mirror of
https://github.com/QuantumPackage/qp2.git
synced 2024-11-09 06:53:38 +01:00
Merge branch 'dev' into good-dev-tc
This commit is contained in:
commit
1a708bcb81
2
configure
vendored
2
configure
vendored
@ -369,7 +369,7 @@ else
|
||||
echo ""
|
||||
echo "${QP_ROOT}/build.ninja does not exist,"
|
||||
echo "you need to specify the COMPILATION configuration file."
|
||||
echo "See ./configure --help for more details."
|
||||
echo "See ./configure -h for more details."
|
||||
echo ""
|
||||
fi
|
||||
|
||||
|
@ -63,11 +63,11 @@ end
|
||||
|
||||
module Connect_msg : sig
|
||||
type t = Tcp | Inproc | Ipc
|
||||
val create : typ:string -> t
|
||||
val create : string -> t
|
||||
val to_string : t -> string
|
||||
end = struct
|
||||
type t = Tcp | Inproc | Ipc
|
||||
let create ~typ =
|
||||
let create typ =
|
||||
match typ with
|
||||
| "tcp" -> Tcp
|
||||
| "inproc" -> Inproc
|
||||
@ -515,9 +515,9 @@ let of_string s =
|
||||
| Connect_ socket ->
|
||||
Connect (Connect_msg.create socket)
|
||||
| NewJob_ { state ; push_address_tcp ; push_address_inproc } ->
|
||||
Newjob (Newjob_msg.create push_address_tcp push_address_inproc state)
|
||||
Newjob (Newjob_msg.create ~address_tcp:push_address_tcp ~address_inproc:push_address_inproc ~state)
|
||||
| EndJob_ state ->
|
||||
Endjob (Endjob_msg.create state)
|
||||
Endjob (Endjob_msg.create ~state)
|
||||
| GetData_ { state ; client_id ; key } ->
|
||||
GetData (GetData_msg.create ~client_id ~state ~key)
|
||||
| PutData_ { state ; client_id ; key } ->
|
||||
|
@ -776,7 +776,7 @@ let run ~port =
|
||||
Zmq.Socket.create zmq_context Zmq.Socket.rep
|
||||
in
|
||||
Zmq.Socket.set_linger_period rep_socket 1_000_000;
|
||||
bind_socket "REP" rep_socket port;
|
||||
bind_socket ~socket_type:"REP" ~socket:rep_socket ~port;
|
||||
|
||||
let initial_program_state =
|
||||
{ queue = Queuing_system.create () ;
|
||||
|
@ -1097,7 +1097,7 @@ implicit none
|
||||
integer nptsgridmax,nptsgrid
|
||||
double precision coefs_pseudo,ptsgrid
|
||||
parameter(nptsgridmax=50)
|
||||
common/pseudos/coefs_pseudo(nptsgridmax),ptsgrid(nptsgridmax,3)
|
||||
double precision common/pseudos/coefs_pseudo(nptsgridmax),ptsgrid(nptsgridmax,3)
|
||||
!!!!!
|
||||
integer npower_orb(3),l,m,i
|
||||
double precision x,g_orb,two_pi,dx,dphi,term,orb_phi,ylm_real,sintheta,r_orb,phi,center_orb(3)
|
||||
@ -1238,7 +1238,7 @@ end
|
||||
double precision coefs_pseudo,ptsgrid
|
||||
double precision p,q,r,s
|
||||
parameter(nptsgridmax=50)
|
||||
common/pseudos/coefs_pseudo(nptsgridmax),ptsgrid(nptsgridmax,3)
|
||||
double precision common/pseudos/coefs_pseudo(nptsgridmax),ptsgrid(nptsgridmax,3)
|
||||
|
||||
p=1.d0/dsqrt(2.d0)
|
||||
q=1.d0/dsqrt(3.d0)
|
||||
|
@ -174,9 +174,6 @@ BEGIN_PROVIDER [integer, n_core_inact_act_orb ]
|
||||
n_core_inact_act_orb = (n_core_orb + n_inact_orb + n_act_orb)
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ integer(bit_kind), core_bitmask , (N_int,2) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
@ -444,4 +441,3 @@ BEGIN_PROVIDER [integer, list_all_but_del_orb, (n_all_but_del_orb)]
|
||||
enddo
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
@ -46,6 +46,24 @@ module cfunctions
|
||||
real (kind=C_DOUBLE ),intent(out) :: csftodetmatrix(rowsmax,colsmax)
|
||||
end subroutine getCSFtoDETTransformationMatrix
|
||||
end interface
|
||||
interface
|
||||
subroutine gramSchmidt(A, m, n, B) bind(C, name='gramSchmidt')
|
||||
import C_INT32_T, C_INT64_T, C_DOUBLE
|
||||
integer(kind=C_INT32_T),value,intent(in) :: m
|
||||
integer(kind=C_INT32_T),value,intent(in) :: n
|
||||
real (kind=C_DOUBLE ),intent(in) :: A(m,n)
|
||||
real (kind=C_DOUBLE ),intent(out) :: B(m,n)
|
||||
end subroutine gramSchmidt
|
||||
end interface
|
||||
interface
|
||||
subroutine gramSchmidt_qp(A, m, n, B) bind(C, name='gramSchmidt_qp')
|
||||
import C_INT32_T, C_INT64_T, C_DOUBLE
|
||||
integer(kind=C_INT32_T),value,intent(in) :: m
|
||||
integer(kind=C_INT32_T),value,intent(in) :: n
|
||||
real (kind=C_DOUBLE ),intent(in) :: A(m,n)
|
||||
real (kind=C_DOUBLE ),intent(out) :: B(m,n)
|
||||
end subroutine gramSchmidt_qp
|
||||
end interface
|
||||
end module cfunctions
|
||||
|
||||
subroutine f_dgemm(TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB, BETA, C, LDC) &
|
||||
|
@ -1,5 +1,6 @@
|
||||
#include <stdint.h>
|
||||
#include <stdio.h>
|
||||
#include <assert.h>
|
||||
#include "tree_utils.h"
|
||||
|
||||
void int_to_bin_digit(int64_t in, int count, int* out)
|
||||
@ -28,19 +29,19 @@ void getncsfs1(int *inpnsomo, int *inpms, int *outncsfs){
|
||||
int nsomo = *inpnsomo;
|
||||
int ms = *inpms;
|
||||
int nparcoupl = (nsomo + ms)/2;
|
||||
*outncsfs = binom(nsomo, nparcoupl);
|
||||
*outncsfs = binom((double)nsomo, (double)nparcoupl);
|
||||
}
|
||||
|
||||
void getncsfs(int NSOMO, int MS, int *outncsfs){
|
||||
int nparcoupl = (NSOMO + MS)/2;
|
||||
int nparcouplp1 = ((NSOMO + MS)/2)+1;
|
||||
int nparcoupl = (NSOMO + MS)/2; // n_alpha
|
||||
int nparcouplp1 = ((NSOMO + MS)/2)+1; // n_alpha + 1
|
||||
double tmpndets=0.0;
|
||||
if(NSOMO == 0){
|
||||
(*outncsfs) = 1;
|
||||
return;
|
||||
}
|
||||
tmpndets = binom(NSOMO, nparcoupl);
|
||||
(*outncsfs) = round(tmpndets - binom(NSOMO, nparcouplp1));
|
||||
tmpndets = binom((double)NSOMO, (double)nparcoupl);
|
||||
(*outncsfs) = round(tmpndets - binom((double)NSOMO, (double)nparcouplp1));
|
||||
}
|
||||
|
||||
#include <stdint.h>
|
||||
@ -252,6 +253,27 @@ void generateAllBFs(int64_t Isomo, int64_t MS, Tree *bftree, int *NBF, int *NSOM
|
||||
buildTreeDriver(bftree, *NSOMO, MS, NBF);
|
||||
}
|
||||
|
||||
void ortho_qr_csf(double *overlapMatrix, int lda, double *orthoMatrix, int rows, int cols);
|
||||
|
||||
// QR to orthogonalize CSFs does not work
|
||||
//void gramSchmidt_qp(double *overlapMatrix, int rows, int cols, double *orthoMatrix){
|
||||
// int i,j;
|
||||
// //for(j=0;j<cols;++j){
|
||||
// // for(i=0;i<rows;++i){
|
||||
// // printf(" %3.2f ",overlapMatrix[j*rows + i]);
|
||||
// // }
|
||||
// // printf("\n");
|
||||
// //}
|
||||
// // Call the function ortho_qr from qp
|
||||
// ortho_qr_csf(overlapMatrix, rows, orthoMatrix, rows, cols);
|
||||
// //for(j=0;j<cols;++j){
|
||||
// // for(i=0;i<rows;++i){
|
||||
// // printf(" %3.2f ",orthoMatrix[j*rows + i]);
|
||||
// // }
|
||||
// // printf("\n");
|
||||
// //}
|
||||
//}
|
||||
|
||||
void gramSchmidt(double *overlapMatrix, int rows, int cols, double *orthoMatrix){
|
||||
|
||||
// vector
|
||||
@ -341,8 +363,12 @@ void convertCSFtoDetBasis(int64_t Isomo, int MS, int rowsmax, int colsmax, doubl
|
||||
Get BFtoDeterminant Matrix
|
||||
************************************/
|
||||
|
||||
printf("In convertcsftodet\n");
|
||||
|
||||
//printf(" --- In convet ----\n");
|
||||
convertBFtoDetBasis(Isomo, MS, &bftodetmatrixI, &rowsbftodetI, &colsbftodetI);
|
||||
//printf(" --- done bf det basis ---- row=%d col=%d\n",rowsbftodetI,colsbftodetI);
|
||||
|
||||
//printRealMatrix(bftodetmatrixI,rowsbftodetI,colsbftodetI);
|
||||
|
||||
int rowsI = 0;
|
||||
int colsI = 0;
|
||||
@ -350,6 +376,8 @@ void convertCSFtoDetBasis(int64_t Isomo, int MS, int rowsmax, int colsmax, doubl
|
||||
//getOverlapMatrix(Isomo, MS, &overlapMatrixI, &rowsI, &colsI, &NSOMO);
|
||||
getOverlapMatrix_withDet(bftodetmatrixI, rowsbftodetI, colsbftodetI, Isomo, MS, &overlapMatrixI, &rowsI, &colsI, &NSOMO);
|
||||
|
||||
//printf("Overlap matrix\n");
|
||||
//printRealMatrix(overlapMatrixI,rowsI,colsI);
|
||||
|
||||
/***********************************
|
||||
Get Orthonormalization Matrix
|
||||
@ -359,6 +387,9 @@ void convertCSFtoDetBasis(int64_t Isomo, int MS, int rowsmax, int colsmax, doubl
|
||||
|
||||
gramSchmidt(overlapMatrixI, rowsI, colsI, orthoMatrixI);
|
||||
|
||||
//printf("Ortho matrix\n");
|
||||
//printRealMatrix(orthoMatrixI,rowsI,colsI);
|
||||
|
||||
/***********************************
|
||||
Get Final CSF to Det Matrix
|
||||
************************************/
|
||||
