9
1
mirror of https://github.com/QuantumPackage/qp2.git synced 2024-12-31 23:55:39 +01:00

Merge pull request #41 from QuantumPackage/dev-stable

Dev stable
This commit is contained in:
AbdAmmar 2024-10-09 10:54:10 +02:00 committed by GitHub
commit 2b6ca938c8
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
66 changed files with 3947 additions and 1288 deletions

View File

@ -8,7 +8,7 @@ qpsh
:command:`qpsh` is the |qp| shell. It is a Bash shell with all the :command:`qpsh` is the |qp| shell. It is a Bash shell with all the
required evironment variables loaded, a modified prompt, and the required environment variables loaded, a modified prompt, and the
:ref:`qp` command. :ref:`qp` command.

View File

@ -58,26 +58,36 @@ end = struct
;; ;;
let read_ao_prim_num () = let read_ao_prim_num () =
if Ezfio.has_ao_basis_ao_prim_num () then
Ezfio.get_ao_basis_ao_prim_num () Ezfio.get_ao_basis_ao_prim_num ()
|> Ezfio.flattened_ezfio |> Ezfio.flattened_ezfio
|> Array.map AO_prim_number.of_int |> Array.map AO_prim_number.of_int
else
[||]
;; ;;
let read_ao_prim_num_max () = let read_ao_prim_num_max () =
if Ezfio.has_ao_basis_ao_prim_num () then
Ezfio.get_ao_basis_ao_prim_num () Ezfio.get_ao_basis_ao_prim_num ()
|> Ezfio.flattened_ezfio |> Ezfio.flattened_ezfio
|> Array.fold_left (fun x y -> if x>y then x else y) 0 |> Array.fold_left (fun x y -> if x>y then x else y) 0
|> AO_prim_number.of_int |> AO_prim_number.of_int
else
AO_prim_number.of_int 0
;; ;;
let read_ao_nucl () = let read_ao_nucl () =
if Ezfio.has_ao_basis_ao_nucl () then
let nmax = Nucl_number.get_max () in let nmax = Nucl_number.get_max () in
Ezfio.get_ao_basis_ao_nucl () Ezfio.get_ao_basis_ao_nucl ()
|> Ezfio.flattened_ezfio |> Ezfio.flattened_ezfio
|> Array.map (fun x-> Nucl_number.of_int ~max:nmax x) |> Array.map (fun x-> Nucl_number.of_int ~max:nmax x)
else
[||]
;; ;;
let read_ao_power () = let read_ao_power () =
if Ezfio.has_ao_basis_ao_power () then
let x = Ezfio.get_ao_basis_ao_power () in let x = Ezfio.get_ao_basis_ao_power () in
let dim = x.Ezfio.dim.(0) in let dim = x.Ezfio.dim.(0) in
let data = Ezfio.flattened_ezfio x in let data = Ezfio.flattened_ezfio x in
@ -92,18 +102,26 @@ end = struct
result.(i-1) <- result.(i-1)^"z"^(string_of_int data.(2*dim+i-1)); result.(i-1) <- result.(i-1)^"z"^(string_of_int data.(2*dim+i-1));
done; done;
Array.map Angmom.Xyz.of_string result Array.map Angmom.Xyz.of_string result
else
[||]
;; ;;
let read_ao_coef () = let read_ao_coef () =
if Ezfio.has_ao_basis_ao_coef () then
Ezfio.get_ao_basis_ao_coef () Ezfio.get_ao_basis_ao_coef ()
|> Ezfio.flattened_ezfio |> Ezfio.flattened_ezfio
|> Array.map AO_coef.of_float |> Array.map AO_coef.of_float
else
[||]
;; ;;
let read_ao_expo () = let read_ao_expo () =
if Ezfio.has_ao_basis_ao_expo () then
Ezfio.get_ao_basis_ao_expo () Ezfio.get_ao_basis_ao_expo ()
|> Ezfio.flattened_ezfio |> Ezfio.flattened_ezfio
|> Array.map AO_expo.of_float |> Array.map AO_expo.of_float
else
[||]
;; ;;
let read_ao_cartesian () = let read_ao_cartesian () =

View File

@ -132,6 +132,7 @@ let run slave ?prefix exe ezfio_file =
(** Run executable *) (** Run executable *)
let prefix = let prefix =
match prefix with match prefix with
| Some "gdb" -> "gdb --args "
| Some x -> x^" " | Some x -> x^" "
| None -> "" | None -> ""
and exe = and exe =

View File

@ -155,6 +155,7 @@ subroutine run_stochastic_cipsi
call pt2_alloc(pt2_data_err, N_states) call pt2_alloc(pt2_data_err, N_states)
call ZMQ_pt2(E_tc, pt2_data, pt2_data_err, relative_error,0) ! Stochastic PT2 and selection call ZMQ_pt2(E_tc, pt2_data, pt2_data_err, relative_error,0) ! Stochastic PT2 and selection
call diagonalize_CI_tc_bi_ortho(ndet, E_tc,norm) call diagonalize_CI_tc_bi_ortho(ndet, E_tc,norm)
call print_summary_tc(psi_energy_with_nucl_rep, pt2_data, pt2_data_err, N_det, N_configuration, N_states, psi_s2)
call pt2_dealloc(pt2_data) call pt2_dealloc(pt2_data)
call pt2_dealloc(pt2_data_err) call pt2_dealloc(pt2_data_err)

View File

@ -1,7 +1,25 @@
[log_jpsi]
type: logical
doc: If |true|, the Jpsi is taken as log(1+psi_cor)
interface: ezfio,provider,ocaml
default: False
[mu_of_r_tc]
type: character*(32)
doc: type of the mu(r): [ Standard | Erfmu | Erfmugauss ]
interface: ezfio,provider,ocaml
default: Standard
[mu_of_r_av]
type: logical
doc: If |true|, take the second formula for mu(r)
interface: ezfio,provider,ocaml
default: False
[j2e_type] [j2e_type]
type: character*(32) type: character*(32)
doc: type of the 2e-Jastrow: [ None | Mu | Mu_Nu | Mur | Boys | Boys_Handy | Qmckl ] doc: type of the 2e-Jastrow: [ None | Mu | Mugauss | Mu_Nu | Mur | Murgauss | Bump | Boys | Boys_Handy | Qmckl ]
interface: ezfio,provider,ocaml interface: ezfio,provider,ocaml
default: Mu default: Mu

View File

@ -4,3 +4,4 @@ jastrow
ao_tc_eff_map ao_tc_eff_map
bi_ortho_mos bi_ortho_mos
trexio trexio
mu_of_r

View File

@ -0,0 +1,28 @@
program test_j_mu_of_r
implicit none
double precision :: x,mu_min,dmu,mu_max, mu, mu_p, mu_m
double precision :: j_simple,j_p, j_m,numeric_d_mu,d_dx_mu
double precision :: accu
integer :: npt,i
npt = 1000
mu_min = 0.3d0
mu_max = 10.d0
dmu = (mu_max - mu_min)/dble(npt)
x = 0.7d0
mu = mu_min
do i = 1, npt
call get_deriv_mu_j12(x,mu,d_dx_mu)
mu_p = mu + dmu
mu_m = mu - dmu
j_p = j_simple(x,mu_p)
j_m = j_simple(x,mu_m)
numeric_d_mu = 0.5d0 * (j_p - j_m)/dmu
print*,mu
print*,numeric_d_mu,d_dx_mu,dabs(d_dx_mu-numeric_d_mu)
accu += dabs(d_dx_mu-numeric_d_mu)
mu += dmu
enddo
accu *= dmu
print*,'accu = ',accu
end

View File

@ -0,0 +1,98 @@
program test_j_mu_of_r
implicit none
! call routine_test_mu_of_r
call routine_test_mu_of_r_tot
end
subroutine routine_test_mu_of_r_tot
implicit none
integer :: ipoint,k
double precision :: r2(3), weight, dr, r1(3), r1bis(3)
double precision :: accu_grad(3)
double precision :: jast,grad_jast_mu_r1(3),j_bump
double precision :: jast_p,jast_m,num_grad_jast_mu_r1(3)
dr = 0.00001d0
r2 = 0.d0
r2(1) = 0.5d0
r2(2) = -0.1d0
r2(3) = 1.0d0
accu_grad = 0.d0
do ipoint = 1, n_points_final_grid
r1(1:3) = final_grid_points(1:3,ipoint)
weight = final_weight_at_r_vector(ipoint)
! call grad_j_sum_mu_of_r(r1,r2,jast,grad_jast_mu_r1)
call get_grad_j_bump_mu_of_r(r1,r2,grad_jast_mu_r1)
double precision :: norm,error
norm = 0.D0
do k = 1, 3
r1bis= r1
r1bis(k) += dr
jast_p = j_bump(r1bis,r2,a_boys)
r1bis= r1
r1bis(k) -= dr
jast_m = j_bump(r1bis,r2,a_boys)
num_grad_jast_mu_r1(k) = (jast_p - jast_m)/(2.d0* dr)
norm += num_grad_jast_mu_r1(k)*num_grad_jast_mu_r1(k)
enddo
error = 0.d0
do k = 1, 3
error += dabs(grad_jast_mu_r1(k) - num_grad_jast_mu_r1(k))
enddo
error *= 0.33333333d0
norm = dsqrt(norm)
if(norm.gt.1.d-05)then
if(dabs(error/norm).gt.dr)then
print*,'/////'
print*,error,norm
print*,grad_jast_mu_r1
print*,num_grad_jast_mu_r1
endif
endif
do k = 1,3
accu_grad(k) += weight * dabs(grad_jast_mu_r1(k) - num_grad_jast_mu_r1(k))
enddo
enddo
print*,'accu_grad = '
print*, accu_grad
end
subroutine routine_test_mu_of_r
implicit none
integer :: ipoint,k
double precision :: weight, dr, r1(3), r1bis(3),accu_grad(3),num_grad_mu_r1(3)
double precision :: mu_r1,dm_r1, mu_der_r1(3), grad_dm_r1(3)
double precision :: mu_der_rp(3), grad_dm_rp(3),mu_rp
double precision :: mu_der_rm(3), grad_dm_rm(3),mu_rm
dr = 0.0001d0
accu_grad = 0.d0
do ipoint = 1, n_points_final_grid
r1(1:3) = final_grid_points(1:3,ipoint)
weight = final_weight_at_r_vector(ipoint)
call grad_mu_of_r_mean_field(r1,mu_r1,dm_r1, mu_der_r1, grad_dm_r1)
do k = 1, 3
r1bis= r1
r1bis(k) += dr
call grad_mu_of_r_mean_field(r1bis,mu_rp, dm_r1, mu_der_rp, grad_dm_r1)
r1bis= r1
r1bis(k) -= dr
call grad_mu_of_r_mean_field(r1bis,mu_rm, dm_r1, mu_der_rm, grad_dm_r1)
num_grad_mu_r1(k) = (mu_rp - mu_rm)/(2.d0* dr)
! print*,jast_mu_r1_p,jast_mu_r1_m
enddo
print*,'/////'
print*,mu_der_r1
print*,num_grad_mu_r1
do k = 1,3
accu_grad(k) += weight * dabs(mu_der_r1(k) - num_grad_mu_r1(k))
enddo
enddo
print*,'accu_grad = '
print*, accu_grad
end

View File

@ -0,0 +1,62 @@
program test_j_mu_of_r
implicit none
! call routine_test_mu_of_r
call routine_test_mu_of_r_tot
end
subroutine routine_test_mu_of_r_tot
implicit none
integer :: ipoint,k
double precision :: r2(3), weight, dr, r1(3), r1bis(3)
double precision :: accu_grad(3)
double precision :: jast,grad_jast(3),j_bump,j12_mu
double precision :: jast_p,jast_m,num_grad_jast(3)
dr = 0.00001d0
r2 = 0.d0
r2(1) = 0.5d0
r2(2) = -0.1d0
r2(3) = 1.0d0
accu_grad = 0.d0
do ipoint = 1, n_points_final_grid
r1(1:3) = final_grid_points(1:3,ipoint)
weight = final_weight_at_r_vector(ipoint)
call grad1_j12_mu(r1, r2, grad_jast)
grad_jast = - grad_jast
double precision :: norm,error
norm = 0.D0
do k = 1, 3
r1bis= r1
r1bis(k) += dr
jast_p = j12_mu(r1bis, r2)
r1bis= r1
r1bis(k) -= dr
jast_m = j12_mu(r1bis, r2)
num_grad_jast(k) = (jast_p - jast_m)/(2.d0* dr)
norm += num_grad_jast(k)*num_grad_jast(k)
enddo
error = 0.d0
do k = 1, 3
error += dabs(grad_jast(k) - num_grad_jast(k))
enddo
error *= 0.33333333d0
norm = dsqrt(norm)
if(norm.gt.1.d-05)then
if(dabs(error/norm).gt.dr)then
print*,'/////'
print*,error,norm
print*,grad_jast
print*,num_grad_jast
endif
endif
do k = 1,3
accu_grad(k) += weight * dabs(grad_jast(k) - num_grad_jast(k))
enddo
enddo
print*,'accu_grad = '
print*, accu_grad
end

View File

@ -0,0 +1,97 @@
program test_j_mu_of_r
implicit none
! call routine_test_mu_of_r
call routine_test_mu_of_r_tot
end
subroutine routine_test_mu_of_r_tot
implicit none
integer :: ipoint,k
double precision :: r2(3), weight, dr, r1(3), r1bis(3)
double precision :: accu_grad(3)
double precision :: jast,grad_jast_mu_r1(3)
double precision :: jast_p,jast_m,num_grad_jast_mu_r1(3)
dr = 0.000001d0
r2 = 0.d0
r2(1) = 0.5d0
r2(2) = -0.1d0
r2(3) = 1.0d0
accu_grad = 0.d0
do ipoint = 1, n_points_final_grid
r1(1:3) = final_grid_points(1:3,ipoint)
weight = final_weight_at_r_vector(ipoint)
call grad_j_sum_mu_of_r(r1,r2,jast,grad_jast_mu_r1)
double precision :: norm,error
norm = 0.D0
do k = 1, 3
r1bis= r1
r1bis(k) += dr
call get_j_sum_mu_of_r(r1bis,r2,jast_p)
r1bis= r1
r1bis(k) -= dr
call get_j_sum_mu_of_r(r1bis,r2,jast_m)
num_grad_jast_mu_r1(k) = (jast_p - jast_m)/(2.d0* dr)
norm += num_grad_jast_mu_r1(k)*num_grad_jast_mu_r1(k)
enddo
error = 0.d0
do k = 1, 3
error += dabs(grad_jast_mu_r1(k) - num_grad_jast_mu_r1(k))
enddo
error *= 0.33333333d0
norm = dsqrt(norm)
if(norm.gt.1.d-05)then
if(dabs(error/norm).gt.10.d0*dr)then
print*,'/////'
print*,error,norm,dabs(error/norm)
print*,grad_jast_mu_r1
print*,num_grad_jast_mu_r1
endif
endif
do k = 1,3
accu_grad(k) += weight * dabs(grad_jast_mu_r1(k) - num_grad_jast_mu_r1(k))
enddo
enddo
print*,'accu_grad = '
print*, accu_grad
end
subroutine routine_test_mu_of_r
implicit none
integer :: ipoint,k
double precision :: weight, dr, r1(3), r1bis(3),accu_grad(3),num_grad_mu_r1(3)
double precision :: mu_r1,dm_r1, mu_der_r1(3), grad_dm_r1(3)
double precision :: mu_der_rp(3), grad_dm_rp(3),mu_rp
double precision :: mu_der_rm(3), grad_dm_rm(3),mu_rm
dr = 0.0001d0
accu_grad = 0.d0
do ipoint = 1, n_points_final_grid
r1(1:3) = final_grid_points(1:3,ipoint)
weight = final_weight_at_r_vector(ipoint)
call grad_mu_of_r_mean_field(r1,mu_r1,dm_r1, mu_der_r1, grad_dm_r1)
do k = 1, 3
r1bis= r1
r1bis(k) += dr
call grad_mu_of_r_mean_field(r1bis,mu_rp, dm_r1, mu_der_rp, grad_dm_r1)
r1bis= r1
r1bis(k) -= dr
call grad_mu_of_r_mean_field(r1bis,mu_rm, dm_r1, mu_der_rm, grad_dm_r1)
num_grad_mu_r1(k) = (mu_rp - mu_rm)/(2.d0* dr)
! print*,jast_mu_r1_p,jast_mu_r1_m
enddo
print*,'/////'
print*,mu_der_r1
print*,num_grad_mu_r1
do k = 1,3
accu_grad(k) += weight * dabs(mu_der_r1(k) - num_grad_mu_r1(k))
enddo
enddo
print*,'accu_grad = '
print*, accu_grad
end

View File

@ -0,0 +1,131 @@
program test_j_mu_of_r
implicit none
call routine_deb_j_psi
! call routine_deb_denom
end
subroutine routine_deb_j_psi
implicit none
integer :: ipoint,k
double precision :: r2(3), weight, dr, r1(3), r1bis(3)
double precision :: accu_grad(3)
double precision :: jast,grad_jast(3),j_bump,jastrow_psi,grad_jast_bis(3)
double precision :: jast_p,jast_m,num_grad_jast(3)
dr = 0.00001d0
r2 = 0.d0
r2(1) = 0.5d0
r2(2) = -0.1d0
r2(3) = 1.0d0
accu_grad = 0.d0
do ipoint = 1, n_points_final_grid
r1(1:3) = final_grid_points(1:3,ipoint)
weight = final_weight_at_r_vector(ipoint)
call get_grad_r1_jastrow_psi(r1,r2,grad_jast,jast)
! grad_jast = - grad_jast
double precision :: norm,error
norm = 0.D0
do k = 1, 3
r1bis= r1
r1bis(k) += dr
call get_grad_r1_jastrow_psi(r1bis,r2,grad_jast_bis,jast_p)
r1bis= r1
r1bis(k) -= dr
call get_grad_r1_jastrow_psi(r1bis,r2,grad_jast_bis,jast_m)
num_grad_jast(k) = (jast_p - jast_m)/(2.d0* dr)
norm += num_grad_jast(k)*num_grad_jast(k)
enddo
error = 0.d0
do k = 1, 3
error += dabs(grad_jast(k) - num_grad_jast(k))
enddo
error *= 0.33333333d0
norm = dsqrt(norm)
if(norm.gt.1.d-05)then
if(dabs(error/norm).gt.dr)then
print*,'/////'
print*,error,norm
print*,grad_jast
print*,num_grad_jast
endif
endif
do k = 1,3
accu_grad(k) += weight * dabs(grad_jast(k) - num_grad_jast(k))
enddo
enddo
print*,'accu_grad = '
print*, accu_grad
end
subroutine routine_deb_denom
implicit none
integer :: ipoint,k,i,j
double precision :: r2(3), weight, dr, r1(3), r1bis(3)
double precision :: accu_grad(3)
double precision :: jast,grad_jast(3),j_bump,jastrow_psi,grad_jast_bis(3)
double precision :: jast_p,jast_m,num_grad_jast(3)
dr = 0.00001d0
r2 = 0.d0
r2(1) = 0.5d0
r2(2) = -0.1d0
r2(3) = 1.0d0
double precision, allocatable :: mos_array_r1(:), mos_array_r2(:)
double precision, allocatable :: mos_grad_array_r1(:,:),mos_grad_array_r2(:,:)
allocate(mos_array_r1(mo_num), mos_array_r2(mo_num))
allocate(mos_grad_array_r1(3,mo_num), mos_grad_array_r2(3,mo_num))
do i = 1, 1
do j = 1, 1
accu_grad = 0.d0
call give_all_mos_and_grad_at_r(r2,mos_array_r2,mos_grad_array_r2)
do ipoint = 1, n_points_final_grid
r1(1:3) = final_grid_points(1:3,ipoint)
weight = final_weight_at_r_vector(ipoint)
call give_all_mos_and_grad_at_r(r1,mos_array_r1,mos_grad_array_r1)
call denom_jpsi(i,j,a_boys, mos_array_r1,mos_grad_array_r1,mos_array_r2,jast, grad_jast)
double precision :: norm,error
norm = 0.D0
do k = 1, 3
r1bis= r1
r1bis(k) += dr
call give_all_mos_and_grad_at_r(r1bis,mos_array_r1,mos_grad_array_r1)
call denom_jpsi(i,j,a_boys, mos_array_r1,mos_grad_array_r1,mos_array_r2,jast_p, grad_jast_bis)
r1bis= r1
r1bis(k) -= dr
call give_all_mos_and_grad_at_r(r1bis,mos_array_r1,mos_grad_array_r1)
call denom_jpsi(i,j,a_boys, mos_array_r1,mos_grad_array_r1,mos_array_r2,jast_m, grad_jast_bis)
num_grad_jast(k) = (jast_p - jast_m)/(2.d0* dr)
norm += num_grad_jast(k)*num_grad_jast(k)
enddo
error = 0.d0
do k = 1, 3
error += dabs(grad_jast(k) - num_grad_jast(k))
enddo
error *= 0.33333333d0
norm = dsqrt(norm)
if(norm.gt.1.d-05)then
if(dabs(error/norm).gt.dr)then
print*,'/////'
print*,error,norm
print*,grad_jast
print*,num_grad_jast
endif
endif
do k = 1,3
accu_grad(k) += weight * dabs(grad_jast(k) - num_grad_jast(k))
enddo
enddo
print*,'i,j = ',i,j
print*,'accu_grad = '
print*, accu_grad
enddo
enddo
end

View File

@ -0,0 +1,90 @@
double precision function wigner_radius(rho)
implicit none
include 'constants.include.F'
double precision, intent(in) :: rho
wigner_radius = 4.d0 * pi * rho * 0.333333333333d0
wigner_radius = wigner_radius**(-0.3333333d0)
end
double precision function j_bump(r1,r2,a)
implicit none
include 'constants.include.F'
double precision, intent(in) :: r1(3),r2(3),a
double precision :: inv_a,factor,x_scaled,scalar
double precision :: r12
r12 = (r1(1) - r2(1))*(r1(1) - r2(1))
r12 += (r1(2) - r2(2))*(r1(2) - r2(2))
r12 += (r1(3) - r2(3))*(r1(3) - r2(3))
r12 = dsqrt(r12)
inv_a = 1.d0/a
x_scaled = r12*inv_a*inv_sq_pi
x_scaled*= x_scaled
j_bump = 0.5d0 * (r12-a) * dexp(-x_scaled)
end
subroutine get_grad_j_bump(x,a,grad)
implicit none
BEGIN_DOC
! gradient of the Jastrow with a bump
!
! j(x,a) = 1/2 * (x-a)* exp[-(x/(a*sqrt(pi)))^2]
!
! d/dx j(x,a) = 1/(2 pi a^2) * exp[-(x/(a*sqrt(pi)))^2] * (pi a^2 + 2 a x - 2x^2)
END_DOC
include 'constants.include.F'
double precision, intent(in) :: x,a
double precision, intent(out) :: grad
double precision :: inv_a,factor,x_scaled,scalar
inv_a = 1.d0/a
factor = 0.5d0*inv_pi*inv_a*inv_a
x_scaled = x*inv_a*inv_sq_pi
x_scaled*= x_scaled
grad = factor * dexp(-x_scaled) * (pi*a*a + 2.d0 * a*x - 2.d0*x*x)
end
subroutine get_d_da_j_bump(x,a,d_da)
implicit none
BEGIN_DOC
! Derivative with respect by to the parameter "a" of the Jastrow with a bump
!
! j(x,a) = 1/2 * (x-a)* exp[-(x/(a*sqrt(pi)))^2]
!
! d/da j(x,a) = - 1/(pi*a^3) * exp[-(x/(a*sqrt(pi)))^2] * (-2 x^3 + 2 a x^2 + pi a^x3)
END_DOC
include 'constants.include.F'
double precision, intent(in) :: x,a
double precision, intent(out) :: d_da
double precision :: factor, inv_a,x_scaled,scalar
inv_a = 1.d0/a
factor = inv_a*inv_a*inv_a*inv_pi
x_scaled = x*inv_a*inv_sq_pi
x_scaled*= x_scaled
d_da = factor * dexp(-x_scaled) * (-2.d0 * x*x*x + 2.d0*x*x*a+pi*a*a*a)
end
subroutine get_grad_j_bump_mu_of_r(r1,r2,grad_j_bump)
implicit none
BEGIN_DOC
! d/dx1 j(x,a(r1,r2)) where j(x,a) is the Jastrow with a bump
!
! j(x,a) = 1/2 * (x-a)* exp[-(x/(a*sqrt(pi)))^2]
!
! a(r1,r2) = [rho(r1) a(r1) + rho(r2) a(r2)]/[rho(r1) + rho(r2)]
!
! d/dx1 j(x,a) = d/dx1 j(x,a(r1,r2))
END_DOC
double precision, intent(in) :: r1(3),r2(3)
double precision, intent(out):: grad_j_bump(3)
double precision :: r12,r12_vec(3),grad_scal,inv_r12
r12_vec = r1 - r2
r12 = (r1(1) - r2(1))*(r1(1) - r2(1))
r12 += (r1(2) - r2(2))*(r1(2) - r2(2))
r12 += (r1(3) - r2(3))*(r1(3) - r2(3))
r12 = dsqrt(r12)
call get_grad_j_bump(r12,a_boys,grad_scal)
if(r12.lt.1.d-10)then
grad_j_bump = 0.d0
else
grad_j_bump = grad_scal * r12_vec/r12
endif
end

View File

@ -31,7 +31,7 @@
grad1_u12_squared_num = 0.d0 grad1_u12_squared_num = 0.d0
if( ((j2e_type .eq. "Mu") .and. (env_type .eq. "None")) .or. & if( ((j2e_type .eq. "Mu") .and. (env_type .eq. "None")) .or. &
(j2e_type .eq. "Mur") ) then (j2e_type .eq. "Mur").or.(j2e_type .eq. "Mugauss") .or. (j2e_type .eq. "Murgauss")) then
!$OMP PARALLEL & !$OMP PARALLEL &
!$OMP DEFAULT (NONE) & !$OMP DEFAULT (NONE) &

View File

@ -0,0 +1,306 @@
subroutine get_j_sum_mu_of_r(r1,r2,jast)
implicit none
double precision, intent(in) :: r1(3),r2(3)
double precision, intent(out):: jast
double precision :: mu_r1, dm_r1, grad_mu_r1(3), grad_dm_r1(3), j_mu_r1
double precision :: mu_r2, dm_r2, grad_mu_r2(3), grad_dm_r2(3), j_mu_r2
double precision :: j12_mu_input,mu_tot,r12,j_simple
jast = 0.d0
if(murho_type==0)then
! J(r1,r2) = [rho(r1) * j(mu(r1),r12) + rho(r2) * j(mu(r2),r12)] / [rho(r1) + rho(r2)]
call grad_mu_of_r_mean_field(r1,mu_r1, dm_r1, grad_mu_r1, grad_dm_r1)
call grad_mu_of_r_mean_field(r2,mu_r2, dm_r2, grad_mu_r2, grad_dm_r2)
j_mu_r1 = j12_mu_input(r1, r2, mu_r1)
j_mu_r2 = j12_mu_input(r1, r2, mu_r2)
if(dm_r1 + dm_r2.lt.1.d-7)return
jast = (dm_r1 * j_mu_r1 + dm_r2 * j_mu_r2) / (dm_r1 + dm_r2)
else if(murho_type==1)then
! J(r1,r2) = j(0.5 * (mu(r1)+mu(r2)),r12), MU(r1,r2) = 0.5 *(mu(r1)+mu(r2))
call grad_mu_of_r_mean_field(r1,mu_r1, dm_r1, grad_mu_r1, grad_dm_r1)
call grad_mu_of_r_mean_field(r2,mu_r2, dm_r2, grad_mu_r2, grad_dm_r2)
mu_tot = 0.5d0 * (mu_r1 + mu_r2)
jast = j12_mu_input(r1, r2, mu_tot)
else if(murho_type==2)then
! MU(r1,r2) = (rho(1) * mu(r1)+ rho(2) * mu(r2))/(rho(1)+rho(2))
! J(r1,r2) = j(MU(r1,r2),r12)
call grad_mu_of_r_mean_field(r1,mu_r1, dm_r1, grad_mu_r1, grad_dm_r1)
call grad_mu_of_r_mean_field(r2,mu_r2, dm_r2, grad_mu_r2, grad_dm_r2)
double precision :: mu_tmp, dm_tot, dm_tot_inv
dm_tot = dm_r1**a_boys + dm_r2**a_boys ! rho(1)**alpha+rho(2)**alpha
if(dm_tot.lt.1.d-12)then
dm_tot_inv = 1.d+12
else
dm_tot_inv = 1.d0/dm_tot
endif
mu_tmp = dm_r1**a_boys * mu_r1 + dm_r2**a_boys * mu_r2 !rho(1)**alpha * mu(r1)+ rho(2)**alpha * mu(r2)
mu_tot = nu_erf * mu_tmp*dm_tot_inv !
r12 = (r1(1) - r2(1)) * (r1(1) - r2(1))
r12 += (r1(2) - r2(2)) * (r1(2) - r2(2))
r12 += (r1(3) - r2(3)) * (r1(3) - r2(3))
r12 = dsqrt(r12)
jast = j_simple(r12,mu_tot)
endif
end
subroutine grad_j_sum_mu_of_r(r1,r2,jast,grad_jast)
implicit none
include 'constants.include.F'
BEGIN_DOC
END_DOC
double precision, intent(in) :: r1(3),r2(3)
double precision, intent(out):: jast, grad_jast(3)
jast = 0.d0
grad_jast = 0.d0
double precision :: num, denom, grad_num(3), grad_denom(3)
double precision :: j_r1, grad_j_r1(3),j_r2, grad_j_r2(3)
double precision :: dm_r1, grad_dm_r1(3), grad_jmu_r2(3)
double precision :: dm_r2, grad_dm_r2(3),mu_r2, grad_mu_r2(3),mu_r1
double precision :: j12_mu_input,r12,grad_mu_r1(3),grad_jmu_r1(3)
double precision :: mu_tot,dx,dy,dz,r12_vec(3),d_dmu_j,d_dr12_j
dx = r1(1) - r2(1)
dy = r1(2) - r2(2)
dz = r1(3) - r2(3)
r12 = dsqrt(dx * dx + dy * dy + dz * dz)
if(r12.gt.1.d-10)then
r12_vec(1) = dx
r12_vec(2) = dy
r12_vec(3) = dz
r12_vec *= 1.d0/r12
! r12_vec = grad_r1 (r12)
else
r12 = 1.d-10
r12_vec = 0.d0
endif
if(murho_type==0)then
! J(r1,r2) = [rho(r1) * j(mu(r1),r12) + rho(r2) * j(mu(r2),r12)] / [rho(r1) + rho(r2)]
!
! = num(r1,r2) / denom(r1,r2)
!
! d/dx1 J(r1,r2) = [denom(r1,r2) X d/dx1 num(r1,r2) - num(r1,r2) X d/dx1 denom(r1,r2) ] / denom(r1,r2)^2
!
! d/dx1 num(r1,r2) = j(mu(r1),r12)*d/dx1 rho(r1) + rho(r1) * d/dx1 j(mu(r1),r12)
! + rho(r2) d/dx1 j(mu(r2),r12)
! d/dx1 denom(r1,r2) = d/dx1 rho(r1)
call grad_j_mu_of_r_1(r1,r2,j_r1, grad_j_r1,dm_r1, grad_dm_r1)
call grad_mu_of_r_mean_field(r2,mu_r2, dm_r2, grad_mu_r2, grad_dm_r2)
j_r2 = j12_mu_input(r1, r2, mu_r2) ! j(mu(r2),r1,r2)
num = dm_r1 * j_r1 + dm_r2 * j_r2
denom = dm_r1 + dm_r2
if(denom.lt.1.d-7)return
jast = num / denom
grad_denom = grad_dm_r1
call grad_j12_mu_input(r1, r2, mu_r2, grad_jmu_r2,r12)
grad_num = j_r1 * grad_dm_r1 + dm_r1 * grad_j_r1 + dm_r2 * grad_jmu_r2
grad_jast = (grad_num * denom - num * grad_denom)/(denom*denom)
else if(murho_type==1)then
! J(r1,r2) = j(0.5 * (mu(r1)+mu(r2)),r12), MU(r1,r2) = 0.5 *(mu(r1)+mu(r2))
!
! d/dx1 J(r1,r2) = d/dx1 j(MU(r1,r2),r12)|MU=cst
! + d/dMU [j(MU,r12)]
! x d/d(mu(r1)) MU(r1,r2)
! x d/dx1 mu(r1)
! = 0.5 * (1 - erf(MU(r1,r2) *r12))/r12 * (x1 - x2) == grad_jmu_r1
! + e^{-(r12*MU(r1,r2))^2}/(2 sqrt(pi) * MU(r1,r2)^2)
! x 0.5
! x d/dx1 mu(r1)
call grad_mu_of_r_mean_field(r1,mu_r1, dm_r1, grad_mu_r1, grad_dm_r1)
call grad_mu_of_r_mean_field(r2,mu_r2, dm_r2, grad_mu_r2, grad_dm_r2)
mu_tot = 0.5d0 * (mu_r1 + mu_r2)
call grad_j12_mu_input(r1, r2, mu_tot, grad_jmu_r1,r12)
grad_jast = grad_jmu_r1
grad_jast+= dexp(-r12*mu_tot*r12*mu_tot) * inv_sq_pi_2 /(mu_tot* mu_tot) * 0.5d0 * grad_mu_r1
else if(murho_type==2)then
! MU(r1,r2) = beta * (rho(1)**alpha * mu(r1)+ rho(2)**alpha * mu(r2))/(rho(1)**alpha+rho(2)**alpha)
! J(r1,r2) = j(MU(r1,r2),r12)
!
! d/dx1 J(r1,r2) = d/dx1 j(MU(r1,r2),r12)|MU=cst
! + d/dMU [j(MU,r12)]
! x d/d(mu(r1)) MU(r1,r2)
! x d/dx1 mu(r1)
! = 0.5 * (1 - erf(MU(r1,r2) *r12))/r12 * (x1 - x2) == grad_jmu_r1
! + 0.5 e^{-(r12*MU(r1,r2))^2}/(2 sqrt(pi) * MU(r1,r2)^2)
! x d/dx1 MU(r1,r2)
! with d/dx1 MU(r1,r2) = beta * {[mu(1) d/dx1 [rho(1)**alpha] + rho(1)**alpha * d/dx1 mu(1)](rho(1)**alpha+rho(2)**alpha)
! - MU(1,2) d/dx1 [rho(1)]**alpha}/(rho(1)**alpha+rho(2)**alpha)^2
! d/dx1 [rho(1)]**alpha = alpha [rho(1)]**(alpha-1) d/dx1 rho(1)
!
call grad_mu_of_r_mean_field(r1,mu_r1, dm_r1, grad_mu_r1, grad_dm_r1)
call grad_mu_of_r_mean_field(r2,mu_r2, dm_r2, grad_mu_r2, grad_dm_r2)
double precision :: dm_tot,dm_tot_inv,grad_mu_tot(3),mu_tmp,grad_dm_r1_alpha(3),d_dx_j
dm_tot = dm_r1**a_boys + dm_r2**a_boys ! rho(1)**alpha+rho(2)**alpha
grad_dm_r1_alpha = a_boys * dm_r1**(a_boys-1) * grad_dm_r1
if(dm_tot.lt.1.d-12)then
dm_tot_inv = 1.d+12
else
dm_tot_inv = 1.d0/dm_tot
endif
mu_tmp = dm_r1**a_boys * mu_r1 + dm_r2**a_boys * mu_r2 !rho(1)**alpha * mu(r1)+ rho(2)**alpha * mu(r2)
mu_tot = nu_erf * mu_tmp*dm_tot_inv !
grad_mu_tot = ( mu_r1 * grad_dm_r1_alpha + dm_r1**a_boys * grad_mu_r1 ) * dm_tot &
- mu_tmp * grad_dm_r1_alpha
grad_mu_tot *= dm_tot_inv * dm_tot_inv * nu_erf
call get_deriv_r12_j12(r12,mu_tot,d_dr12_j) ! d/dr12 j(MU(r1,r2,r12)
! d/dx1 j(MU(r1,r2),r12) | MU(r1,r2) = cst
! d/dr12 j(MU(r1,r2,r12) x d/dx1 r12
grad_jmu_r1 = d_dr12_j * r12_vec
! call grad_j12_mu_input(r1, r2, mu_tot, grad_jmu_r1,r12)
grad_jast = grad_jmu_r1
! d/dMU j(MU(r1,r2),r12)
call get_deriv_mu_j12(r12,mu_tot,d_dmu_j)
grad_jast+= d_dmu_j * grad_mu_tot
else if(murho_type==-1)then
! J(r1,r2) = 0.5 * [j(mu(r1),r12) + j(mu(r2),r12)]
!
! d/dx1 J(r1,r2) = 0.5 * (d/dx1 j(mu(r1),r12) + d/dx1 j(mu(r2),r12))
call grad_j_mu_of_r_1(r1,r2,j_r1, grad_j_r1,dm_r1, grad_dm_r1)
call grad_mu_of_r_mean_field(r2,mu_r2, dm_r2, grad_mu_r2, grad_dm_r2)
j_r2 = j12_mu_input(r1, r2, mu_r2) ! j(mu(r2),r1,r2)
call grad_j12_mu_input(r1, r2, mu_r2, grad_jmu_r2,r12)
jast = 0.5d0 * (j_r1 + j_r2)
grad_jast = 0.5d0 * (grad_j_r1 + grad_jmu_r2)
endif
end
subroutine grad_j_mu_of_r_1(r1,r2,jast, grad_jast, dm_r1, grad_dm_r1)
implicit none
include 'constants.include.F'
BEGIN_DOC
! grad_r1 of j(mu(r1),r12)
!
!
! d/dx1 j(mu(r1),r12) = exp(-(mu(r1)*r12)**2) /(2 *sqrt(pi) * mu(r1)**2 ) d/dx1 mu(r1)
! + d/dx1 j(mu(r1),r12)
!
! with
!
! j(mu,r12) = 1/2 r12 (1 - erf(mu r12)) - 1/2 (sqrt(pi) * mu) e^{-(mu*r12)^2}
!
! and d/dx1 j(mu,r12) = 0.5 * (1 - erf(mu *r12))/r12 * (x1 - x2)
!
! d/d mu j(mu,r12) = e^{-(r12*mu)^2}/(2 sqrt(pi) * mu^2)
!
! here mu(r1) is obtained by MU MEAN FIELD
END_DOC
double precision, intent(in) :: r1(3),r2(3)
double precision, intent(out):: jast, grad_jast(3),dm_r1, grad_dm_r1(3)
double precision :: dx, dy, dz, r12, mu_der(3)
double precision :: mu_tmp, tmp, grad(3), mu_val
jast = 0.d0
grad = 0.d0
dx = r1(1) - r2(1)
dy = r1(2) - r2(2)
dz = r1(3) - r2(3)
r12 = dsqrt(dx * dx + dy * dy + dz * dz)
! get mu(r1) == mu_val and its gradient d/dx1 mu(r1) == mu_der
call grad_mu_of_r_mean_field(r1,mu_val, dm_r1, mu_der, grad_dm_r1)
mu_tmp = mu_val * r12
! evalulation of the jastrow j(mu(r1),r12)
jast = 0.5d0 * r12 * (1.d0 - derf(mu_tmp)) - inv_sq_pi_2 * dexp(-mu_tmp*mu_tmp) / mu_val
! tmp = exp(-(mu(r1)*r12)**2) /(2 *sqrt(pi) * mu(r1)**2 )
tmp = inv_sq_pi_2 * dexp(-mu_tmp*mu_tmp) / (mu_val * mu_val)
! grad =
grad(1) = tmp * mu_der(1)
grad(2) = tmp * mu_der(2)
grad(3) = tmp * mu_der(3)
if(r12 .lt. 1d-10) return
tmp = 0.5d0 * (1.d0 - derf(mu_tmp)) / r12 ! d/dx1 j(mu(r1),r12)
grad(1) = grad(1) + tmp * dx
grad(2) = grad(2) + tmp * dy
grad(3) = grad(3) + tmp * dz
grad_jast = grad
end
! ---
double precision function j12_mu_input(r1, r2, mu)
BEGIN_DOC
! j(mu,r12) = 1/2 r12 (1 - erf(mu r12)) - 1/2 (sqrt(pi) * mu) e^{-(mu*r12)^2}
END_DOC
include 'constants.include.F'
implicit none
double precision, intent(in) :: r1(3), r2(3), mu
double precision :: mu_tmp, r12
r12 = dsqrt( (r1(1) - r2(1)) * (r1(1) - r2(1)) &
+ (r1(2) - r2(2)) * (r1(2) - r2(2)) &
+ (r1(3) - r2(3)) * (r1(3) - r2(3)) )
mu_tmp = mu * r12
j12_mu_input = 0.5d0 * r12 * (1.d0 - derf(mu_tmp)) - inv_sq_pi_2 * dexp(-mu_tmp*mu_tmp) / mu
end
subroutine grad_j12_mu_input(r1, r2, mu, grad_jmu,r12)
implicit none
BEGIN_DOC
! grad_jmu = d/dx1 j(mu,r12) assuming mu=cst(r1)
!
! = 0.5/r_12 * (x_1 - x_2) * [1 - erf(mu*r12)]
END_DOC
double precision, intent(in) :: r1(3), r2(3), mu
double precision, intent(out):: grad_jmu(3),r12
double precision :: mu_tmp, dx, dy, dz, grad(3), tmp
grad_jmu = 0.d0
dx = r1(1) - r2(1)
dy = r1(2) - r2(2)
dz = r1(3) - r2(3)
r12 = dsqrt(dx * dx + dy * dy + dz * dz)
if(r12 .lt. 1d-10) return
mu_tmp = mu * r12
tmp = 0.5d0 * (1.d0 - derf(mu_tmp)) / r12 ! d/dx1 j(mu(r1),r12)
grad(1) = tmp * dx
grad(2) = tmp * dy
grad(3) = tmp * dz
grad_jmu = grad
end
subroutine j12_and_grad_j12_mu_input(r1, r2, mu, jmu, grad_jmu)
implicit none
include 'constants.include.F'
BEGIN_DOC
! jmu = j(mu,r12)
! grad_jmu = d/dx1 j(mu,r12) assuming mu=cst(r1)
!
! = 0.5/r_12 * (x_1 - x_2) * [1 - erf(mu*r12)]
END_DOC
double precision, intent(in) :: r1(3), r2(3), mu
double precision, intent(out):: grad_jmu(3), jmu
double precision :: mu_tmp, r12, dx, dy, dz, grad(3), tmp
double precision :: erfc_mur12,inv_mu
inv_mu = 1.d0/mu
grad_jmu = 0.d0 ! initialization when r12 --> 0
jmu = - inv_sq_pi_2 * inv_mu ! initialization when r12 --> 0
dx = r1(1) - r2(1)
dy = r1(2) - r2(2)
dz = r1(3) - r2(3)
r12 = dsqrt(dx * dx + dy * dy + dz * dz)
if(r12 .lt. 1d-10) return
erfc_mur12 = (1.d0 - derf(mu_tmp))
mu_tmp = mu * r12
tmp = 0.5d0 * erfc_mur12 / r12 ! d/dx1 j(mu(r1),r12)
grad(1) = tmp * dx
grad(2) = tmp * dy
grad(3) = tmp * dz
grad_jmu = grad
jmu= 0.5d0 * r12 * erfc_mur12 - inv_sq_pi_2 * dexp(-mu_tmp*mu_tmp) * inv_mu
end

