &
|
||||
17.531086359214406d0, &
|
||||
20.6382373144543d0, &
|
||||
23.31147887603379d0, &
|
||||
25.326060444703632d0, &
|
||||
26.507139770710722d0 /)
|
||||
|
||||
double precision, parameter :: uu(1:16) = (/ 0.9992759394074501d0, &
|
||||
0.9803883431758104d0, &
|
||||
0.8901093330366746d0, &
|
||||
0.6799475005849274d0, &
|
||||
0.3900551639790145d0, &
|
||||
0.15047608763371934d0, &
|
||||
0.0358806749968974d0, &
|
||||
0.005089440900100864d0, &
|
||||
0.00043900830706867264d0, &
|
||||
0.000025161192619824898d0, &
|
||||
1.1153308427285078d-6, &
|
||||
4.68317018372038d-8, &
|
||||
2.3522908467181876d-9, &
|
||||
1.7941242138648815d-10, &
|
||||
2.5798173021885247d-11, &
|
||||
8.27559122014575d-12 /)
|
||||
|
||||
|
||||
double precision, parameter :: uu1(1:16) = (/ 0.999247875092057d0, &
|
||||
0.979635711599488d0, &
|
||||
0.8861006617341018d0, &
|
||||
0.6698533710831932d0, &
|
||||
0.3760730980014839d0, &
|
||||
0.13982165701683388d0, &
|
||||
0.031537442321301304d0, &
|
||||
0.004147133581658446d0, &
|
||||
0.0003253024081883165d0, &
|
||||
0.000016687766678889653d0, &
|
||||
6.555359391864376d-7, &
|
||||
2.4341421258295026d-8, &
|
||||
1.0887481200652014d-9, &
|
||||
7.51542178140961d-11, &
|
||||
1.002378402152542d-11, &
|
||||
3.0767730761654096d-12 /)
|
||||
|
||||
complex*16, intent(in) :: z
|
||||
complex*16, intent(out) :: val
|
||||
|
||||
integer :: k
|
||||
complex*16 :: z1, zz, y, zsum, tmp, zt, q, p
|
||||
|
||||
zz = zexp(z)
|
||||
|
||||
if(abs(z) .ge. 100.0d0) then
|
||||
! large |z|
|
||||
z1 = 1.0d0 / zsqrt(z)
|
||||
y = 1.0d0 / z
|
||||
val = asymcoef(7)
|
||||
do k = 6, 1, -1
|
||||
val = val * y + asymcoef(k)
|
||||
enddo
|
||||
val = val * y + z1 * sqpio2 * zz
|
||||
return
|
||||
endif
|
||||
|
||||
if(abs(z) .le. 0.35d0) then
|
||||
! small |z|
|
||||
val = taylcoef(10) * (1.d0, 0.d0)
|
||||
do k = 9, 0, -1
|
||||
val = val * z + taylcoef(k)
|
||||
enddo
|
||||
val = val * zz
|
||||
return
|
||||
endif
|
||||
|
||||
if(abs(etmax+z) .ge. 0.5d0) then
|
||||
! intermediate |z|
|
||||
zsum = (0.d0, 0.d0)
|
||||
do k = 1, 16
|
||||
if(abs(z + qq(k)) .ge. tol) then
|
||||
zsum = zsum + ww(k) * (zz - uu(k)) / (qq(k) + z)
|
||||
else
|
||||
q = z + qq(k)
|
||||
p = 1.0d0 - 0.5d0*q + q*q/6.0d0 - q*q*q/24.0d0 + q*q*q*q/120.0d0
|
||||
zsum = zsum + ww(k) * p *zz
|
||||
endif
|
||||
enddo
|
||||
zt = ima * sqrt(z / etmax)
|
||||
tmp = 0.5d0 * ima * log((1.0d0 - zt) / (1.0d0 + zt))
|
||||
val = sqrt(etmax) * zsum / sqrt(pi) + zz * tmp / sqrt(pi*z)
|
||||
else
|
||||
zsum = (0.d0, 0.d0)
|
||||
do k = 1, 16
|
||||
if(abs(z + qq1(k)) .ge. tol) then
|
||||
zsum = zsum + ww(k) * (zz - uu1(k)) / (qq1(k) + z)
|
||||
else
|
||||
q = z + qq1(k)
|
||||
p = 1.0d0 - 0.5d0*q + q*q/6.0d0 - q*q*q/24.0d0 + q*q*q*q/120.0d0
|
||||
zsum = zsum + ww(k) * p * zz
|
||||
endif
|
||||
enddo
|
||||
zt = ima * zsqrt(z / etmax1)
|
||||
tmp = 0.5d0 * ima * log((1.0d0 - zt) / (1.0d0 + zt))
|
||||
val = dsqrt(etmax1) * zsum / dsqrt(pi) + zz * tmp / zsqrt(pi*z)
