9
1
mirror of https://github.com/QuantumPackage/qp2.git synced 2024-12-12 22:53:29 +01:00

Add 2-RDM defined on all MOs

This commit is contained in:
Anthony Scemama 2021-02-22 12:12:30 +01:00
parent 2e463d634e
commit 2036cb8ed4
2 changed files with 530 additions and 1 deletions

View File

@ -38,7 +38,7 @@ subroutine update_pt2_and_variance_weights(pt2_data, N_st)
avg = sum(pt2(1:N_st)) / dble(N_st) + 1.d-32 ! Avoid future division by zero
dt = 2.d0 !* selection_factor
dt = 8.d0 !* selection_factor
do k=1,N_st
element = exp(dt*(pt2(k)/avg - 1.d0))
element = min(2.0d0 , element)

View File

@ -0,0 +1,529 @@
BEGIN_PROVIDER [double precision, two_e_dm_ab_mo, (mo_num,mo_num,mo_num,mo_num,N_states)]
implicit none
two_e_dm_ab_mo = 0.d0
integer :: i,j,k,l,iorb,jorb,korb,lorb,istate
BEGIN_DOC
! two_e_dm_ab_mo(i,j,k,l,istate) = STATE SPECIFIC physicist notation for 2RDM of alpha/beta electrons
!
! <Psi| a^{\dagger}_{i \alpha} a^{\dagger}_{j \beta} a_{l \beta} a_{k \alpha} |Psi>
!
! WHERE ALL ORBITALS (i,j,k,l) BELONG TO ALL OCCUPIED ORBITALS : core, inactive and active
!
! THE NORMALIZATION (i.e. sum of diagonal elements) IS SET TO N_{\alpha} * N_{\beta}
!
! !!!!! WARNING !!!!! ALL SLATER DETERMINANTS IN PSI_DET MUST BELONG TO AN ACTIVE SPACE DEFINED BY "list_act"
!
! !!!!! WARNING !!!!! For efficiency reasons, electron 1 is ALPHA, electron 2 is BETA
!
! two_e_dm_ab_mo(i,j,k,l,istate) = i:alpha, j:beta, j:alpha, l:beta
!
! Therefore you don't necessary have symmetry between electron 1 and 2
!
! !!!!! WARNING !!!!! IF "no_core_density" then all elements involving at least one CORE MO ARE SET TO ZERO
END_DOC
two_e_dm_ab_mo = 0.d0
do istate = 1, N_states
!! PURE ACTIVE PART ALPHA-BETA
do i = 1, n_act_orb
iorb = list_act(i)
do j = 1, n_act_orb
jorb = list_act(j)
do k = 1, n_act_orb
korb = list_act(k)
do l = 1, n_act_orb
lorb = list_act(l)
! alph beta alph beta
two_e_dm_ab_mo(lorb,korb,jorb,iorb,istate) = act_2_rdm_ab_mo(l,k,j,i,istate)
enddo
enddo
enddo
enddo
!! BETA ACTIVE - ALPHA inactive
!!
do i = 1, n_act_orb
iorb = list_act(i)
do j = 1, n_act_orb
jorb = list_act(j)
do k = 1, n_inact_orb
korb = list_inact(k)
! alph beta alph beta
two_e_dm_ab_mo(korb,jorb,korb,iorb,istate) = one_e_dm_mo_beta(jorb,iorb,istate)
enddo
enddo
enddo
!! ALPHA ACTIVE - BETA inactive
!!
do i = 1, n_act_orb
iorb = list_act(i)
do j = 1, n_act_orb
jorb = list_act(j)
do k = 1, n_inact_orb
korb = list_inact(k)
! alph beta alph beta
two_e_dm_ab_mo(jorb,korb,iorb,korb,istate) = one_e_dm_mo_alpha(jorb,iorb,istate)
enddo
enddo
enddo
!! ALPHA INACTIVE - BETA INACTIVE
!!
do j = 1, n_inact_orb
jorb = list_inact(j)
do k = 1, n_inact_orb
korb = list_inact(k)
! alph beta alph beta
two_e_dm_ab_mo(korb,jorb,korb,jorb,istate) = 1.D0
enddo
enddo
!! BETA ACTIVE - ALPHA CORE
!!