@ -1340,11 +1371,11 @@ void getbftodetfunction(Tree *dettree, int NSOMO, int MS, int *BF1, double *rowv
|
||||
for(int i = 0; i < npairs; i++){
|
||||
for(int j = 0; j < NSOMO; j++) {
|
||||
inpdet[j] = detslist[i*NSOMO + j];
|
||||
printf(" %d ",inpdet[j]);
|
||||
//printf(" %d ",inpdet[j]);
|
||||
}
|
||||
printf("\n");
|
||||
//printf("\n");
|
||||
findAddofDetDriver(dettree, NSOMO, inpdet, &addr);
|
||||
printf("(%d) - addr = %d\n",i,addr);
|
||||
//printf("(%d) - addr = %d\n",i,addr);
|
||||
// Calculate the phase for cfg to QP2 conversion
|
||||
//get_phase_cfg_to_qp_inpList(inpdet, NSOMO, &phase_cfg_to_qp);
|
||||
//rowvec[addr] = 1.0 * phaselist[i]*phase_cfg_to_qp/sqrt(fac);
|
||||
@ -1363,12 +1394,23 @@ void getbftodetfunction(Tree *dettree, int NSOMO, int MS, int *BF1, double *rowv
|
||||
void convertBFtoDetBasis(int64_t Isomo, int MS, double **bftodetmatrixptr, int *rows, int *cols){
|
||||
|
||||
int NSOMO=0;
|
||||
//printf("before getSetBits Isomo=%ld, NSOMO=%ld\n",Isomo,NSOMO);
|
||||
getSetBits(Isomo, &NSOMO);
|
||||
//printf("Isomo=%ld, NSOMO=%ld\n",Isomo,NSOMO);
|
||||
int ndets = 0;
|
||||
int NBF = 0;
|
||||
double dNSOMO = NSOMO*1.0;
|
||||
double nalpha = (NSOMO + MS)/2.0;
|
||||
ndets = (int)binom(dNSOMO, nalpha);
|
||||
//double dNSOMO = NSOMO*1.0;
|
||||
// MS = alpha_num - beta_num
|
||||
int nalpha = (NSOMO + MS)/2;
|
||||
//printf(" in convertbftodet : MS=%d nalpha=%3.2f\n",MS,nalpha);
|
||||
//ndets = (int)binom(dNSOMO, nalpha);
|
||||
if(NSOMO > 0){
|
||||
ndets = (int)binom((double)NSOMO, (double)nalpha);
|
||||
}
|
||||
else if(NSOMO == 0){
|
||||
ndets = 1;
|
||||
}
|
||||
else printf("Something is wrong in calcMEdetpair\n");
|
||||
|
||||
Tree dettree = (Tree){ .rootNode = NULL, .NBF = -1 };
|
||||
dettree.rootNode = malloc(sizeof(Node));
|
||||
@ -1389,16 +1431,6 @@ void convertBFtoDetBasis(int64_t Isomo, int MS, double **bftodetmatrixptr, int *
|
||||
}
|
||||
else{
|
||||
|
||||
//int addr = -1;
|
||||
//int inpdet[NSOMO];
|
||||
//inpdet[0] = 1;
|
||||
//inpdet[1] = 1;
|
||||
//inpdet[2] = 1;
|
||||
//inpdet[3] = 0;
|
||||
//inpdet[4] = 0;
|
||||
//inpdet[5] = 0;
|
||||
|
||||
//findAddofDetDriver(&dettree, NSOMO, inpdet, &addr);
|
||||
|
||||
int detlist[ndets];
|
||||
getDetlistDriver(&dettree, NSOMO, detlist);
|
||||
@ -1411,6 +1443,9 @@ void convertBFtoDetBasis(int64_t Isomo, int MS, double **bftodetmatrixptr, int *
|
||||
generateAllBFs(Isomo, MS, &bftree, &NBF, &NSOMO);
|
||||
|
||||
// Initialize transformation matrix
|
||||
//printf("MS=%d NBF=%d ndets=%d NSOMO=%d\n",MS,NBF,ndets,NSOMO);
|
||||
assert( NBF > 0);
|
||||
assert( ndets > 0);
|
||||
(*bftodetmatrixptr) = malloc(NBF*ndets*sizeof(double));
|
||||
(*rows) = NBF;
|
||||
(*cols) = ndets;
|
||||
@ -1465,9 +1500,10 @@ void convertBFtoDetBasisWithArrayDims(int64_t Isomo, int MS, int rowsmax, int co
|
||||
getSetBits(Isomo, &NSOMO);
|
||||
int ndets = 0;
|
||||
int NBF = 0;
|
||||
double dNSOMO = NSOMO*1.0;
|
||||
double nalpha = (NSOMO + MS)/2.0;
|
||||
ndets = (int)binom(dNSOMO, nalpha);
|
||||
//double dNSOMO = NSOMO*1.0;
|
||||
//double nalpha = (NSOMO + MS)/2.0;
|
||||
int nalpha = (NSOMO + MS)/2;
|
||||
ndets = (int)binom((double)NSOMO, (double)nalpha);
|
||||
|
||||
Tree dettree = (Tree){ .rootNode = NULL, .NBF = -1 };
|
||||
dettree.rootNode = malloc(sizeof(Node));
|
||||
@ -1551,6 +1587,7 @@ void getApqIJMatrixDims(int64_t Isomo, int64_t Jsomo, int64_t MS, int32_t *rowso
|
||||
getncsfs(NSOMOJ, MS, &NBFJ);
|
||||
(*rowsout) = NBFI;
|
||||
(*colsout) = NBFJ;
|
||||
//exit(0);
|
||||
}
|
||||
|
||||
void getApqIJMatrixDriver(int64_t Isomo, int64_t Jsomo, int orbp, int orbq, int64_t MS, int64_t NMO, double **CSFICSFJApqIJptr, int *rowsout, int *colsout){
|
||||
@ -1669,6 +1706,7 @@ void getApqIJMatrixDriverArrayInp(int64_t Isomo, int64_t Jsomo, int32_t orbp, in
|
||||
|
||||
int rowsbftodetI, colsbftodetI;
|
||||
|
||||
//printf(" 1Calling convertBFtoDetBasis Isomo=%ld MS=%ld\n",Isomo,MS);
|
||||
convertBFtoDetBasis(Isomo, MS, &bftodetmatrixI, &rowsbftodetI, &colsbftodetI);
|
||||
|
||||
// Fill matrix
|
||||
@ -1676,8 +1714,14 @@ void getApqIJMatrixDriverArrayInp(int64_t Isomo, int64_t Jsomo, int32_t orbp, in
|
||||
int colsI = 0;
|
||||
|
||||
//getOverlapMatrix(Isomo, MS, &overlapMatrixI, &rowsI, &colsI, &NSOMO);
|
||||
//getOverlapMatrix(Isomo, MS, &overlapMatrixI, &rowsI, &colsI, &NSOMO);
|
||||
//printf("Isomo=%ld\n",Isomo);
|
||||
getOverlapMatrix_withDet(bftodetmatrixI, rowsbftodetI, colsbftodetI, Isomo, MS, &overlapMatrixI, &rowsI, &colsI, &NSOMO);
|
||||
if(Isomo == 0){
|
||||
rowsI = 1;
|
||||
colsI = 1;
|
||||
}
|
||||
|
||||
//printf("Isomo=%ld\n",Isomo);
|
||||
|
||||
orthoMatrixI = malloc(rowsI*colsI*sizeof(double));
|
||||
|
||||
@ -1689,6 +1733,7 @@ void getApqIJMatrixDriverArrayInp(int64_t Isomo, int64_t Jsomo, int32_t orbp, in
|
||||
|
||||
int rowsbftodetJ, colsbftodetJ;
|
||||
|
||||
//printf(" 2Calling convertBFtoDetBasis Jsomo=%ld MS=%ld\n",Jsomo,MS);
|
||||
convertBFtoDetBasis(Jsomo, MS, &bftodetmatrixJ, &rowsbftodetJ, &colsbftodetJ);
|
||||
|
||||
int rowsJ = 0;
|
||||
@ -1696,6 +1741,10 @@ void getApqIJMatrixDriverArrayInp(int64_t Isomo, int64_t Jsomo, int32_t orbp, in
|
||||
// Fill matrix
|
||||
//getOverlapMatrix(Jsomo, MS, &overlapMatrixJ, &rowsJ, &colsJ, &NSOMO);
|
||||
getOverlapMatrix_withDet(bftodetmatrixJ, rowsbftodetJ, colsbftodetJ, Jsomo, MS, &overlapMatrixJ, &rowsJ, &colsJ, &NSOMO);
|
||||
if(Jsomo == 0){
|
||||
rowsJ = 1;
|
||||
colsJ = 1;
|
||||
}
|
||||
|
||||
orthoMatrixJ = malloc(rowsJ*colsJ*sizeof(double));
|
||||
|
||||
@ -1713,18 +1762,25 @@ void getApqIJMatrixDriverArrayInp(int64_t Isomo, int64_t Jsomo, int32_t orbp, in
|
||||
|
||||
int transA=false;
|
||||
int transB=false;
|
||||
//printf("1Calling blas\n");
|
||||
//printf("rowsA=%d colsA=%d\nrowB=%d colB=%d\n",rowsbftodetI,colsbftodetI,rowsA,colsA);
|
||||
callBlasMatxMat(bftodetmatrixI, rowsbftodetI, colsbftodetI, ApqIJ, rowsA, colsA, bfIApqIJ, transA, transB);
|
||||
//printf("done\n");
|
||||
|
||||
// now transform I in csf basis
|
||||
double *CSFIApqIJ = malloc(rowsI*colsA*sizeof(double));
|
||||
transA = false;
|
||||
transB = false;
|
||||
//printf("2Calling blas\n");
|
||||
//printf("rowsA=%d colsA=%d\nrowB=%d colB=%d\n",rowsI,colsI,colsI,colsA);
|
||||
callBlasMatxMat(orthoMatrixI, rowsI, colsI, bfIApqIJ, colsI, colsA, CSFIApqIJ, transA, transB);
|
||||
|
||||
// now transform J in BF basis
|
||||
double *CSFIbfJApqIJ = malloc(rowsI*rowsbftodetJ*sizeof(double));
|
||||
transA = false;
|
||||
transB = true;
|
||||
//printf("3Calling blas\n");
|
||||
//printf("rowsA=%d colsA=%d\nrowB=%d colB=%d\n",rowsI,colsA,rowsbftodetJ,colsbftodetJ);
|
||||
callBlasMatxMat(CSFIApqIJ, rowsI, colsA, bftodetmatrixJ, rowsbftodetJ, colsbftodetJ, CSFIbfJApqIJ, transA, transB);
|
||||
|
||||
// now transform J in CSF basis
|
||||
@ -1735,13 +1791,14 @@ void getApqIJMatrixDriverArrayInp(int64_t Isomo, int64_t Jsomo, int32_t orbp, in
|
||||
double *tmpCSFICSFJApqIJ = malloc(rowsI*rowsJ*sizeof(double));
|
||||
transA = false;
|
||||
transB = true;
|
||||
//printf("4Calling blas\n");
|
||||
//printf("rowsA=%d colsA=%d\nrowB=%d colB=%d\n",rowsI,rowsbftodetJ,rowsJ,colsJ);
|
||||
callBlasMatxMat(CSFIbfJApqIJ, rowsI, rowsbftodetJ, orthoMatrixJ, rowsJ, colsJ, tmpCSFICSFJApqIJ, transA, transB);
|
||||
// Transfer to actual buffer in Fortran order
|
||||
for(int i = 0; i < rowsI; i++)
|
||||
for(int j = 0; j < rowsJ; j++)
|
||||
CSFICSFJApqIJ[j*rowsI + i] = tmpCSFICSFJApqIJ[i*rowsJ + j];
|
||||
|
||||
|
||||
// Garbage collection
|
||||
free(overlapMatrixI);
|
||||
free(overlapMatrixJ);
|
||||
|
@ -1,3 +1,592 @@
|
||||
use bitmasks
|
||||
|
||||
BEGIN_PROVIDER [ integer(bit_kind), alphasIcfg_list , (N_int,2,N_configuration,mo_num*(mo_num))]
|
||||
&BEGIN_PROVIDER [ integer, NalphaIcfg_list, (N_configuration) ]
|
||||
implicit none
|
||||
!use bitmasks
|
||||
BEGIN_DOC
|
||||
! Documentation for alphasI
|
||||
! Returns the associated alpha's for
|
||||
! the input configuration Icfg.
