modified cipsi_tc_bi_ortho/selection.irp.f

This commit is contained in:
eginer 2023-02-08 10:55:03 +01:00
parent b258a2f154
commit 26bdbf7193
10 changed files with 417 additions and 118 deletions

View File

@ -162,7 +162,7 @@ subroutine ZMQ_pt2(E, pt2_data, pt2_data_err, relative_error, N_in)
TOUCH state_average_weight pt2_stoch_istate selection_weight
PROVIDE nproc pt2_F mo_two_e_integrals_in_map mo_one_e_integrals pt2_w
PROVIDE psi_selectors pt2_u pt2_J pt2_R
PROVIDE pt2_u pt2_J pt2_R
call new_parallel_job(zmq_to_qp_run_socket, zmq_socket_pull, 'pt2')
integer, external :: zmq_put_psi

View File

@ -1,49 +1,148 @@
use bitmasks
! ---
subroutine get_mask_phase(det1, pm, Nint)
use bitmasks
implicit none
integer, intent(in) :: Nint
integer(bit_kind), intent(in) :: det1(Nint,2)
integer(bit_kind), intent(out) :: pm(Nint,2)
integer(bit_kind) :: tmp1, tmp2
integer :: i
tmp1 = 0_8
tmp2 = 0_8
select case (Nint)
subroutine select_connected(i_generator, E0, pt2_data, b, subset, csubset)
BEGIN_TEMPLATE
case ($Nint)
do i=1,$Nint
pm(i,1) = ieor(det1(i,1), shiftl(det1(i,1), 1))
pm(i,2) = ieor(det1(i,2), shiftl(det1(i,2), 1))
pm(i,1) = ieor(pm(i,1), shiftl(pm(i,1), 2))
pm(i,2) = ieor(pm(i,2), shiftl(pm(i,2), 2))
pm(i,1) = ieor(pm(i,1), shiftl(pm(i,1), 4))
pm(i,2) = ieor(pm(i,2), shiftl(pm(i,2), 4))
pm(i,1) = ieor(pm(i,1), shiftl(pm(i,1), 8))
pm(i,2) = ieor(pm(i,2), shiftl(pm(i,2), 8))
pm(i,1) = ieor(pm(i,1), shiftl(pm(i,1), 16))
pm(i,2) = ieor(pm(i,2), shiftl(pm(i,2), 16))
pm(i,1) = ieor(pm(i,1), shiftl(pm(i,1), 32))
pm(i,2) = ieor(pm(i,2), shiftl(pm(i,2), 32))
pm(i,1) = ieor(pm(i,1), tmp1)
pm(i,2) = ieor(pm(i,2), tmp2)
if(iand(popcnt(det1(i,1)), 1) == 1) tmp1 = not(tmp1)
if(iand(popcnt(det1(i,2)), 1) == 1) tmp2 = not(tmp2)
end do
SUBST [ Nint ]
1;;
2;;
3;;
4;;
END_TEMPLATE
case default
do i=1,Nint
pm(i,1) = ieor(det1(i,1), shiftl(det1(i,1), 1))
pm(i,2) = ieor(det1(i,2), shiftl(det1(i,2), 1))
pm(i,1) = ieor(pm(i,1), shiftl(pm(i,1), 2))
pm(i,2) = ieor(pm(i,2), shiftl(pm(i,2), 2))
pm(i,1) = ieor(pm(i,1), shiftl(pm(i,1), 4))
pm(i,2) = ieor(pm(i,2), shiftl(pm(i,2), 4))
pm(i,1) = ieor(pm(i,1), shiftl(pm(i,1), 8))
pm(i,2) = ieor(pm(i,2), shiftl(pm(i,2), 8))
pm(i,1) = ieor(pm(i,1), shiftl(pm(i,1), 16))
pm(i,2) = ieor(pm(i,2), shiftl(pm(i,2), 16))
pm(i,1) = ieor(pm(i,1), shiftl(pm(i,1), 32))
pm(i,2) = ieor(pm(i,2), shiftl(pm(i,2), 32))
pm(i,1) = ieor(pm(i,1), tmp1)
pm(i,2) = ieor(pm(i,2), tmp2)
if(iand(popcnt(det1(i,1)), 1) == 1) tmp1 = not(tmp1)
if(iand(popcnt(det1(i,2)), 1) == 1) tmp2 = not(tmp2)
end do
end select
end subroutine
subroutine select_connected(i_generator,E0,pt2_data,b,subset,csubset)
use bitmasks
use selection_types
implicit none
integer, intent(in) :: i_generator, subset, csubset
double precision, intent(in) :: E0(N_states)
integer, intent(in) :: i_generator, subset, csubset
