From 1f0c48023d20540a3101f5c46b9317479a980eb6 Mon Sep 17 00:00:00 2001 From: Emmanuel Giner Date: Tue, 26 Oct 2021 19:11:04 +0200 Subject: [PATCH] dav_double_dress_ext_rout.irp.f --- .../dav_double_dress_ext_rout.irp.f | 520 ++++++++++++++++++ src/dav_general_mat/dav_ext_rout.irp.f | 2 +- src/utils/sort.irp.f | 209 ++----- 3 files changed, 557 insertions(+), 174 deletions(-) create mode 100644 src/dav_general_mat/dav_double_dress_ext_rout.irp.f diff --git a/src/dav_general_mat/dav_double_dress_ext_rout.irp.f b/src/dav_general_mat/dav_double_dress_ext_rout.irp.f new file mode 100644 index 00000000..9bcfc5ab --- /dev/null +++ b/src/dav_general_mat/dav_double_dress_ext_rout.irp.f @@ -0,0 +1,520 @@ +subroutine dav_double_dressed(u_in,H_jj,Dress_jj,Dressing_vec,idx_dress,energies,sze,N_st,N_st_diag,converged,hcalc) + use mmap_module + BEGIN_DOC + ! Generic Davidson diagonalization with TWO DRESSING VECTORS + ! + ! Dress_jj : DIAGONAL DRESSING of the Hamiltonian + ! + ! Dressing_vec : COLUMN / LINE DRESSING VECTOR + ! + ! idx_dress : position of the basis function used to use the Dressing_vec (usually the largest coeff) + ! + ! H_jj : specific diagonal H matrix elements to diagonalize de Davidson + ! + ! u_in : guess coefficients on the various states. Overwritten on exit + ! + ! sze : leftmost dimension of u_in + ! + ! sze : Number of determinants + ! + ! N_st : Number of eigenstates + ! + ! N_st_diag : Number of states in which H is diagonalized. Assumed > sze + ! + ! Initial guess vectors are not necessarily orthonormal + ! + ! hcalc subroutine to compute W = H U (see routine hcalc_template for template of input/output) + END_DOC + implicit none + integer, intent(in) :: sze, N_st, N_st_diag, idx_dress + double precision, intent(in) :: H_jj(sze),Dress_jj(sze),Dressing_vec(sze,N_st) + double precision, intent(inout) :: u_in(sze,N_st_diag) + double precision, intent(out) :: energies(N_st_diag) + logical, intent(out) :: converged + external hcalc + + double precision, allocatable :: H_jj_tmp(:) + ASSERT (N_st > 0) + ASSERT (sze > 0) + allocate(H_jj_tmp(sze)) + + do i=1,sze + H_jj_tmp(i) = H_jj(i) + Dress_jj(i) + enddo + do k=1,N_st + do i=1,sze + H_jj_tmp(i) += u_in(i,k) * Dressing_vec(i,k) + enddo + enddo + + integer :: iter + integer :: i,j,k,l,m + + double precision, external :: u_dot_v, u_dot_u + + integer :: k_pairs, kl + + integer :: iter2, itertot + double precision, allocatable :: y(:,:), h(:,:), lambda(:) + double precision, allocatable :: s_tmp(:,:) + double precision, allocatable :: residual_norm(:),inv_c_idx_dress_vec(:) + character*(16384) :: write_buffer + double precision :: to_print(2,N_st),inv_c_idx_dress + double precision :: cpu, wall + integer :: shift, shift2, itermax, istate + double precision :: r1, r2, alpha + logical :: state_ok(N_st_diag*davidson_sze_max) + integer :: nproc_target + integer :: order(N_st_diag) + double precision :: cmax + double precision, allocatable :: U(:,:), overlap(:,:) + double