mirror of
https://github.com/QuantumPackage/qp2.git
synced 2024-11-14 01:13:38 +01:00
Merge branch 'dev-stable' of https://github.com/QuantumPackage/qp2 into dev-stable
This commit is contained in:
commit
2201733dbe
2
.github/workflows/configuration.yml
vendored
2
.github/workflows/configuration.yml
vendored
@ -22,7 +22,7 @@ jobs:
|
||||
- uses: actions/checkout@v3
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
sudo apt install gfortran gcc liblapack-dev libblas-dev wget python3 make m4 pkg-config hdf5
|
||||
sudo apt install gfortran gcc liblapack-dev libblas-dev wget python3 make m4 pkg-config libhdf5-dev
|
||||
- name: zlib
|
||||
run: |
|
||||
./configure -i zlib || echo OK
|
||||
|
49
src/casscf_cipsi/50.casscf.bats
Normal file
49
src/casscf_cipsi/50.casscf.bats
Normal file
@ -0,0 +1,49 @@
|
||||
#!/usr/bin/env bats
|
||||
|
||||
source $QP_ROOT/tests/bats/common.bats.sh
|
||||
source $QP_ROOT/quantum_package.rc
|
||||
|
||||
|
||||
function run_stoch() {
|
||||
thresh=$2
|
||||
test_exe casscf || skip
|
||||
qp set perturbation do_pt2 True
|
||||
qp set determinants n_det_max $3
|
||||
qp set davidson threshold_davidson 1.e-10
|
||||
qp set davidson n_states_diag 4
|
||||
qp run casscf | tee casscf.out
|
||||
energy1="$(ezfio get casscf energy_pt2 | tr '[]' ' ' | cut -d ',' -f 1)"
|
||||
eq $energy1 $1 $thresh
|
||||
}
|
||||
|
||||
@test "F2" { # 18.0198s
|
||||
rm -rf f2_casscf
|
||||
qp_create_ezfio -b aug-cc-pvdz ../input/f2.zmt -o f2_casscf
|
||||
qp set_file f2_casscf
|
||||
qp run scf
|
||||
qp set_mo_class --core="[1-6,8-9]" --act="[7,10]" --virt="[11-46]"
|
||||
run_stoch -198.773366970 1.e-4 100000
|
||||
}
|
||||
|
||||
@test "N2" { # 18.0198s
|
||||
rm -rf n2_casscf
|
||||
qp_create_ezfio -b aug-cc-pvdz ../input/n2.xyz -o n2_casscf
|
||||
qp set_file n2_casscf
|
||||
qp run scf
|
||||
qp set_mo_class --core="[1-4]" --act="[5-10]" --virt="[11-46]"
|
||||
run_stoch -109.0961643162 1.e-4 100000
|
||||
}
|
||||
|
||||
@test "N2_stretched" {
|
||||
rm -rf n2_stretched_casscf
|
||||
qp_create_ezfio -b aug-cc-pvdz -m 7 ../input/n2_stretched.xyz -o n2_stretched_casscf
|
||||
qp set_file n2_stretched_casscf
|
||||
qp run scf | tee scf.out
|
||||
qp set_mo_class --core="[1-4]" --act="[5-10]" --virt="[11-46]"
|
||||
qp set electrons elec_alpha_num 7
|
||||
qp set electrons elec_beta_num 7
|
||||
run_stoch -108.7860471300 1.e-4 100000
|
||||
#
|
||||
|
||||
}
|
||||
|
75
src/casscf_cipsi/EZFIO.cfg
Normal file
75
src/casscf_cipsi/EZFIO.cfg
Normal file
@ -0,0 +1,75 @@
|
||||
[energy]
|
||||
type: double precision
|
||||
doc: Calculated Selected |FCI| energy
|
||||
interface: ezfio
|
||||
size: (determinants.n_states)
|
||||
|
||||
[energy_pt2]
|
||||
type: double precision
|
||||
doc: Calculated |FCI| energy + |PT2|
|
||||
interface: ezfio
|
||||
size: (determinants.n_states)
|
||||
|
||||
[state_following_casscf]
|
||||
type: logical
|
||||
doc: If |true|, the CASSCF will try to follow the guess CI vector and orbitals
|
||||
interface: ezfio,provider,ocaml
|
||||
default: False
|
||||
|
||||
|
||||
[diag_hess_cas]
|
||||
type: logical
|
||||
doc: If |true|, only the DIAGONAL part of the hessian is retained for the CASSCF
|
||||
interface: ezfio,provider,ocaml
|
||||
default: False
|
||||
|
||||
[hess_cv_cv]
|
||||
type: logical
|
||||
doc: If |true|, the core-virtual - core-virtual part of the hessian is computed
|
||||
interface: ezfio,provider,ocaml
|
||||
default: True
|
||||
|
||||
|
||||
[level_shift_casscf]
|
||||
type: Positive_float
|
||||
doc: Energy shift on the virtual MOs to improve SCF convergence
|
||||
interface: ezfio,provider,ocaml
|
||||
default: 0.005
|
||||
|
||||
|
||||
[fast_2rdm]
|
||||
type: logical
|
||||
doc: If true, the two-rdm are computed with a fast algo
|
||||
interface: ezfio,provider,ocaml
|
||||
default: True
|
||||
|
||||
[criterion_casscf]
|
||||
type: character*(32)
|
||||
doc: choice of the criterion for the convergence of the casscf: can be energy or gradients or e_pt2
|
||||
interface: ezfio, provider, ocaml
|
||||
default: e_pt2
|
||||
|
||||
[thresh_casscf]
|
||||
type: Threshold
|
||||
doc: Threshold on the convergence of the CASCF energy.
|
||||
interface: ezfio,provider,ocaml
|
||||
default: 1.e-06
|
||||
|
||||
|
||||
[pt2_min_casscf]
|
||||
type: Threshold
|
||||
doc: Minimum value of the pt2_max parameter for the CIPSI in the CASSCF iterations.
|
||||
interface: ezfio,provider,ocaml
|
||||
default: 1.e-04
|
||||
|
||||
[n_big_act_orb]
|
||||
type: integer
|
||||
doc: Number of active orbitals from which the active space is considered as large, and therefore pt2_min_casscf is activated.
|
||||
interface: ezfio,provider,ocaml
|
||||
default: 16
|
||||
|
||||
[adaptive_pt2_max]
|
||||
type: logical
|
||||
doc: If |true|, the pt2_max value in the CIPSI iterations will automatically adapt, otherwise it is fixed at the value given in the EZFIO folder
|
||||
interface: ezfio,provider,ocaml
|
||||
default: True
|
5
src/casscf_cipsi/NEED
Normal file
5
src/casscf_cipsi/NEED
Normal file
@ -0,0 +1,5 @@
|
||||
cipsi
|
||||
selectors_full
|
||||
generators_cas
|
||||
two_body_rdm
|
||||
dav_general_mat
|
5
src/casscf_cipsi/README.rst
Normal file
5
src/casscf_cipsi/README.rst
Normal file
@ -0,0 +1,5 @@
|
||||
======
|
||||
casscf
|
||||
======
|
||||
|
||||
|CASSCF| program with the CIPSI algorithm.
|
6
src/casscf_cipsi/bavard.irp.f
Normal file
6
src/casscf_cipsi/bavard.irp.f
Normal file
@ -0,0 +1,6 @@
|
||||
! -*- F90 -*-
|
||||
BEGIN_PROVIDER [logical, bavard]
|
||||
! bavard=.true.
|
||||
bavard=.false.
|
||||
END_PROVIDER
|
||||
|
155
src/casscf_cipsi/bielec.irp.f
Normal file
155
src/casscf_cipsi/bielec.irp.f
Normal file
@ -0,0 +1,155 @@
|
||||
BEGIN_PROVIDER [real*8, bielec_PQxx, (mo_num, mo_num,n_core_inact_act_orb,n_core_inact_act_orb)]
|
||||
BEGIN_DOC
|
||||
! bielec_PQxx : integral (pq|xx) with p,q arbitrary, x core or active
|
||||
! indices are unshifted orbital numbers
|
||||
END_DOC
|
||||
implicit none
|
||||
integer :: i,j,ii,jj,p,q,i3,j3,t3,v3
|
||||
real*8 :: mo_two_e_integral
|
||||
|
||||
bielec_PQxx(:,:,:,:) = 0.d0
|
||||
PROVIDE mo_two_e_integrals_in_map
|
||||
|
||||
!$OMP PARALLEL DEFAULT(NONE) &
|
||||
!$OMP PRIVATE(i,ii,j,jj,i3,j3) &
|
||||
!$OMP SHARED(n_core_inact_orb,list_core_inact,mo_num,bielec_PQxx, &
|
||||
!$OMP n_act_orb,mo_integrals_map,list_act)
|
||||
|
||||
!$OMP DO
|
||||
do i=1,n_core_inact_orb
|
||||
ii=list_core_inact(i)
|
||||
do j=i,n_core_inact_orb
|
||||
jj=list_core_inact(j)
|
||||
call get_mo_two_e_integrals_i1j1(ii,jj,mo_num,bielec_PQxx(1,1,i,j),mo_integrals_map)
|
||||
bielec_PQxx(:,:,j,i)=bielec_PQxx(:,:,i,j)
|
||||
end do
|
||||
do j=1,n_act_orb
|
||||
jj=list_act(j)
|
||||
j3=j+n_core_inact_orb
|
||||
call get_mo_two_e_integrals_i1j1(ii,jj,mo_num,bielec_PQxx(1,1,i,j3),mo_integrals_map)
|
||||
bielec_PQxx(:,:,j3,i)=bielec_PQxx(:,:,i,j3)
|
||||
end do
|
||||
end do
|
||||
!$OMP END DO
|
||||
|
||||
|
||||
!$OMP DO
|
||||
do i=1,n_act_orb
|
||||
ii=list_act(i)
|
||||
i3=i+n_core_inact_orb
|
||||
do j=i,n_act_orb
|
||||
jj=list_act(j)
|
||||
j3=j+n_core_inact_orb
|
||||
call get_mo_two_e_integrals_i1j1(ii,jj,mo_num,bielec_PQxx(1,1,i3,j3),mo_integrals_map)
|
||||
bielec_PQxx(:,:,j3,i3)=bielec_PQxx(:,:,i3,j3)
|
||||
end do
|
||||
end do
|
||||
!$OMP END DO
|
||||
|
||||
!$OMP END PARALLEL
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
|
||||
BEGIN_PROVIDER [real*8, bielec_PxxQ, (mo_num,n_core_inact_act_orb,n_core_inact_act_orb, mo_num)]
|
||||
BEGIN_DOC
|
||||
! bielec_PxxQ : integral (px|xq) with p,q arbitrary, x core or active
|
||||
! indices are unshifted orbital numbers
|
||||
END_DOC
|
||||
implicit none
|
||||
integer :: i,j,ii,jj,p,q,i3,j3,t3,v3
|
||||
double precision, allocatable :: integrals_array(:,:)
|
||||
real*8 :: mo_two_e_integral
|
||||
|
||||
PROVIDE mo_two_e_integrals_in_map
|
||||
bielec_PxxQ = 0.d0
|
||||
|
||||
!$OMP PARALLEL DEFAULT(NONE) &
|
||||
!$OMP PRIVATE(i,ii,j,jj,i3,j3,integrals_array) &
|
||||
!$OMP SHARED(n_core_inact_orb,list_core_inact,mo_num,bielec_PxxQ, &
|
||||
!$OMP n_act_orb,mo_integrals_map,list_act)
|
||||
|
||||
allocate(integrals_array(mo_num,mo_num))
|
||||
|
||||
!$OMP DO
|
||||
do i=1,n_core_inact_orb
|
||||
ii=list_core_inact(i)
|
||||
do j=i,n_core_inact_orb
|
||||
jj=list_core_inact(j)
|
||||
call get_mo_two_e_integrals_ij(ii,jj,mo_num,integrals_array,mo_integrals_map)
|
||||
do q=1,mo_num
|
||||
do p=1,mo_num
|
||||
bielec_PxxQ(p,i,j,q)=integrals_array(p,q)
|
||||
bielec_PxxQ(p,j,i,q)=integrals_array(q,p)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
do j=1,n_act_orb
|
||||
jj=list_act(j)
|
||||
j3=j+n_core_inact_orb
|
||||
call get_mo_two_e_integrals_ij(ii,jj,mo_num,integrals_array,mo_integrals_map)
|
||||
do q=1,mo_num
|
||||
do p=1,mo_num
|
||||
bielec_PxxQ(p,i,j3,q)=integrals_array(p,q)
|
||||
bielec_PxxQ(p,j3,i,q)=integrals_array(q,p)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
!$OMP END DO
|
||||
|
||||
|
||||
! (ip|qj)
|
||||
!$OMP DO
|
||||
do i=1,n_act_orb
|
||||
ii=list_act(i)
|
||||
i3=i+n_core_inact_orb
|
||||
do j=i,n_act_orb
|
||||
jj=list_act(j)
|
||||
j3=j+n_core_inact_orb
|
||||
call get_mo_two_e_integrals_ij(ii,jj,mo_num,integrals_array,mo_integrals_map)
|
||||
do q=1,mo_num
|
||||
do p=1,mo_num
|
||||
bielec_PxxQ(p,i3,j3,q)=integrals_array(p,q)
|
||||
bielec_PxxQ(p,j3,i3,q)=integrals_array(q,p)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
!$OMP END DO
|
||||
|
||||
deallocate(integrals_array)
|
||||
!$OMP END PARALLEL
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [real*8, bielecCI, (n_act_orb,n_act_orb,n_act_orb, mo_num)]
|
||||
BEGIN_DOC
|
||||
! bielecCI : integrals (tu|vp) with p arbitrary, tuv active
|
||||
! index p runs over the whole basis, t,u,v only over the active orbitals
|
||||
END_DOC
|
||||
implicit none
|
||||
integer :: i,j,k,p,t,u,v
|
||||
double precision, external :: mo_two_e_integral
|
||||
PROVIDE mo_two_e_integrals_in_map
|
||||
|
||||
!$OMP PARALLEL DO DEFAULT(NONE) &
|
||||
!$OMP PRIVATE(i,j,k,p,t,u,v) &
|
||||
!$OMP SHARED(mo_num,n_act_orb,list_act,bielecCI)
|
||||
do p=1,mo_num
|
||||
do j=1,n_act_orb
|
||||
u=list_act(j)
|
||||
do k=1,n_act_orb
|
||||
v=list_act(k)
|
||||
do i=1,n_act_orb
|
||||
t=list_act(i)
|
||||
bielecCI(i,k,j,p) = mo_two_e_integral(t,u,v,p)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
!$OMP END PARALLEL DO
|
||||
|
||||
END_PROVIDER
|
369
src/casscf_cipsi/bielec_natorb.irp.f
Normal file
369
src/casscf_cipsi/bielec_natorb.irp.f
Normal file
@ -0,0 +1,369 @@
|
||||
BEGIN_PROVIDER [real*8, bielec_PQxx_no, (mo_num, mo_num,n_core_inact_act_orb,n_core_inact_act_orb)]
|
||||
BEGIN_DOC
|
||||
! integral (pq|xx) in the basis of natural MOs
|
||||
! indices are unshifted orbital numbers
|
||||
END_DOC
|
||||
implicit none
|
||||
integer :: i,j,k,l,t,u,p,q
|
||||
double precision, allocatable :: f(:,:,:), d(:,:,:)
|
||||
|
||||
|
||||
|
||||
!$OMP PARALLEL DEFAULT(NONE) &
|
||||
!$OMP PRIVATE(j,k,l,p,d,f) &
|
||||
!$OMP SHARED(n_core_inact_act_orb,mo_num,n_act_orb,n_core_inact_orb, &
|
||||
!$OMP bielec_PQxx_no,bielec_PQxx,list_act,natorbsCI)
|
||||
|
||||
allocate (f(n_act_orb,mo_num,n_core_inact_act_orb), &
|
||||
d(n_act_orb,mo_num,n_core_inact_act_orb))
|
||||
|
||||
!$OMP DO
|
||||
do l=1,n_core_inact_act_orb
|
||||
bielec_PQxx_no(:,:,:,l) = bielec_PQxx(:,:,:,l)
|
||||
|
||||
do k=1,n_core_inact_act_orb
|
||||
do j=1,mo_num
|
||||
do p=1,n_act_orb
|
||||
f(p,j,k)=bielec_PQxx_no(list_act(p),j,k,l)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
call dgemm('T','N',n_act_orb,mo_num*n_core_inact_act_orb,n_act_orb,1.d0, &
|
||||
natorbsCI, size(natorbsCI,1), &
|
||||
f, n_act_orb, &
|
||||
0.d0, &
|
||||
d, n_act_orb)
|
||||
do k=1,n_core_inact_act_orb
|
||||
do j=1,mo_num
|
||||
do p=1,n_act_orb
|
||||
bielec_PQxx_no(list_act(p),j,k,l)=d(p,j,k)
|
||||
end do
|
||||
end do
|
||||
|
||||
do j=1,mo_num
|
||||
do p=1,n_act_orb
|
||||
f(p,j,k)=bielec_PQxx_no(j,list_act(p),k,l)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
call dgemm('T','N',n_act_orb,mo_num*n_core_inact_act_orb,n_act_orb,1.d0, &
|
||||
natorbsCI, n_act_orb, &
|
||||
f, n_act_orb, &
|
||||
0.d0, &
|
||||
d, n_act_orb)
|
||||
do k=1,n_core_inact_act_orb
|
||||
do p=1,n_act_orb
|
||||
do j=1,mo_num
|
||||
bielec_PQxx_no(j,list_act(p),k,l)=d(p,j,k)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
!$OMP END DO NOWAIT
|
||||
|
||||
deallocate (f,d)
|
||||
|
||||
allocate (f(mo_num,mo_num,n_act_orb),d(mo_num,mo_num,n_act_orb))
|
||||
|
||||
!$OMP DO
|
||||
do l=1,n_core_inact_act_orb
|
||||
|
||||
do p=1,n_act_orb
|
||||
do k=1,mo_num
|
||||
do j=1,mo_num
|
||||
f(j,k,p) = bielec_PQxx_no(j,k,n_core_inact_orb+p,l)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
call dgemm('N','N',mo_num*mo_num,n_act_orb,n_act_orb,1.d0, &
|
||||
f, mo_num*mo_num, &
|
||||
natorbsCI, n_act_orb, &
|
||||
0.d0, &
|
||||
d, mo_num*mo_num)
|
||||
do p=1,n_act_orb
|
||||
do k=1,mo_num
|
||||
do j=1,mo_num
|
||||
bielec_PQxx_no(j,k,n_core_inact_orb+p,l)=d(j,k,p)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
!$OMP END DO NOWAIT
|
||||
|
||||
!$OMP BARRIER
|
||||
|
||||
!$OMP DO
|
||||
do l=1,n_core_inact_act_orb
|
||||
do p=1,n_act_orb
|
||||
do k=1,mo_num
|
||||
do j=1,mo_num
|
||||
f(j,k,p) = bielec_PQxx_no(j,k,l,n_core_inact_orb+p)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
call dgemm('N','N',mo_num*mo_num,n_act_orb,n_act_orb,1.d0, &
|
||||
f, mo_num*mo_num, &
|
||||
natorbsCI, n_act_orb, &
|
||||
0.d0, &
|
||||
d, mo_num*mo_num)
|
||||
do p=1,n_act_orb
|
||||
do k=1,mo_num
|
||||
do j=1,mo_num
|
||||
bielec_PQxx_no(j,k,l,n_core_inact_orb+p)=d(j,k,p)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
!$OMP END DO
|
||||
|
||||
deallocate (f,d)
|
||||
!$OMP END PARALLEL
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
|
||||
BEGIN_PROVIDER [real*8, bielec_PxxQ_no, (mo_num,n_core_inact_act_orb,n_core_inact_act_orb, mo_num)]
|
||||
BEGIN_DOC
|
||||
! integral (px|xq) in the basis of natural MOs
|
||||
! indices are unshifted orbital numbers
|
||||
END_DOC
|
||||
implicit none
|
||||
integer :: i,j,k,l,t,u,p,q
|
||||
double precision, allocatable :: f(:,:,:), d(:,:,:)
|
||||
|
||||
!$OMP PARALLEL DEFAULT(NONE) &
|
||||
!$OMP PRIVATE(j,k,l,p,d,f) &
|
||||
!$OMP SHARED(n_core_inact_act_orb,mo_num,n_act_orb,n_core_inact_orb, &
|
||||
!$OMP bielec_PxxQ_no,bielec_PxxQ,list_act,natorbsCI)
|
||||
|
||||
|
||||
allocate (f(n_act_orb,n_core_inact_act_orb,n_core_inact_act_orb), &
|
||||
d(n_act_orb,n_core_inact_act_orb,n_core_inact_act_orb))
|
||||
|
||||
!$OMP DO
|
||||
do j=1,mo_num
|
||||
bielec_PxxQ_no(:,:,:,j) = bielec_PxxQ(:,:,:,j)
|
||||
do l=1,n_core_inact_act_orb
|
||||
do k=1,n_core_inact_act_orb
|
||||
do p=1,n_act_orb
|
||||
f(p,k,l) = bielec_PxxQ_no(list_act(p),k,l,j)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
call dgemm('T','N',n_act_orb,n_core_inact_act_orb**2,n_act_orb,1.d0, &
|
||||
natorbsCI, size(natorbsCI,1), &
|
||||
f, n_act_orb, &
|
||||
0.d0, &
|
||||
d, n_act_orb)
|
||||
do l=1,n_core_inact_act_orb
|
||||
do k=1,n_core_inact_act_orb
|
||||
do p=1,n_act_orb
|
||||
bielec_PxxQ_no(list_act(p),k,l,j)=d(p,k,l)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
!$OMP END DO NOWAIT
|
||||
|
||||
deallocate (f,d)
|
||||
|
||||
allocate (f(n_act_orb,mo_num,n_core_inact_act_orb), &
|
||||
d(n_act_orb,mo_num,n_core_inact_act_orb))
|
||||
|
||||
!$OMP DO
|
||||
do k=1,mo_num
|
||||
do l=1,n_core_inact_act_orb
|
||||
do j=1,mo_num
|
||||
do p=1,n_act_orb
|
||||
f(p,j,l) = bielec_PxxQ_no(j,n_core_inact_orb+p,l,k)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
call dgemm('T','N',n_act_orb,mo_num*n_core_inact_act_orb,n_act_orb,1.d0, &
|
||||
natorbsCI, size(natorbsCI,1), &
|
||||
f, n_act_orb, &
|
||||
0.d0, &
|
||||
d, n_act_orb)
|
||||
do l=1,n_core_inact_act_orb
|
||||
do j=1,mo_num
|
||||
do p=1,n_act_orb
|
||||
bielec_PxxQ_no(j,n_core_inact_orb+p,l,k)=d(p,j,l)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
!$OMP END DO NOWAIT
|
||||
|
||||
deallocate(f,d)
|
||||
|
||||
allocate(f(mo_num,n_core_inact_act_orb,n_act_orb), &
|
||||
d(mo_num,n_core_inact_act_orb,n_act_orb) )
|
||||
|
||||
!$OMP DO
|
||||
do k=1,mo_num
|
||||
do p=1,n_act_orb
|
||||
do l=1,n_core_inact_act_orb
|
||||
do j=1,mo_num
|
||||
f(j,l,p) = bielec_PxxQ_no(j,l,n_core_inact_orb+p,k)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
call dgemm('N','N',mo_num*n_core_inact_act_orb,n_act_orb,n_act_orb,1.d0, &
|
||||
f, mo_num*n_core_inact_act_orb, &
|
||||
natorbsCI, size(natorbsCI,1), &
|
||||
0.d0, &
|
||||
d, mo_num*n_core_inact_act_orb)
|
||||
do p=1,n_act_orb
|
||||
do l=1,n_core_inact_act_orb
|
||||
do j=1,mo_num
|
||||
bielec_PxxQ_no(j,l,n_core_inact_orb+p,k)=d(j,l,p)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
!$OMP END DO NOWAIT
|
||||
|
||||
!$OMP BARRIER
|
||||
|
||||
!$OMP DO
|
||||
do l=1,n_core_inact_act_orb
|
||||
do p=1,n_act_orb
|
||||
do k=1,n_core_inact_act_orb
|
||||
do j=1,mo_num
|
||||
f(j,k,p) = bielec_PxxQ_no(j,k,l,n_core_inact_orb+p)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
call dgemm('N','N',mo_num*n_core_inact_act_orb,n_act_orb,n_act_orb,1.d0, &
|
||||
f, mo_num*n_core_inact_act_orb, &
|
||||
natorbsCI, size(natorbsCI,1), &
|
||||
0.d0, &
|
||||
d, mo_num*n_core_inact_act_orb)
|
||||
do p=1,n_act_orb
|
||||
do k=1,n_core_inact_act_orb
|
||||
do j=1,mo_num
|
||||
bielec_PxxQ_no(j,k,l,n_core_inact_orb+p)=d(j,k,p)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
!$OMP END DO NOWAIT
|
||||
deallocate(f,d)
|
||||
!$OMP END PARALLEL
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [real*8, bielecCI_no, (n_act_orb,n_act_orb,n_act_orb, mo_num)]
|
||||
BEGIN_DOC
|
||||
! integrals (tu|vp) in the basis of natural MOs
|
||||
! index p runs over the whole basis, t,u,v only over the active orbitals
|
||||
END_DOC
|
||||
implicit none
|
||||
integer :: i,j,k,l,t,u,p,q
|
||||
double precision, allocatable :: f(:,:,:), d(:,:,:)
|
||||
|
||||
!$OMP PARALLEL DEFAULT(NONE) &
|
||||
!$OMP PRIVATE(j,k,l,p,d,f) &
|
||||
!$OMP SHARED(n_core_inact_act_orb,mo_num,n_act_orb,n_core_inact_orb, &
|
||||
!$OMP bielecCI_no,bielecCI,list_act,natorbsCI)
|
||||
|
||||
allocate (f(n_act_orb,n_act_orb,mo_num), &
|
||||
d(n_act_orb,n_act_orb,mo_num))
|
||||
|
||||
!$OMP DO
|
||||
do l=1,mo_num
|
||||
bielecCI_no(:,:,:,l) = bielecCI(:,:,:,l)
|
||||
do k=1,n_act_orb
|
||||
do j=1,n_act_orb
|
||||
do p=1,n_act_orb
|
||||
f(p,j,k)=bielecCI_no(p,j,k,l)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
call dgemm('T','N',n_act_orb,n_act_orb*n_act_orb,n_act_orb,1.d0, &
|
||||
natorbsCI, size(natorbsCI,1), &
|
||||
f, n_act_orb, &
|
||||
0.d0, &
|
||||
d, n_act_orb)
|
||||
do k=1,n_act_orb
|
||||
do j=1,n_act_orb
|
||||
do p=1,n_act_orb
|
||||
bielecCI_no(p,j,k,l)=d(p,j,k)
|
||||
end do
|
||||
end do
|
||||
|
||||
do j=1,n_act_orb
|
||||
do p=1,n_act_orb
|
||||
f(p,j,k)=bielecCI_no(j,p,k,l)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
call dgemm('T','N',n_act_orb,n_act_orb*n_act_orb,n_act_orb,1.d0, &
|
||||
natorbsCI, n_act_orb, &
|
||||
f, n_act_orb, &
|
||||
0.d0, &
|
||||
d, n_act_orb)
|
||||
do k=1,n_act_orb
|
||||
do p=1,n_act_orb
|
||||
do j=1,n_act_orb
|
||||
bielecCI_no(j,p,k,l)=d(p,j,k)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
|
||||
do p=1,n_act_orb
|
||||
do k=1,n_act_orb
|
||||
do j=1,n_act_orb
|
||||
f(j,k,p)=bielecCI_no(j,k,p,l)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
call dgemm('N','N',n_act_orb*n_act_orb,n_act_orb,n_act_orb,1.d0, &
|
||||
f, n_act_orb*n_act_orb, &
|
||||
natorbsCI, n_act_orb, &
|
||||
0.d0, &
|
||||
d, n_act_orb*n_act_orb)
|
||||
|
||||
do p=1,n_act_orb
|
||||
do k=1,n_act_orb
|
||||
do j=1,n_act_orb
|
||||
bielecCI_no(j,k,p,l)=d(j,k,p)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
!$OMP END DO
|
||||
|
||||
!$OMP DO
|
||||
do l=1,n_act_orb
|
||||
do p=1,n_act_orb
|
||||
do k=1,n_act_orb
|
||||
do j=1,n_act_orb
|
||||
f(j,k,p)=bielecCI_no(j,k,l,list_act(p))
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
call dgemm('N','N',n_act_orb*n_act_orb,n_act_orb,n_act_orb,1.d0, &
|
||||
f, n_act_orb*n_act_orb, &
|
||||
natorbsCI, n_act_orb, &
|
||||
0.d0, &
|
||||
d, n_act_orb*n_act_orb)
|
||||
|
||||
do p=1,n_act_orb
|
||||
do k=1,n_act_orb
|
||||
do j=1,n_act_orb
|
||||
bielecCI_no(j,k,l,list_act(p))=d(j,k,p)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
!$OMP END DO
|
||||
|
||||
deallocate(d,f)
|
||||
!$OMP END PARALLEL
|
||||
|
||||
|
||||
END_PROVIDER
|
||||
|
110
src/casscf_cipsi/casscf.irp.f
Normal file
110
src/casscf_cipsi/casscf.irp.f
Normal file
@ -0,0 +1,110 @@
|
||||
program casscf
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! TODO : Put the documentation of the program here
|
||||
END_DOC
|
||||
call reorder_orbitals_for_casscf
|
||||
! no_vvvv_integrals = .True.
|
||||
! touch no_vvvv_integrals
|
||||
n_det_max_full = 500
|
||||
touch n_det_max_full
|
||||
pt2_relative_error = 0.04
|
||||
touch pt2_relative_error
|
||||
! call run_stochastic_cipsi
|
||||
call run
|
||||
end
|
||||
|
||||
subroutine run
|
||||
implicit none
|
||||
double precision :: energy_old, energy, pt2_max_before, ept2_before,delta_E
|
||||
logical :: converged,state_following_casscf_cipsi_save
|
||||
integer :: iteration
|
||||
converged = .False.
|
||||
|
||||
energy = 0.d0
|
||||
mo_label = "MCSCF"
|
||||
iteration = 1
|
||||
state_following_casscf_cipsi_save = state_following_casscf
|
||||
state_following_casscf = .True.
|
||||
touch state_following_casscf
|
||||
ept2_before = 0.d0
|
||||
if(adaptive_pt2_max)then
|
||||
pt2_max = 0.005
|
||||
SOFT_TOUCH pt2_max
|
||||
endif
|
||||
do while (.not.converged)
|
||||
print*,'pt2_max = ',pt2_max
|
||||
call run_stochastic_cipsi
|
||||
energy_old = energy
|
||||
energy = eone+etwo+ecore
|
||||
pt2_max_before = pt2_max
|
||||
|
||||
call write_time(6)
|
||||
call write_int(6,iteration,'CAS-SCF iteration = ')
|
||||
call write_double(6,energy,'CAS-SCF energy = ')
|
||||
if(n_states == 1)then
|
||||
double precision :: E_PT2, PT2
|
||||
call ezfio_get_casscf_cipsi_energy_pt2(E_PT2)
|
||||
call ezfio_get_casscf_cipsi_energy(PT2)
|
||||
PT2 -= E_PT2
|
||||
call write_double(6,E_PT2,'E + PT2 energy = ')
|
||||
call write_double(6,PT2,' PT2 = ')
|
||||
call write_double(6,pt2_max,' PT2_MAX = ')
|
||||
endif
|
||||
|
||||
print*,''
|
||||
call write_double(6,norm_grad_vec2,'Norm of gradients = ')
|
||||
call write_double(6,norm_grad_vec2_tab(1), ' Core-active gradients = ')
|
||||
call write_double(6,norm_grad_vec2_tab(2), ' Core-virtual gradients = ')
|
||||
call write_double(6,norm_grad_vec2_tab(3), ' Active-virtual gradients = ')
|
||||
print*,''
|
||||
call write_double(6,energy_improvement, 'Predicted energy improvement = ')
|
||||
|
||||
if(criterion_casscf == "energy")then
|
||||
converged = dabs(energy_improvement) < thresh_scf
|
||||
else if (criterion_casscf == "gradients")then
|
||||
converged = norm_grad_vec2 < thresh_scf
|
||||
else if (criterion_casscf == "e_pt2")then
|
||||
delta_E = dabs(E_PT2 - ept2_before)
|
||||
converged = dabs(delta_E) < thresh_casscf
|
||||
endif
|
||||
ept2_before = E_PT2
|
||||
if(adaptive_pt2_max)then
|
||||
pt2_max = dabs(energy_improvement / (pt2_relative_error))
|
||||
pt2_max = min(pt2_max, pt2_max_before)
|
||||
if(n_act_orb.ge.n_big_act_orb)then
|
||||
pt2_max = max(pt2_max,pt2_min_casscf)
|
||||
endif
|
||||
endif
|
||||
print*,''
|
||||
call write_double(6,pt2_max, 'PT2_MAX for next iteration = ')
|
||||
|
||||
mo_coef = NewOrbs
|
||||
mo_occ = occnum
|
||||
call save_mos
|
||||
if(.not.converged)then
|
||||
iteration += 1
|
||||
if(norm_grad_vec2.gt.0.01d0)then
|
||||
N_det = N_states
|
||||
else
|
||||
N_det = max(N_det/8 ,N_states)
|
||||
endif
|
||||
psi_det = psi_det_sorted
|
||||
psi_coef = psi_coef_sorted
|
||||
read_wf = .True.