type(selection_buffer), intent(inout) :: b
type(pt2_type), intent(inout) :: pt2_data
type(pt2_type), intent(inout) :: pt2_data
integer :: k,l
double precision, intent(in) :: E0(N_states)
integer :: k, l
integer(bit_kind) :: hole_mask(N_int,2), particle_mask(N_int,2)
double precision, allocatable :: fock_diag_tmp(:,:)
integer(bit_kind) :: hole_mask(N_int,2), particle_mask(N_int,2)
double precision, allocatable :: fock_diag_tmp(:,:)
allocate(fock_diag_tmp(2,mo_num+1))
call build_fock_tmp_tc(fock_diag_tmp, psi_det_generators(1,1,i_generator), N_int)
do k = 1, N_int
hole_mask(k,1) = iand(generators_bitmask(k,1,s_hole), psi_det_generators(k,1,i_generator))
hole_mask(k,2) = iand(generators_bitmask(k,2,s_hole), psi_det_generators(k,2,i_generator))
do k=1,N_int
hole_mask(k,1) = iand(generators_bitmask(k,1,s_hole), psi_det_generators(k,1,i_generator))
hole_mask(k,2) = iand(generators_bitmask(k,2,s_hole), psi_det_generators(k,2,i_generator))
particle_mask(k,1) = iand(generators_bitmask(k,1,s_part), not(psi_det_generators(k,1,i_generator)) )
particle_mask(k,2) = iand(generators_bitmask(k,2,s_part), not(psi_det_generators(k,2,i_generator)) )
enddo
call select_singles_and_doubles(i_generator, hole_mask, particle_mask, fock_diag_tmp, E0, pt2_data, b, subset, csubset)
call select_singles_and_doubles(i_generator,hole_mask,particle_mask,fock_diag_tmp,E0,pt2_data,b,subset,csubset)
deallocate(fock_diag_tmp)
end subroutine select_connected
! ---
double precision function get_phase_bi(phasemask, s1, s2, h1, p1, h2, p2, Nint)
use bitmasks
implicit none
integer, intent(in) :: Nint
integer(bit_kind), intent(in) :: phasemask(Nint,2)
integer, intent(in) :: s1, s2, h1, h2, p1, p2
logical :: change
integer :: np
double precision, save :: res(0:1) = (/1d0, -1d0/)
integer :: h1_int, h2_int
integer :: p1_int, p2_int
integer :: h1_bit, h2_bit
integer :: p1_bit, p2_bit
h1_int = shiftr(h1-1,bit_kind_shift)+1
h1_bit = h1 - shiftl(h1_int-1,bit_kind_shift)-1
h2_int = shiftr(h2-1,bit_kind_shift)+1
h2_bit = h2 - shiftl(h2_int-1,bit_kind_shift)-1
p1_int = shiftr(p1-1,bit_kind_shift)+1
p1_bit = p1 - shiftl(p1_int-1,bit_kind_shift)-1
p2_int = shiftr(p2-1,bit_kind_shift)+1
p2_bit = p2 - shiftl(p2_int-1,bit_kind_shift)-1
! Put the phasemask bits at position 0, and add them all
h1_bit = int(shiftr(phasemask(h1_int,s1),h1_bit))
p1_bit = int(shiftr(phasemask(p1_int,s1),p1_bit))
h2_bit = int(shiftr(phasemask(h2_int,s2),h2_bit))
p2_bit = int(shiftr(phasemask(p2_int,s2),p2_bit))
np = h1_bit + p1_bit + h2_bit + p2_bit
if(p1 < h1) np = np + 1
if(p2 < h2) np = np + 1
if(s1 == s2 .and. max(h1, p1) > min(h2, p2)) np = np + 1
get_phase_bi = res(iand(np,1))
end
subroutine select_singles_and_doubles(i_generator, hole_mask,particle_mask, fock_diag_tmp, E0, pt2_data, buf, subset, csubset)
BEGIN_DOC