precision, pointer :: W(:,:) + logical :: disk_based + double precision :: energy_shift(N_st_diag*davidson_sze_max) + + + allocate(inv_c_idx_dress_vec(N_st)) + inv_c_idx_dress = 1.d0/u_in(idx_dress,1) + do i = 1, N_st + inv_c_idx_dress_vec(i) = 1.d0/u_in(idx_dress,i) + enddo + include 'constants.include.F' + + integer :: N_st_diag_in + N_st_diag_in = N_st_diag + + !DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: U, W, y, h, lambda + if (N_st_diag_in*3 > sze) then + print *, 'error in Davidson :' + print *, 'Increase n_det_max_full to ', N_st_diag_in*3 + stop -1 + endif + + itermax = max(2,min(davidson_sze_max, sze/N_st_diag_in))+1 + itertot = 0 + + if (state_following) then + allocate(overlap(N_st_diag_in*itermax, N_st_diag_in*itermax)) + else + allocate(overlap(1,1)) ! avoid 'if' for deallocate + endif + overlap = 0.d0 + + call write_time(6) + write(6,'(A)') '' + write(6,'(A)') 'Davidson Diagonalization' + write(6,'(A)') '------------------------' + write(6,'(A)') '' + + ! Find max number of cores to fit in memory + ! ----------------------------------------- + + nproc_target = nproc + double precision :: rss + integer :: maxab + maxab = max(N_det_alpha_unique, N_det_beta_unique)+1 + + m=1 + disk_based = .False. + call resident_memory(rss) + do + r1 = 8.d0 * &! bytes + ( dble(sze)*(N_st_diag_in*itermax) &! U + + 1.0d0*dble(sze*m)*(N_st_diag_in*itermax) &! W + + 3.0d0*(N_st_diag_in*itermax)**2 &! h,y,s_tmp + + 1.d0*(N_st_diag_in*itermax) &! lambda + + 1.d0*(N_st_diag_in) &! residual_norm + ! In H_u_0_nstates_zmq + + 2.d0*(N_st_diag_in*N_det) &! u_t, v_t, on collector + + 2.d0*(N_st_diag_in*N_det) &! u_t, v_t, on slave + + 0.5d0*maxab &! idx0 in H_u_0_nstates_openmp_work_* + + nproc_target * &! In OMP section + ( 1.d0*(N_int*maxab) &! buffer + + 3.5d0*(maxab) ) &! singles_a, singles_b, doubles, idx + ) / 1024.d0**3 + + if (nproc_target == 0) then + call check_mem(r1,irp_here) + nproc_target = 1 + exit + endif + + if (r1+rss < qp_max_mem) then + exit + endif + + if (itermax > 4) then + itermax = itermax - 1 + else if (m==1.and.disk_based_davidson) then + m=0 + disk_based = .True. + itermax = 6 + else + nproc_target = nproc_target - 1 + endif + + enddo + nthreads_davidson = nproc_target + TOUCH nthreads_davidson + call write_int(6,N_st,'Number of states') + call write_int(6,N_st_diag_in,'Number of states in diagonalization') + call write_int(6,sze,'Number of basis functions ') + call write_int(6,nproc_target,'Number of threads for diagonalization') + call write_double(6, r1, 'Memory(Gb)') + if (disk_based) then + print *, 'Using swap space to reduce RAM' + endif + + !