9
1
mirror of https://github.com/QuantumPackage/qp2.git synced 2025-01-03 00:55:38 +01:00
This commit is contained in:
Anthony Scemama 2019-06-25 16:46:14 +02:00
parent 328ab2dadf
commit 26be853c18
12 changed files with 2126 additions and 2220 deletions

View File

@ -1,104 +1,151 @@
! -*- F90 -*- BEGIN_PROVIDER [real*8, bielec_PQxx, (mo_num, mo_num,n_core_orb+n_act_orb,n_core_orb+n_act_orb)]
BEGIN_PROVIDER[real*8, bielec_PQxx, (mo_num, mo_num,n_core_orb+n_act_orb,n_core_orb+n_act_orb)] BEGIN_DOC
&BEGIN_PROVIDER[real*8, bielec_PxxQ, (mo_num,n_core_orb+n_act_orb,n_core_orb+n_act_orb, mo_num)] ! bielec_PQxx : integral (pq|xx) with p,q arbitrary, x core or active
BEGIN_DOC ! indices are unshifted orbital numbers
! bielec_PQxx : integral (pq|xx) with p,q arbitrary, x core or active END_DOC
! bielec_PxxQ : integral (px|xq) with p,q arbitrary, x core or active
! indices are unshifted orbital numbers
! all integrals are read from files
END_DOC
implicit none implicit none
integer :: i,j,p,q,indx,kk integer :: i,j,ii,jj,p,q,i3,j3,t3,v3
real*8 :: hhh double precision, allocatable :: integrals_array(:,:)
logical :: lread real*8 :: mo_two_e_integral
do i=1,n_core_orb+n_act_orb allocate(integrals_array(mo_num,mo_num))
do j=1,n_core_orb+n_act_orb
bielec_PQxx = 0.d0
do i=1,n_core_orb
ii=list_core(i)
do j=i,n_core_orb
jj=list_core(j)
call get_mo_two_e_integrals_i1j1(ii,jj,mo_num,integrals_array,mo_integrals_map)
do p=1,mo_num do p=1,mo_num
do q=1,mo_num do q=1,mo_num
bielec_PQxx(p,q,i,j)=0.D0 bielec_PQxx(p,q,i,j)=integrals_array(p,q)
bielec_PxxQ(p,i,j,q)=0.D0 bielec_PQxx(p,q,j,i)=integrals_array(p,q)
end do
end do
end do
do j=1,n_act_orb
jj=list_act(j)
j3=j+n_core_orb
call get_mo_two_e_integrals_i1j1(ii,jj,mo_num,integrals_array,mo_integrals_map)
do p=1,mo_num
do q=1,mo_num
bielec_PQxx(p,q,i,j3)=integrals_array(p,q)
bielec_PQxx(p,q,j3,i)=integrals_array(p,q)
end do end do
end do end do
end do end do
end do end do
open(unit=12,form='formatted',status='old',file='bielec_PQxx.tmp')
lread=.true.
indx=0
do while (lread)
read(12,*,iostat=kk) p,q,i,j,hhh
if (kk.ne.0) then
lread=.false.
else
! stored with p.le.q, i.le.j
bielec_PQxx(p,q,i,j)=hhh
bielec_PQxx(q,p,i,j)=hhh
bielec_PQxx(q,p,j,i)=hhh
bielec_PQxx(p,q,j,i)=hhh
indx+=1
end if
end do
close(12)
write(6,*) ' read ',indx,' integrals PQxx into core '
open(unit=12,form='formatted',status='old',file='bielec_PxxQ.tmp') ! (ij|pq)
lread=.true. do i=1,n_act_orb
indx=0 ii=list_act(i)
do while (lread) i3=i+n_core_orb
read(12,*,iostat=kk) p,i,j,q,hhh do j=i,n_act_orb
if (kk.ne.0) then jj=list_act(j)
lread=.false. j3=j+n_core_orb
else call get_mo_two_e_integrals_i1j1(ii,jj,mo_num,integrals_array,mo_integrals_map)
! stored with (ip).le.(jq) do p=1,mo_num
bielec_PxxQ(p,i,j,q)=hhh do q=1,mo_num
bielec_PxxQ(q,j,i,p)=hhh bielec_PQxx(p,q,i3,j3)=integrals_array(p,q)
indx+=1 bielec_PQxx(p,q,j3,i3)=integrals_array(p,q)
end if
end do end do
write(6,*) ' read ',indx,' integrals PxxQ into core ' end do
close(12) end do
write(6,*) ' provided integrals (PQ|xx) and (Px|xQ) ' end do
write(6,*) ' provided integrals (PQ|xx) '
END_PROVIDER END_PROVIDER
BEGIN_PROVIDER[real*8, bielecCI, (n_act_orb,n_act_orb,n_act_orb, mo_num)]
BEGIN_DOC
! bielecCI : integrals (tu|vp) with p arbitrary, tuv active
! index p runs over the whole basis, t,u,v only over the active orbitals
! inegrals read from file
END_DOC
implicit none
integer :: i,j,k,p,t,u,v,kk,indx
real*8 :: hhh
logical :: lread
write(6,*) ' reading integrals bielecCI '
BEGIN_PROVIDER [real*8, bielec_PxxQ, (mo_num,n_core_orb+n_act_orb,n_core_orb+n_act_orb, mo_num)]
BEGIN_DOC
! bielec_PxxQ : integral (px|xq) with p,q arbitrary, x core or active
! indices are unshifted orbital numbers
END_DOC
implicit none
integer :: i,j,ii,jj,p,q,i3,j3,t3,v3
double precision, allocatable :: integrals_array(:,:)
real*8 :: mo_two_e_integral
allocate(integrals_array(mo_num,mo_num))
bielec_PxxQ = 0.d0
do i=1,n_core_orb
ii=list_core(i)
do j=i,n_core_orb
jj=list_core(j)
call get_mo_two_e_integrals_ij (ii,jj,mo_num,integrals_array,mo_integrals_map)
do p=1,mo_num
do q=1,mo_num
bielec_PxxQ(p,i,j,q)=integrals_array(p,q)
bielec_PxxQ(p,j,i,q)=integrals_array(q,p)
end do
end do
end do
do j=1,n_act_orb
jj=list_act(j)
j3=j+n_core_orb
call get_mo_two_e_integrals_ij (ii,jj,mo_num,integrals_array,mo_integrals_map)
do p=1,mo_num
do q=1,mo_num
bielec_PxxQ(p,i,j3,q)=integrals_array(p,q)
bielec_PxxQ(p,j3,i,q)=integrals_array(q,p)
end do
end do
end do
end do
! (ip|qj)
do i=1,n_act_orb
ii=list_act(i)
i3=i+n_core_orb
do j=i,n_act_orb
jj=list_act(j)
j3=j+n_core_orb
call get_mo_two_e_integrals_ij (ii,jj,mo_num,integrals_array,mo_integrals_map)
do p=1,mo_num
do q=1,mo_num
bielec_PxxQ(p,i3,j3,q)=integrals_array(p,q)
bielec_PxxQ(p,j3,i3,q)=integrals_array(q,p)
end do
end do
end do
end do
write(6,*) ' provided integrals (Px|xQ) '
END_PROVIDER
BEGIN_PROVIDER [real*8, bielecCI, (n_act_orb,n_act_orb,n_act_orb, mo_num)]
BEGIN_DOC
! bielecCI : integrals (tu|vp) with p arbitrary, tuv active
! index p runs over the whole basis, t,u,v only over the active orbitals
END_DOC
implicit none
integer :: i,j,k,p,t,u,v
double precision, allocatable :: integrals_array(:)
real*8 :: mo_two_e_integral
allocate(integrals_array(mo_num))
do i=1,n_act_orb do i=1,n_act_orb
t=list_act(i)
do j=1,n_act_orb do j=1,n_act_orb
u=list_act(j)
do k=1,n_act_orb do k=1,n_act_orb
v=list_act(k)
! (tu|vp)
call get_mo_two_e_integrals(t,u,v,mo_num,integrals_array,mo_integrals_map)
do p=1,mo_num do p=1,mo_num
bielecCI(i,k,j,p)=0.D0 bielecCI(i,k,j,p)=integrals_array(p)
end do end do
end do end do
end do end do
end do end do
open(unit=12,form='formatted',status='old',file='bielecCI.tmp')
lread=.true.
indx=0
do while (lread)
read(12,*,iostat=kk) i,j,k,p,hhh
if (kk.ne.0) then
lread=.false.
else
bielecCI(i,j,k,p)=hhh
bielecCI(j,i,k,p)=hhh
indx+=1
end if
end do
write(6,*) ' read ',indx,' integrals (aa|aP) into core '
close(12)
write(6,*) ' provided integrals (tu|xP) ' write(6,*) ' provided integrals (tu|xP) '
END_PROVIDER END_PROVIDER

View File

@ -1,118 +0,0 @@
! -*- F90 -*-
BEGIN_PROVIDER[real*8, bielec_PQxxtmp, (mo_num, mo_num,n_core_orb+n_act_orb,n_core_orb+n_act_orb)]
&BEGIN_PROVIDER[real*8, bielec_PxxQtmp, (mo_num,n_core_orb+n_act_orb,n_core_orb+n_act_orb, mo_num)]
&BEGIN_PROVIDER[integer, num_PQxx_written]
&BEGIN_PROVIDER[integer, num_PxxQ_written]
BEGIN_DOC
! bielec_PQxx : integral (pq|xx) with p,q arbitrary, x core or active
! bielec_PxxQ : integral (px|xq) with p,q arbitrary, x core or active
! indices are unshifted orbital numbers
END_DOC
implicit none
integer :: i,j,ii,jj,p,q,i3,j3,t3,v3
double precision, allocatable :: integrals_array1(:,:)
double precision, allocatable :: integrals_array2(:,:)
real*8 :: mo_two_e_integral
allocate(integrals_array1(mo_num,mo_num))
allocate(integrals_array2(mo_num,mo_num))
do i=1,n_core_orb+n_act_orb
do j=1,n_core_orb+n_act_orb
do p=1,mo_num
do q=1,mo_num
bielec_PQxxtmp(p,q,i,j)=0.D0
bielec_PxxQtmp(p,i,j,q)=0.D0
end do
end do
end do
end do
do i=1,n_core_orb
ii=list_core(i)
do j=i,n_core_orb
jj=list_core(j)
! (ij|pq)
call get_mo_two_e_integrals_i1j1(ii,jj,mo_num,integrals_array1,mo_integrals_map)
! (ip|qj)
call get_mo_two_e_integrals_ij (ii,jj,mo_num,integrals_array2,mo_integrals_map)
do p=1,mo_num
do q=1,mo_num
bielec_PQxxtmp(p,q,i,j)=integrals_array1(p,q)
bielec_PQxxtmp(p,q,j,i)=integrals_array1(p,q)
bielec_PxxQtmp(p,i,j,q)=integrals_array2(p,q)
bielec_PxxQtmp(p,j,i,q)=integrals_array2(q,p)
end do
end do
end do
do j=1,n_act_orb
jj=list_act(j)
j3=j+n_core_orb
! (ij|pq)
call get_mo_two_e_integrals_i1j1(ii,jj,mo_num,integrals_array1,mo_integrals_map)
! (ip|qj)
call get_mo_two_e_integrals_ij (ii,jj,mo_num,integrals_array2,mo_integrals_map)
do p=1,mo_num
do q=1,mo_num
bielec_PQxxtmp(p,q,i,j3)=integrals_array1(p,q)
bielec_PQxxtmp(p,q,j3,i)=integrals_array1(p,q)
bielec_PxxQtmp(p,i,j3,q)=integrals_array2(p,q)
bielec_PxxQtmp(p,j3,i,q)=integrals_array2(q,p)
end do
end do
end do
end do
do i=1,n_act_orb
ii=list_act(i)
i3=i+n_core_orb
do j=i,n_act_orb
jj=list_act(j)
j3=j+n_core_orb
! (ij|pq)
call get_mo_two_e_integrals_i1j1(ii,jj,mo_num,integrals_array1,mo_integrals_map)
! (ip|qj)
call get_mo_two_e_integrals_ij (ii,jj,mo_num,integrals_array2,mo_integrals_map)
do p=1,mo_num
do q=1,mo_num
bielec_PQxxtmp(p,q,i3,j3)=integrals_array1(p,q)
bielec_PQxxtmp(p,q,j3,i3)=integrals_array1(p,q)
bielec_PxxQtmp(p,i3,j3,q)=integrals_array2(p,q)
bielec_PxxQtmp(p,j3,i3,q)=integrals_array2(q,p)
end do
end do
end do
end do
write(6,*) ' provided integrals (PQ|xx) '
write(6,*) ' provided integrals (Px|xQ) '
!!$ write(6,*) ' 1 1 1 2 = ',bielec_PQxxtmp(2,2,2,3),bielec_PxxQtmp(2,2,2,3)
END_PROVIDER
BEGIN_PROVIDER[real*8, bielecCItmp, (n_act_orb,n_act_orb,n_act_orb, mo_num)]
BEGIN_DOC
! bielecCI : integrals (tu|vp) with p arbitrary, tuv active
! index p runs over the whole basis, t,u,v only over the active orbitals
END_DOC
implicit none
integer :: i,j,k,p,t,u,v
double precision, allocatable :: integrals_array1(:)
real*8 :: mo_two_e_integral
allocate(integrals_array1(mo_num))
do i=1,n_act_orb
t=list_act(i)
do j=1,n_act_orb
u=list_act(j)
do k=1,n_act_orb
v=list_act(k)
! (tu|vp)
call get_mo_two_e_integrals(t,u,v,mo_num,integrals_array1,mo_integrals_map)
do p=1,mo_num
bielecCItmp(i,k,j,p)=integrals_array1(p)
end do
end do
end do
end do
write(6,*) ' provided integrals (tu|xP) '
END_PROVIDER