! WARNING /!\ : It is assumed that the generators and selectors are psi_det_sorted_tc
END_DOC
use bitmasks
use selection_types
implicit none
BEGIN_DOC
! WARNING /!\ : It is assumed that the generators and selectors are psi_det_sorted_tc
END_DOC
integer, intent(in) :: i_generator, subset, csubset
integer(bit_kind), intent(in) :: hole_mask(N_int,2), particle_mask(N_int,2)
@ -89,7 +188,8 @@ subroutine select_singles_and_doubles(i_generator, hole_mask,particle_mask, fock
monoAdo = .true.
monoBdo = .true.
do k = 1, N_int
do k=1,N_int
hole (k,1) = iand(psi_det_generators(k,1,i_generator), hole_mask(k,1))
hole (k,2) = iand(psi_det_generators(k,2,i_generator), hole_mask(k,2))
particle(k,1) = iand(not(psi_det_generators(k,1,i_generator)), particle_mask(k,1))
@ -102,35 +202,37 @@ subroutine select_singles_and_doubles(i_generator, hole_mask,particle_mask, fock
allocate( indices(N_det), exc_degree( max(N_det_alpha_unique, N_det_beta_unique) ) )
! Pre-compute excitation degrees wrt alpha determinants
k = 1
do i = 1, N_det_alpha_unique
call get_excitation_degree_spin(psi_det_alpha_unique(1,i), psi_det_generators(1,1,i_generator), exc_degree(i), N_int)
k=1
do i=1,N_det_alpha_unique
call get_excitation_degree_spin(psi_det_alpha_unique(1,i), &
psi_det_generators(1,1,i_generator), exc_degree(i), N_int)
enddo
! Iterate on 0SD beta, and find alphas 0SDTQ such that exc_degree <= 4
do j = 1, N_det_beta_unique
call get_excitation_degree_spin(psi_det_beta_unique(1,j), psi_det_generators(1,2,i_generator), nt, N_int)
do j=1,N_det_beta_unique
call get_excitation_degree_spin(psi_det_beta_unique(1,j), &
psi_det_generators(1,2,i_generator), nt, N_int)
if (nt > 2) cycle
do l_a = psi_bilinear_matrix_columns_loc(j), psi_bilinear_matrix_columns_loc(j+1)-1
do l_a=psi_bilinear_matrix_columns_loc(j), psi_bilinear_matrix_columns_loc(j+1)-1
i = psi_bilinear_matrix_rows(l_a)
if(nt + exc_degree(i) <= 4) then
idx = psi_det_sorted_tc_order(psi_bilinear_matrix_order(l_a))
if (psi_average_norm_contrib_sorted_tc(idx) > norm_thr) then
! if (psi_average_norm_contrib_sorted_tc(idx) > norm_thr) then
indices(k) = idx
k = k + 1
endif
! endif
endif
enddo
enddo
! Pre-compute excitation degrees wrt beta determinants
do i = 1, N_det_beta_unique
do i=1,N_det_beta_unique
call get_excitation_degree_spin(psi_det_beta_unique(1,i), psi_det_generators(1,2,i_generator), exc_degree(i), N_int)
enddo
! Iterate on 0S alpha, and find betas TQ such that exc_degree <= 4
! Remove also contributions < 1.d-20)
do j = 1, N_det_alpha_unique
do j=1,N_det_alpha_unique
call get_excitation_degree_spin(psi_det_alpha_unique(1,j), psi_det_generators(1,1,i_generator), nt, N_int)
if (nt > 1) cycle
do l_a = psi_bilinear_matrix_transp_rows_loc(j), psi_bilinear_matrix_transp_rows_loc(j+1)-1
@ -140,10 +242,10 @@ subroutine select_singles_and_doubles(i_generator, hole_mask,particle_mask, fock