--------------- + + write(6,'(A)') '' + write_buffer = '=====' + do i=1,N_st + write_buffer = trim(write_buffer)//' ================ ===========' + enddo + write(6,'(A)') write_buffer(1:6+41*N_st) + write_buffer = 'Iter' + do i=1,N_st + write_buffer = trim(write_buffer)//' Energy Residual ' + enddo + write(6,'(A)') write_buffer(1:6+41*N_st) + write_buffer = '=====' + do i=1,N_st + write_buffer = trim(write_buffer)//' ================ ===========' + enddo + write(6,'(A)') write_buffer(1:6+41*N_st) + + + allocate(W(sze,N_st_diag_in*itermax)) + + allocate( & + ! Large + U(sze,N_st_diag_in*itermax), & + + ! Small + h(N_st_diag_in*itermax,N_st_diag_in*itermax), & + y(N_st_diag_in*itermax,N_st_diag_in*itermax), & + s_tmp(N_st_diag_in*itermax,N_st_diag_in*itermax), & + residual_norm(N_st_diag_in), & + lambda(N_st_diag_in*itermax)) + + h = 0.d0 + U = 0.d0 + y = 0.d0 + s_tmp = 0.d0 + + + ASSERT (N_st > 0) + ASSERT (N_st_diag_in >= N_st) + ASSERT (sze > 0) + ASSERT (Nint > 0) + ASSERT (Nint == N_int) + + ! Davidson iterations + ! =================== + + converged = .False. + + do k=N_st+1,N_st_diag_in + do i=1,sze + call random_number(r1) + call random_number(r2) + r1 = dsqrt(-2.d0*dlog(r1)) + r2 = dtwo_pi*r2 + u_in(i,k) = r1*dcos(r2) * u_in(i,k-N_st) + enddo + u_in(k,k) = u_in(k,k) + 10.d0 + enddo + do k=1,N_st_diag_in + call normalize(u_in(1,k),sze) + enddo + + do k=1,N_st_diag_in + do i=1,sze + U(i,k) = u_in(i,k) + enddo + enddo + + + do while (.not.converged) + itertot = itertot+1 + if (itertot == 8) then + exit + endif + + do iter=1,itermax-1 + + shift = N_st_diag_in*(iter-1) + shift2 = N_st_diag_in*iter + + if ((iter > 1).or.(itertot == 1)) then + ! Compute |W_k> = \sum_i |i> + ! ----------------------------------- + call hcalc(W(1,shift+1),U(1,shift+1),N_st_diag_in,sze) + ! Compute then the DIAGONAL PART OF THE DRESSING + ! += Dress_jj(i) * + call dressing_diag_uv(W(1,shift+1),U(1,shift+1),Dress_jj,N_st_diag_in,sze) + else + ! Already computed in update below + continue + endif + + + if (N_st == 1) then + + l = idx_dress + double precision :: f + f = inv_c_idx_dress + do istate=1,N_st_diag_in + do i=1,sze + W(i,shift+istate) += Dressing_vec(i,1) *f * U(l,shift+istate) + W(l,shift+istate) += Dressing_vec(i,1) *f * U(i,shift+istate) + enddo + enddo + + else + print*,'dav_double_dressed routine not yet implemented for N_st > 1' +! +! call dgemm('T','N', N_st, N_st_diag_in, sze, 1.d0, & +! psi_coef, size(psi_coef,1), & +! U(1,shift+1), size(U,1), 0.d0, s_tmp, size(s_tmp,1)) +! +! call dgemm('N','N', sze, N_st_diag_in, N_st, 1.0d0, & +! Dressing_vec, size(Dressing_vec,1), s_tmp, size(s_tmp,1), & +! 1.d0, W(1,shift+1), size(W,1)) +! +! +! call dgemm('T','N', N_st, N_st_diag_in, sze, 1.d0, & +! Dressing_vec, size(Dressing_vec,1), & +! U(1,shift+1), size(U,1), 0.d0, s_tmp, size(s_tmp,1)) +! +! call dgemm('N','N', sze, N_st_diag_in, N_st, 1.0d0, & +! psi_coef, size(psi_coef,1), s_tmp, size(s_tmp,1), & +! 