do i = 1, n_act_orb
iorb = list_act(i)
do j = 1, n_act_orb
jorb = list_act(j)
do k = 1, n_core_orb
korb = list_core(k)
! alph beta alph beta
two_e_dm_ab_mo(korb,jorb,korb,iorb,istate) = one_e_dm_mo_beta(jorb,iorb,istate)
enddo
enddo
enddo
!! ALPHA ACTIVE - BETA CORE
!!
do i = 1, n_act_orb
iorb = list_act(i)
do j = 1, n_act_orb
jorb = list_act(j)
do k = 1, n_core_orb
korb = list_core(k)
! alph beta alph beta
two_e_dm_ab_mo(jorb,korb,iorb,korb,istate) = one_e_dm_mo_alpha(jorb,iorb,istate)
enddo
enddo
enddo
!! ALPHA CORE - BETA CORE
!!
do j = 1, n_core_orb
jorb = list_core(j)
do k = 1, n_core_orb
korb = list_core(k)
! alph beta alph beta
two_e_dm_ab_mo(korb,jorb,korb,jorb,istate) = 1.D0
enddo
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [double precision, two_e_dm_aa_mo, (mo_num,mo_num,mo_num,mo_num,N_states)]
implicit none
BEGIN_DOC
! two_e_dm_aa_mo(i,j,k,l,istate) = STATE SPECIFIC physicist notation for 2RDM of alpha/alpha electrons
!
! <Psi| a^{\dagger}_{i \alpha} a^{\dagger}_{j \alpha} a_{l \alpha} a_{k \alpha} |Psi>
!
! WHERE ALL ORBITALS (i,j,k,l) BELONGS TO ALL OCCUPIED ORBITALS : core, inactive and active
!
! THE NORMALIZATION (i.e. sum of diagonal elements) IS SET TO N_{\alpha} * (N_{\alpha} - 1)/2
!
! !!!!! WARNING !!!!! ALL SLATER DETERMINANTS IN PSI_DET MUST BELONG TO AN ACTIVE SPACE DEFINED BY "list_act"
!
! !!!!! WARNING !!!!! IF "no_core_density" then all elements involving at least one CORE MO is set to zero
END_DOC
two_e_dm_aa_mo = 0.d0
integer :: i,j,k,l,iorb,jorb,korb,lorb,istate
do istate = 1, N_states
!! PURE ACTIVE PART ALPHA-ALPHA
!!
do i = 1, n_act_orb
iorb = list_act(i)
do j = 1, n_act_orb
jorb = list_act(j)
do k = 1, n_act_orb
korb = list_act(k)
do l = 1, n_act_orb
lorb = list_act(l)
two_e_dm_aa_mo(lorb,korb,jorb,iorb,istate) = &
act_2_rdm_aa_mo(l,k,j,i,istate)
enddo
enddo
enddo
enddo
!! ALPHA ACTIVE - ALPHA inactive
!!