|
||||
END_DOC
|
||||
|
||||
integer :: idxI ! The id of the Ith CFG
|
||||
integer(bit_kind) :: Icfg(N_int,2)
|
||||
integer :: NalphaIcfg
|
||||
logical,dimension(:,:),allocatable :: tableUniqueAlphas
|
||||
integer :: listholes(mo_num)
|
||||
integer :: holetype(mo_num) ! 1-> SOMO 2->DOMO
|
||||
integer :: nholes
|
||||
integer :: nvmos
|
||||
integer :: listvmos(mo_num)
|
||||
integer :: vmotype(mo_num) ! 1 -> VMO 2 -> SOMO
|
||||
integer*8 :: Idomo
|
||||
integer*8 :: Isomo
|
||||
integer*8 :: Jdomo
|
||||
integer*8 :: Jsomo
|
||||
integer*8 :: diffSOMO
|
||||
integer*8 :: diffDOMO
|
||||
integer*8 :: xordiffSOMODOMO
|
||||
integer :: ndiffSOMO
|
||||
integer :: ndiffDOMO
|
||||
integer :: nxordiffSOMODOMO
|
||||
integer :: ndiffAll
|
||||
integer :: i,ii
|
||||
integer :: j,jj
|
||||
integer :: k,kk
|
||||
integer :: kstart
|
||||
integer :: kend
|
||||
integer :: Nsomo_I
|
||||
integer :: hole
|
||||
integer :: p
|
||||
integer :: q
|
||||
integer :: countalphas
|
||||
logical :: pqAlreadyGenQ
|
||||
logical :: pqExistsQ
|
||||
logical :: ppExistsQ
|
||||
integer*8 :: MS
|
||||
|
||||
double precision :: t0, t1
|
||||
call wall_time(t0)
|
||||
|
||||
MS = elec_alpha_num-elec_beta_num
|
||||
|
||||
allocate(tableUniqueAlphas(mo_num,mo_num))
|
||||
NalphaIcfg_list = 0
|
||||
|
||||
do idxI = 1, N_configuration
|
||||
|
||||
Icfg = psi_configuration(:,:,idxI)
|
||||
|
||||
Isomo = iand(act_bitmask(1,1),Icfg(1,1))
|
||||
Idomo = iand(act_bitmask(1,1),Icfg(1,2))
|
||||
|
||||
! find out all pq holes possible
|
||||
nholes = 0
|
||||
! holes in SOMO
|
||||
do ii = 1,n_act_orb
|
||||
i = list_act(ii)
|
||||
if(POPCNT(IAND(Isomo,IBSET(0_8,i-1))) .EQ. 1) then
|
||||
nholes += 1
|
||||
listholes(nholes) = i
|
||||
holetype(nholes) = 1
|
||||
endif
|
||||
end do
|
||||
! holes in DOMO
|
||||
do ii = 1,n_act_orb
|
||||
i = list_act(ii)
|
||||
if(POPCNT(IAND(Idomo,IBSET(0_8,i-1))) .EQ. 1) then
|
||||
nholes += 1
|
||||
listholes(nholes) = i
|
||||
holetype(nholes) = 2
|
||||
endif
|
||||
end do
|
||||
|
||||
! find vmos
|
||||
listvmos = -1
|
||||
vmotype = -1
|
||||
nvmos = 0
|
||||
do ii = 1,n_act_orb
|
||||
i = list_act(ii)
|
||||
if(IAND(Idomo,(IBSET(0_8,i-1))) .EQ. 0) then
|
||||
if(IAND(Isomo,(IBSET(0_8,i-1))) .EQ. 0) then
|
||||
nvmos += 1
|
||||
listvmos(nvmos) = i
|
||||
vmotype(nvmos) = 1
|
||||
else if(POPCNT(IAND(Isomo,(IBSET(0_8,i-1)))) .EQ. 1) then
|
||||
nvmos += 1
|
||||
listvmos(nvmos) = i
|
||||
vmotype(nvmos) = 2
|
||||
end if
|
||||
end if
|
||||
end do
|
||||
|
||||
tableUniqueAlphas = .FALSE.
|
||||
|
||||
! Now find the allowed (p,q) excitations
|
||||
Isomo = iand(act_bitmask(1,1),Icfg(1,1))
|
||||
Idomo = iand(act_bitmask(1,1),Icfg(1,2))
|
||||
Nsomo_I = POPCNT(Isomo)
|
||||
if(Nsomo_I .EQ. 0) then
|
||||
kstart = 1
|
||||
else
|
||||
kstart = cfg_seniority_index(max(NSOMOMin,Nsomo_I-2))
|
||||
endif
|
||||
kend = idxI-1
|
||||
|
||||
do i = 1,nholes
|
||||
p = listholes(i)
|
||||
do j = 1,nvmos
|
||||
q = listvmos(j)
|
||||
if(p .EQ. q) cycle
|
||||
if(holetype(i) .EQ. 1 .AND. vmotype(j) .EQ. 1) then
|
||||
! SOMO -> VMO
|
||||
Jsomo = IBCLR(Isomo,p-1)
|
||||
Jsomo = IBSET(Jsomo,q-1)
|
||||
Jdomo = Idomo
|
||||
kstart = max(1,cfg_seniority_index(max(NSOMOMin,Nsomo_I-2)))
|
||||
kend = idxI-1
|
||||
else if(holetype(i) .EQ. 1 .AND. vmotype(j) .EQ. 2) then
|
||||
! SOMO -> SOMO
|
||||
Jsomo = IBCLR(Isomo,p-1)
|
||||
Jsomo = IBCLR(Jsomo,q-1)
|
||||
Jdomo = IBSET(Idomo,q-1)
|
||||
! Check for Minimal alpha electrons (MS)
|
||||
if(POPCNT(Jsomo).ge.MS)then
|
||||
kstart = max(1,cfg_seniority_index(max(NSOMOMin,Nsomo_I-4)))
|
||||
kend = idxI-1
|
||||
else
|
||||
cycle
|
||||
endif
|
||||
else if(holetype(i) .EQ. 2 .AND. vmotype(j) .EQ. 1) then
|
||||
! DOMO -> VMO
|
||||
Jsomo = IBSET(Isomo,p-1)
|
||||
Jsomo = IBSET(Jsomo,q-1)
|
||||
Jdomo = IBCLR(Idomo,p-1)
|
||||
kstart = cfg_seniority_index(Nsomo_I)
|
||||
kend = idxI-1
|
||||
else if(holetype(i) .EQ. 2 .AND. vmotype(j) .EQ. 2) then
|
||||
! DOMO -> SOMO
|
||||
Jsomo = IBSET(Isomo,p-1)
|
||||
Jsomo = IBCLR(Jsomo,q-1)
|
||||
Jdomo = IBCLR(Idomo,p-1)
|
||||
Jdomo = IBSET(Jdomo,q-1)
|
||||
kstart = max(1,cfg_seniority_index(max(NSOMOMin,Nsomo_I-2)))
|
||||
kend = idxI-1
|
||||
else
|
||||
print*,"Something went wrong in obtain_associated_alphaI"
|
||||
endif
|
||||
! Check for Minimal alpha electrons (MS)
|
||||
if(POPCNT(Jsomo).lt.MS)then
|
||||
cycle
|
||||
endif
|
||||
|
||||
! Again, we don't have to search from 1
|
||||
! we just use seniority to find the
|
||||
! first index with NSOMO - 2 to NSOMO + 2
|
||||
! this is what is done in kstart, kend
|
||||
|
||||
pqAlreadyGenQ = .FALSE.
|
||||
! First check if it can be generated before
|
||||
do k = kstart, kend
|
||||
diffSOMO = IEOR(Jsomo,iand(reunion_of_act_virt_bitmask(1,1),psi_configuration(1,1,k)))
|
||||
ndiffSOMO = POPCNT(diffSOMO)
|
||||
if((ndiffSOMO .NE. 0) .AND. (ndiffSOMO .NE. 2)) cycle
|
||||
diffDOMO = IEOR(Jdomo,iand(reunion_of_act_virt_bitmask(1,1),psi_configuration(1,2,k)))
|
||||
xordiffSOMODOMO = IEOR(diffSOMO,diffDOMO)
|
||||
ndiffDOMO = POPCNT(diffDOMO)
|
||||
nxordiffSOMODOMO = POPCNT(xordiffSOMODOMO)
|
||||
nxordiffSOMODOMO += ndiffSOMO + ndiffDOMO
|
||||
!if(POPCNT(IEOR(diffSOMO,diffDOMO)) .LE. 1 .AND. ndiffDOMO .LT. 3) then
|
||||
if((ndiffSOMO+ndiffDOMO) .EQ. 0) then
|
||||
pqAlreadyGenQ = .TRUE.
|
||||
ppExistsQ = .TRUE.
|
||||
EXIT
|
||||
endif
|
||||
if((nxordiffSOMODOMO .EQ. 4) .AND. ndiffSOMO .EQ. 2) then
|
||||
pqAlreadyGenQ = .TRUE.
|
||||
EXIT
|
||||
endif
|
||||
end do
|
||||
|
||||
if(pqAlreadyGenQ) cycle
|
||||
|
||||
pqExistsQ = .FALSE.
|
||||
|
||||
if(.NOT. pqExistsQ) then
|
||||
tableUniqueAlphas(p,q) = .TRUE.
|
||||
endif
|
||||
end do
|
||||
end do
|
||||
|
||||
!print *,tableUniqueAlphas(:,:)
|
||||
|
||||
! prune list of alphas
|
||||
Isomo = Icfg(1,1)
|
||||
Idomo = Icfg(1,2)
|
||||
Jsomo = Icfg(1,1)
|
||||
Jdomo = Icfg(1,2)
|
||||
NalphaIcfg = 0
|
||||
do i = 1, nholes
|
||||
p = listholes(i)
|
||||
do j = 1, nvmos
|
||||
q = listvmos(j)
|
||||
if(p .EQ. q) cycle
|
||||
if(tableUniqueAlphas(p,q)) then
|
||||
if(holetype(i) .EQ. 1 .AND. vmotype(j) .EQ. 1) then
|
||||
! SOMO -> VMO
|
||||
Jsomo = IBCLR(Isomo,p-1)
|
||||
Jsomo = IBSET(Jsomo,q-1)
|
||||
Jdomo = Idomo
|
||||
else if(holetype(i) .EQ. 1 .AND. vmotype(j) .EQ. 2) then
|
||||
! SOMO -> SOMO
|
||||
Jsomo = IBCLR(Isomo,p-1)
|
||||
Jsomo = IBCLR(Jsomo,q-1)
|
||||
Jdomo = IBSET(Idomo,q-1)
|
||||
if(POPCNT(Jsomo).ge.MS)then
|
||||
kstart = max(1,cfg_seniority_index(max(NSOMOMin,Nsomo_I-4)))
|
||||
kend = idxI-1
|
||||
else
|
||||
cycle
|
||||
endif
|
||||
else if(holetype(i) .EQ. 2 .AND. vmotype(j) .EQ. 1) then
|
||||
! DOMO -> VMO
|
||||
Jsomo = IBSET(Isomo,p-1)
|
||||
Jsomo = IBSET(Jsomo,q-1)
|
||||
Jdomo = IBCLR(Idomo,p-1)
|
||||
else if(holetype(i) .EQ. 2 .AND. vmotype(j) .EQ. 2) then
|
||||
! DOMO -> SOMO
|
||||
Jsomo = IBSET(Isomo,p-1)
|
||||
Jsomo = IBCLR(Jsomo,q-1)
|
||||
Jdomo = IBCLR(Idomo,p-1)
|
||||
Jdomo = IBSET(Jdomo,q-1)
|
||||
else
|
||||
print*,"Something went wrong in obtain_associated_alphaI"
|
||||
endif
|
||||
|
||||
! SOMO
|
||||
!print *,i,j,"|",NalphaIcfg, Jsomo, IOR(Jdomo,ISHFT(1_8,n_core_orb)-1)
|
||||
if(POPCNT(Jsomo) .ge. NSOMOMin) then
|
||||
NalphaIcfg += 1
|
||||
alphasIcfg_list(1,1,idxI,NalphaIcfg) = Jsomo
|
||||
alphasIcfg_list(1,2,idxI,NalphaIcfg) = IOR(Jdomo,ISHFT(1_8,n_core_orb)-1)
|
||||
NalphaIcfg_list(idxI) = NalphaIcfg
|
||||
endif
|
||||
endif
|
||||
end do
|
||||
end do
|
||||
|
||||
! Check if this Icfg has been previously generated as a mono
|
||||
ppExistsQ = .False.
|
||||
Isomo = iand(reunion_of_act_virt_bitmask(1,1),Icfg(1,1))
|
||||
Idomo = iand(reunion_of_act_virt_bitmask(1,1),Icfg(1,2))
|
||||
kstart = max(1,cfg_seniority_index(max(NSOMOMin,Nsomo_I-2)))
|
||||
do k = kstart, idxI-1
|
||||
diffSOMO = IEOR(Isomo,iand(act_bitmask(1,1),psi_configuration(1,1,k)))
|
||||
ndiffSOMO = POPCNT(diffSOMO)
|
||||
if (ndiffSOMO /= 2) cycle
|
||||
diffDOMO = IEOR(Idomo,iand(act_bitmask(1,1),psi_configuration(1,2,k)))
|
||||
xordiffSOMODOMO = IEOR(diffSOMO,diffDOMO)
|
||||
ndiffDOMO = POPCNT(diffDOMO)
|
||||
nxordiffSOMODOMO = POPCNT(xordiffSOMODOMO)
|
||||
if((ndiffSOMO+ndiffDOMO+nxordiffSOMODOMO .EQ. 4)) then
|
||||
ppExistsQ = .TRUE.