1.d0, W(1,shift+1), size(W,1)) +! + endif + + ! Compute h_kl = = + ! ------------------------------------------- + + call dgemm('T','N', shift2, shift2, sze, & + 1.d0, U, size(U,1), W, size(W,1), & + 0.d0, h, size(h,1)) + call dgemm('T','N', shift2, shift2, sze, & + 1.d0, U, size(U,1), U, size(U,1), & + 0.d0, s_tmp, size(s_tmp,1)) + + ! Diagonalize h + ! --------------- + + integer :: lwork, info + double precision, allocatable :: work(:) + + y = h + lwork = -1 + allocate(work(1)) + call dsygv(1,'V','U',shift2,y,size(y,1), & + s_tmp,size(s_tmp,1), lambda, work,lwork,info) + lwork = int(work(1)) + deallocate(work) + allocate(work(lwork)) + call dsygv(1,'V','U',shift2,y,size(y,1), & + s_tmp,size(s_tmp,1), lambda, work,lwork,info) + deallocate(work) + if (info /= 0) then + stop 'DSYGV Diagonalization failed' + endif + + ! Compute Energy for each eigenvector + ! ----------------------------------- + + call dgemm('N','N',shift2,shift2,shift2, & + 1.d0, h, size(h,1), y, size(y,1), & + 0.d0, s_tmp, size(s_tmp,1)) + + call dgemm('T','N',shift2,shift2,shift2, & + 1.d0, y, size(y,1), s_tmp, size(s_tmp,1), & + 0.d0, h, size(h,1)) + + do k=1,shift2 + lambda(k) = h(k,k) + enddo + + if (state_following) then + + overlap = -1.d0 + do k=1,shift2 + do i=1,shift2 + overlap(k,i) = dabs(y(k,i)) + enddo + enddo + do k=1,N_st + cmax = -1.d0 + do i=1,N_st + if (overlap(i,k) > cmax) then + cmax = overlap(i,k) + order(k) = i + endif + enddo + do i=1,N_st_diag_in + overlap(order(k),i) = -1.d0 + enddo + enddo + overlap = y + do k=1,N_st + l = order(k) + if (k /= l) then + y(1:shift2,k) = overlap(1:shift2,l) + endif + enddo + do k=1,N_st + overlap(k,1) = lambda(k) + enddo + + endif + + + ! Express eigenvectors of h in the determinant basis + ! -------------------------------------------------- + + call dgemm('N','N', sze, N_st_diag_in, shift2, & + 1.d0, U, size(U,1), y, size(y,1), 0.d0, U(1,shift2+1), size(U,1)) + call dgemm('N','N', sze, N_st_diag_in, shift2, & + 1.d0, W, size(W,1), y, size(y,1), 0.d0, W(1,shift2+1), size(W,1)) + + ! Compute residual vector and davidson step + ! ----------------------------------------- + + !$OMP PARALLEL DO DEFAULT(SHARED) PRIVATE(i,k) + do k=1,N_st_diag_in + do i=1,sze + U(i,shift2+k) = & + (lambda(k) * U(i,shift2+k) - W(i,shift2+k) ) & + /max(H_jj_tmp(i) - lambda (k),1.d-2) + enddo + + if (k <= N_st) then + residual_norm(k) = u_dot_u(U(1,shift2+k),sze) + to_print(1,k) = lambda(k) + to_print(2,k) = residual_norm(k) + endif + enddo + !$OMP END PARALLEL DO + + + if ((itertot>1).and.(iter == 1)) then + !don't print + continue + else + write(*,'(1X,I3,1X,100(1X,F16.10,1X,E11.3))') iter-1, to_print(1:2,1:N_st) + endif + + ! Check convergence + if (iter > 1) then + converged = dabs(maxval(residual_norm(1:N_st))) < threshold_davidson + endif + + do k=1,N_st + if (residual_norm(k) > 1.d8) then + print *, 'Davidson failed' + stop -1 + endif + enddo + if (converged) then + exit + endif + + logical, external :: qp_stop + if (qp_stop()) then + converged = .True. + exit + endif + + + enddo + + ! Re-contract U and update W + ! -------------------------------- + + call dgemm('N','N', sze, N_st_diag_in, shift2, 1.d0, & + W, size(W,1), y, size(y,1), 0.d0, u_in, size(u_in,1)) + do k=1,N_st_diag_in + do i=1,sze + W(i,k) = u_in(i,k) + enddo + enddo + + call dgemm('N','N', sze, N_st_diag_in, shift2, 1.d0, & + U, size(U,1), y, size(y,1), 