do i = 1, n_act_orb
iorb = list_act(i)
do j = 1, n_act_orb
jorb = list_act(j)
do k = 1, n_inact_orb
korb = list_inact(k)
! 1 2 1 2 : DIRECT TERM
two_e_dm_aa_mo(korb,jorb,korb,iorb,istate) += 0.5d0 * one_e_dm_mo_alpha(jorb,iorb,istate)
two_e_dm_aa_mo(jorb,korb,iorb,korb,istate) += 0.5d0 * one_e_dm_mo_alpha(jorb,iorb,istate)
! 1 2 1 2 : EXCHANGE TERM
two_e_dm_aa_mo(jorb,korb,korb,iorb,istate) += -0.5d0 * one_e_dm_mo_alpha(jorb,iorb,istate)
two_e_dm_aa_mo(korb,jorb,iorb,korb,istate) += -0.5d0 * one_e_dm_mo_alpha(jorb,iorb,istate)
enddo
enddo
enddo
!! ALPHA INACTIVE - ALPHA INACTIVE
do j = 1, n_inact_orb
jorb = list_inact(j)
do k = 1, n_inact_orb
korb = list_inact(k)
two_e_dm_aa_mo(korb,jorb,korb,jorb,istate) += 0.5d0
two_e_dm_aa_mo(korb,jorb,jorb,korb,istate) -= 0.5d0
enddo
enddo
!! ALPHA ACTIVE - ALPHA CORE
do i = 1, n_act_orb
iorb = list_act(i)
do j = 1, n_act_orb
jorb = list_act(j)
do k = 1, n_core_orb
korb = list_core(k)
! 1 2 1 2 : DIRECT TERM
two_e_dm_aa_mo(korb,jorb,korb,iorb,istate) += 0.5d0 * one_e_dm_mo_alpha(jorb,iorb,istate)
two_e_dm_aa_mo(jorb,korb,iorb,korb,istate) += 0.5d0 * one_e_dm_mo_alpha(jorb,iorb,istate)
! 1 2 1 2 : EXCHANGE TERM
two_e_dm_aa_mo(jorb,korb,korb,iorb,istate) += -0.5d0 * one_e_dm_mo_alpha(jorb,iorb,istate)
two_e_dm_aa_mo(korb,jorb,iorb,korb,istate) += -0.5d0 * one_e_dm_mo_alpha(jorb,iorb,istate)
enddo
enddo
enddo
!! ALPHA CORE - ALPHA CORE
do j = 1, n_core_orb
jorb = list_core(j)
do k = 1, n_core_orb
korb = list_core(k)
two_e_dm_aa_mo(korb,jorb,korb,jorb,istate) += 0.5d0
two_e_dm_aa_mo(korb,jorb,jorb,korb,istate) -= 0.5d0
enddo
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [double precision, two_e_dm_bb_mo, (mo_num,mo_num,mo_num,mo_num,N_states)]
implicit none
BEGIN_DOC
! two_e_dm_bb_mo(i,j,k,l,istate) = STATE SPECIFIC physicist notation for 2RDM of beta/beta electrons
!
! <Psi| a^{\dagger}_{i \beta} a^{\dagger}_{j \beta} a_{l \beta} a_{k \beta} |Psi>
!
! WHERE ALL ORBITALS (i,j,k,l) BELONGS TO ALL OCCUPIED ORBITALS : core, inactive and active
!
! THE NORMALIZATION (i.e. sum of diagonal elements) IS SET TO N_{\beta} * (N_{\beta} - 1)/2
!
! !!!!! WARNING !!!!! ALL SLATER DETERMINANTS IN PSI_DET MUST BELONG TO AN ACTIVE SPACE DEFINED BY "list_act"
!
! !!!!! WARNING !!!!! IF "no_core_density" then all elements involving at least one CORE MO is set to zero
END_DOC
integer :: i,j,k,l,iorb,jorb,korb,lorb,istate
two_e_dm_bb_mo = 0.d0
do istate = 1, N_states
!! PURE ACTIVE PART beta-beta
!!
do i = 1, n_act_orb
iorb = list_act(i)
do j = 1, n_act_orb
jorb = list_act(j)
do k = 1, n_act_orb
korb = list_act(k)
do l = 1, n_act_orb
lorb = list_act(l)
two_e_dm_bb_mo(lorb,korb,jorb,iorb,istate) = &
act_2_rdm_bb_mo(l,k,j,i,istate)
enddo
enddo
enddo
enddo
!! beta ACTIVE - beta inactive
!!