View File

@ -1,8 +1,73 @@
subroutine get_deriv_r12_j12(x,mu,d_dx_j)
implicit none
include 'constants.include.F'
BEGIN_DOC
! d/dr12 j(mu,r12)
END_DOC
double precision, intent(in) :: x,mu
double precision, intent(out) :: d_dx_j
d_dx_j = 0.d0
if(x .lt. 1d-10) return
if(j2e_type .eq. "Mu" .or. j2e_type .eq. "Mur") then
d_dx_j = 0.5d0 * (1.d0 - derf(mu * x))
else if(j2e_type .eq. "Mugauss" .or. j2e_type .eq. "Murgauss" ) then
double precision :: x_tmp
x_tmp = mu * x
! gradient of j(mu,x)
d_dx_j = 0.5d0 * (1.d0 - derf(x_tmp))
! gradient of gaussian additional term
x_tmp *= alpha_mu_gauss
x_tmp *= x_tmp
d_dx_j += -0.5d0 * mu * c_mu_gauss * x * dexp(-x_tmp)
else
print *, ' Error in get_deriv_r12_j12: Unknown j2e_type = ', j2e_type
stop
endif
end
subroutine get_deriv_mu_j12(x,mu,d_d_mu)
implicit none
BEGIN_DOC
! d/dmu j(mu,r12)
END_DOC
include 'constants.include.F'
double precision, intent(in) :: x,mu
double precision, intent(out) :: d_d_mu
double precision :: x_tmp,inv_mu_2,inv_alpha_2
d_d_mu = 0.d0
if(x .lt. 1d-10) return
x_tmp = x*mu
if(mu.lt.1.d-10) return
inv_mu_2 = mu*mu
inv_mu_2 = 1.d0/inv_mu_2
if(j2e_type .eq. "Mu" .or. j2e_type .eq. "Mur") then
! e^{-(r12*mu)^2}/(2 sqrt(pi) * mu^2)
d_d_mu = dexp(-x_tmp*x_tmp) * inv_sq_pi_2 * inv_mu_2
else if(j2e_type .eq. "Mugauss" .or. j2e_type .eq. "Murgauss" ) then
d_d_mu = dexp(-x_tmp*x_tmp) * inv_sq_pi_2 * inv_mu_2
inv_alpha_2 = 1.d0/alpha_mu_gauss
inv_alpha_2 *= inv_alpha_2
x_tmp *= alpha_mu_gauss
x_tmp *= x_tmp
d_d_mu += -0.25d0 * c_mu_gauss*inv_alpha_2*dexp(-x_tmp) * (1.d0 + 2.d0 * x_tmp) * inv_mu_2
else
print *, ' Error in get_deriv_r12_j12: Unknown j2e_type = ', j2e_type
stop
endif
end
! --- ! ---
double precision function j12_mu(r1, r2) double precision function j12_mu(r1, r2)
BEGIN_DOC
! j(mu,r12) = 1/2 r12 (1 - erf(mu r12)) - 1/2 (sqrt(pi) * mu) e^{-(mu*r12)^2}
END_DOC
include 'constants.include.F' include 'constants.include.F'
implicit none implicit none
@ -18,6 +83,18 @@ double precision function j12_mu(r1, r2)
j12_mu = 0.5d0 * r12 * (1.d0 - derf(mu_tmp)) - inv_sq_pi_2 * dexp(-mu_tmp*mu_tmp) / mu_erf j12_mu = 0.5d0 * r12 * (1.d0 - derf(mu_tmp)) - inv_sq_pi_2 * dexp(-mu_tmp*mu_tmp) / mu_erf
else if(j2e_type .eq. "Mugauss") then
r12 = dsqrt( (r1(1) - r2(1)) * (r1(1) - r2(1)) &
+ (r1(2) - r2(2)) * (r1(2) - r2(2)) &
+ (r1(3) - r2(3)) * (r1(3) - r2(3)) )
double precision :: r12_tmp
r12_tmp = mu_erf * r12
j12_mu = 0.5d0 * r12 * (1.d0 - derf(r12_tmp)) - inv_sq_pi_2 * dexp(-r12_tmp*r12_tmp) / mu_erf
r12_tmp *= alpha_mu_gauss
j12_mu += 0.25d0 * c_mu_gauss / (alpha_mu_gauss*alpha_mu_gauss*mu_erf) * dexp(-r12_tmp*r12_tmp)
else else
print *, ' Error in j12_mu: Unknown j2e_type = ', j2e_type print *, ' Error in j12_mu: Unknown j2e_type = ', j2e_type
@ -57,7 +134,7 @@ subroutine grad1_j12_mu(r1, r2, grad)
grad = 0.d0 grad = 0.d0
if(j2e_type .eq. "Mu") then if(j2e_type .eq. "Mu".or.j2e_type .eq. "Mugauss") then
dx = r1(1) - r2(1) dx = r1(1) - r2(1)
dy = r1(2) - r2(2) dy = r1(2) - r2(2)
@ -66,31 +143,42 @@ subroutine grad1_j12_mu(r1, r2, grad)
r12 = dsqrt(dx * dx + dy * dy + dz * dz) r12 = dsqrt(dx * dx + dy * dy + dz * dz)
if(r12 .lt. 1d-10) return if(r12 .lt. 1d-10) return
tmp = 0.5d0 * (1.d0 - derf(mu_erf * r12)) / r12 call get_deriv_r12_j12(r12,mu_erf,tmp)
! tmp = 0.5d0 * (1.d0 - derf(mu_erf * r12)) / r12
grad(1) = tmp * dx grad(1) = tmp * dx
grad(2) = tmp * dy grad(2) = tmp * dy
grad(3) = tmp * dz grad(3) = tmp * dz
grad *= 1.d0/r12
elseif(j2e_type .eq. "Mur") then elseif(j2e_type .eq. "Mur" .or. j2e_type .eq. "Murgauss") then
double precision :: jast
call grad_j_sum_mu_of_r(r1,r2,jast,grad)
elseif(j2e_type .eq. "Bump") then
double precision ::grad_jast(3)
call get_grad_j_bump_mu_of_r(r1,r2,grad_jast)
dx = r1(1) - r2(1) dx = r1(1) - r2(1)
dy = r1(2) - r2(2) dy = r1(2) - r2(2)
dz = r1(3) - r2(3) dz = r1(3) - r2(3)
r12 = dsqrt(dx * dx + dy * dy + dz * dz) r12 = dsqrt(dx * dx + dy * dy + dz * dz)
if(r12 .lt. 1d-10) then
grad(1) = 0.d0
grad(2) = 0.d0
grad(3) = 0.d0
return
endif
call mu_r_val_and_grad(r1, r2, mu_val, mu_der) tmp = 0.5d0 * (1.d0 - derf(mu_erf * r12)) / r12
mu_tmp = mu_val * r12
tmp = inv_sq_pi_2 * dexp(-mu_tmp*mu_tmp) / (mu_val * mu_val) grad(1) = 0.5d0 * tmp * dx
grad(1) = tmp * mu_der(1) grad(2) = 0.5d0 * tmp * dy
grad(2) = tmp * mu_der(2) grad(3) = 0.5d0 * tmp * dz
grad(3) = tmp * mu_der(3) grad(1) += 0.5d0 * grad_jast(1)
grad(2) += 0.5d0 * grad_jast(2)
grad(3) += 0.5d0 * grad_jast(3)
if(r12 .lt. 1d-10) return
tmp = 0.5d0 * (1.d0 - derf(mu_tmp)) / r12
grad(1) = grad(1) + tmp * dx
grad(2) = grad(2) + tmp * dy
grad(3) = grad(3) + tmp * dz
else else
@ -369,7 +457,18 @@ end
! --- ! ---
subroutine mu_r_val_and_grad(r1, r2, mu_val, mu_der) subroutine mu_r_val_and_grad(r1, r2, mu_val, mu_der)
BEGIN_DOC
! various flavours of mu(r1,r2)
! depends on essentially the density and other related quantities
!
! change the variable "murho_type" to change type
!
! murho_type == -1 :: mu(r1,r2) = (rho(r1) mu_mf(r1) + rho(r2) mu_mf(r2))/[rho(r1)+rho(r2)]
!
! == 0 :: mu(r1,r2) = (sqrt(rho(r1)) mu_mf(r1) + sqrt(rho(r2)) mu_mf(r2))/[sqrt(rho(r1))+sqrt(rho(r2))]
!
! == -2 :: mu(r1,r2) = 0.5(mu_mf(r1) + mu_mf(r2))
END_DOC
implicit none implicit none
double precision, intent(in) :: r1(3), r2(3) double precision, intent(in) :: r1(3), r2(3)
double precision, intent(out) :: mu_val, mu_der(3) double precision, intent(out) :: mu_val, mu_der(3)
@ -379,11 +478,50 @@ subroutine mu_r_val_and_grad(r1, r2, mu_val, mu_der)
double precision :: rho1, grad_rho1(3),rho2,rho_tot,inv_rho_tot double precision :: rho1, grad_rho1(3),rho2,rho_tot,inv_rho_tot
double precision :: f_rho1, f_rho2, d_drho_f_rho1 double precision :: f_rho1, f_rho2, d_drho_f_rho1
double precision :: d_dx1_f_rho1(3),d_dx_rho_f_rho(3),nume double precision :: d_dx1_f_rho1(3),d_dx_rho_f_rho(3),nume
double precision :: mu_mf_r1, dm_r1, grad_mu_mf_r1(3), grad_dm_r1(3)
double precision :: mu_mf_r2, dm_r2, grad_mu_mf_r2(3), grad_dm_r2(3)
double precision :: num, denom, grad_denom(3), grad_num(3)
double precision :: dsqrt_dm_r1
PROVIDE murho_type PROVIDE murho_type
PROVIDE mu_r_ct mu_erf PROVIDE mu_r_ct mu_erf
if(murho_type .eq. 1) then if(murho_type .eq. 0) then
call grad_mu_of_r_mean_field(r1,mu_mf_r1, dm_r1, grad_mu_mf_r1, grad_dm_r1)
call grad_mu_of_r_mean_field(r2,mu_mf_r2, dm_r2, grad_mu_mf_r2, grad_dm_r2)
dsqrt_dm_r1 = dsqrt(dm_r1)
denom = (dsqrt_dm_r1 + dsqrt(dm_r2) )
if(denom.lt.1.d-7)then
mu_val = 1.d+10
mu_der = 0.d0
return
endif
num = (dsqrt(dm_r1) * mu_mf_r1 + dsqrt(dm_r2) * mu_mf_r2)
mu_val = num / denom
grad_denom = grad_dm_r1/dsqrt_dm_r1
grad_num = dsqrt(dm_r1) * grad_mu_mf_r1 + mu_mf_r1 * grad_dm_r1
mu_der = (grad_num * denom - num * grad_denom)/(denom*denom)
else if(murho_type .eq. -1) then
call grad_mu_of_r_mean_field(r1,mu_mf_r1, dm_r1, grad_mu_mf_r1, grad_dm_r1)
call grad_mu_of_r_mean_field(r2,mu_mf_r2, dm_r2, grad_mu_mf_r2, grad_dm_r2)
denom = (dm_r1 + dm_r2 )
if(denom.lt.1.d-7)then
mu_val = 1.d+10
mu_der = 0.d0
return
endif
num = (dm_r1 * mu_mf_r1 + dm_r2 * mu_mf_r2)
mu_val = num / denom
grad_denom = grad_dm_r1
grad_num = dm_r1 * grad_mu_mf_r1 + mu_mf_r1 * grad_dm_r1
mu_der = (grad_num * denom - num * grad_denom)/(denom*denom)
else if(murho_type .eq. -2) then
call grad_mu_of_r_mean_field(r1,mu_mf_r1, dm_r1, grad_mu_mf_r1, grad_dm_r1)
call grad_mu_of_r_mean_field(r2,mu_mf_r2, dm_r2, grad_mu_mf_r2, grad_dm_r2)
mu_val = 0.5d0 * (mu_mf_r1 + mu_mf_r2)
mu_der = 0.5d0 * grad_mu_mf_r1
else if(murho_type .eq. 1) then
! !
! r = 0.5 (r1 + r2) ! r = 0.5 (r1 + r2)

View File

@ -35,6 +35,10 @@ subroutine get_grad1_u12_withsq_r1_seq(ipoint, n_grid2, resx, resy, resz, res)
if( (j2e_type .eq. "Mu") .or. & if( (j2e_type .eq. "Mu") .or. &
(j2e_type .eq. "Mur") .or. & (j2e_type .eq. "Mur") .or. &
(j2e_type .eq. "Jpsi") .or. &
(j2e_type .eq. "Mugauss") .or. &
(j2e_type .eq. "Murgauss") .or. &
(j2e_type .eq. "Bump") .or. &
(j2e_type .eq. "Boys") ) then (j2e_type .eq. "Boys") ) then
if(env_type .eq. "None") then if(env_type .eq. "None") then
@ -206,10 +210,9 @@ subroutine grad1_j12_r1_seq(r1, n_grid2, gradx, grady, gradz)
gradz(jpoint) = tmp * dz gradz(jpoint) = tmp * dz
enddo enddo
elseif(j2e_type .eq. "Mur") then else if(j2e_type .eq. "Mugauss") then
! d/dx1 j(mu(r1,r2),r12) = exp(-(mu(r1,r2)*r12)**2) /(2 *sqrt(pi) * mu(r1,r2)**2 ) d/dx1 mu(r1,r2) ! d/dx1 j(mu,r12) = 0.5 * [(1 - erf(mu * r12)) / r12 - mu*c*r12*exp(-(mu*alpha*r12)^2] * (x1 - x2)
! + 0.5 * (1 - erf(mu(r1,r2) *r12))/r12 * (x1 - x2)
do jpoint = 1, n_points_extra_final_grid ! r2 do jpoint = 1, n_points_extra_final_grid ! r2
@ -220,15 +223,8 @@ subroutine grad1_j12_r1_seq(r1, n_grid2, gradx, grady, gradz)
dx = r1(1) - r2(1) dx = r1(1) - r2(1)
dy = r1(2) - r2(2) dy = r1(2) - r2(2)
dz = r1(3) - r2(3) dz = r1(3) - r2(3)
r12 = dsqrt(dx * dx + dy * dy + dz * dz) r12 = dsqrt(dx * dx + dy * dy + dz * dz)
call mu_r_val_and_grad(r1, r2, mu_val, mu_der)
mu_tmp = mu_val * r12
tmp = inv_sq_pi_2 * dexp(-mu_tmp*mu_tmp) / (mu_val * mu_val)
gradx(jpoint) = tmp * mu_der(1)
grady(jpoint) = tmp * mu_der(2)
gradz(jpoint) = tmp * mu_der(3)
if(r12 .lt. 1d-10) then if(r12 .lt. 1d-10) then
gradx(jpoint) = 0.d0 gradx(jpoint) = 0.d0
grady(jpoint) = 0.d0 grady(jpoint) = 0.d0
@ -236,11 +232,70 @@ subroutine grad1_j12_r1_seq(r1, n_grid2, gradx, grady, gradz)
cycle cycle
endif endif
tmp = 0.5d0 * (1.d0 - derf(mu_tmp)) / r12 double precision :: r12_tmp
r12_tmp = mu_erf * r12
! gradient of j(mu,r12)
tmp = 0.5d0 * (1.d0 - derf(r12_tmp)) / r12
! gradient of gaussian additional term
r12_tmp *= alpha_mu_gauss
r12_tmp *= r12_tmp
tmp += -0.5d0 * mu_erf * c_mu_gauss * r12 * dexp(-r12_tmp)/r12
gradx(jpoint) = gradx(jpoint) + tmp * dx gradx(jpoint) = tmp * dx
grady(jpoint) = grady(jpoint) + tmp * dy grady(jpoint) = tmp * dy
gradz(jpoint) = gradz(jpoint) + tmp * dz gradz(jpoint) = tmp * dz
enddo
elseif(j2e_type .eq. "Mur".or.j2e_type .eq. "Murgauss") then
! d/dx1 j(mu(r1,r2),r12) = exp(-(mu(r1,r2)*r12)**2) /(2 *sqrt(pi) * mu(r1,r2)**2 ) d/dx1 mu(r1,r2)
! + 0.5 * (1 - erf(mu(r1,r2) *r12))/r12 * (x1 - x2)
do jpoint = 1, n_points_extra_final_grid ! r2
r2(1) = final_grid_points_extra(1,jpoint)
r2(2) = final_grid_points_extra(2,jpoint)
r2(3) = final_grid_points_extra(3,jpoint)
double precision :: jast, grad_jast(3)
call grad_j_sum_mu_of_r(r1,r2,jast,grad_jast)
gradx(jpoint) = grad_jast(1)
grady(jpoint) = grad_jast(2)
gradz(jpoint) = grad_jast(3)
enddo
elseif(j2e_type .eq. "Bump") then
! d/dx1 jbump(r1,r2)
do jpoint = 1, n_points_extra_final_grid ! r2
r2(1) = final_grid_points_extra(1,jpoint)
r2(2) = final_grid_points_extra(2,jpoint)
r2(3) = final_grid_points_extra(3,jpoint)
call get_grad_j_bump_mu_of_r(r1,r2,grad_jast)
dx = r1(1) - r2(1)
dy = r1(2) - r2(2)
dz = r1(3) - r2(3)
r12 = dsqrt(dx * dx + dy * dy + dz * dz)
if(r12 .lt. 1d-10) then
gradx(jpoint) = 0.d0
grady(jpoint) = 0.d0
gradz(jpoint) = 0.d0
cycle
endif
tmp = 0.5d0 * (1.d0 - derf(mu_erf * r12)) / r12
gradx(jpoint) = 0.5d0 * tmp * dx
grady(jpoint) = 0.5d0 * tmp * dy
gradz(jpoint) = 0.5d0 * tmp * dz
gradx(jpoint) += 0.5d0 * grad_jast(1)
grady(jpoint) += 0.5d0 * grad_jast(2)
gradz(jpoint) += 0.5d0 * grad_jast(3)
! gradx(jpoint) = grad_jast(1)
! grady(jpoint) = grad_jast(2)
! gradz(jpoint) = grad_jast(3)
enddo enddo
elseif(j2e_type .eq. "Boys") then elseif(j2e_type .eq. "Boys") then
@ -363,6 +418,17 @@ subroutine grad1_j12_r1_seq(r1, n_grid2, gradx, grady, gradz)
enddo ! i_nucl enddo ! i_nucl
enddo ! jpoint enddo ! jpoint
elseif(j2e_type .eq. "Jpsi") then
double precision :: grad_j_psi_r1(3),jast_psi
do jpoint = 1, n_points_extra_final_grid ! r2
r2(1) = final_grid_points_extra(1,jpoint)
r2(2) = final_grid_points_extra(2,jpoint)
r2(3) = final_grid_points_extra(3,jpoint)
call get_grad_r1_jastrow_psi(r1,r2,grad_j_psi_r1,jast_psi)
gradx(jpoint) = grad_j_psi_r1(1)
grady(jpoint) = grad_j_psi_r1(2)
gradz(jpoint) = grad_j_psi_r1(3)
enddo
else else
print *, ' Error in grad1_j12_r1_seq: Unknown j2e_type = ', j2e_type print *, ' Error in grad1_j12_r1_seq: Unknown j2e_type = ', j2e_type
@ -667,7 +733,11 @@ subroutine get_grad1_u12_2e_r1_seq(ipoint, n_grid2, resx, resy, resz)
r1(3) = final_grid_points(3,ipoint) r1(3) = final_grid_points(3,ipoint)
if( (j2e_type .eq. "Mu") .or. & if( (j2e_type .eq. "Mu") .or. &
(j2e_type .eq. "Mugauss") .or. &
(j2e_type .eq. "Mur") .or. & (j2e_type .eq. "Mur") .or. &
(j2e_type .eq. "Jpsi") .or. &
(j2e_type .eq. "Murgauss") .or. &
(j2e_type .eq. "Bump") .or. &
(j2e_type .eq. "Boys") ) then (j2e_type .eq. "Boys") ) then
if(env_type .eq. "None") then if(env_type .eq. "None") then
@ -786,6 +856,9 @@ subroutine get_u12_2e_r1_seq(ipoint, n_grid2, res)
if( (j2e_type .eq. "Mu") .or. & if( (j2e_type .eq. "Mu") .or. &
(j2e_type .eq. "Mur") .or. & (j2e_type .eq. "Mur") .or. &
(j2e_type .eq. "Mugauss") .or. &
(j2e_type .eq. "Murgauss") .or. &
(j2e_type .eq. "Mugauss") .or. &
(j2e_type .eq. "Boys") ) then (j2e_type .eq. "Boys") ) then
if(env_type .eq. "None") then if(env_type .eq. "None") then

View File

@ -0,0 +1,124 @@
BEGIN_PROVIDER [ double precision, c_ij_ab_jastrow, (mo_num, mo_num, elec_alpha_num, elec_beta_num)]
implicit none
integer :: iunit, getUnitAndOpen
c_ij_ab_jastrow = 0.d0
iunit = getUnitAndOpen(trim(ezfio_work_dir)//'c_ij_ab', 'R')
read(iunit) c_ij_ab_jastrow
close(iunit)
print*,'c_ij_ab_jastrow = '
integer :: i,j,a,b
do i = 1, elec_beta_num ! r2
do j = 1, elec_alpha_num ! r1
do a = elec_beta_num+1, mo_num ! r2
do b = elec_alpha_num+1, mo_num ! r1
! print*,b,a,j,i
print*,c_ij_ab_jastrow(b,a,j,i),b,a,j,i
if(dabs(c_ij_ab_jastrow(b,a,j,i)).lt.1.d-12)then
c_ij_ab_jastrow(b,a,j,i) = 0.d0
endif
enddo
enddo
enddo
enddo
END_PROVIDER
double precision function jastrow_psi(r1,r2)
implicit none
double precision, intent(in) :: r1(3), r2(3)
integer :: i,j,a,b
double precision, allocatable :: mos_array_r1(:), mos_array_r2(:)
allocate(mos_array_r1(mo_num), mos_array_r2(mo_num))
call give_all_mos_at_r(r1,mos_array_r1)
call give_all_mos_at_r(r2,mos_array_r2)
double precision :: eps,coef, numerator,denominator
double precision :: phi_i_phi_j
eps = a_boys
jastrow_psi= 0.d0
do i = 1, elec_beta_num ! r1
do j = 1, elec_alpha_num ! r2
phi_i_phi_j = mos_array_r1(i) * mos_array_r2(j) + eps
denominator = 1.d0/phi_i_phi_j
do a = elec_beta_num+1, mo_num ! r1
do b = elec_alpha_num+1, mo_num ! r2
coef = c_ij_ab_jastrow(b,a,j,i)
numerator = mos_array_r2(b) * mos_array_r1(a)
jastrow_psi += coef * numerator*denominator
enddo
enddo
enddo
enddo
end
subroutine get_grad_r1_jastrow_psi(r1,r2,grad_j_psi_r1,jast)
implicit none
double precision, intent(in) :: r1(3), r2(3)
double precision, intent(out):: grad_j_psi_r1(3),jast
integer :: i,j,a,b
double precision, allocatable :: mos_array_r1(:), mos_array_r2(:)
double precision, allocatable :: mos_grad_array_r1(:,:),mos_grad_array_r2(:,:)
double precision :: num_j, denom_j, num_j_grad(3), denom_j_grad(3),delta,coef
double precision :: inv_denom_j
allocate(mos_array_r1(mo_num), mos_array_r2(mo_num))
allocate(mos_grad_array_r1(3,mo_num), mos_grad_array_r2(3,mo_num))
delta = a_boys
call give_all_mos_and_grad_at_r(r1,mos_array_r1,mos_grad_array_r1)
call give_all_mos_and_grad_at_r(r2,mos_array_r2,mos_grad_array_r2)
grad_j_psi_r1 = 0.d0
jast = 0.d0
do i = 1, elec_beta_num ! r1
do j = 1, elec_alpha_num ! r2
call denom_jpsi(i,j,delta,mos_array_r1,mos_grad_array_r1,mos_array_r2,denom_j, denom_j_grad)
inv_denom_j = 1.d0/denom_j
do a = elec_beta_num+1, mo_num ! r1
do b = elec_alpha_num+1, mo_num ! r2
call numerator_psi(a,b,mos_array_r1,mos_grad_array_r1,mos_array_r2,num_j, num_j_grad)
coef = c_ij_ab_jastrow(b,a,j,i)
jast += coef * num_j * inv_denom_j
grad_j_psi_r1 += coef * (num_j_grad * denom_j - num_j * denom_j_grad) * inv_denom_j * inv_denom_j
enddo
enddo
enddo
enddo
if(jast.lt.-1.d0.or.dabs(jast).gt.1.d0)then
print*,'pb ! '
print*,jast
print*,dsqrt(r1(1)**2+r1(2)**2+r1(3)**2),dsqrt(r2(1)**2+r2(2)**2+r2(3)**2)
print*,r1
! print*,mos_array_r1(1:2)
print*,r2
! print*,mos_array_r2(1:2)
stop
endif
if(log_jpsi)then
grad_j_psi_r1 = grad_j_psi_r1/(1.d0 + jast)
endif
end
subroutine denom_jpsi(i,j,delta,mos_array_r1,mos_grad_array_r1,mos_array_r2,denom, grad_denom)
implicit none
integer, intent(in) :: i,j
double precision, intent(in) :: mos_array_r1(mo_num),mos_grad_array_r1(3,mo_num),mos_array_r2(mo_num),delta
double precision, intent(out) :: denom, grad_denom(3)
double precision :: coef,phi_i_phi_j,inv_phi_i_phi_j,inv_phi_i_phi_j_2
phi_i_phi_j = mos_array_r1(i) * mos_array_r2(j)
if(phi_i_phi_j /= 0.d0)then
inv_phi_i_phi_j = 1.d0/phi_i_phi_j
inv_phi_i_phi_j_2 = 1.d0/(phi_i_phi_j * phi_i_phi_j)
else
inv_phi_i_phi_j = huge(1.0)
inv_phi_i_phi_j_2 = huge(1.d0)
endif
denom = phi_i_phi_j + delta * inv_phi_i_phi_j
grad_denom(:) = (1.d0 - delta*inv_phi_i_phi_j_2) * mos_array_r2(j) * mos_grad_array_r1(:,i)
end
subroutine numerator_psi(a,b,mos_array_r1,mos_grad_array_r1,mos_array_r2,num, grad_num)
implicit none
integer, intent(in) :: a,b
double precision, intent(in) :: mos_array_r1(mo_num),mos_grad_array_r1(3,mo_num),mos_array_r2(mo_num)
double precision, intent(out) :: num, grad_num(3)
num = mos_array_r1(a) * mos_array_r2(b)
grad_num(:) = mos_array_r2(b) * mos_grad_array_r1(:,a)
end