0.d0, u_in, size(u_in,1)) + + do k=1,N_st_diag_in + do i=1,sze + U(i,k) = u_in(i,k) + enddo + enddo + + enddo + + + call nullify_small_elements(sze,N_st_diag_in,U,size(U,1),threshold_davidson_pt2) + do k=1,N_st_diag_in + do i=1,sze + u_in(i,k) = U(i,k) + enddo + enddo + + do k=1,N_st_diag_in + energies(k) = lambda(k) + enddo + write_buffer = '======' + do i=1,N_st + write_buffer = trim(write_buffer)//' ================ ===========' + enddo + write(6,'(A)') trim(write_buffer) + write(6,'(A)') '' + call write_time(6) + + deallocate(W) + + deallocate ( & + residual_norm, & + U, overlap, & + h, y, s_tmp, & + lambda & + ) + FREE nthreads_davidson +end + + +subroutine dressing_diag_uv(v,u,dress_diag,N_st,sze) + implicit none + BEGIN_DOC + ! Routine that computes the diagonal part of the dressing + ! + ! v(i) += u(i) * dress_diag(i) + ! + ! !!!!!!!! WARNING !!!!!!!! the vector v is not initialized + ! + ! !!!!!!!! SO MAKE SURE THERE ARE SOME MEANINGFUL VALUES IN THERE + END_DOC + integer, intent(in) :: N_st,sze + double precision, intent(in) :: u(sze,N_st),dress_diag(sze) + double precision, intent(inout) :: v(sze,N_st) + integer :: i,istate + do istate = 1, N_st + do i = 1, sze + v(i,istate) += dress_diag(i) * u(i,istate) + enddo + enddo +end + + + + + + + + + + + diff --git a/src/dav_general_mat/dav_ext_rout.irp.f b/src/dav_general_mat/dav_ext_rout.irp.f index ff2167e4..0f2d7680 100644 --- a/src/dav_general_mat/dav_ext_rout.irp.f +++ b/src/dav_general_mat/dav_ext_rout.irp.f @@ -3,7 +3,7 @@ subroutine davidson_general_ext_rout(u_in,H_jj,energies,sze,N_st,N_st_diag_in,co use mmap_module implicit none BEGIN_DOC - ! Davidson diagonalization with specific diagonal elements of the H matrix + ! Generic Davidson diagonalization ! ! H_jj : specific diagonal H matrix elements to diagonalize de Davidson ! diff --git a/src/utils/sort.irp.f b/src/utils/sort.irp.f index a63eb4a3..2a655eed 100644 --- a/src/utils/sort.irp.f +++ b/src/utils/sort.irp.f @@ -38,7 +38,15 @@ BEGIN_TEMPLATE $type,intent(inout) :: x(isize) integer,intent(inout) :: iorder(isize) integer, external :: omp_get_num_threads - call rec_$X_quicksort(x,iorder,isize,1,isize,nproc) + if (omp_get_num_threads() == 1) then + !$OMP PARALLEL DEFAULT(SHARED) + !$OMP SINGLE + call rec_$X_quicksort(x,iorder,isize,1,isize,nproc) + !$OMP END SINGLE + !$OMP END PARALLEL + else + call rec_$X_quicksort(x,iorder,isize,1,isize,nproc) + endif end recursive subroutine rec_$X_quicksort(x, iorder, isize, first, last, level) @@ -49,7 +57,7 @@ BEGIN_TEMPLATE $type :: c, tmp integer :: itmp integer :: i, j - + if(isize<2)return c = x( shiftr(first+last,1) ) @@ -81,11 +89,16 @@ BEGIN_TEMPLATE endif else if (first < i-1) then + !$OMP TASK DEFAULT(SHARED) FIRSTPRIVATE(isize,first,i,level) call rec_$X_quicksort(x, iorder, isize, first, i-1,level/2) + !$OMP END TASK endif if (j+1 < last) then + !$OMP TASK DEFAULT(SHARED) FIRSTPRIVATE(isize,last,j,level) call rec_$X_quicksort(x, iorder, isize, j+1, last,level/2) + !