|
||||
call clear_mo_map
|
||||
SOFT_TOUCH mo_coef N_det psi_det psi_coef
|
||||
if(adaptive_pt2_max)then
|
||||
SOFT_TOUCH pt2_max
|
||||
endif
|
||||
if(iteration .gt. 3)then
|
||||
state_following_casscf = state_following_casscf_cipsi_save
|
||||
soft_touch state_following_casscf
|
||||
endif
|
||||
endif
|
||||
|
||||
enddo
|
||||
|
||||
end
|
||||
|
||||
|
12
src/casscf_cipsi/class.irp.f
Normal file
12
src/casscf_cipsi/class.irp.f
Normal file
@ -0,0 +1,12 @@
|
||||
BEGIN_PROVIDER [ logical, do_only_1h1p ]
|
||||
&BEGIN_PROVIDER [ logical, do_only_cas ]
|
||||
&BEGIN_PROVIDER [ logical, do_ddci ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! In the CAS case, all those are always false except do_only_cas
|
||||
END_DOC
|
||||
do_only_cas = .True.
|
||||
do_only_1h1p = .False.
|
||||
do_ddci = .False.
|
||||
END_PROVIDER
|
||||
|
45
src/casscf_cipsi/dav_sx_mat.irp.f
Normal file
45
src/casscf_cipsi/dav_sx_mat.irp.f
Normal file
@ -0,0 +1,45 @@
|
||||
|
||||
|
||||
subroutine davidson_diag_sx_mat(N_st, u_in, energies)
|
||||
implicit none
|
||||
integer, intent(in) :: N_st
|
||||
double precision, intent(out) :: u_in(nMonoEx+1,n_states_diag), energies(N_st)
|
||||
integer :: i,j,N_st_tmp, dim_in, sze, N_st_diag_in
|
||||
integer, allocatable :: list_guess(:)
|
||||
double precision, allocatable :: H_jj(:)
|
||||
logical :: converged
|
||||
N_st_diag_in = n_states_diag
|
||||
provide SXmatrix
|
||||
sze = nMonoEx+1
|
||||
dim_in = sze
|
||||
allocate(H_jj(sze), list_guess(sze))
|
||||
H_jj(1) = 0.d0
|
||||
N_st_tmp = 1
|
||||
list_guess(1) = 1
|
||||
do j = 2, nMonoEx+1
|
||||
H_jj(j) = SXmatrix(j,j)
|
||||
if(H_jj(j).lt.0.d0)then
|
||||
list_guess(N_st_tmp) = j
|
||||
N_st_tmp += 1
|
||||
endif
|
||||
enddo
|
||||
if(N_st_tmp .ne. N_st)then
|
||||
print*,'Pb in davidson_diag_sx_mat'
|
||||
print*,'N_st_tmp .ne. N_st'
|
||||
print*,N_st_tmp, N_st
|
||||
stop
|
||||
endif
|
||||
print*,'Number of possibly interesting states = ',N_st
|
||||
print*,'Corresponding diagonal elements of the SX matrix '
|
||||
u_in = 0.d0
|
||||
do i = 1, min(N_st, N_st_diag_in)
|
||||
! do i = 1, N_st
|
||||
j = list_guess(i)
|
||||
print*,'i,j',i,j
|
||||
print*,'SX(i,i) = ',H_jj(j)
|
||||
u_in(j,i) = 1.d0
|
||||
enddo
|
||||
call davidson_general(u_in,H_jj,energies,dim_in,sze,N_st,N_st_diag_in,converged,SXmatrix)
|
||||
print*,'energies = ',energies
|
||||
|
||||
end
|
67
src/casscf_cipsi/densities.irp.f
Normal file
67
src/casscf_cipsi/densities.irp.f
Normal file
@ -0,0 +1,67 @@
|
||||
use bitmasks
|
||||
|
||||
BEGIN_PROVIDER [real*8, D0tu, (n_act_orb,n_act_orb) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! the first-order density matrix in the basis of the starting MOs.
|
||||
! matrix is state averaged.
|
||||
END_DOC
|
||||
integer :: t,u
|
||||
|
||||
do u=1,n_act_orb
|
||||
do t=1,n_act_orb
|
||||
D0tu(t,u) = one_e_dm_mo_alpha_average( list_act(t), list_act(u) ) + &
|
||||
one_e_dm_mo_beta_average ( list_act(t), list_act(u) )
|
||||
enddo
|
||||
enddo
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [real*8, P0tuvx, (n_act_orb,n_act_orb,n_act_orb,n_act_orb) ]
|
||||
BEGIN_DOC
|
||||
! The second-order density matrix in the basis of the starting MOs ONLY IN THE RANGE OF ACTIVE MOS
|
||||
! The values are state averaged
|
||||
!
|
||||
! We use the spin-free generators of mono-excitations
|
||||
! E_pq destroys q and creates p
|
||||
! D_pq = <0|E_pq|0> = D_qp
|
||||
! P_pqrs = 1/2 <0|E_pq E_rs - delta_qr E_ps|0>
|
||||
!
|
||||
! P0tuvx(p,q,r,s) = chemist notation : 1/2 <0|E_pq E_rs - delta_qr E_ps|0>
|
||||
END_DOC
|
||||
implicit none
|
||||
integer :: t,u,v,x
|
||||
integer :: tt,uu,vv,xx
|
||||
integer :: mu,nu,istate,ispin,jspin,ihole,ipart,jhole,jpart
|
||||
integer :: ierr
|
||||
real*8 :: phase1,phase11,phase12,phase2,phase21,phase22
|
||||
integer :: nu1,nu2,nu11,nu12,nu21,nu22
|
||||
integer :: ierr1,ierr2,ierr11,ierr12,ierr21,ierr22
|
||||
real*8 :: cI_mu(N_states),term
|
||||
integer(bit_kind), dimension(N_int,2) :: det_mu, det_mu_ex
|
||||
integer(bit_kind), dimension(N_int,2) :: det_mu_ex1, det_mu_ex11, det_mu_ex12
|
||||
integer(bit_kind), dimension(N_int,2) :: det_mu_ex2, det_mu_ex21, det_mu_ex22
|
||||
|
||||
if (bavard) then
|
||||
write(6,*) ' providing the 2 body RDM on the active part'
|
||||
endif
|
||||
|
||||
P0tuvx= 0.d0
|
||||
if(fast_2rdm)then
|
||||
do istate=1,N_states
|
||||
do x = 1, n_act_orb
|
||||
do v = 1, n_act_orb
|
||||
do u = 1, n_act_orb
|
||||
do t = 1, n_act_orb
|
||||
! 1 1 2 2 1 2 1 2
|
||||
P0tuvx(t,u,v,x) = 0.5d0 * state_av_act_2_rdm_spin_trace_mo(t,v,u,x)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
else
|
||||
P0tuvx = P0tuvx_peter
|
||||
endif
|
||||
|
||||
END_PROVIDER
|
150
src/casscf_cipsi/densities_peter.irp.f
Normal file
150
src/casscf_cipsi/densities_peter.irp.f
Normal file
@ -0,0 +1,150 @@
|
||||
use bitmasks
|
||||
|
||||
BEGIN_PROVIDER [real*8, P0tuvx_peter, (n_act_orb,n_act_orb,n_act_orb,n_act_orb) ]
|
||||
BEGIN_DOC
|
||||
! the second-order density matrix in the basis of the starting MOs
|
||||
! matrices are state averaged
|
||||
!
|
||||
! we use the spin-free generators of mono-excitations
|
||||
! E_pq destroys q and creates p
|
||||
! D_pq = <0|E_pq|0> = D_qp
|
||||
! P_pqrs = 1/2 <0|E_pq E_rs - delta_qr E_ps|0>
|
||||
!
|
||||
END_DOC
|
||||
implicit none
|
||||
integer :: t,u,v,x,mu,nu,istate,ispin,jspin,ihole,ipart,jhole,jpart
|
||||
integer :: ierr
|
||||
real*8 :: phase1,phase11,phase12,phase2,phase21,phase22
|
||||
integer :: nu1,nu2,nu11,nu12,nu21,nu22
|
||||
integer :: ierr1,ierr2,ierr11,ierr12,ierr21,ierr22
|
||||
real*8 :: cI_mu(N_states),term
|
||||
integer(bit_kind), dimension(N_int,2) :: det_mu, det_mu_ex
|
||||
integer(bit_kind), dimension(N_int,2) :: det_mu_ex1, det_mu_ex11, det_mu_ex12
|
||||
integer(bit_kind), dimension(N_int,2) :: det_mu_ex2, det_mu_ex21, det_mu_ex22
|
||||
|
||||
if (bavard) then
|
||||
write(6,*) ' providing density matrix P0'
|
||||
endif
|
||||
|
||||
P0tuvx_peter = 0.d0
|
||||
|
||||
! first loop: we apply E_tu, once for D_tu, once for -P_tvvu
|
||||
do mu=1,n_det
|
||||
call det_extract(det_mu,mu,N_int)
|
||||
do istate=1,n_states
|
||||
cI_mu(istate)=psi_coef(mu,istate)
|
||||
end do
|
||||
do t=1,n_act_orb
|
||||
ipart=list_act(t)
|
||||
do u=1,n_act_orb
|
||||
ihole=list_act(u)
|
||||
! apply E_tu
|
||||
call det_copy(det_mu,det_mu_ex1,N_int)
|
||||
call det_copy(det_mu,det_mu_ex2,N_int)
|
||||
call do_spinfree_mono_excitation(det_mu,det_mu_ex1 &
|
||||
,det_mu_ex2,nu1,nu2,ihole,ipart,phase1,phase2,ierr1,ierr2)
|
||||
! det_mu_ex1 is in the list
|
||||
if (nu1.ne.-1) then
|
||||
do istate=1,n_states
|
||||
term=cI_mu(istate)*psi_coef(nu1,istate)*phase1
|
||||
! and we fill P0_tvvu
|
||||
do v=1,n_act_orb
|
||||
P0tuvx_peter(t,v,v,u)-=term
|
||||
end do
|
||||
end do
|
||||
end if
|
||||
! det_mu_ex2 is in the list
|
||||
if (nu2.ne.-1) then
|
||||
do istate=1,n_states
|
||||
term=cI_mu(istate)*psi_coef(nu2,istate)*phase2
|
||||
do v=1,n_act_orb
|
||||
P0tuvx_peter(t,v,v,u)-=term
|
||||
end do
|
||||
end do
|
||||
end if
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
! now we do the double excitation E_tu E_vx |0>
|
||||
do mu=1,n_det
|
||||
call det_extract(det_mu,mu,N_int)
|
||||
do istate=1,n_states
|
||||
cI_mu(istate)=psi_coef(mu,istate)
|
||||
end do
|
||||
do v=1,n_act_orb
|
||||
ipart=list_act(v)
|
||||
do x=1,n_act_orb
|
||||
ihole=list_act(x)
|
||||
! apply E_vx
|
||||
call det_copy(det_mu,det_mu_ex1,N_int)
|
||||
call det_copy(det_mu,det_mu_ex2,N_int)
|
||||
call do_spinfree_mono_excitation(det_mu,det_mu_ex1 &
|
||||
,det_mu_ex2,nu1,nu2,ihole,ipart,phase1,phase2,ierr1,ierr2)
|
||||
! we apply E_tu to the first resultant determinant, thus E_tu E_vx |0>
|
||||
if (ierr1.eq.1) then
|
||||
do t=1,n_act_orb
|
||||
jpart=list_act(t)
|
||||
do u=1,n_act_orb
|
||||
jhole=list_act(u)
|
||||
call det_copy(det_mu_ex1,det_mu_ex11,N_int)
|
||||
call det_copy(det_mu_ex1,det_mu_ex12,N_int)
|
||||
call do_spinfree_mono_excitation(det_mu_ex1,det_mu_ex11&
|
||||
,det_mu_ex12,nu11,nu12,jhole,jpart,phase11,phase12,ierr11,ierr12)
|
||||
if (nu11.ne.-1) then
|
||||
do istate=1,n_states
|
||||
P0tuvx_peter(t,u,v,x)+=cI_mu(istate)*psi_coef(nu11,istate)&
|
||||
*phase11*phase1
|
||||
end do
|
||||
end if
|
||||
if (nu12.ne.-1) then
|
||||
do istate=1,n_states
|
||||
P0tuvx_peter(t,u,v,x)+=cI_mu(istate)*psi_coef(nu12,istate)&
|
||||
*phase12*phase1
|
||||
end do
|
||||
end if
|
||||
end do
|
||||
end do
|
||||
end if
|
||||
|
||||
! we apply E_tu to the second resultant determinant
|
||||
if (ierr2.eq.1) then
|
||||
do t=1,n_act_orb
|
||||
jpart=list_act(t)
|
||||
do u=1,n_act_orb
|
||||
jhole=list_act(u)
|
||||
call det_copy(det_mu_ex2,det_mu_ex21,N_int)
|
||||
call det_copy(det_mu_ex2,det_mu_ex22,N_int)
|
||||
call do_spinfree_mono_excitation(det_mu_ex2,det_mu_ex21&
|
||||
,det_mu_ex22,nu21,nu22,jhole,jpart,phase21,phase22,ierr21,ierr22)
|
||||
if (nu21.ne.-1) then
|
||||
do istate=1,n_states
|
||||
P0tuvx_peter(t,u,v,x)+=cI_mu(istate)*psi_coef(nu21,istate)&
|
||||
*phase21*phase2
|
||||
end do
|
||||
end if
|
||||
if (nu22.ne.-1) then
|
||||
do istate=1,n_states
|
||||
P0tuvx_peter(t,u,v,x)+=cI_mu(istate)*psi_coef(nu22,istate)&
|
||||
*phase22*phase2
|
||||
end do
|
||||
end if
|
||||
end do
|
||||
end do
|
||||
end if
|
||||
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
|
||||
! we average by just dividing by the number of states
|
||||
do x=1,n_act_orb
|
||||
do v=1,n_act_orb
|
||||
do u=1,n_act_orb
|
||||
do t=1,n_act_orb
|
||||
P0tuvx_peter(t,u,v,x)*=0.5D0/dble(N_states)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
|
||||
END_PROVIDER
|
125
src/casscf_cipsi/det_manip.irp.f
Normal file
125
src/casscf_cipsi/det_manip.irp.f
Normal file
@ -0,0 +1,125 @@
|
||||
use bitmasks
|
||||
|
||||
subroutine do_signed_mono_excitation(key1,key2,nu,ihole,ipart, &
|
||||
ispin,phase,ierr)
|
||||
BEGIN_DOC
|
||||
! we create the mono-excitation, and determine, if possible,
|
||||
! the phase and the number in the list of determinants
|
||||
END_DOC
|
||||
implicit none
|
||||
integer(bit_kind) :: key1(N_int,2),key2(N_int,2)
|
||||
integer(bit_kind), allocatable :: keytmp(:,:)
|
||||
integer :: exc(0:2,2,2),ihole,ipart,ierr,nu,ispin
|
||||
real*8 :: phase
|
||||
logical :: found
|
||||
allocate(keytmp(N_int,2))
|
||||
|
||||
nu=-1
|
||||
phase=1.D0
|
||||
ierr=0
|
||||
call det_copy(key1,key2,N_int)
|
||||
! write(6,*) ' key2 before excitation ',ihole,' -> ',ipart,' spin = ',ispin
|
||||
! call print_det(key2,N_int)
|
||||
call do_single_excitation(key2,ihole,ipart,ispin,ierr)
|
||||
! write(6,*) ' key2 after ',ihole,' -> ',ipart,' spin = ',ispin
|
||||
! call print_det(key2,N_int)
|
||||
! write(6,*) ' excitation ',ihole,' -> ',ipart,' gives ierr = ',ierr
|
||||
if (ierr.eq.1) then
|
||||
! excitation is possible
|
||||
! get the phase
|
||||
call get_single_excitation(key1,key2,exc,phase,N_int)
|
||||
! get the number in the list
|
||||
found=.false.
|
||||
nu=0
|
||||
|
||||
!TODO BOTTLENECK
|
||||
do while (.not.found)
|
||||
nu+=1
|
||||
if (nu.gt.N_det) then
|
||||
! the determinant is possible, but not in the list
|
||||
found=.true.
|
||||
nu=-1
|
||||
else
|
||||
call det_extract(keytmp,nu,N_int)
|
||||
integer :: i,ii
|
||||
found=.true.
|
||||
do ii=1,2
|
||||
do i=1,N_int
|
||||
if (keytmp(i,ii).ne.key2(i,ii)) then
|
||||
found=.false.
|
||||
end if
|
||||
end do
|
||||
end do
|
||||
end if
|
||||
end do
|
||||
end if
|
||||
!
|
||||
! we found the new string, the phase, and possibly the number in the list
|
||||
!
|
||||
end subroutine do_signed_mono_excitation
|
||||
|
||||
subroutine det_extract(key,nu,Nint)
|
||||
BEGIN_DOC
|
||||
! extract a determinant from the list of determinants
|
||||
END_DOC
|
||||
implicit none
|
||||
integer :: ispin,i,nu,Nint
|
||||
integer(bit_kind) :: key(Nint,2)
|
||||
do ispin=1,2
|
||||
do i=1,Nint
|
||||
key(i,ispin)=psi_det(i,ispin,nu)
|
||||
end do
|
||||
end do
|
||||
end subroutine det_extract
|
||||
|
||||
subroutine det_copy(key1,key2,Nint)
|
||||
use bitmasks ! you need to include the bitmasks_module.f90 features
|
||||
BEGIN_DOC
|
||||
! copy a determinant from key1 to key2
|
||||
END_DOC
|
||||
implicit none
|
||||
integer :: ispin,i,Nint
|
||||
integer(bit_kind) :: key1(Nint,2),key2(Nint,2)
|
||||
do ispin=1,2
|
||||
do i=1,Nint
|
||||
key2(i,ispin)=key1(i,ispin)
|
||||
end do
|
||||
end do
|
||||
end subroutine det_copy
|
||||
|
||||
subroutine do_spinfree_mono_excitation(key_in,key_out1,key_out2 &
|
||||
,nu1,nu2,ihole,ipart,phase1,phase2,ierr,jerr)
|
||||
BEGIN_DOC
|
||||
! we create the spin-free mono-excitation E_pq=(a^+_p a_q + a^+_P a_Q)
|
||||
! we may create two determinants as result
|
||||
!
|
||||
END_DOC
|
||||
implicit none
|
||||
integer(bit_kind) :: key_in(N_int,2),key_out1(N_int,2)
|
||||
integer(bit_kind) :: key_out2(N_int,2)
|
||||
integer :: ihole,ipart,ierr,jerr,nu1,nu2
|
||||
integer :: ispin
|
||||
real*8 :: phase1,phase2
|
||||
|
||||
! write(6,*) ' applying E_',ipart,ihole,' on determinant '
|
||||
! call print_det(key_in,N_int)
|
||||
|
||||
! spin alpha
|
||||
ispin=1
|
||||
call do_signed_mono_excitation(key_in,key_out1,nu1,ihole &
|
||||
,ipart,ispin,phase1,ierr)
|
||||
! if (ierr.eq.1) then
|
||||
! write(6,*) ' 1 result is ',nu1,phase1
|
||||
! call print_det(key_out1,N_int)
|
||||
! end if
|
||||
! spin beta
|
||||
ispin=2
|
||||
call do_signed_mono_excitation(key_in,key_out2,nu2,ihole &
|
||||
,ipart,ispin,phase2,jerr)
|
||||
! if (jerr.eq.1) then
|
||||
! write(6,*) ' 2 result is ',nu2,phase2
|
||||
! call print_det(key_out2,N_int)
|
||||
! end if
|
||||
|
||||
end subroutine do_spinfree_mono_excitation
|
||||
|
3
src/casscf_cipsi/driver_optorb.irp.f
Normal file
3
src/casscf_cipsi/driver_optorb.irp.f
Normal file
@ -0,0 +1,3 @@
|
||||
subroutine driver_optorb
|
||||
implicit none
|
||||
end
|
51
src/casscf_cipsi/get_energy.irp.f
Normal file
51
src/casscf_cipsi/get_energy.irp.f
Normal file
@ -0,0 +1,51 @@
|
||||
program print_2rdm
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! get the active part of the bielectronic energy on a given wave function.
|
||||
!
|
||||
! useful to test the active part of the spin trace 2 rdms
|
||||
END_DOC
|
||||
!no_vvvv_integrals = .True.
|
||||
read_wf = .True.
|
||||
!touch read_wf no_vvvv_integrals
|
||||
!call routine
|
||||
!call routine_bis
|
||||
call print_grad
|
||||
end
|
||||
|
||||
subroutine print_grad
|
||||
implicit none
|
||||
integer :: i
|
||||
do i = 1, nMonoEx
|
||||
if(dabs(gradvec2(i)).gt.1.d-5)then
|
||||
print*,''
|
||||
print*,i,gradvec2(i),excit(:,i)
|
||||
endif
|
||||
enddo
|
||||
end
|
||||
|
||||
subroutine routine
|
||||
integer :: i,j,k,l
|
||||
integer :: ii,jj,kk,ll
|
||||
double precision :: accu(4),twodm,thr,act_twodm2,integral,get_two_e_integral
|
||||
thr = 1.d-10
|
||||
|
||||
|
||||
accu = 0.d0
|
||||
do ll = 1, n_act_orb
|
||||
l = list_act(ll)
|
||||
do kk = 1, n_act_orb
|
||||
k = list_act(kk)
|
||||
do jj = 1, n_act_orb
|
||||
j = list_act(jj)
|
||||
do ii = 1, n_act_orb
|
||||
i = list_act(ii)
|
||||
integral = get_two_e_integral(i,j,k,l,mo_integrals_map)
|
||||
accu(1) += state_av_act_2_rdm_spin_trace_mo(ii,jj,kk,ll) * integral
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
print*,'accu = ',accu(1)
|
||||
|
||||
end
|
74
src/casscf_cipsi/grad_old.irp.f
Normal file
74
src/casscf_cipsi/grad_old.irp.f
Normal file
@ -0,0 +1,74 @@
|
||||
|
||||
BEGIN_PROVIDER [real*8, gradvec_old, (nMonoEx)]
|
||||
BEGIN_DOC
|
||||
! calculate the orbital gradient <Psi| H E_pq |Psi> by hand, i.e. for
|
||||
! each determinant I we determine the string E_pq |I> (alpha and beta
|
||||
! separately) and generate <Psi|H E_pq |I>
|
||||
! sum_I c_I <Psi|H E_pq |I> is then the pq component of the orbital
|
||||
! gradient
|
||||
! E_pq = a^+_pa_q + a^+_Pa_Q
|
||||
END_DOC
|
||||
implicit none
|
||||
integer :: ii,tt,aa,indx,ihole,ipart,istate
|
||||
real*8 :: res
|
||||
|
||||
do indx=1,nMonoEx
|
||||
ihole=excit(1,indx)
|
||||
ipart=excit(2,indx)
|
||||
call calc_grad_elem(ihole,ipart,res)
|
||||
gradvec_old(indx)=res
|
||||
end do
|
||||
|
||||
real*8 :: norm_grad
|
||||
norm_grad=0.d0
|
||||
do indx=1,nMonoEx
|
||||
norm_grad+=gradvec_old(indx)*gradvec_old(indx)
|
||||
end do
|
||||
norm_grad=sqrt(norm_grad)
|
||||
if (bavard) then
|
||||
write(6,*)
|
||||
write(6,*) ' Norm of the orbital gradient (via <0|EH|0>) : ', norm_grad
|
||||
write(6,*)
|
||||
endif
|
||||
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
subroutine calc_grad_elem(ihole,ipart,res)
|
||||
BEGIN_DOC
|
||||
! eq 18 of Siegbahn et al, Physica Scripta 1980
|
||||
! we calculate 2 <Psi| H E_pq | Psi>, q=hole, p=particle
|
||||
END_DOC
|
||||
implicit none
|
||||
integer :: ihole,ipart,mu,iii,ispin,ierr,nu,istate
|
||||
real*8 :: res
|
||||
integer(bit_kind), allocatable :: det_mu(:,:),det_mu_ex(:,:)
|
||||
real*8 :: i_H_psi_array(N_states),phase
|
||||
allocate(det_mu(N_int,2))
|
||||
allocate(det_mu_ex(N_int,2))
|
||||
|
||||
res=0.D0
|
||||
|
||||
do mu=1,n_det
|
||||
! get the string of the determinant
|
||||
call det_extract(det_mu,mu,N_int)
|
||||
do ispin=1,2
|
||||
! do the monoexcitation on it
|
||||
call det_copy(det_mu,det_mu_ex,N_int)
|
||||
call do_signed_mono_excitation(det_mu,det_mu_ex,nu &
|
||||
,ihole,ipart,ispin,phase,ierr)
|
||||
if (ierr.eq.1) then
|
||||
call i_H_psi(det_mu_ex,psi_det,psi_coef,N_int &
|
||||
,N_det,N_det,N_states,i_H_psi_array)
|
||||
do istate=1,N_states
|
||||
res+=i_H_psi_array(istate)*psi_coef(mu,istate)*phase
|
||||
end do
|
||||
end if
|
||||
end do
|
||||
end do
|
||||
|
||||
! state-averaged gradient
|
||||
res*=2.D0/dble(N_states)
|
||||
|
||||
end subroutine calc_grad_elem
|
||||
|
215
src/casscf_cipsi/gradient.irp.f
Normal file
215
src/casscf_cipsi/gradient.irp.f
Normal file
@ -0,0 +1,215 @@
|
||||
use bitmasks
|
||||
|
||||
BEGIN_PROVIDER [ integer, nMonoEx ]
|
||||
BEGIN_DOC
|
||||
! Number of single excitations
|
||||
END_DOC
|
||||
implicit none
|
||||
nMonoEx=n_core_inact_orb*n_act_orb+n_core_inact_orb*n_virt_orb+n_act_orb*n_virt_orb
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [integer, n_c_a_prov]
|
||||
&BEGIN_PROVIDER [integer, n_c_v_prov]
|
||||
&BEGIN_PROVIDER [integer, n_a_v_prov]
|
||||
implicit none
|
||||
n_c_a_prov = n_core_inact_orb * n_act_orb
|
||||
n_c_v_prov = n_core_inact_orb * n_virt_orb
|
||||
n_a_v_prov = n_act_orb * n_virt_orb
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [integer, excit, (2,nMonoEx)]
|
||||
&BEGIN_PROVIDER [character*3, excit_class, (nMonoEx)]
|
||||
&BEGIN_PROVIDER [integer, list_idx_c_a, (3,n_c_a_prov) ]
|
||||
&BEGIN_PROVIDER [integer, list_idx_c_v, (3,n_c_v_prov) ]
|
||||
&BEGIN_PROVIDER [integer, list_idx_a_v, (3,n_a_v_prov) ]
|
||||
&BEGIN_PROVIDER [integer, mat_idx_c_a, (n_core_inact_orb,n_act_orb)
|
||||
&BEGIN_PROVIDER [integer, mat_idx_c_v, (n_core_inact_orb,n_virt_orb)
|
||||
&BEGIN_PROVIDER [integer, mat_idx_a_v, (n_act_orb,n_virt_orb)
|
||||
BEGIN_DOC
|
||||
! a list of the orbitals involved in the excitation
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
integer :: i,t,a,ii,tt,aa,indx,indx_tmp
|
||||
indx=0
|
||||
indx_tmp = 0
|
||||
do ii=1,n_core_inact_orb
|
||||
i=list_core_inact(ii)
|
||||
do tt=1,n_act_orb
|
||||
t=list_act(tt)
|
||||
indx+=1
|
||||
excit(1,indx)=i
|
||||
excit(2,indx)=t
|
||||
excit_class(indx)='c-a'
|
||||
indx_tmp += 1
|
||||
list_idx_c_a(1,indx_tmp) = indx
|
||||
list_idx_c_a(2,indx_tmp) = ii
|
||||
list_idx_c_a(3,indx_tmp) = tt
|
||||
mat_idx_c_a(ii,tt) = indx
|
||||
end do
|
||||
end do
|
||||
|
||||
indx_tmp = 0
|
||||
do ii=1,n_core_inact_orb
|
||||
i=list_core_inact(ii)
|
||||
do aa=1,n_virt_orb
|
||||
a=list_virt(aa)
|
||||
indx+=1
|
||||
excit(1,indx)=i
|
||||
excit(2,indx)=a
|
||||
excit_class(indx)='c-v'
|
||||
indx_tmp += 1
|
||||
list_idx_c_v(1,indx_tmp) = indx
|
||||
list_idx_c_v(2,indx_tmp) = ii
|
||||
list_idx_c_v(3,indx_tmp) = aa
|
||||
mat_idx_c_v(ii,aa) = indx
|
||||
end do
|
||||
end do
|
||||
|
||||
indx_tmp = 0
|
||||
do tt=1,n_act_orb
|
||||
t=list_act(tt)
|
||||
do aa=1,n_virt_orb
|
||||
a=list_virt(aa)
|
||||
indx+=1
|
||||
excit(1,indx)=t
|
||||
excit(2,indx)=a
|
||||
excit_class(indx)='a-v'
|
||||
indx_tmp += 1
|
||||
list_idx_a_v(1,indx_tmp) = indx
|
||||
list_idx_a_v(2,indx_tmp) = tt
|
||||
list_idx_a_v(3,indx_tmp) = aa
|
||||
mat_idx_a_v(tt,aa) = indx
|
||||
end do
|
||||
end do
|
||||
|
||||
if (bavard) then
|
||||
write(6,*) ' Filled the table of the Monoexcitations '
|
||||
do indx=1,nMonoEx
|
||||
write(6,*) ' ex ',indx,' : ',excit(1,indx),' -> ' &
|
||||
,excit(2,indx),' ',excit_class(indx)
|
||||
end do
|
||||
end if
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [real*8, gradvec2, (nMonoEx)]
|
||||
&BEGIN_PROVIDER [real*8, norm_grad_vec2]
|
||||
&BEGIN_PROVIDER [real*8, norm_grad_vec2_tab, (3)]
|
||||
BEGIN_DOC
|
||||
! calculate the orbital gradient <Psi| H E_pq |Psi> from density
|
||||
! matrices and integrals; Siegbahn et al, Phys Scr 1980
|
||||
! eqs 14 a,b,c
|
||||
END_DOC
|
||||
implicit none
|
||||
integer :: i,t,a,indx
|
||||
real*8 :: gradvec_it,gradvec_ia,gradvec_ta
|
||||
|
||||
indx=0
|
||||
norm_grad_vec2_tab = 0.d0
|
||||
do i=1,n_core_inact_orb
|
||||
do t=1,n_act_orb
|
||||
indx+=1
|
||||
gradvec2(indx)=gradvec_it(i,t)
|
||||
norm_grad_vec2_tab(1) += gradvec2(indx)*gradvec2(indx)
|
||||
end do
|
||||
end do
|
||||
|
||||
do i=1,n_core_inact_orb
|
||||
do a=1,n_virt_orb
|
||||
indx+=1
|
||||
gradvec2(indx)=gradvec_ia(i,a)
|
||||
norm_grad_vec2_tab(2) += gradvec2(indx)*gradvec2(indx)
|
||||
end do
|
||||
end do
|
||||
|
||||
do t=1,n_act_orb
|
||||
do a=1,n_virt_orb
|
||||
indx+=1
|
||||
gradvec2(indx)=gradvec_ta(t,a)
|
||||
norm_grad_vec2_tab(3) += gradvec2(indx)*gradvec2(indx)
|
||||
end do
|
||||
end do
|
||||
|
||||
norm_grad_vec2=0.d0
|
||||
do indx=1,nMonoEx
|
||||
norm_grad_vec2+=gradvec2(indx)*gradvec2(indx)
|
||||
end do
|
||||
do i = 1, 3
|
||||
norm_grad_vec2_tab(i) = dsqrt(norm_grad_vec2_tab(i))
|
||||
enddo
|
||||
norm_grad_vec2=sqrt(norm_grad_vec2)
|
||||
if(bavard)then
|
||||
write(6,*)
|
||||
write(6,*) ' Norm of the orbital gradient (via D, P and integrals): ', norm_grad_vec2
|
||||
write(6,*)
|
||||
endif
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
real*8 function gradvec_it(i,t)
|
||||
BEGIN_DOC
|
||||
! the orbital gradient core/inactive -> active
|
||||
! we assume natural orbitals
|
||||
END_DOC
|
||||
implicit none
|
||||
integer :: i,t
|
||||
|
||||
integer :: ii,tt,v,vv,x,y
|
||||
integer :: x3,y3
|
||||
|
||||
ii=list_core_inact(i)
|
||||
tt=list_act(t)
|
||||
gradvec_it=2.D0*(Fipq(tt,ii)+Fapq(tt,ii))
|
||||
gradvec_it-=occnum(tt)*Fipq(ii,tt)
|
||||
do v=1,n_act_orb ! active
|
||||
vv=list_act(v)
|
||||
do x=1,n_act_orb ! active
|
||||
x3=x+n_core_inact_orb ! list_act(x)
|
||||
do y=1,n_act_orb ! active
|
||||
y3=y+n_core_inact_orb ! list_act(y)
|
||||
! Gamma(2) a a a a 1/r12 i a a a
|
||||
gradvec_it-=2.D0*P0tuvx_no(t,v,x,y)*bielec_PQxx_no(ii,vv,x3,y3)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
gradvec_it*=2.D0
|
||||
end function gradvec_it
|
||||
|
||||
real*8 function gradvec_ia(i,a)
|
||||
BEGIN_DOC
|
||||
! the orbital gradient core/inactive -> virtual
|
||||
END_DOC
|
||||
implicit none
|
||||
integer :: i,a,ii,aa
|
||||
|
||||
ii=list_core_inact(i)
|
||||
aa=list_virt(a)
|
||||
gradvec_ia=2.D0*(Fipq(aa,ii)+Fapq(aa,ii))
|
||||
gradvec_ia*=2.D0
|
||||
|
||||
end function gradvec_ia
|
||||
|
||||
real*8 function gradvec_ta(t,a)
|
||||
BEGIN_DOC
|
||||
! the orbital gradient active -> virtual
|
||||
! we assume natural orbitals
|
||||
END_DOC
|
||||
implicit none
|
||||
integer :: t,a,tt,aa,v,vv,x,y
|
||||
|
||||
tt=list_act(t)
|
||||
aa=list_virt(a)
|
||||
gradvec_ta=0.D0
|
||||
gradvec_ta+=occnum(tt)*Fipq(aa,tt)
|
||||
do v=1,n_act_orb
|
||||
do x=1,n_act_orb
|
||||
do y=1,n_act_orb
|
||||
gradvec_ta+=2.D0*P0tuvx_no(t,v,x,y)*bielecCI_no(x,y,v,aa)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
gradvec_ta*=2.D0
|
||||
|
||||
end function gradvec_ta
|
||||
|
539
src/casscf_cipsi/hessian.irp.f
Normal file
539
src/casscf_cipsi/hessian.irp.f
Normal file
@ -0,0 +1,539 @@
|
||||
use bitmasks
|
||||
|
||||
real*8 function hessmat_itju(i,t,j,u)
|
||||
BEGIN_DOC
|
||||
! the orbital hessian for core/inactive -> active, core/inactive -> active
|
||||
! i, t, j, u are list indices, the corresponding orbitals are ii,tt,jj,uu
|
||||
!