do i = 1, n_act_orb
iorb = list_act(i)
do j = 1, n_act_orb
jorb = list_act(j)
do k = 1, n_inact_orb
korb = list_inact(k)
! 1 2 1 2 : DIRECT TERM
two_e_dm_bb_mo(korb,jorb,korb,iorb,istate) += 0.5d0 * one_e_dm_mo_beta(jorb,iorb,istate)
two_e_dm_bb_mo(jorb,korb,iorb,korb,istate) += 0.5d0 * one_e_dm_mo_beta(jorb,iorb,istate)
! 1 2 1 2 : EXCHANGE TERM
two_e_dm_bb_mo(jorb,korb,korb,iorb,istate) += -0.5d0 * one_e_dm_mo_beta(jorb,iorb,istate)
two_e_dm_bb_mo(korb,jorb,iorb,korb,istate) += -0.5d0 * one_e_dm_mo_beta(jorb,iorb,istate)
enddo
enddo
enddo
!! beta INACTIVE - beta INACTIVE
do j = 1, n_inact_orb
jorb = list_inact(j)
do k = 1, n_inact_orb
korb = list_inact(k)
two_e_dm_bb_mo(korb,jorb,korb,jorb,istate) += 0.5d0
two_e_dm_bb_mo(korb,jorb,jorb,korb,istate) -= 0.5d0
enddo
enddo
!! beta ACTIVE - beta CORE
do i = 1, n_act_orb
iorb = list_act(i)
do j = 1, n_act_orb
jorb = list_act(j)
do k = 1, n_core_orb
korb = list_core(k)
! 1 2 1 2 : DIRECT TERM
two_e_dm_bb_mo(korb,jorb,korb,iorb,istate) += 0.5d0 * one_e_dm_mo_beta(jorb,iorb,istate)
two_e_dm_bb_mo(jorb,korb,iorb,korb,istate) += 0.5d0 * one_e_dm_mo_beta(jorb,iorb,istate)
! 1 2 1 2 : EXCHANGE TERM
two_e_dm_bb_mo(jorb,korb,korb,iorb,istate) += -0.5d0 * one_e_dm_mo_beta(jorb,iorb,istate)
two_e_dm_bb_mo(korb,jorb,iorb,korb,istate) += -0.5d0 * one_e_dm_mo_beta(jorb,iorb,istate)
enddo
enddo
enddo
!! beta CORE - beta CORE
do j = 1, n_core_orb
jorb = list_core(j)
do k = 1, n_core_orb
korb = list_core(k)
two_e_dm_bb_mo(korb,jorb,korb,jorb,istate) += 0.5d0
two_e_dm_bb_mo(korb,jorb,jorb,korb,istate) -= 0.5d0
enddo
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [double precision, two_e_dm_mo, (mo_num,mo_num,mo_num,mo_num,N_states)]
implicit none
BEGIN_DOC
! two_e_dm_bb_mo(i,j,k,l,istate) = STATE SPECIFIC physicist notation for 2RDM of beta/beta electrons
!
! <Psi| a^{\dagger}_{i \beta} a^{\dagger}_{j \beta} a_{l \beta} a_{k \beta} |Psi>
!
! WHERE ALL ORBITALS (i,j,k,l) BELONGS TO ALL OCCUPIED ORBITALS : core, inactive and active
!
! THE NORMALIZATION (i.e. sum of diagonal elements) IS SET TO N_{elec} * (N_{elec} - 1)/2
!
! !!!!! WARNING !!!!! ALL SLATER DETERMINANTS IN PSI_DET MUST BELONG TO AN ACTIVE SPACE DEFINED BY "list_act"
!
! !!!!! WARNING !!!!! IF "no_core_density" then all elements involving at least one CORE MO is set to zero
! The two-electron energy of each state can be computed as:
!
! \sum_{i,j,k,l = 1, n_core_inact_act_orb} two_e_dm_mo(i,j,k,l,istate) * < ii jj | kk ll >
!
! with ii = list_core_inact_act(i), jj = list_core_inact_act(j), kk = list_core_inact_act(k), ll = list_core_inact_act(l)
END_DOC
two_e_dm_mo = 0.d0
integer :: i,j,k,l,iorb,jorb,korb,lorb,istate
do istate = 1, N_states
!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!
!! PURE ACTIVE PART SPIN-TRACE
do i = 1, n_act_orb
iorb = list_act(i)
do j = 1, n_act_orb
jorb = list_act(j)
do k = 1, n_act_orb
korb = list_act(k)
do l = 1, n_act_orb
lorb = list_act(l)
two_e_dm_mo(lorb,korb,jorb,iorb,istate) += &
act_2_rdm_spin_trace_mo(l,k,j,i,istate)
enddo
enddo
enddo
enddo
!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!
!!!!! BETA-BETA !!!!!