|
||||
endif
|
||||
|
||||
return
|
||||
end
|
||||
|
||||
! ---
|
||||
|
||||
|
@ -2,6 +2,34 @@ module mmap_module
|
||||
|
||||
use iso_c_binding
|
||||
|
||||
type mmap_type
|
||||
type(c_ptr) :: ptr ! Pointer to the data
|
||||
character*(128) :: filename ! Name of the file
|
||||
integer*8 :: length ! Size of the array in bytes
|
||||
integer :: fd ! File descriptor
|
||||
|
||||
! Pointers to data
|
||||
integer, pointer :: i1(:)
|
||||
integer, pointer :: i2(:,:)
|
||||
integer, pointer :: i3(:,:,:)
|
||||
integer, pointer :: i4(:,:,:,:)
|
||||
|
||||
integer*8, pointer :: i81(:)
|
||||
integer*8, pointer :: i82(:,:)
|
||||
integer*8, pointer :: i83(:,:,:)
|
||||
integer*8, pointer :: i84(:,:,:,:)
|
||||
|
||||
double precision, pointer :: d1(:)
|
||||
double precision, pointer :: d2(:,:)
|
||||
double precision, pointer :: d3(:,:,:)
|
||||
double precision, pointer :: d4(:,:,:,:)
|
||||
|
||||
real, pointer :: s1(:)
|
||||
real, pointer :: s2(:,:)
|
||||
real, pointer :: s3(:,:,:)
|
||||
real, pointer :: s4(:,:,:,:)
|
||||
end type mmap_type
|
||||
|
||||
interface
|
||||
|
||||
! File descriptors
|
||||
@ -82,7 +110,7 @@ module mmap_module
|
||||
length = length * shape(i)
|
||||
enddo
|
||||
fd_ = fd
|
||||
call c_munmap_fortran( length, fd_, map)
|
||||
call c_munmap_fortran(length, fd_, map)
|
||||
end subroutine
|
||||
|
||||
subroutine msync(shape, bytes, fd, map)
|
||||
@ -106,6 +134,200 @@ module mmap_module
|
||||
call c_msync_fortran( length, fd_, map)
|
||||
end subroutine
|
||||
|
||||
|
||||
! Functions for the mmap_type
|
||||
|
||||
subroutine mmap_create(filename, shape, bytes, read_only, single_node, map)
|
||||
implicit none
|
||||
character*(*), intent(in) :: filename ! Name of the mapped file
|
||||
integer*8, intent(in) :: shape(:) ! Shape of the array to map
|
||||
integer, intent(in) :: bytes ! Number of bytes per element
|
||||
logical, intent(in) :: read_only ! If true, mmap is read-only
|
||||
logical, intent(in) :: single_node! If true, mmap is on a single node
|
||||
type(mmap_type), intent(out) :: map ! mmap
|
||||
|
||||
integer :: i
|
||||
logical :: temporary
|
||||
|
||||
temporary = ( trim(filename) == '' )
|
||||
|
||||
if (.not.temporary) then
|
||||
map%filename = filename
|
||||
else
|
||||
call getenv('EZFIO_FILE', map%filename)
|
||||
map%filename = trim(map%filename) // '/work/tmpfile'
|
||||
endif
|
||||
|
||||
map%length = int(bytes,8)
|
||||
do i=1,size(shape)
|
||||
map%length = map%length * shape(i)
|
||||
enddo
|
||||
call mmap(map%filename, &
|
||||
shape, &
|
||||
bytes, &
|
||||
map%fd, &
|
||||
read_only, &
|
||||
single_node, &
|
||||
map%ptr)
|
||||
|
||||
if (temporary) then
|
||||
! Deleting the file while it is open makes the file invisible on the filesystem,
|
||||
! and automatically deleted, even if the program crashes
|
||||
open(UNIT=47, FILE=trim(map%filename), STATUS='OLD')
|
||||
close(47,STATUS='DELETE')
|
||||
endif
|
||||
|
||||
