9
1
mirror of https://github.com/QuantumPackage/qp2.git synced 2025-01-08 19:32:58 +01:00

bypass one_e_tr_dm_mo for large mo_num & n_states

This commit is contained in:
AbdAmmar 2024-05-23 00:45:56 +02:00
parent 6e2f28b97f
commit 29da3b6542

View File

@ -18,7 +18,7 @@
BEGIN_PROVIDER [double precision, multi_s_dipole_moment, (N_states, N_states)] BEGIN_PROVIDER [double precision, multi_s_dipole_moment , (N_states, N_states)]
&BEGIN_PROVIDER [double precision, multi_s_x_dipole_moment, (N_states, N_states)] &BEGIN_PROVIDER [double precision, multi_s_x_dipole_moment, (N_states, N_states)]
&BEGIN_PROVIDER [double precision, multi_s_y_dipole_moment, (N_states, N_states)] &BEGIN_PROVIDER [double precision, multi_s_y_dipole_moment, (N_states, N_states)]
&BEGIN_PROVIDER [double precision, multi_s_z_dipole_moment, (N_states, N_states)] &BEGIN_PROVIDER [double precision, multi_s_z_dipole_moment, (N_states, N_states)]
@ -40,27 +40,153 @@ BEGIN_PROVIDER [double precision, multi_s_dipole_moment, (N_states, N_states)]
! gamma^{nm}: density matrix \bra{\Psi^n} a^{\dagger}_a a_i \ket{\Psi^m} ! gamma^{nm}: density matrix \bra{\Psi^n} a^{\dagger}_a a_i \ket{\Psi^m}
END_DOC END_DOC
integer :: istate,jstate ! States integer :: istate, jstate ! States
integer :: i,j ! general spatial MOs integer :: i, j ! general spatial MOs
double precision :: nuclei_part_x, nuclei_part_y, nuclei_part_z double precision :: nuclei_part_x, nuclei_part_y, nuclei_part_z
multi_s_x_dipole_moment = 0.d0 multi_s_x_dipole_moment = 0.d0
multi_s_y_dipole_moment = 0.d0 multi_s_y_dipole_moment = 0.d0
multi_s_z_dipole_moment = 0.d0 multi_s_z_dipole_moment = 0.d0
if(8.d0*mo_num*mo_num*n_states*n_states*1d-9 .lt. 200.d0) then
do jstate = 1, N_states do jstate = 1, N_states
do istate = 1, N_states do istate = 1, N_states
do i = 1, mo_num
do i = 1, mo_num do j = 1, mo_num
do j = 1, mo_num multi_s_x_dipole_moment(istate,jstate) -= one_e_tr_dm_mo(j,i,istate,jstate) * mo_dipole_x(j,i)
multi_s_x_dipole_moment(istate,jstate) -= one_e_tr_dm_mo(j,i,istate,jstate) * mo_dipole_x(j,i) multi_s_y_dipole_moment(istate,jstate) -= one_e_tr_dm_mo(j,i,istate,jstate) * mo_dipole_y(j,i)
multi_s_y_dipole_moment(istate,jstate) -= one_e_tr_dm_mo(j,i,istate,jstate) * mo_dipole_y(j,i) multi_s_z_dipole_moment(istate,jstate) -= one_e_tr_dm_mo(j,i,istate,jstate) * mo_dipole_z(j,i)
multi_s_z_dipole_moment(istate,jstate) -= one_e_tr_dm_mo(j,i,istate,jstate) * mo_dipole_z(j,i) enddo
enddo enddo
enddo enddo
enddo enddo
enddo
else
! no enouph memory
! on the fly scheme
PROVIDE psi_det_alpha_unique psi_det_beta_unique
integer :: l, k_a, k_b
integer :: occ(N_int*bit_kind_size,2)
integer :: h1, h2, p1, p2, degree
integer :: exc(0:2,2), n_occ(2)
integer :: krow, kcol, lrow, lcol
integer(bit_kind) :: tmp_det(N_int,2), tmp_det2(N_int)
double precision :: ck, ckl, phase
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP PRIVATE(j, l, k_a, k_b, istate, jstate, occ, ck, ckl, h1, h2, p1, p2, exc, &
!$OMP phase, degree, n_occ, krow, kcol, lrow, lcol, tmp_det, tmp_det2) &
!$OMP SHARED(N_int, N_states, elec_alpha_num, elec_beta_num, N_det, &
!$OMP psi_bilinear_matrix_rows, psi_bilinear_matrix_columns, &
!$OMP psi_bilinear_matrix_transp_rows, psi_bilinear_matrix_transp_columns, &
!$OMP psi_det_alpha_unique, psi_det_beta_unique, &
!$OMP psi_bilinear_matrix_values, psi_bilinear_matrix_transp_values, &
!$OMP mo_dipole_x, mo_dipole_y, mo_dipole_z, &
!$OMP multi_s_x_dipole_moment, multi_s_y_dipole_moment, multi_s_z_dipole_moment)
!$OMP DO COLLAPSE(2)
do istate = 1, N_states
do jstate = 1, N_states
do k_a = 1, N_det
krow = psi_bilinear_matrix_rows (k_a)
kcol = psi_bilinear_matrix_columns(k_a)