View File

@ -0,0 +1,273 @@
BEGIN_PROVIDER [real*8, bielec_PQxx_no, (mo_num, mo_num,n_core_orb+n_act_orb,n_core_orb+n_act_orb)]
BEGIN_DOC
! integral (pq|xx) in the basis of natural MOs
! indices are unshifted orbital numbers
END_DOC
implicit none
integer :: i,j,k,l,t,u,p,q,pp
real*8 :: d(n_act_orb)
bielec_PQxx_no(:,:,:,:) = bielec_PQxx(:,:,:,:)
do j=1,mo_num
do k=1,n_core_orb+n_act_orb
do l=1,n_core_orb+n_act_orb
do p=1,n_act_orb
d(p)=0.D0
end do
do p=1,n_act_orb
pp=n_act_orb-p+1
do q=1,n_act_orb
d(pp)+=bielec_PQxx_no(list_act(q),j,k,l)*natorbsCI(q,p)
end do
end do
do p=1,n_act_orb
bielec_PQxx_no(list_act(p),j,k,l)=d(p)
end do
end do
end do
end do
! 2nd quarter
do j=1,mo_num
do k=1,n_core_orb+n_act_orb
do l=1,n_core_orb+n_act_orb
do p=1,n_act_orb
d(p)=0.D0
end do
do p=1,n_act_orb
pp=n_act_orb-p+1
do q=1,n_act_orb
d(pp)+=bielec_PQxx_no(j,list_act(q),k,l)*natorbsCI(q,p)
end do
end do
do p=1,n_act_orb
bielec_PQxx_no(j,list_act(p),k,l)=d(p)
end do
end do
end do
end do
! 3rd quarter
do j=1,mo_num
do k=1,mo_num
do l=1,n_core_orb+n_act_orb
do p=1,n_act_orb
d(p)=0.D0
end do
do p=1,n_act_orb
pp=n_act_orb-p+1
do q=1,n_act_orb
d(pp)+=bielec_PQxx_no(j,k,n_core_orb+q,l)*natorbsCI(q,p)
end do
end do
do p=1,n_act_orb
bielec_PQxx_no(j,k,n_core_orb+p,l)=d(p)
end do
end do
end do
end do
! 4th quarter
do j=1,mo_num
do k=1,mo_num
do l=1,n_core_orb+n_act_orb
do p=1,n_act_orb
d(p)=0.D0
end do
do p=1,n_act_orb
pp=n_act_orb-p+1
do q=1,n_act_orb
d(pp)+=bielec_PQxx_no(j,k,l,n_core_orb+q)*natorbsCI(q,p)
end do
end do
do p=1,n_act_orb
bielec_PQxx_no(j,k,l,n_core_orb+p)=d(p)
end do
end do
end do
end do
write(6,*) ' transformed PQxx'
END_PROVIDER
BEGIN_PROVIDER [real*8, bielec_PxxQ_no, (mo_num,n_core_orb+n_act_orb,n_core_orb+n_act_orb, mo_num)]
BEGIN_DOC
! integral (px|xq) in the basis of natural MOs
! indices are unshifted orbital numbers
END_DOC
implicit none
integer :: i,j,k,l,t,u,p,q,pp
real*8 :: d(n_act_orb)
bielec_PxxQ_no(:,:,:,:) = bielec_PxxQ(:,:,:,:)
do j=1,mo_num
do k=1,n_core_orb+n_act_orb
do l=1,n_core_orb+n_act_orb
do p=1,n_act_orb
d(p)=0.D0
end do
do p=1,n_act_orb
pp=n_act_orb-p+1
do q=1,n_act_orb
d(pp)+=bielec_PxxQ_no(list_act(q),k,l,j)*natorbsCI(q,p)
end do
end do
do p=1,n_act_orb
bielec_PxxQ_no(list_act(p),k,l,j)=d(p)
end do
end do
end do
end do
! 2nd quarter
do j=1,mo_num
do k=1,n_core_orb+n_act_orb
do l=1,n_core_orb+n_act_orb
do p=1,n_act_orb
d(p)=0.D0
end do
do p=1,n_act_orb
pp=n_act_orb-p+1
do q=1,n_act_orb
d(pp)+=bielec_PxxQ_no(j,k,l,list_act(q))*natorbsCI(q,p)
end do
end do
do p=1,n_act_orb
bielec_PxxQ_no(j,k,l,list_act(p))=d(p)
end do
end do
end do
end do
! 3rd quarter
do j=1,mo_num
do k=1,mo_num
do l=1,n_core_orb+n_act_orb
do p=1,n_act_orb
d(p)=0.D0
end do
do p=1,n_act_orb
pp=n_act_orb-p+1
do q=1,n_act_orb
d(pp)+=bielec_PxxQ_no(j,n_core_orb+q,l,k)*natorbsCI(q,p)
end do
end do
do p=1,n_act_orb
bielec_PxxQ_no(j,n_core_orb+p,l,k)=d(p)
end do
end do
end do
end do
! 4th quarter
do j=1,mo_num
do k=1,mo_num
do l=1,n_core_orb+n_act_orb
do p=1,n_act_orb
d(p)=0.D0
end do
do p=1,n_act_orb
pp=n_act_orb-p+1
do q=1,n_act_orb
d(pp)+=bielec_PxxQ_no(j,l,n_core_orb+q,k)*natorbsCI(q,p)
end do
end do
do p=1,n_act_orb
bielec_PxxQ_no(j,l,n_core_orb+p,k)=d(p)
end do
end do
end do
end do
write(6,*) ' transformed PxxQ '
END_PROVIDER
BEGIN_PROVIDER [real*8, bielecCI_no, (n_act_orb,n_act_orb,n_act_orb, mo_num)]
BEGIN_DOC
! integrals (tu|vp) in the basis of natural MOs
! index p runs over the whole basis, t,u,v only over the active orbitals
END_DOC
implicit none
integer :: i,j,k,l,t,u,p,q,pp
real*8 :: d(n_act_orb)
bielecCI_no(:,:,:,:) = bielecCI(:,:,:,:)
do j=1,n_act_orb
do k=1,n_act_orb
do l=1,mo_num
do p=1,n_act_orb
d(p)=0.D0
end do
do p=1,n_act_orb
pp=n_act_orb-p+1
do q=1,n_act_orb
d(pp)+=bielecCI_no(q,j,k,l)*natorbsCI(q,p)
end do
end do
do p=1,n_act_orb
bielecCI_no(p,j,k,l)=d(p)
end do
end do
end do
end do
! 2nd quarter
do j=1,n_act_orb
do k=1,n_act_orb
do l=1,mo_num
do p=1,n_act_orb
d(p)=0.D0
end do
do p=1,n_act_orb
pp=n_act_orb-p+1
do q=1,n_act_orb
d(pp)+=bielecCI_no(j,q,k,l)*natorbsCI(q,p)
end do
end do
do p=1,n_act_orb
bielecCI_no(j,p,k,l)=d(p)
end do
end do
end do
end do
! 3rd quarter
do j=1,n_act_orb
do k=1,n_act_orb
do l=1,mo_num
do p=1,n_act_orb
d(p)=0.D0
end do
do p=1,n_act_orb
pp=n_act_orb-p+1
do q=1,n_act_orb
d(pp)+=bielecCI_no(j,k,q,l)*natorbsCI(q,p)
end do
end do
do p=1,n_act_orb
bielecCI_no(j,k,p,l)=d(p)
end do
end do
end do
end do
! 4th quarter
do j=1,n_act_orb
do k=1,n_act_orb
do l=1,n_act_orb
do p=1,n_act_orb
d(p)=0.D0
end do
do p=1,n_act_orb
pp=n_act_orb-p+1
do q=1,n_act_orb
d(pp)+=bielecCI_no(j,k,l,list_act(q))*natorbsCI(q,p)
end do
end do
do p=1,n_act_orb
bielecCI_no(j,k,l,list_act(p))=d(p)
end do
end do
end do
end do
write(6,*) ' transformed tuvP '
END_PROVIDER

View File

@ -1,58 +1,32 @@
! -*- F90 -*- use bitmasks
use bitmasks ! you need to include the bitmasks_module.f90 features
BEGIN_PROVIDER [real*8, D0tu, (n_act_orb,n_act_orb) ] BEGIN_PROVIDER [real*8, D0tu, (n_act_orb,n_act_orb) ]
&BEGIN_PROVIDER [real*8, P0tuvx, (n_act_orb,n_act_orb,n_act_orb,n_act_orb) ] BEGIN_DOC
BEGIN_DOC ! the first-order density matrix in the basis of the starting MOs
! the first-order density matrix in the basis of the starting MOs ! matrices are state averaged
! the second-order density matrix in the basis of the starting MOs !
! matrices are state averaged ! we use the spin-free generators of mono-excitations
! ! E_pq destroys q and creates p
! we use the spin-free generators of mono-excitations ! D_pq = <0|E_pq|0> = D_qp
! E_pq destroys q and creates p !
! D_pq = <0|E_pq|0> = D_qp END_DOC
! P_pqrs = 1/2 <0|E_pq E_rs - delta_qr E_ps|0>
!
END_DOC
implicit none implicit none
integer :: t,u,v,x,mu,nu,istate,ispin,jspin,ihole,ipart,jhole,jpart integer :: t,u,v,x,mu,nu,istate,ispin,jspin,ihole,ipart,jhole,jpart
integer :: ierr integer :: ierr
integer(bit_kind), allocatable :: det_mu(:,:) integer(bit_kind) :: det_mu(N_int,2)
integer(bit_kind), allocatable :: det_mu_ex(:,:) integer(bit_kind) :: det_mu_ex(N_int,2)
integer(bit_kind), allocatable :: det_mu_ex1(:,:) integer(bit_kind) :: det_mu_ex1(N_int,2)
integer(bit_kind), allocatable :: det_mu_ex11(:,:) integer(bit_kind) :: det_mu_ex2(N_int,2)
integer(bit_kind), allocatable :: det_mu_ex12(:,:) real*8 :: phase1,phase2,term
integer(bit_kind), allocatable :: det_mu_ex2(:,:) integer :: nu1,nu2
integer(bit_kind), allocatable :: det_mu_ex21(:,:) integer :: ierr1,ierr2
integer(bit_kind), allocatable :: det_mu_ex22(:,:) real*8 :: cI_mu(N_states)
real*8 :: phase1,phase11,phase12,phase2,phase21,phase22
integer :: nu1,nu2,nu11,nu12,nu21,nu22
integer :: ierr1,ierr2,ierr11,ierr12,ierr21,ierr22
real*8 :: cI_mu(N_states),term
allocate(det_mu(N_int,2))
allocate(det_mu_ex(N_int,2))
allocate(det_mu_ex1(N_int,2))
allocate(det_mu_ex11(N_int,2))
allocate(det_mu_ex12(N_int,2))
allocate(det_mu_ex2(N_int,2))
allocate(det_mu_ex21(N_int,2))
allocate(det_mu_ex22(N_int,2))
write(6,*) ' providing density matrices D0 and P0 ' write(6,*) ' providing density matrices D0 and P0 '
! set all to zero D0tu = 0.d0
do t=1,n_act_orb
do u=1,n_act_orb
D0tu(u,t)=0.D0
do v=1,n_act_orb
do x=1,n_act_orb
P0tuvx(x,v,u,t)=0.D0
end do
end do
end do
end do
! first loop: we apply E_tu, once for D_tu, once for -P_tvvu ! first loop: we apply E_tu, once for D_tu, once for -P_tvvu
do mu=1,n_det do mu=1,n_det
call det_extract(det_mu,mu,N_int) call det_extract(det_mu,mu,N_int)
do istate=1,n_states do istate=1,n_states
@ -62,27 +36,93 @@ END_DOC
ipart=list_act(t) ipart=list_act(t)
do u=1,n_act_orb do u=1,n_act_orb
ihole=list_act(u) ihole=list_act(u)
! apply E_tu ! apply E_tu
call det_copy(det_mu,det_mu_ex1,N_int) call det_copy(det_mu,det_mu_ex1,N_int)
call det_copy(det_mu,det_mu_ex2,N_int) call det_copy(det_mu,det_mu_ex2,N_int)
call do_spinfree_mono_excitation(det_mu,det_mu_ex1 & call do_spinfree_mono_excitation(det_mu,det_mu_ex1 &
,det_mu_ex2,nu1,nu2,ihole,ipart,phase1,phase2,ierr1,ierr2) ,det_mu_ex2,nu1,nu2,ihole,ipart,phase1,phase2,ierr1,ierr2)
! det_mu_ex1 is in the list ! det_mu_ex1 is in the list
if (nu1.ne.-1) then if (nu1.ne.-1) then
do istate=1,n_states do istate=1,n_states
term=cI_mu(istate)*psi_coef(nu1,istate)*phase1 term=cI_mu(istate)*psi_coef(nu1,istate)*phase1
D0tu(t,u)+=term D0tu(t,u)+=term
! and we fill P0_tvvu
do v=1,n_act_orb
P0tuvx(t,v,v,u)-=term
end do
end do end do
end if end if
! det_mu_ex2 is in the list ! det_mu_ex2 is in the list
if (nu2.ne.-1) then if (nu2.ne.-1) then
do istate=1,n_states do istate=1,n_states
term=cI_mu(istate)*psi_coef(nu2,istate)*phase2 term=cI_mu(istate)*psi_coef(nu2,istate)*phase2
D0tu(t,u)+=term D0tu(t,u)+=term
end do
end if
end do
end do
end do
! we average by just dividing by the number of states
do x=1,n_act_orb
do v=1,n_act_orb
D0tu(v,x)*=1.0D0/dble(N_states)
end do
end do
END_PROVIDER
BEGIN_PROVIDER [real*8, P0tuvx, (n_act_orb,n_act_orb,n_act_orb,n_act_orb) ]
BEGIN_DOC
! the second-order density matrix in the basis of the starting MOs
! matrices are state averaged
!
! we use the spin-free generators of mono-excitations
! E_pq destroys q and creates p
! D_pq = <0|E_pq|0> = D_qp
! P_pqrs = 1/2 <0|E_pq E_rs - delta_qr E_ps|0>
!
END_DOC
implicit none
integer :: t,u,v,x,mu,nu,istate,ispin,jspin,ihole,ipart,jhole,jpart
integer :: ierr
real*8 :: phase1,phase11,phase12,phase2,phase21,phase22
integer :: nu1,nu2,nu11,nu12,nu21,nu22
integer :: ierr1,ierr2,ierr11,ierr12,ierr21,ierr22
real*8 :: cI_mu(N_states),term
integer(bit_kind), dimension(N_int,2) :: det_mu, det_mu_ex
integer(bit_kind), dimension(N_int,2) :: det_mu_ex1, det_mu_ex11, det_mu_ex12
integer(bit_kind), dimension(N_int,2) :: det_mu_ex2, det_mu_ex21, det_mu_ex22
write(6,*) ' providing density matrices D0 and P0 '
P0tuvx = 0.d0
! first loop: we apply E_tu, once for D_tu, once for -P_tvvu
do mu=1,n_det
call det_extract(det_mu,mu,N_int)
do istate=1,n_states
cI_mu(istate)=psi_coef(mu,istate)
end do
do t=1,n_act_orb
ipart=list_act(t)
do u=1,n_act_orb
ihole=list_act(u)
! apply E_tu
call det_copy(det_mu,det_mu_ex1,N_int)
call det_copy(det_mu,det_mu_ex2,N_int)
call do_spinfree_mono_excitation(det_mu,det_mu_ex1 &
,det_mu_ex2,nu1,nu2,ihole,ipart,phase1,phase2,ierr1,ierr2)
! det_mu_ex1 is in the list
if (nu1.ne.-1) then
do istate=1,n_states
term=cI_mu(istate)*psi_coef(nu1,istate)*phase1
! and we fill P0_tvvu
do v=1,n_act_orb
P0tuvx(t,v,v,u)-=term
end do
end do
end if
! det_mu_ex2 is in the list
if (nu2.ne.-1) then
do istate=1,n_states
term=cI_mu(istate)*psi_coef(nu2,istate)*phase2
do v=1,n_act_orb do v=1,n_act_orb
P0tuvx(t,v,v,u)-=term P0tuvx(t,v,v,u)-=term
end do end do
@ -91,7 +131,7 @@ END_DOC
end do end do
end do end do
end do end do
! now we do the double excitation E_tu E_vx |0> ! now we do the double excitation E_tu E_vx |0>
do mu=1,n_det do mu=1,n_det
call det_extract(det_mu,mu,N_int) call det_extract(det_mu,mu,N_int)
do istate=1,n_states do istate=1,n_states
@ -101,12 +141,12 @@ END_DOC
ipart=list_act(v) ipart=list_act(v)
do x=1,n_act_orb do x=1,n_act_orb
ihole=list_act(x) ihole=list_act(x)
! apply E_vx ! apply E_vx
call det_copy(det_mu,det_mu_ex1,N_int) call det_copy(det_mu,det_mu_ex1,N_int)
call det_copy(det_mu,det_mu_ex2,N_int) call det_copy(det_mu,det_mu_ex2,N_int)
call do_spinfree_mono_excitation(det_mu,det_mu_ex1 & call do_spinfree_mono_excitation(det_mu,det_mu_ex1 &
,det_mu_ex2,nu1,nu2,ihole,ipart,phase1,phase2,ierr1,ierr2) ,det_mu_ex2,nu1,nu2,ihole,ipart,phase1,phase2,ierr1,ierr2)
! we apply E_tu to the first resultant determinant, thus E_tu E_vx |0> ! we apply E_tu to the first resultant determinant, thus E_tu E_vx |0>
if (ierr1.eq.1) then if (ierr1.eq.1) then
do t=1,n_act_orb do t=1,n_act_orb
jpart=list_act(t) jpart=list_act(t)
@ -114,17 +154,17 @@ END_DOC
jhole=list_act(u) jhole=list_act(u)
call det_copy(det_mu_ex1,det_mu_ex11,N_int) call det_copy(det_mu_ex1,det_mu_ex11,N_int)
call det_copy(det_mu_ex1,det_mu_ex12,N_int) call det_copy(det_mu_ex1,det_mu_ex12,N_int)
call do_spinfree_mono_excitation(det_mu_ex1,det_mu_ex11 & call do_spinfree_mono_excitation(det_mu_ex1,det_mu_ex11&
,det_mu_ex12,nu11,nu12,jhole,jpart,phase11,phase12,ierr11,ierr12) ,det_mu_ex12,nu11,nu12,jhole,jpart,phase11,phase12,ierr11,ierr12)
if (nu11.ne.-1) then if (nu11.ne.-1) then
do istate=1,n_states do istate=1,n_states
P0tuvx(t,u,v,x)+=cI_mu(istate)*psi_coef(nu11,istate) & P0tuvx(t,u,v,x)+=cI_mu(istate)*psi_coef(nu11,istate)&
*phase11*phase1 *phase11*phase1
end do end do
end if end if
if (nu12.ne.-1) then if (nu12.ne.-1) then
do istate=1,n_states do istate=1,n_states
P0tuvx(t,u,v,x)+=cI_mu(istate)*psi_coef(nu12,istate) & P0tuvx(t,u,v,x)+=cI_mu(istate)*psi_coef(nu12,istate)&
*phase12*phase1 *phase12*phase1
end do end do
end if end if
@ -132,7 +172,7 @@ END_DOC
end do end do
end if end if
! we apply E_tu to the second resultant determinant ! we apply E_tu to the second resultant determinant
if (ierr2.eq.1) then if (ierr2.eq.1) then
do t=1,n_act_orb do t=1,n_act_orb
jpart=list_act(t) jpart=list_act(t)
@ -140,17 +180,17 @@ END_DOC
jhole=list_act(u) jhole=list_act(u)
call det_copy(det_mu_ex2,det_mu_ex21,N_int) call det_copy(det_mu_ex2,det_mu_ex21,N_int)
call det_copy(det_mu_ex2,det_mu_ex22,N_int) call det_copy(det_mu_ex2,det_mu_ex22,N_int)
call do_spinfree_mono_excitation(det_mu_ex2,det_mu_ex21 & call do_spinfree_mono_excitation(det_mu_ex2,det_mu_ex21&
,det_mu_ex22,nu21,nu22,jhole,jpart,phase21,phase22,ierr21,ierr22) ,det_mu_ex22,nu21,nu22,jhole,jpart,phase21,phase22,ierr21,ierr22)
if (nu21.ne.-1) then if (nu21.ne.-1) then
do istate=1,n_states do istate=1,n_states
P0tuvx(t,u,v,x)+=cI_mu(istate)*psi_coef(nu21,istate) & P0tuvx(t,u,v,x)+=cI_mu(istate)*psi_coef(nu21,istate)&
*phase21*phase2 *phase21*phase2
end do end do
end if end if
if (nu22.ne.-1) then if (nu22.ne.-1) then
do istate=1,n_states do istate=1,n_states
P0tuvx(t,u,v,x)+=cI_mu(istate)*psi_coef(nu22,istate) & P0tuvx(t,u,v,x)+=cI_mu(istate)*psi_coef(nu22,istate)&
*phase22*phase2 *phase22*phase2
end do end do
end if end if
@ -162,10 +202,9 @@ END_DOC
end do end do
end do end do
! we average by just dividing by the number of states ! we average by just dividing by the number of states
do x=1,n_act_orb do x=1,n_act_orb
do v=1,n_act_orb do v=1,n_act_orb
D0tu(v,x)*=1.0D0/dble(N_states)
do u=1,n_act_orb do u=1,n_act_orb
do t=1,n_act_orb do t=1,n_act_orb
P0tuvx(t,u,v,x)*=0.5D0/dble(N_states) P0tuvx(t,u,v,x)*=0.5D0/dble(N_states)