map%d1 => NULL()
|
||||
map%d2 => NULL()
|
||||
map%d3 => NULL()
|
||||
map%d4 => NULL()
|
||||
map%s1 => NULL()
|
||||
map%s2 => NULL()
|
||||
map%s3 => NULL()
|
||||
map%s4 => NULL()
|
||||
map%i1 => NULL()
|
||||
map%i2 => NULL()
|
||||
map%i3 => NULL()
|
||||
map%i4 => NULL()
|
||||
map%i81 => NULL()
|
||||
map%i82 => NULL()
|
||||
map%i83 => NULL()
|
||||
map%i84 => NULL()
|
||||
|
||||
end
|
||||
|
||||
subroutine mmap_create_d(filename, shape, read_only, single_node, map)
|
||||
implicit none
|
||||
character*(*), intent(in) :: filename ! Name of the mapped file
|
||||
integer*8, intent(in) :: shape(:) ! Shape of the array to map
|
||||
logical, intent(in) :: read_only ! If true, mmap is read-only
|
||||
logical, intent(in) :: single_node! If true, mmap is on a single node
|
||||
type(mmap_type), intent(out) :: map ! mmap
|
||||
|
||||
call mmap_create(filename, shape, 8, read_only, single_node, map)
|
||||
|
||||
select case (size(shape))
|
||||
case (1)
|
||||
call c_f_pointer(map%ptr, map%d1, shape)
|
||||
case (2)
|
||||
call c_f_pointer(map%ptr, map%d2, shape)
|
||||
case (3)
|
||||
call c_f_pointer(map%ptr, map%d3, shape)
|
||||
case (4)
|
||||
call c_f_pointer(map%ptr, map%d4, shape)
|
||||
case default
|
||||
stop 'mmap: dimension not implemented'
|
||||
end select
|
||||
end subroutine
|
||||
|
||||
subroutine mmap_create_s(filename, shape, read_only, single_node, map)
|
||||
implicit none
|
||||
character*(*), intent(in) :: filename ! Name of the mapped file
|
||||
integer*8, intent(in) :: shape(:) ! Shape of the array to map
|
||||
logical, intent(in) :: read_only ! If true, mmap is read-only
|
||||
logical, intent(in) :: single_node! If true, mmap is on a single node
|
||||
type(mmap_type), intent(out) :: map ! mmap
|
||||
|
||||
call mmap_create(filename, shape, 4, read_only, single_node, map)
|
||||
|
||||
select case (size(shape))
|
||||
case (1)
|
||||
call c_f_pointer(map%ptr, map%s1, shape)
|
||||
case (2)
|
||||
call c_f_pointer(map%ptr, map%s2, shape)
|
||||
case (3)
|
||||
call c_f_pointer(map%ptr, map%s3, shape)
|
||||
case (4)
|
||||
call c_f_pointer(map%ptr, map%s4, shape)
|
||||
case default
|
||||
stop 'mmap: dimension not implemented'
|
||||
end select
|
||||
end subroutine
|
||||
|
||||
subroutine mmap_create_i(filename, shape, read_only, single_node, map)
|
||||
implicit none
|
||||
character*(*), intent(in) :: filename ! Name of the mapped file
|
||||
integer*8, intent(in) :: shape(:) ! Shape of the array to map
|
||||
logical, intent(in) :: read_only ! If true, mmap is read-only
|
||||
logical, intent(in) :: single_node! If true, mmap is on a single node
|
||||
type(mmap_type), intent(out) :: map ! mmap
|
||||
|
||||
call mmap_create(filename, shape, 4, read_only, single_node, map)
|
||||
|
||||
select case (size(shape))
|
||||
case (1)
|
||||
call c_f_pointer(map%ptr, map%i1, shape)
|
||||
case (2)
|
||||
call c_f_pointer(map%ptr, map%i2, shape)
|
||||
case (3)
|
||||
call c_f_pointer(map%ptr, map%i3, shape)