|
||||
EXIT
|
||||
endif
|
||||
end do
|
||||
! Diagonal part (pp,qq)
|
||||
if(nholes > 0 .AND. (.NOT. ppExistsQ))then
|
||||
! SOMO
|
||||
if(POPCNT(Jsomo) .ge. NSOMOMin) then
|
||||
NalphaIcfg += 1
|
||||
alphasIcfg_list(1,1,idxI,NalphaIcfg) = Icfg(1,1)
|
||||
alphasIcfg_list(1,2,idxI,NalphaIcfg) = Icfg(1,2)
|
||||
NalphaIcfg_list(idxI) = NalphaIcfg
|
||||
endif
|
||||
endif
|
||||
|
||||
NalphaIcfg = 0
|
||||
enddo ! end loop idxI
|
||||
call wall_time(t1)
|
||||
print *, 'Preparation : ', t1 - t0
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
subroutine obtain_associated_alphaI(idxI, Icfg, alphasIcfg, NalphaIcfg)
|
||||
implicit none
|
||||
use bitmasks
|
||||
BEGIN_DOC
|
||||
! Documentation for alphasI
|
||||
! Returns the associated alpha's for
|
||||
! the input configuration Icfg.
|
||||
END_DOC
|
||||
|
||||
integer,intent(in) :: idxI ! The id of the Ith CFG
|
||||
integer(bit_kind),intent(in) :: Icfg(N_int,2)
|
||||
integer,intent(out) :: NalphaIcfg
|
||||
integer(bit_kind),intent(out) :: alphasIcfg(N_int,2,*)
|
||||
logical,dimension(:,:),allocatable :: tableUniqueAlphas
|
||||
integer :: listholes(mo_num)
|
||||
integer :: holetype(mo_num) ! 1-> SOMO 2->DOMO
|
||||
integer :: nholes
|
||||
integer :: nvmos
|
||||
integer :: listvmos(mo_num)
|
||||
integer :: vmotype(mo_num) ! 1 -> VMO 2 -> SOMO
|
||||
integer*8 :: Idomo
|
||||
integer*8 :: Isomo
|
||||
integer*8 :: Jdomo
|
||||
integer*8 :: Jsomo
|
||||
integer*8 :: diffSOMO
|
||||
integer*8 :: diffDOMO
|
||||
integer*8 :: xordiffSOMODOMO
|
||||
integer :: ndiffSOMO
|
||||
integer :: ndiffDOMO
|
||||
integer :: nxordiffSOMODOMO
|
||||
integer :: ndiffAll
|
||||
integer :: i, ii
|
||||
integer :: j, jj
|
||||
integer :: k, kk
|
||||
integer :: kstart
|
||||
integer :: kend
|
||||
integer :: Nsomo_I
|
||||
integer :: hole
|
||||
integer :: p
|
||||
integer :: q
|
||||
integer :: countalphas
|
||||
logical :: pqAlreadyGenQ
|
||||
logical :: pqExistsQ
|
||||
logical :: ppExistsQ
|
||||
Isomo = iand(act_bitmask(1,1),Icfg(1,1))
|
||||
Idomo = iand(act_bitmask(1,1),Icfg(1,2))
|
||||
!print*,"Input cfg"
|
||||
!call debug_spindet(Isomo,1)
|
||||
!call debug_spindet(Idomo,1)
|
||||
|
||||
! find out all pq holes possible
|
||||
nholes = 0
|
||||
! holes in SOMO
|
||||
do ii = 1,n_act_orb
|
||||
i = list_act(ii)
|
||||
if(POPCNT(IAND(Isomo,IBSET(0_8,i-1))) .EQ. 1) then
|
||||
nholes += 1
|
||||
listholes(nholes) = i
|
||||
holetype(nholes) = 1
|
||||
endif
|
||||
end do
|
||||
! holes in DOMO
|
||||
do ii = 1,n_act_orb
|
||||
i = list_act(ii)
|
||||
if(POPCNT(IAND(Idomo,IBSET(0_8,i-1))) .EQ. 1) then
|
||||
nholes += 1
|
||||
listholes(nholes) = i
|
||||
holetype(nholes) = 2
|
||||
endif
|
||||
end do
|
||||
|
||||
! find vmos
|
||||
listvmos = -1
|
||||
vmotype = -1
|
||||
nvmos = 0
|
||||
do ii = 1,n_act_orb
|
||||
i = list_act(ii)
|
||||
!print *,i,IBSET(0,i-1),POPCNT(IAND(Isomo,(IBSET(0_8,i-1)))), POPCNT(IAND(Idomo,(IBSET(0_8,i-1))))
|
||||
if(POPCNT(IAND(Isomo,(IBSET(0_8,i-1)))) .EQ. 0 .AND. POPCNT(IAND(Idomo,(IBSET(0_8,i-1)))) .EQ. 0) then
|
||||
nvmos += 1
|
||||
listvmos(nvmos) = i
|
||||
vmotype(nvmos) = 1
|
||||
else if(POPCNT(IAND(Isomo,(IBSET(0_8,i-1)))) .EQ. 1 .AND. POPCNT(IAND(Idomo,(IBSET(0_8,i-1)))) .EQ. 0 ) then
|
||||
nvmos += 1
|
||||
listvmos(nvmos) = i
|
||||
vmotype(nvmos) = 2
|
||||
end if
|
||||
end do
|
||||
|
||||
!print *,"Nvmo=",nvmos
|
||||
!print *,listvmos
|
||||
!print *,vmotype
|
||||
|
||||
allocate(tableUniqueAlphas(mo_num,mo_num))
|
||||
tableUniqueAlphas = .FALSE.
|
||||
|
||||
! Now find the allowed (p,q) excitations
|
||||
Isomo = iand(act_bitmask(1,1),Icfg(1,1))
|
||||
Idomo = iand(act_bitmask(1,1),Icfg(1,2))
|
||||
Nsomo_I = POPCNT(Isomo)
|
||||
if(Nsomo_I .EQ. 0) then
|
||||
kstart = 1
|
||||
else
|
||||
kstart = cfg_seniority_index(max(NSOMOMin,Nsomo_I-2))
|
||||
endif
|
||||
kend = idxI-1
|
||||
!print *,"Isomo"
|
||||
!call debug_spindet(Isomo,1)
|
||||
!call debug_spindet(Idomo,1)
|
||||
|
||||
!print *,"Nholes=",nholes," Nvmos=",nvmos, " idxi=",idxI
|
||||
!do i = 1,nholes
|
||||
! print *,i,"->",listholes(i)
|
||||
!enddo
|
||||
!do i = 1,nvmos
|
||||
! print *,i,"->",listvmos(i)
|
||||
!enddo
|
||||
|
||||
do i = 1,nholes
|
||||
p = listholes(i)
|
||||
do j = 1,nvmos
|
||||
q = listvmos(j)
|
||||
if(p .EQ. q) cycle
|
||||
if(holetype(i) .EQ. 1 .AND. vmotype(j) .EQ. 1) then
|
||||
! SOMO -> VMO
|
||||
Jsomo = IBCLR(Isomo,p-1)
|
||||
Jsomo = IBSET(Jsomo,q-1)
|
||||
Jdomo = Idomo
|
||||
kstart = max(1,cfg_seniority_index(max(NSOMOMin,Nsomo_I-2)))
|
||||
kend = idxI-1
|
||||
else if(holetype(i) .EQ. 1 .AND. vmotype(j) .EQ. 2) then
|
||||
! SOMO -> SOMO
|
||||
Jsomo = IBCLR(Isomo,p-1)
|
||||
Jsomo = IBCLR(Jsomo,q-1)
|
||||
Jdomo = IBSET(Idomo,q-1)
|
||||
kstart = max(1,cfg_seniority_index(max(NSOMOMin,Nsomo_I-4)))
|
||||
kend = idxI-1
|
||||
else if(holetype(i) .EQ. 2 .AND. vmotype(j) .EQ. 1) then
|
||||
! DOMO -> VMO
|
||||
Jsomo = IBSET(Isomo,p-1)
|
||||
Jsomo = IBSET(Jsomo,q-1)
|
||||
Jdomo = IBCLR(Idomo,p-1)
|
||||
kstart = cfg_seniority_index(Nsomo_I)
|
||||
kend = idxI-1
|
||||
else if(holetype(i) .EQ. 2 .AND. vmotype(j) .EQ. 2) then
|
||||
! DOMO -> SOMO
|
||||
Jsomo = IBSET(Isomo,p-1)
|
||||
Jsomo = IBCLR(Jsomo,q-1)
|
||||
Jdomo = IBCLR(Idomo,p-1)
|
||||
Jdomo = IBSET(Jdomo,q-1)
|
||||
kstart = max(1,cfg_seniority_index(max(NSOMOMin,Nsomo_I-2)))
|
||||
kend = idxI-1
|
||||
else
|
||||
print*,"Something went wrong in obtain_associated_alphaI"
|
||||
endif
|
||||
|
||||
! Again, we don't have to search from 1
|
||||
! we just use seniortiy to find the
|
||||
! first index with NSOMO - 2 to NSOMO + 2
|
||||
! this is what is done in kstart, kend
|
||||
|
||||
pqAlreadyGenQ = .FALSE.
|
||||
! First check if it can be generated before
|
||||
do k = kstart, kend
|
||||
diffSOMO = IEOR(Jsomo,iand(act_bitmask(1,1),psi_configuration(1,1,k)))
|
||||
ndiffSOMO = POPCNT(diffSOMO)
|
||||
if((ndiffSOMO .NE. 0) .AND. (ndiffSOMO .NE. 2)) cycle
|
||||
diffDOMO = IEOR(Jdomo,iand(act_bitmask(1,1),psi_configuration(1,2,k)))
|
||||
xordiffSOMODOMO = IEOR(diffSOMO,diffDOMO)
|
||||
ndiffDOMO = POPCNT(diffDOMO)
|
||||
nxordiffSOMODOMO = POPCNT(xordiffSOMODOMO)
|
||||
nxordiffSOMODOMO += ndiffSOMO + ndiffDOMO
|
||||
!if(POPCNT(IEOR(diffSOMO,diffDOMO)) .LE. 1 .AND. ndiffDOMO .LT. 3) then
|
||||
if((ndiffSOMO+ndiffDOMO) .EQ. 0) then
|
||||
pqAlreadyGenQ = .TRUE.
|
||||
ppExistsQ = .TRUE.
|
||||
EXIT
|
||||
endif
|
||||
if((nxordiffSOMODOMO .EQ. 4) .AND. ndiffSOMO .EQ. 2) then
|
||||
pqAlreadyGenQ = .TRUE.
|
||||
!EXIT
|
||||
!ppExistsQ = .TRUE.
|
||||
!print *,i,k,ndiffSOMO,ndiffDOMO
|
||||
!call debug_spindet(Jsomo,1)
|
||||
!call debug_spindet(Jdomo,1)
|
||||
!call debug_spindet(iand(reunion_of_act_virt_bitmask(1,1),psi_configuration(1,1,k)),1)
|
||||
!call debug_spindet(iand(reunion_of_act_virt_bitmask(1,1),psi_configuration(1,2,k)),1)
|
||||
EXIT
|
||||
endif
|
||||
end do
|
||||
|
||||
!print *,"(,",p,",",q,")",pqAlreadyGenQ
|
||||
|
||||
if(pqAlreadyGenQ) cycle
|
||||
|
||||
pqExistsQ = .FALSE.
|
||||
! now check if this exists in the selected list
|
||||
!do k = idxI+1, N_configuration
|
||||
! diffSOMO = IEOR(OR(reunion_of_act_virt_bitmask(1,1),Jsomo),psi_configuration(1,1,k))
|
||||
! diffDOMO = IEOR(OR(reunion_of_act_virt_bitmask(1,1),Jdomo),psi_configuration(1,2,k))
|
||||
! ndiffSOMO = POPCNT(diffSOMO)
|
||||
! ndiffDOMO = POPCNT(diffDOMO)
|
||||
! if((ndiffSOMO + ndiffDOMO) .EQ. 0) then
|
||||
! pqExistsQ = .TRUE.