View File

@ -1,12 +1,11 @@
! -*- F90 -*- use bitmasks
use bitmasks ! you need to include the bitmasks_module.f90 features
subroutine do_signed_mono_excitation(key1,key2,nu,ihole,ipart, & subroutine do_signed_mono_excitation(key1,key2,nu,ihole,ipart, &
ispin,phase,ierr) ispin,phase,ierr)
BEGIN_DOC BEGIN_DOC
! we create the mono-excitation, and determine, if possible, ! we create the mono-excitation, and determine, if possible,
! the phase and the number in the list of determinants ! the phase and the number in the list of determinants
END_DOC END_DOC
implicit none implicit none
integer(bit_kind) :: key1(N_int,2),key2(N_int,2) integer(bit_kind) :: key1(N_int,2),key2(N_int,2)
integer(bit_kind), allocatable :: keytmp(:,:) integer(bit_kind), allocatable :: keytmp(:,:)
@ -19,28 +18,28 @@ END_DOC
phase=1.D0 phase=1.D0
ierr=0 ierr=0
call det_copy(key1,key2,N_int) call det_copy(key1,key2,N_int)
! write(6,*) ' key2 before excitation ',ihole,' -> ',ipart,' spin = ',ispin ! write(6,*) ' key2 before excitation ',ihole,' -> ',ipart,' spin = ',ispin
! call print_det(key2,N_int) ! call print_det(key2,N_int)
call do_single_excitation(key2,ihole,ipart,ispin,ierr) call do_single_excitation(key2,ihole,ipart,ispin,ierr)
! write(6,*) ' key2 after ',ihole,' -> ',ipart,' spin = ',ispin ! write(6,*) ' key2 after ',ihole,' -> ',ipart,' spin = ',ispin
! call print_det(key2,N_int) ! call print_det(key2,N_int)
! write(6,*) ' excitation ',ihole,' -> ',ipart,' gives ierr = ',ierr ! write(6,*) ' excitation ',ihole,' -> ',ipart,' gives ierr = ',ierr
if (ierr.eq.1) then if (ierr.eq.1) then
! excitation is possible ! excitation is possible
! get the phase ! get the phase
call get_single_excitation(key1,key2,exc,phase,N_int) call get_single_excitation(key1,key2,exc,phase,N_int)
! get the number in the list ! get the number in the list
found=.false. found=.false.
nu=0 nu=0
do while (.not.found) do while (.not.found)
nu+=1 nu+=1
if (nu.gt.N_det) then if (nu.gt.N_det) then
! the determinant is possible, but not in the list ! the determinant is possible, but not in the list
found=.true. found=.true.
nu=-1 nu=-1
else else
call det_extract(keytmp,nu,N_int) call det_extract(keytmp,nu,N_int)
integer :: i,ii integer :: i,ii
found=.true. found=.true.
do ii=1,2 do ii=1,2
do i=1,N_int do i=1,N_int
@ -51,23 +50,23 @@ integer :: i,ii
end do end do
end if end if
end do end do
! if (found) then ! if (found) then
! if (nu.eq.-1) then ! if (nu.eq.-1) then
! write(6,*) ' image not found in the list, thus nu = ',nu ! write(6,*) ' image not found in the list, thus nu = ',nu
! else ! else
! write(6,*) ' found in the list as No ',nu,' phase = ',phase ! write(6,*) ' found in the list as No ',nu,' phase = ',phase
! end if ! end if
! end if ! end if
end if end if
! !
! we found the new string, the phase, and possibly the number in the list ! we found the new string, the phase, and possibly the number in the list
! !
end subroutine do_signed_mono_excitation end subroutine do_signed_mono_excitation
subroutine det_extract(key,nu,Nint) subroutine det_extract(key,nu,Nint)
BEGIN_DOC BEGIN_DOC
! extract a determinant from the list of determinants ! extract a determinant from the list of determinants
END_DOC END_DOC
implicit none implicit none
integer :: ispin,i,nu,Nint integer :: ispin,i,nu,Nint
integer(bit_kind) :: key(Nint,2) integer(bit_kind) :: key(Nint,2)
@ -76,13 +75,13 @@ END_DOC
key(i,ispin)=psi_det(i,ispin,nu) key(i,ispin)=psi_det(i,ispin,nu)
end do end do
end do end do
end subroutine det_extract end subroutine det_extract
subroutine det_copy(key1,key2,Nint) subroutine det_copy(key1,key2,Nint)
use bitmasks ! you need to include the bitmasks_module.f90 features use bitmasks ! you need to include the bitmasks_module.f90 features
BEGIN_DOC BEGIN_DOC
! copy a determinant from key1 to key2 ! copy a determinant from key1 to key2
END_DOC END_DOC
implicit none implicit none
integer :: ispin,i,Nint integer :: ispin,i,Nint
integer(bit_kind) :: key1(Nint,2),key2(Nint,2) integer(bit_kind) :: key1(Nint,2),key2(Nint,2)
@ -91,15 +90,15 @@ END_DOC
key2(i,ispin)=key1(i,ispin) key2(i,ispin)=key1(i,ispin)
end do end do
end do end do
end subroutine det_copy end subroutine det_copy
subroutine do_spinfree_mono_excitation(key_in,key_out1,key_out2 & subroutine do_spinfree_mono_excitation(key_in,key_out1,key_out2 &
,nu1,nu2,ihole,ipart,phase1,phase2,ierr,jerr) ,nu1,nu2,ihole,ipart,phase1,phase2,ierr,jerr)
BEGIN_DOC BEGIN_DOC
! we create the spin-free mono-excitation E_pq=(a^+_p a_q + a^+_P a_Q) ! we create the spin-free mono-excitation E_pq=(a^+_p a_q + a^+_P a_Q)
! we may create two determinants as result ! we may create two determinants as result
! !
END_DOC END_DOC
implicit none implicit none
integer(bit_kind) :: key_in(N_int,2),key_out1(N_int,2) integer(bit_kind) :: key_in(N_int,2),key_out1(N_int,2)
integer(bit_kind) :: key_out2(N_int,2) integer(bit_kind) :: key_out2(N_int,2)
@ -107,25 +106,25 @@ END_DOC
integer :: ispin integer :: ispin
real*8 :: phase1,phase2 real*8 :: phase1,phase2
! write(6,*) ' applying E_',ipart,ihole,' on determinant ' ! write(6,*) ' applying E_',ipart,ihole,' on determinant '
! call print_det(key_in,N_int) ! call print_det(key_in,N_int)
! spin alpha ! spin alpha
ispin=1 ispin=1
call do_signed_mono_excitation(key_in,key_out1,nu1,ihole & call do_signed_mono_excitation(key_in,key_out1,nu1,ihole &
,ipart,ispin,phase1,ierr) ,ipart,ispin,phase1,ierr)
! if (ierr.eq.1) then ! if (ierr.eq.1) then
! write(6,*) ' 1 result is ',nu1,phase1 ! write(6,*) ' 1 result is ',nu1,phase1
! call print_det(key_out1,N_int) ! call print_det(key_out1,N_int)
! end if ! end if
! spin beta ! spin beta
ispin=2 ispin=2
call do_signed_mono_excitation(key_in,key_out2,nu2,ihole & call do_signed_mono_excitation(key_in,key_out2,nu2,ihole &
,ipart,ispin,phase2,jerr) ,ipart,ispin,phase2,jerr)
! if (jerr.eq.1) then ! if (jerr.eq.1) then
! write(6,*) ' 2 result is ',nu2,phase2 ! write(6,*) ' 2 result is ',nu2,phase2
! call print_det(key_out2,N_int) ! call print_det(key_out2,N_int)
! end if ! end if
end subroutine do_spinfree_mono_excitation end subroutine do_spinfree_mono_excitation

View File

@ -7,58 +7,13 @@
write(6,*) ' generating natural orbitals ' write(6,*) ' generating natural orbitals '
write(6,*) write(6,*)
write(6,*) write(6,*)
call trf_to_natorb
write(6,*) ' all data available ! ' write(6,*) ' all data available ! '
write(6,*) ' writing out files ' write(6,*) ' writing out files '
open(unit=12,file='D0tu.dat',form='formatted',status='unknown') call trf_to_natorb
do p=1,n_act_orb
do q=1,n_act_orb
if (abs(D0tu(p,q)).gt.1.D-12) then
write(12,'(2i8,E20.12)') p,q,D0tu(p,q)
end if
end do
end do
close(12)
real*8 :: approx,np,nq,nr,ns real*8 :: approx,np,nq,nr,ns
logical :: lpq,lrs,lps,lqr logical :: lpq,lrs,lps,lqr
open(unit=12,file='P0tuvx.dat',form='formatted',status='unknown')
do p=1,n_act_orb
np=D0tu(p,p)
do q=1,n_act_orb
lpq=p.eq.q
nq=D0tu(q,q)
do r=1,n_act_orb
lqr=q.eq.r
nr=D0tu(r,r)
do s=1,n_act_orb
lrs=r.eq.s
lps=p.eq.s
approx=0.D0
if (lpq.and.lrs) then
if (lqr) then
! pppp
approx=0.5D0*np*(np-1.D0)
else
! pprr
approx=0.5D0*np*nr
end if
else
if (lps.and.lqr.and..not.lpq) then
! pqqp
approx=-0.25D0*np*nq
end if
end if
if (abs(P0tuvx(p,q,r,s)).gt.1.D-12) then
write(12,'(4i4,2E20.12)') p,q,r,s,P0tuvx(p,q,r,s),approx
end if
end do
end do
end do
end do
close(12)
open(unit=12,form='formatted',status='unknown',file='onetrf.tmp') open(unit=12,form='formatted',status='unknown',file='onetrf.tmp')
indx=0 indx=0
@ -74,63 +29,6 @@ logical :: lpq,lrs,lps,lqr
close(12) close(12)
open(unit=12,form='formatted',status='unknown',file='bielec_PQxx.tmp')
indx=0
do p=1,mo_num
do q=p,mo_num
do r=1,n_core_orb+n_act_orb
do s=r,n_core_orb+n_act_orb
if (abs(bielec_PQxxtmp(p,q,r,s)).gt.1.D-12) then
write(12,'(4i8,E20.12)') p,q,r,s,bielec_PQxxtmp(p,q,r,s)
indx+=1
end if
end do
end do
end do
end do
write(6,*) ' wrote ',indx,' integrals (PQ|xx)'
close(12)
open(unit=12,form='formatted',status='unknown',file='bielec_PxxQ.tmp')
indx=0
do p=1,mo_num
do q=1,n_core_orb+n_act_orb
do r=q,n_core_orb+n_act_orb
integer ::s_start
if (q.eq.r) then
s_start=p
else
s_start=1
end if
do s=s_start,mo_num
if (abs(bielec_PxxQtmp(p,q,r,s)).gt.1.D-12) then
write(12,'(4i8,E20.12)') p,q,r,s,bielec_PxxQtmp(p,q,r,s)
indx+=1
end if
end do
end do
end do
end do
write(6,*) ' wrote ',indx,' integrals (Px|xQ)'
close(12)
open(unit=12,form='formatted',status='unknown',file='bielecCI.tmp')
indx=0
do p=1,n_act_orb
do q=p,n_act_orb
do r=1,n_act_orb
do s=1,mo_num
if (abs(bielecCItmp(p,q,r,s)).gt.1.D-12) then
write(12,'(4i8,E20.12)') p,q,r,s,bielecCItmp(p,q,r,s)
indx+=1
end if
end do
end do
end do
end do
write(6,*) ' wrote ',indx,' integrals (tu|xP)'
close(12)
write(6,*) write(6,*)
write(6,*) ' creating new orbitals ' write(6,*) ' creating new orbitals '
do i=1,mo_num do i=1,mo_num