idx = psi_det_sorted_tc_order( &
psi_bilinear_matrix_order( &
psi_bilinear_matrix_transp_order(l_a)))
if(psi_average_norm_contrib_sorted_tc(idx) > norm_thr) then
! if(psi_average_norm_contrib_sorted_tc(idx) > norm_thr) then
indices(k) = idx
k = k + 1
endif
! endif
endif
enddo
enddo
@ -211,6 +313,9 @@ subroutine select_singles_and_doubles(i_generator, hole_mask,particle_mask, fock
allocate( mat_l(N_states, mo_num, mo_num), mat_r(N_states, mo_num, mo_num) )
maskInd = -1
do s1 = 1, 2
do i1 = N_holes(s1), 1, -1 ! Generate low excitations first
@ -354,7 +459,6 @@ subroutine select_singles_and_doubles(i_generator, hole_mask,particle_mask, fock
fullinteresting(sze+1) = i
endif
enddo
allocate( fullminilist (N_int, 2, fullinteresting(0)), &
minilist (N_int, 2, interesting(0)) )
@ -579,16 +683,11 @@ subroutine splash_pq(mask, sp, det, i_gen, N_sel, bannedOrb, banned, mat, intere
call get_mask_phase(psi_det_sorted_tc(1,1,interesting(i)), phasemask,N_int)
if(nt == 4) then
! call get_d2 (det(1,1,i), phasemask, bannedOrb, banned, mat_l, mat_r, mask, h, p, sp, psi_selectors_coef_transp_tc(1, 1, interesting(i)))
call get_d2_new(det(1,1,i), phasemask, bannedOrb, banned, mat_l, mat_r, mask, h, p, sp, psi_selectors_coef_transp_tc(1, 1, interesting(i)))
! call get_pm2(det(1,1,i), phasemask, bannedOrb, banned, mat_l, mat_r, mask, h, p, sp, psi_selectors_coef_transp_tc(1, interesting(i)))
elseif(nt == 3) then
! call get_d1 (det(1,1,i), phasemask, bannedOrb, banned, mat_l, mat_r, mask, h, p, sp, psi_selectors_coef_transp_tc(1, 1, interesting(i)))
call get_d1_new(det(1,1,i), phasemask, bannedOrb, banned, mat_l, mat_r, mask, h, p, sp, psi_selectors_coef_transp_tc(1, 1, interesting(i)))
! call get_pm1(det(1,1,i), phasemask, bannedOrb, banned, mat_l, mat_r, mask, h, p, sp, psi_selectors_coef_transp_tc(1, interesting(i)))
else
call get_d0_new (det(1,1,i), phasemask, bannedOrb, banned, mat_l, mat_r, mask, h, p, sp, psi_selectors_coef_transp_tc(1, 1, interesting(i)))
! call get_pm0(det(1,1,i), phasemask, bannedOrb, banned, mat_l, mat_r, mask, h, p, sp, psi_selectors_coef_transp_tc(1, interesting(i)))
endif
elseif(nt == 4) then
call bitstring_to_list_in_selection(mobMask(1,1), p(1,1), p(0,1), N_int)
@ -780,9 +879,19 @@ subroutine fill_buffer_double(i_generator, sp, h1, h2, bannedOrb, banned, fock_d
if(debug_tc_pt2 == 1)then !! Using the old version
psi_h_alpha = 0.d0
alpha_h_psi = 0.d0
do iii = 1, N_det
do iii = 1, N_det_selectors
call htilde_mu_mat_bi_ortho_tot(psi_selectors(1,1,iii), det, N_int, i_h_alpha)
call htilde_mu_mat_bi_ortho_tot(det, psi_selectors(1,1,iii), N_int, alpha_h_i)
call get_excitation_degree(psi_selectors(1,1,iii), det,degree,N_int)
if(degree == 0)then
print*,'problem !!!'
print*,'a determinant is already in the wave function !!'
print*,'it corresponds to the selector number ',iii