|
||||
case (4)
|
||||
call c_f_pointer(map%ptr, map%i4, shape)
|
||||
case default
|
||||
stop 'mmap: dimension not implemented'
|
||||
end select
|
||||
end subroutine
|
||||
|
||||
subroutine mmap_create_i8(filename, shape, read_only, single_node, map)
|
||||
implicit none
|
||||
character*(*), intent(in) :: filename ! Name of the mapped file
|
||||
integer*8, intent(in) :: shape(:) ! Shape of the array to map
|
||||
logical, intent(in) :: read_only ! If true, mmap is read-only
|
||||
logical, intent(in) :: single_node! If true, mmap is on a single node
|
||||
type(mmap_type), intent(out) :: map ! mmap
|
||||
|
||||
call mmap_create(filename, shape, 8, read_only, single_node, map)
|
||||
|
||||
select case (size(shape))
|
||||
case (1)
|
||||
call c_f_pointer(map%ptr, map%i81, shape)
|
||||
case (2)
|
||||
call c_f_pointer(map%ptr, map%i82, shape)
|
||||
case (3)
|
||||
call c_f_pointer(map%ptr, map%i83, shape)
|
||||
case (4)
|
||||
call c_f_pointer(map%ptr, map%i84, shape)
|
||||
case default
|
||||
stop 'mmap: dimension not implemented'
|
||||
end select
|
||||
end subroutine
|
||||
|
||||
subroutine mmap_destroy(map)
|
||||
implicit none
|
||||
type(mmap_type), intent(inout) :: map
|
||||
|
||||
call c_munmap_fortran(map%length, map%fd, map%ptr)
|
||||
|
||||
map%ptr = C_NULL_PTR
|
||||
map%filename = ''
|
||||
map%length = 0
|
||||
map%fd = 0
|
||||
map%s1 => NULL()
|
||||
map%s2 => NULL()
|
||||
map%s3 => NULL()
|
||||
map%s4 => NULL()
|
||||
map%d1 => NULL()
|
||||
map%d2 => NULL()
|
||||
map%d3 => NULL()
|
||||
map%d4 => NULL()
|
||||
map%i1 => NULL()
|
||||
map%i2 => NULL()
|
||||
map%i3 => NULL()
|
||||
map%i4 => NULL()
|
||||
map%i81 => NULL()
|
||||
map%i82 => NULL()
|
||||
map%i83 => NULL()
|
||||
map%i84 => NULL()
|
||||
end subroutine
|
||||
|
||||
|
||||
subroutine mmap_sync(map)
|
||||
implicit none
|
||||
type(mmap_type), intent(inout) :: map
|
||||
|
||||
call c_msync_fortran(map%length, map%fd, map%ptr)
|
||||
end subroutine
|
||||
|
||||
end module mmap_module
|
||||
|
||||
|
||||
|
@ -53,10 +53,10 @@ subroutine diis_cc(all_err,all_t,sze,m,iter,t)
|
||||
!$OMP END PARALLEL
|
||||
|
||||
do i = 1, m_iter
|
||||
B(i,m_iter+1) = -1
|
||||
B(i,m_iter+1) = -1.d0
|
||||
enddo
|
||||
do j = 1, m_iter
|
||||
B(m_iter+1,j) = -1
|
||||
B(m_iter+1,j) = -1.d0
|
||||
enddo
|
||||
! Debug
|
||||
!print*,'B'
|
||||
@ -493,7 +493,7 @@ subroutine update_t_ccsd_diis_v3(nO,nV,nb_iter,f_o,f_v,r1,r2,t1,t2,all_err,all_t
|
||||
do i = 1, nO*nV
|
||||
tmp(i) = t1(i)
|
||||
enddo
|
||||
!$OMP END DO NOWAIT
|
||||
!$OMP END DO
|
||||
!$OMP DO
|
||||
do i = 1, nO*nO*nV*nV
|
||||
tmp(i+nO*nV) = t2(i)
|
||||
@ -515,7 +515,7 @@ subroutine update_t_ccsd_diis_v3(nO,nV,nb_iter,f_o,f_v,r1,r2,t1,t2,all_err,all_t
|
||||
do i = 1, nO*nV
|
||||
t1(i) = tmp(i)
|
||||
enddo
|
||||
!$OMP END DO NOWAIT
|
||||
!$OMP END DO
|
||||
!$OMP DO
|
||||
do i = 1, nO*nO*nV*nV
|
||||
t2(i) = tmp(i+nO*nV)
|
||||
|
Loading…
Reference in New Issue
Block a user