View File

@ -1,11 +1,9 @@
! -*- F90 -*- use bitmasks
use bitmasks ! you need to include the bitmasks_module.f90 features
BEGIN_PROVIDER [ integer, nMonoEx ] BEGIN_PROVIDER [ integer, nMonoEx ]
BEGIN_DOC BEGIN_DOC
! ! Number of single excitations
END_DOC END_DOC
implicit none implicit none
nMonoEx=n_core_orb*n_act_orb+n_core_orb*n_virt_orb+n_act_orb*n_virt_orb nMonoEx=n_core_orb*n_act_orb+n_core_orb*n_virt_orb+n_act_orb*n_virt_orb
write(6,*) ' nMonoEx = ',nMonoEx write(6,*) ' nMonoEx = ',nMonoEx
@ -13,9 +11,9 @@ END_PROVIDER
BEGIN_PROVIDER [integer, excit, (2,nMonoEx)] BEGIN_PROVIDER [integer, excit, (2,nMonoEx)]
&BEGIN_PROVIDER [character*3, excit_class, (nMonoEx)] &BEGIN_PROVIDER [character*3, excit_class, (nMonoEx)]
BEGIN_DOC BEGIN_DOC
! a list of the orbitals involved in the excitation ! a list of the orbitals involved in the excitation
END_DOC END_DOC
implicit none implicit none
integer :: i,t,a,ii,tt,aa,indx integer :: i,t,a,ii,tt,aa,indx
@ -64,14 +62,14 @@ END_DOC
END_PROVIDER END_PROVIDER
BEGIN_PROVIDER [real*8, gradvec, (nMonoEx)] BEGIN_PROVIDER [real*8, gradvec, (nMonoEx)]
BEGIN_DOC BEGIN_DOC
! calculate the orbital gradient <Psi| H E_pq |Psi> by hand, i.e. for ! calculate the orbital gradient <Psi| H E_pq |Psi> by hand, i.e. for
! each determinant I we determine the string E_pq |I> (alpha and beta ! each determinant I we determine the string E_pq |I> (alpha and beta
! separately) and generate <Psi|H E_pq |I> ! separately) and generate <Psi|H E_pq |I>
! sum_I c_I <Psi|H E_pq |I> is then the pq component of the orbital ! sum_I c_I <Psi|H E_pq |I> is then the pq component of the orbital
! gradient ! gradient
! E_pq = a^+_pa_q + a^+_Pa_Q ! E_pq = a^+_pa_q + a^+_Pa_Q
END_DOC END_DOC
implicit none implicit none
integer :: ii,tt,aa,indx,ihole,ipart,istate integer :: ii,tt,aa,indx,ihole,ipart,istate
real*8 :: res real*8 :: res
@ -83,7 +81,7 @@ END_DOC
gradvec(indx)=res gradvec(indx)=res
end do end do
real*8 :: norm_grad real*8 :: norm_grad
norm_grad=0.d0 norm_grad=0.d0
do indx=1,nMonoEx do indx=1,nMonoEx
norm_grad+=gradvec(indx)*gradvec(indx) norm_grad+=gradvec(indx)*gradvec(indx)
@ -96,11 +94,11 @@ real*8 :: norm_grad
END_PROVIDER END_PROVIDER
subroutine calc_grad_elem(ihole,ipart,res) subroutine calc_grad_elem(ihole,ipart,res)
BEGIN_DOC BEGIN_DOC
! eq 18 of Siegbahn et al, Physica Scripta 1980 ! eq 18 of Siegbahn et al, Physica Scripta 1980
! we calculate 2 <Psi| H E_pq | Psi>, q=hole, p=particle ! we calculate 2 <Psi| H E_pq | Psi>, q=hole, p=particle
END_DOC END_DOC
implicit none implicit none
integer :: ihole,ipart,mu,iii,ispin,ierr,nu,istate integer :: ihole,ipart,mu,iii,ispin,ierr,nu,istate
real*8 :: res real*8 :: res
@ -112,40 +110,40 @@ END_DOC
res=0.D0 res=0.D0
do mu=1,n_det do mu=1,n_det
! get the string of the determinant ! get the string of the determinant
call det_extract(det_mu,mu,N_int) call det_extract(det_mu,mu,N_int)
do ispin=1,2 do ispin=1,2
! do the monoexcitation on it ! do the monoexcitation on it
call det_copy(det_mu,det_mu_ex,N_int) call det_copy(det_mu,det_mu_ex,N_int)
call do_signed_mono_excitation(det_mu,det_mu_ex,nu & call do_signed_mono_excitation(det_mu,det_mu_ex,nu &
,ihole,ipart,ispin,phase,ierr) ,ihole,ipart,ispin,phase,ierr)
if (ierr.eq.1) then if (ierr.eq.1) then
! write(6,*) ! write(6,*)
! write(6,*) ' mu = ',mu ! write(6,*) ' mu = ',mu
! call print_det(det_mu,N_int) ! call print_det(det_mu,N_int)
! write(6,*) ' generated nu = ',nu,' for excitation ',ihole,' -> ',ipart,' ierr = ',ierr,' phase = ',phase,' ispin = ',ispin ! write(6,*) ' generated nu = ',nu,' for excitation ',ihole,' -> ',ipart,' ierr = ',ierr,' phase = ',phase,' ispin = ',ispin
! call print_det(det_mu_ex,N_int) ! call print_det(det_mu_ex,N_int)
call i_H_psi(det_mu_ex,psi_det,psi_coef,N_int & call i_H_psi(det_mu_ex,psi_det,psi_coef,N_int &
,N_det,N_det,N_states,i_H_psi_array) ,N_det,N_det,N_states,i_H_psi_array)
do istate=1,N_states do istate=1,N_states
res+=i_H_psi_array(istate)*psi_coef(mu,istate)*phase res+=i_H_psi_array(istate)*psi_coef(mu,istate)*phase
end do end do
! write(6,*) ' contribution = ',i_H_psi_array(1)*psi_coef(mu,1)*phase,res ! write(6,*) ' contribution = ',i_H_psi_array(1)*psi_coef(mu,1)*phase,res
end if end if
end do end do
end do end do
! state-averaged gradient ! state-averaged gradient
res*=2.D0/dble(N_states) res*=2.D0/dble(N_states)
end subroutine calc_grad_elem end subroutine calc_grad_elem
BEGIN_PROVIDER [real*8, gradvec2, (nMonoEx)] BEGIN_PROVIDER [real*8, gradvec2, (nMonoEx)]
BEGIN_DOC BEGIN_DOC
! calculate the orbital gradient <Psi| H E_pq |Psi> from density ! calculate the orbital gradient <Psi| H E_pq |Psi> from density
! matrices and integrals; Siegbahn et al, Phys Scr 1980 ! matrices and integrals; Siegbahn et al, Phys Scr 1980
! eqs 14 a,b,c ! eqs 14 a,b,c
END_DOC END_DOC
implicit none implicit none
integer :: i,t,a,indx integer :: i,t,a,indx
real*8 :: gradvec_it,gradvec_ia,gradvec_ta real*8 :: gradvec_it,gradvec_ia,gradvec_ta
@ -184,11 +182,11 @@ END_DOC
END_PROVIDER END_PROVIDER
real*8 function gradvec_it(i,t) real*8 function gradvec_it(i,t)
BEGIN_DOC BEGIN_DOC
! the orbital gradient core -> active ! the orbital gradient core -> active
! we assume natural orbitals ! we assume natural orbitals
END_DOC END_DOC
implicit none implicit none
integer :: i,t integer :: i,t
@ -205,17 +203,17 @@ END_DOC
x3=x+n_core_orb x3=x+n_core_orb
do y=1,n_act_orb do y=1,n_act_orb
y3=y+n_core_orb y3=y+n_core_orb
gradvec_it-=2.D0*P0tuvx_no(t,v,x,y)*bielec_PQxx(ii,vv,x3,y3) gradvec_it-=2.D0*P0tuvx_no(t,v,x,y)*bielec_PQxx_no(ii,vv,x3,y3)
end do end do
end do end do
end do end do
gradvec_it*=2.D0 gradvec_it*=2.D0
end function gradvec_it end function gradvec_it
real*8 function gradvec_ia(i,a) real*8 function gradvec_ia(i,a)
BEGIN_DOC BEGIN_DOC
! the orbital gradient core -> virtual ! the orbital gradient core -> virtual
END_DOC END_DOC
implicit none implicit none
integer :: i,a,ii,aa integer :: i,a,ii,aa
@ -224,13 +222,13 @@ END_DOC
gradvec_ia=2.D0*(Fipq(aa,ii)+Fapq(aa,ii)) gradvec_ia=2.D0*(Fipq(aa,ii)+Fapq(aa,ii))
gradvec_ia*=2.D0 gradvec_ia*=2.D0
end function gradvec_ia end function gradvec_ia
real*8 function gradvec_ta(t,a) real*8 function gradvec_ta(t,a)
BEGIN_DOC BEGIN_DOC
! the orbital gradient active -> virtual ! the orbital gradient active -> virtual
! we assume natural orbitals ! we assume natural orbitals
END_DOC END_DOC
implicit none implicit none
integer :: t,a,tt,aa,v,vv,x,y integer :: t,a,tt,aa,v,vv,x,y
@ -241,11 +239,11 @@ END_DOC
do v=1,n_act_orb do v=1,n_act_orb
do x=1,n_act_orb do x=1,n_act_orb
do y=1,n_act_orb do y=1,n_act_orb
gradvec_ta+=2.D0*P0tuvx_no(t,v,x,y)*bielecCI(x,y,v,aa) gradvec_ta+=2.D0*P0tuvx_no(t,v,x,y)*bielecCI_no(x,y,v,aa)
end do end do
end do end do
end do end do
gradvec_ta*=2.D0 gradvec_ta*=2.D0
end function gradvec_ta end function gradvec_ta