|
||||
! we assume natural orbitals
|
||||
END_DOC
|
||||
implicit none
|
||||
integer :: i,t,j,u,ii,tt,uu,v,vv,x,xx,y,jj
|
||||
real*8 :: term,t2
|
||||
|
||||
ii=list_core_inact(i)
|
||||
tt=list_act(t)
|
||||
if (i.eq.j) then
|
||||
if (t.eq.u) then
|
||||
! diagonal element
|
||||
term=occnum(tt)*Fipq(ii,ii)+2.D0*(Fipq(tt,tt)+Fapq(tt,tt)) &
|
||||
-2.D0*(Fipq(ii,ii)+Fapq(ii,ii))
|
||||
term+=2.D0*(3.D0*bielec_pxxq_no(tt,i,i,tt)-bielec_pqxx_no(tt,tt,i,i))
|
||||
term-=2.D0*occnum(tt)*(3.D0*bielec_pxxq_no(tt,i,i,tt) &
|
||||
-bielec_pqxx_no(tt,tt,i,i))
|
||||
term-=occnum(tt)*Fipq(tt,tt)
|
||||
do v=1,n_act_orb
|
||||
vv=list_act(v)
|
||||
do x=1,n_act_orb
|
||||
xx=list_act(x)
|
||||
term+=2.D0*(P0tuvx_no(t,t,v,x)*bielec_pqxx_no(vv,xx,i,i) &
|
||||
+(P0tuvx_no(t,x,v,t)+P0tuvx_no(t,x,t,v))* &
|
||||
bielec_pxxq_no(vv,i,i,xx))
|
||||
do y=1,n_act_orb
|
||||
term-=2.D0*P0tuvx_no(t,v,x,y)*bielecCI_no(t,v,y,xx)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
else
|
||||
! it/iu, t != u
|
||||
uu=list_act(u)
|
||||
term=2.D0*(Fipq(tt,uu)+Fapq(tt,uu))
|
||||
term+=2.D0*(4.D0*bielec_PxxQ_no(tt,i,j,uu)-bielec_PxxQ_no(uu,i,j,tt) &
|
||||
-bielec_PQxx_no(tt,uu,i,j))
|
||||
term-=occnum(tt)*Fipq(uu,tt)
|
||||
term-=(occnum(tt)+occnum(uu)) &
|
||||
*(3.D0*bielec_PxxQ_no(tt,i,i,uu)-bielec_PQxx_no(uu,tt,i,i))
|
||||
do v=1,n_act_orb
|
||||
vv=list_act(v)
|
||||
! term-=D0tu(u,v)*Fipq(tt,vv) ! published, but inverting t and u seems more correct
|
||||
do x=1,n_act_orb
|
||||
xx=list_act(x)
|
||||
term+=2.D0*(P0tuvx_no(u,t,v,x)*bielec_pqxx_no(vv,xx,i,i) &
|
||||
+(P0tuvx_no(u,x,v,t)+P0tuvx_no(u,x,t,v)) &
|
||||
*bielec_pxxq_no(vv,i,i,xx))
|
||||
do y=1,n_act_orb
|
||||
term-=2.D0*P0tuvx_no(t,v,x,y)*bielecCI_no(u,v,y,xx)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
end if
|
||||
else
|
||||
! it/ju
|
||||
jj=list_core_inact(j)
|
||||
uu=list_act(u)
|
||||
if (t.eq.u) then
|
||||
term=occnum(tt)*Fipq(ii,jj)
|
||||
term-=2.D0*(Fipq(ii,jj)+Fapq(ii,jj))
|
||||
else
|
||||
term=0.D0
|
||||
end if
|
||||
term+=2.D0*(4.D0*bielec_PxxQ_no(tt,i,j,uu)-bielec_PxxQ_no(uu,i,j,tt) &
|
||||
-bielec_PQxx_no(tt,uu,i,j))
|
||||
term-=(occnum(tt)+occnum(uu))* &
|
||||
(4.D0*bielec_PxxQ_no(tt,i,j,uu)-bielec_PxxQ_no(uu,i,j,tt) &
|
||||
-bielec_PQxx_no(uu,tt,i,j))
|
||||
do v=1,n_act_orb
|
||||
vv=list_act(v)
|
||||
do x=1,n_act_orb
|
||||
xx=list_act(x)
|
||||
term+=2.D0*(P0tuvx_no(u,t,v,x)*bielec_pqxx_no(vv,xx,i,j) &
|
||||
+(P0tuvx_no(u,x,v,t)+P0tuvx_no(u,x,t,v)) &
|
||||
*bielec_pxxq_no(vv,i,j,xx))
|
||||
end do
|
||||
end do
|
||||
end if
|
||||
|
||||
term*=2.D0
|
||||
hessmat_itju=term
|
||||
|
||||
end function hessmat_itju
|
||||
|
||||
real*8 function hessmat_itja(i,t,j,a)
|
||||
BEGIN_DOC
|
||||
! the orbital hessian for core/inactive -> active, core/inactive -> virtual
|
||||
END_DOC
|
||||
implicit none
|
||||
integer :: i,t,j,a,ii,tt,jj,aa,v,vv,x,y
|
||||
real*8 :: term
|
||||
|
||||
! it/ja
|
||||
ii=list_core_inact(i)
|
||||
tt=list_act(t)
|
||||
jj=list_core_inact(j)
|
||||
aa=list_virt(a)
|
||||
term=2.D0*(4.D0*bielec_pxxq_no(aa,j,i,tt) &
|
||||
-bielec_pqxx_no(aa,tt,i,j) -bielec_pxxq_no(aa,i,j,tt))
|
||||
term-=occnum(tt)*(4.D0*bielec_pxxq_no(aa,j,i,tt) &
|
||||
-bielec_pqxx_no(aa,tt,i,j) -bielec_pxxq_no(aa,i,j,tt))
|
||||
if (i.eq.j) then
|
||||
term+=2.D0*(Fipq(aa,tt)+Fapq(aa,tt))
|
||||
term-=0.5D0*occnum(tt)*Fipq(aa,tt)
|
||||
do v=1,n_act_orb
|
||||
do x=1,n_act_orb
|
||||
do y=1,n_act_orb
|
||||
term-=P0tuvx_no(t,v,x,y)*bielecCI_no(x,y,v,aa)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
end if
|
||||
term*=2.D0
|
||||
hessmat_itja=term
|
||||
|
||||
end function hessmat_itja
|
||||
|
||||
real*8 function hessmat_itua(i,t,u,a)
|
||||
BEGIN_DOC
|
||||
! the orbital hessian for core/inactive -> active, active -> virtual
|
||||
END_DOC
|
||||
implicit none
|
||||
integer :: i,t,u,a,ii,tt,uu,aa,v,vv,x,xx,u3,t3,v3
|
||||
real*8 :: term
|
||||
|
||||
ii=list_core_inact(i)
|
||||
tt=list_act(t)
|
||||
t3=t+n_core_inact_orb
|
||||
uu=list_act(u)
|
||||
u3=u+n_core_inact_orb
|
||||
aa=list_virt(a)
|
||||
if (t.eq.u) then
|
||||
term=-occnum(tt)*Fipq(aa,ii)
|
||||
else
|
||||
term=0.D0
|
||||
end if
|
||||
term-=occnum(uu)*(bielec_pqxx_no(aa,ii,t3,u3)-4.D0*bielec_pqxx_no(aa,uu,t3,i)&
|
||||
+bielec_pxxq_no(aa,t3,u3,ii))
|
||||
do v=1,n_act_orb
|
||||
vv=list_act(v)
|
||||
v3=v+n_core_inact_orb
|
||||
do x=1,n_act_orb
|
||||
integer :: x3
|
||||
xx=list_act(x)
|
||||
x3=x+n_core_inact_orb
|
||||
term-=2.D0*(P0tuvx_no(t,u,v,x)*bielec_pqxx_no(aa,ii,v3,x3) &
|
||||
+(P0tuvx_no(t,v,u,x)+P0tuvx_no(t,v,x,u)) &
|
||||
*bielec_pqxx_no(aa,xx,v3,i))
|
||||
end do
|
||||
end do
|
||||
if (t.eq.u) then
|
||||
term+=Fipq(aa,ii)+Fapq(aa,ii)
|
||||
end if
|
||||
term*=2.D0
|
||||
hessmat_itua=term
|
||||
|
||||
end function hessmat_itua
|
||||
|
||||
real*8 function hessmat_iajb(i,a,j,b)
|
||||
BEGIN_DOC
|
||||
! the orbital hessian for core/inactive -> virtual, core/inactive -> virtual
|
||||
END_DOC
|
||||
implicit none
|
||||
integer :: i,a,j,b,ii,aa,jj,bb
|
||||
real*8 :: term
|
||||
|
||||
ii=list_core_inact(i)
|
||||
aa=list_virt(a)
|
||||
if (i.eq.j) then
|
||||
if (a.eq.b) then
|
||||
! ia/ia
|
||||
term=2.D0*(Fipq(aa,aa)+Fapq(aa,aa)-Fipq(ii,ii)-Fapq(ii,ii))
|
||||
term+=2.D0*(3.D0*bielec_pxxq_no(aa,i,i,aa)-bielec_pqxx_no(aa,aa,i,i))
|
||||
else
|
||||
bb=list_virt(b)
|
||||
! ia/ib
|
||||
term=2.D0*(Fipq(aa,bb)+Fapq(aa,bb))
|
||||
term+=2.D0*(3.D0*bielec_pxxq_no(aa,i,i,bb)-bielec_pqxx_no(aa,bb,i,i))
|
||||
end if
|
||||
else
|
||||
! ia/jb
|
||||
jj=list_core_inact(j)
|
||||
bb=list_virt(b)
|
||||
term=2.D0*(4.D0*bielec_pxxq_no(aa,i,j,bb)-bielec_pqxx_no(aa,bb,i,j) &
|
||||
-bielec_pxxq_no(aa,j,i,bb))
|
||||
if (a.eq.b) then
|
||||
term-=2.D0*(Fipq(ii,jj)+Fapq(ii,jj))
|
||||
end if
|
||||
end if
|
||||
term*=2.D0
|
||||
hessmat_iajb=term
|
||||
|
||||
end function hessmat_iajb
|
||||
|
||||
real*8 function hessmat_iatb(i,a,t,b)
|
||||
BEGIN_DOC
|
||||
! the orbital hessian for core/inactive -> virtual, active -> virtual
|
||||
END_DOC
|
||||
implicit none
|
||||
integer :: i,a,t,b,ii,aa,tt,bb,v,vv,x,y,v3,t3
|
||||
real*8 :: term
|
||||
|
||||
ii=list_core_inact(i)
|
||||
aa=list_virt(a)
|
||||
tt=list_act(t)
|
||||
bb=list_virt(b)
|
||||
t3=t+n_core_inact_orb
|
||||
term=occnum(tt)*(4.D0*bielec_pxxq_no(aa,i,t3,bb)-bielec_pxxq_no(aa,t3,i,bb)&
|
||||
-bielec_pqxx_no(aa,bb,i,t3))
|
||||
if (a.eq.b) then
|
||||
term-=Fipq(tt,ii)+Fapq(tt,ii)
|
||||
term-=0.5D0*occnum(tt)*Fipq(tt,ii)
|
||||
do v=1,n_act_orb
|
||||
do x=1,n_act_orb
|
||||
do y=1,n_act_orb
|
||||
term-=P0tuvx_no(t,v,x,y)*bielecCI_no(x,y,v,ii)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
end if
|
||||
term*=2.D0
|
||||
hessmat_iatb=term
|
||||
|
||||
end function hessmat_iatb
|
||||
|
||||
real*8 function hessmat_taub(t,a,u,b)
|
||||
BEGIN_DOC
|
||||
! the orbital hessian for act->virt,act->virt
|
||||
END_DOC
|
||||
implicit none
|
||||
integer :: t,a,u,b,tt,aa,uu,bb,v,vv,x,xx,y
|
||||
integer :: v3,x3
|
||||
real*8 :: term,t1,t2,t3
|
||||
|
||||
tt=list_act(t)
|
||||
aa=list_virt(a)
|
||||
if (t == u) then
|
||||
if (a == b) then
|
||||
! ta/ta
|
||||
t1=occnum(tt)*Fipq(aa,aa)
|
||||
t2=0.D0
|
||||
t3=0.D0
|
||||
t1-=occnum(tt)*Fipq(tt,tt)
|
||||
do v=1,n_act_orb
|
||||
vv=list_act(v)
|
||||
v3=v+n_core_inact_orb
|
||||
do x=1,n_act_orb
|
||||
xx=list_act(x)
|
||||
x3=x+n_core_inact_orb
|
||||
t2+=2.D0*(P0tuvx_no(t,t,v,x)*bielec_pqxx_no(aa,aa,v3,x3) &
|
||||
+(P0tuvx_no(t,x,v,t)+P0tuvx_no(t,x,t,v))* &
|
||||
bielec_pxxq_no(aa,x3,v3,aa))
|
||||
do y=1,n_act_orb
|
||||
t3-=2.D0*P0tuvx_no(t,v,x,y)*bielecCI_no(t,v,y,xx)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
term=t1+t2+t3
|
||||
else
|
||||
bb=list_virt(b)
|
||||
! ta/tb b/=a
|
||||
term=occnum(tt)*Fipq(aa,bb)
|
||||
do v=1,n_act_orb
|
||||
vv=list_act(v)
|
||||
v3=v+n_core_inact_orb
|
||||
do x=1,n_act_orb
|
||||
xx=list_act(x)
|
||||
x3=x+n_core_inact_orb
|
||||
term+=2.D0*(P0tuvx_no(t,t,v,x)*bielec_pqxx_no(aa,bb,v3,x3) &
|
||||
+(P0tuvx_no(t,x,v,t)+P0tuvx_no(t,x,t,v)) &
|
||||
*bielec_pxxq_no(aa,x3,v3,bb))
|
||||
end do
|
||||
end do
|
||||
end if
|
||||
else
|
||||
! ta/ub t/=u
|
||||
uu=list_act(u)
|
||||
bb=list_virt(b)
|
||||
term=0.D0
|
||||
do v=1,n_act_orb
|
||||
vv=list_act(v)
|
||||
v3=v+n_core_inact_orb
|
||||
do x=1,n_act_orb
|
||||
xx=list_act(x)
|
||||
x3=x+n_core_inact_orb
|
||||
term+=2.D0*(P0tuvx_no(t,u,v,x)*bielec_pqxx_no(aa,bb,v3,x3) &
|
||||
+(P0tuvx_no(t,x,v,u)+P0tuvx_no(t,x,u,v)) &
|
||||
*bielec_pxxq_no(aa,x3,v3,bb))
|
||||
end do
|
||||
end do
|
||||
if (a.eq.b) then
|
||||
term-=0.5D0*(occnum(tt)*Fipq(uu,tt)+occnum(uu)*Fipq(tt,uu))
|
||||
do v=1,n_act_orb
|
||||
do y=1,n_act_orb
|
||||
do x=1,n_act_orb
|
||||
term-=P0tuvx_no(t,v,x,y)*bielecCI_no(x,y,v,uu)
|
||||
term-=P0tuvx_no(u,v,x,y)*bielecCI_no(x,y,v,tt)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
end if
|
||||
|
||||
end if
|
||||
|
||||
term*=2.D0
|
||||
hessmat_taub=term
|
||||
|
||||
end function hessmat_taub
|
||||
|
||||
BEGIN_PROVIDER [real*8, hessdiag, (nMonoEx)]
|
||||
BEGIN_DOC
|
||||
! the diagonal of the Hessian, needed for the Davidson procedure
|
||||
END_DOC
|
||||
implicit none
|
||||
integer :: i,t,a,indx,indx_shift
|
||||
real*8 :: hessmat_itju,hessmat_iajb,hessmat_taub
|
||||
|
||||
!$OMP PARALLEL DEFAULT(NONE) &
|
||||
!$OMP SHARED(hessdiag,n_core_inact_orb,n_act_orb,n_virt_orb,nMonoEx) &
|
||||
!$OMP PRIVATE(i,indx,t,a,indx_shift)
|
||||
|
||||
!$OMP DO
|
||||
do i=1,n_core_inact_orb
|
||||
do t=1,n_act_orb
|
||||
indx = t + (i-1)*n_act_orb
|
||||
hessdiag(indx)=hessmat_itju(i,t,i,t)
|
||||
end do
|
||||
end do
|
||||
!$OMP END DO NOWAIT
|
||||
|
||||
indx_shift = n_core_inact_orb*n_act_orb
|
||||
!$OMP DO
|
||||
do a=1,n_virt_orb
|
||||
do i=1,n_core_inact_orb
|
||||
indx = a + (i-1)*n_virt_orb + indx_shift
|
||||
hessdiag(indx)=hessmat_iajb(i,a,i,a)
|
||||
end do
|
||||
end do
|
||||
!$OMP END DO NOWAIT
|
||||
|
||||
indx_shift += n_core_inact_orb*n_virt_orb
|
||||
!$OMP DO
|
||||
do a=1,n_virt_orb
|
||||
do t=1,n_act_orb
|
||||
indx = a + (t-1)*n_virt_orb + indx_shift
|
||||
hessdiag(indx)=hessmat_taub(t,a,t,a)
|
||||
end do
|
||||
end do
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [double precision, hessmat, (nMonoEx,nMonoEx)]
|
||||
implicit none
|
||||
integer :: i,j,t,u,a,b
|
||||
integer :: indx,indx_tmp, jndx, jndx_tmp
|
||||
integer :: ustart,bstart
|
||||
real*8 :: hessmat_itju
|
||||
real*8 :: hessmat_itja
|
||||
real*8 :: hessmat_itua
|
||||
real*8 :: hessmat_iajb
|
||||
real*8 :: hessmat_iatb
|
||||
real*8 :: hessmat_taub
|
||||
! c-a c-v a-v
|
||||
! c-a | X X X
|
||||
! c-v | X X
|
||||
! a-v | X
|
||||
|
||||
provide mo_two_e_integrals_in_map
|
||||
|
||||
hessmat = 0.d0
|
||||
|
||||
!$OMP PARALLEL DEFAULT(NONE) &
|
||||
!$OMP SHARED(hessmat,n_c_a_prov,list_idx_c_a,n_core_inact_orb,n_act_orb,mat_idx_c_a) &
|
||||
!$OMP PRIVATE(indx_tmp,indx,i,t,j,u,ustart,jndx)
|
||||
|
||||
!$OMP DO
|
||||
!!!! < Core-active| H |Core-active >
|
||||
! Core-active excitations
|
||||
do indx_tmp = 1, n_c_a_prov
|
||||
indx = list_idx_c_a(1,indx_tmp)
|
||||
i = list_idx_c_a(2,indx_tmp)
|
||||
t = list_idx_c_a(3,indx_tmp)
|
||||
! Core-active excitations
|
||||
do j = 1, n_core_inact_orb
|
||||
if (i.eq.j) then
|
||||
ustart=t
|
||||
else
|
||||
ustart=1
|
||||
end if
|
||||
do u=ustart,n_act_orb
|
||||
jndx = mat_idx_c_a(j,u)
|
||||
hessmat(jndx,indx) = hessmat_itju(i,t,j,u)
|
||||
hessmat(indx,jndx) = hessmat(jndx,indx)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO NOWAIT
|
||||
!$OMP END PARALLEL
|
||||
|
||||
!$OMP PARALLEL DEFAULT(NONE) &
|
||||
!$OMP SHARED(hessmat,n_c_a_prov,n_c_v_prov,list_idx_c_a,list_idx_c_v) &
|
||||
!$OMP PRIVATE(indx_tmp,jndx_tmp,indx,i,t,j,a,jndx)
|
||||
|
||||
!$OMP DO
|
||||
!!!! < Core-active| H |Core-VIRTUAL >
|
||||
! Core-active excitations
|
||||
do indx_tmp = 1, n_c_a_prov
|
||||
indx = list_idx_c_a(1,indx_tmp)
|
||||
i = list_idx_c_a(2,indx_tmp)
|
||||
t = list_idx_c_a(3,indx_tmp)
|
||||
! Core-VIRTUAL excitations
|
||||
do jndx_tmp = 1, n_c_v_prov
|
||||
jndx = list_idx_c_v(1,jndx_tmp)
|
||||
j = list_idx_c_v(2,jndx_tmp)
|
||||
a = list_idx_c_v(3,jndx_tmp)
|
||||
hessmat(jndx,indx) = hessmat_itja(i,t,j,a)
|
||||
hessmat(indx,jndx) = hessmat(jndx,indx)
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO NOWAIT
|
||||
!$OMP END PARALLEL
|
||||
|
||||
!$OMP PARALLEL DEFAULT(NONE) &
|
||||
!$OMP SHARED(hessmat,n_c_a_prov,n_a_v_prov,list_idx_c_a,list_idx_a_v) &
|
||||
!$OMP PRIVATE(indx_tmp,jndx_tmp,indx,i,t,u,a,jndx)
|
||||
|
||||
!$OMP DO
|
||||
!!!! < Core-active| H |ACTIVE-VIRTUAL >
|
||||
! Core-active excitations
|
||||
do indx_tmp = 1, n_c_a_prov
|
||||
indx = list_idx_c_a(1,indx_tmp)
|
||||
i = list_idx_c_a(2,indx_tmp)
|
||||
t = list_idx_c_a(3,indx_tmp)
|
||||
! ACTIVE-VIRTUAL excitations
|
||||
do jndx_tmp = 1, n_a_v_prov
|
||||
jndx = list_idx_a_v(1,jndx_tmp)
|
||||
u = list_idx_a_v(2,jndx_tmp)
|
||||
a = list_idx_a_v(3,jndx_tmp)
|
||||
hessmat(jndx,indx) = hessmat_itua(i,t,u,a)
|
||||
hessmat(indx,jndx) = hessmat(jndx,indx)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
!$OMP END DO NOWAIT
|
||||
!$OMP END PARALLEL
|
||||
|
||||
|
||||
if(hess_cv_cv)then
|
||||
!$OMP PARALLEL DEFAULT(NONE) &
|
||||
!$OMP SHARED(hessmat,n_c_v_prov,list_idx_c_v,n_core_inact_orb,n_virt_orb,mat_idx_c_v) &
|
||||
!$OMP PRIVATE(indx_tmp,indx,i,a,j,b,bstart,jndx)
|
||||
!$OMP DO
|
||||
!!!!! < Core-VIRTUAL | H |Core-VIRTUAL >
|
||||
! Core-VIRTUAL excitations
|
||||
do indx_tmp = 1, n_c_v_prov
|
||||
indx = list_idx_c_v(1,indx_tmp)
|
||||
i = list_idx_c_v(2,indx_tmp)
|
||||
a = list_idx_c_v(3,indx_tmp)
|
||||
! Core-VIRTUAL excitations
|
||||
do j = 1, n_core_inact_orb
|
||||
if (i.eq.j) then
|
||||
bstart=a
|
||||
else
|
||||
bstart=1
|
||||
end if
|
||||
do b=bstart,n_virt_orb
|
||||
jndx = mat_idx_c_v(j,b)
|
||||
hessmat(jndx,indx) = hessmat_iajb(i,a,j,b)
|
||||
hessmat(indx,jndx) = hessmat(jndx,indx)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
!$OMP END DO NOWAIT
|
||||
!$OMP END PARALLEL
|
||||
endif
|
||||
|
||||
!$OMP PARALLEL DEFAULT(NONE) &
|
||||
!$OMP SHARED(hessmat,n_c_v_prov,n_a_v_prov,list_idx_c_v,list_idx_a_v) &
|
||||
!$OMP PRIVATE(indx_tmp,jndx_tmp,indx,i,a,t,b,jndx)
|
||||
|
||||
!$OMP DO
|
||||
!!!! < Core-VIRTUAL | H |Active-VIRTUAL >
|
||||
! Core-VIRTUAL excitations
|
||||
do indx_tmp = 1, n_c_v_prov
|
||||
indx = list_idx_c_v(1,indx_tmp)
|
||||
i = list_idx_c_v(2,indx_tmp)
|
||||
a = list_idx_c_v(3,indx_tmp)
|
||||
! Active-VIRTUAL excitations
|
||||
do jndx_tmp = 1, n_a_v_prov
|
||||
jndx = list_idx_a_v(1,jndx_tmp)
|
||||
t = list_idx_a_v(2,jndx_tmp)
|
||||
b = list_idx_a_v(3,jndx_tmp)
|
||||
hessmat(jndx,indx) = hessmat_iatb(i,a,t,b)
|
||||
hessmat(indx,jndx) = hessmat(jndx,indx)
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO NOWAIT
|
||||
!$OMP END PARALLEL
|
||||
|
||||
|
||||
!$OMP PARALLEL DEFAULT(NONE) &
|
||||
!$OMP SHARED(hessmat,n_a_v_prov,list_idx_a_v,n_act_orb,n_virt_orb,mat_idx_a_v) &
|
||||
!$OMP PRIVATE(indx_tmp,indx,t,a,u,b,bstart,jndx)
|
||||
|
||||
!$OMP DO
|
||||
!!!! < Active-VIRTUAL | H |Active-VIRTUAL >
|
||||
! Active-VIRTUAL excitations
|
||||
do indx_tmp = 1, n_a_v_prov
|
||||
indx = list_idx_a_v(1,indx_tmp)
|
||||
t = list_idx_a_v(2,indx_tmp)
|
||||
a = list_idx_a_v(3,indx_tmp)
|
||||
! Active-VIRTUAL excitations
|
||||
do u=t,n_act_orb
|
||||
if (t.eq.u) then
|
||||
bstart=a
|
||||
else
|
||||
bstart=1
|
||||
end if
|
||||
do b=bstart,n_virt_orb
|
||||
jndx = mat_idx_a_v(u,b)
|
||||
hessmat(jndx,indx) = hessmat_taub(t,a,u,b)
|
||||
hessmat(indx,jndx) = hessmat(jndx,indx)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO NOWAIT
|
||||
!$OMP END PARALLEL
|
||||
|
||||
END_PROVIDER
|
310
src/casscf_cipsi/hessian_old.irp.f
Normal file
310
src/casscf_cipsi/hessian_old.irp.f
Normal file
@ -0,0 +1,310 @@
|
||||
|
||||
use bitmasks
|
||||
BEGIN_PROVIDER [real*8, hessmat_old, (nMonoEx,nMonoEx)]
|
||||
BEGIN_DOC
|
||||
! calculate the orbital hessian 2 <Psi| E_pq H E_rs |Psi>
|
||||
! + <Psi| E_pq E_rs H |Psi> + <Psi| E_rs E_pq H |Psi> by hand,
|
||||
! determinant per determinant, as for the gradient
|
||||
!
|
||||
! we assume that we have natural active orbitals
|
||||
END_DOC
|
||||
implicit none
|
||||
integer :: indx,ihole,ipart
|
||||
integer :: jndx,jhole,jpart
|
||||
character*3 :: iexc,jexc
|
||||
real*8 :: res
|
||||
|
||||
if (bavard) then
|
||||
write(6,*) ' providing Hessian matrix hessmat_old '
|
||||
write(6,*) ' nMonoEx = ',nMonoEx
|
||||
endif
|
||||
|
||||
do indx=1,nMonoEx
|
||||
do jndx=1,nMonoEx
|
||||
hessmat_old(indx,jndx)=0.D0
|
||||
end do
|
||||
end do
|
||||
|
||||
do indx=1,nMonoEx
|
||||
ihole=excit(1,indx)
|
||||
ipart=excit(2,indx)
|
||||
iexc=excit_class(indx)
|
||||
do jndx=indx,nMonoEx
|
||||
jhole=excit(1,jndx)
|
||||
jpart=excit(2,jndx)
|
||||
jexc=excit_class(jndx)
|
||||
call calc_hess_elem(ihole,ipart,jhole,jpart,res)
|
||||
hessmat_old(indx,jndx)=res
|
||||
hessmat_old(jndx,indx)=res
|
||||
end do
|
||||
end do
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
subroutine calc_hess_elem(ihole,ipart,jhole,jpart,res)
|
||||
BEGIN_DOC
|
||||
! eq 19 of Siegbahn et al, Physica Scripta 1980
|
||||
! we calculate 2 <Psi| E_pq H E_rs |Psi>
|
||||
! + <Psi| E_pq E_rs H |Psi> + <Psi| E_rs E_pq H |Psi>
|
||||
! average over all states is performed.
|
||||
! no transition between states.