!! beta ACTIVE - beta inactive
do i = 1, n_act_orb
iorb = list_act(i)
do j = 1, n_act_orb
jorb = list_act(j)
do k = 1, n_inact_orb
korb = list_inact(k)
! 1 2 1 2 : DIRECT TERM
two_e_dm_mo(korb,jorb,korb,iorb,istate) += 0.5d0 * one_e_dm_mo_beta(jorb,iorb,istate)
two_e_dm_mo(jorb,korb,iorb,korb,istate) += 0.5d0 * one_e_dm_mo_beta(jorb,iorb,istate)
! 1 2 1 2 : EXCHANGE TERM
two_e_dm_mo(jorb,korb,korb,iorb,istate) += -0.5d0 * one_e_dm_mo_beta(jorb,iorb,istate)
two_e_dm_mo(korb,jorb,iorb,korb,istate) += -0.5d0 * one_e_dm_mo_beta(jorb,iorb,istate)
enddo
enddo
enddo
!! beta INACTIVE - beta INACTIVE
do j = 1, n_inact_orb
jorb = list_inact(j)
do k = 1, n_inact_orb
korb = list_inact(k)
two_e_dm_mo(korb,jorb,korb,jorb,istate) += 0.5d0
two_e_dm_mo(korb,jorb,jorb,korb,istate) -= 0.5d0
enddo
enddo
if (.not.no_core_density)then
!! beta ACTIVE - beta CORE
do i = 1, n_act_orb
iorb = list_act(i)
do j = 1, n_act_orb
jorb = list_act(j)
do k = 1, n_core_orb
korb = list_core(k)
! 1 2 1 2 : DIRECT TERM
two_e_dm_mo(korb,jorb,korb,iorb,istate) += 0.5d0 * one_e_dm_mo_beta(jorb,iorb,istate)
two_e_dm_mo(jorb,korb,iorb,korb,istate) += 0.5d0 * one_e_dm_mo_beta(jorb,iorb,istate)
! 1 2 1 2 : EXCHANGE TERM
two_e_dm_mo(jorb,korb,korb,iorb,istate) += -0.5d0 * one_e_dm_mo_beta(jorb,iorb,istate)
two_e_dm_mo(korb,jorb,iorb,korb,istate) += -0.5d0 * one_e_dm_mo_beta(jorb,iorb,istate)
enddo
enddo
enddo
!! beta CORE - beta CORE
do j = 1, n_core_orb
jorb = list_core(j)
do k = 1, n_core_orb
korb = list_core(k)
two_e_dm_mo(korb,jorb,korb,jorb,istate) += 0.5d0
two_e_dm_mo(korb,jorb,jorb,korb,istate) -= 0.5d0
enddo
enddo
endif
!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!
!!!!! ALPHA-ALPHA !!!!!
!! ALPHA ACTIVE - ALPHA inactive
do i = 1, n_act_orb
iorb = list_act(i)
do j = 1, n_act_orb
jorb = list_act(j)
do k = 1, n_inact_orb
korb = list_inact(k)
! 1 2 1 2 : DIRECT TERM
two_e_dm_mo(korb,jorb,korb,iorb,istate) += 0.5d0 * one_e_dm_mo_alpha(jorb,iorb,istate)
two_e_dm_mo(jorb,korb,iorb,korb,istate) += 0.5d0 * one_e_dm_mo_alpha(jorb,iorb,istate)
! 1 2 1 2 : EXCHANGE TERM
two_e_dm_mo(jorb,korb,korb,iorb,istate) += -0.5d0 * one_e_dm_mo_alpha(jorb,iorb,istate)
two_e_dm_mo(korb,jorb,iorb,korb,istate) += -0.5d0 * one_e_dm_mo_alpha(jorb,iorb,istate)
enddo
enddo
enddo
!! ALPHA INACTIVE - ALPHA INACTIVE
do j = 1, n_inact_orb
jorb = list_inact(j)
do k = 1, n_inact_orb
korb = list_inact(k)
two_e_dm_mo(korb,jorb,korb,jorb,istate) += 0.5d0
two_e_dm_mo(korb,jorb,jorb,korb,istate) -= 0.5d0
enddo
enddo
do i = 1, n_act_orb
iorb = list_act(i)
do j = 1, n_act_orb
jorb = list_act(j)
do k = 1, n_core_orb
korb = list_core(k)
! 1 2 1 2 : DIRECT TERM
two_e_dm_mo(korb,jorb,korb,iorb,istate) += 0.5d0 * one_e_dm_mo_alpha(jorb,iorb,istate)
two_e_dm_mo(jorb,korb,iorb,korb,istate) += 0.5d0 * one_e_dm_mo_alpha(jorb,iorb,istate)
! 1 2 1 2 : EXCHANGE TERM
two_e_dm_mo(jorb,korb,korb,iorb,istate) += -0.5d0 * one_e_dm_mo_alpha(jorb,iorb,istate)
two_e_dm_mo(korb,jorb,iorb,korb,istate) += -0.5d0 * one_e_dm_mo_alpha(jorb,iorb,istate)
enddo
enddo
enddo
!! ALPHA CORE - ALPHA CORE
do j = 1, n_core_orb
jorb = list_core(j)
do k = 1, n_core_orb
korb = list_core(k)
two_e_dm_mo(korb,jorb,korb,jorb,istate) += 0.5d0
two_e_dm_mo(korb,jorb,jorb,korb,istate) -= 0.5d0
enddo
enddo
!!!!! ALPHA-BETA + BETA-ALPHA !!!!!