View File

@ -0,0 +1,43 @@
subroutine grad_mu_of_r_mean_field(r,mu_mf, dm, grad_mu_mf, grad_dm)
implicit none
BEGIN_DOC
! returns the value and gradients of the mu(r) mean field, together with the HF density and its gradients.
END_DOC
include 'constants.include.F'
double precision, intent(in) :: r(3)
double precision, intent(out):: grad_mu_mf(3), grad_dm(3)
double precision, intent(out):: mu_mf, dm
double precision :: grad_f_mf_ab(3), grad_two_bod_dens(3),grad_dm_a(3), grad_dm_b(3)
double precision :: f_mf_ab,two_bod_dens, dm_a, dm_b
double precision :: dist
call get_grad_f_mf_ab(r,grad_f_mf_ab, grad_two_bod_dens,f_mf_ab,two_bod_dens, dm_a, dm_b,grad_dm_a, grad_dm_b)
dm = dm_a + dm_b
grad_dm(1:3) = grad_dm_a(1:3) + grad_dm_b(1:3)
if(dabs(two_bod_dens).lt.1.d-10)then
mu_mf = 1.d+10
grad_mu_mf = 0.d0
else
if(mu_of_r_tc=="Erfmu")then
mu_mf = 0.3333333333d0 * sqpi * (f_mf_ab/two_bod_dens + 0.25d0)
grad_mu_mf(1:3) = 0.3333333333d0 * sqpi * (grad_f_mf_ab(1:3) * two_bod_dens - f_mf_ab * grad_two_bod_dens(1:3))&
/(two_bod_dens*two_bod_dens)
else if(mu_of_r_tc=="Standard")then
mu_mf = 0.5d0 * sqpi * f_mf_ab/two_bod_dens
grad_mu_mf(1:3) = 0.5d0 * sqpi * (grad_f_mf_ab(1:3) * two_bod_dens - f_mf_ab * grad_two_bod_dens(1:3))&
/(two_bod_dens*two_bod_dens)
else if(mu_of_r_tc=="Erfmugauss")then
mu_mf = (f_mf_ab/two_bod_dens + 0.25d0)/c_mu_gauss_tot
grad_mu_mf(1:3) = 1.d0/c_mu_gauss_tot* (grad_f_mf_ab(1:3) * two_bod_dens - f_mf_ab * grad_two_bod_dens(1:3))&
/(two_bod_dens*two_bod_dens)
else
print*,'Wrong value for mu_of_r_tc !'
stop
endif
endif
end

View File

@ -57,6 +57,9 @@ end
subroutine get_grad_f_mf_ab(r,grad_f_mf_ab, grad_two_bod_dens,f_mf_ab,two_bod_dens, dm_a, dm_b,grad_dm_a, grad_dm_b) subroutine get_grad_f_mf_ab(r,grad_f_mf_ab, grad_two_bod_dens,f_mf_ab,two_bod_dens, dm_a, dm_b,grad_dm_a, grad_dm_b)
implicit none implicit none
BEGIN_DOC
! gradient of mu(r) mean field, together with the gradient of the one- and two-body HF density.
END_DOC
double precision, intent(in) :: r(3) double precision, intent(in) :: r(3)
double precision, intent(out) :: f_mf_ab, two_bod_dens double precision, intent(out) :: f_mf_ab, two_bod_dens
double precision, intent(out) :: grad_two_bod_dens(3), grad_f_mf_ab(3) double precision, intent(out) :: grad_two_bod_dens(3), grad_f_mf_ab(3)
@ -146,26 +149,18 @@ subroutine mu_of_r_mean_field(r,mu_mf, dm)
endif endif
end end
subroutine grad_mu_of_r_mean_field(r,mu_mf, dm, grad_mu_mf, grad_dm) subroutine mu_of_r_mean_field_tc(r,mu_mf, dm)
implicit none implicit none
include 'constants.include.F' include 'constants.include.F'
double precision, intent(in) :: r(3) double precision, intent(in) :: r(3)
double precision, intent(out):: grad_mu_mf(3), grad_dm(3)
double precision, intent(out):: mu_mf, dm double precision, intent(out):: mu_mf, dm
double precision :: grad_f_mf_ab(3), grad_two_bod_dens(3),grad_dm_a(3), grad_dm_b(3)
double precision :: f_mf_ab,two_bod_dens, dm_a, dm_b double precision :: f_mf_ab,two_bod_dens, dm_a, dm_b
call get_grad_f_mf_ab(r,grad_f_mf_ab, grad_two_bod_dens,f_mf_ab,two_bod_dens, dm_a, dm_b,grad_dm_a, grad_dm_b) call get_f_mf_ab(r,f_mf_ab,two_bod_dens, dm_a, dm_b)
dm = dm_a + dm_b dm = dm_a + dm_b
grad_dm(1:3) = grad_dm_a(1:3) + grad_dm_b(1:3)
if(dabs(two_bod_dens).lt.1.d-10)then if(dabs(two_bod_dens).lt.1.d-10)then
mu_mf = 1.d+10 mu_mf = 1.d+10
grad_mu_mf = 0.d0
else else
mu_mf = 0.5d0 * sqpi * f_mf_ab/two_bod_dens mu_mf = 0.3333333333d0 * sqpi * (f_mf_ab/two_bod_dens + 0.25d0)
grad_mu_mf(1:3) = 0.5d0 * sqpi * (grad_f_mf_ab(1:3) * two_bod_dens - f_mf_ab * grad_two_bod_dens(1:3))&
/(two_bod_dens*two_bod_dens)
endif endif
end end

View File

@ -0,0 +1,59 @@
program plot_j_gauss
implicit none
double precision :: xmin, xmax, x, dx
double precision :: mu_min, mu_max, mu, d_mu
double precision :: pot_j_gauss,j_mu_simple,j_gauss_simple,pot_j_mu
double precision, allocatable :: mu_tab(:),j_mu(:),j_mu_gauss(:)
double precision, allocatable :: w_mu(:), w_mu_gauss(:)
character*(128) :: output
integer :: getUnitAndOpen
integer :: i_unit_output_wee_gauss,i_unit_output_wee_mu
integer :: i_unit_output_j_gauss,i_unit_output_j_mu
output=trim(ezfio_filename)//'.w_ee_mu_gauss'
i_unit_output_wee_gauss = getUnitAndOpen(output,'w')
output=trim(ezfio_filename)//'.w_ee_mu'
i_unit_output_wee_mu = getUnitAndOpen(output,'w')
output=trim(ezfio_filename)//'.j_mu_gauss'
i_unit_output_j_gauss = getUnitAndOpen(output,'w')
output=trim(ezfio_filename)//'.j_mu'
i_unit_output_j_mu = getUnitAndOpen(output,'w')
integer :: npt, i, j, n_mu
n_mu = 3
allocate(mu_tab(n_mu),j_mu(n_mu),j_mu_gauss(n_mu),w_mu(n_mu), w_mu_gauss(n_mu))
mu_min = 0.5d0
mu_max = 2.d0
d_mu = (mu_max - mu_min)/dble(n_mu)
mu = mu_min
do i = 1, n_mu
mu_tab(i) = mu
print*,'mu = ',mu
mu += d_mu
enddo
mu_tab(1) = 0.9d0
mu_tab(2) = 0.95d0
mu_tab(3) = 1.d0
xmin = 0.01d0
xmax = 10.d0
npt = 1000
dx = (xmax - xmin)/dble(npt)
x = xmin
do i = 1, npt
do j = 1, n_mu
mu = mu_tab(j)
w_mu_gauss(j) = pot_j_gauss(x,mu)
w_mu(j) = pot_j_mu(x,mu)
j_mu(j) = j_mu_simple(x,mu)
j_mu_gauss(j) = j_gauss_simple(x,mu) + j_mu(j)
enddo
write(i_unit_output_wee_gauss,'(100(F16.10,X))')x,w_mu_gauss(:)
write(i_unit_output_wee_mu,'(100(F16.10,X))')x,w_mu(:)
write(i_unit_output_j_gauss,'(100(F16.10,X))')x,j_mu_gauss(:)
write(i_unit_output_j_mu,'(100(F16.10,X))')x,j_mu(:)
x += dx
enddo
end

View File

@ -0,0 +1,19 @@
program plot_mo
implicit none
integer :: i,npt
double precision :: xmin,xmax,dx,r(3)
double precision,allocatable :: mos_array(:)
allocate(mos_array(mo_num))
npt = 10000
xmin =0.d0
xmax =10.d0
dx=(xmax-xmin)/dble(npt)
r=0.d0
r(1) = xmin
do i = 1, npt
call give_all_mos_at_r(r,mos_array)
write(33,'(100(F16.10,X))')r(1),mos_array(1),mos_array(2),mos_array(3)
r(1) += dx
enddo
end

View File

@ -16,15 +16,16 @@ subroutine routine_print
integer :: ipoint,nx,i integer :: ipoint,nx,i
double precision :: xmax,xmin,r(3),dx,sigma double precision :: xmax,xmin,r(3),dx,sigma
double precision :: mu_val, mu_der(3),dm_a,dm_b,grad,grad_dm_a(3), grad_dm_b(3) double precision :: mu_val, mu_der(3),dm_a,dm_b,grad,grad_dm_a(3), grad_dm_b(3)
xmax = 5.D0 xmax = 3.9D0
xmin = -5.D0 xmin = -3.9D0
nx = 10000 nx = 10000
dx = (xmax - xmin)/dble(nx) dx = (xmax - xmin)/dble(nx)
r = 0.d0 r = 0.d0
r(1) = xmin r(1) = xmin
do ipoint = 1, nx do ipoint = 1, nx
call mu_r_val_and_grad(r, r, mu_val, mu_der) ! call mu_r_val_and_grad(r, r, mu_val, mu_der)
call density_and_grad_alpha_beta(r,dm_a,dm_b, grad_dm_a, grad_dm_b) call grad_mu_of_r_mean_field(r,mu_val, dm_a, mu_der, grad_dm_a)
! call density_and_grad_alpha_beta(r,dm_a,dm_b, grad_dm_a, grad_dm_b)
sigma = 0.d0 sigma = 0.d0
do i = 1,3 do i = 1,3
sigma += grad_dm_a(i)**2 sigma += grad_dm_a(i)**2
@ -32,7 +33,8 @@ subroutine routine_print
sigma=dsqrt(sigma) sigma=dsqrt(sigma)
grad = mu_der(1)**2 + mu_der(2)**2 + mu_der(3)**2 grad = mu_der(1)**2 + mu_der(2)**2 + mu_der(3)**2
grad = dsqrt(grad) grad = dsqrt(grad)
write(i_unit_output,'(100(F16.7,X))')r(1),mu_val,dm_a+dm_b,grad,sigma/dm_a print*,r(1),mu_val
write(i_unit_output,'(100(F16.7,X))')r(1),mu_val,dm_a,grad,sigma/dm_a
r(1) += dx r(1) += dx
enddo enddo
end end

View File

@ -0,0 +1,146 @@
double precision function j_simple(x,mu)
implicit none
double precision, intent(in) :: x,mu
double precision :: j_mu_simple,j_gauss_simple
if(j2e_type .eq. "Mu".or.j2e_type .eq. "Mur") then
j_simple = j_mu_simple(x,mu)
else if(j2e_type .eq. "Mugauss".or.j2e_type .eq. "Murgauss") then
j_simple = j_gauss_simple(x,mu) + j_mu_simple(x,mu)
endif
end
double precision function j_mu_simple(x,mu)
implicit none
double precision, intent(in):: x,mu
include 'constants.include.F'
BEGIN_DOC
! j_mu(mu,x) = 0.5 x (1 - erf(mu x)) - 1/[2 sqrt(pi)mu] exp(-(x*mu)^2)
END_DOC
j_mu_simple = 0.5d0 * x * (1.D0 - derf(mu*x)) - 0.5d0 * inv_sq_pi/mu * dexp(-x*mu*x*mu)
end
double precision function j_gauss_simple(x,mu)
implicit none
double precision, intent(in):: x,mu
include 'constants.include.F'
BEGIN_DOC
! j_mu(mu,x) = c/[4 alpha^2 mu] exp(-(alpha * mu * x)^2)
! with c = 27/(8 sqrt(pi)), alpha=3/2
END_DOC
double precision :: x_tmp
x_tmp = alpha_mu_gauss * mu * x
j_gauss_simple = 0.25d0 * c_mu_gauss / (alpha_mu_gauss*alpha_mu_gauss*mu) * dexp(-x_tmp*x_tmp)
end
double precision function j_mu_deriv(x,mu)
implicit none
BEGIN_DOC
! d/dx j_mu(mu,x) = d/dx 0.5 x (1 - erf(mu x)) - 1/[2 sqrt(pi)mu] exp(-(x*mu)^2)
! = 0.5*(1 - erf(mu x))
END_DOC
include 'constants.include.F'
double precision, intent(in) :: x,mu
j_mu_deriv = 0.5d0 * (1.d0 - derf(mu*x))
end
double precision function j_mu_deriv_2(x,mu)
implicit none
BEGIN_DOC
! d^2/dx^2 j_mu(mu,x) = d^2/dx^2 0.5 x (1 - erf(mu x)) - 1/[2 sqrt(pi)mu] exp(-(x*mu)^2)
! = -mu/sqrt(pi) * exp(-(mu x)^2)
END_DOC
include 'constants.include.F'
double precision, intent(in) :: x,mu
j_mu_deriv_2 = - mu * inv_sq_pi * dexp(-x*mu*x*mu)
end
double precision function j_gauss_deriv(x,mu)
implicit none
include 'constants.include.F'
double precision, intent(in) :: x,mu
BEGIN_DOC
! d/dx j_gauss(mu,x) = d/dx c/[4 alpha^2 mu] exp(-(alpha * mu * x)^2)
! with c = 27/(8 sqrt(pi)), alpha=3/2
! = -0.5 * mu * c * x * exp(-(alpha * mu * x)^2)
END_DOC
double precision :: x_tmp
x_tmp = alpha_mu_gauss * mu * x
j_gauss_deriv = -0.5d0 * mu * c_mu_gauss * x * exp(-x_tmp*x_tmp)
end
double precision function j_gauss_deriv_2(x,mu)
implicit none
include 'constants.include.F'
double precision, intent(in) :: x,mu
BEGIN_DOC
! d/dx j_gauss(mu,x) = d/dx c/[4 alpha^2 mu] exp(-(alpha * mu * x)^2)
! with c = 27/(8 sqrt(pi)), alpha=3/2
! = 0.5 * mu * c * exp(-(alpha * mu * x)^2) * (2 (alpha*mu*x)^2 - 1)
END_DOC
double precision :: x_tmp
x_tmp = alpha_mu_gauss * mu * x
x_tmp = x_tmp * x_tmp
j_gauss_deriv_2 = 0.5d0 * mu * c_mu_gauss * exp(-x_tmp) * (2.d0*x_tmp - 1.d0)
end
double precision function j_erf_gauss_deriv(x,mu)
implicit none
double precision, intent(in) :: x,mu
BEGIN_DOC
! d/dx (j_gauss(mu,x)+j_mu(mu,x))
END_DOC
double precision :: j_gauss_deriv,j_mu_deriv
j_erf_gauss_deriv = j_gauss_deriv(x,mu)+j_mu_deriv(x,mu)
end
double precision function j_erf_gauss_deriv_2(x,mu)
implicit none
double precision, intent(in) :: x,mu
BEGIN_DOC
! d^2/dx^2 (j_gauss(mu,x)+j_mu(mu,x))
END_DOC
double precision :: j_gauss_deriv_2,j_mu_deriv_2
j_erf_gauss_deriv_2 = j_gauss_deriv_2(x,mu)+j_mu_deriv_2(x,mu)
end
double precision function pot_j_gauss(x,mu)
implicit none
double precision, intent(in) :: x,mu
BEGIN_DOC
! effective scalar potential associated with the erf_gauss correlation factor
!
! 1/x( 1 - 2 * d/dx j_erf_gauss(x,mu)) - d^2/dx^2 j_erf_gauss(x,mu)) - d/dx d/dx (j_erf_gauss(x,mu))^2
END_DOC
double precision :: j_erf_gauss_deriv_2,j_erf_gauss_deriv
double precision :: deriv_1, deriv_2
pot_j_gauss = 0.d0
if(x.ne.0.d0)then
deriv_1 = j_erf_gauss_deriv(x,mu)
deriv_2 = j_erf_gauss_deriv_2(x,mu)
pot_j_gauss = 1.d0/x * (1.d0 - 2.d0 * deriv_1) - deriv_1 * deriv_1 - deriv_2
endif
end
double precision function pot_j_mu(x,mu)
implicit none
double precision, intent(in) :: x,mu
BEGIN_DOC
! effective scalar potential associated with the correlation factor
!
! 1/x( 1 - 2 * d/dx j_erf(x,mu)) - d^2/dx^2 j_erf(x,mu)) - d/dx d/dx (j_erf(x,mu))^2
END_DOC
double precision :: j_mu_deriv_2,j_mu_deriv
double precision :: deriv_1, deriv_2
pot_j_mu = 0.d0
if(x.ne.0.d0)then
deriv_1 = j_mu_deriv(x,mu)
deriv_2 = j_mu_deriv_2(x,mu)
pot_j_mu= 1.d0/x * (1.d0 - 2.d0 * deriv_1) - deriv_1 * deriv_1 - deriv_2
endif
end

View File

@ -0,0 +1,15 @@
program print_j_psi
implicit none
integer :: i,j,a,b
do i = 1, elec_beta_num ! r2
do j = 1, elec_alpha_num ! r1
do a = elec_beta_num+1, mo_num ! r2
do b = elec_alpha_num+1, mo_num ! r1
print*,b,a,j,i
print*,c_ij_ab_jastrow(b,a,j,i)
enddo
enddo
enddo
enddo
end

View File

@ -127,8 +127,8 @@ BEGIN_PROVIDER [double precision, int2_grad1_u12_ao, (ao_num, ao_num, n_points_f
! TODO combine 1shot & int2_grad1_u12_ao_num ! TODO combine 1shot & int2_grad1_u12_ao_num
PROVIDE int2_grad1_u12_ao_num PROVIDE int2_grad1_u12_ao_num
int2_grad1_u12_ao = int2_grad1_u12_ao_num int2_grad1_u12_ao = int2_grad1_u12_ao_num
!PROVIDE int2_grad1_u12_ao_num_1shot ! PROVIDE int2_grad1_u12_ao_num_1shot
!int2_grad1_u12_ao = int2_grad1_u12_ao_num_1shot ! int2_grad1_u12_ao = int2_grad1_u12_ao_num_1shot
endif endif
elseif(tc_integ_type .eq. "semi-analytic") then elseif(tc_integ_type .eq. "semi-analytic") then

View File

@ -0,0 +1,157 @@
program test_mu_of_r_tc
implicit none
BEGIN_DOC
! TODO
END_DOC
! You specify that you want to avoid any contribution from
! orbitals coming from core
call test_grad_f_mean_field
call test_grad_mu_mf
call plot_mu_of_r_mf
end
subroutine test_grad_f_mean_field
implicit none
integer :: i_point,k
double precision :: weight,r(3)
double precision :: grad_f_mf_ab(3), grad_two_bod_dens(3)
double precision :: grad_dm_a(3), grad_dm_b(3)
double precision :: f_mf_ab,two_bod_dens, dm_a, dm_b
double precision :: num_grad_f_mf_ab(3), num_grad_two_bod_dens(3)
double precision :: num_grad_dm_a(3), num_grad_dm_b(3)
double precision :: f_mf_ab_p,f_mf_ab_m
double precision :: two_bod_dens_p, two_bod_dens_m
double precision :: dm_a_p, dm_a_m
double precision :: dm_b_p, dm_b_m
double precision :: rbis(3), dr
double precision :: accu_grad_f_mf_ab(3),accu_grad_two_bod_dens(3)
double precision :: accu_grad_dm_a(3),accu_grad_dm_b(3)
double precision :: accu_f_mf_ab, accu_two_bod_dens, accu_dm_a, accu_dm_b
dr = 0.00001d0
accu_f_mf_ab = 0.d0
accu_two_bod_dens = 0.d0
accu_dm_a = 0.d0
accu_dm_b = 0.d0
accu_grad_f_mf_ab = 0.d0
accu_grad_two_bod_dens = 0.d0
accu_grad_dm_a = 0.d0
accu_grad_dm_b = 0.d0
do i_point = 1, n_points_final_grid
r(1:3) = final_grid_points(1:3,i_point)
weight = final_weight_at_r_vector(i_point)
call get_grad_f_mf_ab(r,grad_f_mf_ab, grad_two_bod_dens,f_mf_ab,two_bod_dens, dm_a, dm_b,grad_dm_a, grad_dm_b)
call get_f_mf_ab(r,f_mf_ab_p,two_bod_dens_p, dm_a_p, dm_b_p)
accu_f_mf_ab += weight * dabs(f_mf_ab - f_mf_ab_p)
accu_two_bod_dens += weight * dabs(two_bod_dens - two_bod_dens_p)
accu_dm_a += weight*dabs(dm_a - dm_a_p)
accu_dm_b += weight*dabs(dm_b - dm_b_p)
do k = 1, 3
rbis = r
rbis(k) += dr
call get_f_mf_ab(rbis,f_mf_ab_p,two_bod_dens_p, dm_a_p, dm_b_p)
rbis = r
rbis(k) -= dr
call get_f_mf_ab(rbis,f_mf_ab_m,two_bod_dens_m, dm_a_m, dm_b_m)
num_grad_f_mf_ab(k) = (f_mf_ab_p - f_mf_ab_m)/(2.d0*dr)
num_grad_two_bod_dens(k) = (two_bod_dens_p - two_bod_dens_m)/(2.d0*dr)
num_grad_dm_a(k) = (dm_a_p - dm_a_m)/(2.d0*dr)
num_grad_dm_b(k) = (dm_b_p - dm_b_m)/(2.d0*dr)
enddo
do k = 1, 3
accu_grad_f_mf_ab(k) += weight * dabs(grad_f_mf_ab(k) - num_grad_f_mf_ab(k))
accu_grad_two_bod_dens(k) += weight * dabs(grad_two_bod_dens(k) - num_grad_two_bod_dens(k))
accu_grad_dm_a(k) += weight * dabs(grad_dm_a(k) - num_grad_dm_a(k))
accu_grad_dm_b(k) += weight * dabs(grad_dm_b(k) - num_grad_dm_b(k))
enddo
enddo
print*,'accu_f_mf_ab = ',accu_f_mf_ab
print*,'accu_two_bod_dens = ',accu_two_bod_dens
print*,'accu_dm_a = ',accu_dm_a
print*,'accu_dm_b = ',accu_dm_b
print*,'accu_grad_f_mf_ab = '
print*,accu_grad_f_mf_ab
print*,'accu_grad_two_bod_dens = '
print*,accu_grad_two_bod_dens
print*,'accu_dm_a = '
print*,accu_grad_dm_a
print*,'accu_dm_b = '
print*,accu_grad_dm_b
end
subroutine test_grad_mu_mf
implicit none
integer :: i_point,k
double precision :: weight,r(3),rbis(3)
double precision :: mu_mf, dm,grad_mu_mf(3), grad_dm(3)
double precision :: mu_mf_p, mu_mf_m, dm_m, dm_p, num_grad_mu_mf(3),dr, num_grad_dm(3)
double precision :: accu_mu, accu_dm, accu_grad_dm(3), accu_grad_mu_mf(3)
dr = 0.00001d0
accu_grad_mu_mf = 0.d0
accu_mu = 0.d0
accu_grad_dm = 0.d0
accu_dm = 0.d0
do i_point = 1, n_points_final_grid
r(1:3) = final_grid_points(1:3,i_point)
weight = final_weight_at_r_vector(i_point)
call grad_mu_of_r_mean_field(r,mu_mf, dm, grad_mu_mf, grad_dm)
call mu_of_r_mean_field(r,mu_mf_p, dm_p)
accu_mu += weight*dabs(mu_mf_p - mu_mf)
accu_dm += weight*dabs(dm_p - dm)
do k = 1, 3
rbis = r
rbis(k) += dr
call mu_of_r_mean_field(rbis,mu_mf_p, dm_p)
rbis = r
rbis(k) -= dr
call mu_of_r_mean_field(rbis,mu_mf_m, dm_m)
num_grad_mu_mf(k) = (mu_mf_p - mu_mf_m)/(2.d0*dr)
num_grad_dm(k) = (dm_p - dm_m)/(2.d0*dr)
enddo
do k = 1, 3
accu_grad_dm(k)+= weight *dabs(num_grad_dm(k) - grad_dm(k))
accu_grad_mu_mf(k)+= weight *dabs(num_grad_mu_mf(k) - grad_mu_mf(k))
enddo
enddo
print*,'accu_mu = ',accu_mu
print*,'accu_dm = ',accu_dm
print*,'accu_grad_dm = '
print*, accu_grad_dm
print*,'accu_grad_mu_mf = '
print*, accu_grad_mu_mf
end
subroutine plot_mu_of_r_mf
implicit none
include 'constants.include.F'
integer :: ipoint,npoint
double precision :: dx,r(3),xmax,xmin
double precision :: accu_mu,accu_nelec,mu_mf, dm,mu_mf_tc
character*(128) :: output
integer :: i_unit_output,getUnitAndOpen
output=trim(ezfio_filename)//'.mu_mf'
i_unit_output = getUnitAndOpen(output,'w')
xmax = 5.D0
xmin = 0.d0
npoint = 10000
dx = (xmax - xmin)/dble(npoint)
r = 0.d0
r(1) = xmin
accu_mu = 0.d0
accu_nelec = 0.d0
do ipoint = 1, npoint
call mu_of_r_mean_field(r,mu_mf, dm)
call mu_of_r_mean_field_tc(r,mu_mf_tc, dm)
write(i_unit_output,'(100(F16.10,X))')r(1),mu_mf,mu_mf_tc,dm
accu_mu += mu_mf * dm * r(1)**2*dx*4.D0*pi
accu_nelec += dm * r(1)**2*dx*4.D0*pi
r(1) += dx
enddo
print*,'nelec = ',accu_nelec
print*,'mu average = ',accu_mu/accu_nelec
end

View File

@ -9,5 +9,5 @@ then
fi fi
rm -rf ${PWD}/CuTC rm -rf ${PWD}/CuTC
rm ${QP_ROOT}/lib/libcutcint.so rm -f ${QP_ROOT}/lib/libcutcint.so

View File

@ -230,7 +230,7 @@ default: 70
type: character*(32) type: character*(32)
doc: approach used to evaluate TC integrals [ analytic | numeric | semi-analytic ] doc: approach used to evaluate TC integrals [ analytic | numeric | semi-analytic ]
interface: ezfio,ocaml,provider interface: ezfio,ocaml,provider
default: semi-analytic default: numeric
[minimize_lr_angles] [minimize_lr_angles]
type: logical type: logical

2
scripts/import_champ_jastrow.py Executable file → Normal file
View File

@ -45,7 +45,7 @@ if __name__ == '__main__':
jastrow_file = sys.argv[2] jastrow_file = sys.argv[2]
jastrow = import_jastrow(jastrow_file) jastrow = import_jastrow(jastrow_file)
print (jastrow) print (jastrow)
ezfio.set_jastrow_jast_type("Qmckl") ezfio.set_jastrow_j2e_type("Qmckl")
ezfio.set_jastrow_jast_qmckl_type_nucl_num(jastrow['type_num']) ezfio.set_jastrow_jast_qmckl_type_nucl_num(jastrow['type_num'])
charges = ezfio.get_nuclei_nucl_charge() charges = ezfio.get_nuclei_nucl_charge()
types = {} types = {}

View File

@ -261,13 +261,10 @@ def write_ezfio(trexio_filename, filename):
except: except:
cartesian = True cartesian = True
if not cartesian:
raise TypeError('Only cartesian TREXIO files can be converted')
ao_num = trexio.read_ao_num(trexio_file) ao_num = trexio.read_ao_num(trexio_file)
ezfio.set_ao_basis_ao_num(ao_num) ezfio.set_ao_basis_ao_num(ao_num)
if shell_num > 0: if cartesian and shell_num > 0:
ao_shell = trexio.read_ao_shell(trexio_file) ao_shell = trexio.read_ao_shell(trexio_file)
at = [ nucl_index[i]+1 for i in ao_shell ] at = [ nucl_index[i]+1 for i in ao_shell ]
ezfio.set_ao_basis_ao_nucl(at) ezfio.set_ao_basis_ao_nucl(at)
@ -330,7 +327,7 @@ def write_ezfio(trexio_filename, filename):
print("OK") print("OK")
else: else:
print("None") print("None: integrals should be also imported using qp run import_trexio_integrals")
# _ # _

View File

@ -111,8 +111,9 @@ complex*16 function NAI_pol_mult_cosgtos(A_center, B_center, power_A, power_B, a
complex*16 :: accu, P_center(3) complex*16 :: accu, P_center(3)
complex*16 :: d(0:n_pt_in) complex*16 :: d(0:n_pt_in)
complex*16 :: V_n_e_cosgtos complex*16, external :: V_n_e_cosgtos
complex*16 :: crint complex*16, external :: crint_2
complex*16, external :: crint_sum_2
if ( (A_center(1)/=B_center(1)) .or. (A_center(2)/=B_center(2)) .or. (A_center(3)/=B_center(3)) .or. & if ( (A_center(1)/=B_center(1)) .or. (A_center(2)/=B_center(2)) .or. (A_center(3)/=B_center(3)) .or. &
(A_center(1)/=C_center(1)) .or. (A_center(2)/=C_center(2)) .or. (A_center(3)/=C_center(3)) ) then (A_center(1)/=C_center(1)) .or. (A_center(2)/=C_center(2)) .or. (A_center(3)/=C_center(3)) ) then
@ -158,27 +159,27 @@ complex*16 function NAI_pol_mult_cosgtos(A_center, B_center, power_A, power_B, a
n_pt = 2 * ( (power_A(1) + power_B(1)) + (power_A(2) + power_B(2)) + (power_A(3) + power_B(3)) ) n_pt = 2 * ( (power_A(1) + power_B(1)) + (power_A(2) + power_B(2)) + (power_A(3) + power_B(3)) )
if(n_pt == 0) then if(n_pt == 0) then
NAI_pol_mult_cosgtos = coeff * crint(0, const) NAI_pol_mult_cosgtos = coeff * crint_2(0, const)
return return
endif endif
call give_cpolynomial_mult_center_one_e( A_center, B_center, alpha, beta & call give_cpolynomial_mult_center_one_e(A_center, B_center, alpha, beta, &
, power_A, power_B, C_center, n_pt_in, d, n_pt_out) power_A, power_B, C_center, n_pt_in, d, n_pt_out)
if(n_pt_out < 0) then if(n_pt_out < 0) then
NAI_pol_mult_cosgtos = (0.d0, 0.d0) NAI_pol_mult_cosgtos = (0.d0, 0.d0)
return return
endif endif
accu = (0.d0, 0.d0) !accu = (0.d0, 0.d0)
do i = 0, n_pt_out, 2 !do i = 0, n_pt_out, 2
accu += crint(shiftr(i, 1), const) * d(i) ! accu += crint_2(shiftr(i, 1), const) * d(i)
!enddo
! print *, shiftr(i, 1), real(const), real(d(i)), real(crint(shiftr(i, 1), const)) accu = crint_sum_2(n_pt_out, const, d)
enddo
NAI_pol_mult_cosgtos = accu * coeff NAI_pol_mult_cosgtos = accu * coeff
end function NAI_pol_mult_cosgtos return
end
! --- ! ---
@ -312,7 +313,7 @@ subroutine give_cpolynomial_mult_center_one_e( A_center, B_center, alpha, beta &
d(i) = d1(i) d(i) = d1(i)
enddo enddo
end subroutine give_cpolynomial_mult_center_one_e end
! --- ! ---
@ -405,7 +406,7 @@ recursive subroutine I_x1_pol_mult_one_e_cosgtos(a, c, R1x, R1xp, R2x, d, nd, n_
endif endif
end subroutine I_x1_pol_mult_one_e_cosgtos end
! --- ! ---
@ -467,7 +468,7 @@ recursive subroutine I_x2_pol_mult_one_e_cosgtos(c, R1x, R1xp, R2x, d, nd, dim)
endif endif
end subroutine I_x2_pol_mult_one_e_cosgtos end
! --- ! ---
@ -502,7 +503,7 @@ complex*16 function V_n_e_cosgtos(a_x, a_y, a_z, b_x, b_y, b_z, alpha, beta)
* V_theta(a_z + b_z, a_x + b_x + a_y + b_y + 1) * V_theta(a_z + b_z, a_x + b_x + a_y + b_y + 1)
endif endif
end function V_n_e_cosgtos end
! --- ! ---
@ -529,7 +530,7 @@ complex*16 function V_r_cosgtos(n, alpha)
V_r_cosgtos = sqpi * fact(n) / fact(shiftr(n, 1)) * (0.5d0/zsqrt(alpha))**(n+1) V_r_cosgtos = sqpi * fact(n) / fact(shiftr(n, 1)) * (0.5d0/zsqrt(alpha))**(n+1)
endif endif
end function V_r_cosgtos end
! --- ! ---