call debug_det(det,N_int)
stop
endif
! call htilde_mu_mat_opt_bi_ortho_no_3e(psi_selectors(1,1,iii), det, N_int, i_h_alpha)
! call htilde_mu_mat_opt_bi_ortho_no_3e(det, psi_selectors(1,1,iii), N_int, alpha_h_i)
psi_h_alpha += i_h_alpha * psi_selectors_coef_tc(iii,2,1) ! left function
alpha_h_psi += alpha_h_i * psi_selectors_coef_tc(iii,1,1) ! right function
enddo
@ -791,7 +900,7 @@ subroutine fill_buffer_double(i_generator, sp, h1, h2, bannedOrb, banned, fock_d
alpha_h_psi_tmp = mat_r(istate, p1, p2) ! new version
psi_h_alpha = 0.d0
alpha_h_psi = 0.d0
do iii = 1, N_det ! old version
do iii = 1, N_det_selectors ! old version
call htilde_mu_mat_opt_bi_ortho_no_3e(psi_selectors(1,1,iii), det, N_int, i_h_alpha)
call htilde_mu_mat_opt_bi_ortho_no_3e(det, psi_selectors(1,1,iii), N_int, alpha_h_i)
psi_h_alpha += i_h_alpha * psi_selectors_coef_tc(iii,2,1) ! left function
@ -881,70 +990,6 @@ end subroutine fill_buffer_double
! ---
subroutine get_mask_phase(det1, pm, Nint)
use bitmasks
implicit none
integer, intent(in) :: Nint
integer(bit_kind), intent(in) :: det1(Nint,2)
integer(bit_kind), intent(out) :: pm(Nint,2)
integer(bit_kind) :: tmp1, tmp2
integer :: i
tmp1 = 0_8
tmp2 = 0_8
select case (Nint)
BEGIN_TEMPLATE
case ($Nint)
do i=1,$Nint
pm(i,1) = ieor(det1(i,1), shiftl(det1(i,1), 1))
pm(i,2) = ieor(det1(i,2), shiftl(det1(i,2), 1))
pm(i,1) = ieor(pm(i,1), shiftl(pm(i,1), 2))
pm(i,2) = ieor(pm(i,2), shiftl(pm(i,2), 2))
pm(i,1) = ieor(pm(i,1), shiftl(pm(i,1), 4))
pm(i,2) = ieor(pm(i,2), shiftl(pm(i,2), 4))
pm(i,1) = ieor(pm(i,1), shiftl(pm(i,1), 8))
pm(i,2) = ieor(pm(i,2), shiftl(pm(i,2), 8))
pm(i,1) = ieor(pm(i,1), shiftl(pm(i,1), 16))
pm(i,2) = ieor(pm(i,2), shiftl(pm(i,2), 16))
pm(i,1) = ieor(pm(i,1), shiftl(pm(i,1), 32))
pm(i,2) = ieor(pm(i,2), shiftl(pm(i,2), 32))
pm(i,1) = ieor(pm(i,1), tmp1)
pm(i,2) = ieor(pm(i,2), tmp2)
if(iand(popcnt(det1(i,1)), 1) == 1) tmp1 = not(tmp1)
if(iand(popcnt(det1(i,2)), 1) == 1) tmp2 = not(tmp2)
end do
SUBST [ Nint ]
1;;
2;;
3;;
4;;
END_TEMPLATE
case default
do i=1,Nint
pm(i,1) = ieor(det1(i,1), shiftl(det1(i,1), 1))
pm(i,2) = ieor(det1(i,2), shiftl(det1(i,2), 1))
pm(i,1) = ieor(pm(i,1), shiftl(pm(i,1), 2))
pm(i,2) = ieor(pm(i,2), shiftl(pm(i,2), 2))
pm(i,1) = ieor(pm(i,1), shiftl(pm(i,1), 4))
pm(i,2) = ieor(pm(i,2), shiftl(pm(i,2), 4))
pm(i,1) = ieor(pm(i,1), shiftl(pm(i,1), 8))
pm(i,2) = ieor(pm(i,2), shiftl(pm(i,2), 8))
pm(i,1) = ieor(pm(i,1), shiftl(pm(i,1), 16))
pm(i,2) = ieor(pm(i,2), shiftl(pm(i,2), 16))
pm(i,1) = ieor(pm(i,1), shiftl(pm(i,1), 32))
pm(i,2) = ieor(pm(i,2), shiftl(pm(i,2), 32))
pm(i,1) = ieor(pm(i,1), tmp1)
pm(i,2) = ieor(pm(i,2), tmp2)
if(iand(popcnt(det1(i,1)), 1) == 1) tmp1 = not(tmp1)
if(iand(popcnt(det1(i,2)), 1) == 1) tmp2 = not(tmp2)
end do
end select
end subroutine get_mask_phase
! ---
subroutine past_d1(bannedOrb, p)