|
||||
END_DOC
|
||||
implicit none
|
||||
integer :: ihole,ipart,ispin,mu,istate
|
||||
integer :: jhole,jpart,jspin
|
||||
integer :: mu_pq, mu_pqrs, mu_rs, mu_rspq, nu_rs,nu
|
||||
real*8 :: res
|
||||
integer(bit_kind), allocatable :: det_mu(:,:)
|
||||
integer(bit_kind), allocatable :: det_nu(:,:)
|
||||
integer(bit_kind), allocatable :: det_mu_pq(:,:)
|
||||
integer(bit_kind), allocatable :: det_mu_rs(:,:)
|
||||
integer(bit_kind), allocatable :: det_nu_rs(:,:)
|
||||
integer(bit_kind), allocatable :: det_mu_pqrs(:,:)
|
||||
integer(bit_kind), allocatable :: det_mu_rspq(:,:)
|
||||
real*8 :: i_H_psi_array(N_states),phase,phase2,phase3
|
||||
real*8 :: i_H_j_element
|
||||
allocate(det_mu(N_int,2))
|
||||
allocate(det_nu(N_int,2))
|
||||
allocate(det_mu_pq(N_int,2))
|
||||
allocate(det_mu_rs(N_int,2))
|
||||
allocate(det_nu_rs(N_int,2))
|
||||
allocate(det_mu_pqrs(N_int,2))
|
||||
allocate(det_mu_rspq(N_int,2))
|
||||
integer :: mu_pq_possible
|
||||
integer :: mu_rs_possible
|
||||
integer :: nu_rs_possible
|
||||
integer :: mu_pqrs_possible
|
||||
integer :: mu_rspq_possible
|
||||
|
||||
res=0.D0
|
||||
|
||||
! the terms <0|E E H |0>
|
||||
do mu=1,n_det
|
||||
! get the string of the determinant
|
||||
call det_extract(det_mu,mu,N_int)
|
||||
do ispin=1,2
|
||||
! do the monoexcitation pq on it
|
||||
call det_copy(det_mu,det_mu_pq,N_int)
|
||||
call do_signed_mono_excitation(det_mu,det_mu_pq,mu_pq &
|
||||
,ihole,ipart,ispin,phase,mu_pq_possible)
|
||||
if (mu_pq_possible.eq.1) then
|
||||
! possible, but not necessarily in the list
|
||||
! do the second excitation
|
||||
do jspin=1,2
|
||||
call det_copy(det_mu_pq,det_mu_pqrs,N_int)
|
||||
call do_signed_mono_excitation(det_mu_pq,det_mu_pqrs,mu_pqrs&
|
||||
,jhole,jpart,jspin,phase2,mu_pqrs_possible)
|
||||
! excitation possible
|
||||
if (mu_pqrs_possible.eq.1) then
|
||||
call i_H_psi(det_mu_pqrs,psi_det,psi_coef,N_int &
|
||||
,N_det,N_det,N_states,i_H_psi_array)
|
||||
do istate=1,N_states
|
||||
res+=i_H_psi_array(istate)*psi_coef(mu,istate)*phase*phase2
|
||||
end do
|
||||
end if
|
||||
! try the de-excitation with opposite sign
|
||||
call det_copy(det_mu_pq,det_mu_pqrs,N_int)
|
||||
call do_signed_mono_excitation(det_mu_pq,det_mu_pqrs,mu_pqrs&
|
||||
,jpart,jhole,jspin,phase2,mu_pqrs_possible)
|
||||
phase2=-phase2
|
||||
! excitation possible
|
||||
if (mu_pqrs_possible.eq.1) then
|
||||
call i_H_psi(det_mu_pqrs,psi_det,psi_coef,N_int &
|
||||
,N_det,N_det,N_states,i_H_psi_array)
|
||||
do istate=1,N_states
|
||||
res+=i_H_psi_array(istate)*psi_coef(mu,istate)*phase*phase2
|
||||
end do
|
||||
end if
|
||||
end do
|
||||
end if
|
||||
! exchange the notion of pq and rs
|
||||
! do the monoexcitation rs on the initial determinant
|
||||
call det_copy(det_mu,det_mu_rs,N_int)
|
||||
call do_signed_mono_excitation(det_mu,det_mu_rs,mu_rs &
|
||||
,jhole,jpart,ispin,phase2,mu_rs_possible)
|
||||
if (mu_rs_possible.eq.1) then
|
||||
! do the second excitation
|
||||
do jspin=1,2
|
||||
call det_copy(det_mu_rs,det_mu_rspq,N_int)
|
||||
call do_signed_mono_excitation(det_mu_rs,det_mu_rspq,mu_rspq&
|
||||
,ihole,ipart,jspin,phase3,mu_rspq_possible)
|
||||
! excitation possible (of course, the result is outside the CAS)
|
||||
if (mu_rspq_possible.eq.1) then
|
||||
call i_H_psi(det_mu_rspq,psi_det,psi_coef,N_int &
|
||||
,N_det,N_det,N_states,i_H_psi_array)
|
||||
do istate=1,N_states
|
||||
res+=i_H_psi_array(istate)*psi_coef(mu,istate)*phase2*phase3
|
||||
end do
|
||||
end if
|
||||
! we may try the de-excitation, with opposite sign
|
||||
call det_copy(det_mu_rs,det_mu_rspq,N_int)
|
||||
call do_signed_mono_excitation(det_mu_rs,det_mu_rspq,mu_rspq&
|
||||
,ipart,ihole,jspin,phase3,mu_rspq_possible)
|
||||
phase3=-phase3
|
||||
! excitation possible (of course, the result is outside the CAS)
|
||||
if (mu_rspq_possible.eq.1) then
|
||||
call i_H_psi(det_mu_rspq,psi_det,psi_coef,N_int &
|
||||
,N_det,N_det,N_states,i_H_psi_array)
|
||||
do istate=1,N_states
|
||||
res+=i_H_psi_array(istate)*psi_coef(mu,istate)*phase2*phase3
|
||||
end do
|
||||
end if
|
||||
end do
|
||||
end if
|
||||
!
|
||||
! the operator E H E, we have to do a double loop over the determinants
|
||||
! we still have the determinant mu_pq and the phase in memory
|
||||
if (mu_pq_possible.eq.1) then
|
||||
do nu=1,N_det
|
||||
call det_extract(det_nu,nu,N_int)
|
||||
do jspin=1,2
|
||||
call det_copy(det_nu,det_nu_rs,N_int)
|
||||
call do_signed_mono_excitation(det_nu,det_nu_rs,nu_rs &
|
||||
,jhole,jpart,jspin,phase2,nu_rs_possible)
|
||||
! excitation possible ?
|
||||
if (nu_rs_possible.eq.1) then
|
||||
call i_H_j(det_mu_pq,det_nu_rs,N_int,i_H_j_element)
|
||||
do istate=1,N_states
|
||||
res+=2.D0*i_H_j_element*psi_coef(mu,istate) &
|
||||
*psi_coef(nu,istate)*phase*phase2
|
||||
end do
|
||||
end if
|
||||
end do
|
||||
end do
|
||||
end if
|
||||
end do
|
||||
end do
|
||||
|
||||
! state-averaged Hessian
|
||||
res*=1.D0/dble(N_states)
|
||||
|
||||
end subroutine calc_hess_elem
|
||||
|
||||
BEGIN_PROVIDER [real*8, hessmat_peter, (nMonoEx,nMonoEx)]
|
||||
BEGIN_DOC
|
||||
! explicit hessian matrix from density matrices and integrals
|
||||
! of course, this will be used for a direct Davidson procedure later
|
||||
! we will not store the matrix in real life
|
||||
! formulas are broken down as functions for the 6 classes of matrix elements
|
||||
!
|
||||
END_DOC
|
||||
implicit none
|
||||
integer :: i,j,t,u,a,b,indx,jndx,bstart,ustart,indx_shift
|
||||
|
||||
real*8 :: hessmat_itju
|
||||
real*8 :: hessmat_itja
|
||||
real*8 :: hessmat_itua
|
||||
real*8 :: hessmat_iajb
|
||||
real*8 :: hessmat_iatb
|
||||
real*8 :: hessmat_taub
|
||||
|
||||
if (bavard) then
|
||||
write(6,*) ' providing Hessian matrix hessmat_peter '
|
||||
write(6,*) ' nMonoEx = ',nMonoEx
|
||||
endif
|
||||
provide mo_two_e_integrals_in_map
|
||||
|
||||
!$OMP PARALLEL DEFAULT(NONE) &
|
||||
!$OMP SHARED(hessmat_peter,n_core_inact_orb,n_act_orb,n_virt_orb,nMonoEx) &
|
||||
!$OMP PRIVATE(i,indx,jndx,j,ustart,t,u,a,bstart,indx_shift)
|
||||
|
||||
!$OMP DO
|
||||
! (DOUBLY OCCUPIED ---> ACT )
|
||||
do i=1,n_core_inact_orb
|
||||
do t=1,n_act_orb
|
||||
indx = t + (i-1)*n_act_orb
|
||||
jndx=indx
|
||||
! (DOUBLY OCCUPIED ---> ACT )
|
||||
do j=i,n_core_inact_orb
|
||||
if (i.eq.j) then
|
||||
ustart=t
|
||||
else
|
||||
ustart=1
|
||||
end if
|
||||
do u=ustart,n_act_orb
|
||||
hessmat_peter(jndx,indx)=hessmat_itju(i,t,j,u)
|
||||
jndx+=1
|
||||
end do
|
||||
end do
|
||||
! (DOUBLY OCCUPIED ---> VIRTUAL)
|
||||
do j=1,n_core_inact_orb
|
||||
do a=1,n_virt_orb
|
||||
hessmat_peter(jndx,indx)=hessmat_itja(i,t,j,a)
|
||||
jndx+=1
|
||||
end do
|
||||
end do
|
||||
! (ACTIVE ---> VIRTUAL)
|
||||
do u=1,n_act_orb
|
||||
do a=1,n_virt_orb
|
||||
hessmat_peter(jndx,indx)=hessmat_itua(i,t,u,a)
|
||||
jndx+=1
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
!$OMP END DO NOWAIT
|
||||
|
||||
indx_shift = n_core_inact_orb*n_act_orb
|
||||
!$OMP DO
|
||||
! (DOUBLY OCCUPIED ---> VIRTUAL)
|
||||
do a=1,n_virt_orb
|
||||
do i=1,n_core_inact_orb
|
||||
indx = a + (i-1)*n_virt_orb + indx_shift
|
||||
jndx=indx
|
||||
! (DOUBLY OCCUPIED ---> VIRTUAL)
|
||||
do j=i,n_core_inact_orb
|
||||
if (i.eq.j) then
|
||||
bstart=a
|
||||
else
|
||||
bstart=1
|
||||
end if
|
||||
do b=bstart,n_virt_orb
|
||||
hessmat_peter(jndx,indx)=hessmat_iajb(i,a,j,b)
|
||||
jndx+=1
|
||||
end do
|
||||
end do
|
||||
! (ACT ---> VIRTUAL)
|
||||
do t=1,n_act_orb
|
||||
do b=1,n_virt_orb
|
||||
hessmat_peter(jndx,indx)=hessmat_iatb(i,a,t,b)
|
||||
jndx+=1
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
!$OMP END DO NOWAIT
|
||||
|
||||
indx_shift += n_core_inact_orb*n_virt_orb
|
||||
!$OMP DO
|
||||
! (ACT ---> VIRTUAL)
|
||||
do a=1,n_virt_orb
|
||||
do t=1,n_act_orb
|
||||
indx = a + (t-1)*n_virt_orb + indx_shift
|
||||
jndx=indx
|
||||
! (ACT ---> VIRTUAL)
|
||||
do u=t,n_act_orb
|
||||
if (t.eq.u) then
|
||||
bstart=a
|
||||
else
|
||||
bstart=1
|
||||
end if
|
||||
do b=bstart,n_virt_orb
|
||||
hessmat_peter(jndx,indx)=hessmat_taub(t,a,u,b)
|
||||
jndx+=1
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
!$OMP END DO
|
||||
|
||||
!$OMP END PARALLEL
|
||||
|
||||
do jndx=1,nMonoEx
|
||||
do indx=1,jndx-1
|
||||
hessmat_peter(indx,jndx) = hessmat_peter(jndx,indx)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
|
||||
END_PROVIDER
|
||||
|
80
src/casscf_cipsi/mcscf_fock.irp.f
Normal file
80
src/casscf_cipsi/mcscf_fock.irp.f
Normal file
@ -0,0 +1,80 @@
|
||||
BEGIN_PROVIDER [real*8, Fipq, (mo_num,mo_num) ]
|
||||
BEGIN_DOC
|
||||
! the inactive Fock matrix, in molecular orbitals
|
||||
END_DOC
|
||||
implicit none
|
||||
integer :: p,q,k,kk,t,tt,u,uu
|
||||
|
||||
do q=1,mo_num
|
||||
do p=1,mo_num
|
||||
Fipq(p,q)=one_ints_no(p,q)
|
||||
end do
|
||||
end do
|
||||
|
||||
! the inactive Fock matrix
|
||||
do k=1,n_core_inact_orb
|
||||
kk=list_core_inact(k)
|
||||
do q=1,mo_num
|
||||
do p=1,mo_num
|
||||
Fipq(p,q)+=2.D0*bielec_pqxx_no(p,q,k,k) -bielec_pxxq_no(p,k,k,q)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
|
||||
if (bavard) then
|
||||
integer :: i
|
||||
write(6,*)
|
||||
write(6,*) ' the diagonal of the inactive effective Fock matrix '
|
||||
write(6,'(5(i3,F12.5))') (i,Fipq(i,i),i=1,mo_num)
|
||||
write(6,*)
|
||||
end if
|
||||
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [real*8, Fapq, (mo_num,mo_num) ]
|
||||
BEGIN_DOC
|
||||
! the active active Fock matrix, in molecular orbitals
|
||||
! we create them in MOs, quite expensive
|
||||
!
|
||||
! for an implementation in AOs we need first the natural orbitals
|
||||
! for forming an active density matrix in AOs
|
||||
!
|
||||
END_DOC
|
||||
implicit none
|
||||
integer :: p,q,k,kk,t,tt,u,uu
|
||||
|
||||
Fapq = 0.d0
|
||||
|
||||
! the active Fock matrix, D0tu is diagonal
|
||||
do t=1,n_act_orb
|
||||
tt=list_act(t)
|
||||
do q=1,mo_num
|
||||
do p=1,mo_num
|
||||
Fapq(p,q)+=occnum(tt) &
|
||||
*(bielec_pqxx_no(p,q,tt,tt)-0.5D0*bielec_pxxq_no(p,tt,tt,q))
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
|
||||
if (bavard) then
|
||||
integer :: i
|
||||
write(6,*)
|
||||
write(6,*) ' the effective Fock matrix over MOs'
|
||||
write(6,*)
|
||||
|
||||
write(6,*)
|
||||
write(6,*) ' the diagonal of the inactive effective Fock matrix '
|
||||
write(6,'(5(i3,F12.5))') (i,Fipq(i,i),i=1,mo_num)
|
||||
write(6,*)
|
||||
write(6,*)
|
||||
write(6,*) ' the diagonal of the active Fock matrix '
|
||||
write(6,'(5(i3,F12.5))') (i,Fapq(i,i),i=1,mo_num)
|
||||
write(6,*)
|
||||
end if
|
||||
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
231
src/casscf_cipsi/natorb.irp.f
Normal file
231
src/casscf_cipsi/natorb.irp.f
Normal file
@ -0,0 +1,231 @@
|
||||
BEGIN_PROVIDER [real*8, occnum, (mo_num)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! MO occupation numbers
|
||||
END_DOC
|
||||
|
||||
integer :: i
|
||||
occnum=0.D0
|
||||
do i=1,n_core_inact_orb
|
||||
occnum(list_core_inact(i))=2.D0
|
||||
end do
|
||||
|
||||
do i=1,n_act_orb
|
||||
occnum(list_act(i))=occ_act(i)
|
||||
end do
|
||||
|
||||
if (bavard) then
|
||||
write(6,*) ' occupation numbers '
|
||||
do i=1,mo_num
|
||||
write(6,*) i,occnum(i)
|
||||
end do
|
||||
endif
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ real*8, natorbsCI, (n_act_orb,n_act_orb) ]
|
||||
&BEGIN_PROVIDER [ real*8, occ_act, (n_act_orb) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Natural orbitals of CI
|
||||
END_DOC
|
||||
integer :: i, j
|
||||
double precision :: Vt(n_act_orb,n_act_orb)
|
||||
|
||||
! call lapack_diag(occ_act,natorbsCI,D0tu,n_act_orb,n_act_orb)
|
||||
call svd(D0tu, size(D0tu,1), natorbsCI,size(natorbsCI,1), occ_act, Vt, size(Vt,1),n_act_orb,n_act_orb)
|
||||
|
||||
if (bavard) then
|
||||
write(6,*) ' found occupation numbers as '
|
||||
do i=1,n_act_orb
|
||||
write(6,*) i,occ_act(i)
|
||||
end do
|
||||
|
||||
integer :: nmx
|
||||
real*8 :: xmx
|
||||
do i=1,n_act_orb
|
||||
! largest element of the eigenvector should be positive
|
||||
xmx=0.D0
|
||||
nmx=0
|
||||
do j=1,n_act_orb
|
||||
if (abs(natOrbsCI(j,i)).gt.xmx) then
|
||||
nmx=j
|
||||
xmx=abs(natOrbsCI(j,i))
|
||||
end if
|
||||
end do
|
||||
xmx=sign(1.D0,natOrbsCI(nmx,i))
|
||||
do j=1,n_act_orb
|
||||
natOrbsCI(j,i)*=xmx
|
||||
end do
|
||||
|
||||
write(6,*) ' Eigenvector No ',i
|
||||
write(6,'(5(I3,F12.5))') (j,natOrbsCI(j,i),j=1,n_act_orb)
|
||||
end do
|
||||
end if
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [real*8, P0tuvx_no, (n_act_orb,n_act_orb,n_act_orb,n_act_orb)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! 4-index transformation of 2part matrices
|
||||
END_DOC
|
||||
integer :: i,j,k,l,p,q
|
||||
real*8 :: d(n_act_orb)
|
||||
|
||||
! index per index
|
||||
! first quarter
|
||||
P0tuvx_no(:,:,:,:) = P0tuvx(:,:,:,:)
|
||||
|
||||
do j=1,n_act_orb
|
||||
do k=1,n_act_orb
|
||||
do l=1,n_act_orb
|
||||
do p=1,n_act_orb
|
||||
d(p)=0.D0
|
||||
end do
|
||||
do p=1,n_act_orb
|
||||
do q=1,n_act_orb
|
||||
d(p)+=P0tuvx_no(q,j,k,l)*natorbsCI(q,p)
|
||||
end do
|
||||
end do
|
||||
do p=1,n_act_orb
|
||||
P0tuvx_no(p,j,k,l)=d(p)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
! 2nd quarter
|
||||
do j=1,n_act_orb
|
||||
do k=1,n_act_orb
|
||||
do l=1,n_act_orb
|
||||
do p=1,n_act_orb
|
||||
d(p)=0.D0
|
||||
end do
|
||||
do p=1,n_act_orb
|
||||
do q=1,n_act_orb
|
||||
d(p)+=P0tuvx_no(j,q,k,l)*natorbsCI(q,p)
|
||||
end do
|
||||
end do
|
||||
do p=1,n_act_orb
|
||||
P0tuvx_no(j,p,k,l)=d(p)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
! 3rd quarter
|
||||
do j=1,n_act_orb
|
||||
do k=1,n_act_orb
|
||||
do l=1,n_act_orb
|
||||
do p=1,n_act_orb
|
||||
d(p)=0.D0
|
||||
end do
|
||||
do p=1,n_act_orb
|
||||
do q=1,n_act_orb
|
||||
d(p)+=P0tuvx_no(j,k,q,l)*natorbsCI(q,p)
|
||||
end do
|
||||
end do
|
||||
do p=1,n_act_orb
|
||||
P0tuvx_no(j,k,p,l)=d(p)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
! 4th quarter
|
||||
do j=1,n_act_orb
|
||||
do k=1,n_act_orb
|
||||
do l=1,n_act_orb
|
||||
do p=1,n_act_orb
|
||||
d(p)=0.D0
|
||||
end do
|
||||
do p=1,n_act_orb
|
||||
do q=1,n_act_orb
|
||||
d(p)+=P0tuvx_no(j,k,l,q)*natorbsCI(q,p)
|
||||
end do
|
||||
end do
|
||||
do p=1,n_act_orb
|
||||
P0tuvx_no(j,k,l,p)=d(p)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
|
||||
BEGIN_PROVIDER [real*8, one_ints_no, (mo_num,mo_num)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Transformed one-e integrals
|
||||
END_DOC
|
||||
integer :: i,j, p, q
|
||||
real*8 :: d(n_act_orb)
|
||||
one_ints_no(:,:)=mo_one_e_integrals(:,:)
|
||||
|
||||
! 1st half-trf
|
||||
do j=1,mo_num
|
||||
do p=1,n_act_orb
|
||||
d(p)=0.D0
|
||||
end do
|
||||
do p=1,n_act_orb
|
||||
do q=1,n_act_orb
|
||||
d(p)+=one_ints_no(list_act(q),j)*natorbsCI(q,p)
|
||||
end do
|
||||
end do
|
||||
do p=1,n_act_orb
|
||||
one_ints_no(list_act(p),j)=d(p)
|
||||
end do
|
||||
end do
|
||||
|
||||
! 2nd half-trf
|
||||
do j=1,mo_num
|
||||
do p=1,n_act_orb
|
||||
d(p)=0.D0
|
||||
end do
|
||||
do p=1,n_act_orb
|
||||
do q=1,n_act_orb
|
||||
d(p)+=one_ints_no(j,list_act(q))*natorbsCI(q,p)
|
||||
end do
|
||||
end do
|
||||
do p=1,n_act_orb
|
||||
one_ints_no(j,list_act(p))=d(p)
|
||||
end do
|
||||
end do
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ double precision, NatOrbsCI_mos, (mo_num, mo_num) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Rotation matrix from current MOs to the CI natural MOs
|
||||
END_DOC
|
||||
integer :: p,q
|
||||
|
||||
NatOrbsCI_mos(:,:) = 0.d0
|
||||
|
||||
do q = 1,mo_num
|
||||
NatOrbsCI_mos(q,q) = 1.d0
|
||||
enddo
|
||||
|
||||
do q = 1,n_act_orb
|
||||
do p = 1,n_act_orb
|
||||
NatOrbsCI_mos(list_act(p),list_act(q)) = natorbsCI(p,q)
|
||||
enddo
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [real*8, NatOrbsFCI, (ao_num,mo_num)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! FCI natural orbitals
|
||||
END_DOC
|
||||
|
||||
call dgemm('N','N', ao_num,mo_num,mo_num,1.d0, &
|
||||
mo_coef, size(mo_coef,1), &
|
||||
NatOrbsCI_mos, size(NatOrbsCI_mos,1), 0.d0, &
|
||||
NatOrbsFCI, size(NatOrbsFCI,1))
|
||||
END_PROVIDER
|
||||
|
253
src/casscf_cipsi/neworbs.irp.f
Normal file
253
src/casscf_cipsi/neworbs.irp.f
Normal file
@ -0,0 +1,253 @@
|
||||
BEGIN_PROVIDER [real*8, SXmatrix, (nMonoEx+1,nMonoEx+1)]
|
||||
&BEGIN_PROVIDER [integer, n_guess_sx_mat ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Single-excitation matrix
|
||||
END_DOC
|
||||
|
||||
integer :: i,j
|
||||
|
||||
do i=1,nMonoEx+1
|
||||
do j=1,nMonoEx+1
|
||||
SXmatrix(i,j)=0.D0
|
||||
end do
|
||||
end do
|
||||
|
||||
do i=1,nMonoEx
|
||||
SXmatrix(1,i+1)=gradvec2(i)
|
||||
SXmatrix(1+i,1)=gradvec2(i)
|
||||
end do
|
||||
if(diag_hess_cas)then
|
||||
do i = 1, nMonoEx
|
||||
SXmatrix(i+1,i+1) = hessdiag(i)
|
||||
enddo
|
||||
else
|
||||
do i=1,nMonoEx
|
||||
do j=1,nMonoEx
|
||||
SXmatrix(i+1,j+1)=hessmat(i,j)
|
||||
SXmatrix(j+1,i+1)=hessmat(i,j)
|
||||
end do
|
||||
end do
|
||||
endif
|
||||
|
||||
do i = 1, nMonoEx
|
||||
SXmatrix(i+1,i+1) += level_shift_casscf
|
||||
enddo
|
||||
n_guess_sx_mat = 1
|
||||
do i = 1, nMonoEx
|
||||
if(SXmatrix(i+1,i+1).lt.0.d0 )then
|
||||
n_guess_sx_mat += 1
|
||||
endif
|
||||
enddo
|
||||
if (bavard) then
|
||||
do i=2,nMonoEx
|
||||
write(6,*) ' diagonal of the Hessian : ',i,hessmat(i,i)
|
||||
end do
|
||||
end if
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [real*8, SXeigenvec, (nMonoEx+1,nMonoEx+1)]
|
||||
&BEGIN_PROVIDER [real*8, SXeigenval, (nMonoEx+1)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Eigenvectors/eigenvalues of the single-excitation matrix
|
||||
END_DOC
|
||||
if(nMonoEx+1.gt.n_det_max_full)then
|
||||
if(bavard)then
|
||||
print*,'Using the Davidson algorithm to diagonalize the SXmatrix'
|
||||
endif
|
||||
double precision, allocatable :: u_in(:,:),energies(:)
|
||||
allocate(u_in(nMonoEx+1,n_states_diag),energies(n_guess_sx_mat))
|
||||
call davidson_diag_sx_mat(n_guess_sx_mat, u_in, energies)
|
||||
integer :: i,j
|
||||
SXeigenvec = 0.d0
|
||||
SXeigenval = 0.d0
|
||||
do i = 1, n_guess_sx_mat
|
||||
SXeigenval(i) = energies(i)
|
||||
do j = 1, nMonoEx+1
|
||||
SXeigenvec(j,i) = u_in(j,i)
|
||||
enddo
|
||||
enddo
|
||||
else
|
||||
if(bavard)then
|
||||
print*,'Diagonalize the SXmatrix with Jacobi'
|
||||
endif
|
||||
call lapack_diag(SXeigenval,SXeigenvec,SXmatrix,nMonoEx+1,nMonoEx+1)
|
||||
endif
|
||||
if (bavard) then
|
||||
write(6,*) ' SXdiag : lowest eigenvalues '
|
||||
write(6,*) ' 1 - ',SXeigenval(1),SXeigenvec(1,1)
|
||||
if(n_guess_sx_mat.gt.0)then
|
||||
write(6,*) ' 2 - ',SXeigenval(2),SXeigenvec(1,2)
|
||||
write(6,*) ' 3 - ',SXeigenval(3),SXeigenvec(1,3)
|
||||
write(6,*) ' 4 - ',SXeigenval(4),SXeigenvec(1,4)
|
||||
write(6,*) ' 5 - ',SXeigenval(5),SXeigenvec(1,5)
|
||||
endif
|
||||
write(6,*)
|
||||
write(6,*) ' SXdiag : lowest eigenvalue = ',SXeigenval(1)
|
||||
endif
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [real*8, energy_improvement]
|
||||
implicit none
|
||||
if(state_following_casscf)then
|
||||
energy_improvement = SXeigenval(best_vector_ovrlp_casscf)
|
||||
else
|
||||
energy_improvement = SXeigenval(1)
|
||||
endif
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ integer, best_vector_ovrlp_casscf ]
|
||||
&BEGIN_PROVIDER [ double precision, best_overlap_casscf ]
|
||||
implicit none
|
||||
integer :: i
|
||||
double precision :: c0
|
||||
best_overlap_casscf = 0.D0
|
||||
best_vector_ovrlp_casscf = -1000
|
||||
do i=1,nMonoEx+1
|
||||
if (SXeigenval(i).lt.0.D0) then
|
||||
if (dabs(SXeigenvec(1,i)).gt.best_overlap_casscf) then
|
||||
best_overlap_casscf=dabs(SXeigenvec(1,i))
|
||||
best_vector_ovrlp_casscf = i
|
||||
end if
|
||||
end if
|
||||
end do
|
||||
if(best_vector_ovrlp_casscf.lt.0)then
|
||||
best_vector_ovrlp_casscf = minloc(SXeigenval,nMonoEx+1)
|
||||
endif
|
||||
c0=SXeigenvec(1,best_vector_ovrlp_casscf)
|
||||
if (bavard) then
|
||||
write(6,*) ' SXdiag : eigenvalue for best overlap with '
|
||||
write(6,*) ' previous orbitals = ',SXeigenval(best_vector_ovrlp_casscf)
|
||||
write(6,*) ' weight of the 1st element ',c0
|
||||
endif
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [double precision, SXvector, (nMonoEx+1)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Best eigenvector of the single-excitation matrix
|
||||
END_DOC
|
||||
integer :: i
|
||||
double precision :: c0
|
||||
c0=SXeigenvec(1,best_vector_ovrlp_casscf)
|
||||
do i=1,nMonoEx+1
|
||||
SXvector(i)=SXeigenvec(i,best_vector_ovrlp_casscf)/c0
|
||||
end do
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [double precision, NewOrbs, (ao_num,mo_num) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Updated orbitals
|
||||
END_DOC
|
||||
integer :: i,j,ialph
|
||||
|
||||
if(state_following_casscf)then
|
||||
print*,'Using the state following casscf '
|
||||
call dgemm('N','T', ao_num,mo_num,mo_num,1.d0, &
|
||||
NatOrbsFCI, size(NatOrbsFCI,1), &
|
||||
Umat, size(Umat,1), 0.d0, &
|
||||
NewOrbs, size(NewOrbs,1))
|
||||
|
||||
level_shift_casscf *= 0.5D0
|
||||
level_shift_casscf = max(level_shift_casscf,0.002d0)
|
||||
!touch level_shift_casscf
|
||||
else
|
||||
if(best_vector_ovrlp_casscf.ne.1.and.n_orb_swap.ne.0)then
|
||||
print*,'Taking the lowest root for the CASSCF'
|
||||
print*,'!!! SWAPPING MOS !!!!!!'
|
||||
level_shift_casscf *= 2.D0
|
||||
level_shift_casscf = min(level_shift_casscf,0.5d0)
|
||||
print*,'level_shift_casscf = ',level_shift_casscf
|
||||
NewOrbs = switch_mo_coef
|
||||
!mo_coef = switch_mo_coef
|
||||
!soft_touch mo_coef
|
||||
!call save_mos_no_occ
|
||||
!stop
|
||||
else
|
||||
level_shift_casscf *= 0.5D0
|
||||
level_shift_casscf = max(level_shift_casscf,0.002d0)
|
||||
!touch level_shift_casscf
|
||||
call dgemm('N','T', ao_num,mo_num,mo_num,1.d0, &
|
||||
NatOrbsFCI, size(NatOrbsFCI,1), &
|
||||
Umat, size(Umat,1), 0.d0, &
|
||||
NewOrbs, size(NewOrbs,1))
|
||||
endif
|
||||
endif
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [real*8, Umat, (mo_num,mo_num) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Orbital rotation matrix
|
||||
END_DOC
|
||||
integer :: i,j,indx,k,iter,t,a,ii,tt,aa
|
||||
logical :: converged
|
||||
|
||||
real*8 :: Tpotmat (mo_num,mo_num), Tpotmat2 (mo_num,mo_num)
|
||||
real*8 :: Tmat(mo_num,mo_num)
|
||||
real*8 :: f
|
||||
|
||||
! the orbital rotation matrix T
|
||||
Tmat(:,:)=0.D0
|
||||
indx=1
|
||||
do i=1,n_core_inact_orb
|
||||
ii=list_core_inact(i)
|
||||
do t=1,n_act_orb
|
||||
tt=list_act(t)
|
||||
indx+=1
|
||||
Tmat(ii,tt)= SXvector(indx)
|
||||
Tmat(tt,ii)=-SXvector(indx)
|
||||
end do
|
||||
end do
|
||||
do i=1,n_core_inact_orb
|
||||
ii=list_core_inact(i)
|
||||
do a=1,n_virt_orb
|
||||
aa=list_virt(a)
|
||||
indx+=1
|
||||
Tmat(ii,aa)= SXvector(indx)
|
||||
Tmat(aa,ii)=-SXvector(indx)
|
||||
end do
|
||||
end do
|
||||
do t=1,n_act_orb
|
||||
tt=list_act(t)
|
||||
do a=1,n_virt_orb
|
||||
aa=list_virt(a)
|
||||
indx+=1
|
||||
Tmat(tt,aa)= SXvector(indx)
|
||||
Tmat(aa,tt)=-SXvector(indx)
|
||||
end do
|
||||
end do
|
||||
|
||||
! Form the exponential
|
||||
|
||||
Tpotmat(:,:)=0.D0
|
||||
Umat(:,:) =0.D0
|
||||
do i=1,mo_num
|
||||
Tpotmat(i,i)=1.D0
|
||||
Umat(i,i) =1.d0
|
||||
end do
|
||||
iter=0
|
||||
converged=.false.