View File

@ -73,14 +73,13 @@ END_PROVIDER
integer, external :: getUnitAndOpen integer, external :: getUnitAndOpen
integer :: iunit, ierr integer :: iunit, ierr
ndim8 = ao_num*ao_num*1_8 ndim8 = ao_num*ao_num*1_8+1
double precision :: wall0,wall1 double precision :: wall0,wall1
type(c_ptr) :: c_pointer(2) type(mmap_type) :: map
integer :: fd(2)
PROVIDE nproc ao_cholesky_threshold do_direct_integrals qp_max_mem PROVIDE nproc ao_cholesky_threshold do_direct_integrals qp_max_mem
PROVIDE nucl_coord ao_two_e_integral_schwartz PROVIDE nucl_coord
call set_multiple_levels_omp(.False.) call set_multiple_levels_omp(.False.)
call wall_time(wall0) call wall_time(wall0)
@ -143,19 +142,21 @@ END_PROVIDER
if (do_direct_integrals) then if (do_direct_integrals) then
!$OMP PARALLEL DO DEFAULT(SHARED) PRIVATE(i8) SCHEDULE(dynamic,21) !$OMP PARALLEL DO DEFAULT(SHARED) PRIVATE(i8) SCHEDULE(dynamic,21)
do i8=ndim8,1,-1 do i8=ndim8-1,1,-1
D(i8) = ao_two_e_integral(addr1(i8), addr2(i8), & D(i8) = ao_two_e_integral(addr1(i8), addr2(i8), &
addr1(i8), addr2(i8)) addr1(i8), addr2(i8))
enddo enddo
!$OMP END PARALLEL DO !$OMP END PARALLEL DO
else else
!$OMP PARALLEL DO DEFAULT(SHARED) PRIVATE(i8) SCHEDULE(dynamic,21) !$OMP PARALLEL DO DEFAULT(SHARED) PRIVATE(i8) SCHEDULE(dynamic,21)
do i8=ndim8,1,-1 do i8=ndim8-1,1,-1
D(i8) = get_ao_two_e_integral(addr1(i8), addr1(i8), & D(i8) = get_ao_two_e_integral(addr1(i8), addr1(i8), &
addr2(i8), addr2(i8), ao_integrals_map) addr2(i8), addr2(i8), ao_integrals_map)
enddo enddo
!$OMP END PARALLEL DO !$OMP END PARALLEL DO
endif endif
! Just to guarentee termination
D(ndim8) = 0.d0
D_sorted(:) = -D(:) D_sorted(:) = -D(:)
call dsort_noidx_big(D_sorted,ndim8) call dsort_noidx_big(D_sorted,ndim8)
@ -179,14 +180,9 @@ END_PROVIDER
if (elec_num > 10) then if (elec_num > 10) then
rank_max = min(np,20*elec_num*elec_num) rank_max = min(np,20*elec_num*elec_num)
endif endif
call mmap(trim(ezfio_work_dir)//'cholesky_ao_tmp', (/ ndim8, rank_max /), 8, fd(1), .False., .True., c_pointer(1))
call c_f_pointer(c_pointer(1), L, (/ ndim8, rank_max /))
! Deleting the file while it is open makes the file invisible on the filesystem,
! and automatically deleted, even if the program crashes
iunit = getUnitAndOpen(trim(ezfio_work_dir)//'cholesky_ao_tmp', 'R')
close(iunit,status='delete')
call mmap_create_d('', (/ ndim8, rank_max /), .False., .True., map)
L => map%d2
! 3. ! 3.
N = 0 N = 0
@ -205,6 +201,7 @@ END_PROVIDER
i = i+1 i = i+1
block_size = max(N,24) block_size = max(N,24)
! Determine nq so that Delta fits in memory ! Determine nq so that Delta fits in memory
@ -314,9 +311,10 @@ END_PROVIDER
! g. ! g.
iblock = 0 iblock = 0
do j=1,nq do j=1,nq
if ( (Qmax <= Dmin).or.(N+j*1_8 > ndim8) ) exit if ( (Qmax < Dmin).or.(N+j*1_8 > ndim8) ) exit
! i. ! i.
rank = N+j rank = N+j
@ -476,7 +474,7 @@ END_PROVIDER
enddo enddo
!$OMP END PARALLEL DO !$OMP END PARALLEL DO
call munmap( (/ ndim8, rank_max /), 8, fd(1), c_pointer(1) ) call mmap_destroy(map)
cholesky_ao_num = rank cholesky_ao_num = rank

View File

@ -35,11 +35,9 @@ double precision function ao_two_e_integral_cosgtos(i, j, k, l)
if(ao_prim_num(i) * ao_prim_num(j) * ao_prim_num(k) * ao_prim_num(l) > 1024) then if(ao_prim_num(i) * ao_prim_num(j) * ao_prim_num(k) * ao_prim_num(l) > 1024) then
!print *, ' with shwartz acc '
ao_two_e_integral_cosgtos = ao_2e_cosgtos_schwartz_accel(i, j, k, l) ao_two_e_integral_cosgtos = ao_2e_cosgtos_schwartz_accel(i, j, k, l)
else else
!print *, ' without shwartz acc '
dim1 = n_pt_max_integrals dim1 = n_pt_max_integrals
@ -51,7 +49,6 @@ double precision function ao_two_e_integral_cosgtos(i, j, k, l)
ao_two_e_integral_cosgtos = 0.d0 ao_two_e_integral_cosgtos = 0.d0
if(num_i /= num_j .or. num_k /= num_l .or. num_j /= num_k) then if(num_i /= num_j .or. num_k /= num_l .or. num_j /= num_k) then
!print *, ' not the same center'
do p = 1, 3 do p = 1, 3
I_power(p) = ao_power(i,p) I_power(p) = ao_power(i,p)
@ -72,72 +69,22 @@ double precision function ao_two_e_integral_cosgtos(i, j, k, l)
coef2 = coef1 * ao_coef_norm_ord_transp_cosgtos(q,j) coef2 = coef1 * ao_coef_norm_ord_transp_cosgtos(q,j)
expo2 = ao_expo_ord_transp_cosgtos(q,j) expo2 = ao_expo_ord_transp_cosgtos(q,j)
call give_explicit_cpoly_and_cgaussian( P1_new, P1_center, pp1, fact_p1, iorder_p1 & call give_explicit_cpoly_and_cgaussian(P1_new, P1_center, pp1, fact_p1, iorder_p1, &
, expo1, expo2, I_power, J_power, I_center, J_center, dim1 ) expo1, expo2, I_power, J_power, I_center, J_center, dim1)
p1_inv = (1.d0,0.d0) / pp1 p1_inv = (1.d0,0.d0) / pp1
call give_explicit_cpoly_and_cgaussian( P2_new, P2_center, pp2, fact_p2, iorder_p2 & call give_explicit_cpoly_and_cgaussian(P2_new, P2_center, pp2, fact_p2, iorder_p2, &
, conjg(expo1), expo2, I_power, J_power, I_center, J_center, dim1 ) conjg(expo1), expo2, I_power, J_power, I_center, J_center, dim1)
p2_inv = (1.d0,0.d0) / pp2 p2_inv = (1.d0,0.d0) / pp2
call give_explicit_cpoly_and_cgaussian( P3_new, P3_center, pp3, fact_p3, iorder_p3 & call give_explicit_cpoly_and_cgaussian(P3_new, P3_center, pp3, fact_p3, iorder_p3, &
, expo1, conjg(expo2), I_power, J_power, I_center, J_center, dim1 ) expo1, conjg(expo2), I_power, J_power, I_center, J_center, dim1)
p3_inv = (1.d0,0.d0) / pp3 p3_inv = (1.d0,0.d0) / pp3
call give_explicit_cpoly_and_cgaussian( P4_new, P4_center, pp4, fact_p4, iorder_p4 & call give_explicit_cpoly_and_cgaussian(P4_new, P4_center, pp4, fact_p4, iorder_p4, &
, conjg(expo1), conjg(expo2), I_power, J_power, I_center, J_center, dim1 ) conjg(expo1), conjg(expo2), I_power, J_power, I_center, J_center, dim1)
p4_inv = (1.d0,0.d0) / pp4 p4_inv = (1.d0,0.d0) / pp4
!integer :: ii
!do ii = 1, 3
! print *, 'fact_p1', fact_p1
! print *, 'fact_p2', fact_p2
! print *, 'fact_p3', fact_p3
! print *, 'fact_p4', fact_p4
! !print *, pp1, p1_inv
! !print *, pp2, p2_inv
! !print *, pp3, p3_inv
! !print *, pp4, p4_inv
!enddo
! if( abs(aimag(P1_center(ii))) .gt. 0.d0 ) then
! print *, ' P_1 is complex !!'
! print *, P1_center
! print *, expo1, expo2
! print *, conjg(expo1), conjg(expo2)
! stop
! endif
! if( abs(aimag(P2_center(ii))) .gt. 0.d0 ) then
! print *, ' P_2 is complex !!'
! print *, P2_center
! print *, ' old expos:'
! print *, expo1, expo2
! print *, conjg(expo1), conjg(expo2)
! print *, ' new expo:'
! print *, pp2, p2_inv
! print *, ' factor:'
! print *, fact_p2
! print *, ' old centers:'
! print *, I_center, J_center
! print *, ' powers:'
! print *, I_power, J_power
! stop
! endif
! if( abs(aimag(P3_center(ii))) .gt. 0.d0 ) then
! print *, ' P_3 is complex !!'
! print *, P3_center
! print *, expo1, expo2
! print *, conjg(expo1), conjg(expo2)
! stop
! endif
! if( abs(aimag(P4_center(ii))) .gt. 0.d0 ) then
! print *, ' P_4 is complex !!'
! print *, P4_center
! print *, expo1, expo2
! print *, conjg(expo1), conjg(expo2)
! stop
! endif
!enddo
do r = 1, ao_prim_num(k) do r = 1, ao_prim_num(k)
coef3 = coef2 * ao_coef_norm_ord_transp_cosgtos(r,k) coef3 = coef2 * ao_coef_norm_ord_transp_cosgtos(r,k)
expo3 = ao_expo_ord_transp_cosgtos(r,k) expo3 = ao_expo_ord_transp_cosgtos(r,k)
@ -146,66 +93,40 @@ double precision function ao_two_e_integral_cosgtos(i, j, k, l)
coef4 = coef3 * ao_coef_norm_ord_transp_cosgtos(s,l) coef4 = coef3 * ao_coef_norm_ord_transp_cosgtos(s,l)
expo4 = ao_expo_ord_transp_cosgtos(s,l) expo4 = ao_expo_ord_transp_cosgtos(s,l)
call give_explicit_cpoly_and_cgaussian( Q1_new, Q1_center, qq1, fact_q1, iorder_q1 & call give_explicit_cpoly_and_cgaussian(Q1_new, Q1_center, qq1, fact_q1, iorder_q1, &
, expo3, expo4, K_power, L_power, K_center, L_center, dim1 ) expo3, expo4, K_power, L_power, K_center, L_center, dim1)
q1_inv = (1.d0,0.d0) / qq1 q1_inv = (1.d0,0.d0) / qq1
call give_explicit_cpoly_and_cgaussian( Q2_new, Q2_center, qq2, fact_q2, iorder_q2 & call give_explicit_cpoly_and_cgaussian(Q2_new, Q2_center, qq2, fact_q2, iorder_q2, &
, conjg(expo3), expo4, K_power, L_power, K_center, L_center, dim1 ) conjg(expo3), expo4, K_power, L_power, K_center, L_center, dim1)
q2_inv = (1.d0,0.d0) / qq2 q2_inv = (1.d0,0.d0) / qq2
!do ii = 1, 3 integral1 = general_primitive_integral_cosgtos(dim1, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p1, &
! !print *, qq1, q1_inv Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q1)
! !print *, qq2, q2_inv
! print *, 'fact_q1', fact_q1
! print *, 'fact_q2', fact_q2
!enddo
! if( abs(aimag(Q1_center(ii))) .gt. 0.d0 ) then
! print *, ' Q_1 is complex !!'
! print *, Q1_center
! print *, expo3, expo4
! print *, conjg(expo3), conjg(expo4)
! stop
! endif
! if( abs(aimag(Q2_center(ii))) .gt. 0.d0 ) then
! print *, ' Q_2 is complex !!'
! print *, Q2_center
! print *, expo3, expo4
! print *, conjg(expo3), conjg(expo4)
! stop
! endif
!enddo
integral2 = general_primitive_integral_cosgtos(dim1, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p1, &
Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q2)
integral1 = general_primitive_integral_cosgtos( dim1, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p1 & integral3 = general_primitive_integral_cosgtos(dim1, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p2, &
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q1 ) Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q1)
integral2 = general_primitive_integral_cosgtos( dim1, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p1 & integral4 = general_primitive_integral_cosgtos(dim1, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p2, &
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q2 ) Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q2)
integral3 = general_primitive_integral_cosgtos( dim1, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p2 & integral5 = general_primitive_integral_cosgtos(dim1, P3_new, P3_center, fact_p3, pp3, p3_inv, iorder_p3, &
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q1 ) Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q1)
integral4 = general_primitive_integral_cosgtos( dim1, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p2 & integral6 = general_primitive_integral_cosgtos(dim1, P3_new, P3_center, fact_p3, pp3, p3_inv, iorder_p3, &
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q2 ) Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q2)
integral5 = general_primitive_integral_cosgtos( dim1, P3_new, P3_center, fact_p3, pp3, p3_inv, iorder_p3 & integral7 = general_primitive_integral_cosgtos(dim1, P4_new, P4_center, fact_p4, pp4, p4_inv, iorder_p4, &
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q1 ) Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q1)
integral6 = general_primitive_integral_cosgtos( dim1, P3_new, P3_center, fact_p3, pp3, p3_inv, iorder_p3 & integral8 = general_primitive_integral_cosgtos(dim1, P4_new, P4_center, fact_p4, pp4, p4_inv, iorder_p4, &
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q2 ) Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q2)
integral7 = general_primitive_integral_cosgtos( dim1, P4_new, P4_center, fact_p4, pp4, p4_inv, iorder_p4 &
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q1 )
integral8 = general_primitive_integral_cosgtos( dim1, P4_new, P4_center, fact_p4, pp4, p4_inv, iorder_p4 &
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q2 )
integral_tot = integral1 + integral2 + integral3 + integral4 + integral5 + integral6 + integral7 + integral8 integral_tot = integral1 + integral2 + integral3 + integral4 + integral5 + integral6 + integral7 + integral8
!integral_tot = integral1
!print*, integral_tot
ao_two_e_integral_cosgtos = ao_two_e_integral_cosgtos + coef4 * 2.d0 * real(integral_tot) ao_two_e_integral_cosgtos = ao_two_e_integral_cosgtos + coef4 * 2.d0 * real(integral_tot)
enddo ! s enddo ! s
enddo ! r enddo ! r
@ -213,7 +134,6 @@ double precision function ao_two_e_integral_cosgtos(i, j, k, l)
enddo ! p enddo ! p
else else
!print *, ' the same center'
do p = 1, 3 do p = 1, 3
I_power(p) = ao_power(i,p) I_power(p) = ao_power(i,p)
@ -290,7 +210,7 @@ double precision function ao_two_e_integral_cosgtos(i, j, k, l)
endif endif
endif endif
end function ao_two_e_integral_cosgtos end
! --- ! ---
@ -326,8 +246,8 @@ double precision function ao_2e_cosgtos_schwartz_accel(i, j, k, l)
double precision :: thr double precision :: thr
double precision :: schwartz_ij double precision :: schwartz_ij
complex*16 :: ERI_cosgtos complex*16, external :: ERI_cosgtos
complex*16 :: general_primitive_integral_cosgtos complex*16, external :: general_primitive_integral_cosgtos
ao_2e_cosgtos_schwartz_accel = 0.d0 ao_2e_cosgtos_schwartz_accel = 0.d0
@ -341,7 +261,7 @@ double precision function ao_2e_cosgtos_schwartz_accel(i, j, k, l)
thr = ao_integrals_threshold*ao_integrals_threshold thr = ao_integrals_threshold*ao_integrals_threshold
allocate( schwartz_kl(0:ao_prim_num(l),0:ao_prim_num(k)) ) allocate(schwartz_kl(0:ao_prim_num(l),0:ao_prim_num(k)))
if(num_i /= num_j .or. num_k /= num_l .or. num_j /= num_k) then if(num_i /= num_j .or. num_k /= num_l .or. num_j /= num_k) then
@ -366,45 +286,45 @@ double precision function ao_2e_cosgtos_schwartz_accel(i, j, k, l)
coef2 = coef1 * ao_coef_norm_ord_transp_cosgtos(s,l) * ao_coef_norm_ord_transp_cosgtos(s,l) coef2 = coef1 * ao_coef_norm_ord_transp_cosgtos(s,l) * ao_coef_norm_ord_transp_cosgtos(s,l)
expo2 = ao_expo_ord_transp_cosgtos(s,l) expo2 = ao_expo_ord_transp_cosgtos(s,l)
call give_explicit_cpoly_and_cgaussian( P1_new, P1_center, pp1, fact_p1, iorder_p1 & call give_explicit_cpoly_and_cgaussian(P1_new, P1_center, pp1, fact_p1, iorder_p1, &
, expo1, expo2, K_power, L_power, K_center, L_center, dim1 ) expo1, expo2, K_power, L_power, K_center, L_center, dim1)
p1_inv = (1.d0,0.d0) / pp1 p1_inv = (1.d0,0.d0) / pp1
call give_explicit_cpoly_and_cgaussian( P2_new, P2_center, pp2, fact_p2, iorder_p2 & call give_explicit_cpoly_and_cgaussian(P2_new, P2_center, pp2, fact_p2, iorder_p2, &
, conjg(expo1), expo2, K_power, L_power, K_center, L_center, dim1 ) conjg(expo1), expo2, K_power, L_power, K_center, L_center, dim1)
p2_inv = (1.d0,0.d0) / pp2 p2_inv = (1.d0,0.d0) / pp2
call give_explicit_cpoly_and_cgaussian( P3_new, P3_center, pp3, fact_p3, iorder_p3 & call give_explicit_cpoly_and_cgaussian(P3_new, P3_center, pp3, fact_p3, iorder_p3, &
, expo1, conjg(expo2), K_power, L_power, K_center, L_center, dim1 ) expo1, conjg(expo2), K_power, L_power, K_center, L_center, dim1)
p3_inv = (1.d0,0.d0) / pp3 p3_inv = (1.d0,0.d0) / pp3
call give_explicit_cpoly_and_cgaussian( P4_new, P4_center, pp4, fact_p4, iorder_p4 & call give_explicit_cpoly_and_cgaussian(P4_new, P4_center, pp4, fact_p4, iorder_p4, &
, conjg(expo1), conjg(expo2), K_power, L_power, K_center, L_center, dim1 ) conjg(expo1), conjg(expo2), K_power, L_power, K_center, L_center, dim1)
p4_inv = (1.d0,0.d0) / pp4 p4_inv = (1.d0,0.d0) / pp4
integral1 = general_primitive_integral_cosgtos( dim1, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p1 & integral1 = general_primitive_integral_cosgtos(dim1, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p1, &
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p1 ) P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p1)
integral2 = general_primitive_integral_cosgtos( dim1, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p1 & integral2 = general_primitive_integral_cosgtos(dim1, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p1, &
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p2 ) P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p2)
integral3 = general_primitive_integral_cosgtos( dim1, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p2 & integral3 = general_primitive_integral_cosgtos(dim1, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p2, &
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p1 ) P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p1)
integral4 = general_primitive_integral_cosgtos( dim1, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p2 & integral4 = general_primitive_integral_cosgtos(dim1, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p2, &
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p2 ) P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p2)
integral5 = general_primitive_integral_cosgtos( dim1, P3_new, P3_center, fact_p3, pp3, p3_inv, iorder_p3 & integral5 = general_primitive_integral_cosgtos(dim1, P3_new, P3_center, fact_p3, pp3, p3_inv, iorder_p3, &
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p1 ) P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p1)
integral6 = general_primitive_integral_cosgtos( dim1, P3_new, P3_center, fact_p3, pp3, p3_inv, iorder_p3 & integral6 = general_primitive_integral_cosgtos(dim1, P3_new, P3_center, fact_p3, pp3, p3_inv, iorder_p3, &
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p2 ) P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p2)
integral7 = general_primitive_integral_cosgtos( dim1, P4_new, P4_center, fact_p4, pp4, p4_inv, iorder_p4 & integral7 = general_primitive_integral_cosgtos(dim1, P4_new, P4_center, fact_p4, pp4, p4_inv, iorder_p4, &
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p1 ) P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p1)
integral8 = general_primitive_integral_cosgtos( dim1, P4_new, P4_center, fact_p4, pp4, p4_inv, iorder_p4 & integral8 = general_primitive_integral_cosgtos(dim1, P4_new, P4_center, fact_p4, pp4, p4_inv, iorder_p4, &
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p2 ) P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p2)
integral_tot = integral1 + integral2 + integral3 + integral4 + integral5 + integral6 + integral7 + integral8 integral_tot = integral1 + integral2 + integral3 + integral4 + integral5 + integral6 + integral7 + integral8
@ -544,41 +464,45 @@ double precision function ao_2e_cosgtos_schwartz_accel(i, j, k, l)
coef2 = coef1 * ao_coef_norm_ord_transp_cosgtos(s,l) * ao_coef_norm_ord_transp_cosgtos(s,l) coef2 = coef1 * ao_coef_norm_ord_transp_cosgtos(s,l) * ao_coef_norm_ord_transp_cosgtos(s,l)
expo2 = ao_expo_ord_transp_cosgtos(s,l) expo2 = ao_expo_ord_transp_cosgtos(s,l)
integral1 = ERI_cosgtos( expo1, expo2, expo1, expo2 & integral1 = ERI_cosgtos(expo1, expo2, expo1, expo2, &
, K_power(1), L_power(1), K_power(1), L_power(1) & K_power(1), L_power(1), K_power(1), L_power(1), &
, K_power(2), L_power(2), K_power(2), L_power(2) & K_power(2), L_power(2), K_power(2), L_power(2), &
, K_power(3), L_power(3), K_power(3), L_power(3) ) K_power(3), L_power(3), K_power(3), L_power(3))
integral2 = ERI_cosgtos( expo1, expo2, conjg(expo1), expo2 &
, K_power(1), L_power(1), K_power(1), L_power(1) &
, K_power(2), L_power(2), K_power(2), L_power(2) &
, K_power(3), L_power(3), K_power(3), L_power(3) )
integral3 = ERI_cosgtos( conjg(expo1), expo2, expo1, expo2 & integral2 = ERI_cosgtos(expo1, expo2, conjg(expo1), expo2, &
, K_power(1), L_power(1), K_power(1), L_power(1) & K_power(1), L_power(1), K_power(1), L_power(1), &
, K_power(2), L_power(2), K_power(2), L_power(2) & K_power(2), L_power(2), K_power(2), L_power(2), &
, K_power(3), L_power(3), K_power(3), L_power(3) ) K_power(3), L_power(3), K_power(3), L_power(3))
integral4 = ERI_cosgtos( conjg(expo1), expo2, conjg(expo1), expo2 &
, K_power(1), L_power(1), K_power(1), L_power(1) &
, K_power(2), L_power(2), K_power(2), L_power(2) &
, K_power(3), L_power(3), K_power(3), L_power(3) )
integral5 = ERI_cosgtos( expo1, conjg(expo2), expo1, expo2 & integral3 = ERI_cosgtos(conjg(expo1), expo2, expo1, expo2, &
, K_power(1), L_power(1), K_power(1), L_power(1) & K_power(1), L_power(1), K_power(1), L_power(1), &
, K_power(2), L_power(2), K_power(2), L_power(2) & K_power(2), L_power(2), K_power(2), L_power(2), &
, K_power(3), L_power(3), K_power(3), L_power(3) ) K_power(3), L_power(3), K_power(3), L_power(3))
integral6 = ERI_cosgtos( expo1, conjg(expo2), conjg(expo1), expo2 &
, K_power(1), L_power(1), K_power(1), L_power(1) &
, K_power(2), L_power(2), K_power(2), L_power(2) &
, K_power(3), L_power(3), K_power(3), L_power(3) )
integral7 = ERI_cosgtos( conjg(expo1), conjg(expo2), expo1, expo2 & integral4 = ERI_cosgtos(conjg(expo1), expo2, conjg(expo1), expo2, &
, K_power(1), L_power(1), K_power(1), L_power(1) & K_power(1), L_power(1), K_power(1), L_power(1), &
, K_power(2), L_power(2), K_power(2), L_power(2) & K_power(2), L_power(2), K_power(2), L_power(2), &
, K_power(3), L_power(3), K_power(3), L_power(3) ) K_power(3), L_power(3), K_power(3), L_power(3))
integral8 = ERI_cosgtos( conjg(expo1), conjg(expo2), conjg(expo1), expo2 &
, K_power(1), L_power(1), K_power(1), L_power(1) & integral5 = ERI_cosgtos(expo1, conjg(expo2), expo1, expo2, &
, K_power(2), L_power(2), K_power(2), L_power(2) & K_power(1), L_power(1), K_power(1), L_power(1), &
, K_power(3), L_power(3), K_power(3), L_power(3) ) K_power(2), L_power(2), K_power(2), L_power(2), &
K_power(3), L_power(3), K_power(3), L_power(3))
integral6 = ERI_cosgtos(expo1, conjg(expo2), conjg(expo1), expo2, &
K_power(1), L_power(1), K_power(1), L_power(1), &
K_power(2), L_power(2), K_power(2), L_power(2), &
K_power(3), L_power(3), K_power(3), L_power(3))
integral7 = ERI_cosgtos(conjg(expo1), conjg(expo2), expo1, expo2, &
K_power(1), L_power(1), K_power(1), L_power(1), &
K_power(2), L_power(2), K_power(2), L_power(2), &
K_power(3), L_power(3), K_power(3), L_power(3))
integral8 = ERI_cosgtos(conjg(expo1), conjg(expo2), conjg(expo1), expo2, &
K_power(1), L_power(1), K_power(1), L_power(1), &
K_power(2), L_power(2), K_power(2), L_power(2), &
K_power(3), L_power(3), K_power(3), L_power(3))
integral_tot = integral1 + integral2 + integral3 + integral4 + integral5 + integral6 + integral7 + integral8 integral_tot = integral1 + integral2 + integral3 + integral4 + integral5 + integral6 + integral7 + integral8
@ -598,45 +522,45 @@ double precision function ao_2e_cosgtos_schwartz_accel(i, j, k, l)
coef2 = coef1 * ao_coef_norm_ord_transp_cosgtos(q,j) coef2 = coef1 * ao_coef_norm_ord_transp_cosgtos(q,j)
expo2 = ao_expo_ord_transp_cosgtos(q,j) expo2 = ao_expo_ord_transp_cosgtos(q,j)
integral1 = ERI_cosgtos( expo1, expo2, expo1, expo2 & integral1 = ERI_cosgtos(expo1, expo2, expo1, expo2, &
, I_power(1), J_power(1), I_power(1), J_power(1) & I_power(1), J_power(1), I_power(1), J_power(1), &
, I_power(2), J_power(2), I_power(2), J_power(2) & I_power(2), J_power(2), I_power(2), J_power(2), &
, I_power(3), J_power(3), I_power(3), J_power(3) ) I_power(3), J_power(3), I_power(3), J_power(3))
integral2 = ERI_cosgtos( expo1, expo2, conjg(expo1), expo2 & integral2 = ERI_cosgtos(expo1, expo2, conjg(expo1), expo2, &
, I_power(1), J_power(1), I_power(1), J_power(1) & I_power(1), J_power(1), I_power(1), J_power(1), &
, I_power(2), J_power(2), I_power(2), J_power(2) & I_power(2), J_power(2), I_power(2), J_power(2), &
, I_power(3), J_power(3), I_power(3), J_power(3) ) I_power(3), J_power(3), I_power(3), J_power(3))
integral3 = ERI_cosgtos( conjg(expo1), expo2, expo1, expo2 & integral3 = ERI_cosgtos(conjg(expo1), expo2, expo1, expo2, &
, I_power(1), J_power(1), I_power(1), J_power(1) & I_power(1), J_power(1), I_power(1), J_power(1), &
, I_power(2), J_power(2), I_power(2), J_power(2) & I_power(2), J_power(2), I_power(2), J_power(2), &
, I_power(3), J_power(3), I_power(3), J_power(3) ) I_power(3), J_power(3), I_power(3), J_power(3))
integral4 = ERI_cosgtos( conjg(expo1), expo2, conjg(expo1), expo2 & integral4 = ERI_cosgtos(conjg(expo1), expo2, conjg(expo1), expo2, &
, I_power(1), J_power(1), I_power(1), J_power(1) & I_power(1), J_power(1), I_power(1), J_power(1), &
, I_power(2), J_power(2), I_power(2), J_power(2) & I_power(2), J_power(2), I_power(2), J_power(2), &
, I_power(3), J_power(3), I_power(3), J_power(3) ) I_power(3), J_power(3), I_power(3), J_power(3))
integral5 = ERI_cosgtos( expo1, conjg(expo2), expo1, expo2 & integral5 = ERI_cosgtos(expo1, conjg(expo2), expo1, expo2, &
, I_power(1), J_power(1), I_power(1), J_power(1) & I_power(1), J_power(1), I_power(1), J_power(1), &
, I_power(2), J_power(2), I_power(2), J_power(2) & I_power(2), J_power(2), I_power(2), J_power(2), &
, I_power(3), J_power(3), I_power(3), J_power(3) ) I_power(3), J_power(3), I_power(3), J_power(3))
integral6 = ERI_cosgtos( expo1, conjg(expo2), conjg(expo1), expo2 & integral6 = ERI_cosgtos(expo1, conjg(expo2), conjg(expo1), expo2, &
, I_power(1), J_power(1), I_power(1), J_power(1) & I_power(1), J_power(1), I_power(1), J_power(1), &
, I_power(2), J_power(2), I_power(2), J_power(2) & I_power(2), J_power(2), I_power(2), J_power(2), &
, I_power(3), J_power(3), I_power(3), J_power(3) ) I_power(3), J_power(3), I_power(3), J_power(3))
integral7 = ERI_cosgtos( conjg(expo1), conjg(expo2), expo1, expo2 & integral7 = ERI_cosgtos(conjg(expo1), conjg(expo2), expo1, expo2, &
, I_power(1), J_power(1), I_power(1), J_power(1) & I_power(1), J_power(1), I_power(1), J_power(1), &
, I_power(2), J_power(2), I_power(2), J_power(2) & I_power(2), J_power(2), I_power(2), J_power(2), &
, I_power(3), J_power(3), I_power(3), J_power(3) ) I_power(3), J_power(3), I_power(3), J_power(3))
integral8 = ERI_cosgtos( conjg(expo1), conjg(expo2), conjg(expo1), expo2 & integral8 = ERI_cosgtos(conjg(expo1), conjg(expo2), conjg(expo1), expo2, &
, I_power(1), J_power(1), I_power(1), J_power(1) & I_power(1), J_power(1), I_power(1), J_power(1), &
, I_power(2), J_power(2), I_power(2), J_power(2) & I_power(2), J_power(2), I_power(2), J_power(2), &
, I_power(3), J_power(3), I_power(3), J_power(3) ) I_power(3), J_power(3), I_power(3), J_power(3))
integral_tot = integral1 + integral2 + integral3 + integral4 + integral5 + integral6 + integral7 + integral8 integral_tot = integral1 + integral2 + integral3 + integral4 + integral5 + integral6 + integral7 + integral8
@ -655,45 +579,45 @@ double precision function ao_2e_cosgtos_schwartz_accel(i, j, k, l)
coef4 = coef3 * ao_coef_norm_ord_transp_cosgtos(s,l) coef4 = coef3 * ao_coef_norm_ord_transp_cosgtos(s,l)
expo4 = ao_expo_ord_transp_cosgtos(s,l) expo4 = ao_expo_ord_transp_cosgtos(s,l)
integral1 = ERI_cosgtos( expo1, expo2, expo3, expo4 & integral1 = ERI_cosgtos(expo1, expo2, expo3, expo4, &
, I_power(1), J_power(1), K_power(1), L_power(1) & I_power(1), J_power(1), K_power(1), L_power(1), &
, I_power(2), J_power(2), K_power(2), L_power(2) & I_power(2), J_power(2), K_power(2), L_power(2), &
, I_power(3), J_power(3), K_power(3), L_power(3) ) I_power(3), J_power(3), K_power(3), L_power(3))
integral2 = ERI_cosgtos( expo1, expo2, conjg(expo3), expo4 & integral2 = ERI_cosgtos(expo1, expo2, conjg(expo3), expo4, &
, I_power(1), J_power(1), K_power(1), L_power(1) & I_power(1), J_power(1), K_power(1), L_power(1), &
, I_power(2), J_power(2), K_power(2), L_power(2) & I_power(2), J_power(2), K_power(2), L_power(2), &
, I_power(3), J_power(3), K_power(3), L_power(3) ) I_power(3), J_power(3), K_power(3), L_power(3))
integral3 = ERI_cosgtos( conjg(expo1), expo2, expo3, expo4 & integral3 = ERI_cosgtos(conjg(expo1), expo2, expo3, expo4, &
, I_power(1), J_power(1), K_power(1), L_power(1) & I_power(1), J_power(1), K_power(1), L_power(1), &
, I_power(2), J_power(2), K_power(2), L_power(2) & I_power(2), J_power(2), K_power(2), L_power(2), &
, I_power(3), J_power(3), K_power(3), L_power(3) ) I_power(3), J_power(3), K_power(3), L_power(3))
integral4 = ERI_cosgtos( conjg(expo1), expo2, conjg(expo3), expo4 & integral4 = ERI_cosgtos(conjg(expo1), expo2, conjg(expo3), expo4, &
, I_power(1), J_power(1), K_power(1), L_power(1) & I_power(1), J_power(1), K_power(1), L_power(1), &
, I_power(2), J_power(2), K_power(2), L_power(2) & I_power(2), J_power(2), K_power(2), L_power(2), &
, I_power(3), J_power(3), K_power(3), L_power(3) ) I_power(3), J_power(3), K_power(3), L_power(3))
integral5 = ERI_cosgtos( expo1, conjg(expo2), expo3, expo4 & integral5 = ERI_cosgtos(expo1, conjg(expo2), expo3, expo4, &
, I_power(1), J_power(1), K_power(1), L_power(1) & I_power(1), J_power(1), K_power(1), L_power(1), &
, I_power(2), J_power(2), K_power(2), L_power(2) & I_power(2), J_power(2), K_power(2), L_power(2), &
, I_power(3), J_power(3), K_power(3), L_power(3) ) I_power(3), J_power(3), K_power(3), L_power(3))
integral6 = ERI_cosgtos( expo1, conjg(expo2), conjg(expo3), expo4 & integral6 = ERI_cosgtos(expo1, conjg(expo2), conjg(expo3), expo4, &
, I_power(1), J_power(1), K_power(1), L_power(1) & I_power(1), J_power(1), K_power(1), L_power(1), &
, I_power(2), J_power(2), K_power(2), L_power(2) & I_power(2), J_power(2), K_power(2), L_power(2), &
, I_power(3), J_power(3), K_power(3), L_power(3) ) I_power(3), J_power(3), K_power(3), L_power(3))
integral7 = ERI_cosgtos( conjg(expo1), conjg(expo2), expo3, expo4 & integral7 = ERI_cosgtos(conjg(expo1), conjg(expo2), expo3, expo4, &
, I_power(1), J_power(1), K_power(1), L_power(1) & I_power(1), J_power(1), K_power(1), L_power(1), &
, I_power(2), J_power(2), K_power(2), L_power(2) & I_power(2), J_power(2), K_power(2), L_power(2), &
, I_power(3), J_power(3), K_power(3), L_power(3) ) I_power(3), J_power(3), K_power(3), L_power(3))
integral8 = ERI_cosgtos( conjg(expo1), conjg(expo2), conjg(expo3), expo4 & integral8 = ERI_cosgtos(conjg(expo1), conjg(expo2), conjg(expo3), expo4, &
, I_power(1), J_power(1), K_power(1), L_power(1) & I_power(1), J_power(1), K_power(1), L_power(1), &
, I_power(2), J_power(2), K_power(2), L_power(2) & I_power(2), J_power(2), K_power(2), L_power(2), &
, I_power(3), J_power(3), K_power(3), L_power(3) ) I_power(3), J_power(3), K_power(3), L_power(3))
integral_tot = integral1 + integral2 + integral3 + integral4 + integral5 + integral6 + integral7 + integral8 integral_tot = integral1 + integral2 + integral3 + integral4 + integral5 + integral6 + integral7 + integral8
@ -707,11 +631,11 @@ double precision function ao_2e_cosgtos_schwartz_accel(i, j, k, l)
deallocate(schwartz_kl) deallocate(schwartz_kl)
end function ao_2e_cosgtos_schwartz_accel end
! --- ! ---
BEGIN_PROVIDER [ double precision, ao_2e_cosgtos_schwartz, (ao_num,ao_num)] BEGIN_PROVIDER [double precision, ao_2e_cosgtos_schwartz, (ao_num, ao_num)]
BEGIN_DOC BEGIN_DOC
! Needed to compute Schwartz inequalities ! Needed to compute Schwartz inequalities
@ -739,8 +663,8 @@ END_PROVIDER
! --- ! ---
complex*16 function general_primitive_integral_cosgtos( dim, P_new, P_center, fact_p, p, p_inv, iorder_p & complex*16 function general_primitive_integral_cosgtos(dim, P_new, P_center, fact_p, p, p_inv, iorder_p, &
, Q_new, Q_center, fact_q, q, q_inv, iorder_q ) Q_new, Q_center, fact_q, q, q_inv, iorder_q)
BEGIN_DOC BEGIN_DOC
! !
@ -765,7 +689,7 @@ complex*16 function general_primitive_integral_cosgtos( dim, P_new, P_center, fa
complex*16 :: dx(0:max_dim), Ix_pol(0:max_dim), dy(0:max_dim), Iy_pol(0:max_dim), dz(0:max_dim), Iz_pol(0:max_dim) complex*16 :: dx(0:max_dim), Ix_pol(0:max_dim), dy(0:max_dim), Iy_pol(0:max_dim), dz(0:max_dim), Iz_pol(0:max_dim)
complex*16 :: d1(0:max_dim), d_poly(0:max_dim) complex*16 :: d1(0:max_dim), d_poly(0:max_dim)
complex*16 :: crint_sum complex*16 :: crint_sum_2
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: dx, Ix_pol, dy, Iy_pol, dz, Iz_pol !DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: dx, Ix_pol, dy, Iy_pol, dz, Iz_pol
@ -912,13 +836,11 @@ complex*16 function general_primitive_integral_cosgtos( dim, P_new, P_center, fa
!DIR$ FORCEINLINE !DIR$ FORCEINLINE
call multiply_cpoly(d_poly, n_pt_tmp, Iz_pol, n_Iz, d1, n_pt_out) call multiply_cpoly(d_poly, n_pt_tmp, Iz_pol, n_Iz, d1, n_pt_out)
accu = crint_sum(n_pt_out, const, d1) accu = crint_sum_2(n_pt_out, const, d1)
! print *, n_pt_out, real(d1(0:n_pt_out))
! print *, real(accu)
general_primitive_integral_cosgtos = fact_p * fact_q * accu * pi_5_2 * p_inv * q_inv / sq_ppq general_primitive_integral_cosgtos = fact_p * fact_q * accu * pi_5_2 * p_inv * q_inv / sq_ppq
end function general_primitive_integral_cosgtos end
! --- ! ---
@ -994,7 +916,7 @@ complex*16 function ERI_cosgtos(alpha, beta, delta, gama, a_x, b_x, c_x, d_x, a_
ERI_cosgtos = I_f * coeff ERI_cosgtos = I_f * coeff
end function ERI_cosgtos end
! --- ! ---
@ -1076,7 +998,7 @@ subroutine integrale_new_cosgtos(I_f, a_x, b_x, c_x, d_x, a_y, b_y, c_y, d_y, a_
I_f += gauleg_w(i, j) * t1(i) I_f += gauleg_w(i, j) * t1(i)
enddo enddo
end subroutine integrale_new_cosgtos end
! --- ! ---
@ -1123,7 +1045,7 @@ recursive subroutine I_x1_new_cosgtos(a, c, B_10, B_01, B_00, res, n_pt)
endif endif
end subroutine I_x1_new_cosgtos end
! --- ! ---
@ -1163,7 +1085,7 @@ recursive subroutine I_x2_new_cosgtos(c, B_10, B_01, B_00, res, n_pt)
endif endif
end subroutine I_x2_new_cosgtos end
! --- ! ---
@ -1234,7 +1156,7 @@ subroutine give_cpolynom_mult_center_x( P_center, Q_center, a_x, d_x, p, q, n_pt
return return
endif endif
end subroutine give_cpolynom_mult_center_x end
! --- ! ---
@ -1277,7 +1199,7 @@ subroutine I_x1_pol_mult_cosgtos(a, c, B_10, B_01, B_00, C_00, D_00, d, nd, n_pt
endif endif
end subroutine I_x1_pol_mult_cosgtos end
! --- ! ---
@ -1370,7 +1292,7 @@ recursive subroutine I_x1_pol_mult_recurs_cosgtos(a, c, B_10, B_01, B_00, C_00,
!DIR$ FORCEINLINE !DIR$ FORCEINLINE
call multiply_cpoly(Y, ny, C_00, 2, d, nd) call multiply_cpoly(Y, ny, C_00, 2, d, nd)
end subroutine I_x1_pol_mult_recurs_cosgtos end
! --- ! ---
@ -1426,7 +1348,7 @@ recursive subroutine I_x1_pol_mult_a1_cosgtos(c,B_10,B_01,B_00,C_00,D_00,d,nd,n_
!DIR$ FORCEINLINE !DIR$ FORCEINLINE
call multiply_cpoly(Y, ny, C_00, 2, d, nd) call multiply_cpoly(Y, ny, C_00, 2, d, nd)
end subroutine I_x1_pol_mult_a1_cosgtos end
! --- ! ---
@ -1490,7 +1412,7 @@ recursive subroutine I_x1_pol_mult_a2_cosgtos(c, B_10, B_01, B_00, C_00, D_00, d
!DIR$ FORCEINLINE !DIR$ FORCEINLINE
call multiply_cpoly(Y, ny, C_00, 2, d, nd) call multiply_cpoly(Y, ny, C_00, 2, d, nd)
end subroutine I_x1_pol_mult_a2_cosgtos end
! --- ! ---
@ -1575,7 +1497,7 @@ recursive subroutine I_x2_pol_mult_cosgtos(c, B_10, B_01, B_00, C_00, D_00, d, n
end select end select
end subroutine I_x2_pol_mult_cosgtos end
! --- ! ---