|
||||
! EXIT
|
||||
! endif
|
||||
!end do
|
||||
|
||||
if(.NOT. pqExistsQ) then
|
||||
tableUniqueAlphas(p,q) = .TRUE.
|
||||
!print *,p,q
|
||||
!call debug_spindet(Jsomo,1)
|
||||
!call debug_spindet(Jdomo,1)
|
||||
endif
|
||||
end do
|
||||
end do
|
||||
|
||||
!print *,tableUniqueAlphas(:,:)
|
||||
|
||||
! prune list of alphas
|
||||
Isomo = Icfg(1,1)
|
||||
Idomo = Icfg(1,2)
|
||||
Jsomo = Icfg(1,1)
|
||||
Jdomo = Icfg(1,2)
|
||||
NalphaIcfg = 0
|
||||
do i = 1, nholes
|
||||
p = listholes(i)
|
||||
do j = 1, nvmos
|
||||
q = listvmos(j)
|
||||
if(p .EQ. q) cycle
|
||||
if(tableUniqueAlphas(p,q)) then
|
||||
if(holetype(i) .EQ. 1 .AND. vmotype(j) .EQ. 1) then
|
||||
! SOMO -> VMO
|
||||
Jsomo = IBCLR(Isomo,p-1)
|
||||
Jsomo = IBSET(Jsomo,q-1)
|
||||
Jdomo = Idomo
|
||||
else if(holetype(i) .EQ. 1 .AND. vmotype(j) .EQ. 2) then
|
||||
! SOMO -> SOMO
|
||||
Jsomo = IBCLR(Isomo,p-1)
|
||||
Jsomo = IBCLR(Jsomo,q-1)
|
||||
Jdomo = IBSET(Idomo,q-1)
|
||||
else if(holetype(i) .EQ. 2 .AND. vmotype(j) .EQ. 1) then
|
||||
! DOMO -> VMO
|
||||
Jsomo = IBSET(Isomo,p-1)
|
||||
Jsomo = IBSET(Jsomo,q-1)
|
||||
Jdomo = IBCLR(Idomo,p-1)
|
||||
else if(holetype(i) .EQ. 2 .AND. vmotype(j) .EQ. 2) then
|
||||
! DOMO -> SOMO
|
||||
Jsomo = IBSET(Isomo,p-1)
|
||||
Jsomo = IBCLR(Jsomo,q-1)
|
||||
Jdomo = IBCLR(Idomo,p-1)
|
||||
Jdomo = IBSET(Jdomo,q-1)
|
||||
else
|
||||
print*,"Something went wrong in obtain_associated_alphaI"
|
||||
endif
|
||||
|
||||
! SOMO
|
||||
NalphaIcfg += 1
|
||||
!print *,i,j,"|",NalphaIcfg
|
||||
alphasIcfg(1,1,NalphaIcfg) = Jsomo
|
||||
alphasIcfg(1,2,NalphaIcfg) = IOR(Jdomo,ISHFT(1_8,n_core_orb)-1)
|
||||
!print *,"I = ",idxI, " Na=",NalphaIcfg," - ",Jsomo, IOR(Jdomo,ISHFT(1_8,n_core_orb)-1)
|
||||
endif
|
||||
end do
|
||||
end do
|
||||
|
||||
! Check if this Icfg has been previously generated as a mono
|
||||
ppExistsQ = .False.
|
||||
Isomo = iand(act_bitmask(1,1),Icfg(1,1))
|
||||
Idomo = iand(act_bitmask(1,1),Icfg(1,2))
|
||||
do k = 1, idxI-1
|
||||
diffSOMO = IEOR(Isomo,iand(act_bitmask(1,1),psi_configuration(1,1,k)))
|
||||
diffDOMO = IEOR(Idomo,iand(act_bitmask(1,1),psi_configuration(1,2,k)))
|
||||
xordiffSOMODOMO = IEOR(diffSOMO,diffDOMO)
|
||||
ndiffSOMO = POPCNT(diffSOMO)
|
||||
ndiffDOMO = POPCNT(diffDOMO)
|
||||
nxordiffSOMODOMO = POPCNT(xordiffSOMODOMO)
|
||||
if((ndiffSOMO+ndiffDOMO+nxordiffSOMODOMO .EQ. 4) .AND. ndiffSOMO .EQ. 2) then
|
||||
ppExistsQ = .TRUE.
|
||||
EXIT
|
||||
endif
|
||||
end do
|
||||
! Diagonal part (pp,qq)
|
||||
if(nholes > 0 .AND. (.NOT. ppExistsQ))then
|
||||
! SOMO
|
||||
NalphaIcfg += 1
|
||||
!print *,p,q,"|",holetype(i),vmotype(j),NalphaIcfg
|
||||
!call debug_spindet(Idomo,1)
|
||||
!call debug_spindet(Jdomo,1)
|
||||
alphasIcfg(1,1,NalphaIcfg) = Icfg(1,1)
|
||||
alphasIcfg(1,2,NalphaIcfg) = Icfg(1,2)
|
||||
endif
|
||||
|
||||
end subroutine
|
||||
|
||||
function getNSOMO(Icfg) result(NSOMO)
|
||||
implicit none
|
||||
integer(bit_kind),intent(in) :: Icfg(N_int,2)
|
||||
@ -8,98 +597,3 @@
|
||||
NSOMO += POPCNT(Icfg(i,1))
|
||||
enddo
|
||||
end function getNSOMO
|
||||
|
||||
subroutine convertOrbIdsToModelSpaceIds(Ialpha, Jcfg, p, q, extype, pmodel, qmodel)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! This function converts the orbital ids
|
||||
! in real space to those used in model space
|
||||
! in order to identify the matrices required
|
||||
! for the calculation of MEs.
|
||||
!
|
||||
! The type of excitations are ordered as follows:
|
||||
! Type 1 - SOMO -> SOMO
|
||||
! Type 2 - DOMO -> VMO
|
||||
! Type 3 - SOMO -> VMO
|
||||
! Type 4 - DOMO -> SOMO
|
||||
END_DOC
|
||||
integer(bit_kind),intent(in) :: Ialpha(N_int,2)
|
||||
integer(bit_kind),intent(in) :: Jcfg(N_int,2)
|
||||
integer,intent(in) :: p,q
|
||||
integer,intent(in) :: extype
|
||||
integer,intent(out) :: pmodel,qmodel
|
||||
integer*8 :: Isomo
|
||||
integer*8 :: Idomo
|
||||
integer*8 :: Jsomo
|
||||
integer*8 :: Jdomo
|
||||
integer*8 :: mask
|
||||
integer*8 :: Isomotmp
|
||||
integer*8 :: Jsomotmp
|
||||
integer :: pos0,pos0prev
|
||||
|
||||
! TODO Flag (print) when model space indices is > 64
|
||||
Isomo = Ialpha(1,1)
|
||||
Idomo = Ialpha(1,2)
|
||||
Jsomo = Jcfg(1,1)
|
||||
Jdomo = Jcfg(1,2)
|
||||
pos0prev = 0
|
||||
pmodel = p
|
||||
qmodel = q
|
||||
|
||||
if(p .EQ. q) then
|
||||
pmodel = 1
|
||||
qmodel = 1
|
||||
else
|
||||
!print *,"input pq=",p,q,"extype=",extype
|
||||
!call debug_spindet(Isomo,1)
|
||||
!call debug_spindet(Idomo,1)
|
||||
!call debug_spindet(Jsomo,1)
|
||||
!call debug_spindet(Jdomo,1)
|
||||
select case(extype)
|
||||
case (1)
|
||||
! SOMO -> SOMO
|
||||
! remove all domos
|
||||
!print *,"type -> SOMO -> SOMO"
|
||||
mask = ISHFT(1_8,p) - 1
|
||||
Isomotmp = IAND(Isomo,mask)
|
||||
pmodel = POPCNT(mask) - POPCNT(XOR(Isomotmp,mask))
|
||||
mask = ISHFT(1_8,q) - 1
|
||||
Isomotmp = IAND(Isomo,mask)
|
||||
qmodel = POPCNT(mask) - POPCNT(XOR(Isomotmp,mask))
|
||||
case (2)
|
||||
! DOMO -> VMO
|
||||
! remove all domos except one at p
|
||||
!print *,"type -> DOMO -> VMO"
|
||||
mask = ISHFT(1_8,p) - 1
|
||||
Jsomotmp = IAND(Jsomo,mask)
|
||||
pmodel = POPCNT(mask) - POPCNT(XOR(Jsomotmp,mask))
|
||||
mask = ISHFT(1_8,q) - 1
|
||||
Jsomotmp = IAND(Jsomo,mask)
|
||||
qmodel = POPCNT(mask) - POPCNT(XOR(Jsomotmp,mask))
|
||||
case (3)
|
||||
! SOMO -> VMO
|
||||
!print *,"type -> SOMO -> VMO"
|
||||
!Isomo = IEOR(Isomo,Jsomo)
|
||||
mask = ISHFT(1_8,p) - 1
|
||||
Isomo = IAND(Isomo,mask)
|
||||
pmodel = POPCNT(mask) - POPCNT(XOR(Isomo,mask))
|
||||
mask = ISHFT(1_8,q) - 1
|
||||
Jsomo = IAND(Jsomo,mask)
|
||||
qmodel = POPCNT(mask) - POPCNT(XOR(Jsomo,mask))
|
||||
case (4)
|
||||
! DOMO -> SOMO
|
||||
! remove all domos except one at p
|
||||
!print *,"type -> DOMO -> SOMO"
|
||||
!Isomo = IEOR(Isomo,Jsomo)
|
||||
mask = ISHFT(1_8,p) - 1
|
||||
Jsomo = IAND(Jsomo,mask)
|
||||
pmodel = POPCNT(mask) - POPCNT(XOR(Jsomo,mask))
|
||||
mask = ISHFT(1_8,q) - 1
|
||||
Isomo = IAND(Isomo,mask)
|
||||
qmodel = POPCNT(mask) - POPCNT(XOR(Isomo,mask))
|
||||
case default
|
||||
print *,"something is wrong in convertOrbIdsToModelSpaceIds"
|
||||
end select
|
||||
endif
|
||||
!print *,p,q,"model ids=",pmodel,qmodel
|
||||
end subroutine convertOrbIdsToModelSpaceIds
|
||||
|
@ -458,8 +458,9 @@ end
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ integer, cfg_seniority_index, (0:elec_num) ]
|
||||
BEGIN_PROVIDER [ integer, cfg_seniority_index, (0:elec_num+2) ]
|
||||
&BEGIN_PROVIDER [ integer, cfg_nsomo_max ]
|
||||
&BEGIN_PROVIDER [ integer, cfg_nsomo_min ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Returns the index in psi_configuration of the first cfg with
|
||||
@ -467,9 +468,10 @@ END_PROVIDER
|
||||
!