View File

@ -1,15 +1,13 @@
! -*- F90 -*- use bitmasks
use bitmasks ! you need to include the bitmasks_module.f90 features
BEGIN_PROVIDER [real*8, hessmat, (nMonoEx,nMonoEx)] BEGIN_PROVIDER [real*8, hessmat, (nMonoEx,nMonoEx)]
BEGIN_DOC BEGIN_DOC
! calculate the orbital hessian 2 <Psi| E_pq H E_rs |Psi> ! calculate the orbital hessian 2 <Psi| E_pq H E_rs |Psi>
! + <Psi| E_pq E_rs H |Psi> + <Psi| E_rs E_pq H |Psi> by hand, ! + <Psi| E_pq E_rs H |Psi> + <Psi| E_rs E_pq H |Psi> by hand,
! determinant per determinant, as for the gradient ! determinant per determinant, as for the gradient
! !
! we assume that we have natural active orbitals ! we assume that we have natural active orbitals
END_DOC END_DOC
implicit none implicit none
integer :: indx,ihole,ipart integer :: indx,ihole,ipart
integer :: jndx,jhole,jpart integer :: jndx,jhole,jpart
@ -34,8 +32,8 @@ END_DOC
jpart=excit(2,jndx) jpart=excit(2,jndx)
jexc=excit_class(jndx) jexc=excit_class(jndx)
call calc_hess_elem(ihole,ipart,jhole,jpart,res) call calc_hess_elem(ihole,ipart,jhole,jpart,res)
! write(6,*) ' Hessian ',ihole,'->',ipart & ! write(6,*) ' Hessian ',ihole,'->',ipart &
! ,' (',iexc,')',jhole,'->',jpart,' (',jexc,')',res ! ,' (',iexc,')',jhole,'->',jpart,' (',jexc,')',res
hessmat(indx,jndx)=res hessmat(indx,jndx)=res
hessmat(jndx,indx)=res hessmat(jndx,indx)=res
end do end do
@ -43,14 +41,14 @@ END_DOC
END_PROVIDER END_PROVIDER
subroutine calc_hess_elem(ihole,ipart,jhole,jpart,res) subroutine calc_hess_elem(ihole,ipart,jhole,jpart,res)
BEGIN_DOC BEGIN_DOC
! eq 19 of Siegbahn et al, Physica Scripta 1980 ! eq 19 of Siegbahn et al, Physica Scripta 1980
! we calculate 2 <Psi| E_pq H E_rs |Psi> ! we calculate 2 <Psi| E_pq H E_rs |Psi>
! + <Psi| E_pq E_rs H |Psi> + <Psi| E_rs E_pq H |Psi> ! + <Psi| E_pq E_rs H |Psi> + <Psi| E_rs E_pq H |Psi>
! average over all states is performed. ! average over all states is performed.
! no transition between states. ! no transition between states.
END_DOC END_DOC
implicit none implicit none
integer :: ihole,ipart,ispin,mu,istate integer :: ihole,ipart,ispin,mu,istate
integer :: jhole,jpart,jspin integer :: jhole,jpart,jspin
@ -80,23 +78,23 @@ END_DOC
res=0.D0 res=0.D0
! the terms <0|E E H |0> ! the terms <0|E E H |0>
do mu=1,n_det do mu=1,n_det
! get the string of the determinant ! get the string of the determinant
call det_extract(det_mu,mu,N_int) call det_extract(det_mu,mu,N_int)
do ispin=1,2 do ispin=1,2
! do the monoexcitation pq on it ! do the monoexcitation pq on it
call det_copy(det_mu,det_mu_pq,N_int) call det_copy(det_mu,det_mu_pq,N_int)
call do_signed_mono_excitation(det_mu,det_mu_pq,mu_pq & call do_signed_mono_excitation(det_mu,det_mu_pq,mu_pq &
,ihole,ipart,ispin,phase,mu_pq_possible) ,ihole,ipart,ispin,phase,mu_pq_possible)
if (mu_pq_possible.eq.1) then if (mu_pq_possible.eq.1) then
! possible, but not necessarily in the list ! possible, but not necessarily in the list
! do the second excitation ! do the second excitation
do jspin=1,2 do jspin=1,2
call det_copy(det_mu_pq,det_mu_pqrs,N_int) call det_copy(det_mu_pq,det_mu_pqrs,N_int)
call do_signed_mono_excitation(det_mu_pq,det_mu_pqrs,mu_pqrs & call do_signed_mono_excitation(det_mu_pq,det_mu_pqrs,mu_pqrs&
,jhole,jpart,jspin,phase2,mu_pqrs_possible) ,jhole,jpart,jspin,phase2,mu_pqrs_possible)
! excitation possible ! excitation possible
if (mu_pqrs_possible.eq.1) then if (mu_pqrs_possible.eq.1) then
call i_H_psi(det_mu_pqrs,psi_det,psi_coef,N_int & call i_H_psi(det_mu_pqrs,psi_det,psi_coef,N_int &
,N_det,N_det,N_states,i_H_psi_array) ,N_det,N_det,N_states,i_H_psi_array)
@ -104,12 +102,12 @@ END_DOC
res+=i_H_psi_array(istate)*psi_coef(mu,istate)*phase*phase2 res+=i_H_psi_array(istate)*psi_coef(mu,istate)*phase*phase2
end do end do
end if end if
! try the de-excitation with opposite sign ! try the de-excitation with opposite sign
call det_copy(det_mu_pq,det_mu_pqrs,N_int) call det_copy(det_mu_pq,det_mu_pqrs,N_int)
call do_signed_mono_excitation(det_mu_pq,det_mu_pqrs,mu_pqrs & call do_signed_mono_excitation(det_mu_pq,det_mu_pqrs,mu_pqrs&
,jpart,jhole,jspin,phase2,mu_pqrs_possible) ,jpart,jhole,jspin,phase2,mu_pqrs_possible)
phase2=-phase2 phase2=-phase2
! excitation possible ! excitation possible
if (mu_pqrs_possible.eq.1) then if (mu_pqrs_possible.eq.1) then
call i_H_psi(det_mu_pqrs,psi_det,psi_coef,N_int & call i_H_psi(det_mu_pqrs,psi_det,psi_coef,N_int &
,N_det,N_det,N_states,i_H_psi_array) ,N_det,N_det,N_states,i_H_psi_array)
@ -119,18 +117,18 @@ END_DOC
end if end if
end do end do
end if end if
! exchange the notion of pq and rs ! exchange the notion of pq and rs
! do the monoexcitation rs on the initial determinant ! do the monoexcitation rs on the initial determinant
call det_copy(det_mu,det_mu_rs,N_int) call det_copy(det_mu,det_mu_rs,N_int)
call do_signed_mono_excitation(det_mu,det_mu_rs,mu_rs & call do_signed_mono_excitation(det_mu,det_mu_rs,mu_rs &
,jhole,jpart,ispin,phase2,mu_rs_possible) ,jhole,jpart,ispin,phase2,mu_rs_possible)
if (mu_rs_possible.eq.1) then if (mu_rs_possible.eq.1) then
! do the second excitation ! do the second excitation
do jspin=1,2 do jspin=1,2
call det_copy(det_mu_rs,det_mu_rspq,N_int) call det_copy(det_mu_rs,det_mu_rspq,N_int)
call do_signed_mono_excitation(det_mu_rs,det_mu_rspq,mu_rspq & call do_signed_mono_excitation(det_mu_rs,det_mu_rspq,mu_rspq&
,ihole,ipart,jspin,phase3,mu_rspq_possible) ,ihole,ipart,jspin,phase3,mu_rspq_possible)
! excitation possible (of course, the result is outside the CAS) ! excitation possible (of course, the result is outside the CAS)
if (mu_rspq_possible.eq.1) then if (mu_rspq_possible.eq.1) then
call i_H_psi(det_mu_rspq,psi_det,psi_coef,N_int & call i_H_psi(det_mu_rspq,psi_det,psi_coef,N_int &
,N_det,N_det,N_states,i_H_psi_array) ,N_det,N_det,N_states,i_H_psi_array)
@ -138,12 +136,12 @@ END_DOC
res+=i_H_psi_array(istate)*psi_coef(mu,istate)*phase2*phase3 res+=i_H_psi_array(istate)*psi_coef(mu,istate)*phase2*phase3
end do end do
end if end if
! we may try the de-excitation, with opposite sign ! we may try the de-excitation, with opposite sign
call det_copy(det_mu_rs,det_mu_rspq,N_int) call det_copy(det_mu_rs,det_mu_rspq,N_int)
call do_signed_mono_excitation(det_mu_rs,det_mu_rspq,mu_rspq & call do_signed_mono_excitation(det_mu_rs,det_mu_rspq,mu_rspq&
,ipart,ihole,jspin,phase3,mu_rspq_possible) ,ipart,ihole,jspin,phase3,mu_rspq_possible)
phase3=-phase3 phase3=-phase3
! excitation possible (of course, the result is outside the CAS) ! excitation possible (of course, the result is outside the CAS)
if (mu_rspq_possible.eq.1) then if (mu_rspq_possible.eq.1) then
call i_H_psi(det_mu_rspq,psi_det,psi_coef,N_int & call i_H_psi(det_mu_rspq,psi_det,psi_coef,N_int &
,N_det,N_det,N_states,i_H_psi_array) ,N_det,N_det,N_states,i_H_psi_array)
@ -153,9 +151,9 @@ END_DOC
end if end if
end do end do
end if end if
! !
! the operator E H E, we have to do a double loop over the determinants ! the operator E H E, we have to do a double loop over the determinants
! we still have the determinant mu_pq and the phase in memory ! we still have the determinant mu_pq and the phase in memory
if (mu_pq_possible.eq.1) then if (mu_pq_possible.eq.1) then
do nu=1,N_det do nu=1,N_det
call det_extract(det_nu,nu,N_int) call det_extract(det_nu,nu,N_int)
@ -163,7 +161,7 @@ END_DOC
call det_copy(det_nu,det_nu_rs,N_int) call det_copy(det_nu,det_nu_rs,N_int)
call do_signed_mono_excitation(det_nu,det_nu_rs,nu_rs & call do_signed_mono_excitation(det_nu,det_nu_rs,nu_rs &
,jhole,jpart,jspin,phase2,nu_rs_possible) ,jhole,jpart,jspin,phase2,nu_rs_possible)
! excitation possible ? ! excitation possible ?
if (nu_rs_possible.eq.1) then if (nu_rs_possible.eq.1) then
call i_H_j(det_mu_pq,det_nu_rs,N_int,i_H_j_element) call i_H_j(det_mu_pq,det_nu_rs,N_int,i_H_j_element)
do istate=1,N_states do istate=1,N_states
@ -177,19 +175,19 @@ END_DOC
end do end do
end do end do
! state-averaged Hessian ! state-averaged Hessian
res*=1.D0/dble(N_states) res*=1.D0/dble(N_states)
end subroutine calc_hess_elem end subroutine calc_hess_elem
BEGIN_PROVIDER [real*8, hessmat2, (nMonoEx,nMonoEx)] BEGIN_PROVIDER [real*8, hessmat2, (nMonoEx,nMonoEx)]
BEGIN_DOC BEGIN_DOC
! explicit hessian matrix from density matrices and integrals ! explicit hessian matrix from density matrices and integrals
! of course, this will be used for a direct Davidson procedure later ! of course, this will be used for a direct Davidson procedure later
! we will not store the matrix in real life ! we will not store the matrix in real life
! formulas are broken down as functions for the 6 classes of matrix elements ! formulas are broken down as functions for the 6 classes of matrix elements
! !
END_DOC END_DOC
implicit none implicit none
integer :: i,j,t,u,a,b,indx,jndx,bstart,ustart integer :: i,j,t,u,a,b,indx,jndx,bstart,ustart
@ -216,7 +214,7 @@ END_DOC
do u=ustart,n_act_orb do u=ustart,n_act_orb
hessmat2(indx,jndx)=hessmat_itju(i,t,j,u) hessmat2(indx,jndx)=hessmat_itju(i,t,j,u)
hessmat2(jndx,indx)=hessmat2(indx,jndx) hessmat2(jndx,indx)=hessmat2(indx,jndx)
! write(6,*) ' result I :',i,t,j,u,indx,jndx,hessmat(indx,jndx),hessmat2(indx,jndx) ! write(6,*) ' result I :',i,t,j,u,indx,jndx,hessmat(indx,jndx),hessmat2(indx,jndx)
jndx+=1 jndx+=1
end do end do
end do end do
@ -285,68 +283,68 @@ END_DOC
END_PROVIDER END_PROVIDER
real*8 function hessmat_itju(i,t,j,u) real*8 function hessmat_itju(i,t,j,u)
BEGIN_DOC BEGIN_DOC
! the orbital hessian for core->act,core->act ! the orbital hessian for core->act,core->act
! i, t, j, u are list indices, the corresponding orbitals are ii,tt,jj,uu ! i, t, j, u are list indices, the corresponding orbitals are ii,tt,jj,uu
! !
! we assume natural orbitals ! we assume natural orbitals
END_DOC END_DOC
implicit none implicit none
integer :: i,t,j,u,ii,tt,uu,v,vv,x,xx,y,jj integer :: i,t,j,u,ii,tt,uu,v,vv,x,xx,y,jj
real*8 :: term,t2 real*8 :: term,t2
! write(6,*) ' hessmat_itju ',i,t,j,u ! write(6,*) ' hessmat_itju ',i,t,j,u
ii=list_core(i) ii=list_core(i)
tt=list_act(t) tt=list_act(t)
if (i.eq.j) then if (i.eq.j) then
if (t.eq.u) then if (t.eq.u) then
! diagonal element ! diagonal element
term=occnum(tt)*Fipq(ii,ii)+2.D0*(Fipq(tt,tt)+Fapq(tt,tt)) & term=occnum(tt)*Fipq(ii,ii)+2.D0*(Fipq(tt,tt)+Fapq(tt,tt)) &
-2.D0*(Fipq(ii,ii)+Fapq(ii,ii)) -2.D0*(Fipq(ii,ii)+Fapq(ii,ii))
term+=2.D0*(3.D0*bielec_pxxq(tt,i,i,tt)-bielec_pqxx(tt,tt,i,i)) term+=2.D0*(3.D0*bielec_pxxq_no(tt,i,i,tt)-bielec_pqxx_no(tt,tt,i,i))
term-=2.D0*occnum(tt)*(3.D0*bielec_pxxq(tt,i,i,tt) & term-=2.D0*occnum(tt)*(3.D0*bielec_pxxq_no(tt,i,i,tt) &
-bielec_pqxx(tt,tt,i,i)) -bielec_pqxx_no(tt,tt,i,i))
term-=occnum(tt)*Fipq(tt,tt) term-=occnum(tt)*Fipq(tt,tt)
do v=1,n_act_orb do v=1,n_act_orb
vv=list_act(v) vv=list_act(v)
do x=1,n_act_orb do x=1,n_act_orb
xx=list_act(x) xx=list_act(x)
term+=2.D0*(P0tuvx_no(t,t,v,x)*bielec_pqxx(vv,xx,i,i) & term+=2.D0*(P0tuvx_no(t,t,v,x)*bielec_pqxx_no(vv,xx,i,i) &
+(P0tuvx_no(t,x,v,t)+P0tuvx_no(t,x,t,v))* & +(P0tuvx_no(t,x,v,t)+P0tuvx_no(t,x,t,v))* &
bielec_pxxq(vv,i,i,xx)) bielec_pxxq_no(vv,i,i,xx))
do y=1,n_act_orb do y=1,n_act_orb
term-=2.D0*P0tuvx_no(t,v,x,y)*bielecCI(t,v,y,xx) term-=2.D0*P0tuvx_no(t,v,x,y)*bielecCI_no(t,v,y,xx)
end do end do
end do end do
end do end do
else else
! it/iu, t != u ! it/iu, t != u
uu=list_act(u) uu=list_act(u)
term=2.D0*(Fipq(tt,uu)+Fapq(tt,uu)) term=2.D0*(Fipq(tt,uu)+Fapq(tt,uu))
term+=2.D0*(4.D0*bielec_PxxQ(tt,i,j,uu)-bielec_PxxQ(uu,i,j,tt) & term+=2.D0*(4.D0*bielec_PxxQ_no(tt,i,j,uu)-bielec_PxxQ_no(uu,i,j,tt) &
-bielec_PQxx(tt,uu,i,j)) -bielec_PQxx_no(tt,uu,i,j))
term-=occnum(tt)*Fipq(uu,tt) term-=occnum(tt)*Fipq(uu,tt)
term-=(occnum(tt)+occnum(uu)) & term-=(occnum(tt)+occnum(uu)) &
*(3.D0*bielec_PxxQ(tt,i,i,uu)-bielec_PQxx(uu,tt,i,i)) *(3.D0*bielec_PxxQ_no(tt,i,i,uu)-bielec_PQxx_no(uu,tt,i,i))
do v=1,n_act_orb do v=1,n_act_orb
vv=list_act(v) vv=list_act(v)
! term-=D0tu(u,v)*Fipq(tt,vv) ! published, but inverting t and u seems more correct ! term-=D0tu(u,v)*Fipq(tt,vv) ! published, but inverting t and u seems more correct
do x=1,n_act_orb do x=1,n_act_orb
xx=list_act(x) xx=list_act(x)
term+=2.D0*(P0tuvx_no(u,t,v,x)*bielec_pqxx(vv,xx,i,i) & term+=2.D0*(P0tuvx_no(u,t,v,x)*bielec_pqxx_no(vv,xx,i,i) &
+(P0tuvx_no(u,x,v,t)+P0tuvx_no(u,x,t,v)) & +(P0tuvx_no(u,x,v,t)+P0tuvx_no(u,x,t,v)) &
*bielec_pxxq(vv,i,i,xx)) *bielec_pxxq_no(vv,i,i,xx))
do y=1,n_act_orb do y=1,n_act_orb
term-=2.D0*P0tuvx_no(t,v,x,y)*bielecCI(u,v,y,xx) term-=2.D0*P0tuvx_no(t,v,x,y)*bielecCI_no(u,v,y,xx)
end do end do
end do end do
end do end do
!!! write(6,*) ' direct diff ',i,t,j,u,term,term2 !!! write(6,*) ' direct diff ',i,t,j,u,term,term2
!!! term=term2 !!! term=term2
end if end if
else else
! it/ju ! it/ju
jj=list_core(j) jj=list_core(j)
uu=list_act(u) uu=list_act(u)
if (t.eq.u) then if (t.eq.u) then
@ -355,18 +353,18 @@ END_DOC
else else
term=0.D0 term=0.D0
end if end if
term+=2.D0*(4.D0*bielec_PxxQ(tt,i,j,uu)-bielec_PxxQ(uu,i,j,tt) & term+=2.D0*(4.D0*bielec_PxxQ_no(tt,i,j,uu)-bielec_PxxQ_no(uu,i,j,tt) &
-bielec_PQxx(tt,uu,i,j)) -bielec_PQxx_no(tt,uu,i,j))
term-=(occnum(tt)+occnum(uu))* & term-=(occnum(tt)+occnum(uu))* &
(4.D0*bielec_PxxQ(tt,i,j,uu)-bielec_PxxQ(uu,i,j,tt) & (4.D0*bielec_PxxQ_no(tt,i,j,uu)-bielec_PxxQ_no(uu,i,j,tt) &
-bielec_PQxx(uu,tt,i,j)) -bielec_PQxx_no(uu,tt,i,j))
do v=1,n_act_orb do v=1,n_act_orb
vv=list_act(v) vv=list_act(v)
do x=1,n_act_orb do x=1,n_act_orb
xx=list_act(x) xx=list_act(x)
term+=2.D0*(P0tuvx_no(u,t,v,x)*bielec_pqxx(vv,xx,i,j) & term+=2.D0*(P0tuvx_no(u,t,v,x)*bielec_pqxx_no(vv,xx,i,j) &
+(P0tuvx_no(u,x,v,t)+P0tuvx_no(u,x,t,v)) & +(P0tuvx_no(u,x,v,t)+P0tuvx_no(u,x,t,v)) &
*bielec_pxxq(vv,i,j,xx)) *bielec_pxxq_no(vv,i,j,xx))
end do end do
end do end do
end if end if
@ -374,33 +372,33 @@ END_DOC
term*=2.D0 term*=2.D0
hessmat_itju=term hessmat_itju=term
end function hessmat_itju end function hessmat_itju
real*8 function hessmat_itja(i,t,j,a) real*8 function hessmat_itja(i,t,j,a)
BEGIN_DOC BEGIN_DOC
! the orbital hessian for core->act,core->virt ! the orbital hessian for core->act,core->virt
END_DOC END_DOC
implicit none implicit none
integer :: i,t,j,a,ii,tt,jj,aa,v,vv,x,y integer :: i,t,j,a,ii,tt,jj,aa,v,vv,x,y
real*8 :: term real*8 :: term
! write(6,*) ' hessmat_itja ',i,t,j,a ! write(6,*) ' hessmat_itja ',i,t,j,a
! it/ja ! it/ja
ii=list_core(i) ii=list_core(i)
tt=list_act(t) tt=list_act(t)
jj=list_core(j) jj=list_core(j)
aa=list_virt(a) aa=list_virt(a)
term=2.D0*(4.D0*bielec_pxxq(aa,j,i,tt) & term=2.D0*(4.D0*bielec_pxxq_no(aa,j,i,tt) &
-bielec_pqxx(aa,tt,i,j) -bielec_pxxq(aa,i,j,tt)) -bielec_pqxx_no(aa,tt,i,j) -bielec_pxxq_no(aa,i,j,tt))
term-=occnum(tt)*(4.D0*bielec_pxxq(aa,j,i,tt) & term-=occnum(tt)*(4.D0*bielec_pxxq_no(aa,j,i,tt) &
-bielec_pqxx(aa,tt,i,j) -bielec_pxxq(aa,i,j,tt)) -bielec_pqxx_no(aa,tt,i,j) -bielec_pxxq_no(aa,i,j,tt))
if (i.eq.j) then if (i.eq.j) then
term+=2.D0*(Fipq(aa,tt)+Fapq(aa,tt)) term+=2.D0*(Fipq(aa,tt)+Fapq(aa,tt))
term-=0.5D0*occnum(tt)*Fipq(aa,tt) term-=0.5D0*occnum(tt)*Fipq(aa,tt)
do v=1,n_act_orb do v=1,n_act_orb
do x=1,n_act_orb do x=1,n_act_orb
do y=1,n_act_orb do y=1,n_act_orb
term-=P0tuvx_no(t,v,x,y)*bielecCI(x,y,v,aa) term-=P0tuvx_no(t,v,x,y)*bielecCI_no(x,y,v,aa)
end do end do
end do end do
end do end do
@ -408,17 +406,17 @@ END_DOC
term*=2.D0 term*=2.D0
hessmat_itja=term hessmat_itja=term
end function hessmat_itja end function hessmat_itja
real*8 function hessmat_itua(i,t,u,a) real*8 function hessmat_itua(i,t,u,a)
BEGIN_DOC BEGIN_DOC
! the orbital hessian for core->act,act->virt ! the orbital hessian for core->act,act->virt
END_DOC END_DOC
implicit none implicit none
integer :: i,t,u,a,ii,tt,uu,aa,v,vv,x,xx,u3,t3,v3 integer :: i,t,u,a,ii,tt,uu,aa,v,vv,x,xx,u3,t3,v3
real*8 :: term real*8 :: term
! write(6,*) ' hessmat_itua ',i,t,u,a ! write(6,*) ' hessmat_itua ',i,t,u,a
ii=list_core(i) ii=list_core(i)
tt=list_act(t) tt=list_act(t)
t3=t+n_core_orb t3=t+n_core_orb
@ -430,18 +428,18 @@ END_DOC
else else
term=0.D0 term=0.D0
end if end if
term-=occnum(uu)*(bielec_pqxx(aa,ii,t3,u3)-4.D0*bielec_pqxx(aa,uu,t3,i) & term-=occnum(uu)*(bielec_pqxx_no(aa,ii,t3,u3)-4.D0*bielec_pqxx_no(aa,uu,t3,i)&
+bielec_pxxq(aa,t3,u3,ii)) +bielec_pxxq_no(aa,t3,u3,ii))
do v=1,n_act_orb do v=1,n_act_orb
vv=list_act(v) vv=list_act(v)
v3=v+n_core_orb v3=v+n_core_orb
do x=1,n_act_orb do x=1,n_act_orb
integer :: x3 integer :: x3
xx=list_act(x) xx=list_act(x)
x3=x+n_core_orb x3=x+n_core_orb
term-=2.D0*(P0tuvx_no(t,u,v,x)*bielec_pqxx(aa,ii,v3,x3) & term-=2.D0*(P0tuvx_no(t,u,v,x)*bielec_pqxx_no(aa,ii,v3,x3) &
+(P0tuvx_no(t,v,u,x)+P0tuvx_no(t,v,x,u)) & +(P0tuvx_no(t,v,u,x)+P0tuvx_no(t,v,x,u)) &
*bielec_pqxx(aa,xx,v3,i)) *bielec_pqxx_no(aa,xx,v3,i))
end do end do
end do end do
if (t.eq.u) then if (t.eq.u) then
@ -450,36 +448,36 @@ integer :: x3
term*=2.D0 term*=2.D0
hessmat_itua=term hessmat_itua=term
end function hessmat_itua end function hessmat_itua
real*8 function hessmat_iajb(i,a,j,b) real*8 function hessmat_iajb(i,a,j,b)
BEGIN_DOC BEGIN_DOC
! the orbital hessian for core->virt,core->virt ! the orbital hessian for core->virt,core->virt
END_DOC END_DOC
implicit none implicit none
integer :: i,a,j,b,ii,aa,jj,bb integer :: i,a,j,b,ii,aa,jj,bb
real*8 :: term real*8 :: term
! write(6,*) ' hessmat_iajb ',i,a,j,b ! write(6,*) ' hessmat_iajb ',i,a,j,b
ii=list_core(i) ii=list_core(i)
aa=list_virt(a) aa=list_virt(a)
if (i.eq.j) then if (i.eq.j) then
if (a.eq.b) then if (a.eq.b) then
! ia/ia ! ia/ia
term=2.D0*(Fipq(aa,aa)+Fapq(aa,aa)-Fipq(ii,ii)-Fapq(ii,ii)) term=2.D0*(Fipq(aa,aa)+Fapq(aa,aa)-Fipq(ii,ii)-Fapq(ii,ii))
term+=2.D0*(3.D0*bielec_pxxq(aa,i,i,aa)-bielec_pqxx(aa,aa,i,i)) term+=2.D0*(3.D0*bielec_pxxq_no(aa,i,i,aa)-bielec_pqxx_no(aa,aa,i,i))
else else
bb=list_virt(b) bb=list_virt(b)
! ia/ib ! ia/ib
term=2.D0*(Fipq(aa,bb)+Fapq(aa,bb)) term=2.D0*(Fipq(aa,bb)+Fapq(aa,bb))
term+=2.D0*(3.D0*bielec_pxxq(aa,i,i,bb)-bielec_pqxx(aa,bb,i,i)) term+=2.D0*(3.D0*bielec_pxxq_no(aa,i,i,bb)-bielec_pqxx_no(aa,bb,i,i))
end if end if
else else
! ia/jb ! ia/jb
jj=list_core(j) jj=list_core(j)
bb=list_virt(b) bb=list_virt(b)
term=2.D0*(4.D0*bielec_pxxq(aa,i,j,bb)-bielec_pqxx(aa,bb,i,j) & term=2.D0*(4.D0*bielec_pxxq_no(aa,i,j,bb)-bielec_pqxx_no(aa,bb,i,j) &
-bielec_pxxq(aa,j,i,bb)) -bielec_pxxq_no(aa,j,i,bb))
if (a.eq.b) then if (a.eq.b) then
term-=2.D0*(Fipq(ii,jj)+Fapq(ii,jj)) term-=2.D0*(Fipq(ii,jj)+Fapq(ii,jj))
end if end if
@ -487,31 +485,31 @@ END_DOC
term*=2.D0 term*=2.D0
hessmat_iajb=term hessmat_iajb=term
end function hessmat_iajb end function hessmat_iajb
real*8 function hessmat_iatb(i,a,t,b) real*8 function hessmat_iatb(i,a,t,b)
BEGIN_DOC BEGIN_DOC
! the orbital hessian for core->virt,act->virt ! the orbital hessian for core->virt,act->virt
END_DOC END_DOC
implicit none implicit none
integer :: i,a,t,b,ii,aa,tt,bb,v,vv,x,y,v3,t3 integer :: i,a,t,b,ii,aa,tt,bb,v,vv,x,y,v3,t3
real*8 :: term real*8 :: term
! write(6,*) ' hessmat_iatb ',i,a,t,b ! write(6,*) ' hessmat_iatb ',i,a,t,b
ii=list_core(i) ii=list_core(i)
aa=list_virt(a) aa=list_virt(a)
tt=list_act(t) tt=list_act(t)
bb=list_virt(b) bb=list_virt(b)
t3=t+n_core_orb t3=t+n_core_orb
term=occnum(tt)*(4.D0*bielec_pxxq(aa,i,t3,bb)-bielec_pxxq(aa,t3,i,bb) & term=occnum(tt)*(4.D0*bielec_pxxq_no(aa,i,t3,bb)-bielec_pxxq_no(aa,t3,i,bb)&
-bielec_pqxx(aa,bb,i,t3)) -bielec_pqxx_no(aa,bb,i,t3))
if (a.eq.b) then if (a.eq.b) then
term-=Fipq(tt,ii)+Fapq(tt,ii) term-=Fipq(tt,ii)+Fapq(tt,ii)
term-=0.5D0*occnum(tt)*Fipq(tt,ii) term-=0.5D0*occnum(tt)*Fipq(tt,ii)
do v=1,n_act_orb do v=1,n_act_orb
do x=1,n_act_orb do x=1,n_act_orb
do y=1,n_act_orb do y=1,n_act_orb
term-=P0tuvx_no(t,v,x,y)*bielecCI(x,y,v,ii) term-=P0tuvx_no(t,v,x,y)*bielecCI_no(x,y,v,ii)
end do end do
end do end do
end do end do
@ -519,12 +517,12 @@ END_DOC
term*=2.D0 term*=2.D0
hessmat_iatb=term hessmat_iatb=term
end function hessmat_iatb end function hessmat_iatb
real*8 function hessmat_taub(t,a,u,b) real*8 function hessmat_taub(t,a,u,b)
BEGIN_DOC BEGIN_DOC
! the orbital hessian for act->virt,act->virt ! the orbital hessian for act->virt,act->virt
END_DOC END_DOC
implicit none implicit none
integer :: t,a,u,b,tt,aa,uu,bb,v,vv,x,xx,y integer :: t,a,u,b,tt,aa,uu,bb,v,vv,x,xx,y
integer :: v3,x3 integer :: v3,x3
@ -534,7 +532,7 @@ END_DOC
aa=list_virt(a) aa=list_virt(a)
if (t.eq.u) then if (t.eq.u) then
if (a.eq.b) then if (a.eq.b) then
! ta/ta ! ta/ta
t1=occnum(tt)*Fipq(aa,aa) t1=occnum(tt)*Fipq(aa,aa)
t2=0.D0 t2=0.D0
t3=0.D0 t3=0.D0
@ -545,19 +543,19 @@ END_DOC
do x=1,n_act_orb do x=1,n_act_orb
xx=list_act(x) xx=list_act(x)
x3=x+n_core_orb x3=x+n_core_orb
t2+=2.D0*(P0tuvx_no(t,t,v,x)*bielec_pqxx(aa,aa,v3,x3) & t2+=2.D0*(P0tuvx_no(t,t,v,x)*bielec_pqxx_no(aa,aa,v3,x3) &
+(P0tuvx_no(t,x,v,t)+P0tuvx_no(t,x,t,v))* & +(P0tuvx_no(t,x,v,t)+P0tuvx_no(t,x,t,v))* &
bielec_pxxq(aa,x3,v3,aa)) bielec_pxxq_no(aa,x3,v3,aa))
do y=1,n_act_orb do y=1,n_act_orb
t3-=2.D0*P0tuvx_no(t,v,x,y)*bielecCI(t,v,y,xx) t3-=2.D0*P0tuvx_no(t,v,x,y)*bielecCI_no(t,v,y,xx)
end do end do
end do end do
end do end do
term=t1+t2+t3 term=t1+t2+t3
! write(6,*) ' Hess taub ',t,a,t1,t2,t3 ! write(6,*) ' Hess taub ',t,a,t1,t2,t3
else else
bb=list_virt(b) bb=list_virt(b)
! ta/tb b/=a ! ta/tb b/=a
term=occnum(tt)*Fipq(aa,bb) term=occnum(tt)*Fipq(aa,bb)
do v=1,n_act_orb do v=1,n_act_orb
vv=list_act(v) vv=list_act(v)
@ -565,14 +563,14 @@ END_DOC
do x=1,n_act_orb do x=1,n_act_orb
xx=list_act(x) xx=list_act(x)
x3=x+n_core_orb x3=x+n_core_orb
term+=2.D0*(P0tuvx_no(t,t,v,x)*bielec_pqxx(aa,bb,v3,x3) & term+=2.D0*(P0tuvx_no(t,t,v,x)*bielec_pqxx_no(aa,bb,v3,x3) &
+(P0tuvx_no(t,x,v,t)+P0tuvx_no(t,x,t,v)) & +(P0tuvx_no(t,x,v,t)+P0tuvx_no(t,x,t,v)) &
*bielec_pxxq(aa,x3,v3,bb)) *bielec_pxxq_no(aa,x3,v3,bb))
end do end do
end do end do
end if end if
else else
! ta/ub t/=u ! ta/ub t/=u
uu=list_act(u) uu=list_act(u)
bb=list_virt(b) bb=list_virt(b)
term=0.D0 term=0.D0
@ -582,9 +580,9 @@ END_DOC
do x=1,n_act_orb do x=1,n_act_orb
xx=list_act(x) xx=list_act(x)
x3=x+n_core_orb x3=x+n_core_orb
term+=2.D0*(P0tuvx_no(t,u,v,x)*bielec_pqxx(aa,bb,v3,x3) & term+=2.D0*(P0tuvx_no(t,u,v,x)*bielec_pqxx_no(aa,bb,v3,x3) &
+(P0tuvx_no(t,x,v,u)+P0tuvx_no(t,x,u,v)) & +(P0tuvx_no(t,x,v,u)+P0tuvx_no(t,x,u,v)) &
*bielec_pxxq(aa,x3,v3,bb)) *bielec_pxxq_no(aa,x3,v3,bb))
end do end do
end do end do
if (a.eq.b) then if (a.eq.b) then
@ -592,8 +590,8 @@ END_DOC
do v=1,n_act_orb do v=1,n_act_orb
do x=1,n_act_orb do x=1,n_act_orb
do y=1,n_act_orb do y=1,n_act_orb
term-=P0tuvx_no(t,v,x,y)*bielecCI(x,y,v,uu) term-=P0tuvx_no(t,v,x,y)*bielecCI_no(x,y,v,uu)
term-=P0tuvx_no(u,v,x,y)*bielecCI(x,y,v,tt) term-=P0tuvx_no(u,v,x,y)*bielecCI_no(x,y,v,tt)
end do end do
end do end do
end do end do
@ -604,12 +602,12 @@ END_DOC
term*=2.D0 term*=2.D0
hessmat_taub=term hessmat_taub=term
end function hessmat_taub end function hessmat_taub
BEGIN_PROVIDER [real*8, hessdiag, (nMonoEx)] BEGIN_PROVIDER [real*8, hessdiag, (nMonoEx)]
BEGIN_DOC BEGIN_DOC
! the diagonal of the Hessian, needed for the Davidson procedure ! the diagonal of the Hessian, needed for the Davidson procedure
END_DOC END_DOC
implicit none implicit none
integer :: i,t,a,indx integer :: i,t,a,indx
real*8 :: hessmat_itju,hessmat_iajb,hessmat_taub real*8 :: hessmat_itju,hessmat_iajb,hessmat_taub