View File

@ -1,6 +1,22 @@
! --- ! ---
logical function do_schwartz_accel(i,j,k,l)
implicit none
BEGIN_DOC
! If true, use Schwatrz to accelerate direct integral calculation
END_DOC
integer, intent(in) :: i, j, k, l
if (do_ao_cholesky) then
do_schwartz_accel = .False.
else
do_schwartz_accel = (ao_prim_num(i) * ao_prim_num(j) * &
ao_prim_num(k) * ao_prim_num(l) > 1024 )
endif
end function
double precision function ao_two_e_integral(i, j, k, l) double precision function ao_two_e_integral(i, j, k, l)
BEGIN_DOC BEGIN_DOC
@ -25,6 +41,7 @@ double precision function ao_two_e_integral(i, j, k, l)
double precision, external :: ao_two_e_integral_cosgtos double precision, external :: ao_two_e_integral_cosgtos
double precision, external :: ao_two_e_integral_schwartz_accel double precision, external :: ao_two_e_integral_schwartz_accel
logical, external :: do_schwartz_accel
if(use_cosgtos) then if(use_cosgtos) then
!print *, ' use_cosgtos for ao_two_e_integral ?', use_cosgtos !print *, ' use_cosgtos for ao_two_e_integral ?', use_cosgtos
@ -35,7 +52,7 @@ double precision function ao_two_e_integral(i, j, k, l)
ao_two_e_integral = ao_two_e_integral_erf(i, j, k, l) ao_two_e_integral = ao_two_e_integral_erf(i, j, k, l)
else if (ao_prim_num(i) * ao_prim_num(j) * ao_prim_num(k) * ao_prim_num(l) > 1024 ) then else if (do_schwartz_accel(i,j,k,l)) then
ao_two_e_integral = ao_two_e_integral_schwartz_accel(i,j,k,l) ao_two_e_integral = ao_two_e_integral_schwartz_accel(i,j,k,l)

View File

@ -154,14 +154,14 @@ subroutine run_ccsd_space_orb
allocate(all_err(nO*nV+nO*nO*nV*(nV*1_8),cc_diis_depth), all_t(nO*nV+nO*nO*nV*(nV*1_8),cc_diis_depth)) allocate(all_err(nO*nV+nO*nO*nV*(nV*1_8),cc_diis_depth), all_t(nO*nV+nO*nO*nV*(nV*1_8),cc_diis_depth))
!$OMP PARALLEL PRIVATE(i,j) DEFAULT(SHARED) !$OMP PARALLEL PRIVATE(i,j) DEFAULT(SHARED)
!$OMP DO COLLAPSE(2)
do j=1,cc_diis_depth do j=1,cc_diis_depth
!$OMP DO
do i=1, size(all_err,1) do i=1, size(all_err,1)
all_err(i,j) = 0d0 all_err(i,j) = 0d0
all_t(i,j) = 0d0 all_t(i,j) = 0d0
enddo enddo
!$OMP END DO NOWAIT
enddo enddo
!$OMP END DO NOWAIT
!$OMP END PARALLEL !$OMP END PARALLEL
endif endif
@ -237,6 +237,7 @@ subroutine run_ccsd_space_orb
call update_t2(nO,nV,cc_space_f_o,cc_space_f_v,r2%f,t2%f) call update_t2(nO,nV,cc_space_f_o,cc_space_f_v,r2%f,t2%f)
else else
print*,'Unkown cc_method_method: '//cc_update_method print*,'Unkown cc_method_method: '//cc_update_method
call abort
endif endif
call update_tau_space(nO,nV,t1%f,t1,t2,tau) call update_tau_space(nO,nV,t1%f,t1,t2,tau)

View File

@ -223,12 +223,11 @@ subroutine davidson_diag_hjj_sjj(dets_in,u_in,H_jj,s2_out,energies,dim_in,sze,N_
exit exit
endif endif
if (itermax > 4) then if (disk_based_davidson) then
itermax = itermax - 1
else if (m==1.and.disk_based_davidson) then
m=0 m=0
disk_based = .True. disk_based = .True.
itermax = 6 else if (itermax > 4) then
itermax = itermax - 1
else else
nproc_target = nproc_target - 1 nproc_target = nproc_target - 1
endif endif
@ -267,14 +266,12 @@ subroutine davidson_diag_hjj_sjj(dets_in,u_in,H_jj,s2_out,energies,dim_in,sze,N_
if (disk_based) then if (disk_based) then
! Create memory-mapped files for W and S ! Create memory-mapped files for W and S
type(c_ptr) :: ptr_w, ptr_s type(mmap_type) :: map_s, map_w
integer :: fd_s, fd_w
call mmap(trim(ezfio_work_dir)//'davidson_w', (/int(sze,8),int(N_st_diag*itermax,8)/),& call mmap_create_d('', (/ 1_8*sze, 1_8*N_st_diag*itermax /), .False., .True., map_w)
8, fd_w, .False., .True., ptr_w) call mmap_create_s('', (/ 1_8*sze, 1_8*N_st_diag*itermax /), .False., .True., map_s)
call mmap(trim(ezfio_work_dir)//'davidson_s', (/int(sze,8),int(N_st_diag*itermax,8)/),& w => map_w%d2
4, fd_s, .False., .True., ptr_s) s => map_s%s2
call c_f_pointer(ptr_w, w, (/sze,N_st_diag*itermax/))
call c_f_pointer(ptr_s, s, (/sze,N_st_diag*itermax/))
else else
allocate(W(sze,N_st_diag*itermax), S(sze,N_st_diag*itermax)) allocate(W(sze,N_st_diag*itermax), S(sze,N_st_diag*itermax))
endif endif
@ -755,13 +752,8 @@ subroutine davidson_diag_hjj_sjj(dets_in,u_in,H_jj,s2_out,energies,dim_in,sze,N_
if (disk_based)then if (disk_based)then
! Remove temp files ! Remove temp files
integer, external :: getUnitAndOpen call mmap_destroy(map_w)
call munmap( (/int(sze,8),int(N_st_diag*itermax,8)/), 8, fd_w, ptr_w ) call mmap_destroy(map_s)
fd_w = getUnitAndOpen(trim(ezfio_work_dir)//'davidson_w','r')
close(fd_w,status='delete')
call munmap( (/int(sze,8),int(N_st_diag*itermax,8)/), 4, fd_s, ptr_s )
fd_s = getUnitAndOpen(trim(ezfio_work_dir)//'davidson_s','r')
close(fd_s,status='delete')
else else
deallocate(W,S) deallocate(W,S)
endif endif
@ -774,6 +766,7 @@ subroutine davidson_diag_hjj_sjj(dets_in,u_in,H_jj,s2_out,energies,dim_in,sze,N_
lambda & lambda &
) )
FREE nthreads_davidson FREE nthreads_davidson
end end

View File

@ -330,6 +330,10 @@ END_PROVIDER
deallocate(eigenvectors,eigenvalues) deallocate(eigenvectors,eigenvalues)
endif endif
! ! Dominant determinants for each states
! call print_dominant_det(psi_det,CI_eigenvectors,N_det,N_states,N_int)
! call wf_overlap(psi_det,psi_coef,N_states,N_det,psi_det,CI_eigenvectors,N_states,N_det)
END_PROVIDER END_PROVIDER
subroutine diagonalize_CI subroutine diagonalize_CI

View File

@ -179,10 +179,12 @@ subroutine H_u_0_nstates_openmp_work_$N_int(v_t,u_t,N_st,sze,istart,iend,ishift,
! !
! compute_singles = (mem+rss > qp_max_mem) ! compute_singles = (mem+rss > qp_max_mem)
! !
! if (.not.compute_singles) then compute_singles=.True.
! provide singles_beta_csc
! endif if (.not.compute_singles) then
compute_singles=.True. provide singles_alpha_csc singles_beta_csc
endif
maxab = max(N_det_alpha_unique, N_det_beta_unique)+1 maxab = max(N_det_alpha_unique, N_det_beta_unique)+1
@ -287,8 +289,7 @@ compute_singles=.True.
tmp_det2(1:$N_int,2) = psi_det_beta_unique(1:$N_int, lcol) tmp_det2(1:$N_int,2) = psi_det_beta_unique(1:$N_int, lcol)
!--- if (compute_singles) then
! if (compute_singles) then
l_a = psi_bilinear_matrix_columns_loc(lcol) l_a = psi_bilinear_matrix_columns_loc(lcol)
ASSERT (l_a <= N_det) ASSERT (l_a <= N_det)
@ -311,69 +312,67 @@ compute_singles=.True.
buffer, idx, tmp_det(1,1), j, & buffer, idx, tmp_det(1,1), j, &
singles_a, n_singles_a ) singles_a, n_singles_a )
!----- else
! else
! ! Search for singles
! ! Search for singles
! ! Right boundary
!call cpu_time(time0) l_a = psi_bilinear_matrix_columns_loc(lcol+1)-1
! ! Right boundary ASSERT (l_a <= N_det)
! l_a = psi_bilinear_matrix_columns_loc(lcol+1)-1 do j=1,psi_bilinear_matrix_columns_loc(lcol+1) - psi_bilinear_matrix_columns_loc(lcol)
! ASSERT (l_a <= N_det) lrow = psi_bilinear_matrix_rows(l_a)
! do j=1,psi_bilinear_matrix_columns_loc(lcol+1) - psi_bilinear_matrix_columns_loc(lcol) ASSERT (lrow <= N_det_alpha_unique)
! lrow = psi_bilinear_matrix_rows(l_a)
! ASSERT (lrow <= N_det_alpha_unique) left = singles_alpha_csc_idx(krow)
! right_max = -1_8
! left = singles_alpha_csc_idx(krow) right = singles_alpha_csc_idx(krow+1)
! right_max = -1_8 do while (right-left>0_8)
! right = singles_alpha_csc_idx(krow+1) k8 = shiftr(right+left,1)
! do while (right-left>0_8) if (singles_alpha_csc(k8) > lrow) then
! k8 = shiftr(right+left,1) right = k8
! if (singles_alpha_csc(k8) > lrow) then else if (singles_alpha_csc(k8) < lrow) then
! right = k8 left = k8 + 1_8
! else if (singles_alpha_csc(k8) < lrow) then else
! left = k8 + 1_8 right_max = k8+1_8
! else exit
! right_max = k8+1_8 endif
! exit enddo
! endif if (right_max > 0_8) exit
! enddo l_a = l_a-1
! if (right_max > 0_8) exit enddo
! l_a = l_a-1 if (right_max < 0_8) right_max = singles_alpha_csc_idx(krow)
! enddo
! if (right_max < 0_8) right_max = singles_alpha_csc_idx(krow) ! Search
! n_singles_a = 0
! ! Search l_a = psi_bilinear_matrix_columns_loc(lcol)
! n_singles_a = 0 ASSERT (l_a <= N_det)
! l_a = psi_bilinear_matrix_columns_loc(lcol)
! ASSERT (l_a <= N_det) last_found = singles_alpha_csc_idx(krow)
! do j=1,psi_bilinear_matrix_columns_loc(lcol+1) - psi_bilinear_matrix_columns_loc(lcol)
! last_found = singles_alpha_csc_idx(krow) lrow = psi_bilinear_matrix_rows(l_a)
! do j=1,psi_bilinear_matrix_columns_loc(lcol+1) - psi_bilinear_matrix_columns_loc(lcol) ASSERT (lrow <= N_det_alpha_unique)
! lrow = psi_bilinear_matrix_rows(l_a)
! ASSERT (lrow <= N_det_alpha_unique) left = last_found
! right = right_max
! left = last_found do while (right-left>0_8)
! right = right_max k8 = shiftr(right+left,1)
! do while (right-left>0_8) if (singles_alpha_csc(k8) > lrow) then
! k8 = shiftr(right+left,1) right = k8
! if (singles_alpha_csc(k8) > lrow) then else if (singles_alpha_csc(k8) < lrow) then
! right = k8 left = k8 + 1_8
! else if (singles_alpha_csc(k8) < lrow) then else
! left = k8 + 1_8 n_singles_a += 1
! else singles_a(n_singles_a) = l_a
! n_singles_a += 1 last_found = k8+1_8
! singles_a(n_singles_a) = l_a exit
! last_found = k8+1_8 endif
! exit enddo
! endif l_a = l_a+1
! enddo enddo
! l_a = l_a+1 j = j-1
! enddo
! j = j-1 endif
!
! endif
!-----
! Loop over alpha singles ! Loop over alpha singles
! ----------------------- ! -----------------------

View File

@ -218,10 +218,13 @@ subroutine H_S2_u_0_nstates_openmp_work_$N_int(v_t,s_t,u_t,N_st,sze,istart,iend,
! !
! compute_singles = (mem+rss > qp_max_mem) ! compute_singles = (mem+rss > qp_max_mem)
! !
! if (.not.compute_singles) then compute_singles=.True.
! provide singles_beta_csc
! endif if (.not.compute_singles) then
compute_singles=.True. provide singles_alpha_csc
provide singles_beta_csc
endif
maxab = max(N_det_alpha_unique, N_det_beta_unique)+1 maxab = max(N_det_alpha_unique, N_det_beta_unique)+1
@ -314,6 +317,7 @@ compute_singles=.True.
singles_b(n_singles_b) = singles_beta_csc(k8) singles_b(n_singles_b) = singles_beta_csc(k8)
enddo enddo
endif endif
endif endif
kcol_prev = kcol kcol_prev = kcol
@ -326,8 +330,7 @@ compute_singles=.True.
tmp_det2(1:$N_int,2) = psi_det_beta_unique(1:$N_int, lcol) tmp_det2(1:$N_int,2) = psi_det_beta_unique(1:$N_int, lcol)
!--- if (compute_singles) then
! if (compute_singles) then
l_a = psi_bilinear_matrix_columns_loc(lcol) l_a = psi_bilinear_matrix_columns_loc(lcol)
ASSERT (l_a <= N_det) ASSERT (l_a <= N_det)
@ -352,69 +355,66 @@ compute_singles=.True.
buffer, idx, tmp_det(1,1), j, & buffer, idx, tmp_det(1,1), j, &
singles_a, n_singles_a ) singles_a, n_singles_a )
!----- else
! else
! ! Search for singles
! ! Search for singles
! ! Right boundary
!call cpu_time(time0) l_a = psi_bilinear_matrix_columns_loc(lcol+1)-1
! ! Right boundary ASSERT (l_a <= N_det)
! l_a = psi_bilinear_matrix_columns_loc(lcol+1)-1 do j=1,psi_bilinear_matrix_columns_loc(lcol+1) - psi_bilinear_matrix_columns_loc(lcol)
! ASSERT (l_a <= N_det) lrow = psi_bilinear_matrix_rows(l_a)
! do j=1,psi_bilinear_matrix_columns_loc(lcol+1) - psi_bilinear_matrix_columns_loc(lcol) ASSERT (lrow <= N_det_alpha_unique)
! lrow = psi_bilinear_matrix_rows(l_a)
! ASSERT (lrow <= N_det_alpha_unique) left = singles_alpha_csc_idx(krow)
! right_max = -1_8
! left = singles_alpha_csc_idx(krow) right = singles_alpha_csc_idx(krow+1)
! right_max = -1_8 do while (right-left>0_8)
! right = singles_alpha_csc_idx(krow+1) k8 = shiftr(right+left,1)
! do while (right-left>0_8) if (singles_alpha_csc(k8) > lrow) then
! k8 = shiftr(right+left,1) right = k8
! if (singles_alpha_csc(k8) > lrow) then else if (singles_alpha_csc(k8) < lrow) then
! right = k8 left = k8 + 1_8
! else if (singles_alpha_csc(k8) < lrow) then else
! left = k8 + 1_8 right_max = k8+1_8
! else exit
! right_max = k8+1_8 endif
! exit enddo
! endif if (right_max > 0_8) exit
! enddo l_a = l_a-1
! if (right_max > 0_8) exit enddo
! l_a = l_a-1 if (right_max < 0_8) right_max = singles_alpha_csc_idx(krow)
! enddo
! if (right_max < 0_8) right_max = singles_alpha_csc_idx(krow) ! Search
! n_singles_a = 0
! ! Search l_a = psi_bilinear_matrix_columns_loc(lcol)
! n_singles_a = 0 ASSERT (l_a <= N_det)
! l_a = psi_bilinear_matrix_columns_loc(lcol)
! ASSERT (l_a <= N_det) last_found = singles_alpha_csc_idx(krow)
! do j=1,psi_bilinear_matrix_columns_loc(lcol+1) - psi_bilinear_matrix_columns_loc(lcol)
! last_found = singles_alpha_csc_idx(krow) lrow = psi_bilinear_matrix_rows(l_a)
! do j=1,psi_bilinear_matrix_columns_loc(lcol+1) - psi_bilinear_matrix_columns_loc(lcol) ASSERT (lrow <= N_det_alpha_unique)
! lrow = psi_bilinear_matrix_rows(l_a)
! ASSERT (lrow <= N_det_alpha_unique) left = last_found
! right = right_max
! left = last_found do while (right-left>0_8)
! right = right_max k8 = shiftr(right+left,1)
! do while (right-left>0_8) if (singles_alpha_csc(k8) > lrow) then
! k8 = shiftr(right+left,1) right = k8
! if (singles_alpha_csc(k8) > lrow) then else if (singles_alpha_csc(k8) < lrow) then
! right = k8 left = k8 + 1_8
! else if (singles_alpha_csc(k8) < lrow) then else
! left = k8 + 1_8 n_singles_a += 1
! else singles_a(n_singles_a) = l_a
! n_singles_a += 1 last_found = k8+1_8
! singles_a(n_singles_a) = l_a exit
! last_found = k8+1_8 endif
! exit enddo
! endif l_a = l_a+1
! enddo enddo
! l_a = l_a+1 j = j-1
! enddo
! j = j-1 endif
!
! endif
!-----
! Loop over alpha singles ! Loop over alpha singles
! ----------------------- ! -----------------------

View File

@ -48,7 +48,7 @@ default: false
[distributed_davidson] [distributed_davidson]
type: logical type: logical
doc: If |true|, use the distributed algorithm doc: If |true|, use the distributed algorithm. If you plan to run multi-node calculations, set this to true before running.
default: True default: False
interface: ezfio,provider,ocaml interface: ezfio,provider,ocaml

View File

@ -33,7 +33,7 @@ subroutine generate_cas_space
print *, 'CAS(', n_alpha_act+n_beta_act, ', ', n_act_orb, ')' print *, 'CAS(', n_alpha_act+n_beta_act, ', ', n_act_orb, ')'
print *, '' print *, ''
n_det_alpha_unique = binom_int(n_act_orb, n_alpha_act) n_det_alpha_unique = int(binom_int(n_act_orb, n_alpha_act),4)
TOUCH n_det_alpha_unique TOUCH n_det_alpha_unique
n = n_alpha_act n = n_alpha_act
@ -56,7 +56,7 @@ subroutine generate_cas_space
u = ior(t1,t2) u = ior(t1,t2)
enddo enddo
n_det_beta_unique = binom_int(n_act_orb, n_beta_act) n_det_beta_unique = int(binom_int(n_act_orb, n_beta_act),4)
TOUCH n_det_beta_unique TOUCH n_det_beta_unique
n = n_beta_act n = n_beta_act

View File

@ -30,31 +30,30 @@
ref_bitmask_energy += mo_one_e_integrals(occ(i,1),occ(i,1)) + mo_one_e_integrals(occ(i,2),occ(i,2)) ref_bitmask_energy += mo_one_e_integrals(occ(i,1),occ(i,1)) + mo_one_e_integrals(occ(i,2),occ(i,2))
ref_bitmask_kinetic_energy += mo_kinetic_integrals(occ(i,1),occ(i,1)) + mo_kinetic_integrals(occ(i,2),occ(i,2)) ref_bitmask_kinetic_energy += mo_kinetic_integrals(occ(i,1),occ(i,1)) + mo_kinetic_integrals(occ(i,2),occ(i,2))
ref_bitmask_n_e_energy += mo_integrals_n_e(occ(i,1),occ(i,1)) + mo_integrals_n_e(occ(i,2),occ(i,2)) ref_bitmask_n_e_energy += mo_integrals_n_e(occ(i,1),occ(i,1)) + mo_integrals_n_e(occ(i,2),occ(i,2))
do j = i+1, elec_alpha_num
ref_bitmask_two_e_energy += mo_two_e_integrals_jj_anti(occ(j,1),occ(i,1))
ref_bitmask_energy += mo_two_e_integrals_jj_anti(occ(j,1),occ(i,1))
enddo
do j= 1, elec_alpha_num
ref_bitmask_two_e_energy += mo_two_e_integrals_jj(occ(j,1),occ(i,2))
ref_bitmask_energy += mo_two_e_integrals_jj(occ(j,1),occ(i,2))
enddo
do j = i+1, elec_beta_num
ref_bitmask_two_e_energy += mo_two_e_integrals_jj_anti(occ(j,2),occ(i,2))
ref_bitmask_energy += mo_two_e_integrals_jj_anti(occ(j,2),occ(i,2))
enddo
enddo enddo
do i = elec_beta_num+1,elec_alpha_num do i = elec_beta_num+1,elec_alpha_num
ref_bitmask_energy += mo_one_e_integrals(occ(i,1),occ(i,1)) ref_bitmask_energy += mo_one_e_integrals(occ(i,1),occ(i,1))
ref_bitmask_kinetic_energy += mo_kinetic_integrals(occ(i,1),occ(i,1)) ref_bitmask_kinetic_energy += mo_kinetic_integrals(occ(i,1),occ(i,1))
ref_bitmask_n_e_energy += mo_integrals_n_e(occ(i,1),occ(i,1)) ref_bitmask_n_e_energy += mo_integrals_n_e(occ(i,1),occ(i,1))
enddo do j = i+1, elec_alpha_num
ref_bitmask_two_e_energy += mo_two_e_integrals_jj_anti(occ(j,1),occ(i,1))
do j= 1, elec_alpha_num ref_bitmask_energy += mo_two_e_integrals_jj_anti(occ(j,1),occ(i,1))
do i = j+1, elec_alpha_num
ref_bitmask_two_e_energy += mo_two_e_integrals_jj_anti(occ(i,1),occ(j,1))
ref_bitmask_energy += mo_two_e_integrals_jj_anti(occ(i,1),occ(j,1))
enddo enddo
enddo enddo
do j= 1, elec_beta_num
do i = j+1, elec_beta_num
ref_bitmask_two_e_energy += mo_two_e_integrals_jj_anti(occ(i,2),occ(j,2))
ref_bitmask_energy += mo_two_e_integrals_jj_anti(occ(i,2),occ(j,2))
enddo
do i= 1, elec_alpha_num
ref_bitmask_two_e_energy += mo_two_e_integrals_jj(occ(i,1),occ(j,2))
ref_bitmask_energy += mo_two_e_integrals_jj(occ(i,1),occ(j,2))
enddo
enddo
ref_bitmask_one_e_energy = ref_bitmask_kinetic_energy + ref_bitmask_n_e_energy ref_bitmask_one_e_energy = ref_bitmask_kinetic_energy + ref_bitmask_n_e_energy
ref_bitmask_energy_ab = 0.d0 ref_bitmask_energy_ab = 0.d0