|
||||
! cfg_nsomo_max : Max number of SOMO in the current wave function
|
||||
END_DOC
|
||||
integer :: i, k, s, sold
|
||||
integer :: i, k, s, sold, soldmin
|
||||
cfg_seniority_index(:) = -1
|
||||
sold = -1
|
||||
soldmin = 2000
|
||||
cfg_nsomo_max = 0
|
||||
do i=1,N_configuration
|
||||
s = 0
|
||||
@ -482,6 +484,10 @@ END_PROVIDER
|
||||
cfg_seniority_index(s) = i
|
||||
cfg_nsomo_max = s
|
||||
endif
|
||||
if (soldmin .GT. s ) then
|
||||
soldmin = s
|
||||
cfg_nsomo_min = s
|
||||
endif
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
@ -743,7 +749,7 @@ BEGIN_PROVIDER [ integer(bit_kind), dominant_dets_of_cfgs, (N_int,2,N_dominant_d
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
subroutine binary_search_cfg(cfgInp,addcfg)
|
||||
subroutine binary_search_cfg(cfgInp,addcfg,bit_tmp)
|
||||
use bitmasks
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
@ -755,29 +761,100 @@ subroutine binary_search_cfg(cfgInp,addcfg)
|
||||
END_DOC
|
||||
integer(bit_kind), intent(in) :: cfgInp(N_int,2)
|
||||
integer , intent(out) :: addcfg
|
||||
integer :: i,j,k,r,l
|
||||
integer*8 :: key, key2
|
||||
logical :: found
|
||||
!integer*8, allocatable :: bit_tmp(:)
|
||||
!integer*8, external :: configuration_search_key
|
||||
integer*8, intent(in) :: bit_tmp(0:N_configuration+1)
|
||||
|
||||
!allocate(bit_tmp(0:N_configuration))
|
||||
!bit_tmp(0) = 0
|
||||
do i=1,N_configuration
|
||||
!bit_tmp(i) = configuration_search_key(psi_configuration(1,1,i),N_int)
|
||||
logical :: found
|
||||
integer :: l, r, j, k
|
||||
integer*8 :: key
|
||||
|
||||
integer*8, external :: configuration_search_key
|
||||
|
||||
key = configuration_search_key(cfgInp,N_int)
|
||||
|
||||
! Binary search
|
||||
l = 0
|
||||
r = N_configuration+1
|
||||
IRP_IF WITHOUT_SHIFTRL
|
||||
j = ishft(r-l,-1)
|
||||
IRP_ELSE
|
||||
j = shiftr(r-l,1)
|
||||
IRP_ENDIF
|
||||
do while (j>=1)
|
||||
j = j+l
|
||||
if (bit_tmp(j) == key) then
|
||||
! Find 1st element which matches the key
|
||||
if (j > 1) then
|
||||
do while (j>1 .and. bit_tmp(j-1) == key)
|
||||
j = j-1
|
||||
enddo
|
||||
endif
|
||||
! Find correct element matching the key
|
||||
do while (bit_tmp(j) == key)
|
||||
found = .True.
|
||||
do k=1,N_int
|
||||
found = found .and. (psi_configuration(k,1,i) == cfgInp(k,1)) &
|
||||
.and. (psi_configuration(k,2,i) == cfgInp(k,2))
|
||||
found = found .and. (psi_configuration(k,1,j) == cfgInp(k,1))&
|
||||
.and. (psi_configuration(k,2,j) == cfgInp(k,2))
|
||||
enddo
|
||||
if (found) then
|
||||
addcfg = i
|
||||
exit
|
||||
addcfg = j
|
||||
return
|
||||
endif
|
||||
j = j+1
|
||||
enddo
|
||||
addcfg = -1
|
||||
return
|
||||
else if (bit_tmp(j) > key) then
|
||||
r = j
|
||||
else
|
||||
l = j
|
||||
endif
|
||||
IRP_IF WITHOUT_SHIFTRL
|
||||
j = ishft(r-l,-1)
|
||||
IRP_ELSE
|
||||
j = shiftr(r-l,1)
|
||||
IRP_ENDIF
|
||||
enddo
|
||||
|
||||
addcfg = -1
|
||||
return
|
||||
|
||||
end subroutine
|
||||
|
||||
!subroutine binary_search_cfg(cfgInp,addcfg)
|
||||
! use bitmasks
|
||||
! implicit none
|
||||
! BEGIN_DOC
|
||||
! ! Documentation for binary_search
|
||||
! !
|
||||
! ! Does a binary search to find
|
||||
! ! the address of a configuration in a list of
|
||||
! ! configurations.
|
||||
! END_DOC
|
||||
! integer(bit_kind), intent(in) :: cfgInp(N_int,2)
|
||||
! integer , intent(out) :: addcfg
|
||||
! integer :: i,j,k,r,l
|
||||
! integer*8 :: key, key2
|
||||
! logical :: found
|
||||
! !integer*8, allocatable :: bit_tmp(:)
|
||||
! !integer*8, external :: configuration_search_key
|
||||
!
|
||||
! !allocate(bit_tmp(0:N_configuration))
|
||||
! !bit_tmp(0) = 0
|
||||
! do i=1,N_configuration
|
||||
! !bit_tmp(i) = configuration_search_key(psi_configuration(1,1,i),N_int)
|
||||
! found = .True.
|
||||
! do k=1,N_int
|
||||
! found = found .and. (psi_configuration(k,1,i) == cfgInp(k,1)) &
|
||||
! .and. (psi_configuration(k,2,i) == cfgInp(k,2))
|
||||
! enddo
|
||||
! if (found) then
|
||||
! addcfg = i
|
||||
! exit
|
||||
! endif
|
||||
! enddo
|
||||
!
|
||||
!end subroutine
|
||||
!
|
||||
BEGIN_PROVIDER [ integer, psi_configuration_to_psi_det, (2,N_configuration) ]
|
||||
&BEGIN_PROVIDER [ integer, psi_configuration_to_psi_det_data, (N_det) ]
|
||||
|
||||
|
@ -1,3 +1,16 @@
|
||||
BEGIN_PROVIDER [ double precision, psi_csf_coef, (N_csf, N_states) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Wafe function in CSF basis
|
||||
END_DOC
|
||||
|
||||
double precision, allocatable :: buffer(:,:)
|
||||
allocate ( buffer(N_det, N_states) )
|
||||
buffer(1:N_det, 1:N_states) = psi_coef(1:N_det, 1:N_states)
|
||||
call convertWFfromDETtoCSF(N_states, buffer, psi_csf_coef)
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
subroutine convertWFfromDETtoCSF(N_st,psi_coef_det_in, psi_coef_cfg_out)
|
||||
use cfunctions
|
||||
use bitmasks
|
||||
@ -12,7 +25,7 @@ subroutine convertWFfromDETtoCSF(N_st,psi_coef_det_in, psi_coef_cfg_out)
|
||||
double precision, intent(out) :: psi_coef_cfg_out(n_CSF,N_st)
|
||||
integer*8 :: Isomo, Idomo, mask
|
||||
integer(bit_kind) :: Ialpha(N_int) ,Ibeta(N_int)
|
||||
integer :: rows, cols, i, j, k
|
||||
integer :: rows, cols, i, j, k, salpha
|
||||
integer :: startdet, enddet
|
||||
integer :: ndetI
|
||||
integer :: getNSOMO
|
||||
@ -26,6 +39,8 @@ subroutine convertWFfromDETtoCSF(N_st,psi_coef_det_in, psi_coef_cfg_out)
|
||||
|
||||
integer s, bfIcfg
|
||||
integer countcsf
|
||||
integer MS
|
||||
MS = elec_alpha_num-elec_beta_num
|
||||
countcsf = 0
|
||||
phasedet = 1.0d0
|
||||
do i = 1,N_configuration
|
||||
@ -44,12 +59,19 @@ subroutine convertWFfromDETtoCSF(N_st,psi_coef_det_in, psi_coef_cfg_out)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
s = 0
|
||||
s = 0 ! s == total number of SOMOs
|
||||
do k=1,N_int
|
||||
if (psi_configuration(k,1,i) == 0_bit_kind) cycle
|
||||
s = s + popcnt(psi_configuration(k,1,i))
|
||||
enddo
|
||||
bfIcfg = max(1,nint((binom(s,(s+1)/2)-binom(s,((s+1)/2)+1))))
|
||||
|
||||
if(iand(s,1) .EQ. 0) then
|
||||
salpha = (s + MS)/2
|
||||
bfIcfg = max(1,nint((binom(s,salpha)-binom(s,salpha+1))))
|
||||
else
|
||||
salpha = (s + MS)/2
|
||||
bfIcfg = max(1,nint((binom(s,salpha)-binom(s,salpha+1))))
|
||||
endif
|
||||
|
||||
! perhaps blocking with CFGs of same seniority
|
||||
! can be more efficient
|
||||
@ -80,7 +102,7 @@ subroutine convertWFfromCSFtoDET(N_st,psi_coef_cfg_in, psi_coef_det)
|
||||
double precision,intent(in) :: psi_coef_cfg_in(n_CSF,N_st)
|
||||
double precision,intent(out) :: psi_coef_det(N_det,N_st)
|
||||
double precision :: tmp_psi_coef_det(maxDetDimPerBF,N_st)
|
||||
integer :: s, bfIcfg
|
||||
integer :: s, bfIcfg, salpha
|
||||
integer :: countcsf
|
||||
integer(bit_kind) :: Ialpha(N_int), Ibeta(N_int)
|
||||
integer :: rows, cols, i, j, k
|
||||
@ -91,6 +113,8 @@ subroutine convertWFfromCSFtoDET(N_st,psi_coef_cfg_in, psi_coef_det)
|
||||
double precision,allocatable :: tempCoeff (:,:)
|
||||
double precision :: phasedet
|
||||
integer :: idx
|
||||
integer MS
|
||||
MS = elec_alpha_num-elec_beta_num
|
||||
|
||||
countcsf = 0
|
||||
|
||||
@ -104,7 +128,8 @@ subroutine convertWFfromCSFtoDET(N_st,psi_coef_cfg_in, psi_coef_det)
|
||||
if (psi_configuration(k,1,i) == 0_bit_kind) cycle
|
||||
s = s + popcnt(psi_configuration(k,1,i))
|
||||
enddo
|
||||
bfIcfg = max(1,nint((binom(s,(s+1)/2)-binom(s,((s+1)/2)+1))))
|
||||
salpha = (s + MS)/2
|
||||
bfIcfg = max(1,nint((binom(s,salpha)-binom(s,salpha+1))))
|
||||
|
||||
allocate(tempCoeff(bfIcfg,N_st))
|
||||
|
||||
|
@ -226,7 +226,7 @@ subroutine generate_all_singles_cfg(cfg,singles,n_singles,Nint)
|
||||
enddo
|
||||
end
|
||||
|
||||
subroutine generate_all_singles_cfg_with_type(cfgInp,singles,idxs_singles,pq_singles,ex_type_singles,n_singles,Nint)
|
||||
subroutine generate_all_singles_cfg_with_type(bit_tmp,cfgInp,singles,idxs_singles,pq_singles,ex_type_singles,n_singles,Nint)
|
||||
implicit none
|
||||
use bitmasks
|
||||
BEGIN_DOC
|
||||
@ -238,6 +238,7 @@ subroutine generate_all_singles_cfg_with_type(cfgInp,singles,idxs_singles,pq_sin
|
||||
! ex_type_singles : on output contains type of excitations :
|
||||
!
|
||||
END_DOC
|
||||
integer*8, intent(in) :: bit_tmp(0:N_configuration+1)
|
||||
integer, intent(in) :: Nint
|
||||
integer, intent(inout) :: n_singles
|
||||
integer, intent(out) :: idxs_singles(*)
|
||||
@ -248,20 +249,26 @@ subroutine generate_all_singles_cfg_with_type(cfgInp,singles,idxs_singles,pq_sin
|
||||
integer(bit_kind) :: Jdet(Nint,2)
|
||||
|
||||
integer :: i,k, n_singles_ma, i_hole, i_particle, ex_type, addcfg
|
||||
integer :: ii,kk
|
||||
integer(bit_kind) :: single(Nint,2)
|
||||
logical :: i_ok
|
||||
|
||||
|
||||
n_singles = 0
|
||||
!TODO
|
||||
!Make list of Somo and Domo for holes
|
||||
!Make list of Unocc and Somo for particles
|
||||
do i_hole = 1+n_core_orb, n_core_orb + n_act_orb
|
||||
do i_particle = 1+n_core_orb, n_core_orb + n_act_orb
|
||||
!do i_hole = 1+n_core_orb, n_core_orb + n_act_orb
|
||||
do ii = 1, n_act_orb
|
||||
i_hole = list_act(ii)
|
||||
!do i_particle = 1+n_core_orb, n_core_orb + n_act_orb
|
||||
do kk = 1, n_act_orb
|
||||
i_particle = list_act(kk)
|
||||
if(i_hole .EQ. i_particle) cycle
|
||||
addcfg = -1
|
||||
call do_single_excitation_cfg_with_type(cfgInp,single,i_hole,i_particle,ex_type,i_ok)
|
||||
if (i_ok) then
|
||||
call binary_search_cfg(single,addcfg)
|
||||
call binary_search_cfg(single,addcfg,bit_tmp)
|
||||
if(addcfg .EQ. -1) cycle
|
||||
n_singles = n_singles + 1
|
||||
do k=1,Nint
|
||||
|
397
src/csf/obtain_I_foralpha.irp.f
Normal file
397
src/csf/obtain_I_foralpha.irp.f
Normal file
@ -0,0 +1,397 @@
|
||||
subroutine obtain_connected_J_givenI(idxI, givenI, connectedI, idxs_connectedI, nconnectedI,ntotalconnectedI)
|
||||
implicit none
|
||||
use bitmasks
|
||||
BEGIN_DOC
|
||||
! Documentation for obtain_connected_I_foralpha
|
||||
! This function returns all those selected configurations
|
||||
! which are connected to the input configuration
|
||||
! givenI by a single excitation.