View File

@ -53,18 +53,18 @@ subroutine run_stochastic_cipsi
! call routine_save_right
if (N_det > N_det_max) then
psi_det(1:N_int,1:2,1:N_det) = psi_det_sorted_tc_gen(1:N_int,1:2,1:N_det)
psi_coef(1:N_det,1:N_states) = psi_coef_sorted_tc_gen(1:N_det,1:N_states)
N_det = N_det_max
soft_touch N_det psi_det psi_coef
if (s2_eig) then
call make_s2_eigenfunction
endif
print_pt2 = .False.
call diagonalize_CI_tc_bi_ortho(ndet, E_tc,norm,pt2_data,print_pt2)
! if (N_det > N_det_max) then
! psi_det(1:N_int,1:2,1:N_det) = psi_det_sorted_tc_gen(1:N_int,1:2,1:N_det)
! psi_coef(1:N_det,1:N_states) = psi_coef_sorted_tc_gen(1:N_det,1:N_states)
! N_det = N_det_max
! soft_touch N_det psi_det psi_coef
! if (s2_eig) then
! call make_s2_eigenfunction
! endif
! print_pt2 = .False.
! call diagonalize_CI_tc_bi_ortho(ndet, E_tc,norm,pt2_data,print_pt2)
! call routine_save_right
endif
! endif
allocate(ept2(1000),pt1(1000),extrap_energy(100))

View File

@ -0,0 +1,24 @@
[n_iter]
interface: ezfio
doc: Number of saved iterations
type:integer
default: 1
[n_det_iterations]
interface: ezfio, provider
doc: Number of determinants at each iteration
type: integer
size: (100)
[energy_iterations]
interface: ezfio, provider
doc: The variational energy at each iteration
type: double precision
size: (determinants.n_states,100)
[pt2_iterations]
interface: ezfio, provider
doc: The |PT2| correction at each iteration
type: double precision
size: (determinants.n_states,100)

0
src/iterations_tc/NEED Normal file
View File

View File

@ -0,0 +1,37 @@
BEGIN_PROVIDER [ integer, n_iter ]
implicit none
BEGIN_DOC
! number of iterations
END_DOC
logical :: has
PROVIDE ezfio_filename
if (mpi_master) then
double precision :: zeros(N_states,100)
integer :: izeros(100)
zeros = 0.d0
izeros = 0
call ezfio_set_iterations_n_iter(0)
call ezfio_set_iterations_energy_iterations(zeros)
call ezfio_set_iterations_pt2_iterations(zeros)
call ezfio_set_iterations_n_det_iterations(izeros)
n_iter = 1
endif
IRP_IF MPI_DEBUG
print *, irp_here, mpi_rank
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
IRP_ENDIF
IRP_IF MPI
include 'mpif.h'
integer :: ierr
call MPI_BCAST( n_iter, 1, MPI_INTEGER, 0, MPI_COMM_WORLD, ierr)
if (ierr /= MPI_SUCCESS) then
stop 'Unable to read n_iter with MPI'
endif
IRP_ENDIF
call write_time(6)
END_PROVIDER