View File

@ -910,6 +910,8 @@ subroutine copy_psi_bilinear_to_psi(psi, isize)
end end
use mmap_module
BEGIN_PROVIDER [ integer*8, singles_alpha_csc_idx, (N_det_alpha_unique+1) ] BEGIN_PROVIDER [ integer*8, singles_alpha_csc_idx, (N_det_alpha_unique+1) ]
&BEGIN_PROVIDER [ integer*8, singles_alpha_csc_size ] &BEGIN_PROVIDER [ integer*8, singles_alpha_csc_size ]
implicit none implicit none
@ -927,10 +929,9 @@ end
!$OMP PARALLEL DEFAULT(NONE) & !$OMP PARALLEL DEFAULT(NONE) &
!$OMP SHARED(N_det_alpha_unique, psi_det_alpha_unique, & !$OMP SHARED(N_det_alpha_unique, psi_det_alpha_unique, &
!$OMP idx0, N_int, singles_alpha_csc, & !$OMP idx0, N_int, singles_alpha_csc_idx) &
!$OMP elec_alpha_num, mo_num, singles_alpha_csc_idx) &
!$OMP PRIVATE(i,s,j) !$OMP PRIVATE(i,s,j)
allocate (s(elec_alpha_num * (mo_num-elec_alpha_num) )) allocate (s(N_det_alpha_unique))
!$OMP DO SCHEDULE(static,64) !$OMP DO SCHEDULE(static,64)
do i=1, N_det_alpha_unique do i=1, N_det_alpha_unique
call get_all_spin_singles( & call get_all_spin_singles( &
@ -966,7 +967,7 @@ BEGIN_PROVIDER [ integer, singles_alpha_csc, (singles_alpha_csc_size) ]
!$OMP PARALLEL DO DEFAULT(NONE) & !$OMP PARALLEL DO DEFAULT(NONE) &
!$OMP SHARED(N_det_alpha_unique, psi_det_alpha_unique, & !$OMP SHARED(N_det_alpha_unique, psi_det_alpha_unique, &
!$OMP idx0, N_int, singles_alpha_csc, singles_alpha_csc_idx)& !$OMP idx0, N_int, singles_alpha_csc, singles_alpha_csc_idx)&
!$OMP PRIVATE(i,k) SCHEDULE(static,1) !$OMP PRIVATE(i,k) SCHEDULE(static)
do i=1, N_det_alpha_unique do i=1, N_det_alpha_unique
call get_all_spin_singles( & call get_all_spin_singles( &
psi_det_alpha_unique, idx0, psi_det_alpha_unique(1,i), N_int,& psi_det_alpha_unique, idx0, psi_det_alpha_unique(1,i), N_int,&
@ -978,7 +979,36 @@ BEGIN_PROVIDER [ integer, singles_alpha_csc, (singles_alpha_csc_size) ]
END_PROVIDER END_PROVIDER
BEGIN_PROVIDER [ type(mmap_type), singles_alpha_csc_map ]
implicit none
BEGIN_DOC
! Indices of all single excitations
END_DOC
integer :: i, k
integer, allocatable :: idx0(:)
call mmap_create_i('', (/ 1_8*singles_alpha_csc_size /), &
.False., .False., singles_alpha_csc_map)
allocate (idx0(N_det_alpha_unique))
do i=1, N_det_alpha_unique
idx0(i) = i
enddo
!$OMP PARALLEL DO DEFAULT(NONE) &
!$OMP SHARED(N_det_alpha_unique, psi_det_alpha_unique, &
!$OMP idx0, N_int, singles_alpha_csc_map, singles_alpha_csc_idx)&
!$OMP PRIVATE(i,k) SCHEDULE(static)
do i=1, N_det_alpha_unique
call get_all_spin_singles( &
psi_det_alpha_unique, idx0, psi_det_alpha_unique(1,i), N_int, N_det_alpha_unique, &
singles_alpha_csc_map%i1(singles_alpha_csc_idx(i):singles_alpha_csc_idx(i)+N_det_alpha_unique-1),&
k)
enddo
!$OMP END PARALLEL DO
deallocate(idx0)
END_PROVIDER
BEGIN_PROVIDER [ integer*8, singles_beta_csc_idx, (N_det_beta_unique+1) ] BEGIN_PROVIDER [ integer*8, singles_beta_csc_idx, (N_det_beta_unique+1) ]
@ -998,11 +1028,10 @@ END_PROVIDER
!$OMP PARALLEL DEFAULT(NONE) & !$OMP PARALLEL DEFAULT(NONE) &
!$OMP SHARED(N_det_beta_unique, psi_det_beta_unique, & !$OMP SHARED(N_det_beta_unique, psi_det_beta_unique, &
!$OMP idx0, N_int, singles_beta_csc, & !$OMP idx0, N_int, singles_beta_csc_idx) &
!$OMP elec_beta_num, mo_num, singles_beta_csc_idx) &
!$OMP PRIVATE(i,s,j) !$OMP PRIVATE(i,s,j)
allocate (s(elec_beta_num*(mo_num-elec_beta_num))) allocate (s(N_det_beta_unique))
!$OMP DO SCHEDULE(static,1) !$OMP DO SCHEDULE(static)
do i=1, N_det_beta_unique do i=1, N_det_beta_unique
call get_all_spin_singles( & call get_all_spin_singles( &
psi_det_beta_unique, idx0, psi_det_beta_unique(1,i), N_int,& psi_det_beta_unique, idx0, psi_det_beta_unique(1,i), N_int,&
@ -1037,7 +1066,7 @@ BEGIN_PROVIDER [ integer, singles_beta_csc, (singles_beta_csc_size) ]
!$OMP PARALLEL DO DEFAULT(NONE) & !$OMP PARALLEL DO DEFAULT(NONE) &
!$OMP SHARED(N_det_beta_unique, psi_det_beta_unique, & !$OMP SHARED(N_det_beta_unique, psi_det_beta_unique, &
!$OMP idx0, N_int, singles_beta_csc, singles_beta_csc_idx)& !$OMP idx0, N_int, singles_beta_csc, singles_beta_csc_idx)&
!$OMP PRIVATE(i,k) SCHEDULE(static,64) !$OMP PRIVATE(i,k) SCHEDULE(static)
do i=1, N_det_beta_unique do i=1, N_det_beta_unique
call get_all_spin_singles( & call get_all_spin_singles( &
psi_det_beta_unique, idx0, psi_det_beta_unique(1,i), N_int,& psi_det_beta_unique, idx0, psi_det_beta_unique(1,i), N_int,&
@ -1049,6 +1078,37 @@ BEGIN_PROVIDER [ integer, singles_beta_csc, (singles_beta_csc_size) ]
END_PROVIDER END_PROVIDER
BEGIN_PROVIDER [ type(mmap_type), singles_beta_csc_map ]
implicit none
BEGIN_DOC
! Indices of all single excitations
END_DOC
integer :: i, k
integer, allocatable :: idx0(:)
call mmap_create_i('', (/ 1_8*singles_beta_csc_size /), &
.False., .False., singles_beta_csc_map)
allocate (idx0(N_det_beta_unique))
do i=1, N_det_beta_unique
idx0(i) = i
enddo
!$OMP PARALLEL DO DEFAULT(NONE) &
!$OMP SHARED(N_det_beta_unique, psi_det_beta_unique, &
!$OMP idx0, N_int, singles_beta_csc_map, singles_beta_csc_idx)&
!$OMP PRIVATE(i,k) SCHEDULE(static)
do i=1, N_det_beta_unique
call get_all_spin_singles( &
psi_det_beta_unique, idx0, psi_det_beta_unique(1,i), N_int, N_det_beta_unique, &
singles_beta_csc_map%i1(singles_beta_csc_idx(i):singles_beta_csc_idx(i)+N_det_beta_unique-1),&
k)
enddo
!$OMP END PARALLEL DO
deallocate(idx0)
END_PROVIDER
@ -1111,16 +1171,16 @@ subroutine get_all_spin_singles_1(buffer, idx, spindet, size_buffer, singles, n_
integer :: i integer :: i
integer(bit_kind) :: v integer(bit_kind) :: v
integer :: degree integer :: degree
integer :: add_single(0:64) = (/ 0, 0, 1, 0, 0, (0, i=1,60) /)
include 'utils/constants.include.F' include 'utils/constants.include.F'
n_singles = 1 n_singles = 0
do i=1,size_buffer do i=1,size_buffer
degree = popcnt(xor( spindet, buffer(i) )) degree = popcnt(xor( spindet, buffer(i) ))
if (degree == 2) then
n_singles = n_singles+1
singles(n_singles) = idx(i) singles(n_singles) = idx(i)
n_singles = n_singles+add_single(degree) endif
enddo enddo
n_singles = n_singles-1
end end
@ -1142,15 +1202,15 @@ subroutine get_all_spin_doubles_1(buffer, idx, spindet, size_buffer, doubles, n_
integer :: i integer :: i
include 'utils/constants.include.F' include 'utils/constants.include.F'
integer :: degree integer :: degree
integer :: add_double(0:64) = (/ 0, 0, 0, 0, 1, (0, i=1,60) /)
n_doubles = 1 n_doubles = 0
do i=1,size_buffer do i=1,size_buffer
degree = popcnt(xor( spindet, buffer(i) )) degree = popcnt(xor( spindet, buffer(i) ))
if (degree == 4) then
n_doubles = n_doubles+1
doubles(n_doubles) = idx(i) doubles(n_doubles) = idx(i)
n_doubles = n_doubles+add_double(degree) endif
enddo enddo
n_doubles = n_doubles-1
end end
@ -1181,8 +1241,8 @@ subroutine get_all_spin_singles_and_doubles_$N_int(buffer, idx, spindet, size_bu
integer(bit_kind) :: xorvec($N_int) integer(bit_kind) :: xorvec($N_int)
integer :: degree integer :: degree
n_singles = 1 n_singles = 0
n_doubles = 1 n_doubles = 0
do i=1,size_buffer do i=1,size_buffer
do k=1,$N_int do k=1,$N_int
@ -1196,16 +1256,14 @@ subroutine get_all_spin_singles_and_doubles_$N_int(buffer, idx, spindet, size_bu
enddo enddo
if ( degree == 4 ) then if ( degree == 4 ) then
doubles(n_doubles) = idx(i)
n_doubles = n_doubles+1 n_doubles = n_doubles+1
doubles(n_doubles) = idx(i)
else if ( degree == 2 ) then else if ( degree == 2 ) then
singles(n_singles) = idx(i)
n_singles = n_singles+1 n_singles = n_singles+1
singles(n_singles) = idx(i)
endif endif
enddo enddo
n_singles = n_singles-1
n_doubles = n_doubles-1
end end
@ -1230,7 +1288,7 @@ subroutine get_all_spin_singles_$N_int(buffer, idx, spindet, size_buffer, single
integer(bit_kind) :: xorvec($N_int) integer(bit_kind) :: xorvec($N_int)
integer :: degree integer :: degree
n_singles = 1 n_singles = 0
do i=1,size_buffer do i=1,size_buffer
do k=1,$N_int do k=1,$N_int
@ -1247,11 +1305,10 @@ subroutine get_all_spin_singles_$N_int(buffer, idx, spindet, size_buffer, single
cycle cycle
endif endif
singles(n_singles) = idx(i)
n_singles = n_singles+1 n_singles = n_singles+1
singles(n_singles) = idx(i)
enddo enddo
n_singles = n_singles-1
end end
@ -1275,7 +1332,7 @@ subroutine get_all_spin_doubles_$N_int(buffer, idx, spindet, size_buffer, double
include 'utils/constants.include.F' include 'utils/constants.include.F'
integer(bit_kind) :: xorvec($N_int) integer(bit_kind) :: xorvec($N_int)
n_doubles = 1 n_doubles = 0
do i=1,size_buffer do i=1,size_buffer
do k=1,$N_int do k=1,$N_int
@ -1292,13 +1349,11 @@ subroutine get_all_spin_doubles_$N_int(buffer, idx, spindet, size_buffer, double
cycle cycle
endif endif
doubles(n_doubles) = idx(i)
n_doubles = n_doubles+1 n_doubles = n_doubles+1
doubles(n_doubles) = idx(i)
enddo enddo
n_doubles = n_doubles-1
end end
SUBST [ N_int ] SUBST [ N_int ]

View File

@ -60,3 +60,16 @@ BEGIN_PROVIDER [ character*(1024), ezfio_work_dir ]
ezfio_work_dir = trim(ezfio_filename)//'/work/' ezfio_work_dir = trim(ezfio_filename)//'/work/'
END_PROVIDER END_PROVIDER
BEGIN_PROVIDER [ character*(1024), ezfio_work_dir_pid ]
use c_functions
implicit none
BEGIN_DOC
! EZFIO/work/pid_
END_DOC
character*(32) :: pid_str
integer :: getpid
write(pid_str,*) getpid()
ezfio_work_dir_pid = trim(ezfio_work_dir)//'/'//trim(pid_str)//'_'
END_PROVIDER

View File

@ -143,7 +143,7 @@ module gpu
b, ldb, c, ldc) bind(C, name='gpu_dgeam') b, ldb, c, ldc) bind(C, name='gpu_dgeam')
import import
type(c_ptr), value, intent(in) :: handle type(c_ptr), value, intent(in) :: handle
character(c_char), intent(in), value :: transa, transb character(c_char), intent(in) :: transa, transb
integer(c_int64_t), intent(in), value :: m, n, lda, ldb, ldc integer(c_int64_t), intent(in), value :: m, n, lda, ldb, ldc
real(c_double), intent(in) :: alpha, beta real(c_double), intent(in) :: alpha, beta
type(c_ptr), value :: a, b, c type(c_ptr), value :: a, b, c
@ -153,7 +153,7 @@ module gpu
b, ldb, c, ldc) bind(C, name='gpu_sgeam') b, ldb, c, ldc) bind(C, name='gpu_sgeam')
import import
type(c_ptr), value, intent(in) :: handle type(c_ptr), value, intent(in) :: handle
character(c_char), intent(in), value :: transa, transb character(c_char), intent(in) :: transa, transb
integer(c_int64_t), intent(in), value :: m, n, lda, ldb, ldc integer(c_int64_t), intent(in), value :: m, n, lda, ldb, ldc
real(c_float), intent(in) :: alpha, beta real(c_float), intent(in) :: alpha, beta
real(c_float) :: a, b, c real(c_float) :: a, b, c
@ -194,7 +194,7 @@ module gpu
b, ldb, beta, c, ldc) bind(C, name='gpu_sgemm') b, ldb, beta, c, ldc) bind(C, name='gpu_sgemm')
import import
type(c_ptr), value, intent(in) :: handle type(c_ptr), value, intent(in) :: handle
character(c_char), intent(in), value :: transa, transb character(c_char), intent(in) :: transa, transb
integer(c_int64_t), intent(in), value :: m, n, k, lda, ldb, ldc integer(c_int64_t), intent(in), value :: m, n, k, lda, ldb, ldc
real(c_float), intent(in) :: alpha, beta real(c_float), intent(in) :: alpha, beta
real(c_float) :: a, b, c real(c_float) :: a, b, c
@ -268,8 +268,12 @@ module gpu
implicit none implicit none
type(gpu_double1), intent(inout) :: ptr type(gpu_double1), intent(inout) :: ptr
integer, intent(in) :: s integer, intent(in) :: s
integer*8 :: s_8, n
call gpu_allocate_c(ptr%c, s*8_8) s_8 = s
n = s_8 * 8_8
call gpu_allocate_c(ptr%c, n)
call c_f_pointer(ptr%c, ptr%f, (/ s /)) call c_f_pointer(ptr%c, ptr%f, (/ s /))
end subroutine end subroutine
@ -277,8 +281,13 @@ module gpu
implicit none implicit none
type(gpu_double2), intent(inout) :: ptr type(gpu_double2), intent(inout) :: ptr
integer, intent(in) :: s1, s2 integer, intent(in) :: s1, s2
integer*8 :: s1_8, s2_8, n
call gpu_allocate_c(ptr%c, s1*s2*8_8) s1_8 = s1
s2_8 = s2
n = s1_8 * s2_8 * 8_8
call gpu_allocate_c(ptr%c, n)
call c_f_pointer(ptr%c, ptr%f, (/ s1, s2 /)) call c_f_pointer(ptr%c, ptr%f, (/ s1, s2 /))
end subroutine end subroutine
@ -286,8 +295,14 @@ module gpu
implicit none implicit none
type(gpu_double3), intent(inout) :: ptr type(gpu_double3), intent(inout) :: ptr
integer, intent(in) :: s1, s2, s3 integer, intent(in) :: s1, s2, s3
integer*8 :: s1_8, s2_8, s3_8, n
call gpu_allocate_c(ptr%c, s1*s2*s3*8_8) s1_8 = s1
s2_8 = s2
s3_8 = s3
n = s1_8 * s2_8 * s3_8 * 8_8
call gpu_allocate_c(ptr%c, n)
call c_f_pointer(ptr%c, ptr%f, (/ s1, s2, s3 /)) call c_f_pointer(ptr%c, ptr%f, (/ s1, s2, s3 /))
end subroutine end subroutine
@ -295,8 +310,15 @@ module gpu
implicit none implicit none
type(gpu_double4), intent(inout) :: ptr type(gpu_double4), intent(inout) :: ptr
integer, intent(in) :: s1, s2, s3, s4 integer, intent(in) :: s1, s2, s3, s4
integer*8 :: s1_8, s2_8, s3_8, s4_8, n
call gpu_allocate_c(ptr%c, s1*s2*s3*s4*8_8) s1_8 = s1
s2_8 = s2
s3_8 = s3
s4_8 = s4
n = s1_8 * s2_8 * s3_8 * s4_8 * 8_8
call gpu_allocate_c(ptr%c, n)
call c_f_pointer(ptr%c, ptr%f, (/ s1, s2, s3, s4 /)) call c_f_pointer(ptr%c, ptr%f, (/ s1, s2, s3, s4 /))
end subroutine end subroutine
@ -304,8 +326,16 @@ module gpu
implicit none implicit none
type(gpu_double5), intent(inout) :: ptr type(gpu_double5), intent(inout) :: ptr
integer, intent(in) :: s1, s2, s3, s4, s5 integer, intent(in) :: s1, s2, s3, s4, s5
integer*8 :: s1_8, s2_8, s3_8, s4_8, s5_8, n
call gpu_allocate_c(ptr%c, s1*s2*s3*s4*s5*8_8) s1_8 = s1
s2_8 = s2
s3_8 = s3
s4_8 = s4
s5_8 = s5
n = s1_8 * s2_8 * s3_8 * s4_8 * s5_8 * 8_8
call gpu_allocate_c(ptr%c, n)
call c_f_pointer(ptr%c, ptr%f, (/ s1, s2, s3, s4, s5 /)) call c_f_pointer(ptr%c, ptr%f, (/ s1, s2, s3, s4, s5 /))
end subroutine end subroutine
@ -313,8 +343,17 @@ module gpu
implicit none implicit none
type(gpu_double6), intent(inout) :: ptr type(gpu_double6), intent(inout) :: ptr
integer, intent(in) :: s1, s2, s3, s4, s5, s6 integer, intent(in) :: s1, s2, s3, s4, s5, s6
integer*8 :: s1_8, s2_8, s3_8, s4_8, s5_8, s6_8, n
call gpu_allocate_c(ptr%c, s1*s2*s3*s4*s5*s6*8_8) s1_8 = s1
s2_8 = s2
s3_8 = s3
s4_8 = s4
s5_8 = s5
s6_8 = s6
n = s1_8 * s2_8 * s3_8 * s4_8 * s5_8 * s6_8 * 8_8
call gpu_allocate_c(ptr%c, n)
call c_f_pointer(ptr%c, ptr%f, (/ s1, s2, s3, s4, s5, s6 /)) call c_f_pointer(ptr%c, ptr%f, (/ s1, s2, s3, s4, s5, s6 /))
end subroutine end subroutine

View File

@ -0,0 +1,188 @@
program deb_ao_2e_int
!call check_ao_two_e_integral_cosgtos()
call check_crint1()
!call check_crint2()
end
! ---
subroutine check_ao_two_e_integral_cosgtos()
implicit none
integer :: i, j, k, l
double precision :: tmp1, tmp2
double precision :: acc, nrm, dif
double precision, external :: ao_two_e_integral
double precision, external :: ao_two_e_integral_cosgtos
acc = 0.d0
nrm = 0.d0
i = 1
j = 6
k = 1
l = 16
! do i = 1, ao_num
! do k = 1, ao_num
! do j = 1, ao_num
! do l = 1, ao_num
tmp1 = ao_two_e_integral (i, j, k, l)
tmp2 = ao_two_e_integral_cosgtos(i, j, k, l)
dif = dabs(tmp1 - tmp2)
if(dif .gt. 1d-12) then
print*, ' error on:', i, j, k, l
print*, tmp1, tmp2, dif
stop
endif
! acc += dif
! nrm += dabs(tmp1)
! enddo
! enddo
! enddo
! enddo
print *, ' acc (%) = ', dif * 100.d0 / nrm
end
! ---
subroutine check_crint1()
implicit none
integer :: i, n, i_rho
double precision :: dif_thr
double precision :: dif_re, dif_im, acc_re, nrm_re, acc_im, nrm_im
complex*16 :: rho_test(1:10) = (/ (1d-12, 0.d0), &
(+1d-9, +1d-6), &
(-1d-6, -1d-5), &
(+1d-3, -1d-2), &
(-1d-1, +1d-1), &
(+1d-0, +1d-1), &
(-1d+1, +1d+1), &
(+1d+2, +1d+1), &
(-1d+3, +1d+2), &
(+1d+4, +1d+4) /)
complex*16 :: rho
complex*16 :: int_an, int_nm
double precision, external :: rint
complex*16, external :: crint_1, crint_2, crint_quad
n = 10
dif_thr = 1d-7
do i_rho = 8, 10
!do i_rho = 7, 7
!rho = (-10.d0, 0.1d0)
!rho = (+10.d0, 0.1d0)
rho = rho_test(i_rho)
print*, "rho = ", real(rho), aimag(rho)
acc_re = 0.d0
nrm_re = 0.d0
acc_im = 0.d0
nrm_im = 0.d0
do i = 0, n
!int_an = crint_1 (i, rho)
int_an = crint_2 (i, rho)
int_nm = crint_quad(i, rho)
dif_re = dabs(real(int_an) - real(int_nm))
dif_im = dabs(aimag(int_an) - aimag(int_nm))
if((dif_re .gt. dif_thr) .or. (dif_im .gt. dif_thr)) then
print*, ' error on i =', i
print*, real(int_an), real(int_nm), dif_re
print*, aimag(int_an), aimag(int_nm), dif_im
!print*, rint(i, real(rho))
print*, crint_1(i, rho)
!print*, crint_2(i, rho)
stop
endif
acc_re += dif_re
nrm_re += dabs(real(int_nm))
acc_im += dif_im
nrm_im += dabs(aimag(int_nm))
enddo
print*, "accuracy on real part (%):", 100.d0 * acc_re / (nrm_re+1d-15)
print*, "accuracy on imag part (%):", 100.d0 * acc_im / (nrm_im+1d-15)
enddo
end
! ---
subroutine check_crint2()
implicit none
integer :: i, n, i_rho
double precision :: dif_thr
double precision :: dif_re, dif_im, acc_re, nrm_re, acc_im, nrm_im
complex*16 :: rho_test(1:10) = (/ (1d-12, 0.d0), &
(+1d-9, +1d-6), &
(-1d-6, -1d-5), &
(+1d-3, -1d-2), &
(-1d-1, +1d-1), &
(+1d-0, +1d-1), &
(-1d+1, +1d+1), &
(+1d+2, +1d+1), &
(-1d+3, +1d+2), &
(+1d+4, +1d+4) /)
complex*16 :: rho
complex*16 :: int_an, int_nm
complex*16, external :: crint_1, crint_2
n = 30
dif_thr = 1d-12
do i_rho = 1, 10
rho = rho_test(i_rho)
print*, "rho = ", real(rho), aimag(rho)
acc_re = 0.d0
nrm_re = 0.d0
acc_im = 0.d0
nrm_im = 0.d0
do i = 0, n
int_an = crint_1(i, rho)
int_nm = crint_2(i, rho)
dif_re = dabs(real(int_an) - real(int_nm))
!if(dif_re .gt. dif_thr) then
! print*, ' error in real part:', i
! print*, real(int_an), real(int_nm), dif_re
! stop
!endif
acc_re += dif_re
nrm_re += dabs(real(int_nm))
dif_im = dabs(aimag(int_an) - aimag(int_nm))
!if(dif_im .gt. dif_thr) then
! print*, ' error in imag part:', i
! print*, aimag(int_an), aimag(int_nm), dif_im
! stop
!endif
acc_im += dif_im
nrm_im += dabs(aimag(int_nm))
enddo
print*, "accuracy on real part (%):", 100.d0 * acc_re / (nrm_re+1d-15)
print*, "accuracy on imag part (%):", 100.d0 * acc_im / (nrm_im+1d-15)
enddo
end
! ---

View File

@ -19,16 +19,41 @@ END_PROVIDER
! Hartree-Fock energy containing the nuclear repulsion, and its one- and two-body components. ! Hartree-Fock energy containing the nuclear repulsion, and its one- and two-body components.
END_DOC END_DOC
integer :: i,j integer :: i,j
HF_energy = nuclear_repulsion double precision :: tmp1, tmp2
HF_energy = 0.d0
HF_two_electron_energy = 0.d0 HF_two_electron_energy = 0.d0
HF_one_electron_energy = 0.d0 HF_one_electron_energy = 0.d0
do j=1,ao_num do j=1,ao_num
do i=1,ao_num do i=1,ao_num
HF_two_electron_energy += 0.5d0 * ( ao_two_e_integral_alpha(i,j) * SCF_density_matrix_ao_alpha(i,j) & tmp1 = 0.5d0 * ( ao_two_e_integral_alpha(i,j) * SCF_density_matrix_ao_alpha(i,j) &
+ao_two_e_integral_beta(i,j) * SCF_density_matrix_ao_beta(i,j) ) +ao_two_e_integral_beta (i,j) * SCF_density_matrix_ao_beta (i,j) )
HF_one_electron_energy += ao_one_e_integrals(i,j) * (SCF_density_matrix_ao_alpha(i,j) + SCF_density_matrix_ao_beta (i,j) ) tmp2 = ao_one_e_integrals(i,j) * (SCF_density_matrix_ao_alpha(i,j) + SCF_density_matrix_ao_beta (i,j) )
HF_two_electron_energy += tmp1
HF_one_electron_energy += tmp2
HF_energy += tmp1 + tmp2
enddo
enddo
HF_energy += nuclear_repulsion
END_PROVIDER
BEGIN_PROVIDER [ double precision, HF_kinetic_energy]
&BEGIN_PROVIDER [ double precision, HF_n_e_energy]
implicit none
BEGIN_DOC
! Hartree-Fock energy containing the nuclear repulsion, and its one- and two-body components.
END_DOC
integer :: i,j
double precision :: tmp1, tmp2
HF_n_e_energy = 0.d0
HF_kinetic_energy = 0.d0
do j=1,ao_num
do i=1,ao_num
tmp1 = ao_integrals_n_e(i,j) * (SCF_density_matrix_ao_alpha(i,j) + SCF_density_matrix_ao_beta (i,j) )
tmp2 = ao_kinetic_integrals(i,j) * (SCF_density_matrix_ao_alpha(i,j) + SCF_density_matrix_ao_beta (i,j) )
HF_n_e_energy += tmp1
HF_kinetic_energy += tmp2
enddo enddo
enddo enddo
HF_energy += HF_two_electron_energy + HF_one_electron_energy
END_PROVIDER END_PROVIDER

View File

@ -1,114 +0,0 @@
program print_scf_int
call main()
end
subroutine main()
implicit none
integer :: i, j, k, l
print *, " Hcore:"
do j = 1, ao_num
do i = 1, ao_num
print *, i, j, ao_one_e_integrals(i,j)
enddo
enddo
print *, " P:"
do j = 1, ao_num
do i = 1, ao_num
print *, i, j, SCF_density_matrix_ao_alpha(i,j)
enddo
enddo
double precision :: integ, density_a, density_b, density
double precision :: J_scf(ao_num, ao_num)
double precision :: K_scf(ao_num, ao_num)
double precision, external :: get_ao_two_e_integral
PROVIDE ao_integrals_map
print *, " J:"
!do j = 1, ao_num
! do l = 1, ao_num
! do i = 1, ao_num
! do k = 1, ao_num
! ! < 1:k, 2:l | 1:i, 2:j >
! print *, '< k l | i j >', k, l, i, j
! print *, get_ao_two_e_integral(i, j, k, l, ao_integrals_map)
! enddo
! enddo
! enddo
!enddo
!do k = 1, ao_num
! do i = 1, ao_num
! do j = 1, ao_num
! do l = 1, ao_num
! ! ( 1:k, 1:i | 2:l, 2:j )
! print *, '(k i | l j)', k, i, l, j
! print *, get_ao_two_e_integral(l, j, k, i, ao_integrals_map)
! enddo
! enddo
! print *, ''
! enddo
!enddo
J_scf = 0.d0
K_scf = 0.d0
do i = 1, ao_num
do k = 1, ao_num
do j = 1, ao_num
do l = 1, ao_num
density_a = SCF_density_matrix_ao_alpha(l,j)
density_b = SCF_density_matrix_ao_beta (l,j)
density = density_a + density_b
integ = get_ao_two_e_integral(l, j, k, i, ao_integrals_map)
J_scf(k,i) += density * integ
integ = get_ao_two_e_integral(l, i, k, j, ao_integrals_map)
K_scf(k,i) -= density_a * integ
enddo
enddo
enddo
enddo
print *, 'J x P'
do i = 1, ao_num
do k = 1, ao_num
print *, k, i, J_scf(k,i)
enddo
enddo
print *, ''
print *, 'K x P'
do i = 1, ao_num
do k = 1, ao_num
print *, k, i, K_scf(k,i)
enddo
enddo
print *, ''
print *, 'F in AO'
do i = 1, ao_num
do k = 1, ao_num
print *, k, i, Fock_matrix_ao(k,i)
enddo
enddo
print *, ''
print *, 'F in MO'
do i = 1, ao_num
do k = 1, ao_num
print *, k, i, 2.d0 * Fock_matrix_mo_alpha(k,i)
enddo
enddo
end

View File

@ -277,7 +277,7 @@ subroutine ao_to_mo(A_ao,LDA_ao,A_mo,LDA_mo)
T, ao_num, & T, ao_num, &
0.d0, A_mo, size(A_mo,1)) 0.d0, A_mo, size(A_mo,1))
call restore_symmetry(mo_num,mo_num,A_mo,size(A_mo,1),1.d-12) call restore_symmetry(mo_num,mo_num,A_mo,size(A_mo,1),1.d-15)
deallocate(T) deallocate(T)
end end

View File

@ -18,6 +18,6 @@ BEGIN_PROVIDER [ double precision, mo_one_e_integrals,(mo_num,mo_num)]
call ezfio_set_mo_one_e_ints_mo_one_e_integrals(mo_one_e_integrals) call ezfio_set_mo_one_e_ints_mo_one_e_integrals(mo_one_e_integrals)
print *, 'MO one-e integrals written to disk' print *, 'MO one-e integrals written to disk'
ENDIF ENDIF
call nullify_small_elements(mo_num,mo_num,mo_one_e_integrals,size(mo_one_e_integrals,1),1.d-10) call nullify_small_elements(mo_num,mo_num,mo_one_e_integrals,size(mo_one_e_integrals,1),1.d-15)
END_PROVIDER END_PROVIDER

View File

@ -70,6 +70,10 @@ BEGIN_PROVIDER [ logical, mo_two_e_integrals_in_map ]
else else
call add_integrals_to_map(full_ijkl_bitmask_4) call add_integrals_to_map(full_ijkl_bitmask_4)
endif endif
double precision, external :: map_mb
print*,'Molecular integrals provided:'
print*,' Size of MO map ', map_mb(mo_integrals_map) ,'MB'
print*,' Number of MO integrals: ', mo_map_size
endif endif
call wall_time(wall_2) call wall_time(wall_2)
@ -78,10 +82,6 @@ BEGIN_PROVIDER [ logical, mo_two_e_integrals_in_map ]
integer*8 :: get_mo_map_size, mo_map_size integer*8 :: get_mo_map_size, mo_map_size
mo_map_size = get_mo_map_size() mo_map_size = get_mo_map_size()
double precision, external :: map_mb
print*,'Molecular integrals provided:'
print*,' Size of MO map ', map_mb(mo_integrals_map) ,'MB'
print*,' Number of MO integrals: ', mo_map_size
print*,' cpu time :',cpu_2 - cpu_1, 's' print*,' cpu time :',cpu_2 - cpu_1, 's'
print*,' wall time :',wall_2 - wall_1, 's ( x ', (cpu_2-cpu_1)/(wall_2-wall_1), ')' print*,' wall time :',wall_2 - wall_1, 's ( x ', (cpu_2-cpu_1)/(wall_2-wall_1), ')'

View File

@ -100,7 +100,7 @@ subroutine print_transition_dipole_moment
dip_str = d_x**2 + d_y**2 + d_z**2 dip_str = d_x**2 + d_y**2 + d_z**2
d = multi_s_dipole_moment(istate,jstate) d = multi_s_dipole_moment(istate,jstate)
f = 2d0/3d0 * d * d * dabs(ci_energy_no_diag(istate) - ci_energy_no_diag(jstate)) f = 2d0/3d0 * d * d * dabs(ci_energy_no_diag(istate) - ci_energy_no_diag(jstate))
write(*,'(I4,I4,A4,I3,6(F12.6))') (istate-1), (jstate-1), ' ->', (istate-1), d_x, d_y, d_z, d, dip_str, f write(*,'(I4,I4,A4,I3,6(F12.6))') (jstate -1) * (2*N_states-jstate)/2 + istate - jstate, (jstate-1), ' ->', (istate-1), d_x, d_y, d_z, d, dip_str, f
enddo enddo
enddo enddo
@ -117,7 +117,7 @@ subroutine print_transition_dipole_moment
dip_str = d_x**2 + d_y**2 + d_z**2 dip_str = d_x**2 + d_y**2 + d_z**2
f = 2d0/3d0 * d * d * dabs(ci_energy_no_diag(istate) - ci_energy_no_diag(jstate)) f = 2d0/3d0 * d * d * dabs(ci_energy_no_diag(istate) - ci_energy_no_diag(jstate))
d = multi_s_dipole_moment(istate,jstate) * au_to_D d = multi_s_dipole_moment(istate,jstate) * au_to_D
write(*,'(I4,I4,A4,I3,6(F12.6))') (istate-1), (jstate-1), ' ->', (istate-1), d_x, d_y, d_z, d, dip_str, f write(*,'(I4,I4,A4,I3,6(F12.6))') (jstate -1) * (2*N_states-jstate)/2 + istate - jstate, (jstate-1), ' ->', (istate-1), d_x, d_y, d_z, d, dip_str, f
enddo enddo
enddo enddo
print*,'==============================================' print*,'=============================================='
@ -181,10 +181,9 @@ subroutine print_oscillator_strength
! Mixed gauge ! Mixed gauge
f_m = 2d0/3d0 * d * v f_m = 2d0/3d0 * d * v
write(*,'(A19,I3,A9,F10.6,A5,F7.1,A10,F9.6,A6,F9.6,A6,F9.6,A8,F7.3)') ' # Transition n.', (istate-1), ': Excit.=', dabs((ci_energy_no_diag(istate) - ci_energy_no_diag(jstate)))*ha_to_ev, & write(*,'(A19,I3,A9,F10.6,A5,F7.1,A10,F9.6,A6,F9.6,A6,F9.6,A8,F7.3)') ' # Transition n.', (jstate -1) * (2*N_states-jstate)/2 + istate - jstate, ': Excit.=', dabs((ci_energy_no_diag(istate) - ci_energy_no_diag(jstate)))*ha_to_ev, &
' eV ( ',dabs((ci_energy_no_diag(istate) - ci_energy_no_diag(jstate)))*Ha_to_nm,' nm), f_l=',f_l, ', f_v=', f_v, ', f_m=', f_m, ', <S^2>=', s2_values(istate) ' eV ( ',dabs((ci_energy_no_diag(istate) - ci_energy_no_diag(jstate)))*Ha_to_nm,' nm), f_l=',f_l, ', f_v=', f_v, ', f_m=', f_m, ', <S^2>=', s2_values(istate)
!write(*,'(I4,I4,A4,I3,A6,F6.1,A6,F6.1)') (istate-1), (jstate-1), ' ->', (istate-1), ', %T1=', percent_exc(2,istate), ', %T2=',percent_exc(3,istate) !write(*,'(I4,I4,A4,I3,A6,F6.1,A6,F6.1)') (istate-1), (jstate-1), ' ->', (istate-1), ', %T1=', percent_exc(2,istate), ', %T2=',percent_exc(3,istate)
enddo enddo
enddo enddo