|
||||
do while (.not.converged)
|
||||
iter+=1
|
||||
f = 1.d0 / dble(iter)
|
||||
Tpotmat2(:,:) = Tpotmat(:,:) * f
|
||||
call dgemm('N','N', mo_num,mo_num,mo_num,1.d0, &
|
||||
Tpotmat2, size(Tpotmat2,1), &
|
||||
Tmat, size(Tmat,1), 0.d0, &
|
||||
Tpotmat, size(Tpotmat,1))
|
||||
Umat(:,:) = Umat(:,:) + Tpotmat(:,:)
|
||||
|
||||
converged = ( sum(abs(Tpotmat(:,:))) < 1.d-6).or.(iter>30)
|
||||
end do
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
|
70
src/casscf_cipsi/reorder_orb.irp.f
Normal file
70
src/casscf_cipsi/reorder_orb.irp.f
Normal file
@ -0,0 +1,70 @@
|
||||
subroutine reorder_orbitals_for_casscf
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! routine that reorders the orbitals of the CASSCF in terms block of core, active and virtual
|
||||
END_DOC
|
||||
integer :: i,j,iorb
|
||||
integer, allocatable :: iorder(:),array(:)
|
||||
allocate(iorder(mo_num),array(mo_num))
|
||||
do i = 1, n_core_orb
|
||||
iorb = list_core(i)
|
||||
array(iorb) = i
|
||||
enddo
|
||||
|
||||
do i = 1, n_inact_orb
|
||||
iorb = list_inact(i)
|
||||
array(iorb) = mo_num + i
|
||||
enddo
|
||||
|
||||
do i = 1, n_act_orb
|
||||
iorb = list_act(i)
|
||||
array(iorb) = 2 * mo_num + i
|
||||
enddo
|
||||
|
||||
do i = 1, n_virt_orb
|
||||
iorb = list_virt(i)
|
||||
array(iorb) = 3 * mo_num + i
|
||||
enddo
|
||||
|
||||
do i = 1, mo_num
|
||||
iorder(i) = i
|
||||
enddo
|
||||
call isort(array,iorder,mo_num)
|
||||
double precision, allocatable :: mo_coef_new(:,:)
|
||||
allocate(mo_coef_new(ao_num,mo_num))
|
||||
do i = 1, mo_num
|
||||
mo_coef_new(:,i) = mo_coef(:,iorder(i))
|
||||
enddo
|
||||
mo_coef = mo_coef_new
|
||||
touch mo_coef
|
||||
|
||||
list_core_reverse = 0
|
||||
do i = 1, n_core_orb
|
||||
list_core(i) = i
|
||||
list_core_reverse(i) = i
|
||||
mo_class(i) = "Core"
|
||||
enddo
|
||||
|
||||
list_inact_reverse = 0
|
||||
do i = 1, n_inact_orb
|
||||
list_inact(i) = i + n_core_orb
|
||||
list_inact_reverse(i+n_core_orb) = i
|
||||
mo_class(i+n_core_orb) = "Inactive"
|
||||
enddo
|
||||
|
||||
list_act_reverse = 0
|
||||
do i = 1, n_act_orb
|
||||
list_act(i) = n_core_inact_orb + i
|
||||
list_act_reverse(n_core_inact_orb + i) = i
|
||||
mo_class(n_core_inact_orb + i) = "Active"
|
||||
enddo
|
||||
|
||||
list_virt_reverse = 0
|
||||
do i = 1, n_virt_orb
|
||||
list_virt(i) = n_core_inact_orb + n_act_orb + i
|
||||
list_virt_reverse(n_core_inact_orb + n_act_orb + i) = i
|
||||
mo_class(n_core_inact_orb + n_act_orb + i) = "Virtual"
|
||||
enddo
|
||||
touch list_core_reverse list_core list_inact list_inact_reverse list_act list_act_reverse list_virt list_virt_reverse
|
||||
|
||||
end
|
9
src/casscf_cipsi/save_energy.irp.f
Normal file
9
src/casscf_cipsi/save_energy.irp.f
Normal file
@ -0,0 +1,9 @@
|
||||
subroutine save_energy(E,pt2)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Saves the energy in |EZFIO|.
|
||||
END_DOC
|
||||
double precision, intent(in) :: E(N_states), pt2(N_states)
|
||||
call ezfio_set_casscf_cipsi_energy(E(1:N_states))
|
||||
call ezfio_set_casscf_cipsi_energy_pt2(E(1:N_states)+pt2(1:N_states))
|
||||
end
|
207
src/casscf_cipsi/superci_dm.irp.f
Normal file
207
src/casscf_cipsi/superci_dm.irp.f
Normal file
@ -0,0 +1,207 @@
|
||||
BEGIN_PROVIDER [double precision, super_ci_dm, (mo_num,mo_num)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! density matrix of the super CI matrix, in the basis of NATURAL ORBITALS OF THE CASCI WF
|
||||
!
|
||||
! This is obtained from annex B of Roos et. al. Chemical Physics 48 (1980) 157-173
|
||||
!
|
||||
! WARNING ::: in the equation B3.d there is a TYPO with a forgotten MINUS SIGN (see variable mat_tmp_dm_super_ci )
|
||||
END_DOC
|
||||
super_ci_dm = 0.d0
|
||||
integer :: i,j,iorb,jorb
|
||||
integer :: a,aorb,b,borb
|
||||
integer :: t,torb,v,vorb,u,uorb,x,xorb
|
||||
double precision :: c0,ci
|
||||
c0 = SXeigenvec(1,1)
|
||||
! equation B3.a of the annex B of Roos et. al. Chemical Physics 48 (1980) 157-173
|
||||
! loop over the core/inact
|
||||
do i = 1, n_core_inact_orb
|
||||
iorb = list_core_inact(i)
|
||||
super_ci_dm(iorb,iorb) = 2.d0 ! first term of B3.a
|
||||
! loop over the core/inact
|
||||
do j = 1, n_core_inact_orb
|
||||
jorb = list_core_inact(j)
|
||||
! loop over the virtual
|
||||
do a = 1, n_virt_orb
|
||||
aorb = list_virt(a)
|
||||
super_ci_dm(jorb,iorb) += -2.d0 * lowest_super_ci_coef_mo(aorb,iorb) * lowest_super_ci_coef_mo(aorb,jorb) ! second term in B3.a
|
||||
enddo
|
||||
do t = 1, n_act_orb
|
||||
torb = list_act(t)
|
||||
! thrid term of the B3.a
|
||||
super_ci_dm(jorb,iorb) += - lowest_super_ci_coef_mo(iorb,torb) * lowest_super_ci_coef_mo(jorb,torb) * (2.d0 - occ_act(t))
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! equation B3.b of the annex B of Roos et. al. Chemical Physics 48 (1980) 157-173
|
||||
do i = 1, n_core_inact_orb
|
||||
iorb = list_core_inact(i)
|
||||
do t = 1, n_act_orb
|
||||
torb = list_act(t)
|
||||
super_ci_dm(iorb,torb) = c0 * lowest_super_ci_coef_mo(torb,iorb) * (2.d0 - occ_act(t))
|
||||
super_ci_dm(torb,iorb) = c0 * lowest_super_ci_coef_mo(torb,iorb) * (2.d0 - occ_act(t))
|
||||
do a = 1, n_virt_orb
|
||||
aorb = list_virt(a)
|
||||
super_ci_dm(iorb,torb) += - lowest_super_ci_coef_mo(aorb,iorb) * lowest_super_ci_coef_mo(aorb,torb) * occ_act(t)
|
||||
super_ci_dm(torb,iorb) += - lowest_super_ci_coef_mo(aorb,iorb) * lowest_super_ci_coef_mo(aorb,torb) * occ_act(t)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! equation B3.c of the annex B of Roos et. al. Chemical Physics 48 (1980) 157-173
|
||||
do i = 1, n_core_inact_orb
|
||||
iorb = list_core_inact(i)
|
||||
do a = 1, n_virt_orb
|
||||
aorb = list_virt(a)
|
||||
super_ci_dm(aorb,iorb) = 2.d0 * c0 * lowest_super_ci_coef_mo(aorb,iorb)
|
||||
super_ci_dm(iorb,aorb) = 2.d0 * c0 * lowest_super_ci_coef_mo(aorb,iorb)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! equation B3.d of the annex B of Roos et. al. Chemical Physics 48 (1980) 157-173
|
||||
do t = 1, n_act_orb
|
||||
torb = list_act(t)
|
||||
super_ci_dm(torb,torb) = occ_act(t) ! first term of equation B3.d
|
||||
do x = 1, n_act_orb
|
||||
xorb = list_act(x)
|
||||
super_ci_dm(torb,torb) += - occ_act(x) * occ_act(t)* mat_tmp_dm_super_ci(x,x) ! second term involving the ONE-rdm
|
||||
enddo
|
||||
do u = 1, n_act_orb
|
||||
uorb = list_act(u)
|
||||
|
||||
! second term of equation B3.d
|
||||
do x = 1, n_act_orb
|
||||
xorb = list_act(x)
|
||||
do v = 1, n_act_orb
|
||||
vorb = list_act(v)
|
||||
super_ci_dm(torb,uorb) += 2.d0 * P0tuvx_no(v,x,t,u) * mat_tmp_dm_super_ci(v,x) ! second term involving the TWO-rdm
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! third term of equation B3.d
|
||||
do i = 1, n_core_inact_orb
|
||||
iorb = list_core_inact(i)
|
||||
super_ci_dm(torb,uorb) += lowest_super_ci_coef_mo(iorb,torb) * lowest_super_ci_coef_mo(iorb,uorb) * (2.d0 - occ_act(t) - occ_act(u))
|
||||
enddo
|
||||
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! equation B3.e of the annex B of Roos et. al. Chemical Physics 48 (1980) 157-173
|
||||
do t = 1, n_act_orb
|
||||
torb = list_act(t)
|
||||
do a = 1, n_virt_orb
|
||||
aorb = list_virt(a)
|
||||
super_ci_dm(aorb,torb) += c0 * lowest_super_ci_coef_mo(aorb,torb) * occ_act(t)
|
||||
super_ci_dm(torb,aorb) += c0 * lowest_super_ci_coef_mo(aorb,torb) * occ_act(t)
|
||||
do i = 1, n_core_inact_orb
|
||||
iorb = list_core_inact(i)
|
||||
super_ci_dm(aorb,torb) += lowest_super_ci_coef_mo(iorb,aorb) * lowest_super_ci_coef_mo(iorb,torb) * (2.d0 - occ_act(t))
|
||||
super_ci_dm(torb,aorb) += lowest_super_ci_coef_mo(iorb,aorb) * lowest_super_ci_coef_mo(iorb,torb) * (2.d0 - occ_act(t))
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! equation B3.f of the annex B of Roos et. al. Chemical Physics 48 (1980) 157-173
|
||||
do a = 1, n_virt_orb
|
||||
aorb = list_virt(a)
|
||||
do b = 1, n_virt_orb
|
||||
borb= list_virt(b)
|
||||
|
||||
! First term of equation B3.f
|
||||
do i = 1, n_core_inact_orb
|
||||
iorb = list_core_inact(i)
|
||||
super_ci_dm(borb,aorb) += 2.d0 * lowest_super_ci_coef_mo(iorb,aorb) * lowest_super_ci_coef_mo(iorb,borb)
|
||||
enddo
|
||||
|
||||
! Second term of equation B3.f
|
||||
do t = 1, n_act_orb
|
||||
torb = list_act(t)
|
||||
super_ci_dm(borb,aorb) += lowest_super_ci_coef_mo(torb,aorb) * lowest_super_ci_coef_mo(torb,borb) * occ_act(t)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [double precision, superci_natorb, (ao_num,mo_num)
|
||||
&BEGIN_PROVIDER [double precision, superci_nat_occ, (mo_num)
|
||||
implicit none
|
||||
call general_mo_coef_new_as_svd_vectors_of_mo_matrix_eig(super_ci_dm,mo_num,mo_num,mo_num,NatOrbsFCI,superci_nat_occ,superci_natorb)
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [double precision, mat_tmp_dm_super_ci, (n_act_orb,n_act_orb)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! computation of the term in [ ] in the equation B3.d of Roos et. al. Chemical Physics 48 (1980) 157-173
|
||||
!
|
||||
! !!!!! WARNING !!!!!! there is a TYPO: a MINUS SIGN SHOULD APPEAR in that term
|
||||
END_DOC
|
||||
integer :: a,aorb,i,iorb
|
||||
integer :: x,xorb,v,vorb
|
||||
mat_tmp_dm_super_ci = 0.d0
|
||||
do v = 1, n_act_orb
|
||||
vorb = list_act(v)
|
||||
do x = 1, n_act_orb
|
||||
xorb = list_act(x)
|
||||
do a = 1, n_virt_orb
|
||||
aorb = list_virt(a)
|
||||
mat_tmp_dm_super_ci(x,v) += lowest_super_ci_coef_mo(aorb,vorb) * lowest_super_ci_coef_mo(aorb,xorb)
|
||||
enddo
|
||||
do i = 1, n_core_inact_orb
|
||||
iorb = list_core_inact(i)
|
||||
! MARK THE MINUS SIGN HERE !!!!!!!!!!! BECAUSE OF TYPO IN THE ORIGINAL PAPER
|
||||
mat_tmp_dm_super_ci(x,v) -= lowest_super_ci_coef_mo(iorb,vorb) * lowest_super_ci_coef_mo(iorb,xorb)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [double precision, lowest_super_ci_coef_mo, (mo_num,mo_num)]
|
||||
implicit none
|
||||
integer :: i,j,iorb,jorb
|
||||
integer :: a, aorb,t, torb
|
||||
double precision :: sqrt2
|
||||
|
||||
sqrt2 = 1.d0/dsqrt(2.d0)
|
||||
do i = 1, nMonoEx
|
||||
iorb = excit(1,i)
|
||||
jorb = excit(2,i)
|
||||
lowest_super_ci_coef_mo(iorb,jorb) = SXeigenvec(i+1,1)
|
||||
lowest_super_ci_coef_mo(jorb,iorb) = SXeigenvec(i+1,1)
|
||||
enddo
|
||||
|
||||
! a_{it} of the equation B.2 of Roos et. al. Chemical Physics 48 (1980) 157-173
|
||||
do i = 1, n_core_inact_orb
|
||||
iorb = list_core_inact(i)
|
||||
do t = 1, n_act_orb
|
||||
torb = list_act(t)
|
||||
lowest_super_ci_coef_mo(torb,iorb) *= (2.d0 - occ_act(t))**(-0.5d0)
|
||||
lowest_super_ci_coef_mo(iorb,torb) *= (2.d0 - occ_act(t))**(-0.5d0)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! a_{ia} of the equation B.2 of Roos et. al. Chemical Physics 48 (1980) 157-173
|
||||
do i = 1, n_core_inact_orb
|
||||
iorb = list_core_inact(i)
|
||||
do a = 1, n_virt_orb
|
||||
aorb = list_virt(a)
|
||||
lowest_super_ci_coef_mo(aorb,iorb) *= sqrt2
|
||||
lowest_super_ci_coef_mo(iorb,aorb) *= sqrt2
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! a_{ta} of the equation B.2 of Roos et. al. Chemical Physics 48 (1980) 157-173
|
||||
do a = 1, n_virt_orb
|
||||
aorb = list_virt(a)
|
||||
do t = 1, n_act_orb
|
||||
torb = list_act(t)
|
||||
lowest_super_ci_coef_mo(torb,aorb) *= occ_act(t)**(-0.5d0)
|
||||
lowest_super_ci_coef_mo(aorb,torb) *= occ_act(t)**(-0.5d0)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
END_PROVIDER
|
||||
|
132
src/casscf_cipsi/swap_orb.irp.f
Normal file
132
src/casscf_cipsi/swap_orb.irp.f
Normal file
@ -0,0 +1,132 @@
|
||||
BEGIN_PROVIDER [double precision, SXvector_lowest, (nMonoEx)]
|
||||
implicit none
|
||||
integer :: i
|
||||
do i=2,nMonoEx+1
|
||||
SXvector_lowest(i-1)=SXeigenvec(i,1)
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [double precision, thresh_overlap_switch]
|
||||
implicit none
|
||||
thresh_overlap_switch = 0.5d0
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [integer, max_overlap, (nMonoEx)]
|
||||
&BEGIN_PROVIDER [integer, n_max_overlap]
|
||||
&BEGIN_PROVIDER [integer, dim_n_max_overlap]
|
||||
implicit none
|
||||
double precision, allocatable :: vec_tmp(:)
|
||||
integer, allocatable :: iorder(:)
|
||||
allocate(vec_tmp(nMonoEx),iorder(nMonoEx))
|
||||
integer :: i
|
||||
do i = 1, nMonoEx
|
||||
iorder(i) = i
|
||||
vec_tmp(i) = -dabs(SXvector_lowest(i))
|
||||
enddo
|
||||
call dsort(vec_tmp,iorder,nMonoEx)
|
||||
n_max_overlap = 0
|
||||
do i = 1, nMonoEx
|
||||
if(dabs(vec_tmp(i)).gt.thresh_overlap_switch)then
|
||||
n_max_overlap += 1
|
||||
max_overlap(n_max_overlap) = iorder(i)
|
||||
endif
|
||||
enddo
|
||||
dim_n_max_overlap = max(1,n_max_overlap)
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [integer, orb_swap, (2,dim_n_max_overlap)]
|
||||
&BEGIN_PROVIDER [integer, index_orb_swap, (dim_n_max_overlap)]
|
||||
&BEGIN_PROVIDER [integer, n_orb_swap ]
|
||||
implicit none
|
||||
use bitmasks ! you need to include the bitmasks_module.f90 features
|
||||
integer :: i,imono,iorb,jorb,j
|
||||
n_orb_swap = 0
|
||||
do i = 1, n_max_overlap
|
||||
imono = max_overlap(i)
|
||||
iorb = excit(1,imono)
|
||||
jorb = excit(2,imono)
|
||||
if (excit_class(imono) == "c-a" .and.hessmat(imono,imono).gt.0.d0)then ! core --> active rotation
|
||||
n_orb_swap += 1
|
||||
orb_swap(1,n_orb_swap) = iorb ! core
|
||||
orb_swap(2,n_orb_swap) = jorb ! active
|
||||
index_orb_swap(n_orb_swap) = imono
|
||||
else if (excit_class(imono) == "a-v" .and.hessmat(imono,imono).gt.0.d0)then ! active --> virtual rotation
|
||||
n_orb_swap += 1
|
||||
orb_swap(1,n_orb_swap) = jorb ! virtual
|
||||
orb_swap(2,n_orb_swap) = iorb ! active
|
||||
index_orb_swap(n_orb_swap) = imono
|
||||
endif
|
||||
enddo
|
||||
|
||||
integer,allocatable :: orb_swap_tmp(:,:)
|
||||
allocate(orb_swap_tmp(2,dim_n_max_overlap))
|
||||
do i = 1, n_orb_swap
|
||||
orb_swap_tmp(1,i) = orb_swap(1,i)
|
||||
orb_swap_tmp(2,i) = orb_swap(2,i)
|
||||
enddo
|
||||
|
||||
integer(bit_kind), allocatable :: det_i(:),det_j(:)
|
||||
allocate(det_i(N_int),det_j(N_int))
|
||||
logical, allocatable :: good_orb_rot(:)
|
||||
allocate(good_orb_rot(n_orb_swap))
|
||||
integer, allocatable :: index_orb_swap_tmp(:)
|
||||
allocate(index_orb_swap_tmp(dim_n_max_overlap))
|
||||
index_orb_swap_tmp = index_orb_swap
|
||||
good_orb_rot = .True.
|
||||
integer :: icount,k
|
||||
do i = 1, n_orb_swap
|
||||
if(.not.good_orb_rot(i))cycle
|
||||
det_i = 0_bit_kind
|
||||
call set_bit_to_integer(orb_swap(1,i),det_i,N_int)
|
||||
call set_bit_to_integer(orb_swap(2,i),det_i,N_int)
|
||||
do j = i+1, n_orb_swap
|
||||
det_j = 0_bit_kind
|
||||
call set_bit_to_integer(orb_swap(1,j),det_j,N_int)
|
||||
call set_bit_to_integer(orb_swap(2,j),det_j,N_int)
|
||||
icount = 0
|
||||
do k = 1, N_int
|
||||
icount += popcnt(ior(det_i(k),det_j(k)))
|
||||
enddo
|
||||
if (icount.ne.4)then
|
||||
good_orb_rot(i) = .False.
|
||||
good_orb_rot(j) = .False.
|
||||
exit
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
icount = n_orb_swap
|
||||
n_orb_swap = 0
|
||||
do i = 1, icount
|
||||
if(good_orb_rot(i))then
|
||||
n_orb_swap += 1
|
||||
index_orb_swap(n_orb_swap) = index_orb_swap_tmp(i)
|
||||
orb_swap(1,n_orb_swap) = orb_swap_tmp(1,i)
|
||||
orb_swap(2,n_orb_swap) = orb_swap_tmp(2,i)
|
||||
endif
|
||||
enddo
|
||||
|
||||
if(n_orb_swap.gt.0)then
|
||||
print*,'n_orb_swap = ',n_orb_swap
|
||||
endif
|
||||
do i = 1, n_orb_swap
|
||||
print*,'imono = ',index_orb_swap(i)
|
||||
print*,orb_swap(1,i),'-->',orb_swap(2,i)
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [double precision, switch_mo_coef, (ao_num,mo_num)]
|
||||
implicit none
|
||||
integer :: i,j,iorb,jorb
|
||||
switch_mo_coef = NatOrbsFCI
|
||||
do i = 1, n_orb_swap
|
||||
iorb = orb_swap(1,i)
|
||||
jorb = orb_swap(2,i)
|
||||
do j = 1, ao_num
|
||||
switch_mo_coef(j,jorb) = NatOrbsFCI(j,iorb)
|
||||
enddo
|
||||
do j = 1, ao_num
|
||||
switch_mo_coef(j,iorb) = NatOrbsFCI(j,jorb)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
END_PROVIDER
|
101
src/casscf_cipsi/tot_en.irp.f
Normal file
101
src/casscf_cipsi/tot_en.irp.f
Normal file
@ -0,0 +1,101 @@
|
||||
BEGIN_PROVIDER [real*8, etwo]
|
||||
&BEGIN_PROVIDER [real*8, eone]
|
||||
&BEGIN_PROVIDER [real*8, eone_bis]
|
||||
&BEGIN_PROVIDER [real*8, etwo_bis]
|
||||
&BEGIN_PROVIDER [real*8, etwo_ter]
|
||||
&BEGIN_PROVIDER [real*8, ecore]
|
||||
&BEGIN_PROVIDER [real*8, ecore_bis]
|
||||
implicit none
|
||||
integer :: t,u,v,x,i,ii,tt,uu,vv,xx,j,jj,t3,u3,v3,x3
|
||||
real*8 :: e_one_all,e_two_all
|
||||
e_one_all=0.D0
|
||||
e_two_all=0.D0
|
||||
do i=1,n_core_inact_orb
|
||||
ii=list_core_inact(i)
|
||||
e_one_all+=2.D0*mo_one_e_integrals(ii,ii)
|
||||
do j=1,n_core_inact_orb
|
||||
jj=list_core_inact(j)
|
||||
e_two_all+=2.D0*bielec_PQxx(ii,ii,j,j)-bielec_PQxx(ii,jj,j,i)
|
||||
end do
|
||||
do t=1,n_act_orb
|
||||
tt=list_act(t)
|
||||
t3=t+n_core_inact_orb
|
||||
do u=1,n_act_orb
|
||||
uu=list_act(u)
|
||||
u3=u+n_core_inact_orb
|
||||
e_two_all+=D0tu(t,u)*(2.D0*bielec_PQxx(tt,uu,i,i) &
|
||||
-bielec_PQxx(tt,ii,i,u3))
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
do t=1,n_act_orb
|
||||
tt=list_act(t)
|
||||
do u=1,n_act_orb
|
||||
uu=list_act(u)
|
||||
e_one_all+=D0tu(t,u)*mo_one_e_integrals(tt,uu)
|
||||
do v=1,n_act_orb
|
||||
v3=v+n_core_inact_orb
|
||||
do x=1,n_act_orb
|
||||
x3=x+n_core_inact_orb
|
||||
e_two_all +=P0tuvx(t,u,v,x)*bielec_PQxx(tt,uu,v3,x3)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
ecore =nuclear_repulsion
|
||||
ecore_bis=nuclear_repulsion
|
||||
do i=1,n_core_inact_orb
|
||||
ii=list_core_inact(i)
|
||||
ecore +=2.D0*mo_one_e_integrals(ii,ii)
|
||||
ecore_bis+=2.D0*mo_one_e_integrals(ii,ii)
|
||||
do j=1,n_core_inact_orb
|
||||
jj=list_core_inact(j)
|
||||
ecore +=2.D0*bielec_PQxx(ii,ii,j,j)-bielec_PQxx(ii,jj,j,i)
|
||||
ecore_bis+=2.D0*bielec_PxxQ(ii,i,j,jj)-bielec_PxxQ(ii,j,j,ii)
|
||||
end do
|
||||
end do
|
||||
eone =0.D0
|
||||
eone_bis=0.D0
|
||||
etwo =0.D0
|
||||
etwo_bis=0.D0
|
||||
etwo_ter=0.D0
|
||||
do t=1,n_act_orb
|
||||
tt=list_act(t)
|
||||
t3=t+n_core_inact_orb
|
||||
do u=1,n_act_orb
|
||||
uu=list_act(u)
|
||||
u3=u+n_core_inact_orb
|
||||
eone +=D0tu(t,u)*mo_one_e_integrals(tt,uu)
|
||||
eone_bis+=D0tu(t,u)*mo_one_e_integrals(tt,uu)
|
||||
do i=1,n_core_inact_orb
|
||||
ii=list_core_inact(i)
|
||||
eone +=D0tu(t,u)*(2.D0*bielec_PQxx(tt,uu,i,i) &
|
||||
-bielec_PQxx(tt,ii,i,u3))
|
||||
eone_bis+=D0tu(t,u)*(2.D0*bielec_PxxQ(tt,u3,i,ii) &
|
||||
-bielec_PxxQ(tt,i,i,uu))
|
||||
end do
|
||||
do v=1,n_act_orb
|
||||
vv=list_act(v)
|
||||
v3=v+n_core_inact_orb
|
||||
do x=1,n_act_orb
|
||||
xx=list_act(x)
|
||||
x3=x+n_core_inact_orb
|
||||
real*8 :: h1,h2,h3
|
||||
h1=bielec_PQxx(tt,uu,v3,x3)
|
||||
h2=bielec_PxxQ(tt,u3,v3,xx)
|
||||
h3=bielecCI(t,u,v,xx)
|
||||
etwo +=P0tuvx(t,u,v,x)*h1
|
||||
etwo_bis+=P0tuvx(t,u,v,x)*h2
|
||||
etwo_ter+=P0tuvx(t,u,v,x)*h3
|
||||
if ((h1.ne.h2).or.(h1.ne.h3)) then
|
||||
write(6,9901) t,u,v,x,h1,h2,h3
|
||||
9901 format('aie: ',4I4,3E20.12)
|
||||
end if
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
132
src/casscf_tc_bi/grad_dm.irp.f
Normal file
132
src/casscf_tc_bi/grad_dm.irp.f
Normal file
@ -0,0 +1,132 @@
|
||||
BEGIN_PROVIDER [real*8, gradvec_tc_r, (0:3,nMonoEx)]
|
||||
&BEGIN_PROVIDER [real*8, gradvec_tc_l, (0:3,nMonoEx)]
|
||||
BEGIN_DOC
|
||||
! gradvec_tc_r(0:3,i) = <Chi_0| H E_q^p(i) |Phi_0>
|
||||
!
|
||||
! gradvec_tc_l(0:3,i) = <Chi_0| E_p^q(i) H |Phi_0>
|
||||
!
|
||||
! where the indices "i" corresponds to E_q^p(i)
|
||||
!
|
||||
! i = mat_idx_c_a(q,p)
|
||||
!
|
||||
! and gradvec_tc_r/l(0) = full matrix element
|
||||
!
|
||||
! gradvec_tc_r/l(1) = one-body part
|
||||
|
||||
! gradvec_tc_r/l(2) = two-body part
|
||||
|
||||
! gradvec_tc_r/l(3) = three-body part
|
||||
END_DOC
|
||||
implicit none
|
||||
integer :: ii,tt,aa,indx
|
||||
integer :: i,t,a,fff
|
||||
double precision :: res_l(0:3), res_r(0:3)
|
||||
gradvec_tc_l = 0.d0
|
||||
gradvec_tc_r = 0.d0
|
||||
! computing the core/inactive --> virtual orbitals gradients
|
||||
do i=1,n_core_inact_orb
|
||||
ii=list_core_inact(i)
|
||||
do t=1,n_act_orb
|
||||
tt=list_act(t)
|
||||
indx = mat_idx_c_a(i,t)
|
||||
call gradvec_tc_it(ii,tt,res_l,res_r)
|
||||
do fff = 0,3
|
||||
gradvec_tc_l(fff,indx)=res_l(fff)
|
||||
gradvec_tc_r(fff,indx)=res_r(fff)
|
||||
enddo
|
||||
end do
|
||||
end do
|
||||
|
||||
do i=1,n_core_inact_orb
|
||||
ii=list_core_inact(i)
|
||||
do a=1,n_virt_orb
|
||||
indx = mat_idx_c_v(i,a)
|
||||
aa=list_virt(a)
|
||||
call gradvec_tc_ia(ii,aa,res_l,res_r)
|
||||
do fff = 0,3
|
||||
gradvec_tc_l(fff,indx)=res_l(fff)
|
||||
gradvec_tc_r(fff,indx)=res_r(fff)
|
||||
enddo
|
||||
end do
|
||||
end do
|
||||
|
||||
do t=1,n_act_orb
|
||||
tt=list_act(t)
|
||||
do a=1,n_virt_orb
|
||||
aa=list_virt(a)
|
||||
indx = mat_idx_a_v(t,a)
|
||||
call gradvec_tc_ta(tt,aa,res_l, res_r)
|
||||
do fff = 0,3
|
||||
gradvec_tc_l(fff,indx)=res_l(fff)
|
||||
gradvec_tc_r(fff,indx)=res_r(fff)
|
||||
enddo
|
||||
end do
|
||||
end do
|
||||
END_PROVIDER
|
||||
|
||||
subroutine gradvec_tc_ia(i,a,res_l, res_r)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! doubly occupied --> virtual TC gradient
|
||||
!
|
||||
! Corresponds to res_r = <X0|H E_i^a|Phi_0>,
|
||||
!
|
||||
! res_l = <X0|E_a^i H|Phi_0>
|
||||
END_DOC
|
||||
integer, intent(in) :: i,a
|
||||
double precision, intent(out) :: res_l(0:3), res_r(0:3)
|
||||
res_l = 0.d0
|
||||
res_r = 0.d0
|
||||
res_l(1) = -2 * mo_bi_ortho_tc_one_e(a,i)
|
||||
res_r(1) = -2 * mo_bi_ortho_tc_one_e(i,a)
|
||||
|
||||
end
|
||||
|
||||
subroutine gradvec_tc_it(i,t,res_l, res_r)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! doubly occupied --> active TC gradient
|
||||
!
|
||||
! Corresponds to res_r = <X0|H E_i^t|Phi_0>
|
||||
!