View File

@ -0,0 +1,43 @@
BEGIN_PROVIDER [ double precision, extrapolated_energy, (N_iter,N_states) ]
implicit none
BEGIN_DOC
! Extrapolated energy, using E_var = f(PT2) where PT2=0
END_DOC
! integer :: i
extrapolated_energy = 0.D0
END_PROVIDER
subroutine get_extrapolated_energy(Niter,ept2,pt1,extrap_energy)
implicit none
integer, intent(in) :: Niter
double precision, intent(in) :: ept2(Niter),pt1(Niter),extrap_energy(Niter)
call extrapolate_data(Niter,ept2,pt1,extrap_energy)
end
subroutine save_iterations(e_, pt2_,n_)
implicit none
BEGIN_DOC
! Update the energy in the EZFIO file.
END_DOC
integer, intent(in) :: n_
double precision, intent(in) :: e_(N_states), pt2_(N_states)
integer :: i
if (N_iter == 101) then
do i=2,N_iter-1
energy_iterations(1:N_states,N_iter-1) = energy_iterations(1:N_states,N_iter)
pt2_iterations(1:N_states,N_iter-1) = pt2_iterations(1:N_states,N_iter)
enddo
N_iter = N_iter-1
TOUCH N_iter
endif
energy_iterations(1:N_states,N_iter) = e_(1:N_states)
pt2_iterations(1:N_states,N_iter) = pt2_(1:N_states)
n_det_iterations(N_iter) = n_
call ezfio_set_iterations_N_iter(N_iter)
call ezfio_set_iterations_energy_iterations(energy_iterations)
call ezfio_set_iterations_pt2_iterations(pt2_iterations)
call ezfio_set_iterations_n_det_iterations(n_det_iterations)
end

View File

@ -0,0 +1,46 @@
subroutine print_extrapolated_energy
implicit none
BEGIN_DOC
! Print the extrapolated energy in the output
END_DOC
integer :: i,k
if (N_iter< 2) then
return
endif
write(*,'(A)') ''
write(*,'(A)') 'Extrapolated energies'
write(*,'(A)') '------------------------'
write(*,'(A)') ''
print *, ''
print *, 'State ', 1
print *, ''
write(*,*) '=========== ', '==================='
write(*,*) 'minimum PT2 ', 'Extrapolated energy'
write(*,*) '=========== ', '==================='
do k=2,min(N_iter,8)
write(*,'(F11.4,2X,F18.8)') pt2_iterations(1,N_iter+1-k), extrapolated_energy(k,1)
enddo
write(*,*) '=========== ', '==================='
do i=2, min(N_states,N_det)
print *, ''
print *, 'State ', i
print *, ''
write(*,*) '=========== ', '=================== ', '=================== ', '==================='
write(*,*) 'minimum PT2 ', 'Extrapolated energy ', ' Excitation (a.u) ', ' Excitation (eV) '
write(*,*) '=========== ', '=================== ', '=================== ', '==================='
do k=2,min(N_iter,8)
write(*,'(F11.4,X,3(X,F18.8))') pt2_iterations(i,N_iter+1-k), extrapolated_energy(k,i), &
extrapolated_energy(k,i) - extrapolated_energy(k,1), &
(extrapolated_energy(k,i) - extrapolated_energy(k,1) ) * 27.211396641308d0
enddo
write(*,*) '=========== ', '=================== ', '=================== ', '==================='
enddo
print *, ''
end subroutine