View File

@ -12,15 +12,12 @@ program projected_operators
mu_of_r_potential = "cas_full" mu_of_r_potential = "cas_full"
touch mu_of_r_potential touch mu_of_r_potential
print*,'Using Valence Only functions' print*,'Using Valence Only functions'
! call test_f_HF_valence_ab call test_f_HF_valence_ab
! call routine_full_mos call routine_full_mos
! call test_f_ii_valence_ab call test_f_ii_valence_ab
! call test_f_ia_valence_ab call test_f_ia_valence_ab
! call test_f_ii_ia_aa_valence_ab call test_f_ii_ia_aa_valence_ab
! call test call test
! call test_f_mean_field
! call test_grad_f_mean_field
call test_grad_mu_mf
end end
@ -39,138 +36,3 @@ subroutine test
end end
subroutine test_f_mean_field
implicit none
integer :: i_point
double precision :: weight,r(3)
double precision :: ref_f, new_f, accu_f
double precision :: ref_two_dens, new_two_dens, accu_two_dens, dm_a, dm_b
accu_f = 0.d0
accu_two_dens = 0.d0
do i_point = 1, n_points_final_grid
r(1:3) = final_grid_points(1:3,i_point)
weight = final_weight_at_r_vector(i_point)
call get_f_mf_ab(r,new_f,new_two_dens, dm_a, dm_b)
call f_HF_valence_ab(r,r,ref_f,ref_two_dens)
accu_f += weight * dabs(new_f- ref_f)
accu_two_dens += weight * dabs(new_two_dens - ref_two_dens)
enddo
print*,'accu_f = ',accu_f
print*,'accu_two_dens = ',accu_two_dens
end
subroutine test_grad_f_mean_field
implicit none
integer :: i_point,k
double precision :: weight,r(3)
double precision :: grad_f_mf_ab(3), grad_two_bod_dens(3)
double precision :: grad_dm_a(3), grad_dm_b(3)
double precision :: f_mf_ab,two_bod_dens, dm_a, dm_b
double precision :: num_grad_f_mf_ab(3), num_grad_two_bod_dens(3)
double precision :: num_grad_dm_a(3), num_grad_dm_b(3)
double precision :: f_mf_ab_p,f_mf_ab_m
double precision :: two_bod_dens_p, two_bod_dens_m
double precision :: dm_a_p, dm_a_m
double precision :: dm_b_p, dm_b_m
double precision :: rbis(3), dr
double precision :: accu_grad_f_mf_ab(3),accu_grad_two_bod_dens(3)
double precision :: accu_grad_dm_a(3),accu_grad_dm_b(3)
double precision :: accu_f_mf_ab, accu_two_bod_dens, accu_dm_a, accu_dm_b
dr = 0.00001d0
accu_f_mf_ab = 0.d0
accu_two_bod_dens = 0.d0
accu_dm_a = 0.d0
accu_dm_b = 0.d0
accu_grad_f_mf_ab = 0.d0
accu_grad_two_bod_dens = 0.d0
accu_grad_dm_a = 0.d0
accu_grad_dm_b = 0.d0
do i_point = 1, n_points_final_grid
r(1:3) = final_grid_points(1:3,i_point)
weight = final_weight_at_r_vector(i_point)
call get_grad_f_mf_ab(r,grad_f_mf_ab, grad_two_bod_dens,f_mf_ab,two_bod_dens, dm_a, dm_b,grad_dm_a, grad_dm_b)
call get_f_mf_ab(r,f_mf_ab_p,two_bod_dens_p, dm_a_p, dm_b_p)
accu_f_mf_ab += weight * dabs(f_mf_ab - f_mf_ab_p)
accu_two_bod_dens += weight * dabs(two_bod_dens - two_bod_dens_p)
accu_dm_a += weight*dabs(dm_a - dm_a_p)
accu_dm_b += weight*dabs(dm_b - dm_b_p)
do k = 1, 3
rbis = r
rbis(k) += dr
call get_f_mf_ab(rbis,f_mf_ab_p,two_bod_dens_p, dm_a_p, dm_b_p)
rbis = r
rbis(k) -= dr
call get_f_mf_ab(rbis,f_mf_ab_m,two_bod_dens_m, dm_a_m, dm_b_m)
num_grad_f_mf_ab(k) = (f_mf_ab_p - f_mf_ab_m)/(2.d0*dr)
num_grad_two_bod_dens(k) = (two_bod_dens_p - two_bod_dens_m)/(2.d0*dr)
num_grad_dm_a(k) = (dm_a_p - dm_a_m)/(2.d0*dr)
num_grad_dm_b(k) = (dm_b_p - dm_b_m)/(2.d0*dr)
enddo
do k = 1, 3
accu_grad_f_mf_ab(k) += weight * dabs(grad_f_mf_ab(k) - num_grad_f_mf_ab(k))
accu_grad_two_bod_dens(k) += weight * dabs(grad_two_bod_dens(k) - num_grad_two_bod_dens(k))
accu_grad_dm_a(k) += weight * dabs(grad_dm_a(k) - num_grad_dm_a(k))
accu_grad_dm_b(k) += weight * dabs(grad_dm_b(k) - num_grad_dm_b(k))
enddo
enddo
print*,'accu_f_mf_ab = ',accu_f_mf_ab
print*,'accu_two_bod_dens = ',accu_two_bod_dens
print*,'accu_dm_a = ',accu_dm_a
print*,'accu_dm_b = ',accu_dm_b
print*,'accu_grad_f_mf_ab = '
print*,accu_grad_f_mf_ab
print*,'accu_grad_two_bod_dens = '
print*,accu_grad_two_bod_dens
print*,'accu_dm_a = '
print*,accu_grad_dm_a
print*,'accu_dm_b = '
print*,accu_grad_dm_b
end
subroutine test_grad_mu_mf
implicit none
integer :: i_point,k
double precision :: weight,r(3),rbis(3)
double precision :: mu_mf, dm,grad_mu_mf(3), grad_dm(3)
double precision :: mu_mf_p, mu_mf_m, dm_m, dm_p, num_grad_mu_mf(3),dr, num_grad_dm(3)
double precision :: accu_mu, accu_dm, accu_grad_dm(3), accu_grad_mu_mf(3)
dr = 0.00001d0
accu_grad_mu_mf = 0.d0
accu_mu = 0.d0
accu_grad_dm = 0.d0
accu_dm = 0.d0
do i_point = 1, n_points_final_grid
r(1:3) = final_grid_points(1:3,i_point)
weight = final_weight_at_r_vector(i_point)
call grad_mu_of_r_mean_field(r,mu_mf, dm, grad_mu_mf, grad_dm)
call mu_of_r_mean_field(r,mu_mf_p, dm_p)
accu_mu += weight*dabs(mu_mf_p - mu_mf)
accu_dm += weight*dabs(dm_p - dm)
do k = 1, 3
rbis = r
rbis(k) += dr
call mu_of_r_mean_field(rbis,mu_mf_p, dm_p)
rbis = r
rbis(k) -= dr
call mu_of_r_mean_field(rbis,mu_mf_m, dm_m)
num_grad_mu_mf(k) = (mu_mf_p - mu_mf_m)/(2.d0*dr)
num_grad_dm(k) = (dm_p - dm_m)/(2.d0*dr)
enddo
do k = 1, 3
accu_grad_dm(k)+= weight *dabs(num_grad_dm(k) - grad_dm(k))
accu_grad_mu_mf(k)+= weight *dabs(num_grad_mu_mf(k) - grad_mu_mf(k))
enddo
enddo
print*,'accu_mu = ',accu_mu
print*,'accu_dm = ',accu_dm
print*,'accu_grad_dm = '
print*, accu_grad_dm
print*,'accu_grad_mu_mf = '
print*, accu_grad_mu_mf
end

View File

@ -45,6 +45,12 @@ type: double precision
doc: Calculated HF energy doc: Calculated HF energy
interface: ezfio interface: ezfio
[do_mom]
type: logical
doc: If true, this will run a MOM calculation. The overlap will be computed at each step with respect to the initial MOs. After an initial Hartree-Fock calculation, the guess can be created by swapping molecular orbitals through the qp run swap_mos command.
interface: ezfio,provider,ocaml
default: False
[frozen_orb_scf] [frozen_orb_scf]
type: logical type: logical
doc: If true, leave untouched all the orbitals defined as core and optimize all the orbitals defined as active with qp_set_mo_class doc: If true, leave untouched all the orbitals defined as core and optimize all the orbitals defined as active with qp_set_mo_class

View File

@ -253,17 +253,18 @@ BEGIN_PROVIDER [ double precision, SCF_energy ]
BEGIN_DOC BEGIN_DOC
! Hartree-Fock energy ! Hartree-Fock energy
END_DOC END_DOC
SCF_energy = nuclear_repulsion
integer :: i,j integer :: i,j
SCF_energy = 0.d0
do j=1,ao_num do j=1,ao_num
do i=1,ao_num do i=1,ao_num
SCF_energy += 0.5d0 * ( & SCF_energy += &
(ao_one_e_integrals(i,j) + Fock_matrix_ao_alpha(i,j) ) * SCF_density_matrix_ao_alpha(i,j) +& (ao_one_e_integrals(i,j) + Fock_matrix_ao_alpha(i,j) ) * SCF_density_matrix_ao_alpha(i,j) +&
(ao_one_e_integrals(i,j) + Fock_matrix_ao_beta (i,j) ) * SCF_density_matrix_ao_beta (i,j) ) (ao_one_e_integrals(i,j) + Fock_matrix_ao_beta (i,j) ) * SCF_density_matrix_ao_beta (i,j)
enddo enddo
enddo enddo
SCF_energy += extra_e_contrib_density SCF_energy = 0.5d0 * SCF_energy + extra_e_contrib_density + nuclear_repulsion
END_PROVIDER END_PROVIDER

View File

@ -0,0 +1,96 @@
subroutine reorder_mo_max_overlap
implicit none
BEGIN_DOC
! routines that compute the projection of each MO of the current `mo_coef` on the space spanned by the occupied orbitals of `mo_coef_begin_iteration`
END_DOC
integer :: i,j,k,l
double precision, allocatable :: overlap(:,:)
double precision, allocatable :: proj(:)
integer, allocatable :: iorder(:)
double precision, allocatable :: mo_coef_tmp(:,:)
double precision, allocatable :: tmp(:,:)
allocate(overlap(mo_num,mo_num),proj(mo_num),iorder(mo_num),mo_coef_tmp(ao_num,mo_num),tmp(mo_num,ao_num))
overlap(:,:) = 0d0
mo_coef_tmp(:,:) = 0d0
proj(:) = 0d0
iorder(:) = 0d0
tmp(:,:) = 0d0
! These matrix products compute the overlap bewteen the initial and the current MOs
call dgemm('T','N', mo_num, ao_num, ao_num, 1.d0, &
mo_coef_begin_iteration, size(mo_coef_begin_iteration,1), &
ao_overlap, size(ao_overlap,1), 0.d0, &
tmp, size(tmp,1))
call dgemm('N','N', mo_num, mo_num, ao_num, 1.d0, &
tmp, size(tmp,1), &
mo_coef, size(mo_coef, 1), 0.d0, &
overlap, size(overlap,1) )
! for each orbital compute the best overlap
do i = 1, mo_num
iorder(i) = i ! initialize the iorder list as we need it to sort later
do j = 1, elec_alpha_num
proj(i) += overlap(j,i)*overlap(j,i) ! compute the projection of current orbital i on the occupied space of the initial orbitals
enddo
proj(i) = dsqrt(proj(i))
enddo
! sort the list of projection to find the mos with the largest overlap
call dsort(proj(:),iorder(:),mo_num)
! reorder orbitals according to projection
do i=1,mo_num
mo_coef_tmp(:,i) = mo_coef(:,iorder(mo_num+1-i))
enddo
! update the orbitals
mo_coef(:,:) = mo_coef_tmp(:,:)
! if the determinant is open-shell we need to make sure that the singly occupied orbital correspond to the initial ones
if (elec_alpha_num > elec_beta_num) then
double precision, allocatable :: overlap_alpha(:,:)
double precision, allocatable :: proj_alpha(:)
integer, allocatable :: iorder_alpha(:)
allocate(overlap_alpha(mo_num,elec_alpha_num),proj_alpha(elec_alpha_num),iorder_alpha(elec_alpha_num))
overlap_alpha(:,:) = 0d0
mo_coef_tmp(:,:) = 0d0
proj_alpha(:) = 0d0
iorder_alpha(:) = 0d0
tmp(:,:) = 0d0
! These matrix products compute the overlap bewteen the initial and the current MOs
call dgemm('T','N', mo_num, ao_num, ao_num, 1.d0, &
mo_coef_begin_iteration, size(mo_coef_begin_iteration,1), &
ao_overlap, size(ao_overlap,1), 0.d0, &
tmp, size(tmp,1))
call dgemm('N','N', mo_num, elec_alpha_num, ao_num, 1.d0, &
tmp, size(tmp,1), &
mo_coef, size(mo_coef, 1), 0.d0, &
overlap_alpha, size(overlap_alpha,1) )
do i = 1, elec_alpha_num
iorder_alpha(i) = i ! initialize the iorder list as we need it to sort later
do j = 1, elec_beta_num
proj_alpha(i) += overlap_alpha(j,i)*overlap_alpha(j,i) ! compute the projection of current orbital i on the beta occupied space of the initial orbitals
enddo
proj_alpha(i) = dsqrt(proj_alpha(i))
enddo
! sort the list of projection to find the mos with the largest overlap
call dsort(proj_alpha(:),iorder_alpha(:),elec_alpha_num)
! reorder orbitals according to projection
do i=1,elec_alpha_num
mo_coef_tmp(:,i) = mo_coef(:,iorder_alpha(elec_alpha_num+1-i))
enddo
do i=1,elec_alpha_num
mo_coef(:,i) = mo_coef_tmp(:,i)
enddo
deallocate(overlap_alpha, proj_alpha, iorder_alpha)
endif
deallocate(overlap, proj, iorder, mo_coef_tmp, tmp)
end

View File

@ -51,6 +51,11 @@ END_DOC
! !
PROVIDE FPS_SPF_matrix_AO Fock_matrix_AO PROVIDE FPS_SPF_matrix_AO Fock_matrix_AO
! Initialize MO to run IMOM
if(do_mom)then
call initialize_mo_coef_begin_iteration
endif
converged = .False. converged = .False.
do while ( .not.converged .and. (iteration_SCF < n_it_SCF_max) ) do while ( .not.converged .and. (iteration_SCF < n_it_SCF_max) )
@ -89,15 +94,16 @@ END_DOC
TOUCH Fock_matrix_AO_alpha Fock_matrix_AO_beta TOUCH Fock_matrix_AO_alpha Fock_matrix_AO_beta
endif endif
MO_coef = eigenvectors_Fock_matrix_MO MO_coef = eigenvectors_Fock_matrix_MO
if(do_mom)then
call reorder_mo_max_overlap
endif
if(frozen_orb_scf)then if(frozen_orb_scf)then
call reorder_core_orb call reorder_core_orb
call initialize_mo_coef_begin_iteration call initialize_mo_coef_begin_iteration
endif endif
TOUCH MO_coef TOUCH MO_coef
! Calculate error vectors ! Calculate error vectors
max_error_DIIS = maxval(Abs(FPS_SPF_Matrix_MO)) max_error_DIIS = maxval(Abs(FPS_SPF_Matrix_MO))
@ -106,13 +112,14 @@ END_DOC
energy_SCF = SCF_energy energy_SCF = SCF_energy
Delta_Energy_SCF = energy_SCF - energy_SCF_previous Delta_Energy_SCF = energy_SCF - energy_SCF_previous
if ( (SCF_algorithm == 'DIIS').and.(Delta_Energy_SCF > 0.d0) ) then if ( (SCF_algorithm == 'DIIS').and.(Delta_Energy_SCF > 0.d0).and.(.not.do_mom) ) then
Fock_matrix_AO(1:ao_num,1:ao_num) = Fock_matrix_DIIS (1:ao_num,1:ao_num,index_dim_DIIS) Fock_matrix_AO(1:ao_num,1:ao_num) = Fock_matrix_DIIS (1:ao_num,1:ao_num,index_dim_DIIS)
Fock_matrix_AO_alpha = Fock_matrix_AO*0.5d0 Fock_matrix_AO_alpha = Fock_matrix_AO*0.5d0
Fock_matrix_AO_beta = Fock_matrix_AO*0.5d0 Fock_matrix_AO_beta = Fock_matrix_AO*0.5d0
TOUCH Fock_matrix_AO_alpha Fock_matrix_AO_beta TOUCH Fock_matrix_AO_alpha Fock_matrix_AO_beta
endif endif
if (.not.do_mom) then
double precision :: level_shift_save double precision :: level_shift_save
level_shift_save = level_shift level_shift_save = level_shift
mo_coef_save(1:ao_num,1:mo_num) = mo_coef(1:ao_num,1:mo_num) mo_coef_save(1:ao_num,1:mo_num) = mo_coef(1:ao_num,1:mo_num)
@ -125,6 +132,9 @@ END_DOC
endif endif
TOUCH mo_coef level_shift TOUCH mo_coef level_shift
mo_coef(1:ao_num,1:mo_num) = eigenvectors_Fock_matrix_MO(1:ao_num,1:mo_num) mo_coef(1:ao_num,1:mo_num) = eigenvectors_Fock_matrix_MO(1:ao_num,1:mo_num)
if(do_mom)then
call reorder_mo_max_overlap
endif
if(frozen_orb_scf)then if(frozen_orb_scf)then
call reorder_core_orb call reorder_core_orb
call initialize_mo_coef_begin_iteration call initialize_mo_coef_begin_iteration
@ -141,6 +151,7 @@ END_DOC
enddo enddo
level_shift = level_shift * 0.5d0 level_shift = level_shift * 0.5d0
SOFT_TOUCH level_shift SOFT_TOUCH level_shift
endif
energy_SCF_previous = energy_SCF energy_SCF_previous = energy_SCF
converged = ( (max_error_DIIS <= threshold_DIIS_nonzero) .and. & converged = ( (max_error_DIIS <= threshold_DIIS_nonzero) .and. &
@ -228,6 +239,9 @@ END_DOC
i = j+1 i = j+1
enddo enddo
if(do_mom)then
call reorder_mo_max_overlap
endif
call save_mos call save_mos

View File

@ -16,4 +16,20 @@ subroutine run
implicit none implicit none
call print_mol_properties call print_mol_properties
print *, psi_energy + nuclear_repulsion print *, psi_energy + nuclear_repulsion
call print_energy_components
print *, 'E(HF) = ', HF_energy
print *, 'E(CI) = ', psi_energy + nuclear_repulsion
print *, ''
print *, 'E_kin(CI) = ', ref_bitmask_kinetic_energy
print *, 'E_kin(HF) = ', HF_kinetic_energy
print *, ''
print *, 'E_ne (CI) = ', ref_bitmask_n_e_energy
print *, 'E_ne (HF) = ', HF_n_e_energy
print *, ''
print *, 'E_1e (CI) = ', ref_bitmask_one_e_energy
print *, 'E_1e (HF) = ', HF_one_electron_energy
print *, ''
print *, 'E_2e (CI) = ', ref_bitmask_two_e_energy
print *, 'E_2e (HF) = ', HF_two_electron_energy
end end

View File

@ -56,9 +56,14 @@ subroutine routine_s2
double precision :: accu(N_states) double precision :: accu(N_states)
print *, 'Weights of the CFG' print *, 'Weights of the CFG'
do i=1,N_det integer :: step
step = max(1,N_det/100)
do i=1,N_det-1,step
print *, i, real(weight_configuration(det_to_configuration(i),:)), real(sum(weight_configuration(det_to_configuration(i),:))) print *, i, real(weight_configuration(det_to_configuration(i),:)), real(sum(weight_configuration(det_to_configuration(i),:)))
enddo enddo
i=N_det
print *, i, real(weight_configuration(det_to_configuration(i),:)), real(sum(weight_configuration(det_to_configuration(i),:)))
print*, 'Min weight of the configuration?' print*, 'Min weight of the configuration?'
read(5,*) wmin read(5,*) wmin

View File

@ -46,6 +46,8 @@ subroutine run(f)
double precision, allocatable :: tmp(:,:,:) double precision, allocatable :: tmp(:,:,:)
integer*8 :: offset, icount integer*8 :: offset, icount
integer :: k_num
integer, external :: getUnitAndOpen integer, external :: getUnitAndOpen
if (trexio_has_nucleus_repulsion(f) == TREXIO_SUCCESS) then if (trexio_has_nucleus_repulsion(f) == TREXIO_SUCCESS) then
@ -163,7 +165,8 @@ subroutine run(f)
deallocate(Vi, V, tmp) deallocate(Vi, V, tmp)
print *, 'Cholesky AO integrals read from TREXIO file' print *, 'Cholesky AO integrals read from TREXIO file'
endif
else
rc = trexio_has_ao_2e_int_eri(f) rc = trexio_has_ao_2e_int_eri(f)
if (rc /= TREXIO_HAS_NOT) then if (rc /= TREXIO_HAS_NOT) then
@ -204,6 +207,7 @@ subroutine run(f)
deallocate(buffer_i, buffer_values, Vi, V) deallocate(buffer_i, buffer_values, Vi, V)
print *, 'AO integrals read from TREXIO file' print *, 'AO integrals read from TREXIO file'
endif endif
endif
else else
print *, 'AO integrals not found in TREXIO file' print *, 'AO integrals not found in TREXIO file'
endif endif
@ -270,7 +274,8 @@ subroutine run(f)
deallocate(Vi, V, tmp) deallocate(Vi, V, tmp)
print *, 'Cholesky MO integrals read from TREXIO file' print *, 'Cholesky MO integrals read from TREXIO file'
endif
else
rc = trexio_has_mo_2e_int_eri(f) rc = trexio_has_mo_2e_int_eri(f)
if (rc /= TREXIO_HAS_NOT) then if (rc /= TREXIO_HAS_NOT) then
@ -310,6 +315,8 @@ subroutine run(f)
print *, 'MO integrals read from TREXIO file' print *, 'MO integrals read from TREXIO file'
endif endif
endif
else else
print *, 'MO integrals not found in TREXIO file' print *, 'MO integrals not found in TREXIO file'
endif endif

View File

@ -56,7 +56,7 @@ subroutine give_explicit_cpoly_and_cgaussian_x(P_new, P_center, p, fact_k, iorde
call multiply_cpoly(P_a(0), a, P_b(0), b, P_new(0), n_new) call multiply_cpoly(P_a(0), a, P_b(0), b, P_new(0), n_new)
iorder = a + b iorder = a + b
end subroutine give_explicit_cpoly_and_cgaussian_x end
! --- ! ---
@ -141,7 +141,7 @@ subroutine give_explicit_cpoly_and_cgaussian(P_new, P_center, p, fact_k, iorder,
!DIR$ FORCEINLINE !DIR$ FORCEINLINE
call multiply_cpoly(P_a(0,3), a(3), P_b(0,3), b(3), P_new(0,3), n_new) call multiply_cpoly(P_a(0,3), a(3), P_b(0,3), b(3), P_new(0,3), n_new)
end subroutine give_explicit_cpoly_and_cgaussian end
! --- ! ---
@ -249,7 +249,7 @@ subroutine cgaussian_product(a, xa, b, xb, k, p, xp)
xp(2) = ( a * xa(2) + b * xb(2) ) * p_inv xp(2) = ( a * xa(2) + b * xb(2) ) * p_inv
xp(3) = ( a * xa(3) + b * xb(3) ) * p_inv xp(3) = ( a * xa(3) + b * xb(3) ) * p_inv
end subroutine cgaussian_product end
! --- ! ---
@ -290,7 +290,7 @@ subroutine cgaussian_product_x(a, xa, b, xb, k, p, xp)
k = zexp(-k) k = zexp(-k)
xp = (a*xa + b*xb) * p_inv xp = (a*xa + b*xb) * p_inv
end subroutine cgaussian_product_x end
! --- ! ---
@ -338,7 +338,7 @@ subroutine multiply_cpoly(b, nb, c, nc, d, nd)
exit exit
enddo enddo
end subroutine multiply_cpoly end
! --- ! ---
@ -373,7 +373,7 @@ subroutine add_cpoly(b, nb, c, nc, d, nd)
if(nd < 0) exit if(nd < 0) exit
enddo enddo
end subroutine add_cpoly end
! --- ! ---
@ -413,7 +413,7 @@ subroutine add_cpoly_multiply(b, nb, cst, d, nd)
endif endif
end subroutine add_cpoly_multiply end
! --- ! ---
@ -475,7 +475,7 @@ subroutine recentered_cpoly2(P_A, x_A, x_P, a, P_B, x_B, x_Q, b)
P_B(i) = binom_func(b,b-i) * pows_b(b-i) P_B(i) = binom_func(b,b-i) * pows_b(b-i)
enddo enddo
end subroutine recentered_cpoly2 end
! --- ! ---
@ -514,267 +514,7 @@ complex*16 function Fc_integral(n, inv_sq_p)
Fc_integral = sqpi * 0.5d0**n * inv_sq_p**dble(n+1) * fact(n) / fact(shiftr(n, 1)) Fc_integral = sqpi * 0.5d0**n * inv_sq_p**dble(n+1) * fact(n) / fact(shiftr(n, 1))
end function Fc_integral end
! ---
complex*16 function crint(n, rho)
implicit none
include 'constants.include.F'
integer, intent(in) :: n
complex*16, intent(in) :: rho
integer :: i, mmax
double precision :: rho_mod, rho_re, rho_im
double precision :: sq_rho_re, sq_rho_im
double precision :: n_tmp
complex*16 :: sq_rho, rho_inv, rho_exp
complex*16 :: crint_smallz, cpx_erf
rho_re = REAL (rho)
rho_im = AIMAG(rho)
rho_mod = dsqrt(rho_re*rho_re + rho_im*rho_im)
if(rho_mod < 10.d0) then
! small z
if(rho_mod .lt. 1.d-10) then
crint = 1.d0 / dble(n + n + 1)
else
crint = crint_smallz(n, rho)
endif
else
! large z
if(rho_mod .gt. 40.d0) then
n_tmp = dble(n) + 0.5d0
crint = 0.5d0 * gamma(n_tmp) / (rho**n_tmp)
else
! get \sqrt(rho)
sq_rho_re = sq_op5 * dsqrt(rho_re + rho_mod)
sq_rho_im = 0.5d0 * rho_im / sq_rho_re
sq_rho = sq_rho_re + (0.d0, 1.d0) * sq_rho_im
rho_exp = 0.5d0 * zexp(-rho)
rho_inv = (1.d0, 0.d0) / rho
crint = 0.5d0 * sqpi * cpx_erf(sq_rho_re, sq_rho_im) / sq_rho
mmax = n
if(mmax .gt. 0) then
do i = 0, mmax-1
crint = ((dble(i) + 0.5d0) * crint - rho_exp) * rho_inv
enddo
endif
! ***
endif
endif
! print *, n, real(rho), real(crint)
end function crint
! ---
complex*16 function crint_sum(n_pt_out, rho, d1)
implicit none
include 'constants.include.F'
integer, intent(in) :: n_pt_out
complex*16, intent(in) :: rho, d1(0:n_pt_out)
integer :: n, i, mmax
double precision :: rho_mod, rho_re, rho_im
double precision :: sq_rho_re, sq_rho_im
complex*16 :: sq_rho, F0
complex*16 :: rho_tmp, rho_inv, rho_exp
complex*16, allocatable :: Fm(:)
complex*16 :: crint_smallz, cpx_erf
rho_re = REAL (rho)
rho_im = AIMAG(rho)
rho_mod = dsqrt(rho_re*rho_re + rho_im*rho_im)
if(rho_mod < 10.d0) then
! small z
if(rho_mod .lt. 1.d-10) then
! print *, ' 111'
! print *, ' rho = ', rho
crint_sum = d1(0)
! print *, 0, 1
do i = 2, n_pt_out, 2
n = shiftr(i, 1)
crint_sum = crint_sum + d1(i) / dble(n+n+1)
! print *, n, 1.d0 / dble(n+n+1)
enddo
! ***
else
! print *, ' 222'
! print *, ' rho = ', real(rho)
! if(abs(aimag(rho)) .gt. 1d-15) then
! print *, ' complex rho', rho
! stop
! endif
crint_sum = d1(0) * crint_smallz(0, rho)
! print *, 0, real(d1(0)), real(crint_smallz(0, rho))
! if(abs(aimag(d1(0))) .gt. 1d-15) then
! print *, ' complex d1(0)', d1(0)
! stop
! endif
do i = 2, n_pt_out, 2
n = shiftr(i, 1)
crint_sum = crint_sum + d1(i) * crint_smallz(n, rho)
! print *, n, real(d1(i)), real(crint_smallz(n, rho))
! if(abs(aimag(d1(i))) .gt. 1d-15) then
! print *, ' complex d1(i)', i, d1(i)
! stop
! endif
enddo
! print *, 'sum = ', real(crint_sum)
! if(abs(aimag(crint_sum)) .gt. 1d-15) then
! print *, ' complex crint_sum', crint_sum
! stop
! endif
! ***
endif
else
! large z
if(rho_mod .gt. 40.d0) then
! print *, ' 333'
! print *, ' rho = ', rho
rho_inv = (1.d0, 0.d0) / rho
rho_tmp = 0.5d0 * sqpi * zsqrt(rho_inv)
crint_sum = rho_tmp * d1(0)
! print *, 0, rho_tmp
do i = 2, n_pt_out, 2
n = shiftr(i, 1)
rho_tmp = rho_tmp * (dble(n) + 0.5d0) * rho_inv
crint_sum = crint_sum + rho_tmp * d1(i)
! print *, n, rho_tmp
enddo
! ***
else
! print *, ' 444'
! print *, ' rho = ', rho
! get \sqrt(rho)
sq_rho_re = sq_op5 * dsqrt(rho_re + rho_mod)
sq_rho_im = 0.5d0 * rho_im / sq_rho_re
sq_rho = sq_rho_re + (0.d0, 1.d0) * sq_rho_im
!sq_rho = zsqrt(rho)
F0 = 0.5d0 * sqpi * cpx_erf(sq_rho_re, sq_rho_im) / sq_rho
crint_sum = F0 * d1(0)
! print *, 0, F0
rho_exp = 0.5d0 * zexp(-rho)
rho_inv = (1.d0, 0.d0) / rho
mmax = shiftr(n_pt_out, 1)
if(mmax .gt. 0) then
allocate( Fm(mmax) )
Fm(1:mmax) = (0.d0, 0.d0)
do n = 0, mmax-1
F0 = ((dble(n) + 0.5d0) * F0 - rho_exp) * rho_inv
Fm(n+1) = F0
! print *, n, F0
enddo
do i = 2, n_pt_out, 2
n = shiftr(i, 1)
crint_sum = crint_sum + Fm(n) * d1(i)
enddo
deallocate(Fm)
endif
! ***
endif
endif
end function crint_sum
! ---
complex*16 function crint_smallz(n, rho)
BEGIN_DOC
! Standard version of rint
END_DOC
implicit none
integer, intent(in) :: n
complex*16, intent(in) :: rho
integer, parameter :: kmax = 40
double precision, parameter :: eps = 1.d-13
integer :: k
double precision :: delta_mod
complex*16 :: rho_k, ct, delta_k
ct = 0.5d0 * zexp(-rho) * gamma(dble(n) + 0.5d0)
rho_k = (1.d0, 0.d0)
crint_smallz = ct * rho_k / gamma(dble(n) + 1.5d0)
do k = 1, kmax
rho_k = rho_k * rho
delta_k = ct * rho_k / gamma(dble(n+k) + 1.5d0)
crint_smallz = crint_smallz + delta_k
delta_mod = dsqrt(REAL(delta_k)*REAL(delta_k) + AIMAG(delta_k)*AIMAG(delta_k))
if(delta_mod .lt. eps) return
enddo
if(delta_mod > eps) then
write(*,*) ' pb in crint_smallz !'
write(*,*) ' n, rho = ', n, rho
write(*,*) ' delta_mod = ', delta_mod
stop 1
endif
end function crint_smallz
! --- ! ---

View File

@ -9,6 +9,9 @@ double precision, parameter :: pi_5_2 = 34.9868366552d0
double precision, parameter :: dfour_pi = 4.d0*dacos(-1.d0) double precision, parameter :: dfour_pi = 4.d0*dacos(-1.d0)
double precision, parameter :: dtwo_pi = 2.d0*dacos(-1.d0) double precision, parameter :: dtwo_pi = 2.d0*dacos(-1.d0)
double precision, parameter :: inv_sq_pi = 1.d0/dsqrt(dacos(-1.d0)) double precision, parameter :: inv_sq_pi = 1.d0/dsqrt(dacos(-1.d0))
double precision, parameter :: c_mu_gauss = 27.d0/(8.d0*dsqrt(dacos(-1.d0)))
double precision, parameter :: c_mu_gauss_tot = 1.5d0*27.d0/(8.d0*dsqrt(dacos(-1.d0)))+3.d0/dsqrt(dacos(-1.d0))
double precision, parameter :: alpha_mu_gauss = 1.5d0
double precision, parameter :: inv_sq_pi_2 = 0.5d0/dsqrt(dacos(-1.d0)) double precision, parameter :: inv_sq_pi_2 = 0.5d0/dsqrt(dacos(-1.d0))
double precision, parameter :: thresh = 1.d-15 double precision, parameter :: thresh = 1.d-15
double precision, parameter :: cx_lda = -0.73855876638202234d0 double precision, parameter :: cx_lda = -0.73855876638202234d0