|
||||
!
|
||||
! The type of excitations are ordered as follows:
|
||||
! Type 1 - SOMO -> SOMO
|
||||
! Type 2 - DOMO -> VMO
|
||||
! Type 3 - SOMO -> VMO
|
||||
! Type 4 - DOMO -> SOMO
|
||||
!
|
||||
! Order of operators
|
||||
! \alpha> = a^\dag_p a_q |I> = E_pq |I>
|
||||
END_DOC
|
||||
integer ,intent(in) :: idxI
|
||||
integer(bit_kind),intent(in) :: givenI(N_int,2)
|
||||
integer(bit_kind),intent(out) :: connectedI(N_int,2,*)
|
||||
integer ,intent(out) :: idxs_connectedI(*)
|
||||
integer,intent(out) :: nconnectedI
|
||||
integer,intent(out) :: ntotalconnectedI
|
||||
integer*8 :: Idomo
|
||||
integer*8 :: Isomo
|
||||
integer*8 :: Jdomo
|
||||
integer*8 :: Jsomo
|
||||
integer*8 :: IJsomo
|
||||
integer*8 :: diffSOMO
|
||||
integer*8 :: diffDOMO
|
||||
integer*8 :: xordiffSOMODOMO
|
||||
integer :: ndiffSOMO
|
||||
integer :: ndiffDOMO
|
||||
integer :: nxordiffSOMODOMO
|
||||
integer :: iii,ii,i,j,k,l,p,q,nsomoJ,nsomoalpha,starti,endi,extyp,nholes
|
||||
integer :: listholes(mo_num)
|
||||
integer :: holetype(mo_num)
|
||||
integer :: end_index
|
||||
integer :: Nsomo_I
|
||||
|
||||
!
|
||||
! 2 2 1 1 0 0 : 1 1 0 0 0 0
|
||||
! 0 0 1 1 0 0
|
||||
!
|
||||
! 2 1 1 1 1 0 : 1 0 0 0 0 0
|
||||
! 0 1 1 1 1 0
|
||||
!xorS 0 1 0 0 1 0 : 2
|
||||
!xorD 0 1 0 0 0 0 : 1
|
||||
!xorSD 0 0 0 0 1 0 : 1
|
||||
! -----
|
||||
! 4
|
||||
! 1 1 1 1 1 1 : 0 0 0 0 0 0
|
||||
! 1 1 1 1 1 1
|
||||
! 1 1 0 0 1 1 : 4
|
||||
! 1 1 0 0 0 0 : 2
|
||||
! 0 0 0 0 1 1 : 2
|
||||
! -----
|
||||
! 8
|
||||
!
|
||||
|
||||
nconnectedI = 0
|
||||
ntotalconnectedI = 0
|
||||
end_index = N_configuration
|
||||
|
||||
! Since CFGs are sorted wrt to seniority
|
||||
! we don't have to search the full CFG list
|
||||
Isomo = givenI(1,1)
|
||||
Idomo = givenI(1,2)
|
||||
Nsomo_I = POPCNT(Isomo)
|
||||
end_index = min(N_configuration,cfg_seniority_index(min(Nsomo_I+6,elec_num))-1)
|
||||
if(end_index .LT. 0) end_index= N_configuration
|
||||
!end_index = N_configuration
|
||||
!print *,"Start and End = ",idxI, end_index
|
||||
|
||||
|
||||
p = 0
|
||||
q = 0
|
||||
do i=idxI,end_index
|
||||
!if(.True.) then
|
||||
! nconnectedI += 1
|
||||
! connectedI(:,:,nconnectedI) = psi_configuration(:,:,i)
|
||||
! idxs_connectedI(nconnectedI)=i
|
||||
! cycle
|
||||
!endif
|
||||
Isomo = givenI(1,1)
|
||||
Idomo = givenI(1,2)
|
||||
Jsomo = psi_configuration(1,1,i)
|
||||
Jdomo = psi_configuration(1,2,i)
|
||||
diffSOMO = IEOR(Isomo,Jsomo)
|
||||
ndiffSOMO = POPCNT(diffSOMO)
|
||||
diffDOMO = IEOR(Idomo,Jdomo)
|
||||
xordiffSOMODOMO = IEOR(diffSOMO,diffDOMO)
|
||||
ndiffDOMO = POPCNT(diffDOMO)
|
||||
nxordiffSOMODOMO = POPCNT(xordiffSOMODOMO)
|
||||
nxordiffSOMODOMO += ndiffSOMO + ndiffDOMO
|
||||
if((nxordiffSOMODOMO .EQ. 4) .AND. ndiffSOMO .EQ. 2) then
|
||||
!-------
|
||||
! MONO |
|
||||
!-------
|
||||
nconnectedI += 1
|
||||
connectedI(:,:,nconnectedI) = psi_configuration(:,:,i)
|
||||
idxs_connectedI(nconnectedI)=i
|
||||
ntotalconnectedI += max(1,(psi_config_data(i,2)-psi_config_data(i,1)+1))
|
||||
else if((nxordiffSOMODOMO .EQ. 8) .AND. ndiffSOMO .EQ. 4) then
|
||||
!----------------------------
|
||||
! DOMO -> VMO + DOMO -> VMO |
|
||||
!----------------------------
|
||||
nconnectedI += 1
|
||||
connectedI(:,:,nconnectedI) = psi_configuration(:,:,i)
|
||||
idxs_connectedI(nconnectedI)=i
|
||||
ntotalconnectedI += max(1,(psi_config_data(i,2)-psi_config_data(i,1)+1))
|
||||
else if((nxordiffSOMODOMO .EQ. 6) .AND. ndiffSOMO .EQ. 2) then
|
||||
!----------------------------
|
||||
! DOUBLE
|
||||
!----------------------------
|
||||
nconnectedI += 1
|
||||
connectedI(:,:,nconnectedI) = psi_configuration(:,:,i)
|
||||
idxs_connectedI(nconnectedI)=i
|
||||
ntotalconnectedI += max(1,(psi_config_data(i,2)-psi_config_data(i,1)+1))
|
||||
else if((nxordiffSOMODOMO .EQ. 2) .AND. ndiffSOMO .EQ. 3) then
|
||||
!-----------------
|
||||
! DOUBLE
|
||||
!-----------------
|
||||
nconnectedI += 1
|
||||
connectedI(:,:,nconnectedI) = psi_configuration(:,:,i)
|
||||
idxs_connectedI(nconnectedI)=i
|
||||
ntotalconnectedI += max(1,(psi_config_data(i,2)-psi_config_data(i,1)+1))
|
||||
else if((nxordiffSOMODOMO .EQ. 4) .AND. ndiffSOMO .EQ. 0) then
|
||||
!-----------------
|
||||
! DOUBLE
|
||||
!-----------------
|
||||
nconnectedI += 1
|
||||
connectedI(:,:,nconnectedI) = psi_configuration(:,:,i)
|
||||
idxs_connectedI(nconnectedI)=i
|
||||
ntotalconnectedI += max(1,(psi_config_data(i,2)-psi_config_data(i,1)+1))
|
||||
else if((ndiffSOMO + ndiffDOMO) .EQ. 0) then
|
||||
!--------
|
||||
! I = I |
|
||||
!--------
|
||||
nconnectedI += 1
|
||||
connectedI(:,:,nconnectedI) = psi_configuration(:,:,i)
|
||||
idxs_connectedI(nconnectedI)= i
|
||||
! find out all pq holes possible
|
||||
nholes = 0
|
||||
! holes in SOMO
|
||||
Isomo = psi_configuration(1,1,i)
|
||||
Idomo = psi_configuration(1,2,i)
|
||||
do iii = 1,n_act_orb
|
||||
ii = list_act(iii)
|
||||
if(POPCNT(IAND(Isomo,IBSET(0_8,ii-1))) .EQ. 1) then
|
||||
nholes += 1
|
||||
listholes(nholes) = ii
|
||||
holetype(nholes) = 1
|
||||
endif
|
||||
end do
|
||||
! holes in DOMO
|
||||
do iii = 1,n_act_orb
|
||||
ii = list_act(iii)
|
||||
if(POPCNT(IAND(Idomo,IBSET(0_8,ii-1))) .EQ. 1) then
|
||||
nholes += 1
|
||||
listholes(nholes) = ii
|
||||
holetype(nholes) = 2
|
||||
endif
|
||||
end do
|
||||
ntotalconnectedI += max(1,(psi_config_data(i,2)-psi_config_data(i,1)+1)*nholes)
|
||||
endif
|
||||
end do
|
||||
|
||||
end subroutine obtain_connected_J_givenI
|
||||
|
||||
subroutine obtain_connected_I_foralpha(idxI, Ialpha, connectedI, idxs_connectedI, nconnectedI, excitationIds, excitationTypes, diagfactors)
|
||||
implicit none
|
||||
use bitmasks
|
||||
BEGIN_DOC
|
||||
! Documentation for obtain_connected_I_foralpha
|
||||
! This function returns all those selected configurations
|
||||
! which are connected to the input configuration
|
||||
! Ialpha by a single excitation.
|
||||
!
|
||||
! The type of excitations are ordered as follows:
|
||||
! Type 1 - SOMO -> SOMO
|
||||
! Type 2 - DOMO -> VMO
|
||||
! Type 3 - SOMO -> VMO
|
||||
! Type 4 - DOMO -> SOMO
|
||||
!