tmp_det(1:N_int,1) = psi_det_alpha_unique(1:N_int,krow)
tmp_det(1:N_int,2) = psi_det_beta_unique (1:N_int,kcol)
! Diagonal part
call bitstring_to_list_ab(tmp_det, occ, n_occ, N_int)
ck = psi_bilinear_matrix_values(k_a,istate)*psi_bilinear_matrix_values(k_a,jstate)
do l = 1, elec_alpha_num
j = occ(l,1)
multi_s_x_dipole_moment(istate,jstate) -= ck * mo_dipole_x(j,j)
multi_s_y_dipole_moment(istate,jstate) -= ck * mo_dipole_y(j,j)
multi_s_z_dipole_moment(istate,jstate) -= ck * mo_dipole_z(j,j)
enddo
if (k_a == N_det) cycle
l = k_a + 1
lrow = psi_bilinear_matrix_rows (l)
lcol = psi_bilinear_matrix_columns(l)
! Fix beta determinant, loop over alphas
do while (lcol == kcol)
tmp_det2(:) = psi_det_alpha_unique(:,lrow)
call get_excitation_degree_spin(tmp_det(1,1), tmp_det2, degree, N_int)
if (degree == 1) then
exc = 0
call get_single_excitation_spin(tmp_det(1,1), tmp_det2, exc, phase, N_int)
call decode_exc_spin(exc, h1, p1, h2, p2)
ckl = psi_bilinear_matrix_values(k_a,istate)*psi_bilinear_matrix_values(l,jstate) * phase
multi_s_x_dipole_moment(istate,jstate) -= ckl * mo_dipole_x(h1,p1)
multi_s_y_dipole_moment(istate,jstate) -= ckl * mo_dipole_y(h1,p1)
multi_s_z_dipole_moment(istate,jstate) -= ckl * mo_dipole_z(h1,p1)
ckl = psi_bilinear_matrix_values(k_a,jstate)*psi_bilinear_matrix_values(l,istate) * phase
multi_s_x_dipole_moment(istate,jstate) -= ckl * mo_dipole_x(p1,h1)
multi_s_y_dipole_moment(istate,jstate) -= ckl * mo_dipole_y(p1,h1)
multi_s_z_dipole_moment(istate,jstate) -= ckl * mo_dipole_z(p1,h1)
endif
l = l+1
if (l > N_det) exit
lrow = psi_bilinear_matrix_rows (l)
lcol = psi_bilinear_matrix_columns(l)
enddo
enddo ! k_a
do k_b = 1, N_det
krow = psi_bilinear_matrix_transp_rows (k_b)
kcol = psi_bilinear_matrix_transp_columns(k_b)
tmp_det(1:N_int,1) = psi_det_alpha_unique(1:N_int,krow)
tmp_det(1:N_int,2) = psi_det_beta_unique (1:N_int,kcol)
! Diagonal part
call bitstring_to_list_ab(tmp_det, occ, n_occ, N_int)
ck = psi_bilinear_matrix_transp_values(k_b,istate)*psi_bilinear_matrix_transp_values(k_b,jstate)
do l = 1, elec_beta_num
j = occ(l,2)
multi_s_x_dipole_moment(istate,jstate) -= ck * mo_dipole_x(j,j)
multi_s_y_dipole_moment(istate,jstate) -= ck * mo_dipole_y(j,j)
multi_s_z_dipole_moment(istate,jstate) -= ck * mo_dipole_z(j,j)
enddo
if (k_b == N_det) cycle
l = k_b+1
lrow = psi_bilinear_matrix_transp_rows (l)
lcol = psi_bilinear_matrix_transp_columns(l)
! Fix beta determinant, loop over alphas
do while (lrow == krow)
tmp_det2(:) = psi_det_beta_unique(:,lcol)
call get_excitation_degree_spin(tmp_det(1,2), tmp_det2, degree, N_int)
if (degree == 1) then
exc = 0
call get_single_excitation_spin(tmp_det(1,2), tmp_det2, exc, phase, N_int)
call decode_exc_spin(exc, h1, p1, h2, p2)
ckl = psi_bilinear_matrix_transp_values(k_b,istate)*psi_bilinear_matrix_transp_values(l,jstate) * phase
multi_s_x_dipole_moment(istate,jstate) -= ckl * mo_dipole_x(h1,p1)
multi_s_y_dipole_moment(istate,jstate) -= ckl * mo_dipole_y(h1,p1)
multi_s_z_dipole_moment(istate,jstate) -= ckl * mo_dipole_z(h1,p1)
ckl = psi_bilinear_matrix_transp_values(k_b,jstate)*psi_bilinear_matrix_transp_values(l,istate) * phase
multi_s_x_dipole_moment(istate,jstate) -= ckl * mo_dipole_x(p1,h1)
multi_s_y_dipole_moment(istate,jstate) -= ckl * mo_dipole_y(p1,h1)
multi_s_z_dipole_moment(istate,jstate) -= ckl * mo_dipole_z(p1,h1)
endif
l = l+1
if (l > N_det) exit
lrow = psi_bilinear_matrix_transp_rows (l)
lcol = psi_bilinear_matrix_transp_columns(l)
enddo
enddo ! k_b
enddo ! istate
enddo ! jstate
!$OMP END DO
!$OMP END PARALLEL
endif ! memory condition
! Nuclei part ! Nuclei part
nuclei_part_x = 0.d0 nuclei_part_x = 0.d0