View File

@ -1,52 +1,65 @@
! -*- F90 -*- BEGIN_PROVIDER [real*8, Fipq, (mo_num,mo_num) ]
BEGIN_PROVIDER [real*8, Fipq, (mo_num,mo_num) ] BEGIN_DOC
&BEGIN_PROVIDER [real*8, Fapq, (mo_num,mo_num) ] ! the inactive Fock matrix, in molecular orbitals
BEGIN_DOC END_DOC
! the inactive and the active Fock matrices, in molecular
! orbitals
! we create them in MOs, quite expensive
!
! for an implementation in AOs we need first the natural orbitals
! for forming an active density matrix in AOs
!
END_DOC
implicit none implicit none
double precision, allocatable :: integrals_array1(:,:)
double precision, allocatable :: integrals_array2(:,:)
integer :: p,q,k,kk,t,tt,u,uu integer :: p,q,k,kk,t,tt,u,uu
allocate(integrals_array1(mo_num,mo_num))
allocate(integrals_array2(mo_num,mo_num))
do p=1,mo_num
do q=1,mo_num do q=1,mo_num
do p=1,mo_num
Fipq(p,q)=one_ints(p,q) Fipq(p,q)=one_ints(p,q)
Fapq(p,q)=0.D0
end do end do
end do end do
! the inactive Fock matrix ! the inactive Fock matrix
do k=1,n_core_orb do k=1,n_core_orb
kk=list_core(k) kk=list_core(k)
do p=1,mo_num
do q=1,mo_num do q=1,mo_num
Fipq(p,q)+=2.D0*bielec_pqxx(p,q,k,k) -bielec_pxxq(p,k,k,q) do p=1,mo_num
Fipq(p,q)+=2.D0*bielec_pqxx_no(p,q,k,k) -bielec_pxxq_no(p,k,k,q)
end do end do
end do end do
end do end do
! the active Fock matrix, D0tu is diagonal if (bavard) then
integer :: i
write(6,*)
write(6,*) ' the diagonal of the inactive effective Fock matrix '
write(6,'(5(i3,F12.5))') (i,Fipq(i,i),i=1,mo_num)
write(6,*)
end if
END_PROVIDER
BEGIN_PROVIDER [real*8, Fapq, (mo_num,mo_num) ]
BEGIN_DOC
! the active active Fock matrix, in molecular orbitals
! we create them in MOs, quite expensive
!
! for an implementation in AOs we need first the natural orbitals
! for forming an active density matrix in AOs
!
END_DOC
implicit none
integer :: p,q,k,kk,t,tt,u,uu
Fapq = 0.d0
! the active Fock matrix, D0tu is diagonal
do t=1,n_act_orb do t=1,n_act_orb
tt=list_act(t) tt=list_act(t)
do p=1,mo_num
do q=1,mo_num do q=1,mo_num
do p=1,mo_num
Fapq(p,q)+=occnum(tt) & Fapq(p,q)+=occnum(tt) &
*(bielec_pqxx(p,q,tt,tt)-0.5D0*bielec_pxxq(p,tt,tt,q)) *(bielec_pqxx_no(p,q,tt,tt)-0.5D0*bielec_pxxq_no(p,tt,tt,q))
end do end do
end do end do
end do end do
if (bavard) then if (bavard) then
integer :: i integer :: i
write(6,*) write(6,*)
write(6,*) ' the effective Fock matrix over MOs' write(6,*) ' the effective Fock matrix over MOs'
write(6,*) write(6,*)
@ -59,7 +72,7 @@ integer :: i
write(6,*) ' the diagonal of the active Fock matrix ' write(6,*) ' the diagonal of the active Fock matrix '
write(6,'(5(i3,F12.5))') (i,Fapq(i,i),i=1,mo_num) write(6,'(5(i3,F12.5))') (i,Fapq(i,i),i=1,mo_num)
write(6,*) write(6,*)
end if end if
END_PROVIDER END_PROVIDER