|
||||
! res_l = <X0|E_t^i H |Phi_0>
|
||||
END_DOC
|
||||
integer, intent(in) :: i,t
|
||||
double precision, intent(out) :: res_l(0:3),res_r(0:3)
|
||||
integer :: rr,r,ss,s,m,mm
|
||||
double precision :: dm
|
||||
res_r = 0.d0
|
||||
res_l = 0.d0
|
||||
res_r(1) += -2.d0 * mo_bi_ortho_tc_one_e(i,t)
|
||||
res_l(1) += 2.D0 * mo_bi_ortho_tc_one_e(t,i)
|
||||
|
||||
do rr = 1, n_act_orb
|
||||
r = list_act(rr)
|
||||
res_r(1) += mo_bi_ortho_tc_one_e(i,r) * tc_transition_matrix_mo(t,r,1,1)
|
||||
res_l(1) += -mo_bi_ortho_tc_one_e(r,i) * tc_transition_matrix_mo(r,t,1,1)
|
||||
enddo
|
||||
|
||||
end
|
||||
|
||||
subroutine gradvec_tc_ta(t,a,res_l, res_r)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! active --> virtual TC gradient
|
||||
!
|
||||
! Corresponds to res_r = <X0|H E_t^a|Phi_0>
|
||||
!
|
||||
! res_l = <X0|E_a^t H |Phi_0>
|
||||
END_DOC
|
||||
integer, intent(in) :: t,a
|
||||
double precision, intent(out) :: res_l(0:3),res_r(0:3)
|
||||
integer :: rr,r,m
|
||||
double precision :: dm
|
||||
res_r = 0.d0
|
||||
res_l = 0.d0
|
||||
do rr = 1, n_act_orb
|
||||
r = list_act(rr)
|
||||
res_l(1) += mo_bi_ortho_tc_one_e(a,r) * tc_transition_matrix_mo(t,r,1,1)
|
||||
res_r(1) += -mo_bi_ortho_tc_one_e(r,a) * tc_transition_matrix_mo(r,t,1,1)
|
||||
enddo
|
||||
|
||||
end
|
132
src/casscf_tc_bi/grad_old.irp.f
Normal file
132
src/casscf_tc_bi/grad_old.irp.f
Normal file
@ -0,0 +1,132 @@
|
||||
|
||||
BEGIN_PROVIDER [real*8, gradvec_detail_right_old, (0:3,nMonoEx)]
|
||||
&BEGIN_PROVIDER [real*8, gradvec_detail_left_old, (0:3,nMonoEx)]
|
||||
BEGIN_DOC
|
||||
! calculate the orbital gradient <Psi| H E_pq |Psi> by hand, i.e. for
|
||||
! each determinant I we determine the string E_pq |I> (alpha and beta
|
||||
! separately) and generate <Psi|H E_pq |I>
|
||||
! sum_I c_I <Psi|H E_pq |I> is then the pq component of the orbital
|
||||
! gradient
|
||||
! E_pq = a^+_pa_q + a^+_Pa_Q
|
||||
END_DOC
|
||||
implicit none
|
||||
integer :: ii,tt,aa,indx,ihole,ipart,istate,ll
|
||||
real*8 :: res_l(0:3), res_r(0:3)
|
||||
|
||||
do ii = 1, n_core_inact_orb
|
||||
ihole = list_core_inact(ii)
|
||||
do aa = 1, n_virt_orb
|
||||
ipart = list_virt(aa)
|
||||
indx = mat_idx_c_v(ii,aa)
|
||||
call calc_grad_elem_h_tc(ihole,ipart,res_l, res_r)
|
||||
do ll = 0, 3
|
||||
gradvec_detail_left_old (ll,indx)=res_l(ll)
|
||||
gradvec_detail_right_old(ll,indx)=res_r(ll)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
do ii = 1, n_core_inact_orb
|
||||
ihole = list_core_inact(ii)
|
||||
do tt = 1, n_act_orb
|
||||
ipart = list_act(tt)
|
||||
indx = mat_idx_c_a(ii,tt)
|
||||
call calc_grad_elem_h_tc(ihole,ipart,res_l, res_r)
|
||||
do ll = 0, 3
|
||||
gradvec_detail_left_old (ll,indx)=res_l(ll)
|
||||
gradvec_detail_right_old(ll,indx)=res_r(ll)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
do tt = 1, n_act_orb
|
||||
ihole = list_act(tt)
|
||||
do aa = 1, n_virt_orb
|
||||
ipart = list_virt(aa)
|
||||
indx = mat_idx_a_v(tt,aa)
|
||||
call calc_grad_elem_h_tc(ihole,ipart,res_l, res_r)
|
||||
do ll = 0, 3
|
||||
gradvec_detail_left_old (ll,indx)=res_l(ll)
|
||||
gradvec_detail_right_old(ll,indx)=res_r(ll)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
real*8 :: norm_grad_left, norm_grad_right
|
||||
norm_grad_left=0.d0
|
||||
norm_grad_right=0.d0
|
||||
do indx=1,nMonoEx
|
||||
norm_grad_left+=gradvec_detail_left_old(0,indx)*gradvec_detail_left_old(0,indx)
|
||||
norm_grad_right+=gradvec_detail_right_old(0,indx)*gradvec_detail_right_old(0,indx)
|
||||
end do
|
||||
norm_grad_left=sqrt(norm_grad_left)
|
||||
norm_grad_right=sqrt(norm_grad_right)
|
||||
! if (bavard) then
|
||||
write(6,*)
|
||||
write(6,*) ' Norm of the LEFT orbital gradient (via <0|EH|0>) : ', norm_grad_left
|
||||
write(6,*) ' Norm of the RIGHT orbital gradient (via <0|HE|0>) : ', norm_grad_right
|
||||
write(6,*)
|
||||
! endif
|
||||
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
subroutine calc_grad_elem_h_tc(ihole,ipart,res_l, res_r)
|
||||
BEGIN_DOC
|
||||
! Computes the gradient with respect to orbital rotation BRUT FORCE
|
||||
!
|
||||
! res_l = <Chi| E_qp H^tc | Phi>
|
||||
!
|
||||
! res_r = <Chi| H^tc E_pq | Phi>
|
||||
!
|
||||
! q=hole, p=particle. NOTE that on res_l it is E_qp and on res_r it is E_pq
|
||||
!
|
||||
! res_l(0) = total matrix element, res_l(1) = one-electron part,
|
||||
!
|
||||
! res_l(2) = two-electron part, res_l(3) = three-electron part
|
||||
!
|
||||
END_DOC
|
||||
implicit none
|
||||
integer, intent(in) :: ihole,ipart
|
||||
double precision, intent(out) :: res_l(0:3), res_r(0:3)
|
||||
integer :: mu,iii,ispin,ierr,nu,istate,ll
|
||||
integer(bit_kind), allocatable :: det_mu(:,:),det_mu_ex(:,:)
|
||||
real*8 :: chi_H_mu_ex_array(0:3,N_states),mu_ex_H_phi_array(0:3,N_states),phase
|
||||
allocate(det_mu(N_int,2))
|
||||
allocate(det_mu_ex(N_int,2))
|
||||
|
||||
res_l=0.D0
|
||||
res_r=0.D0
|
||||
|
||||
do mu=1,n_det
|
||||
! get the string of the determinant |mu>
|
||||
call det_extract(det_mu,mu,N_int)
|
||||
do ispin=1,2
|
||||
! do the monoexcitation on it: |det_mu_ex> = a^dagger_{p,ispin} a_{q,ispin} |mu>
|
||||
call det_copy(det_mu,det_mu_ex,N_int)
|
||||
call do_signed_mono_excitation(det_mu,det_mu_ex,nu &
|
||||
,ihole,ipart,ispin,phase,ierr)
|
||||
! |det_mu_ex> = a^dagger_{p,ispin} a_{q,ispin} |mu>
|
||||
if (ierr.eq.1) then
|
||||
call i_H_tc_psi_phi(det_mu_ex,psi_det,psi_l_coef_bi_ortho,psi_r_coef_bi_ortho,N_int &
|
||||
,N_det,psi_det_size,N_states,chi_H_mu_ex_array,mu_ex_H_phi_array)
|
||||
! chi_H_mu_ex_array = <Chi|H E_qp |mu >
|
||||
! mu_ex_H_phi_array = <mu |E_qp H |Phi>
|
||||
do istate=1,N_states
|
||||
do ll = 0,3 ! loop over the body components (1e,2e,3e)
|
||||
!res_l = \sum_mu c_mu^l <mu|E_qp H |Phi> = <Chi|E_qp H |Phi>
|
||||
res_l(ll)+= mu_ex_H_phi_array(ll,istate)*psi_l_coef_bi_ortho(mu,istate)*phase
|
||||
!res_r = \sum_mu c_mu^r <Chi|H E_qp |mu> = <Chi|H E_qp |Phi>
|
||||
res_r(ll)+= chi_H_mu_ex_array(ll,istate)*psi_r_coef_bi_ortho(mu,istate)*phase
|
||||
enddo
|
||||
end do
|
||||
end if
|
||||
end do
|
||||
end do
|
||||
|
||||
! state-averaged gradient
|
||||
res_l*=1.d0/dble(N_states)
|
||||
res_r*=1.d0/dble(N_states)
|
||||
|
||||
end
|
||||
|
94
src/casscf_tc_bi/gradient.irp.f
Normal file
94
src/casscf_tc_bi/gradient.irp.f
Normal file
@ -0,0 +1,94 @@
|
||||
use bitmasks
|
||||
|
||||
BEGIN_PROVIDER [ integer, nMonoEx ]
|
||||
BEGIN_DOC
|
||||
! Number of single excitations
|
||||
END_DOC
|
||||
implicit none
|
||||
nMonoEx=n_core_inact_orb*n_act_orb+n_core_inact_orb*n_virt_orb+n_act_orb*n_virt_orb
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [integer, n_c_a_prov]
|
||||
&BEGIN_PROVIDER [integer, n_c_v_prov]
|
||||
&BEGIN_PROVIDER [integer, n_a_v_prov]
|
||||
implicit none
|
||||
n_c_a_prov = n_core_inact_orb * n_act_orb
|
||||
n_c_v_prov = n_core_inact_orb * n_virt_orb
|
||||
n_a_v_prov = n_act_orb * n_virt_orb
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [integer, excit, (2,nMonoEx)]
|
||||
&BEGIN_PROVIDER [character*3, excit_class, (nMonoEx)]
|
||||
&BEGIN_PROVIDER [integer, list_idx_c_a, (3,n_c_a_prov) ]
|
||||
&BEGIN_PROVIDER [integer, list_idx_c_v, (3,n_c_v_prov) ]
|
||||
&BEGIN_PROVIDER [integer, list_idx_a_v, (3,n_a_v_prov) ]
|
||||
&BEGIN_PROVIDER [integer, mat_idx_c_a, (n_core_inact_orb,n_act_orb)
|
||||
&BEGIN_PROVIDER [integer, mat_idx_c_v, (n_core_inact_orb,n_virt_orb)
|
||||
&BEGIN_PROVIDER [integer, mat_idx_a_v, (n_act_orb,n_virt_orb)
|
||||
BEGIN_DOC
|
||||
! a list of the orbitals involved in the excitation
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
integer :: i,t,a,ii,tt,aa,indx,indx_tmp
|
||||
indx=0
|
||||
indx_tmp = 0
|
||||
do ii=1,n_core_inact_orb
|
||||
i=list_core_inact(ii)
|
||||
do tt=1,n_act_orb
|
||||
t=list_act(tt)
|
||||
indx+=1
|
||||
excit(1,indx)=i
|
||||
excit(2,indx)=t
|
||||
excit_class(indx)='c-a'
|
||||
indx_tmp += 1
|
||||
list_idx_c_a(1,indx_tmp) = indx
|
||||
list_idx_c_a(2,indx_tmp) = ii
|
||||
list_idx_c_a(3,indx_tmp) = tt
|
||||
mat_idx_c_a(ii,tt) = indx
|
||||
end do
|
||||
end do
|
||||
|
||||
indx_tmp = 0
|
||||
do ii=1,n_core_inact_orb
|
||||
i=list_core_inact(ii)
|
||||
do aa=1,n_virt_orb
|
||||
a=list_virt(aa)
|
||||
indx+=1
|
||||
excit(1,indx)=i
|
||||
excit(2,indx)=a
|
||||
excit_class(indx)='c-v'
|
||||
indx_tmp += 1
|
||||
list_idx_c_v(1,indx_tmp) = indx
|
||||
list_idx_c_v(2,indx_tmp) = ii
|
||||
list_idx_c_v(3,indx_tmp) = aa
|
||||
mat_idx_c_v(ii,aa) = indx
|
||||
end do
|
||||
end do
|
||||
|
||||
indx_tmp = 0
|
||||
do tt=1,n_act_orb
|
||||
t=list_act(tt)
|
||||
do aa=1,n_virt_orb
|
||||
a=list_virt(aa)
|
||||
indx+=1
|
||||
excit(1,indx)=t
|
||||
excit(2,indx)=a
|
||||
excit_class(indx)='a-v'
|
||||
indx_tmp += 1
|
||||
list_idx_a_v(1,indx_tmp) = indx
|
||||
list_idx_a_v(2,indx_tmp) = tt
|
||||
list_idx_a_v(3,indx_tmp) = aa
|
||||
mat_idx_a_v(tt,aa) = indx
|
||||
end do
|
||||
end do
|
||||
|
||||
! if (bavard) then
|
||||
write(6,*) ' Filled the table of the Monoexcitations '
|
||||
do indx=1,nMonoEx
|
||||
write(6,*) ' ex ',indx,' : ',excit(1,indx),' -> ' &
|
||||
,excit(2,indx),' ',excit_class(indx)
|
||||
end do
|
||||
! end if
|
||||
|
||||
END_PROVIDER
|
@ -1024,56 +1024,26 @@ subroutine compute_A1_chol(nO,nV,t1,t2,tau,A1)
|
||||
|
||||
integer :: a,tmp_a,b,k,l,c,d,tmp_c,tmp_d,i,j,u,v, beta
|
||||
|
||||
double precision, allocatable :: X_vooo(:,:,:,:), Y_oooo(:,:,:,:)
|
||||
allocate(X_vooo(nV,nO,nO,nO), Y_oooo(nO,nO,nO,nO))
|
||||
double precision, allocatable :: Y_oooo(:,:,:,:)
|
||||
allocate(Y_oooo(nO,nO,nO,nO))
|
||||
|
||||
! A1(u,v,i,j) = cc_space_v_oooo(u,v,i,j)
|
||||
!$omp parallel &
|
||||
!$omp shared(nO,nV,A1,cc_space_v_oooo,cc_space_v_ovoo,X_vooo) &
|
||||
!$omp private(u,v,i,j) &
|
||||
!$omp default(none)
|
||||
!$omp do collapse(2)
|
||||
do j = 1, nO
|
||||
do i = 1, nO
|
||||
do v = 1, nO
|
||||
do u = 1, nO
|
||||
A1(u,v,i,j) = cc_space_v_oooo(u,v,i,j)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$omp end do nowait
|
||||
|
||||
! A1(u,v,i,j) += cc_space_v_ovoo(u,a,i,j) * t1(v,a) &
|
||||
|
||||
!$omp do collapse(2)
|
||||
do j = 1, nO
|
||||
do i = 1, nO
|
||||
do u = 1, nO
|
||||
do a = 1, nV
|
||||
X_vooo(a,u,i,j) = cc_space_v_ovoo(u,a,i,j)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$omp end do
|
||||
!$omp end parallel
|
||||
|
||||
call dgemm('N','N', nO, nO*nO*nO, nV, &
|
||||
1d0, t1 , size(t1,1), &
|
||||
X_vooo, size(X_vooo,1), &
|
||||
cc_space_v_vooo, size(cc_space_v_vooo,1), &
|
||||
0d0, Y_oooo, size(Y_oooo,1))
|
||||
|
||||
!$omp parallel &
|
||||
!$omp shared(nO,nV,A1,Y_oooo) &
|
||||
!$omp private(u,v,i,j) &
|
||||
!$omp default(none)
|
||||
!$omp default(shared)
|
||||
!$omp do collapse(2)
|
||||
do j = 1, nO
|
||||
do i = 1, nO
|
||||
do v = 1, nO
|
||||
do u = 1, nO
|
||||
A1(u,v,i,j) = A1(u,v,i,j) + Y_oooo(v,u,i,j)
|
||||
A1(u,v,i,j) = cc_space_v_oooo(u,v,i,j) + Y_oooo(v,u,j,i) + Y_oooo(u,v,i,j)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
@ -1081,13 +1051,7 @@ subroutine compute_A1_chol(nO,nV,t1,t2,tau,A1)
|
||||
!$omp end do
|
||||
!$omp end parallel
|
||||
|
||||
deallocate(X_vooo,Y_oooo)
|
||||
|
||||
! A1(u,v,i,j) += cc_space_v_vooo(a,v,i,j) * t1(u,a)
|
||||
call dgemm('N','N', nO, nO*nO*nO, nV, &
|
||||
1d0, t1 , size(t1,1), &
|
||||
cc_space_v_vooo, size(cc_space_v_vooo,1), &
|
||||
1d0, A1 , size(A1,1))
|
||||
deallocate(Y_oooo)
|
||||
|
||||
! A1(u,v,i,j) += cc_space_v_vvoo(a,b,i,j) * tau(u,v,a,b)
|
||||
call dgemm('N','N', nO*nO, nO*nO, nV*nV, &
|
||||
|
@ -53,7 +53,7 @@ subroutine get_d0_new(gen, phasemask, bannedOrb, banned, mat_l, mat_r, mask, h,
|
||||
if (hij == (0.d0,0.d0)) cycle
|
||||
!DIR$ LOOP COUNT AVG(4)
|
||||
do k=1,N_states
|
||||
mat_r(k, p1, p2) = mat_r(k, p1, p2) + coefs(k,1) * hij ! HOTSPOT
|
||||
mat_r(k, p1, p2) = mat_r(k, p1, p2) + coefs(k,2) * hij ! HOTSPOT
|
||||
enddo
|
||||
end do
|
||||
!!!!!!!!!! <phi|H|alpha>
|
||||
@ -72,7 +72,7 @@ subroutine get_d0_new(gen, phasemask, bannedOrb, banned, mat_l, mat_r, mask, h,
|
||||
if (hji == (0.d0,0.d0)) cycle
|
||||
!DIR$ LOOP COUNT AVG(4)
|
||||
do k=1,N_states
|
||||
mat_l(k, p1, p2) = mat_l(k, p1, p2) + coefs(k,2) * hji ! HOTSPOT
|
||||
mat_l(k, p1, p2) = mat_l(k, p1, p2) + coefs(k,1) * hji ! HOTSPOT
|
||||
enddo
|
||||
end do
|
||||
end do
|
||||
@ -109,7 +109,7 @@ subroutine get_d0_new(gen, phasemask, bannedOrb, banned, mat_l, mat_r, mask, h,
|
||||
end if
|
||||
!DIR$ LOOP COUNT AVG(4)
|
||||
do k=1,N_states
|
||||
mat_r(k, puti, putj) = mat_r(k, puti, putj) + coefs(k,1) * hij
|
||||
mat_r(k, puti, putj) = mat_r(k, puti, putj) + coefs(k,2) * hij
|
||||
enddo
|
||||
end do
|
||||
|
||||
@ -128,7 +128,7 @@ subroutine get_d0_new(gen, phasemask, bannedOrb, banned, mat_l, mat_r, mask, h,
|
||||
end if
|
||||
!DIR$ LOOP COUNT AVG(4)
|
||||
do k=1,N_states
|
||||
mat_l(k, puti, putj) = mat_l(k, puti, putj) + coefs(k,2) * hji
|
||||
mat_l(k, puti, putj) = mat_l(k, puti, putj) + coefs(k,1) * hji
|
||||
enddo
|
||||
end do
|
||||
end do
|
||||
|
@ -76,7 +76,7 @@ subroutine get_d1_new(gen, phasemask, bannedOrb, banned, mat_l, mat_r, mask, h,
|
||||
hij = hij * get_phase_bi(phasemask, ma, ma, putj, p1, hfix, p2, N_int)
|
||||
!DIR$ LOOP COUNT AVG(4)
|
||||
do k=1,N_states
|
||||
tmp_rowij(k,putj) = tmp_rowij(k,putj) + hij * coefs(k,1)
|
||||
tmp_rowij(k,putj) = tmp_rowij(k,putj) + hij * coefs(k,2)
|
||||
enddo
|
||||
endif
|
||||
end do
|
||||
@ -88,7 +88,7 @@ subroutine get_d1_new(gen, phasemask, bannedOrb, banned, mat_l, mat_r, mask, h,
|
||||
hij = hij * get_phase_bi(phasemask, ma, ma, hfix, p1, putj, p2, N_int)
|
||||
!DIR$ LOOP COUNT AVG(4)
|
||||
do k=1,N_states
|
||||
tmp_rowij(k,putj) = tmp_rowij(k,putj) + hij * coefs(k,1)
|
||||
tmp_rowij(k,putj) = tmp_rowij(k,putj) + hij * coefs(k,2)
|
||||
enddo
|
||||
endif
|
||||
end do
|
||||
@ -114,7 +114,7 @@ subroutine get_d1_new(gen, phasemask, bannedOrb, banned, mat_l, mat_r, mask, h,
|
||||
hji = hji * get_phase_bi(phasemask, ma, ma, putj, p1, hfix, p2, N_int)
|
||||
!DIR$ LOOP COUNT AVG(4)
|
||||
do k=1,N_states
|
||||
tmp_rowji(k,putj) = tmp_rowji(k,putj) + hji * coefs(k,2)
|
||||
tmp_rowji(k,putj) = tmp_rowji(k,putj) + hji * coefs(k,1)
|
||||
enddo
|
||||
endif
|
||||
end do
|
||||
@ -126,7 +126,7 @@ subroutine get_d1_new(gen, phasemask, bannedOrb, banned, mat_l, mat_r, mask, h,
|
||||
hji = hji * get_phase_bi(phasemask, ma, ma, hfix, p1, putj, p2, N_int)
|
||||
!DIR$ LOOP COUNT AVG(4)
|
||||
do k=1,N_states
|
||||
tmp_rowji(k,putj) = tmp_rowji(k,putj) + hji * coefs(k,2)
|
||||
tmp_rowji(k,putj) = tmp_rowji(k,putj) + hji * coefs(k,1)
|
||||
enddo
|
||||
endif
|
||||
end do
|
||||
@ -169,7 +169,7 @@ subroutine get_d1_new(gen, phasemask, bannedOrb, banned, mat_l, mat_r, mask, h,
|
||||
hij = hij * get_phase_bi(phasemask, ma, mi, hfix, p2, puti, pfix, N_int)
|
||||
!DIR$ LOOP COUNT AVG(4)
|
||||
do k=1,N_states
|
||||
tmp_rowij(k,puti) = tmp_rowij(k,puti) + hij * coefs(k,1)
|
||||
tmp_rowij(k,puti) = tmp_rowij(k,puti) + hij * coefs(k,2)
|
||||
enddo
|
||||
endif
|
||||
end if
|
||||
@ -180,7 +180,7 @@ subroutine get_d1_new(gen, phasemask, bannedOrb, banned, mat_l, mat_r, mask, h,
|
||||
if (hij /= 0.d0) then
|
||||
hij = hij * get_phase_bi(phasemask, ma, mi, hfix, p1, puti, pfix, N_int)
|
||||
do k=1,N_states
|
||||
tmp_rowij2(k,puti) = tmp_rowij2(k,puti) + hij * coefs(k,1)
|
||||
tmp_rowij2(k,puti) = tmp_rowij2(k,puti) + hij * coefs(k,2)
|
||||
enddo
|
||||
endif
|
||||
end if
|
||||
@ -211,7 +211,7 @@ subroutine get_d1_new(gen, phasemask, bannedOrb, banned, mat_l, mat_r, mask, h,
|
||||
hji = hji * get_phase_bi(phasemask, ma, mi, hfix, p2, puti, pfix, N_int)
|
||||
!DIR$ LOOP COUNT AVG(4)
|
||||
do k=1,N_states
|
||||
tmp_rowji(k,puti) = tmp_rowji(k,puti) + hji * coefs(k,2)
|
||||
tmp_rowji(k,puti) = tmp_rowji(k,puti) + hji * coefs(k,1)
|
||||
enddo
|
||||
endif
|
||||
end if
|
||||
@ -222,7 +222,7 @@ subroutine get_d1_new(gen, phasemask, bannedOrb, banned, mat_l, mat_r, mask, h,
|
||||
if (hji /= 0.d0) then
|
||||
hji = hji * get_phase_bi(phasemask, ma, mi, hfix, p1, puti, pfix, N_int)
|
||||
do k=1,N_states
|
||||
tmp_rowji2(k,puti) = tmp_rowji2(k,puti) + hji * coefs(k,2)
|
||||
tmp_rowji2(k,puti) = tmp_rowji2(k,puti) + hji * coefs(k,1)
|
||||
enddo
|
||||
endif
|
||||
end if
|
||||
@ -265,7 +265,7 @@ subroutine get_d1_new(gen, phasemask, bannedOrb, banned, mat_l, mat_r, mask, h,
|
||||
hij = hij_cache(putj,1) - hij_cache(putj,2)
|
||||
if (hij /= 0.d0) then
|
||||
hij = hij * get_phase_bi(phasemask, ma, ma, putj, p1, hfix, p2, N_int)
|
||||
tmp_rowij(:,putj) = tmp_rowij(:,putj) + hij * coefs(:,1)
|
||||
tmp_rowij(:,putj) = tmp_rowij(:,putj) + hij * coefs(:,2)
|
||||
endif
|
||||
end do
|
||||
do putj=hfix+1,mo_num
|
||||
@ -274,7 +274,7 @@ subroutine get_d1_new(gen, phasemask, bannedOrb, banned, mat_l, mat_r, mask, h,
|
||||
hij = hij_cache(putj,2) - hij_cache(putj,1)
|
||||
if (hij /= 0.d0) then
|
||||
hij = hij * get_phase_bi(phasemask, ma, ma, hfix, p1, putj, p2, N_int)
|
||||
tmp_rowij(:,putj) = tmp_rowij(:,putj) + hij * coefs(:,1)
|
||||
tmp_rowij(:,putj) = tmp_rowij(:,putj) + hij * coefs(:,2)
|
||||
endif
|
||||
end do
|
||||
|
||||
@ -293,7 +293,7 @@ subroutine get_d1_new(gen, phasemask, bannedOrb, banned, mat_l, mat_r, mask, h,
|
||||
hji = hji_cache(putj,1) - hji_cache(putj,2)
|
||||
if (hji /= 0.d0) then
|
||||
hji = hji * get_phase_bi(phasemask, ma, ma, putj, p1, hfix, p2, N_int)
|
||||
tmp_rowji(:,putj) = tmp_rowji(:,putj) + hji * coefs(:,2)
|
||||
tmp_rowji(:,putj) = tmp_rowji(:,putj) + hji * coefs(:,1)
|
||||
endif
|
||||
end do
|
||||
do putj=hfix+1,mo_num
|
||||
@ -302,7 +302,7 @@ subroutine get_d1_new(gen, phasemask, bannedOrb, banned, mat_l, mat_r, mask, h,
|
||||
hji = hji_cache(putj,2) - hji_cache(putj,1)
|
||||
if (hji /= 0.d0) then
|
||||
hji = hji * get_phase_bi(phasemask, ma, ma, hfix, p1, putj, p2, N_int)
|
||||
tmp_rowji(:,putj) = tmp_rowji(:,putj) + hji * coefs(:,2)
|
||||
tmp_rowji(:,putj) = tmp_rowji(:,putj) + hji * coefs(:,1)
|
||||
endif
|
||||
end do
|
||||
|
||||
@ -342,7 +342,7 @@ subroutine get_d1_new(gen, phasemask, bannedOrb, banned, mat_l, mat_r, mask, h,
|
||||
hij = hij * get_phase_bi(phasemask, mi, ma, hfix, pfix, puti, p1, N_int)
|
||||
!DIR$ LOOP COUNT AVG(4)
|
||||
do k=1,N_states
|
||||
tmp_rowij(k,puti) = tmp_rowij(k,puti) + hij * coefs(k,1)
|
||||
tmp_rowij(k,puti) = tmp_rowij(k,puti) + hij * coefs(k,2)
|
||||
enddo
|
||||
endif
|
||||
end if
|
||||
@ -353,7 +353,7 @@ subroutine get_d1_new(gen, phasemask, bannedOrb, banned, mat_l, mat_r, mask, h,
|
||||
if (hij /= 0.d0) then
|
||||
hij = hij * get_phase_bi(phasemask, mi, ma, hfix, pfix, puti, p2, N_int)
|
||||
do k=1,N_states
|
||||
tmp_rowij2(k,puti) = tmp_rowij2(k,puti) + hij * coefs(k,1)
|
||||
tmp_rowij2(k,puti) = tmp_rowij2(k,puti) + hij * coefs(k,2)
|
||||
enddo
|
||||
endif
|
||||
end if
|
||||
@ -385,7 +385,7 @@ subroutine get_d1_new(gen, phasemask, bannedOrb, banned, mat_l, mat_r, mask, h,
|
||||
hji = hji * get_phase_bi(phasemask, mi, ma, hfix, pfix, puti, p1, N_int)
|
||||
!DIR$ LOOP COUNT AVG(4)
|
||||
do k=1,N_states
|
||||
tmp_rowji(k,puti) = tmp_rowji(k,puti) + hji * coefs(k,2)
|
||||
tmp_rowji(k,puti) = tmp_rowji(k,puti) + hji * coefs(k,1)
|
||||
enddo
|
||||
endif
|
||||
end if
|
||||
@ -396,7 +396,7 @@ subroutine get_d1_new(gen, phasemask, bannedOrb, banned, mat_l, mat_r, mask, h,
|
||||
if (hji /= 0.d0) then
|
||||
hji = hji * get_phase_bi(phasemask, mi, ma, hfix, pfix, puti, p2, N_int)
|
||||
do k=1,N_states
|
||||
tmp_rowji2(k,puti) = tmp_rowji2(k,puti) + hji * coefs(k,2)
|
||||
tmp_rowji2(k,puti) = tmp_rowji2(k,puti) + hji * coefs(k,1)
|
||||
enddo
|
||||
endif
|
||||
end if
|
||||
@ -445,8 +445,8 @@ subroutine get_d1_new(gen, phasemask, bannedOrb, banned, mat_l, mat_r, mask, h,
|
||||
do k=1,N_states
|
||||
! take conjugate to get contribution to <alpha|H|psi> instead of <psi|H|alpha>
|
||||
! mat_r(k, p1, p2) = mat_r(k, p1, p2) + coefs(k,1) * dconjg(hij)
|
||||
mat_r(k, p1, p2) = mat_r(k, p1, p2) + coefs(k,1) * hij
|
||||
mat_l(k, p1, p2) = mat_l(k, p1, p2) + coefs(k,2) * hji
|
||||
mat_r(k, p1, p2) = mat_r(k, p1, p2) + coefs(k,2) * hij
|
||||
mat_l(k, p1, p2) = mat_l(k, p1, p2) + coefs(k,1) * hji
|
||||
enddo
|
||||
end do
|
||||
end do
|
||||
|
@ -79,12 +79,12 @@ subroutine get_d2_new(gen, phasemask, bannedOrb, banned, mat_l, mat_r, mask, h,
|
||||
if(ma == 1) then ! if particle spins are (alpha,alpha,alpha,beta), then puti is beta and putj is alpha
|
||||
!DIR$ LOOP COUNT AVG(4)
|
||||
do k=1,N_states
|
||||
mat_r(k, putj, puti) = mat_r(k, putj, puti) + coefs(k,1) * hij
|
||||
mat_r(k, putj, puti) = mat_r(k, putj, puti) + coefs(k,2) * hij
|
||||
enddo
|
||||
else ! if particle spins are (beta,beta,beta,alpha), then puti is alpha and putj is beta
|
||||
!DIR$ LOOP COUNT AVG(4)
|
||||
do k=1,N_states
|
||||
mat_r(k, puti, putj) = mat_r(k, puti, putj) + coefs(k,1) * hij
|
||||
mat_r(k, puti, putj) = mat_r(k, puti, putj) + coefs(k,2) * hij
|
||||
enddo
|
||||
end if
|
||||
end do
|
||||
@ -103,12 +103,12 @@ subroutine get_d2_new(gen, phasemask, bannedOrb, banned, mat_l, mat_r, mask, h,
|
||||
if(ma == 1) then ! if particle spins are (alpha,alpha,alpha,beta), then puti is beta and putj is alpha
|
||||
!DIR$ LOOP COUNT AVG(4)
|
||||
do k=1,N_states
|
||||
mat_l(k, putj, puti) = mat_l(k, putj, puti) + coefs(k,2) * hji
|
||||
mat_l(k, putj, puti) = mat_l(k, putj, puti) + coefs(k,1) * hji
|
||||
enddo
|
||||
else ! if particle spins are (beta,beta,beta,alpha), then puti is alpha and putj is beta
|
||||
!DIR$ LOOP COUNT AVG(4)
|
||||
do k=1,N_states
|
||||
mat_l(k, puti, putj) = mat_l(k, puti, putj) + coefs(k,2) * hji
|
||||
mat_l(k, puti, putj) = mat_l(k, puti, putj) + coefs(k,1) * hji
|
||||
enddo
|
||||
end if
|
||||
end do
|
||||
@ -135,7 +135,7 @@ subroutine get_d2_new(gen, phasemask, bannedOrb, banned, mat_l, mat_r, mask, h,
|
||||
hij = hij * get_phase_bi(phasemask, 1, 2, h1, p1, h2, p2, N_int)
|
||||
!DIR$ LOOP COUNT AVG(4)
|
||||
do k=1,N_states
|
||||
mat_r(k, puti, putj) = mat_r(k, puti, putj) + coefs(k,1) * hij
|
||||
mat_r(k, puti, putj) = mat_r(k, puti, putj) + coefs(k,2) * hij
|
||||
enddo
|
||||
endif
|
||||
end do
|
||||
@ -154,7 +154,7 @@ subroutine get_d2_new(gen, phasemask, bannedOrb, banned, mat_l, mat_r, mask, h,
|
||||
hji = hji * get_phase_bi(phasemask, 1, 2, h1, p1, h2, p2, N_int)
|
||||
!DIR$ LOOP COUNT AVG(4)
|
||||
do k=1,N_states
|
||||
mat_l(k, puti, putj) = mat_l(k, puti, putj) + coefs(k,2) * hji
|
||||
mat_l(k, puti, putj) = mat_l(k, puti, putj) + coefs(k,1) * hji
|
||||
enddo
|
||||
endif
|
||||
end do
|
||||
@ -189,7 +189,7 @@ subroutine get_d2_new(gen, phasemask, bannedOrb, banned, mat_l, mat_r, mask, h,
|
||||
hij = hij * get_phase_bi(phasemask, ma, ma, h1, p1, h2, p2, N_int)
|
||||
!DIR$ LOOP COUNT AVG(4)
|
||||
do k=1,N_states
|
||||
mat_r(k, puti, putj) = mat_r(k, puti, putj) +coefs(k,1) * hij
|
||||
mat_r(k, puti, putj) = mat_r(k, puti, putj) +coefs(k,2) * hij
|
||||
enddo
|
||||
end do
|
||||
end do
|
||||
@ -210,7 +210,7 @@ subroutine get_d2_new(gen, phasemask, bannedOrb, banned, mat_l, mat_r, mask, h,
|
||||
hji = hji * get_phase_bi(phasemask, ma, ma, h1, p1, h2, p2, N_int)
|
||||
!DIR$ LOOP COUNT AVG(4)
|
||||
do k=1,N_states
|
||||
mat_l(k, puti, putj) = mat_l(k, puti, putj) +coefs(k,2) * hji
|
||||
mat_l(k, puti, putj) = mat_l(k, puti, putj) +coefs(k,1) * hji
|
||||
enddo
|
||||
end do
|
||||
end do
|
||||