543
src/utils/cpx_boys.irp.f Normal file
View File

@ -0,0 +1,543 @@
! ---
complex*16 function crint_1(n, rho)
implicit none
include 'constants.include.F'
integer, intent(in) :: n
complex*16, intent(in) :: rho
integer :: i, mmax
double precision :: rho_mod, rho_re, rho_im
double precision :: sq_rho_re, sq_rho_im
double precision :: n_tmp
complex*16 :: sq_rho, rho_inv, rho_exp
complex*16 :: crint_smallz, cpx_erf_1
complex*16 :: cpx_erf_2
rho_re = real (rho)
rho_im = aimag(rho)
rho_mod = dsqrt(rho_re*rho_re + rho_im*rho_im)
if(rho_mod < 10.d0) then
! small z
if(rho_mod .lt. 1.d-15) then
crint_1 = 1.d0 / dble(n + n + 1)
else
crint_1 = crint_smallz(n, rho)
endif
else
! large z
if(rho_mod .gt. 40.d0) then
n_tmp = dble(n) + 0.5d0
crint_1 = 0.5d0 * gamma(n_tmp) / (rho**n_tmp)
else
! get \sqrt(rho)
sq_rho_re = sq_op5 * dsqrt(rho_re + rho_mod)
sq_rho_im = 0.5d0 * rho_im / sq_rho_re
sq_rho = sq_rho_re + (0.d0, 1.d0) * sq_rho_im
rho_exp = 0.5d0 * zexp(-rho)
rho_inv = (1.d0, 0.d0) / rho
!print*, sq_rho_re, sq_rho_im
!print*, cpx_erf_1(sq_rho_re, sq_rho_im)
!print*, cpx_erf_2(sq_rho_re, sq_rho_im)
crint_1 = 0.5d0 * sqpi * cpx_erf_1(sq_rho_re, sq_rho_im) / sq_rho
mmax = n
if(mmax .gt. 0) then
do i = 0, mmax-1
crint_1 = ((dble(i) + 0.5d0) * crint_1 - rho_exp) * rho_inv
enddo
endif
endif
endif
end
! ---
complex*16 function crint_quad(n, rho)
implicit none
integer, intent(in) :: n
complex*16, intent(in) :: rho
integer :: i_quad, n_quad
double precision :: tmp_inv, tmp
n_quad = 1000000000
tmp_inv = 1.d0 / dble(n_quad)
!crint_quad = 0.5d0 * zexp(-rho)
!do i_quad = 1, n_quad - 1
! tmp = tmp_inv * dble(i_quad)
! tmp = tmp * tmp
! crint_quad += zexp(-rho*tmp) * tmp**n
!enddo
!crint_quad = crint_quad * tmp_inv
!crint_quad = 0.5d0 * zexp(-rho)
!do i_quad = 1, n_quad - 1
! tmp = tmp_inv * dble(i_quad)
! crint_quad += zexp(-rho*tmp) * tmp**n / dsqrt(tmp)
!enddo
!crint_quad = crint_quad * 0.5d0 * tmp_inv
! Composite Boole's Rule
crint_quad = 7.d0 * zexp(-rho)
do i_quad = 1, n_quad - 1
tmp = tmp_inv * dble(i_quad)
tmp = tmp * tmp
if(modulo(i_quad, 4) .eq. 0) then
crint_quad += 14.d0 * zexp(-rho*tmp) * tmp**n
else if(modulo(i_quad, 2) .eq. 0) then
crint_quad += 12.d0 * zexp(-rho*tmp) * tmp**n
else
crint_quad += 32.d0 * zexp(-rho*tmp) * tmp**n
endif
enddo
crint_quad = crint_quad * 2.d0 * tmp_inv / 45.d0
! Composite Simpson's 3/8 rule
!crint_quad = zexp(-rho)
!do i_quad = 1, n_quad - 1
! tmp = tmp_inv * dble(i_quad)
! tmp = tmp * tmp
! if(modulo(i_quad, 3) .eq. 0) then
! crint_quad += 2.d0 * zexp(-rho*tmp) * tmp**n
! else
! crint_quad += 3.d0 * zexp(-rho*tmp) * tmp**n
! endif
!enddo
!crint_quad = crint_quad * 3.d0 * tmp_inv / 8.d0
end
! ---
complex*16 function crint_sum_1(n_pt_out, rho, d1)
implicit none
include 'constants.include.F'
integer, intent(in) :: n_pt_out
complex*16, intent(in) :: rho, d1(0:n_pt_out)
integer :: n, i, mmax
double precision :: rho_mod, rho_re, rho_im
double precision :: sq_rho_re, sq_rho_im
complex*16 :: sq_rho, F0
complex*16 :: rho_tmp, rho_inv, rho_exp
complex*16, allocatable :: Fm(:)
complex*16 :: crint_smallz, cpx_erf_1
rho_re = real (rho)
rho_im = aimag(rho)
rho_mod = dsqrt(rho_re*rho_re + rho_im*rho_im)
! ! debug
! double precision :: d1_real(0:n_pt_out)
! double precision :: rint_sum
! do i = 0, n_pt_out
! d1_real(i) = real(d1(i))
! enddo
! crint_sum_1 = rint_sum(n_pt_out, rho_re, d1_real)
! return
if(rho_mod < 10.d0) then
! small z
if(rho_mod .lt. 1.d-15) then
crint_sum_1 = d1(0)
do i = 2, n_pt_out, 2
n = shiftr(i, 1)
crint_sum_1 = crint_sum_1 + d1(i) / dble(n+n+1)
enddo
else
crint_sum_1 = d1(0) * crint_smallz(0, rho)
do i = 2, n_pt_out, 2
n = shiftr(i, 1)
crint_sum_1 = crint_sum_1 + d1(i) * crint_smallz(n, rho)
enddo
endif
else
! large z
if(rho_mod .gt. 40.d0) then
rho_inv = (1.d0, 0.d0) / rho
rho_tmp = 0.5d0 * sqpi * zsqrt(rho_inv)
crint_sum_1 = rho_tmp * d1(0)
do i = 2, n_pt_out, 2
n = shiftr(i, 1)
rho_tmp = rho_tmp * (dble(n) + 0.5d0) * rho_inv
crint_sum_1 = crint_sum_1 + rho_tmp * d1(i)
enddo
else
! get \sqrt(rho)
sq_rho_re = sq_op5 * dsqrt(rho_re + rho_mod)
sq_rho_im = 0.5d0 * rho_im / sq_rho_re
sq_rho = sq_rho_re + (0.d0, 1.d0) * sq_rho_im
F0 = 0.5d0 * sqpi * cpx_erf_1(sq_rho_re, sq_rho_im) / sq_rho
crint_sum_1 = F0 * d1(0)
rho_exp = 0.5d0 * zexp(-rho)
rho_inv = (1.d0, 0.d0) / rho
mmax = shiftr(n_pt_out, 1)
if(mmax .gt. 0) then
allocate(Fm(mmax))
Fm(1:mmax) = (0.d0, 0.d0)
do n = 0, mmax-1
F0 = ((dble(n) + 0.5d0) * F0 - rho_exp) * rho_inv
Fm(n+1) = F0
enddo
do i = 2, n_pt_out, 2
n = shiftr(i, 1)
crint_sum_1 = crint_sum_1 + Fm(n) * d1(i)
enddo
deallocate(Fm)
endif
endif ! rho_mod
endif ! rho_mod
end
! ---
complex*16 function crint_smallz(n, rho)
BEGIN_DOC
! Standard version of rint
END_DOC
implicit none
integer, intent(in) :: n
complex*16, intent(in) :: rho
integer, parameter :: kmax = 40
double precision, parameter :: eps = 1.d-13
integer :: k
double precision :: delta_mod
complex*16 :: rho_k, ct, delta_k
ct = 0.5d0 * zexp(-rho) * gamma(dble(n) + 0.5d0)
crint_smallz = ct / gamma(dble(n) + 1.5d0)
rho_k = (1.d0, 0.d0)
do k = 1, kmax
rho_k = rho_k * rho
delta_k = ct * rho_k / gamma(dble(n+k) + 1.5d0)
crint_smallz = crint_smallz + delta_k
delta_mod = dsqrt(real(delta_k)*real(delta_k) + aimag(delta_k)*aimag(delta_k))
if(delta_mod .lt. eps) return
enddo
if(delta_mod > eps) then
write(*,*) ' pb in crint_smallz !'
write(*,*) ' n, rho = ', n, rho
write(*,*) ' delta_mod = ', delta_mod
!stop 1
endif
end
! ---
complex*16 function crint_2(n, rho)
implicit none
integer, intent(in) :: n
complex*16, intent(in) :: rho
double precision :: tmp
complex*16 :: rho2
complex*16 :: vals(0:n)
complex*16, external :: crint_smallz
if(abs(rho) < 10.d0) then
if(abs(rho) .lt. 1d-6) then
tmp = 2.d0 * dble(n)
rho2 = rho * rho
crint_2 = 1.d0 / (tmp + 1.d0) &
- rho / (tmp + 3.d0) &
+ 0.5d0 * rho2 / (tmp + 5.d0) &
- 0.16666666666666666d0 * rho * rho2 / (tmp + 7.d0)
else
crint_2 = crint_smallz(n, rho)
endif
else
if(real(rho) .ge. 0.d0) then
call zboysfun(n, rho, vals)
crint_2 = vals(n)
else
call zboysfunnrp(n, rho, vals)
crint_2 = vals(n) * zexp(-rho)
endif
endif
return
end
! ---
subroutine zboysfun(n_max, x, vals)
BEGIN_DOC
!
! Computes values of the Boys function for n = 0, 1, ..., n_max
! for a complex valued argument
!
! Input: x --- argument, complex*16, Re(x) >= 0
! Output: vals --- values of the Boys function, n = 0, 1, ..., n_max
!
END_DOC
implicit none
integer, intent(in) :: n_max
complex*16, intent(in) :: x
complex*16, intent(out) :: vals(0:n_max)
integer :: n
complex*16 :: yy, x_inv
call zboysfun00(x, vals(0))
yy = 0.5d0 * zexp(-x)
x_inv = (1.d0, 0.d0) / x
do n = 1, n_max
vals(n) = ((dble(n) - 0.5d0) * vals(n-1) - yy) * x_inv
enddo
return
end
! ---
subroutine zboysfunnrp(n_max, x, vals)
BEGIN_DOC
!
! Computes values of e^z F(n,z) for n = 0, 1, ..., n_max
! (where F(n,z) are the Boys functions)
! for a complex valued argument WITH NEGATIVE REAL PART
!
! Input: x --- argument, complex *16 Re(x)<=0
! Output: vals --- values of e^z F(n,z), n = 0, 1, ..., n_max
!
END_DOC
implicit none
integer, intent(in) :: n_max
complex*16, intent(in) :: x
complex*16, intent(out) :: vals(0:n_max)
integer :: n
complex*16 :: x_inv
call zboysfun00nrp(x, vals(0))
x_inv = (1.d0, 0.d0) / x
do n = 1, n_max
vals(n) = ((dble(n) - 0.5d0) * vals(n-1) - 0.5d0) * x_inv
enddo
return
end
! ---
complex*16 function crint_sum_2(n_pt_out, rho, d1)
implicit none
integer, intent(in) :: n_pt_out
complex*16, intent(in) :: rho, d1(0:n_pt_out)
integer :: n, i
integer :: n_max
complex*16, allocatable :: vals(:)
!complex*16, external :: crint_2
!crint_sum_2 = (0.d0, 0.d0)
!do i = 0, n_pt_out, 2
! n = shiftr(i, 1)
! crint_sum_2 = crint_sum_2 + d1(i) * crint_2(n, rho)
!enddo
n_max = shiftr(n_pt_out, 1)
allocate(vals(0:n_max))
call crint_2_vec(n_max, rho, vals)
crint_sum_2 = d1(0) * vals(0)
do i = 2, n_pt_out, 2
n = shiftr(i, 1)
crint_sum_2 += d1(i) * vals(n)
enddo
deallocate(vals)
return
end
! ---
subroutine crint_2_vec(n_max, rho, vals)
implicit none
integer, intent(in) :: n_max
complex*16, intent(in) :: rho
complex*16, intent(out) :: vals(0:n_max)
integer :: n
double precision :: tmp, abs_rho
complex*16 :: rho2, rho3, erho
abs_rho = abs(rho)
if(abs_rho < 10.d0) then
if(abs_rho .lt. 1d-6) then
! use finite expansion for very small rho
! rho^2 / 2
rho2 = 0.5d0 * rho * rho
! rho^3 / 6
rho3 = 0.3333333333333333d0 * rho * rho2
vals(0) = 1.d0 - 0.3333333333333333d0 * rho + 0.2d0 * rho2 - 0.14285714285714285d0 * rho3
do n = 1, n_max
tmp = 2.d0 * dble(n)
vals(n) = 1.d0 / (tmp + 1.d0) - rho / (tmp + 3.d0) &
+ rho2 / (tmp + 5.d0) - rho3 / (tmp + 7.d0)
enddo
else
call crint_smallz_vec(n_max, rho, vals)
endif
else
if(real(rho) .ge. 0.d0) then
call zboysfun(n_max, rho, vals)
else
call zboysfunnrp(n_max, rho, vals)
erho = zexp(-rho)
do n = 0, n_max
vals(n) = vals(n) * erho
enddo
endif
endif
return
end
! ---
subroutine crint_smallz_vec(n_max, rho, vals)
BEGIN_DOC
! Standard version of rint
END_DOC
implicit none
integer, intent(in) :: n_max
complex*16, intent(in) :: rho
complex*16, intent(out) :: vals(0:n_max)
integer, parameter :: kmax = 40
double precision, parameter :: eps = 1.d-13
integer :: k, n
complex*16 :: ct, delta_k
complex*16 :: rhoe
complex*16, allocatable :: rho_k(:)
allocate(rho_k(0:kmax))
rho_k(0) = (1.d0, 0.d0)
do k = 1, kmax
rho_k(k) = rho_k(k-1) * rho
enddo
rhoe = 0.5d0 * zexp(-rho)
do n = 0, n_max
ct = rhoe * gamma(dble(n) + 0.5d0)
vals(n) = ct / gamma(dble(n) + 1.5d0)
do k = 1, kmax
delta_k = ct * rho_k(k) / gamma(dble(n+k) + 1.5d0)
vals(n) += delta_k
if(abs(delta_k) .lt. eps) then
exit
endif
enddo
!if(abs(delta_k) > eps) then
! write(*,*) ' pb in crint_smallz_vec !'
! write(*,*) ' n, rho = ', n, rho
! write(*,*) ' |delta_k| = ', abs(delta_k)
!endif
enddo
deallocate(rho_k)
return
end
! ---

View File

@ -1,7 +1,7 @@
! --- ! ---
complex*16 function cpx_erf(x, y) complex*16 function cpx_erf_1(x, y)
BEGIN_DOC BEGIN_DOC
! !
@ -25,25 +25,25 @@ complex*16 function cpx_erf(x, y)
if(yabs .lt. 1.d-15) then if(yabs .lt. 1.d-15) then
cpx_erf = (1.d0, 0.d0) * derf(x) cpx_erf_1 = (1.d0, 0.d0) * derf(x)
return return
else else
erf_tmp1 = (1.d0, 0.d0) * derf(x) erf_tmp1 = (1.d0, 0.d0) * derf(x)
erf_tmp2 = erf_E(x, yabs) + erf_F(x, yabs) erf_tmp2 = erf_E(x, yabs) + erf_F(x, yabs)
erf_tmp3 = zexp(-(0.d0, 2.d0) * x * yabs) * ( erf_G(x, yabs) + erf_H(x, yabs) ) erf_tmp3 = zexp(-(0.d0, 2.d0) * x * yabs) * (erf_G(x, yabs) + erf_H(x, yabs))
erf_tot = erf_tmp1 + erf_tmp2 - erf_tmp3 erf_tot = erf_tmp1 + erf_tmp2 - erf_tmp3
endif endif
if(y .gt. 0.d0) then if(y .gt. 0.d0) then
cpx_erf = erf_tot cpx_erf_1 = erf_tot
else else
cpx_erf = CONJG(erf_tot) cpx_erf_1 = conjg(erf_tot)
endif endif
end function cpx_erf end
! --- ! ---
@ -54,7 +54,7 @@ complex*16 function erf_E(x, yabs)
double precision, intent(in) :: x, yabs double precision, intent(in) :: x, yabs
if( (dabs(x).gt.6.d0) .or. (x==0.d0) ) then if((dabs(x).gt.6.d0) .or. (x==0.d0)) then
erf_E = (0.d0, 0.d0) erf_E = (0.d0, 0.d0)
return return
endif endif
@ -70,7 +70,7 @@ complex*16 function erf_E(x, yabs)
endif endif
end function erf_E end
! --- ! ---
@ -109,7 +109,7 @@ double precision function erf_F(x, yabs)
endif endif
end function erf_F end
! --- ! ---
@ -149,7 +149,7 @@ complex*16 function erf_G(x, yabs)
enddo enddo
end function erf_G end
! --- ! ---
@ -172,7 +172,7 @@ complex*16 function erf_H(x, yabs)
endif endif
if( (dabs(x) .lt. 10d0) .and. (yabs .lt. 6.1d0) ) then if((dabs(x) .lt. 10d0) .and. (yabs .lt. 6.1d0)) then
x2 = x * x x2 = x * x
ct = 0.5d0 * inv_pi ct = 0.5d0 * inv_pi
@ -186,7 +186,7 @@ complex*16 function erf_H(x, yabs)
tmp2 = dexp(-tmp1-idble*yabs) * (x + (0.d0, 1.d0)*tmp0) / tmp1 tmp2 = dexp(-tmp1-idble*yabs) * (x + (0.d0, 1.d0)*tmp0) / tmp1
erf_H = erf_H + tmp2 erf_H = erf_H + tmp2
tmp_mod = dsqrt(REAL(tmp2)*REAL(tmp2) + AIMAG(tmp2)*AIMAG(tmp2)) tmp_mod = dsqrt(real(tmp2)*real(tmp2) + aimag(tmp2)*aimag(tmp2))
if(tmp_mod .lt. 1d-15) exit if(tmp_mod .lt. 1d-15) exit
enddo enddo
erf_H = ct * erf_H erf_H = ct * erf_H
@ -197,8 +197,394 @@ complex*16 function erf_H(x, yabs)
endif endif
end function erf_H end
! --- ! ---
complex*16 function cpx_erf_2(x, y)
BEGIN_DOC
!
! compute erf(z) for z = x + i y
!
! Beylkin & Sharma, J. Chem. Phys. 155, 174117 (2021)
! https://doi.org/10.1063/5.0062444
!
END_DOC
implicit none
double precision, intent(in) :: x, y
double precision :: yabs
complex*16 :: z
yabs = dabs(y)
if(yabs .lt. 1.d-15) then
cpx_erf_2 = (1.d0, 0.d0) * derf(x)
return
else
z = x + (0.d0, 1.d0) * y
if(x .ge. 0.d0) then
call zboysfun00(z, cpx_erf_2)
else
call zboysfun00nrp(z, cpx_erf_2)
cpx_erf_2 = cpx_erf_2 * zexp(-z)
endif
endif
return
end
! ---
subroutine zboysfun00(z, val)
BEGIN_DOC
!
! Computes values of the Boys function for n=0
! for a complex valued argument
!
! Input: z --- argument, complex*16, Real(z) >= 0
! Output: val --- value of the Boys function n=0
!
! Beylkin & Sharma, J. Chem. Phys. 155, 174117 (2021)
! https://doi.org/10.1063/5.0062444
!
END_DOC
implicit none
double precision, parameter :: asymcoef(1:7) = (/ -0.499999999999999799d0, &
0.249999999999993161d0, &
-0.374999999999766599d0, &
0.937499999992027020d0, &
-3.28124999972738868d0, &
14.7656249906697030d0, &
-81.2109371803307752d0 /)
double precision, parameter :: taylcoef(0:10) = (/ 1.0d0, &
-0.333333333333333333d0, &
0.1d0, &
-0.238095238095238095d-01, &
0.462962962962962963d-02, &
-0.757575757575757576d-03, &
0.106837606837606838d-03, &
-0.132275132275132275d-04, &
1.458916900093370682d-06, &
-1.450385222315046877d-07, &
1.3122532963802805073d-08 /)
double precision, parameter :: sqpio2 = 0.886226925452758014d0
double precision, parameter :: pp(1:22) = (/ 0.001477878263796956477d0, &
0.013317276413725817441d0, &
0.037063591452052541530d0, &
0.072752512422882761543d0, &
0.120236941228785688896d0, &
0.179574293958937717967d0, &
0.253534046984087292596d0, &
0.350388652780721927513d0, &
0.482109575931276669313d0, &
0.663028993158374107103d0, &
0.911814736856590885929d0, &
1.2539502287919293d0, &
1.7244634233573395d0, &
2.3715248262781863d0, &
3.2613796996078355d0, &
4.485130169059591d0, &
6.168062135122484d0, &
8.48247187231787d0, &
11.665305486296793d0, &
16.042417132288328d0, &
22.06192951814709d0, &
30.340112094708307d0 /)
double precision, parameter :: ff(1:22) = (/ 0.0866431027201416556d0, &
0.0857720608434394764d0, &
0.0839350436829178814d0, &
0.0809661970413229146d0, &
0.0769089548492978618d0, &
0.0731552078711821626d0, &
0.0726950035163157228d0, &
0.0752842556089304050d0, &
0.0770943953645196145d0, &
0.0754250625677530441d0, &
0.0689686192650315305d0, &
0.05744480422143023d0, &
0.04208199434694545d0, &
0.025838539448223282d0, &
0.012445024157255563d0, &
0.004292541592599837d0, &
0.0009354342987735969d0, &
0.10840885466502504d-03, &
5.271867966761674d-06, &
7.765974039750418d-08, &
2.2138172422680093d-10, &
6.594161760037707d-14 /)
complex*16, intent(in) :: z
complex*16, intent(out) :: val
integer :: k
complex*16 :: z1, zz, y
zz = zexp(-z)
if(abs(z) .ge. 100.0d0) then
! large |z|
z1 = 1.0d0 / zsqrt(z)
y = 1.0d0 / z
val = asymcoef(7)
do k = 6, 1, -1
val = val * y + asymcoef(k)
enddo
val = zz * val * y + z1 * sqpio2
else if(abs(z) .le. 0.35d0) then
! small |z|
val = taylcoef(10) * (1.d0, 0.d0)
do k = 9, 0, -1
val = val * z + taylcoef(k)
enddo
else
! intermediate |z|
val = sqpio2 / zsqrt(z) - 0.5d0 * zz * sum(ff(1:22)/(z+pp(1:22)))
!val = (0.d0, 0.d0)
!do k = 1, 22
! val += ff(k) / (z + pp(k))
!enddo
!val = sqpio2 / zsqrt(z) - 0.5d0 * zz * val
endif
return
end
! ---
subroutine zboysfun00nrp(z, val)
BEGIN_DOC
!
! Computes values of the exp(z) F(0,z)
! (where F(0,z) is the Boys function)
! for a complex valued argument with Real(z)<=0
!
! Input: z --- argument, complex*16, !!! Real(z)<=0 !!!
! Output: val --- value of the function !!! exp(z) F(0,z) !!!, where F(0,z) is the Boys function
!
! Beylkin & Sharma, J. Chem. Phys. 155, 174117 (2021)
! https://doi.org/10.1063/5.0062444
!
END_DOC
implicit none
double precision, parameter :: asymcoef(1:7) = (/ -0.499999999999999799d0, &
0.249999999999993161d0, &
-0.374999999999766599d0, &
0.937499999992027020d0, &
-3.28124999972738868d0, &
14.7656249906697030d0, &
-81.2109371803307752d0 /)
double precision, parameter :: taylcoef(0:10) = (/ 1.0d0, &
-0.333333333333333333d0, &
0.1d0, &
-0.238095238095238095d-01, &
0.462962962962962963d-02, &
-0.757575757575757576d-03, &
0.106837606837606838d-03, &
-0.132275132275132275d-04, &
1.458916900093370682d-06, &
-1.450385222315046877d-07, &
1.3122532963802805073d-08 /)
double precision, parameter :: tol = 1.0d-03
double precision, parameter :: sqpio2 = 0.886226925452758014d0 ! sqrt(pi)/2
double precision, parameter :: pi = 3.14159265358979324d0
double precision, parameter :: etmax = 25.7903399171930621d0
double precision, parameter :: etmax1 = 26.7903399171930621d0
complex*16, parameter :: ima = (0.d0, 1.d0)
double precision, parameter :: pp(1:16) = (/ 0.005299532504175031d0, &
0.0277124884633837d0, &
0.06718439880608407d0, &
0.12229779582249845d0, &
0.19106187779867811d0, &
0.27099161117138637d0, &
0.35919822461037054d0, &
0.45249374508118123d0, &
0.5475062549188188d0, &
0.6408017753896295d0, &
0.7290083888286136d0, &
0.8089381222013219d0, &
0.8777022041775016d0, &
0.9328156011939159d0, &
0.9722875115366163d0, &
0.994700467495825d0 /)
double precision, parameter :: ww(1:16) = (/ 0.013576229705876844d0, &
0.03112676196932382d0, &
0.04757925584124612d0, &
0.062314485627766904d0, &
0.07479799440828848d0, &
0.08457825969750153d0, &
0.09130170752246194d0, &
0.0947253052275344d0, &
0.0947253052275344d0, &
0.09130170752246194d0, &
0.08457825969750153d0, &
0.07479799440828848d0, &
0.062314485627766904d0, &
0.04757925584124612d0, &
0.03112676196932382d0, &
0.013576229705876844d0 /)
double precision, parameter :: qq (1:16) = (/ 0.0007243228510223928d0, &
0.01980651726441906d0, &
0.11641097769229371d0, &
0.38573968881461146d0, &
0.9414671037609641d0, &
1.8939510935716377d0, &
3.3275564293459383d0, &
5.280587297262129d0, &
7.730992222360452d0, &
10.590207725831563d0, &
13.706359477128965d0, &
16.876705473663804d0, &
19.867876155236257d0, &
22.441333930203022d0, &
24.380717439613566d0, &
25.51771075067431d0 /)
double precision, parameter :: qq1 (1:16) = (/ 0.0007524078957852004d0,&
0.020574499281252233d0, &
0.12092472113522865d0, &
0.40069643967765295d0, &
0.9779717449089211d0, &
1.9673875468969015d0, &
3.4565797939091802d0, &
5.485337886599723d0, &
8.030755321535683d0, &
11.000834641174064d0, &
14.237812708111456d0, &
17.531086359214406d0, &
20.6382373144543d0, &
23.31147887603379d0, &
25.326060444703632d0, &
26.507139770710722d0 /)
double precision, parameter :: uu(1:16) = (/ 0.9992759394074501d0, &
0.9803883431758104d0, &
0.8901093330366746d0, &
0.6799475005849274d0, &
0.3900551639790145d0, &
0.15047608763371934d0, &
0.0358806749968974d0, &
0.005089440900100864d0, &
0.00043900830706867264d0, &
0.000025161192619824898d0, &
1.1153308427285078d-6, &
4.68317018372038d-8, &
2.3522908467181876d-9, &
1.7941242138648815d-10, &
2.5798173021885247d-11, &
8.27559122014575d-12 /)
double precision, parameter :: uu1(1:16) = (/ 0.999247875092057d0, &
0.979635711599488d0, &
0.8861006617341018d0, &
0.6698533710831932d0, &
0.3760730980014839d0, &
0.13982165701683388d0, &
0.031537442321301304d0, &
0.004147133581658446d0, &
0.0003253024081883165d0, &
0.000016687766678889653d0, &
6.555359391864376d-7, &
2.4341421258295026d-8, &
1.0887481200652014d-9, &
7.51542178140961d-11, &
1.002378402152542d-11, &
3.0767730761654096d-12 /)
complex*16, intent(in) :: z
complex*16, intent(out) :: val
integer :: k
complex*16 :: z1, zz, y, zsum, tmp, zt, q, p
zz = zexp(z)
if(abs(z) .ge. 100.0d0) then
! large |z|
z1 = 1.0d0 / zsqrt(z)
y = 1.0d0 / z
val = asymcoef(7)
do k = 6, 1, -1
val = val * y + asymcoef(k)
enddo
val = val * y + z1 * sqpio2 * zz
return
endif
if(abs(z) .le. 0.35d0) then
! small |z|
val = taylcoef(10) * (1.d0, 0.d0)
do k = 9, 0, -1
val = val * z + taylcoef(k)
enddo
val = val * zz
return
endif
if(abs(etmax+z) .ge. 0.5d0) then
! intermediate |z|
zsum = (0.d0, 0.d0)
do k = 1, 16
if(abs(z + qq(k)) .ge. tol) then
zsum = zsum + ww(k) * (zz - uu(k)) / (qq(k) + z)
else
q = z + qq(k)
p = 1.0d0 - 0.5d0*q + q*q/6.0d0 - q*q*q/24.0d0 + q*q*q*q/120.0d0
zsum = zsum + ww(k) * p *zz
endif
enddo
zt = ima * sqrt(z / etmax)
tmp = 0.5d0 * ima * log((1.0d0 - zt) / (1.0d0 + zt))
val = sqrt(etmax) * zsum / sqrt(pi) + zz * tmp / sqrt(pi*z)
else
zsum = (0.d0, 0.d0)
do k = 1, 16
if(abs(z + qq1(k)) .ge. tol) then
zsum = zsum + ww(k) * (zz - uu1(k)) / (qq1(k) + z)
else
q = z + qq1(k)
p = 1.0d0 - 0.5d0*q + q*q/6.0d0 - q*q*q/24.0d0 + q*q*q*q/120.0d0
zsum = zsum + ww(k) * p * zz
endif
enddo
zt = ima * zsqrt(z / etmax1)
tmp = 0.5d0 * ima * log((1.0d0 - zt) / (1.0d0 + zt))
val = dsqrt(etmax1) * zsum / dsqrt(pi) + zz * tmp / zsqrt(pi*z)
endif
return
end
! ---

View File

@ -2,6 +2,34 @@ module mmap_module
use iso_c_binding use iso_c_binding
type mmap_type
type(c_ptr) :: ptr ! Pointer to the data
character*(128) :: filename ! Name of the file
integer*8 :: length ! Size of the array in bytes
integer :: fd ! File descriptor
! Pointers to data
integer, pointer :: i1(:)
integer, pointer :: i2(:,:)
integer, pointer :: i3(:,:,:)
integer, pointer :: i4(:,:,:,:)
integer*8, pointer :: i81(:)
integer*8, pointer :: i82(:,:)
integer*8, pointer :: i83(:,:,:)
integer*8, pointer :: i84(:,:,:,:)
double precision, pointer :: d1(:)
double precision, pointer :: d2(:,:)
double precision, pointer :: d3(:,:,:)
double precision, pointer :: d4(:,:,:,:)
real, pointer :: s1(:)
real, pointer :: s2(:,:)
real, pointer :: s3(:,:,:)
real, pointer :: s4(:,:,:,:)
end type mmap_type
interface interface
! File descriptors ! File descriptors
@ -82,7 +110,7 @@ module mmap_module
length = length * shape(i) length = length * shape(i)
enddo enddo
fd_ = fd fd_ = fd
call c_munmap_fortran( length, fd_, map) call c_munmap_fortran(length, fd_, map)
end subroutine end subroutine
subroutine msync(shape, bytes, fd, map) subroutine msync(shape, bytes, fd, map)
@ -106,6 +134,200 @@ module mmap_module
call c_msync_fortran( length, fd_, map) call c_msync_fortran( length, fd_, map)
end subroutine end subroutine
! Functions for the mmap_type
subroutine mmap_create(filename, shape, bytes, read_only, single_node, map)
implicit none
character*(*), intent(in) :: filename ! Name of the mapped file
integer*8, intent(in) :: shape(:) ! Shape of the array to map
integer, intent(in) :: bytes ! Number of bytes per element
logical, intent(in) :: read_only ! If true, mmap is read-only
logical, intent(in) :: single_node! If true, mmap is on a single node
type(mmap_type), intent(out) :: map ! mmap
integer :: i
logical :: temporary
temporary = ( trim(filename) == '' )
if (.not.temporary) then
map%filename = filename
else
call getenv('EZFIO_FILE', map%filename)
map%filename = trim(map%filename) // '/work/tmpfile'
endif
map%length = int(bytes,8)
do i=1,size(shape)
map%length = map%length * shape(i)
enddo
call mmap(map%filename, &
shape, &
bytes, &
map%fd, &
read_only, &
single_node, &
map%ptr)
if (temporary) then
! Deleting the file while it is open makes the file invisible on the filesystem,
! and automatically deleted, even if the program crashes
open(UNIT=47, FILE=trim(map%filename), STATUS='OLD')
close(47,STATUS='DELETE')
endif
map%d1 => NULL()
map%d2 => NULL()
map%d3 => NULL()
map%d4 => NULL()
map%s1 => NULL()
map%s2 => NULL()
map%s3 => NULL()
map%s4 => NULL()
map%i1 => NULL()
map%i2 => NULL()
map%i3 => NULL()
map%i4 => NULL()
map%i81 => NULL()
map%i82 => NULL()
map%i83 => NULL()
map%i84 => NULL()
end
subroutine mmap_create_d(filename, shape, read_only, single_node, map)
implicit none
character*(*), intent(in) :: filename ! Name of the mapped file
integer*8, intent(in) :: shape(:) ! Shape of the array to map
logical, intent(in) :: read_only ! If true, mmap is read-only
logical, intent(in) :: single_node! If true, mmap is on a single node
type(mmap_type), intent(out) :: map ! mmap
call mmap_create(filename, shape, 8, read_only, single_node, map)
select case (size(shape))
case (1)
call c_f_pointer(map%ptr, map%d1, shape)
case (2)
call c_f_pointer(map%ptr, map%d2, shape)
case (3)
call c_f_pointer(map%ptr, map%d3, shape)
case (4)
call c_f_pointer(map%ptr, map%d4, shape)
case default
stop 'mmap: dimension not implemented'
end select
end subroutine
subroutine mmap_create_s(filename, shape, read_only, single_node, map)
implicit none
character*(*), intent(in) :: filename ! Name of the mapped file
integer*8, intent(in) :: shape(:) ! Shape of the array to map
logical, intent(in) :: read_only ! If true, mmap is read-only
logical, intent(in) :: single_node! If true, mmap is on a single node
type(mmap_type), intent(out) :: map ! mmap
call mmap_create(filename, shape, 4, read_only, single_node, map)
select case (size(shape))
case (1)
call c_f_pointer(map%ptr, map%s1, shape)
case (2)
call c_f_pointer(map%ptr, map%s2, shape)
case (3)
call c_f_pointer(map%ptr, map%s3, shape)
case (4)
call c_f_pointer(map%ptr, map%s4, shape)
case default
stop 'mmap: dimension not implemented'
end select
end subroutine
subroutine mmap_create_i(filename, shape, read_only, single_node, map)
implicit none
character*(*), intent(in) :: filename ! Name of the mapped file
integer*8, intent(in) :: shape(:) ! Shape of the array to map
logical, intent(in) :: read_only ! If true, mmap is read-only
logical, intent(in) :: single_node! If true, mmap is on a single node
type(mmap_type), intent(out) :: map ! mmap
call mmap_create(filename, shape, 4, read_only, single_node, map)
select case (size(shape))
case (1)
call c_f_pointer(map%ptr, map%i1, shape)
case (2)
call c_f_pointer(map%ptr, map%i2, shape)
case (3)
call c_f_pointer(map%ptr, map%i3, shape)
case (4)
call c_f_pointer(map%ptr, map%i4, shape)
case default
stop 'mmap: dimension not implemented'
end select
end subroutine
subroutine mmap_create_i8(filename, shape, read_only, single_node, map)
implicit none
character*(*), intent(in) :: filename ! Name of the mapped file
integer*8, intent(in) :: shape(:) ! Shape of the array to map
logical, intent(in) :: read_only ! If true, mmap is read-only
logical, intent(in) :: single_node! If true, mmap is on a single node
type(mmap_type), intent(out) :: map ! mmap
call mmap_create(filename, shape, 8, read_only, single_node, map)
select case (size(shape))
case (1)
call c_f_pointer(map%ptr, map%i81, shape)
case (2)
call c_f_pointer(map%ptr, map%i82, shape)
case (3)
call c_f_pointer(map%ptr, map%i83, shape)
case (4)
call c_f_pointer(map%ptr, map%i84, shape)
case default
stop 'mmap: dimension not implemented'
end select
end subroutine
subroutine mmap_destroy(map)
implicit none
type(mmap_type), intent(inout) :: map
call c_munmap_fortran(map%length, map%fd, map%ptr)
map%ptr = C_NULL_PTR
map%filename = ''
map%length = 0
map%fd = 0
map%s1 => NULL()
map%s2 => NULL()
map%s3 => NULL()
map%s4 => NULL()
map%d1 => NULL()
map%d2 => NULL()
map%d3 => NULL()
map%d4 => NULL()
map%i1 => NULL()
map%i2 => NULL()
map%i3 => NULL()
map%i4 => NULL()
map%i81 => NULL()
map%i82 => NULL()
map%i83 => NULL()
map%i84 => NULL()
end subroutine
subroutine mmap_sync(map)
implicit none
type(mmap_type), intent(inout) :: map
call c_msync_fortran(map%length, map%fd, map%ptr)
end subroutine
end module mmap_module end module mmap_module

View File

@ -53,10 +53,10 @@ subroutine diis_cc(all_err,all_t,sze,m,iter,t)
!$OMP END PARALLEL !$OMP END PARALLEL
do i = 1, m_iter do i = 1, m_iter
B(i,m_iter+1) = -1 B(i,m_iter+1) = -1.d0
enddo enddo
do j = 1, m_iter do j = 1, m_iter
B(m_iter+1,j) = -1 B(m_iter+1,j) = -1.d0
enddo enddo
! Debug ! Debug
!print*,'B' !print*,'B'
@ -493,7 +493,7 @@ subroutine update_t_ccsd_diis_v3(nO,nV,nb_iter,f_o,f_v,r1,r2,t1,t2,all_err,all_t
do i = 1, nO*nV do i = 1, nO*nV
tmp(i) = t1(i) tmp(i) = t1(i)
enddo enddo
!$OMP END DO NOWAIT !$OMP END DO
!$OMP DO !$OMP DO
do i = 1, nO*nO*nV*nV do i = 1, nO*nO*nV*nV
tmp(i+nO*nV) = t2(i) tmp(i+nO*nV) = t2(i)
@ -515,7 +515,7 @@ subroutine update_t_ccsd_diis_v3(nO,nV,nb_iter,f_o,f_v,r1,r2,t1,t2,all_err,all_t
do i = 1, nO*nV do i = 1, nO*nV
t1(i) = tmp(i) t1(i) = tmp(i)
enddo enddo
!$OMP END DO NOWAIT !$OMP END DO
!$OMP DO !$OMP DO
do i = 1, nO*nO*nV*nV do i = 1, nO*nO*nV*nV
t2(i) = tmp(i+nO*nV) t2(i) = tmp(i+nO*nV)