View File

@ -0,0 +1,104 @@
subroutine print_summary(e_,pt2_data,pt2_data_err,n_det_,n_configuration_,n_st,s2_)
use selection_types
implicit none
BEGIN_DOC
! Print the extrapolated energy in the output
END_DOC
integer, intent(in) :: n_det_, n_configuration_, n_st
double precision, intent(in) :: e_(n_st), s2_(n_st)
type(pt2_type) , intent(in) :: pt2_data, pt2_data_err
integer :: i, k
integer :: N_states_p
character*(9) :: pt2_string
character*(512) :: fmt
if (do_pt2) then
pt2_string = ' '
else
pt2_string = '(approx)'
endif
N_states_p = min(N_det_,n_st)
print *, ''
print '(A,I12)', 'Summary at N_det = ', N_det_
print '(A)', '-----------------------------------'
print *, ''
write(fmt,*) '(''# ============'',', N_states_p, '(1X,''=============================''))'
write(*,fmt)
write(fmt,*) '(13X,', N_states_p, '(6X,A7,1X,I6,10X))'
write(*,fmt) ('State',k, k=1,N_states_p)
write(fmt,*) '(''# ============'',', N_states_p, '(1X,''=============================''))'
write(*,fmt)
write(fmt,*) '(A13,', N_states_p, '(1X,F14.8,15X))'
write(*,fmt) '# E ', e_(1:N_states_p)
if (N_states_p > 1) then
write(*,fmt) '# Excit. (au)', e_(1:N_states_p)-e_(1)
write(*,fmt) '# Excit. (eV)', (e_(1:N_states_p)-e_(1))*27.211396641308d0
endif
write(fmt,*) '(A13,', 2*N_states_p, '(1X,F14.8))'
write(*,fmt) '# PT2 '//pt2_string, (pt2_data % pt2(k), pt2_data_err % pt2(k), k=1,N_states_p)
write(*,fmt) '# rPT2'//pt2_string, (pt2_data % rpt2(k), pt2_data_err % rpt2(k), k=1,N_states_p)
write(*,'(A)') '#'
write(*,fmt) '# E+PT2 ', (e_(k)+pt2_data % pt2(k),pt2_data_err % pt2(k), k=1,N_states_p)
write(*,fmt) '# E+rPT2 ', (e_(k)+pt2_data % rpt2(k),pt2_data_err % rpt2(k), k=1,N_states_p)
if (N_states_p > 1) then
write(*,fmt) '# Excit. (au)', ( (e_(k)+pt2_data % pt2(k)-e_(1)-pt2_data % pt2(1)), &
dsqrt(pt2_data_err % pt2(k)*pt2_data_err % pt2(k)+pt2_data_err % pt2(1)*pt2_data_err % pt2(1)), k=1,N_states_p)
write(*,fmt) '# Excit. (eV)', ( (e_(k)+pt2_data % pt2(k)-e_(1)-pt2_data % pt2(1))*27.211396641308d0, &
dsqrt(pt2_data_err % pt2(k)*pt2_data_err % pt2(k)+pt2_data_err % pt2(1)*pt2_data_err % pt2(1))*27.211396641308d0, k=1,N_states_p)
endif
write(fmt,*) '(''# ============'',', N_states_p, '(1X,''=============================''))'
write(*,fmt)
print *, ''
print *, 'N_det = ', N_det_
print *, 'N_states = ', n_st
if (s2_eig) then
print *, 'N_cfg = ', N_configuration_
if (only_expected_s2) then
print *, 'N_csf = ', N_csf
endif
endif
print *, ''
do k=1, N_states_p
print*,'* State ',k
print *, '< S^2 > = ', s2_(k)
print *, 'E = ', e_(k)
print *, 'Variance = ', pt2_data % variance(k), ' +/- ', pt2_data_err % variance(k)
print *, 'PT norm = ', dsqrt(pt2_data % overlap(k,k)), ' +/- ', 0.5d0*dsqrt(pt2_data % overlap(k,k)) * pt2_data_err % overlap(k,k) / (pt2_data % overlap(k,k))
print *, 'PT2 = ', pt2_data % pt2(k), ' +/- ', pt2_data_err % pt2(k)
print *, 'rPT2 = ', pt2_data % rpt2(k), ' +/- ', pt2_data_err % rpt2(k)
print *, 'E+PT2 '//pt2_string//' = ', e_(k)+pt2_data % pt2(k), ' +/- ', pt2_data_err % pt2(k)
print *, 'E+rPT2'//pt2_string//' = ', e_(k)+pt2_data % rpt2(k), ' +/- ', pt2_data_err % rpt2(k)
print *, ''
enddo
print *, '-----'
if(n_st.gt.1)then
print *, 'Variational Energy difference (au | eV)'
do i=2, N_states_p
print*,'Delta E = ', (e_(i) - e_(1)), &
(e_(i) - e_(1)) * 27.211396641308d0
enddo
print *, '-----'
print*, 'Variational + perturbative Energy difference (au | eV)'
do i=2, N_states_p
print*,'Delta E = ', (e_(i)+ pt2_data % pt2(i) - (e_(1) + pt2_data % pt2(1))), &
(e_(i)+ pt2_data % pt2(i) - (e_(1) + pt2_data % pt2(1))) * 27.211396641308d0
enddo
print *, '-----'
print*, 'Variational + renormalized perturbative Energy difference (au | eV)'
do i=2, N_states_p
print*,'Delta E = ', (e_(i)+ pt2_data % rpt2(i) - (e_(1) + pt2_data % rpt2(1))), &
(e_(i)+ pt2_data % rpt2(i) - (e_(1) + pt2_data % rpt2(1))) * 27.211396641308d0
enddo
endif
! call print_energy_components()
end subroutine