@ -239,12 +239,12 @@ subroutine get_d2_new(gen, phasemask, bannedOrb, banned, mat_l, mat_r, mask, h,
|
||||
if (puti < putj) then
|
||||
!DIR$ LOOP COUNT AVG(4)
|
||||
do k=1,N_states
|
||||
mat_r(k, puti, putj) = mat_r(k, puti, putj) + coefs(k,1) * hij
|
||||
mat_r(k, puti, putj) = mat_r(k, puti, putj) + coefs(k,2) * hij
|
||||
enddo
|
||||
else
|
||||
!DIR$ LOOP COUNT AVG(4)
|
||||
do k=1,N_states
|
||||
mat_r(k, putj, puti) = mat_r(k, putj, puti) + coefs(k,1) * hij
|
||||
mat_r(k, putj, puti) = mat_r(k, putj, puti) + coefs(k,2) * hij
|
||||
enddo
|
||||
endif
|
||||
end do
|
||||
@ -262,12 +262,12 @@ subroutine get_d2_new(gen, phasemask, bannedOrb, banned, mat_l, mat_r, mask, h,
|
||||
if (puti < putj) then
|
||||
!DIR$ LOOP COUNT AVG(4)
|
||||
do k=1,N_states
|
||||
mat_l(k, puti, putj) = mat_l(k, puti, putj) + coefs(k,2) * hji
|
||||
mat_l(k, puti, putj) = mat_l(k, puti, putj) + coefs(k,1) * hji
|
||||
enddo
|
||||
else
|
||||
!DIR$ LOOP COUNT AVG(4)
|
||||
do k=1,N_states
|
||||
mat_l(k, putj, puti) = mat_l(k, putj, puti) + coefs(k,2) * hji
|
||||
mat_l(k, putj, puti) = mat_l(k, putj, puti) + coefs(k,1) * hji
|
||||
enddo
|
||||
endif
|
||||
end do
|
||||
@ -290,7 +290,7 @@ subroutine get_d2_new(gen, phasemask, bannedOrb, banned, mat_l, mat_r, mask, h,
|
||||
hij = hij * get_phase_bi(phasemask, mi, mi, h1, p1, h2, p2, N_int)
|
||||
!DIR$ LOOP COUNT AVG(4)
|
||||
do k=1,N_states
|
||||
mat_r(k, puti, putj) = mat_r(k, puti, putj) + coefs(k,1) * hij
|
||||
mat_r(k, puti, putj) = mat_r(k, puti, putj) + coefs(k,2) * hij
|
||||
enddo
|
||||
end if
|
||||
!! <phi|H|alpha>
|
||||
@ -299,7 +299,7 @@ subroutine get_d2_new(gen, phasemask, bannedOrb, banned, mat_l, mat_r, mask, h,
|
||||
hji = hji * get_phase_bi(phasemask, mi, mi, h1, p1, h2, p2, N_int)
|
||||
!DIR$ LOOP COUNT AVG(4)
|
||||
do k=1,N_states
|
||||
mat_l(k, puti, putj) = mat_l(k, puti, putj) + coefs(k,2) * hji
|
||||
mat_l(k, puti, putj) = mat_l(k, puti, putj) + coefs(k,1) * hji
|
||||
enddo
|
||||
end if
|
||||
end if
|
||||
|
@ -893,20 +893,45 @@ subroutine fill_buffer_double(i_generator, sp, h1, h2, bannedOrb, banned, fock_d
|
||||
alpha_h_psi += alpha_h_i * psi_selectors_coef_tc(iii,1,1) ! right function
|
||||
enddo
|
||||
else if(debug_tc_pt2 == 2)then !! debugging the new version
|
||||
! psi_h_alpha_tmp = 0.d0
|
||||
! alpha_h_psi_tmp = 0.d0
|
||||
! do iii = 1, N_det_selectors ! old version
|
||||
! call htilde_mu_mat_opt_bi_ortho_no_3e(psi_selectors(1,1,iii), det, N_int, i_h_alpha)
|
||||
! call htilde_mu_mat_opt_bi_ortho_no_3e(det, psi_selectors(1,1,iii), N_int, alpha_h_i)
|
||||
! psi_h_alpha_tmp += i_h_alpha * psi_selectors_coef_tc(iii,1,1) ! left function
|
||||
! alpha_h_psi_tmp += alpha_h_i * psi_selectors_coef_tc(iii,2,1) ! right function
|
||||
! enddo
|
||||
psi_h_alpha_tmp = mat_l(istate, p1, p2) ! new version
|
||||
alpha_h_psi_tmp = mat_r(istate, p1, p2) ! new version
|
||||
psi_h_alpha = 0.d0
|
||||
alpha_h_psi = 0.d0
|
||||
do iii = 1, N_det_selectors ! old version
|
||||
call htilde_mu_mat_opt_bi_ortho_no_3e(psi_selectors(1,1,iii), det, N_int, i_h_alpha)
|
||||
call htilde_mu_mat_opt_bi_ortho_no_3e(det, psi_selectors(1,1,iii), N_int, alpha_h_i)
|
||||
psi_h_alpha += i_h_alpha * psi_selectors_coef_tc(iii,2,1) ! left function
|
||||
alpha_h_psi += alpha_h_i * psi_selectors_coef_tc(iii,1,1) ! right function
|
||||
do iii = 1, N_det ! old version
|
||||
call htilde_mu_mat_opt_bi_ortho_no_3e(psi_det(1,1,iii), det, N_int, i_h_alpha)
|
||||
call htilde_mu_mat_opt_bi_ortho_no_3e(det, psi_det(1,1,iii), N_int, alpha_h_i)
|
||||
psi_h_alpha += i_h_alpha * psi_l_coef_bi_ortho(iii,1) ! left function
|
||||
alpha_h_psi += alpha_h_i * psi_r_coef_bi_ortho(iii,1) ! right function
|
||||
enddo
|
||||
if(dabs(psi_h_alpha*alpha_h_psi/delta_E).gt.1.d-10)then
|
||||
error = dabs(psi_h_alpha * alpha_h_psi - psi_h_alpha_tmp * alpha_h_psi_tmp)/dabs(psi_h_alpha * alpha_h_psi)
|
||||
if(error.gt.1.d-2)then
|
||||
call debug_det(det, N_int)
|
||||
print*,'error =',error,psi_h_alpha * alpha_h_psi/delta_E,psi_h_alpha_tmp * alpha_h_psi_tmp/delta_E
|
||||
print*,psi_h_alpha , alpha_h_psi
|
||||
print*,psi_h_alpha_tmp , alpha_h_psi_tmp
|
||||
print*,'selectors '
|
||||
do iii = 1, N_det_selectors ! old version
|
||||
print*,'iii',iii,psi_selectors_coef_tc(iii,1,1),psi_selectors_coef_tc(iii,2,1)
|
||||
call htilde_mu_mat_opt_bi_ortho_no_3e(psi_selectors(1,1,iii), det, N_int, i_h_alpha)
|
||||
call htilde_mu_mat_opt_bi_ortho_no_3e(det, psi_selectors(1,1,iii), N_int, alpha_h_i)
|
||||
print*,i_h_alpha,alpha_h_i
|
||||
call debug_det(psi_selectors(1,1,iii),N_int)
|
||||
enddo
|
||||
! print*,'psi_det '
|
||||
! do iii = 1, N_det! old version
|
||||
! print*,'iii',iii,psi_l_coef_bi_ortho(iii,1),psi_r_coef_bi_ortho(iii,1)
|
||||
! call debug_det(psi_det(1,1,iii),N_int)
|
||||
! enddo
|
||||
stop
|
||||
endif
|
||||
endif
|
||||
else
|
||||
|
@ -5,3 +5,11 @@ interface: ezfio
|
||||
size: (determinants.n_states)
|
||||
|
||||
|
||||
|
||||
[lcc_energy]
|
||||
type: double precision
|
||||
doc: lccsd energy
|
||||
interface: ezfio
|
||||
size: (determinants.n_states)
|
||||
|
||||
|
||||
|
@ -1,3 +1,4 @@
|
||||
selectors_full
|
||||
single_ref_method
|
||||
davidson_undressed
|
||||
dav_general_mat
|
||||
|
95
src/cisd/lccsd.irp.f
Normal file
95
src/cisd/lccsd.irp.f
Normal file
@ -0,0 +1,95 @@
|
||||
program lccsd
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Linerarized CCSD
|
||||
!
|
||||
! This program takes a reference Slater determinant of ROHF-like occupancy,
|
||||
!
|
||||
! and performs all single and double excitations on top of it, disregarding
|
||||
! spatial symmetry and compute the "n_states" lowest eigenstates of that CI
|
||||
! matrix (see :option:`determinants n_states`).
|
||||
!
|
||||
! This program can be useful in many cases:
|
||||
!
|
||||
! * **Ground state calculation**: if even after a :c:func:`cis` calculation, natural
|
||||
! orbitals (see :c:func:`save_natorb`) and then :c:func:`scf` optimization, you are not sure to have the lowest scf
|
||||
! solution,
|
||||
! do the same strategy with the :c:func:`cisd` executable instead of the :c:func:`cis` exectuable to generate the natural
|
||||
! orbitals as a guess for the :c:func:`scf`.
|
||||
!
|
||||
!
|
||||
!
|
||||
! * **Excited states calculations**: the lowest excited states are much likely to
|
||||
! be dominanted by single- or double-excitations.
|
||||
! Therefore, running a :c:func:`cisd` will save the "n_states" lowest states within
|
||||
! the CISD space
|
||||
! in the |EZFIO| directory, which can afterward be used as guess wave functions
|
||||
! for a further multi-state fci calculation if you specify "read_wf" = True
|
||||
! before running the fci executable (see :option:`determinants read_wf`).
|
||||
! Also, if you specify "s2_eig" = True, the cisd will only retain states
|
||||
! having the good value :math:`S^2` value
|
||||
! (see :option:`determinants expected_s2` and :option:`determinants s2_eig`).
|
||||
! If "s2_eig" = False, it will take the lowest n_states, whatever
|
||||
! multiplicity they are.
|
||||
!
|
||||
!
|
||||
!
|
||||
! Note: if you would like to discard some orbitals, use
|
||||
! :ref:`qp_set_mo_class` to specify:
|
||||
!
|
||||
! * "core" orbitals which will be always doubly occupied
|
||||
!
|
||||
! * "act" orbitals where an electron can be either excited from or to
|
||||
!
|
||||
! * "del" orbitals which will be never occupied
|
||||
!
|
||||
END_DOC
|
||||
PROVIDE N_states
|
||||
read_wf = .False.
|
||||
TOUCH read_wf
|
||||
call run
|
||||
end
|
||||
|
||||
subroutine run
|
||||
implicit none
|
||||
|
||||
if(pseudo_sym)then
|
||||
call H_apply_cisd_sym
|
||||
else
|
||||
call H_apply_cisd
|
||||
endif
|
||||
call get_lccsd_2
|
||||
end
|
||||
|
||||
subroutine get_lccsd_2
|
||||
implicit none
|
||||
integer :: i,k
|
||||
double precision :: cisdq(N_states), delta_e
|
||||
double precision,external :: diag_h_mat_elem
|
||||
psi_coef = lccsd_coef
|
||||
SOFT_TOUCH psi_coef
|
||||
call save_wavefunction_truncated(save_threshold)
|
||||
call ezfio_set_cisd_lcc_energy(lccsd_energies)
|
||||
|
||||
print *, 'N_det = ', N_det
|
||||
print*,''
|
||||
print*,'******************************'
|
||||
print *, 'LCCSD Energies'
|
||||
do i = 1,N_states
|
||||
print *, i, lccsd_energies(i)
|
||||
enddo
|
||||
if (N_states > 1) then
|
||||
print*,'******************************'
|
||||
print*,'Excitation energies (au) (LCCSD)'
|
||||
do i = 2, N_states
|
||||
print*, i ,lccsd_energies(i) - lccsd_energies(1)
|
||||
enddo
|
||||
print*,''
|
||||
print*,'******************************'
|
||||
print*,'Excitation energies (eV) (LCCSD)'
|
||||
do i = 2, N_states
|
||||
print*, i ,(lccsd_energies(i) - lccsd_energies(1)) * ha_to_ev
|
||||
enddo
|
||||
endif
|
||||
|
||||
end
|
46
src/cisd/lccsd_prov.irp.f
Normal file
46
src/cisd/lccsd_prov.irp.f
Normal file
@ -0,0 +1,46 @@
|
||||
BEGIN_PROVIDER [ double precision, lccsd_coef, (N_det, N_states)]
|
||||
&BEGIN_PROVIDER [ double precision, lccsd_energies, (N_states)]
|
||||
implicit none
|
||||
double precision, allocatable :: Dress_jj(:), H_jj(:), u_in(:,:)
|
||||
double precision :: ebefore, eafter, ecorr, thresh
|
||||
integer :: i,it
|
||||
logical :: converged
|
||||
external H_u_0_nstates_openmp
|
||||
allocate(Dress_jj(N_det),H_jj(N_det),u_in(N_det,N_states_diag))
|
||||
thresh = 1.d-6
|
||||
converged = .False.
|
||||
Dress_jj = 0.d0
|
||||
u_in = 0.d0
|
||||
it = 0
|
||||
! initial guess
|
||||
do i = 1, N_states_diag
|
||||
u_in(i,i) = 1.d0
|
||||
enddo
|
||||
do i = 1,N_det
|
||||
call i_H_j(psi_det(1,1,i),psi_det(1,1,i),N_int,H_jj(i))
|
||||
enddo
|
||||
ebefore = H_jj(1)
|
||||
do while (.not.converged)
|
||||
it += 1
|
||||
print*,'N_det = ',N_det
|
||||
call davidson_general_ext_rout_diag_dressed(u_in,H_jj,Dress_jj,lccsd_energies,&
|
||||
N_det,N_states,N_states_diag,converged,H_u_0_nstates_openmp)
|
||||
ecorr = lccsd_energies(1) - H_jj(1)
|
||||
print*,'---------------------'
|
||||
print*,'it = ',it
|
||||
print*,'ecorr = ',ecorr
|
||||
Dress_jj(1) = 0.d0
|
||||
do i = 2, N_det
|
||||
if(ecorr + H_jj(i) .gt. H_jj(1))then
|
||||
Dress_jj(i) = ecorr
|
||||
endif
|
||||
enddo
|
||||
eafter = lccsd_energies(1)
|
||||
converged = (dabs(eafter - ebefore).lt.thresh)
|
||||
ebefore = eafter
|
||||
enddo
|
||||
do i = 1, N_states
|
||||
lccsd_coef(1:N_det,i) = u_in(1:N_det,i)
|
||||
enddo
|
||||
|
||||
END_PROVIDER
|
@ -27,6 +27,8 @@ END_PROVIDER
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Determinants on which we apply <i|H|psi> for perturbation.
|
||||
! psi_selectors_coef_tc(iii,1,istate) = left coefficient of the iii determinant
|
||||
! psi_selectors_coef_tc(iii,2,istate) = right coefficient of the iii determinant
|
||||
END_DOC
|
||||
integer :: i,k
|
||||
|
||||
|
@ -90,3 +90,96 @@ subroutine htcdag_bi_ortho_calc_tdav_slow(v, u, N_st, sze)
|
||||
|
||||
end
|
||||
|
||||
subroutine i_H_tc_psi_phi(key,keys,coef_l,coef_r,Nint,Ndet,Ndet_max,Nstate,chi_H_i_array,i_H_phi_array)
|
||||
use bitmasks
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Computes $\langle i|H|Phi \rangle = \sum_J c^R_J \langle i | H | J \rangle$.
|
||||
!
|
||||
! AND $\langle Chi|H| i \rangle = \sum_J c^L_J \langle J | H | i \rangle$.
|
||||
!
|
||||
! CONVENTION: i_H_phi_array(0) = total matrix element,
|
||||
!
|
||||
! i_H_phi_array(1) = one-electron matrix element,
|
||||
!
|
||||
! i_H_phi_array(2) = two-electron matrix element,
|
||||
!
|
||||
! i_H_phi_array(3) = three-electron matrix element,
|
||||
!
|
||||
! Uses filter_connected_i_H_psi0 to get all the $|J \rangle$ to which $|i \rangle$
|
||||
! is connected.
|
||||
!
|
||||
! The i_H_psi_minilist is much faster but requires to build the
|
||||
! minilists.
|
||||
END_DOC
|
||||
integer, intent(in) :: Nint, Ndet,Ndet_max,Nstate
|
||||
integer(bit_kind), intent(in) :: keys(Nint,2,Ndet)
|
||||
integer(bit_kind), intent(in) :: key(Nint,2)
|
||||
double precision, intent(in) :: coef_l(Ndet_max,Nstate),coef_r(Ndet_max,Nstate)
|
||||
double precision, intent(out) :: chi_H_i_array(0:3,Nstate),i_H_phi_array(0:3,Nstate)
|
||||
|
||||
integer :: i, ii,j
|
||||
double precision :: phase
|
||||
integer :: exc(0:2,2,2)
|
||||
double precision :: hmono, htwoe, hthree, htot
|
||||
integer, allocatable :: idx(:)
|
||||
|
||||
ASSERT (Nint > 0)
|
||||
ASSERT (N_int == Nint)
|
||||
ASSERT (Nstate > 0)
|
||||
ASSERT (Ndet > 0)
|
||||
ASSERT (Ndet_max >= Ndet)
|
||||
allocate(idx(0:Ndet))
|
||||
|
||||
chi_H_i_array = 0.d0
|
||||
i_H_phi_array = 0.d0
|
||||
|
||||
call filter_connected_i_H_psi0(keys,key,Nint,Ndet,idx)
|
||||
if (Nstate == 1) then
|
||||
|
||||
do ii=1,idx(0)
|
||||
i = idx(ii)
|
||||
! computes <Chi|H_tc|i>
|
||||
!DIR$ FORCEINLINE
|
||||
call htilde_mu_mat_opt_bi_ortho(keys(1,1,i), key, Nint, hmono, htwoe, hthree, htot)
|
||||
chi_H_i_array(0,1) = chi_H_i_array(0,1) + coef_l(i,1)*htot
|
||||
chi_H_i_array(1,1) = chi_H_i_array(1,1) + coef_l(i,1)*hmono
|
||||
chi_H_i_array(2,1) = chi_H_i_array(2,1) + coef_l(i,1)*htwoe
|
||||
chi_H_i_array(3,1) = chi_H_i_array(3,1) + coef_l(i,1)*hthree
|
||||
! computes <i|H_tc|Phi>
|
||||
!DIR$ FORCEINLINE
|
||||
call htilde_mu_mat_opt_bi_ortho(key,keys(1,1,i), Nint, hmono, htwoe, hthree, htot)
|
||||
i_H_phi_array(0,1) = i_H_phi_array(0,1) + coef_r(i,1)*htot
|
||||
i_H_phi_array(1,1) = i_H_phi_array(1,1) + coef_r(i,1)*hmono
|
||||
i_H_phi_array(2,1) = i_H_phi_array(2,1) + coef_r(i,1)*htwoe
|
||||
i_H_phi_array(3,1) = i_H_phi_array(3,1) + coef_r(i,1)*hthree
|
||||
enddo
|
||||
|
||||
else
|
||||
|
||||
do ii=1,idx(0)
|
||||
i = idx(ii)
|
||||
! computes <Chi|H_tc|i>
|
||||
!DIR$ FORCEINLINE
|
||||
call htilde_mu_mat_opt_bi_ortho(keys(1,1,i), key, Nint, hmono, htwoe, hthree, htot)
|
||||
do j = 1, Nstate
|
||||
chi_H_i_array(0,j) = chi_H_i_array(0,j) + coef_l(i,j)*htot
|
||||
chi_H_i_array(1,j) = chi_H_i_array(1,j) + coef_l(i,j)*hmono
|
||||
chi_H_i_array(2,j) = chi_H_i_array(2,j) + coef_l(i,j)*htwoe
|
||||
chi_H_i_array(3,j) = chi_H_i_array(3,j) + coef_l(i,j)*hthree
|
||||
enddo
|
||||
! computes <i|H_tc|Phi>
|
||||
!DIR$ FORCEINLINE
|
||||
call htilde_mu_mat_opt_bi_ortho(key,keys(1,1,i), Nint, hmono, htwoe, hthree, htot)
|
||||
do j = 1, Nstate
|
||||
i_H_phi_array(0,j) = i_H_phi_array(0,j) + coef_r(i,j)*htot
|
||||
i_H_phi_array(1,j) = i_H_phi_array(1,j) + coef_r(i,j)*hmono
|
||||
i_H_phi_array(2,j) = i_H_phi_array(2,j) + coef_r(i,j)*htwoe
|
||||
i_H_phi_array(3,j) = i_H_phi_array(3,j) + coef_r(i,j)*hthree
|
||||
enddo
|
||||
enddo
|
||||
|
||||
endif
|
||||
|
||||
end
|
||||
|
||||
|
@ -120,6 +120,13 @@ END_PROVIDER
|
||||
subroutine give_aba_contraction(Nint, h1, h2, p1, p2, Ne, occ, hthree)
|
||||
|
||||
use bitmasks ! you need to include the bitmasks_module.f90 features
|
||||
BEGIN_DOC
|
||||
! give the contribution for a double excitation of opposite spin BUT averaged over spin
|
||||
!
|
||||
! it is the average of <p1_down p2_up |h1_down h2_up> and <p1_up p2_down |h1_up h2_down>
|
||||
!
|
||||
! because the orbitals h1,h2,p1,p2 are spatial orbitals and therefore can be of different spins
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
integer, intent(in) :: Nint, h1, h2, p1, p2
|
||||
@ -158,7 +165,8 @@ subroutine give_aba_contraction(Nint, h1, h2, p1, p2, Ne, occ, hthree)
|
||||
call give_integrals_3_body_bi_ort(p2, i, p1, i, h2, h1, integral)
|
||||
int_exc_12 = -1.d0 * integral
|
||||
|
||||
hthree += 1.d0 * int_direct - 0.5d0 * (int_exc_13 + int_exc_12)
|
||||
hthree += 1.d0 * int_direct - 0.5d0 * (int_exc_13 + int_exc_12) ! spin average
|
||||
! hthree += 1.d0 * int_direct - 1.0d0 * (int_exc_13 + int_exc_12)
|
||||
enddo
|
||||
|
||||
return
|
||||
|
@ -184,7 +184,7 @@ subroutine single_htilde_three_body_ints_bi_ort_slow(Nint, key_j, key_i, hthree)
|
||||
ii = occ(i,s1)
|
||||
do j = i+1, Ne(s1)
|
||||
jj = occ(j,s1)
|
||||
! ref = sym_3_e_int_from_6_idx_tensor(jj,ii,p1,jj,ii,h1)
|
||||
! !ref = sym_3_e_int_from_6_idx_tensor(jj,ii,p1,jj,ii,h1)
|
||||
hthree += three_e_single_parrallel_spin(jj,ii,p1,h1) ! USES THE 4-IDX TENSOR
|
||||
enddo
|
||||
enddo
|
||||
|
@ -328,6 +328,11 @@ end
|
||||
TOUCH psi_r_coef_bi_ortho
|
||||
call ezfio_set_tc_bi_ortho_psi_r_coef_bi_ortho(buffer)
|
||||
deallocate(buffer)
|
||||
! print*,'After diag'
|
||||
! do i = 1, N_det! old version
|
||||
! print*,'i',i,psi_l_coef_bi_ortho(i,1),psi_r_coef_bi_ortho(i,1)
|
||||
! call debug_det(psi_det(1,1,i),N_int)
|
||||
! enddo
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
@ -23,7 +23,7 @@
|
||||
|
||||
dm_tmp(1:mo_num,1:mo_num) = -tc_transition_matrix_mo(1:mo_num,1:mo_num,1,1)
|
||||
|
||||
print *, ' dm_tmp'
|
||||
print *, ' Transition density matrix '
|
||||
do i = 1, mo_num
|
||||
fock_diag(i) = fock_matrix_tc_mo_tot(i,i)
|
||||
write(*, '(100(F16.10,X))') -dm_tmp(:,i)
|
||||
@ -32,8 +32,15 @@
|
||||
thr_d = 1.d-6
|
||||
thr_nd = 1.d-6
|
||||
thr_deg = 1.d-3
|
||||
call diag_mat_per_fock_degen( fock_diag, dm_tmp, mo_num, thr_d, thr_nd, thr_deg &
|
||||
, natorb_tc_leigvec_mo, natorb_tc_reigvec_mo, natorb_tc_eigval)
|
||||
if(n_core_orb.ne.0)then
|
||||
! print*,'core orbitals'
|
||||
! pause
|
||||
call diag_mat_per_fock_degen_core( fock_diag, dm_tmp, list_core, n_core_orb, mo_num, thr_d, thr_nd, thr_deg &
|
||||
, natorb_tc_leigvec_mo, natorb_tc_reigvec_mo, natorb_tc_eigval)
|
||||
else
|
||||
call diag_mat_per_fock_degen( fock_diag, dm_tmp, mo_num, thr_d, thr_nd, thr_deg &
|
||||
, natorb_tc_leigvec_mo, natorb_tc_reigvec_mo, natorb_tc_eigval)
|
||||
endif
|
||||
! call non_hrmt_bieig( mo_num, dm_tmp&
|
||||
! , natorb_tc_leigvec_mo, natorb_tc_reigvec_mo&
|
||||
! , mo_num, natorb_tc_eigval )
|
||||
|
@ -29,7 +29,7 @@
|
||||
tc_transition_matrix_mo_alpha(m,m,istate,jstate)+= psi_l_coef_bi_ortho(i,istate) * psi_r_coef_bi_ortho(j,jstate)
|
||||
enddo
|
||||
do p = 1, n_occ_ab(2) ! browsing the beta electrons
|
||||
m = occ(p,1)
|
||||
m = occ(p,2)
|
||||
tc_transition_matrix_mo_beta(m,m,istate,jstate)+= psi_l_coef_bi_ortho(i,istate) * psi_r_coef_bi_ortho(j,jstate)
|
||||
enddo
|
||||
else
|
||||
@ -38,12 +38,14 @@
|
||||
! Single alpha
|
||||
h = exc(1,1,1) ! hole in psi_det(1,1,j)
|
||||
p = exc(1,2,1) ! particle in psi_det(1,1,j)
|
||||
tc_transition_matrix_mo_alpha(p,h,istate,jstate)+= phase * psi_l_coef_bi_ortho(i,istate) * psi_r_coef_bi_ortho(j,jstate)
|
||||
tc_transition_matrix_mo_alpha(p,h,istate,jstate)+= &
|
||||
phase * psi_l_coef_bi_ortho(i,istate) * psi_r_coef_bi_ortho(j,jstate)
|
||||
else
|
||||
! Single beta
|
||||
h = exc(1,1,2) ! hole in psi_det(1,1,j)
|
||||
p = exc(1,2,2) ! particle in psi_det(1,1,j)
|
||||
tc_transition_matrix_mo_beta(p,h,istate,jstate)+= phase * psi_l_coef_bi_ortho(i,istate) * psi_r_coef_bi_ortho(j,jstate)
|
||||
tc_transition_matrix_mo_beta(p,h,istate,jstate)+= &
|
||||
phase * psi_l_coef_bi_ortho(i,istate) * psi_r_coef_bi_ortho(j,jstate)
|
||||
endif
|
||||
endif
|
||||
enddo
|
||||
|
@ -33,7 +33,7 @@ subroutine test
|
||||
integer :: h1,h2,p1,p2,s1,s2,i_ok,degree,Ne(2)
|
||||
integer :: exc(0:2,2,2)
|
||||
integer(bit_kind), allocatable :: det_i(:,:)
|
||||
double precision :: hmono,htwoe,hthree,htilde_ij,accu,phase,normal
|
||||
double precision :: hmono,htwoe,hthree,htilde_ij,accu,phase,normal,hthree_tmp
|
||||
integer, allocatable :: occ(:,:)
|
||||
allocate( occ(N_int*bit_kind_size,2) )
|
||||
call bitstring_to_list_ab(ref_bitmask, occ, Ne, N_int)
|
||||
@ -45,15 +45,44 @@ subroutine test
|
||||
do p1 = elec_alpha_num+1, mo_num
|
||||
do h2 = 1, elec_beta_num
|
||||
do p2 = elec_beta_num+1, mo_num
|
||||
hthree = 0.d0
|
||||
|
||||
det_i = ref_bitmask
|
||||
s1 = 1
|
||||
s2 = 2
|
||||
call do_single_excitation(det_i,h1,p1,s1,i_ok)
|
||||
if(i_ok.ne.1)cycle
|
||||
call do_single_excitation(det_i,h2,p2,s2,i_ok)
|
||||
call htilde_mu_mat_bi_ortho_slow(det_i,HF_bitmask,N_int,hmono,htwoe,hthree,htilde_ij)
|
||||
if(i_ok.ne.1)cycle
|
||||
call htilde_mu_mat_bi_ortho_slow(det_i,HF_bitmask,N_int,hmono,htwoe,hthree_tmp,htilde_ij)
|
||||
call get_excitation_degree(ref_bitmask,det_i,degree,N_int)
|
||||
call get_excitation(ref_bitmask,det_i,exc,degree,phase,N_int)
|
||||
hthree *= phase
|
||||
! !normal = normal_two_body_bi_orth_ab(p2,h2,p1,h1)
|
||||
call three_comp_two_e_elem(det_i,h1,h2,p1,p2,s1,s2,normal)
|
||||
hthree_tmp *= phase
|
||||
hthree += 0.5d0 * hthree_tmp
|
||||
det_i = ref_bitmask
|
||||
s1 = 2
|
||||
s2 = 1
|
||||
call do_single_excitation(det_i,h1,p1,s1,i_ok)
|
||||
if(i_ok.ne.1)cycle
|
||||
call do_single_excitation(det_i,h2,p2,s2,i_ok)
|
||||
if(i_ok.ne.1)cycle
|
||||
call htilde_mu_mat_bi_ortho_slow(det_i,HF_bitmask,N_int,hmono,htwoe,hthree_tmp,htilde_ij)
|
||||
call get_excitation_degree(ref_bitmask,det_i,degree,N_int)
|
||||
call get_excitation(ref_bitmask,det_i,exc,degree,phase,N_int)
|
||||
hthree_tmp *= phase
|
||||
hthree += 0.5d0 * hthree_tmp
|
||||
|
||||
|
||||
! normal = normal_two_body_bi_orth_ab(p2,h2,p1,h1)
|
||||
call give_aba_contraction(N_int, h1, h2, p1, p2, Ne, occ, normal)
|
||||
if(dabs(hthree).lt.1.d-10)cycle
|
||||
if(dabs(hthree-normal).gt.1.d-10)then
|
||||
! print*,pp2,pp1,hh2,hh1
|
||||
print*,p2,p1,h2,h1
|
||||
print*,hthree,normal,dabs(hthree-normal)
|
||||
stop
|
||||
endif
|
||||
! call three_comp_two_e_elem(det_i,h1,h2,p1,p2,s1,s2,normal)
|
||||
! normal = eff_2_e_from_3_e_ab(p2,p1,h2,h1)
|
||||
accu += dabs(hthree-normal)
|
||||
enddo
|
||||
@ -86,8 +115,8 @@ do h1 = 1, elec_alpha_num
|
||||
integer :: hh1, pp1, hh2, pp2, ss1, ss2
|
||||
call decode_exc(exc, 2, hh1, pp1, hh2, pp2, ss1, ss2)
|
||||
hthree *= phase
|
||||
! normal = normal_two_body_bi_orth_aa_bb(p2,h2,p1,h1)
|
||||
normal = eff_2_e_from_3_e_aa(p2,p1,h2,h1)
|
||||
normal = normal_two_body_bi_orth_aa_bb(p2,h2,p1,h1)
|
||||
! normal = eff_2_e_from_3_e_aa(p2,p1,h2,h1)
|
||||
if(dabs(hthree).lt.1.d-10)cycle
|
||||
if(dabs(hthree-normal).gt.1.d-10)then
|
||||
print*,pp2,pp1,hh2,hh1
|
||||
|
@ -152,9 +152,7 @@ subroutine routine_tot()
|
||||
! do i = 1, elec_num_tab(s1)
|
||||
! do a = elec_num_tab(s1)+1, mo_num ! virtual
|
||||
do i = 1, elec_beta_num
|
||||
do a = elec_beta_num+1, elec_alpha_num! virtual
|
||||
! do i = elec_beta_num+1, elec_alpha_num
|
||||
! do a = elec_alpha_num+1, mo_num! virtual
|
||||
do a = elec_beta_num+1, mo_num! virtual
|
||||
print*,i,a
|
||||
|
||||
det_i = ref_bitmask
|
||||
@ -167,7 +165,7 @@ subroutine routine_tot()
|
||||
|
||||
call htilde_mu_mat_bi_ortho_slow(det_i, ref_bitmask, N_int, hmono, htwoe, hthree, htilde_ij)
|
||||
print*,htilde_ij
|
||||
if(dabs(htilde_ij).lt.1.d-10)cycle
|
||||
! if(dabs(htilde_ij).lt.1.d-10)cycle
|
||||
print*, ' excited det'
|
||||
call debug_det(det_i, N_int)
|
||||
|
||||
@ -184,9 +182,12 @@ subroutine routine_tot()
|
||||
! endif
|
||||
err_ai = dabs(dabs(ref) - dabs(new))
|
||||
if(err_ai .gt. 1d-7) then
|
||||
print*,'---------'
|
||||
print*,'s1 = ',s1
|
||||
print*, ' warning on', i, a
|
||||
print*, ref,new,err_ai
|
||||
print*,hmono, htwoe, hthree
|
||||
print*,'---------'
|
||||
endif
|
||||
print*, ref,new,err_ai
|
||||
err_tot += err_ai
|
||||
|
73
src/tc_bi_ortho/test_tc_two_rdm.irp.f
Normal file
73
src/tc_bi_ortho/test_tc_two_rdm.irp.f
Normal file
@ -0,0 +1,73 @@
|
||||
program test_tc_rdm
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
! TODO : Reads psi_det in the EZFIO folder and prints out the left- and right-eigenvectors together
|
||||
! with the energy. Saves the left-right wave functions at the end.