$OMP END TASK endif + !$OMP TASKWAIT endif end @@ -249,60 +262,7 @@ SUBST [ X, type ] i2 ; integer*2 ;; END_TEMPLATE - -!---------------------- INTEL -IRP_IF INTEL - BEGIN_TEMPLATE - subroutine $Xsort(x,iorder,isize) - use intel - implicit none - BEGIN_DOC - ! Sort array x(isize). - ! iorder in input should be (1,2,3,...,isize), and in output - ! contains the new order of the elements. - END_DOC - integer,intent(in) :: isize - $type,intent(inout) :: x(isize) - integer,intent(inout) :: iorder(isize) - integer :: n - character, allocatable :: tmp(:) - if (isize < 2) return - call ippsSortRadixIndexGetBufferSize(isize, $ippsz, n) - allocate(tmp(n)) - call ippsSortRadixIndexAscend_$ityp(x, $n, iorder, isize, tmp) - deallocate(tmp) - iorder(1:isize) = iorder(1:isize)+1 - call $Xset_order(x,iorder,isize) - end - - subroutine $Xsort_noidx(x,isize) - use intel - implicit none - BEGIN_DOC - ! Sort array x(isize). - ! iorder in input should be (1,2,3,...,isize), and in output - ! contains the new order of the elements. - END_DOC - integer,intent(in) :: isize - $type,intent(inout) :: x(isize) - integer :: n - character, allocatable :: tmp(:) - if (isize < 2) return - call ippsSortRadixIndexGetBufferSize(isize, $ippsz, n) - allocate(tmp(n)) - call ippsSortRadixAscend_$ityp_I(x, isize, tmp) - deallocate(tmp) - end - -SUBST [ X, type, ityp, n, ippsz ] - ; real ; 32f ; 4 ; 13 ;; - i ; integer ; 32s ; 4 ; 11 ;; - i2 ; integer*2 ; 16s ; 2 ; 7 ;; -END_TEMPLATE - -BEGIN_TEMPLATE - subroutine $Xsort(x,iorder,isize) implicit none BEGIN_DOC @@ -329,12 +289,12 @@ BEGIN_TEMPLATE endif end subroutine $Xsort -SUBST [ X, type ] - d ; double precision ;; +SUBST [ X, type, Y ] + ; real ; i ;; + d ; double precision ; i8 ;; END_TEMPLATE BEGIN_TEMPLATE - subroutine $Xsort(x,iorder,isize) implicit none BEGIN_DOC @@ -346,112 +306,8 @@ BEGIN_TEMPLATE $type,intent(inout) :: x(isize) integer,intent(inout) :: iorder(isize) integer :: n - if (isize < 2) then - return - endif - call sorted_$Xnumber(x,isize,n) - if (isize == n) then - return - endif - if ( isize < 32) then - call insertion_$Xsort(x,iorder,isize) - else - call $Xradix_sort(x,iorder,isize,-1) - endif - end subroutine $Xsort - -SUBST [ X, type ] - i8 ; integer*8 ;; -END_TEMPLATE - -!---------------------- END INTEL -IRP_ELSE -!---------------------- NON-INTEL -BEGIN_TEMPLATE - - subroutine $Xsort_noidx(x,isize) - implicit none - BEGIN_DOC - ! Sort array x(isize). - END_DOC - integer,intent(in) :: isize - $type,intent(inout) :: x(isize) - integer, allocatable :: iorder(:) - integer :: i - allocate(iorder(isize)) - do i=1,isize - iorder(i)=i - enddo - call $Xsort(x,iorder,isize) - deallocate(iorder) - end subroutine $Xsort_noidx - -SUBST [ X, type ] - ; real ;; - d ; double precision ;; - i ; integer ;; - i8 ; integer*8 ;; - i2 ; integer*2 ;; -END_TEMPLATE - -BEGIN_TEMPLATE - - subroutine $Xsort(x,iorder,isize) - implicit none - BEGIN_DOC - ! Sort array x(isize). - ! iorder in input should be (1,2,3,...,isize), and in output - ! contains the new order of the elements. - END_DOC - integer,intent(in) :: isize - $type,intent(inout) :: x(isize) - integer,intent(inout) :: iorder(isize) - integer :: n - if (isize < 2) then - return - endif -! call sorted_$Xnumber(x,isize,n) -! if (isize == n) then -! return -! endif - if ( isize < 32) then - call insertion_$Xsort(x,iorder,isize) - else -! call heap_$Xsort(x,iorder,isize) - call quick_$Xsort(x,iorder,isize) - endif - end subroutine $Xsort - -SUBST [ X, type ] - ; real ;; - d ; double precision ;; -END_TEMPLATE - -BEGIN_TEMPLATE - - subroutine $Xsort(x,iorder,isize) - implicit none - BEGIN_DOC - ! Sort array x(isize). - ! iorder in input should be (1,2,3,...,isize), and in output - ! contains the new order of the elements. - END_DOC - integer,intent(in) :: isize - $type,intent(inout) :: x(isize) - integer,intent(inout) :: iorder(isize) - integer :: n - if (isize < 2) then - return - endif - call sorted_$Xnumber(x,isize,n) - if (isize == n) then - return - endif - if ( isize < 32) then - call insertion_$Xsort(x,iorder,isize) - else - call $Xradix_sort(x,iorder,isize,-1) - endif +! call $Xradix_sort(x,iorder,isize,-1) + call quick_$Xsort(x,iorder,isize) end subroutine $Xsort SUBST [ X, type ] @@ -460,11 +316,6 @@ SUBST [ X, type ] i2 ; integer*2 ;; END_TEMPLATE -IRP_ENDIF -!---------------------- END NON-INTEL - - - BEGIN_TEMPLATE subroutine $Xset_order(x,iorder,isize) implicit none @@ -562,12 +413,10 @@ SUBST [ X, type ] i2; integer*2 ;; END_TEMPLATE - BEGIN_TEMPLATE -recursive subroutine $Xradix_sort$big(x,iorder,isize,iradix) + recursive subroutine $Xradix_sort$big(x,iorder,isize,iradix) implicit none - BEGIN_DOC ! Sort integer array x(isize) using the radix sort algorithm. ! iorder in input should be (1,2,3,...,isize), and in output @@ -703,14 +552,24 @@ recursive subroutine $Xradix_sort$big(x,iorder,isize,iradix) endif +! !$OMP PARALLEL DEFAULT(SHARED) if (isize > 1000000) +! !$OMP SINGLE if (i3>1_$int_type) then +! !$OMP TASK FIRSTPRIVATE(iradix_new,i3) SHARED(x,iorder) if(i3 > 1000000) call $Xradix_sort$big(x,iorder,i3,iradix_new-1) +! !$OMP END TASK endif if (isize-i3>1_$int_type) then +! !$OMP TASK FIRSTPRIVATE(iradix_new,i3) SHARED(x,iorder) if(isize-i3 > 1000000) call $Xradix_sort$big(x(i3+1_$int_type),iorder(i3+1_$int_type),isize-i3,iradix_new-1) +! !$OMP END TASK endif +! !$OMP TASKWAIT +! !$OMP END SINGLE +! !$OMP END PARALLEL + return endif @@ -765,11 +624,16 @@ recursive subroutine $Xradix_sort$big(x,iorder,isize,iradix) if (i1>1_$int_type) then + !$OMP TASK FIRSTPRIVATE(i0,iradix,i1) SHARED(x,iorder) if(i1 >1000000) call $Xradix_sort$big(x(i0+1_$int_type),iorder(i0+1_$int_type),i1,iradix-1) + !$OMP END TASK endif if (i0>1) then + !$OMP TASK FIRSTPRIVATE(i0,iradix) SHARED(x,iorder) if(i0 >1000000) call $Xradix_sort$big(x,iorder,i0,iradix-1) + !$OMP END TASK endif + !$OMP TASKWAIT end @@ -782,4 +646,3 @@ SUBST [ X, type, integer_size, is_big, big, int_type ] END_TEMPLATE -