View File

@ -1,30 +1,49 @@
! -*- F90 -*- BEGIN_PROVIDER [real*8, occnum, (mo_num)]
! diagonalize D0tu
! save the diagonal somewhere, in inverse order
! 4-index-transform the 2-particle density matrix over active orbitals
! correct the bielectronic integrals
! correct the monoelectronic integrals
! put integrals on file, as well orbitals, and the density matrices
!
subroutine trf_to_natorb
implicit none implicit none
integer :: i,j,k,l,t,u,p,q,pp BEGIN_DOC
real*8 :: eigval(n_act_orb),natorbsCI(n_act_orb,n_act_orb) ! MO occupation numbers
real*8 :: d(n_act_orb),d1(n_act_orb),d2(n_act_orb) END_DOC
integer :: i
occnum=0.D0
do i=1,n_core_orb
occnum(list_core(i))=2.D0
end do
do i=1,n_act_orb
occnum(list_act(i))=occ_act(n_act_orb-i+1)
end do
write(6,*) ' occupation numbers '
do i=1,mo_num
write(6,*) i,occnum(i)
end do
END_PROVIDER
BEGIN_PROVIDER [ real*8, natorbsCI, (n_act_orb,n_act_orb) ]
&BEGIN_PROVIDER [ real*8, occ_act, (n_act_orb) ]
implicit none
BEGIN_DOC
! Natural orbitals of CI
END_DOC
integer :: i, j
call lapack_diag(occ_act,natorbsCI,D0tu,n_act_orb,n_act_orb)
call lapack_diag(eigval,natorbsCI,D0tu,n_act_orb,n_act_orb)
write(6,*) ' found occupation numbers as ' write(6,*) ' found occupation numbers as '
do i=1,n_act_orb do i=1,n_act_orb
write(6,*) i,eigval(i) write(6,*) i,occ_act(i)
end do end do
if (bavard) then if (bavard) then
! !
integer :: nmx integer :: nmx
real*8 :: xmx real*8 :: xmx
do i=1,n_act_orb do i=1,n_act_orb
! largest element of the eigenvector should be positive ! largest element of the eigenvector should be positive
xmx=0.D0 xmx=0.D0
nmx=0 nmx=0
do j=1,n_act_orb do j=1,n_act_orb
@ -38,24 +57,26 @@ real*8 :: xmx
natOrbsCI(j,i)*=xmx natOrbsCI(j,i)*=xmx
end do end do
write(6,*) ' Eigenvector No ',i write(6,*) ' Eigenvector No ',i
write(6,'(5(I3,F12.5))') (j,natOrbsCI(j,i),j=1,n_act_orb) write(6,'(5(I3,F12.5))') (j,natOrbsCI(j,i),j=1,n_act_orb)
end do end do
end if end if
do i=1,n_act_orb END_PROVIDER
do j=1,n_act_orb
D0tu(i,j)=0.D0
end do BEGIN_PROVIDER [real*8, P0tuvx_no, (n_act_orb,n_act_orb,n_act_orb,n_act_orb)]
! fill occupation numbers in descending order implicit none
D0tu(i,i)=eigval(n_act_orb-i+1) BEGIN_DOC
end do ! 4-index transformation of 2part matrices
! END_DOC
! 4-index transformation of 2part matrices integer :: i,j,k,l,p,q,pp
! real*8 :: d(n_act_orb)
! index per index
! first quarter ! index per index
! first quarter
P0tuvx_no(:,:,:,:) = P0tuvx(:,:,:,:)
do j=1,n_act_orb do j=1,n_act_orb
do k=1,n_act_orb do k=1,n_act_orb
do l=1,n_act_orb do l=1,n_act_orb
@ -65,16 +86,16 @@ real*8 :: xmx
do p=1,n_act_orb do p=1,n_act_orb
pp=n_act_orb-p+1 pp=n_act_orb-p+1
do q=1,n_act_orb do q=1,n_act_orb
d(pp)+=P0tuvx(q,j,k,l)*natorbsCI(q,p) d(pp)+=P0tuvx_no(q,j,k,l)*natorbsCI(q,p)
end do end do
end do end do
do p=1,n_act_orb do p=1,n_act_orb
P0tuvx(p,j,k,l)=d(p) P0tuvx_no(p,j,k,l)=d(p)
end do end do
end do end do
end do end do
end do end do
! 2nd quarter ! 2nd quarter
do j=1,n_act_orb do j=1,n_act_orb
do k=1,n_act_orb do k=1,n_act_orb
do l=1,n_act_orb do l=1,n_act_orb
@ -84,16 +105,16 @@ real*8 :: xmx
do p=1,n_act_orb do p=1,n_act_orb
pp=n_act_orb-p+1 pp=n_act_orb-p+1
do q=1,n_act_orb do q=1,n_act_orb
d(pp)+=P0tuvx(j,q,k,l)*natorbsCI(q,p) d(pp)+=P0tuvx_no(j,q,k,l)*natorbsCI(q,p)
end do end do
end do end do
do p=1,n_act_orb do p=1,n_act_orb
P0tuvx(j,p,k,l)=d(p) P0tuvx_no(j,p,k,l)=d(p)
end do end do
end do end do
end do end do
end do end do
! 3rd quarter ! 3rd quarter
do j=1,n_act_orb do j=1,n_act_orb
do k=1,n_act_orb do k=1,n_act_orb
do l=1,n_act_orb do l=1,n_act_orb
@ -103,16 +124,16 @@ real*8 :: xmx
do p=1,n_act_orb do p=1,n_act_orb
pp=n_act_orb-p+1 pp=n_act_orb-p+1
do q=1,n_act_orb do q=1,n_act_orb
d(pp)+=P0tuvx(j,k,q,l)*natorbsCI(q,p) d(pp)+=P0tuvx_no(j,k,q,l)*natorbsCI(q,p)
end do end do
end do end do
do p=1,n_act_orb do p=1,n_act_orb
P0tuvx(j,k,p,l)=d(p) P0tuvx_no(j,k,p,l)=d(p)
end do end do
end do end do
end do end do
end do end do
! 4th quarter ! 4th quarter
do j=1,n_act_orb do j=1,n_act_orb
do k=1,n_act_orb do k=1,n_act_orb
do l=1,n_act_orb do l=1,n_act_orb
@ -122,25 +143,31 @@ real*8 :: xmx
do p=1,n_act_orb do p=1,n_act_orb
pp=n_act_orb-p+1 pp=n_act_orb-p+1
do q=1,n_act_orb do q=1,n_act_orb
d(pp)+=P0tuvx(j,k,l,q)*natorbsCI(q,p) d(pp)+=P0tuvx_no(j,k,l,q)*natorbsCI(q,p)
end do end do
end do end do
do p=1,n_act_orb do p=1,n_act_orb
P0tuvx(j,k,l,p)=d(p) P0tuvx_no(j,k,l,p)=d(p)
end do end do
end do end do
end do end do
end do end do
write(6,*) ' transformed P0tuvx ' write(6,*) ' transformed P0tuvx '
!
! one-electron integrals END_PROVIDER
!
do i=1,mo_num
do j=1,mo_num
onetrf(i,j)=mo_one_e_integrals(i,j) BEGIN_PROVIDER [real*8, onetrf, (mo_num,mo_num)]
end do implicit none
end do BEGIN_DOC
! 1st half-trf ! Transformed one-e integrals
END_DOC
integer :: i,j, p, pp, q
real*8 :: d(n_act_orb)
onetrf(:,:)=mo_one_e_integrals(:,:)
! 1st half-trf
do j=1,mo_num do j=1,mo_num
do p=1,n_act_orb do p=1,n_act_orb
d(p)=0.D0 d(p)=0.D0
@ -155,7 +182,8 @@ real*8 :: xmx
onetrf(list_act(p),j)=d(p) onetrf(list_act(p),j)=d(p)
end do end do
end do end do
! 2nd half-trf
! 2nd half-trf
do j=1,mo_num do j=1,mo_num
do p=1,n_act_orb do p=1,n_act_orb
d(p)=0.D0 d(p)=0.D0
@ -171,14 +199,18 @@ real*8 :: xmx
end do end do
end do end do
write(6,*) ' transformed onetrf ' write(6,*) ' transformed onetrf '
! END_PROVIDER
! Orbitals
!
do j=1,ao_num BEGIN_PROVIDER [real*8, NatOrbsFCI, (ao_num,mo_num)]
do i=1,mo_num implicit none
NatOrbsFCI(j,i)=mo_coef(j,i) BEGIN_DOC
end do ! FCI natural orbitals
end do END_DOC
integer :: i,j, p, pp, q
real*8 :: d(n_act_orb)
NatOrbsFCI(:,:)=mo_coef(:,:)
do j=1,ao_num do j=1,ao_num
do p=1,n_act_orb do p=1,n_act_orb
@ -195,231 +227,27 @@ real*8 :: xmx
end do end do
end do end do
write(6,*) ' transformed orbitals ' write(6,*) ' transformed orbitals '
! END_PROVIDER
! now the bielectronic integrals
!
!!$ write(6,*) ' before the transformation '
!!$integer :: kk,ll,ii,jj
!!$real*8 :: h1,h2,h3
!!$ do i=1,n_act_orb
!!$ ii=list_act(i)
!!$ do j=1,n_act_orb
!!$ jj=list_act(j)
!!$ do k=1,n_act_orb
!!$ kk=list_act(k)
!!$ do l=1,n_act_orb
!!$ ll=list_act(l)
!!$ h1=bielec_PQxxtmp(ii,jj,k+n_core_orb,l+n_core_orb)
!!$ h2=bielec_PxxQtmp(ii,j+n_core_orb,k+n_core_orb,ll)
!!$ h3=bielecCItmp(i,j,k,ll)
!!$ if ((h1.ne.h2).or.(h1.ne.h3)) then
!!$ write(6,9901) i,j,k,l,h1,h2,h3
!!$9901 format(' aie ',4i4,3E20.12)
!!$9902 format('correct',4i4,3E20.12)
!!$ else
!!$ write(6,9902) i,j,k,l,h1,h2,h3
!!$ end if
!!$ end do
!!$ end do
!!$ end do
!!$ end do
do j=1,mo_num
do k=1,n_core_orb+n_act_orb
do l=1,n_core_orb+n_act_orb
do p=1,n_act_orb
d1(p)=0.D0
d2(p)=0.D0
end do
do p=1,n_act_orb
pp=n_act_orb-p+1
do q=1,n_act_orb
d1(pp)+=bielec_PQxxtmp(list_act(q),j,k,l)*natorbsCI(q,p)
d2(pp)+=bielec_PxxQtmp(list_act(q),k,l,j)*natorbsCI(q,p)
end do
end do
do p=1,n_act_orb
bielec_PQxxtmp(list_act(p),j,k,l)=d1(p)
bielec_PxxQtmp(list_act(p),k,l,j)=d2(p)
end do
end do
end do
end do
! 2nd quarter
do j=1,mo_num
do k=1,n_core_orb+n_act_orb
do l=1,n_core_orb+n_act_orb
do p=1,n_act_orb
d1(p)=0.D0
d2(p)=0.D0
end do
do p=1,n_act_orb
pp=n_act_orb-p+1
do q=1,n_act_orb
d1(pp)+=bielec_PQxxtmp(j,list_act(q),k,l)*natorbsCI(q,p)
d2(pp)+=bielec_PxxQtmp(j,k,l,list_act(q))*natorbsCI(q,p)
end do
end do
do p=1,n_act_orb
bielec_PQxxtmp(j,list_act(p),k,l)=d1(p)
bielec_PxxQtmp(j,k,l,list_act(p))=d2(p)
end do
end do
end do
end do
! 3rd quarter
do j=1,mo_num
do k=1,mo_num
do l=1,n_core_orb+n_act_orb
do p=1,n_act_orb
d1(p)=0.D0
d2(p)=0.D0
end do
do p=1,n_act_orb
pp=n_act_orb-p+1
do q=1,n_act_orb
d1(pp)+=bielec_PQxxtmp(j,k,n_core_orb+q,l)*natorbsCI(q,p)
d2(pp)+=bielec_PxxQtmp(j,n_core_orb+q,l,k)*natorbsCI(q,p)
end do
end do
do p=1,n_act_orb
bielec_PQxxtmp(j,k,n_core_orb+p,l)=d1(p)
bielec_PxxQtmp(j,n_core_orb+p,l,k)=d2(p)
end do
end do
end do
end do
! 4th quarter
do j=1,mo_num
do k=1,mo_num
do l=1,n_core_orb+n_act_orb
do p=1,n_act_orb
d1(p)=0.D0
d2(p)=0.D0
end do
do p=1,n_act_orb
pp=n_act_orb-p+1
do q=1,n_act_orb
d1(pp)+=bielec_PQxxtmp(j,k,l,n_core_orb+q)*natorbsCI(q,p)
d2(pp)+=bielec_PxxQtmp(j,l,n_core_orb+q,k)*natorbsCI(q,p)
end do
end do
do p=1,n_act_orb
bielec_PQxxtmp(j,k,l,n_core_orb+p)=d1(p)
bielec_PxxQtmp(j,l,n_core_orb+p,k)=d2(p)
end do
end do
end do
end do
write(6,*) ' transformed PQxx and PxxQ '
!
! and finally the bielecCI integrals
!
do j=1,n_act_orb
do k=1,n_act_orb
do l=1,mo_num
do p=1,n_act_orb
d(p)=0.D0
end do
do p=1,n_act_orb
pp=n_act_orb-p+1
do q=1,n_act_orb
d(pp)+=bielecCItmp(q,j,k,l)*natorbsCI(q,p)
end do
end do
do p=1,n_act_orb
bielecCItmp(p,j,k,l)=d(p)
end do
end do
end do
end do
! 2nd quarter
do j=1,n_act_orb
do k=1,n_act_orb
do l=1,mo_num
do p=1,n_act_orb
d(p)=0.D0
end do
do p=1,n_act_orb
pp=n_act_orb-p+1
do q=1,n_act_orb
d(pp)+=bielecCItmp(j,q,k,l)*natorbsCI(q,p)
end do
end do
do p=1,n_act_orb
bielecCItmp(j,p,k,l)=d(p)
end do
end do
end do
end do
! 3rd quarter
do j=1,n_act_orb
do k=1,n_act_orb
do l=1,mo_num
do p=1,n_act_orb
d(p)=0.D0
end do
do p=1,n_act_orb
pp=n_act_orb-p+1
do q=1,n_act_orb
d(pp)+=bielecCItmp(j,k,q,l)*natorbsCI(q,p)
end do
end do
do p=1,n_act_orb
bielecCItmp(j,k,p,l)=d(p)
end do
end do
end do
end do
! 4th quarter
do j=1,n_act_orb
do k=1,n_act_orb
do l=1,n_act_orb
do p=1,n_act_orb
d(p)=0.D0
end do
do p=1,n_act_orb
pp=n_act_orb-p+1
do q=1,n_act_orb
d(pp)+=bielecCItmp(j,k,l,list_act(q))*natorbsCI(q,p)
end do
end do
do p=1,n_act_orb
bielecCItmp(j,k,l,list_act(p))=d(p)
end do
end do
end do
end do
write(6,*) ' transformed tuvP '
!
! that's all
!
!!$
!!$! test coherence of the bielectronic integals
!!$! PQxx = PxxQ = tuvP for some of the indices
!!$ write(6,*) ' after the transformation '
!!$ do i=1,n_act_orb
!!$ ii=list_act(i)
!!$ do j=1,n_act_orb
!!$ jj=list_act(j)
!!$ do k=1,n_act_orb
!!$ kk=list_act(k)
!!$ do l=1,n_act_orb
!!$ ll=list_act(l)
!!$ h1=bielec_PQxxtmp(ii,jj,k+n_core_orb,l+n_core_orb)
!!$ h2=bielec_PxxQtmp(ii,j+n_core_orb,k+n_core_orb,ll)
!!$ h3=bielecCItmp(i,j,k,ll)
!!$ if ((abs(h1-h2).gt.1.D-14).or.(abs(h1-h3).gt.1.D-14)) then
!!$ write(6,9901) i,j,k,l,h1,h1-h2,h1-h3
!!$ else
!!$ write(6,9902) i,j,k,l,h1,h2,h3
!!$ end if
!!$ end do
!!$ end do
!!$ end do
!!$ end do
! we recalculate total energies
subroutine trf_to_natorb()
implicit none
BEGIN_DOC
! save the diagonal somewhere, in inverse order
! 4-index-transform the 2-particle density matrix over active orbitals
! correct the bielectronic integrals
! correct the monoelectronic integrals
! put integrals on file, as well orbitals, and the density matrices
!
END_DOC
integer :: i,j,k,l,t,u,p,q,pp
real*8 :: d(n_act_orb),d1(n_act_orb),d2(n_act_orb)
! we recalculate total energies
write(6,*) write(6,*)
write(6,*) ' recalculating energies after the transformation ' write(6,*) ' recalculating energies after the transformation '
write(6,*) write(6,*)
@ -446,29 +274,28 @@ real*8 :: xmx
e_one_all+=2.D0*onetrf(ii,ii) e_one_all+=2.D0*onetrf(ii,ii)
do j=1,n_core_orb do j=1,n_core_orb
jj=list_core(j) jj=list_core(j)
e_two_all+=2.D0*bielec_PQxxtmp(ii,ii,j,j)-bielec_PQxxtmp(ii,jj,j,i) e_two_all+=2.D0*bielec_PQxx_no(ii,ii,j,j)-bielec_PQxx_no(ii,jj,j,i)
end do end do
do t=1,n_act_orb do t=1,n_act_orb
tt=list_act(t) tt=list_act(t)
t3=t+n_core_orb t3=t+n_core_orb
do u=1,n_act_orb e_two_all += occnum(list_act(t)) * &
uu=list_act(u) (2.d0*bielec_PQxx_no(tt,tt,i,i) - bielec_PQxx_no(tt,ii,i,t3))
u3=u+n_core_orb
e_two_all+=D0tu(t,u)*(2.D0*bielec_PQxxtmp(tt,uu,i,i) &
-bielec_PQxxtmp(tt,ii,i,u3))
end do
end do end do
end do end do
do t=1,n_act_orb do t=1,n_act_orb
tt=list_act(t) tt=list_act(t)
e_one_all += occnum(list_act(t))*onetrf(tt,tt)
do u=1,n_act_orb do u=1,n_act_orb
uu=list_act(u) uu=list_act(u)
e_one_all+=D0tu(t,u)*onetrf(tt,uu)
do v=1,n_act_orb do v=1,n_act_orb
v3=v+n_core_orb v3=v+n_core_orb
do x=1,n_act_orb do x=1,n_act_orb
x3=x+n_core_orb x3=x+n_core_orb
e_two_all +=P0tuvx(t,u,v,x)*bielec_PQxxtmp(tt,uu,v3,x3) e_two_all +=P0tuvx_no(t,u,v,x)*bielec_PQxx_no(tt,uu,v3,x3)
end do end do
end do end do
end do end do
@ -483,8 +310,8 @@ real*8 :: xmx
ecore_bis+=2.D0*onetrf(ii,ii) ecore_bis+=2.D0*onetrf(ii,ii)
do j=1,n_core_orb do j=1,n_core_orb
jj=list_core(j) jj=list_core(j)
ecore +=2.D0*bielec_PQxxtmp(ii,ii,j,j)-bielec_PQxxtmp(ii,jj,j,i) ecore +=2.D0*bielec_PQxx_no(ii,ii,j,j)-bielec_PQxx_no(ii,jj,j,i)
ecore_bis+=2.D0*bielec_PxxQtmp(ii,i,j,jj)-bielec_PxxQtmp(ii,j,j,ii) ecore_bis+=2.D0*bielec_PxxQ_no(ii,i,j,jj)-bielec_PxxQ_no(ii,j,j,ii)
end do end do
end do end do
eone =0.D0 eone =0.D0
@ -495,34 +322,34 @@ real*8 :: xmx
do t=1,n_act_orb do t=1,n_act_orb
tt=list_act(t) tt=list_act(t)
t3=t+n_core_orb t3=t+n_core_orb
eone += occnum(list_act(t))*onetrf(tt,tt)
eone_bis += occnum(list_act(t))*onetrf(tt,tt)
do i=1,n_core_orb
ii=list_core(i)
eone += occnum(list_act(t)) * &
(2.D0*bielec_PQxx_no(tt,tt,i,i ) - bielec_PQxx_no(tt,ii,i,t3))
eone_bis += occnum(list_act(t)) * &
(2.D0*bielec_PxxQ_no(tt,t3,i,ii) - bielec_PxxQ_no(tt,i ,i,tt))
end do
do u=1,n_act_orb do u=1,n_act_orb
uu=list_act(u) uu=list_act(u)
u3=u+n_core_orb u3=u+n_core_orb
eone +=D0tu(t,u)*onetrf(tt,uu)
eone_bis+=D0tu(t,u)*onetrf(tt,uu)
do i=1,n_core_orb
ii=list_core(i)
eone +=D0tu(t,u)*(2.D0*bielec_PQxxtmp(tt,uu,i,i) &
-bielec_PQxxtmp(tt,ii,i,u3))
eone_bis+=D0tu(t,u)*(2.D0*bielec_PxxQtmp(tt,u3,i,ii) &
-bielec_PxxQtmp(tt,i,i,uu))
end do
do v=1,n_act_orb do v=1,n_act_orb
vv=list_act(v) vv=list_act(v)
v3=v+n_core_orb v3=v+n_core_orb
do x=1,n_act_orb do x=1,n_act_orb
xx=list_act(x) xx=list_act(x)
x3=x+n_core_orb x3=x+n_core_orb
real*8 :: h1,h2,h3 real*8 :: h1,h2,h3
h1=bielec_PQxxtmp(tt,uu,v3,x3) h1=bielec_PQxx_no(tt,uu,v3,x3)
h2=bielec_PxxQtmp(tt,u3,v3,xx) h2=bielec_PxxQ_no(tt,u3,v3,xx)
h3=bielecCItmp(t,u,v,xx) h3=bielecCI_no(t,u,v,xx)
etwo +=P0tuvx(t,u,v,x)*h1 etwo +=P0tuvx_no(t,u,v,x)*h1
etwo_bis+=P0tuvx(t,u,v,x)*h2 etwo_bis+=P0tuvx_no(t,u,v,x)*h2
etwo_ter+=P0tuvx(t,u,v,x)*h3 etwo_ter+=P0tuvx_no(t,u,v,x)*h3
if ((abs(h1-h2).gt.1.D-14).or.(abs(h1-h3).gt.1.D-14)) then if ((abs(h1-h2).gt.1.D-14).or.(abs(h1-h3).gt.1.D-14)) then
write(6,9901) t,u,v,x,h1,h2,h3 write(6,9901) t,u,v,x,h1,h2,h3
9901 format('aie: ',4I4,3E20.12) 9901 format('aie: ',4I4,3E20.12)
end if end if
end do end do
end do end do
@ -540,9 +367,7 @@ real*8 :: h1,h2,h3
write(6,*) ' ----------------------------------------- ' write(6,*) ' ----------------------------------------- '
write(6,*) ' sum of all = ',eone+etwo+ecore write(6,*) ' sum of all = ',eone+etwo+ecore
write(6,*) write(6,*)
SOFT_TOUCH ecore ecore_bis eone eone_bis etwo etwo_bis etwo_ter
end subroutine trf_to_natorb end subroutine trf_to_natorb
BEGIN_PROVIDER [real*8, onetrf, (mo_num,mo_num)]
&BEGIN_PROVIDER [real*8, NatOrbsFCI, (ao_num,mo_num)]
END_PROVIDER