|
||||
!
|
||||
END_DOC
|
||||
|
||||
my_grid_becke = .True.
|
||||
PROVIDE tc_grid1_a tc_grid1_r
|
||||
my_n_pt_r_grid = tc_grid1_r
|
||||
my_n_pt_a_grid = tc_grid1_a
|
||||
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
|
||||
|
||||
read_wf = .True.
|
||||
touch read_wf
|
||||
|
||||
print*, ' nb of states = ', N_states
|
||||
print*, ' nb of det = ', N_det
|
||||
|
||||
call test()
|
||||
|
||||
end
|
||||
|
||||
subroutine test
|
||||
implicit none
|
||||
integer :: h1,p1,h2,p2,i,j,istate
|
||||
double precision :: rdm, integral, accu,ref
|
||||
double precision :: hmono, htwoe, hthree, htot
|
||||
accu = 0.d0
|
||||
do h1 = 1, mo_num
|
||||
do p1 = 1, mo_num
|
||||
do h2 = 1, mo_num
|
||||
do p2 = 1, mo_num
|
||||
integral = mo_bi_ortho_tc_two_e(p2,p1,h2,h1)
|
||||
rdm = tc_two_rdm(p1,h1,p2,h2)
|
||||
! if(dabs(rdm).gt.1.d-10)then
|
||||
! print*,h1,p1,h2,p2
|
||||
! print*,rdm,integral,rdm*integral
|
||||
! endif
|
||||
accu += integral * rdm
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
accu *= 0.5d0
|
||||
print*,'accu = ',accu
|
||||
! print*,mo_bi_ortho_tc_two_e(2,15,2,1)
|
||||
! print*,mo_bi_ortho_tc_two_e(15,2,2,1)
|
||||
! print*,mo_bi_ortho_tc_two_e(2,1,2,15)
|
||||
! print*,mo_bi_ortho_tc_two_e(2,1,15,2)
|
||||
ref = 0.d0
|
||||
do i = 1, N_det
|
||||
do j = 1, N_det
|
||||
! if(i.eq.j)cycle
|
||||
call htilde_mu_mat_opt_bi_ortho(psi_det(1,1,i), psi_det(1,1,j), N_int, hmono, htwoe, hthree, htot)
|
||||
do istate = 1,N_states
|
||||
! print*,'i,j',i,j
|
||||
! print*,psi_l_coef_bi_ortho(i,istate) , psi_r_coef_bi_ortho(j,istate) , htwoe
|
||||
! print*,psi_l_coef_bi_ortho(i,istate) * psi_r_coef_bi_ortho(j,istate) * htwoe
|
||||
! if(i.ne.j)then
|
||||
! print*,psi_l_coef_bi_ortho(i,istate) * psi_r_coef_bi_ortho(j,istate) , htwoe
|
||||
! print*,psi_l_coef_bi_ortho(i,istate) * psi_r_coef_bi_ortho(j,istate) * htwoe
|
||||
! endif
|
||||
ref += psi_l_coef_bi_ortho(i,istate) * psi_r_coef_bi_ortho(j,istate) * state_average_weight(istate) * htwoe
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
print*,' ref = ',ref
|
||||
print*,'delta= ',ref-accu
|
||||
|
||||
end
|
124
src/tc_bi_ortho/two_rdm_naive.irp.f
Normal file
124
src/tc_bi_ortho/two_rdm_naive.irp.f
Normal file
@ -0,0 +1,124 @@
|
||||
BEGIN_PROVIDER [ double precision, tc_two_rdm, (mo_num, mo_num, mo_num, mo_num)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! tc_two_rdm(p,s,q,r) = <Phi| a^dager_p
|
||||
END_DOC
|
||||
integer :: i,j,istate,m,mm,nn
|
||||
integer :: exc(0:2,2,2)
|
||||
double precision :: phase
|
||||
double precision :: contrib
|
||||
integer :: h1,p1,s1,h2,p2,s2,degree
|
||||
integer, allocatable :: occ(:,:)
|
||||
integer :: n_occ_ab(2),other_spin(2)
|
||||
other_spin(1) = 2
|
||||
other_spin(2) = 1
|
||||
allocate(occ(N_int*bit_kind_size,2))
|
||||
tc_two_rdm = 0.d0
|
||||
|
||||
do i = 1, N_det ! psi_left
|
||||
do j = 1, N_det ! psi_right
|
||||
call get_excitation_degree(psi_det(1,1,i),psi_det(1,1,j),degree,N_int)
|
||||
if(degree.gt.2)cycle
|
||||
if(degree.gt.0)then
|
||||
! get excitation operators: from psi_det(j) --> psi_det(i)
|
||||
call get_excitation(psi_det(1,1,j),psi_det(1,1,i),exc,degree,phase,N_int)
|
||||
call decode_exc(exc,degree,h1,p1,h2,p2,s1,s2)
|
||||
contrib = psi_l_coef_bi_ortho(i,1) * psi_r_coef_bi_ortho(j,1) * phase * state_average_weight(1)
|
||||
do istate = 2, N_states
|
||||
contrib += psi_l_coef_bi_ortho(i,istate) * psi_r_coef_bi_ortho(j,istate) * phase * state_average_weight(istate)
|
||||
enddo
|
||||
if(degree == 2)then
|
||||
call update_tc_rdm(h1,p1,h2,p2,s1,s2,tc_two_rdm,mo_num,contrib)
|
||||
else if(degree==1)then
|
||||
! occupation of the determinant psi_det(j)
|
||||
call bitstring_to_list_ab(psi_det(1,1,j), occ, n_occ_ab, N_int)
|
||||
|
||||
! run over the electrons of opposite spin than the excitation
|
||||
s2 = other_spin(s1)
|
||||
do mm = 1, n_occ_ab(s2)
|
||||
m = occ(mm,s2)
|
||||
h2 = m
|
||||
p2 = m
|
||||
call update_tc_rdm(h1,p1,h2,p2,s1,s2,tc_two_rdm,mo_num,contrib)
|
||||
enddo
|
||||
! run over the electrons of same spin than the excitation
|
||||
s2 = s1
|
||||
do mm = 1, n_occ_ab(s2)
|
||||
m = occ(mm,s2)
|
||||
h2 = m
|
||||
p2 = m
|
||||
call update_tc_rdm(h1,p1,h2,p2,s1,s2,tc_two_rdm,mo_num,contrib)
|
||||
enddo
|
||||
endif
|
||||
else if(degree == 0)then
|
||||
! cycle
|
||||
contrib = psi_l_coef_bi_ortho(i,1) * psi_r_coef_bi_ortho(j,1) * state_average_weight(1)
|
||||
do istate = 2, N_states
|
||||
contrib += psi_l_coef_bi_ortho(i,istate) * psi_r_coef_bi_ortho(j,istate) * state_average_weight(istate)
|
||||
enddo
|
||||
! occupation of the determinant psi_det(j)
|
||||
call bitstring_to_list_ab(psi_det(1,1,j), occ, n_occ_ab, N_int)
|
||||
s1 = 1 ! alpha electrons
|
||||
do nn = 1, n_occ_ab(s1)
|
||||
h1 = occ(nn,s1)
|
||||
p1 = occ(nn,s1)
|
||||
! run over the couple of alpha-beta electrons
|
||||
s2 = other_spin(s1)
|
||||
do mm = 1, n_occ_ab(s2)
|
||||
m = occ(mm,s2)
|
||||
h2 = m
|
||||
p2 = m
|
||||
call update_tc_rdm(h1,p1,h2,p2,s1,s2,tc_two_rdm,mo_num,contrib)
|
||||
enddo
|
||||
! run over the couple of alpha-alpha electrons
|
||||
s2 = s1
|
||||
do mm = 1, n_occ_ab(s2)
|
||||
m = occ(mm,s2)
|
||||
h2 = m
|
||||
p2 = m
|
||||
if(h2.le.h1)cycle
|
||||
call update_tc_rdm(h1,p1,h2,p2,s1,s2,tc_two_rdm,mo_num,contrib)
|
||||
enddo
|
||||
enddo
|
||||
s1 = 2
|
||||
do nn = 1, n_occ_ab(s1)
|
||||
h1 = occ(nn,s1)
|
||||
p1 = occ(nn,s1)
|
||||
! run over the couple of beta-beta electrons
|
||||
s2 = s1
|
||||
do mm = 1, n_occ_ab(s2)
|
||||
m = occ(mm,s2)
|
||||
h2 = m
|
||||
p2 = m
|
||||
if(h2.le.h1)cycle
|
||||
call update_tc_rdm(h1,p1,h2,p2,s1,s2,tc_two_rdm,mo_num,contrib)
|
||||
enddo
|
||||
enddo
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
subroutine update_tc_rdm(h1,p1,h2,p2,s1,s2,array,sze,contrib)
|
||||
implicit none
|
||||
integer, intent(in) :: h1,p1,h2,p2,s1,s2,sze
|
||||
double precision, intent(in) :: contrib
|
||||
double precision, intent(inout) :: array(sze, sze, sze, sze)
|
||||
integer :: istate
|
||||
if(s1.ne.s2)then
|
||||
array(p1,h1,p2,h2) += contrib
|
||||
! permutation for particle symmetry
|
||||
array(p2,h2,p1,h1) += contrib
|
||||
else ! same spin double excitation
|
||||
array(p1,h1,p2,h2) += contrib
|
||||
! exchange
|
||||
! exchanging the particles
|
||||
array(p2,h1,p1,h2) -= contrib
|
||||
! exchanging the
|
||||
array(p1,h2,p2,h1) -= contrib
|
||||
! permutation for particle symmetry
|
||||
array(p2,h2,p1,h1) += contrib
|
||||
endif
|
||||
|
||||
end
|
@ -214,6 +214,12 @@ doc: Threshold to determine if diagonal elements of the bi-orthogonal condition
|
||||
interface: ezfio,provider,ocaml
|
||||
default: 1.e-6
|
||||
|
||||
[thresh_lr_angle]
|
||||
type: double precision
|
||||
doc: Maximum value of the angle between the couple of left and right orbital for the rotations
|
||||
interface: ezfio,provider,ocaml
|
||||
default: 20.0
|
||||
|
||||
[thresh_biorthog_nondiag]
|
||||
type: Threshold
|
||||
doc: Threshold to determine if non-diagonal elements of L.T x R are close enouph to 0
|
||||
|
@ -208,10 +208,10 @@ BEGIN_PROVIDER [ double precision, Fock_matrix_tc_mo_alpha, (mo_num, mo_num) ]
|
||||
|
||||
if(three_body_h_tc) then
|
||||
!call wall_time(tt0)
|
||||
!PROVIDE fock_a_tot_3e_bi_orth
|
||||
!Fock_matrix_tc_mo_alpha += fock_a_tot_3e_bi_orth
|
||||
PROVIDE fock_3e_uhf_mo_a
|
||||
Fock_matrix_tc_mo_alpha += fock_3e_uhf_mo_a
|
||||
PROVIDE fock_a_tot_3e_bi_orth
|
||||
Fock_matrix_tc_mo_alpha += fock_a_tot_3e_bi_orth
|
||||
! PROVIDE fock_3e_uhf_mo_a
|
||||
! Fock_matrix_tc_mo_alpha += fock_3e_uhf_mo_a
|
||||
!call wall_time(tt1)
|
||||
!print*, ' 3-e term:', tt1-tt0
|
||||
endif
|
||||
@ -241,21 +241,13 @@ BEGIN_PROVIDER [ double precision, Fock_matrix_tc_mo_beta, (mo_num,mo_num) ]
|
||||
|
||||
if(bi_ortho) then
|
||||
|
||||
!allocate(tmp(ao_num,ao_num))
|
||||
!tmp = Fock_matrix_tc_ao_beta
|
||||
!if(three_body_h_tc) then
|
||||
! tmp += fock_3e_uhf_ao_b
|
||||
!endif
|
||||
!call ao_to_mo_bi_ortho(tmp, size(tmp, 1), Fock_matrix_tc_mo_beta, size(Fock_matrix_tc_mo_beta, 1))
|
||||
!deallocate(tmp)
|
||||
|
||||
call ao_to_mo_bi_ortho( Fock_matrix_tc_ao_beta, size(Fock_matrix_tc_ao_beta, 1) &
|
||||
, Fock_matrix_tc_mo_beta, size(Fock_matrix_tc_mo_beta, 1) )
|
||||
if(three_body_h_tc) then
|
||||
!PROVIDE fock_b_tot_3e_bi_orth
|
||||
!Fock_matrix_tc_mo_beta += fock_b_tot_3e_bi_orth
|
||||
PROVIDE fock_3e_uhf_mo_b
|
||||
Fock_matrix_tc_mo_beta += fock_3e_uhf_mo_b
|
||||
PROVIDE fock_b_tot_3e_bi_orth
|
||||
Fock_matrix_tc_mo_beta += fock_b_tot_3e_bi_orth
|
||||
! PROVIDE fock_3e_uhf_mo_b
|
||||
! Fock_matrix_tc_mo_beta += fock_3e_uhf_mo_b
|
||||
endif
|
||||
|
||||
else
|
||||
|
@ -140,7 +140,11 @@ subroutine routine_save_rotated_mos(thr_deg, good_angles)
|
||||
! compute the overlap between the left and rescaled right
|
||||
call build_s_matrix(ao_num, mo_num, mo_r_coef_new, mo_r_coef_new, ao_overlap, s_mat)
|
||||
! call give_degen(fock_diag,mo_num,thr_deg,list_degen,n_degen_list)
|
||||
call give_degen_full_list(fock_diag, mo_num, thr_deg, list_degen, n_degen_list)
|
||||
if(n_core_orb.ne.0)then
|
||||
call give_degen_full_listcore(fock_diag, mo_num, list_core, n_core_orb, thr_deg, list_degen, n_degen_list)
|
||||
else
|
||||
call give_degen_full_list(fock_diag, mo_num, thr_deg, list_degen, n_degen_list)
|
||||
endif
|
||||
print *, ' fock_matrix_mo'
|
||||
do i = 1, mo_num
|
||||
print *, i, fock_diag(i), angle_left_right(i)
|
||||
@ -152,6 +156,8 @@ subroutine routine_save_rotated_mos(thr_deg, good_angles)
|
||||
! n_degen = ilast - ifirst +1
|
||||
|
||||
n_degen = list_degen(i,0)
|
||||
if(n_degen .ge. 1000)n_degen = 1 ! convention for core orbitals
|
||||
|
||||
if(n_degen .eq. 1) cycle
|
||||
|
||||
allocate(stmp(n_degen,n_degen), smat2(n_degen,n_degen))
|
||||
@ -279,7 +285,7 @@ subroutine routine_save_rotated_mos(thr_deg, good_angles)
|
||||
allocate(new_angles(mo_num))
|
||||
new_angles(1:mo_num) = dabs(angle_left_right(1:mo_num))
|
||||
max_angle = maxval(new_angles)
|
||||
good_angles = max_angle.lt.45.d0
|
||||
good_angles = max_angle.lt.thresh_lr_angle
|
||||
print *, ' max_angle = ', max_angle
|
||||
deallocate(new_angles)
|
||||
|
||||
@ -397,11 +403,11 @@ subroutine print_energy_and_mos(good_angles)
|
||||
print *, ' TC SCF energy gradient = ', grad_non_hermit
|
||||
print *, ' Max angle Left/right = ', max_angle_left_right
|
||||
|
||||
if(max_angle_left_right .lt. 45.d0) then
|
||||
if(max_angle_left_right .lt. thresh_lr_angle) then
|
||||
print *, ' Maximum angle BELOW 45 degrees, everthing is OK !'
|
||||
good_angles = .true.
|
||||
else if(max_angle_left_right .gt. 45.d0 .and. max_angle_left_right .lt. 75.d0) then
|
||||
print *, ' Maximum angle between 45 and 75 degrees, this is not the best for TC-CI calculations ...'
|
||||
else if(max_angle_left_right .gt. thresh_lr_angle .and. max_angle_left_right .lt. 75.d0) then
|
||||
print *, ' Maximum angle between thresh_lr_angle and 75 degrees, this is not the best for TC-CI calculations ...'
|
||||
good_angles = .false.
|
||||
else if(max_angle_left_right .gt. 75.d0) then
|
||||
print *, ' Maximum angle between ABOVE 75 degrees, YOU WILL CERTAINLY FIND TROUBLES IN TC-CI calculations ...'
|
||||
|
244
src/utils/block_diag_degen_core.irp.f
Normal file
244
src/utils/block_diag_degen_core.irp.f
Normal file
@ -0,0 +1,244 @@
|
||||
|
||||
subroutine diag_mat_per_fock_degen_core(fock_diag, mat_ref, listcore,ncore, n, thr_d, thr_nd, thr_deg, leigvec, reigvec, eigval)
|
||||
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
! subroutine that diagonalizes a matrix mat_ref BY BLOCK
|
||||
!
|
||||
! the blocks are defined by the elements having the SAME DEGENERACIES in the entries "fock_diag"
|
||||
!
|
||||
! the elements of listcore are untouched
|
||||
!
|
||||
! examples : all elements having degeneracy 1 in fock_diag (i.e. not being degenerated) will be treated together
|
||||
!
|
||||
! : all elements having degeneracy 2 in fock_diag (i.e. two elements are equal) will be treated together
|
||||
!
|
||||
! : all elements having degeneracy 3 in fock_diag (i.e. two elements are equal) will be treated together
|
||||
!
|
||||
! etc... the advantage is to guarentee no spurious mixing because of numerical problems.
|
||||
!
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
integer, intent(in) :: n,ncore, listcore(ncore)
|
||||
double precision, intent(in) :: fock_diag(n), mat_ref(n,n), thr_d, thr_nd, thr_deg
|
||||
double precision, intent(out) :: leigvec(n,n), reigvec(n,n), eigval(n)
|
||||
|
||||
integer :: n_degen_list, n_degen,size_mat, i, j, k, icount, m, index_degen
|
||||
integer :: ii, jj, i_good, j_good, n_real
|
||||
integer :: icount_eigval
|
||||
logical, allocatable :: is_ok(:)
|
||||
integer, allocatable :: list_degen(:,:), list_same_degen(:)
|
||||
integer, allocatable :: iorder(:), list_degen_sorted(:)
|
||||
double precision, allocatable :: leigvec_unsrtd(:,:), reigvec_unsrtd(:,:), eigval_unsrtd(:)
|
||||
double precision, allocatable :: mat_tmp(:,:), eigval_tmp(:), leigvec_tmp(:,:), reigvec_tmp(:,:)
|
||||
|
||||
allocate(leigvec_unsrtd(n,n), reigvec_unsrtd(n,n), eigval_unsrtd(n))
|
||||
leigvec_unsrtd = 0.d0
|
||||
reigvec_unsrtd = 0.d0
|
||||
eigval_unsrtd = 0.d0
|
||||
|
||||
! obtain degeneracies
|
||||
allocate(list_degen(n,0:n))
|
||||
call give_degen_full_listcore(fock_diag, n, listcore, ncore, thr_deg, list_degen, n_degen_list)
|
||||
|
||||
allocate(iorder(n_degen_list), list_degen_sorted(n_degen_list))
|
||||
do i = 1, n_degen_list
|
||||
n_degen = list_degen(i,0)
|
||||
list_degen_sorted(i) = n_degen
|
||||
iorder(i) = i
|
||||
enddo
|
||||
|
||||
! sort by number of degeneracies
|
||||
call isort(list_degen_sorted, iorder, n_degen_list)
|
||||
|
||||
allocate(is_ok(n_degen_list))
|
||||
is_ok = .True.
|
||||
icount_eigval = 0
|
||||
|
||||
! loop over degeneracies
|
||||
do i = 1, n_degen_list
|
||||
if(.not.is_ok(i)) cycle
|
||||
|
||||
is_ok(i) = .False.
|
||||
n_degen = list_degen_sorted(i)
|
||||
|
||||
|
||||
if(n_degen.ge.1000)then
|
||||
print*,'core orbital '
|
||||
else
|
||||
print *, ' diagonalizing for n_degen = ', n_degen
|
||||
endif
|
||||
|
||||
k = 1
|
||||
|
||||
! group all the entries having the same degeneracies
|
||||
!! do while (list_degen_sorted(i+k)==n_degen)
|
||||
do m = i+1, n_degen_list
|
||||
if(list_degen_sorted(m)==n_degen) then
|
||||
is_ok(i+k) = .False.
|
||||
k += 1
|
||||
endif
|
||||
enddo
|
||||
|
||||
print *, ' number of identical degeneracies = ', k
|
||||
if(n_degen.ge.1000)then
|
||||
n_degen = 1
|
||||
endif
|
||||
size_mat = k*n_degen
|
||||
print *, ' size_mat = ', size_mat
|
||||
allocate(mat_tmp(size_mat,size_mat), list_same_degen(size_mat))
|
||||
allocate(eigval_tmp(size_mat), leigvec_tmp(size_mat,size_mat), reigvec_tmp(size_mat,size_mat))
|
||||
! group all the elements sharing the same degeneracy
|
||||
icount = 0
|
||||
do j = 1, k ! jth set of degeneracy
|
||||
index_degen = iorder(i+j-1)
|
||||
do m = 1, n_degen
|
||||
icount += 1
|
||||
list_same_degen(icount) = list_degen(index_degen,m)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
print *, ' list of elements '
|
||||
do icount = 1, size_mat
|
||||
print *, icount, list_same_degen(icount)
|
||||
enddo
|
||||
|
||||
! you copy subset of matrix elements having all the same degeneracy in mat_tmp
|
||||
do ii = 1, size_mat
|
||||
i_good = list_same_degen(ii)
|
||||
do jj = 1, size_mat
|
||||
j_good = list_same_degen(jj)
|
||||
mat_tmp(jj,ii) = mat_ref(j_good,i_good)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
call non_hrmt_bieig( size_mat, mat_tmp, thr_d, thr_nd &
|
||||
, leigvec_tmp, reigvec_tmp &
|
||||
, n_real, eigval_tmp )
|
||||
|
||||
do ii = 1, size_mat
|
||||
icount_eigval += 1
|
||||
eigval_unsrtd(icount_eigval) = eigval_tmp(ii) ! copy eigenvalues
|
||||
do jj = 1, size_mat ! copy the eigenvectors
|
||||
j_good = list_same_degen(jj)
|
||||
leigvec_unsrtd(j_good,icount_eigval) = leigvec_tmp(jj,ii)
|
||||
reigvec_unsrtd(j_good,icount_eigval) = reigvec_tmp(jj,ii)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
deallocate(mat_tmp, list_same_degen)
|
||||
deallocate(eigval_tmp, leigvec_tmp, reigvec_tmp)
|
||||
enddo
|
||||
|
||||
if(icount_eigval .ne. n) then
|
||||
print *, ' pb !! (icount_eigval.ne.n)'
|
||||
print *, ' icount_eigval,n', icount_eigval, n
|
||||
stop
|
||||
endif
|
||||
|
||||
deallocate(iorder)
|
||||
allocate(iorder(n))
|
||||
do i = 1, n
|
||||
iorder(i) = i
|
||||
enddo
|
||||
call dsort(eigval_unsrtd, iorder, n)
|
||||
|
||||
do i = 1, n
|
||||
print*,'sorted eigenvalues '
|
||||
i_good = iorder(i)
|
||||
eigval(i) = eigval_unsrtd(i)
|
||||
print*,'i,eigval(i) = ',i,eigval(i)
|
||||
do j = 1, n
|
||||
leigvec(j,i) = leigvec_unsrtd(j,i_good)
|
||||
reigvec(j,i) = reigvec_unsrtd(j,i_good)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
deallocate(leigvec_unsrtd, reigvec_unsrtd, eigval_unsrtd)
|
||||
deallocate(list_degen)
|
||||
deallocate(iorder, list_degen_sorted)
|
||||
deallocate(is_ok)
|
||||
|
||||
end
|
||||
|
||||
! ---
|
||||
|
||||
subroutine give_degen_full_listcore(A, n, listcore, ncore, thr, list_degen, n_degen_list)
|
||||
|
||||
BEGIN_DOC
|
||||
! you enter with an array A(n) and spits out all the elements degenerated up to thr
|
||||
!
|
||||
! the elements of A(n) DON'T HAVE TO BE SORTED IN THE ENTRANCE: TOTALLY GENERAL
|
||||
!
|
||||
! list_degen(i,0) = number of degenerate entries
|
||||
!
|
||||
! list_degen(i,1) = index of the first degenerate entry
|
||||
!
|
||||
! list_degen(i,2:list_degen(i,0)) = list of all other dengenerate entries
|
||||
!
|
||||
! if list_degen(i,0) == 1 it means that there is no degeneracy for that element
|
||||
!
|
||||
! if list_degen(i,0) >= 1000 it means that it is core orbitals
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
|
||||
double precision, intent(in) :: A(n)
|
||||
double precision, intent(in) :: thr
|
||||
integer, intent(in) :: n,ncore, listcore(ncore)
|
||||
integer, intent(out) :: list_degen(n,0:n), n_degen_list
|
||||
integer :: i, j, icount, icheck,k
|
||||
logical, allocatable :: is_ok(:)
|
||||
|
||||
|
||||
allocate(is_ok(n))
|
||||
n_degen_list = 0
|
||||
is_ok = .True.
|
||||
! you first exclude the "core" orbitals
|
||||
do i = 1, ncore
|
||||
j=listcore(i)
|
||||
is_ok(j) = .False.
|
||||
enddo
|
||||
do i = 1, n
|
||||
if(.not.is_ok(i)) cycle
|
||||
n_degen_list +=1
|
||||
is_ok(i) = .False.
|
||||
list_degen(n_degen_list,1) = i
|
||||
icount = 1
|
||||
do j = i+1, n
|
||||
if(dabs(A(i)-A(j)).lt.thr.and.is_ok(j)) then
|
||||
is_ok(j) = .False.
|
||||
icount += 1
|
||||
list_degen(n_degen_list,icount) = j
|
||||
endif
|
||||
enddo
|
||||
|
||||
list_degen(n_degen_list,0) = icount
|
||||
enddo
|
||||
! you set all the core orbitals as separate entities
|
||||
icheck = 0
|
||||
do i = 1, n_degen_list
|
||||
icheck += list_degen(i,0)
|
||||
enddo
|
||||
if(icheck.ne.(n-ncore))then
|
||||
print *, ' pb ! :: icheck.ne.n-ncore'
|
||||
print *, icheck, n-ncore
|
||||
stop
|
||||
endif
|
||||
k=1000
|
||||
do i = 1, ncore
|
||||
n_degen_list+= 1
|
||||
j=listcore(i)
|
||||
list_degen(n_degen_list,1) = i
|
||||
list_degen(n_degen_list,0) = k
|
||||
k+=1
|
||||
enddo
|
||||
|
||||
|
||||
|
||||
end
|
||||
|
||||
! ---
|
||||
|
@ -9,7 +9,6 @@
|
||||
|
||||
void* mmap_fortran(char* filename, size_t bytes, int* file_descr, int read_only)
|
||||
{
|
||||
int i;
|
||||
int fd;
|
||||
int result;
|
||||
void* map;
|
||||
|
@ -1661,7 +1661,15 @@ subroutine restore_symmetry(m,n,A,LDA,thresh)
|
||||
! Update i
|
||||
i = i + 1
|
||||
enddo
|
||||
copy(i:) = 0.d0
|
||||
|
||||
! To nullify the remaining elements that are below the threshold
|
||||
if (i == sze) then
|
||||
if (-copy(i) <= thresh) then
|
||||
copy(i) = 0d0
|
||||
endif
|
||||
else
|
||||
copy(i:) = 0.d0
|
||||
endif
|
||||
|
||||
!$OMP PARALLEL if (sze>10000) &
|
||||
!$OMP SHARED(m,sze,copy_sign,copy,key,A,ii,jj) &
|
||||
|
Loading…
Reference in New Issue
Block a user