do i = 1, n_act_orb
iorb = list_act(i)
do j = 1, n_act_orb
jorb = list_act(j)
do k = 1, n_inact_orb
korb = list_inact(k)
! ALPHA INACTIVE - BETA ACTIVE
! alph beta alph beta
two_e_dm_mo(korb,jorb,korb,iorb,istate) += 0.5d0 * one_e_dm_mo_beta(jorb,iorb,istate)
! beta alph beta alph
two_e_dm_mo(jorb,korb,iorb,korb,istate) += 0.5d0 * one_e_dm_mo_beta(jorb,iorb,istate)
! BETA INACTIVE - ALPHA ACTIVE
! beta alph beta alpha
two_e_dm_mo(korb,jorb,korb,iorb,istate) += 0.5d0 * one_e_dm_mo_alpha(jorb,iorb,istate)
! alph beta alph beta
two_e_dm_mo(jorb,korb,iorb,korb,istate) += 0.5d0 * one_e_dm_mo_alpha(jorb,iorb,istate)
enddo
enddo
enddo
!! ALPHA INACTIVE - BETA INACTIVE
do j = 1, n_inact_orb
jorb = list_inact(j)
do k = 1, n_inact_orb
korb = list_inact(k)
! alph beta alph beta
two_e_dm_mo(korb,jorb,korb,jorb,istate) += 0.5D0
two_e_dm_mo(jorb,korb,jorb,korb,istate) += 0.5D0
enddo
enddo
do i = 1, n_act_orb
iorb = list_act(i)
do j = 1, n_act_orb
jorb = list_act(j)
do k = 1, n_core_orb
korb = list_core(k)
!! BETA ACTIVE - ALPHA CORE
! alph beta alph beta
two_e_dm_mo(korb,jorb,korb,iorb,istate) += 0.5D0 * one_e_dm_mo_beta(jorb,iorb,istate)
! beta alph beta alph
two_e_dm_mo(jorb,korb,iorb,korb,istate) += 0.5D0 * one_e_dm_mo_beta(jorb,iorb,istate)
!! ALPHA ACTIVE - BETA CORE
! alph beta alph beta
two_e_dm_mo(jorb,korb,iorb,korb,istate) += 0.5D0 * one_e_dm_mo_alpha(jorb,iorb,istate)
! beta alph beta alph
two_e_dm_mo(korb,jorb,korb,iorb,istate) += 0.5D0 * one_e_dm_mo_alpha(jorb,iorb,istate)
enddo
enddo
enddo
!! ALPHA CORE - BETA CORE
do j = 1, n_core_orb
jorb = list_core(j)
do k = 1, n_core_orb
korb = list_core(k)
! alph beta alph beta
two_e_dm_mo(korb,jorb,korb,jorb,istate) += 0.5D0
two_e_dm_mo(jorb,korb,jorb,korb,istate) += 0.5D0
enddo
enddo
enddo
END_PROVIDER