View File

@ -1,65 +0,0 @@
! -*- F90 -*-
BEGIN_PROVIDER [real*8, occnum, (mo_num)]
implicit none
integer :: i,kk,j
logical :: lread
real*8 :: rdum
do i=1,mo_num
occnum(i)=0.D0
end do
do i=1,n_core_orb
occnum(list_core(i))=2.D0
end do
open(unit=12,file='D0tu.dat',form='formatted',status='old')
lread=.true.
do while (lread)
read(12,*,iostat=kk) i,j,rdum
if (kk.ne.0) then
lread=.false.
else
if (i.eq.j) then
occnum(list_act(i))=rdum
else
write(6,*) ' WARNING - no natural orbitals !'
write(6,*) i,j,rdum
end if
end if
end do
close(12)
write(6,*) ' read occupation numbers '
do i=1,mo_num
write(6,*) i,occnum(i)
end do
END_PROVIDER
BEGIN_PROVIDER [real*8, P0tuvx_no, (n_act_orb,n_act_orb,n_act_orb,n_act_orb)]
implicit none
integer :: i,j,k,l,kk
real*8 :: rdum
logical :: lread
do i=1,n_act_orb
do j=1,n_act_orb
do k=1,n_act_orb
do l=1,n_act_orb
P0tuvx_no(l,k,j,i)=0.D0
end do
end do
end do
end do
open(unit=12,file='P0tuvx.dat',form='formatted',status='old')
lread=.true.
do while (lread)
read(12,*,iostat=kk) i,j,k,l,rdum
if (kk.ne.0) then
lread=.false.
else
P0tuvx_no(i,j,k,l)=rdum
end if
end do
close(12)
write(6,*) ' read the 2-particle density matrix '
END_PROVIDER

View File

@ -1,4 +1,3 @@
! -*- F90 -*-
BEGIN_PROVIDER [real*8, etwo] BEGIN_PROVIDER [real*8, etwo]
&BEGIN_PROVIDER [real*8, eone] &BEGIN_PROVIDER [real*8, eone]
&BEGIN_PROVIDER [real*8, eone_bis] &BEGIN_PROVIDER [real*8, eone_bis]
@ -8,7 +7,7 @@
&BEGIN_PROVIDER [real*8, ecore_bis] &BEGIN_PROVIDER [real*8, ecore_bis]
implicit none implicit none
integer :: t,u,v,x,i,ii,tt,uu,vv,xx,j,jj,t3,u3,v3,x3 integer :: t,u,v,x,i,ii,tt,uu,vv,xx,j,jj,t3,u3,v3,x3
real*8 :: e_one_all,e_two_all real*8 :: e_one_all,e_two_all
e_one_all=0.D0 e_one_all=0.D0
e_two_all=0.D0 e_two_all=0.D0
do i=1,n_core_orb do i=1,n_core_orb
@ -16,7 +15,7 @@ real*8 :: e_one_all,e_two_all
e_one_all+=2.D0*mo_one_e_integrals(ii,ii) e_one_all+=2.D0*mo_one_e_integrals(ii,ii)
do j=1,n_core_orb do j=1,n_core_orb
jj=list_core(j) jj=list_core(j)
e_two_all+=2.D0*bielec_PQxxtmp(ii,ii,j,j)-bielec_PQxxtmp(ii,jj,j,i) e_two_all+=2.D0*bielec_PQxx(ii,ii,j,j)-bielec_PQxx(ii,jj,j,i)
end do end do
do t=1,n_act_orb do t=1,n_act_orb
tt=list_act(t) tt=list_act(t)
@ -24,8 +23,8 @@ real*8 :: e_one_all,e_two_all
do u=1,n_act_orb do u=1,n_act_orb
uu=list_act(u) uu=list_act(u)
u3=u+n_core_orb u3=u+n_core_orb
e_two_all+=D0tu(t,u)*(2.D0*bielec_PQxxtmp(tt,uu,i,i) & e_two_all+=D0tu(t,u)*(2.D0*bielec_PQxx(tt,uu,i,i) &
-bielec_PQxxtmp(tt,ii,i,u3)) -bielec_PQxx(tt,ii,i,u3))
end do end do
end do end do
end do end do
@ -38,7 +37,7 @@ real*8 :: e_one_all,e_two_all
v3=v+n_core_orb v3=v+n_core_orb
do x=1,n_act_orb do x=1,n_act_orb
x3=x+n_core_orb x3=x+n_core_orb
e_two_all +=P0tuvx(t,u,v,x)*bielec_PQxxtmp(tt,uu,v3,x3) e_two_all +=P0tuvx(t,u,v,x)*bielec_PQxx(tt,uu,v3,x3)
end do end do
end do end do
end do end do
@ -53,8 +52,8 @@ real*8 :: e_one_all,e_two_all
ecore_bis+=2.D0*mo_one_e_integrals(ii,ii) ecore_bis+=2.D0*mo_one_e_integrals(ii,ii)
do j=1,n_core_orb do j=1,n_core_orb
jj=list_core(j) jj=list_core(j)
ecore +=2.D0*bielec_PQxxtmp(ii,ii,j,j)-bielec_PQxxtmp(ii,jj,j,i) ecore +=2.D0*bielec_PQxx(ii,ii,j,j)-bielec_PQxx(ii,jj,j,i)
ecore_bis+=2.D0*bielec_PxxQtmp(ii,i,j,jj)-bielec_PxxQtmp(ii,j,j,ii) ecore_bis+=2.D0*bielec_PxxQ(ii,i,j,jj)-bielec_PxxQ(ii,j,j,ii)
end do end do
end do end do
eone =0.D0 eone =0.D0
@ -72,10 +71,10 @@ real*8 :: e_one_all,e_two_all
eone_bis+=D0tu(t,u)*mo_one_e_integrals(tt,uu) eone_bis+=D0tu(t,u)*mo_one_e_integrals(tt,uu)
do i=1,n_core_orb do i=1,n_core_orb
ii=list_core(i) ii=list_core(i)
eone +=D0tu(t,u)*(2.D0*bielec_PQxxtmp(tt,uu,i,i) & eone +=D0tu(t,u)*(2.D0*bielec_PQxx(tt,uu,i,i) &
-bielec_PQxxtmp(tt,ii,i,u3)) -bielec_PQxx(tt,ii,i,u3))
eone_bis+=D0tu(t,u)*(2.D0*bielec_PxxQtmp(tt,u3,i,ii) & eone_bis+=D0tu(t,u)*(2.D0*bielec_PxxQ(tt,u3,i,ii) &
-bielec_PxxQtmp(tt,i,i,uu)) -bielec_PxxQ(tt,i,i,uu))
end do end do
do v=1,n_act_orb do v=1,n_act_orb
vv=list_act(v) vv=list_act(v)
@ -83,16 +82,16 @@ real*8 :: e_one_all,e_two_all
do x=1,n_act_orb do x=1,n_act_orb
xx=list_act(x) xx=list_act(x)
x3=x+n_core_orb x3=x+n_core_orb
real*8 :: h1,h2,h3 real*8 :: h1,h2,h3
h1=bielec_PQxxtmp(tt,uu,v3,x3) h1=bielec_PQxx(tt,uu,v3,x3)
h2=bielec_PxxQtmp(tt,u3,v3,xx) h2=bielec_PxxQ(tt,u3,v3,xx)
h3=bielecCItmp(t,u,v,xx) h3=bielecCI(t,u,v,xx)
etwo +=P0tuvx(t,u,v,x)*h1 etwo +=P0tuvx(t,u,v,x)*h1
etwo_bis+=P0tuvx(t,u,v,x)*h2 etwo_bis+=P0tuvx(t,u,v,x)*h2
etwo_ter+=P0tuvx(t,u,v,x)*h3 etwo_ter+=P0tuvx(t,u,v,x)*h3
if ((h1.ne.h2).or.(h1.ne.h3)) then if ((h1.ne.h2).or.(h1.ne.h3)) then
write(6,9901) t,u,v,x,h1,h2,h3 write(6,9901) t,u,v,x,h1,h2,h3
9901 format('aie: ',4I4,3E20.12) 9901 format('aie: ',4I4,3E20.12)
end if end if
end do end do
end do end do