|
||||
! Order of operators
|
||||
! \alpha> = a^\dag_p a_q |I> = E_pq |I>
|
||||
END_DOC
|
||||
integer ,intent(in) :: idxI
|
||||
integer(bit_kind),intent(in) :: Ialpha(N_int,2)
|
||||
integer(bit_kind),intent(out) :: connectedI(N_int,2,*)
|
||||
integer ,intent(out) :: idxs_connectedI(*)
|
||||
integer,intent(out) :: nconnectedI
|
||||
integer,intent(out) :: excitationIds(2,*)
|
||||
integer,intent(out) :: excitationTypes(*)
|
||||
real*8 ,intent(out) :: diagfactors(*)
|
||||
integer*8 :: Idomo
|
||||
integer*8 :: Isomo
|
||||
integer*8 :: Jdomo
|
||||
integer*8 :: Jsomo
|
||||
integer*8 :: IJsomo
|
||||
integer*8 :: diffSOMO
|
||||
integer*8 :: diffDOMO
|
||||
integer*8 :: xordiffSOMODOMO
|
||||
integer :: ndiffSOMO
|
||||
integer :: ndiffDOMO
|
||||
integer :: nxordiffSOMODOMO
|
||||
integer :: iii,ii,i,j,k,l,p,q,nsomoJ,nsomoalpha,starti,endi,extyp,nholes
|
||||
integer :: listholes(mo_num)
|
||||
integer :: holetype(mo_num)
|
||||
integer :: end_index
|
||||
integer :: Nsomo_alpha
|
||||
integer*8 :: MS
|
||||
MS = elec_alpha_num-elec_beta_num
|
||||
|
||||
nconnectedI = 0
|
||||
end_index = N_configuration
|
||||
|
||||
! Since CFGs are sorted wrt to seniority
|
||||
! we don't have to search the full CFG list
|
||||
Isomo = Ialpha(1,1)
|
||||
Idomo = Ialpha(1,2)
|
||||
Nsomo_alpha = POPCNT(Isomo)
|
||||
end_index = min(N_configuration,cfg_seniority_index(min(Nsomo_alpha+4,elec_num))-1)
|
||||
if(end_index .LT. 0) end_index= N_configuration
|
||||
end_index = N_configuration
|
||||
|
||||
|
||||
p = 0
|
||||
q = 0
|
||||
if (N_int > 1) stop 'obtain_connected_i_foralpha : N_int > 1'
|
||||
do i=idxI,end_index
|
||||
Isomo = Ialpha(1,1)
|
||||
Idomo = Ialpha(1,2)
|
||||
Jsomo = psi_configuration(1,1,i)
|
||||
Jdomo = psi_configuration(1,2,i)
|
||||
! Check for Minimal alpha electrons (MS)
|
||||
if(POPCNT(Isomo).lt.MS)then
|
||||
cycle
|
||||
endif
|
||||
diffSOMO = IEOR(Isomo,Jsomo)
|
||||
ndiffSOMO = POPCNT(diffSOMO)
|
||||
!if(idxI.eq.1)then
|
||||
! print *," \t idxI=",i," diffS=",ndiffSOMO," popJs=", POPCNT(Jsomo)," popIs=",POPCNT(Isomo)
|
||||
!endif
|
||||
diffDOMO = IEOR(Idomo,Jdomo)
|
||||
xordiffSOMODOMO = IEOR(diffSOMO,diffDOMO)
|
||||
ndiffDOMO = POPCNT(diffDOMO)
|
||||
nxordiffSOMODOMO = POPCNT(xordiffSOMODOMO)
|
||||
nxordiffSOMODOMO += ndiffSOMO + ndiffDOMO
|
||||
if((nxordiffSOMODOMO .EQ. 4) .AND. ndiffSOMO .EQ. 2) then
|
||||
select case(ndiffDOMO)
|
||||
case (0)
|
||||
! SOMO -> VMO
|
||||
!print *,"obt SOMO -> VMO"
|
||||
extyp = 3
|
||||
IJsomo = IEOR(Isomo, Jsomo)
|
||||
!IRP_IF WITHOUT_TRAILZ
|
||||
! p = (popcnt(ieor( IAND(Isomo,IJsomo) , IAND(Isomo,IJsomo) -1))-1) + 1
|
||||
!IRP_ELSE
|
||||
p = TRAILZ(IAND(Isomo,IJsomo)) + 1
|
||||
!IRP_ENDIF
|
||||
IJsomo = IBCLR(IJsomo,p-1)
|
||||
!IRP_IF WITHOUT_TRAILZ
|
||||
! q = (popcnt(ieor(IJsomo,IJsomo-1))-1) + 1
|
||||
!IRP_ELSE
|
||||
q = TRAILZ(IJsomo) + 1
|
||||
!IRP_ENDIF
|
||||
case (1)
|
||||
! DOMO -> VMO
|
||||
! or
|
||||
! SOMO -> SOMO
|
||||
nsomoJ = POPCNT(Jsomo)
|
||||
nsomoalpha = POPCNT(Isomo)
|
||||
if(nsomoJ .GT. nsomoalpha) then
|
||||
! DOMO -> VMO
|
||||
!print *,"obt DOMO -> VMO"
|
||||
extyp = 2
|
||||
!IRP_IF WITHOUT_TRAILZ
|
||||
! p = (popcnt(ieor( IEOR(Idomo,Jdomo),IEOR(Idomo,Jdomo) -1))-1) + 1
|
||||
!IRP_ELSE
|
||||
p = TRAILZ(IEOR(Idomo,Jdomo)) + 1
|
||||
!IRP_ENDIF
|
||||
Isomo = IEOR(Isomo, Jsomo)
|
||||
Isomo = IBCLR(Isomo,p-1)
|
||||
!IRP_IF WITHOUT_TRAILZ
|
||||
! q = (popcnt(ieor(Isomo,Isomo-1))-1) + 1
|
||||
!IRP_ELSE
|
||||
q = TRAILZ(Isomo) + 1
|
||||
!IRP_ENDIF
|
||||
else
|
||||
! SOMO -> SOMO
|
||||
!print *,"obt SOMO -> SOMO"
|
||||
extyp = 1
|
||||
!IRP_IF WITHOUT_TRAILZ
|
||||
! q = (popcnt(ieor( IEOR(Idomo,Jdomo), IEOR(Idomo,Jdomo)-1))-1) + 1
|
||||
!IRP_ELSE
|
||||
q = TRAILZ(IEOR(Idomo,Jdomo)) + 1
|
||||
!IRP_ENDIF
|
||||
Isomo = IEOR(Isomo, Jsomo)
|
||||
Isomo = IBCLR(Isomo,q-1)
|
||||
!IRP_IF WITHOUT_TRAILZ
|
||||
! p = (popcnt(ieor(Isomo,Isomo-1))-1) + 1
|
||||
!IRP_ELSE
|
||||
p = TRAILZ(Isomo) + 1
|
||||
!IRP_ENDIF
|
||||
! Check for Minimal alpha electrons (MS)
|
||||
!if(POPCNT(Isomo).lt.MS)then
|
||||
! cycle
|
||||
!endif
|
||||
end if
|
||||
case (2)
|
||||
! DOMO -> SOMO
|
||||
!print *,"obt DOMO -> SOMO"
|
||||
extyp = 4
|
||||
IJsomo = IEOR(Isomo, Jsomo)
|
||||
!IRP_IF WITHOUT_TRAILZ
|
||||
! p = (popcnt(ieor( IAND(Jsomo,IJsomo), IAND(Jsomo,IJsomo)-1))-1) + 1
|
||||
!IRP_ELSE
|
||||
p = TRAILZ(IAND(Jsomo,IJsomo)) + 1
|
||||
!IRP_ENDIF
|
||||
IJsomo = IBCLR(IJsomo,p-1)
|
||||
!IRP_IF WITHOUT_TRAILZ
|
||||
! q = (popcnt(ieor( IJsomo , IJsomo -1))-1) + 1
|
||||
!IRP_ELSE
|
||||
q = TRAILZ(IJsomo) + 1
|
||||
!IRP_ENDIF
|
||||
case default
|
||||
print *,"something went wront in get connectedI"
|
||||
end select
|
||||
starti = psi_config_data(i,1)
|
||||
endi = psi_config_data(i,2)
|
||||
nconnectedI += 1
|
||||
do k=1,N_int
|
||||
connectedI(k,1,nconnectedI) = psi_configuration(k,1,i)
|
||||
connectedI(k,2,nconnectedI) = psi_configuration(k,2,i)
|
||||
enddo
|
||||
idxs_connectedI(nconnectedI)=starti
|
||||
excitationIds(1,nconnectedI)=p
|
||||
excitationIds(2,nconnectedI)=q
|
||||
excitationTypes(nconnectedI) = extyp
|
||||
diagfactors(nconnectedI) = 1.0d0
|
||||
else if((ndiffSOMO + ndiffDOMO) .EQ. 0) then
|
||||
! find out all pq holes possible
|
||||
nholes = 0
|
||||
! holes in SOMO
|
||||
Isomo = psi_configuration(1,1,i)
|
||||
Idomo = psi_configuration(1,2,i)
|
||||
do iii = 1,n_act_orb
|
||||
ii = list_act(iii)
|
||||
if(POPCNT(IAND(Isomo,IBSET(0_8,ii-1))) .EQ. 1) then
|
||||
nholes += 1
|
||||
listholes(nholes) = ii
|
||||
holetype(nholes) = 1
|
||||
endif
|
||||
end do
|
||||
! holes in DOMO
|
||||
do iii = 1,n_act_orb
|
||||
ii = list_act(iii)
|
||||
if(POPCNT(IAND(Idomo,IBSET(0_8,ii-1))) .EQ. 1) then
|
||||
nholes += 1
|
||||
listholes(nholes) = ii
|
||||
holetype(nholes) = 2
|
||||
endif
|
||||
end do
|
||||
|
||||
do k=1,nholes
|
||||
p = listholes(k)
|
||||
q = p
|
||||
extyp = 1
|
||||
if(holetype(k) .EQ. 1) then
|
||||
starti = psi_config_data(i,1)
|
||||
endi = psi_config_data(i,2)
|
||||
nconnectedI += 1
|
||||
connectedI(:,:,nconnectedI) = psi_configuration(:,:,i)
|
||||
idxs_connectedI(nconnectedI)=starti
|
||||
excitationIds(1,nconnectedI)=p
|
||||
excitationIds(2,nconnectedI)=q
|
||||
excitationTypes(nconnectedI) = extyp
|
||||
diagfactors(nconnectedI) = 1.0d0
|
||||
else
|
||||
starti = psi_config_data(i,1)
|
||||
endi = psi_config_data(i,2)
|
||||
nconnectedI += 1
|
||||
connectedI(:,:,nconnectedI) = psi_configuration(:,:,i)
|
||||
idxs_connectedI(nconnectedI)=starti
|
||||
excitationIds(1,nconnectedI)=p
|
||||
excitationIds(2,nconnectedI)=q
|
||||
excitationTypes(nconnectedI) = extyp
|
||||
diagfactors(nconnectedI) = 2.0d0
|
||||
endif
|
||||
enddo
|
||||
endif
|
||||
end do
|
||||
|
||||
end subroutine obtain_connected_I_foralpha
|
File diff suppressed because it is too large
Load Diff
@ -1,3 +1,4 @@
|
||||
#include <assert.h>
|
||||
#include "tree_utils.h"
|
||||
|
||||
void buildTree(Tree *bftree,
|
||||
@ -52,6 +53,7 @@ void buildTreeDriver(Tree *bftree, int NSOMO, int MS, int *NBF){
|
||||
int icpl = 0; // keep track of the ith ms (cannot be -ve)
|
||||
int addr = 0; // Counts the total BF's
|
||||
|
||||
assert(bftree->rootNode->addr == 0);
|
||||
buildTree(bftree, &(bftree->rootNode), isomo, izeros, icpl, NSOMO, MS);
|
||||
|
||||
*NBF = bftree->rootNode->addr;
|
||||
@ -264,6 +266,8 @@ void genDetBasis(Tree *dettree, int Isomo, int MS, int *ndets){
|
||||
int NSOMO=0;
|
||||
getSetBits(Isomo, &NSOMO);
|
||||
genDetsDriver(dettree, NSOMO, MS, ndets);
|
||||
// Closed shell case
|
||||
if(NSOMO==0) (*ndets) = 1;
|
||||
|
||||
}
|
||||
|
||||
@ -311,3 +315,13 @@ void callBlasMatxMat(double *A, int rowA, int colA, double *B, int rowB, int col
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
void printRealMatrix(double *orthoMatrix, int rows, int cols){
|
||||
int i,j;
|
||||
for(i=0;i<rows;++i){
|
||||
for(j=0;j<cols;++j){
|
||||
printf(" %3.5f ",orthoMatrix[i*cols + j]);
|
||||
}
|
||||
printf("\n");
|
||||
}
|
||||
}
|
||||
|
@ -47,6 +47,7 @@ void generateAllBFs(int64_t Isomo, int64_t MS, Tree *bftree, int *NBF, int *NSOM
|
||||
void getSetBits(int64_t n, int *nsetbits);
|
||||
void getOverlapMatrix(int64_t Isomo, int64_t MS, double **overlapMatrixptr, int *rows, int *cols, int *NSOMOout);
|
||||
void getOverlapMatrix_withDet(double *bftodetmatrixI, int rowsbftodetI, int colsbftodetI, int64_t Isomo, int64_t MS, double **overlapMatrixI, int *rowsI, int *colsI, int *NSOMO);
|
||||
void gramSchmidt_qp(double *overlapMatrix, int rows, int cols, double *orthoMatrix);
|
||||
void gramSchmidt(double *overlapMatrix, int rows, int cols, double *orthoMatrix);
|
||||
|
||||
|
||||
|
624
src/davidson/diagonalization_hcfg.irp.f
Normal file
624
src/davidson/diagonalization_hcfg.irp.f
Normal file
@ -0,0 +1,624 @@
|
||||
subroutine davidson_diag_h_cfg(dets_in,u_in,dim_in,energies,sze,sze_csf,N_st,N_st_diag,Nint,dressing_state,converged)
|
||||
use bitmasks
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Davidson diagonalization.
|
||||
!
|
||||
! dets_in : bitmasks corresponding to determinants
|
||||
!
|
||||
! u_in : guess coefficients on the various states. Overwritten
|
||||
! on exit
|
||||
!
|
||||
! dim_in : leftmost dimension of u_in
|
||||
!
|
||||
! sze : Number of determinants
|
||||
!
|
||||
! N_st : Number of eigenstates
|
||||
!
|
||||
END_DOC
|
||||
integer, intent(in) :: dim_in, sze, sze_csf, N_st, N_st_diag, Nint
|
||||
integer(bit_kind), intent(in) :: dets_in(Nint,2,sze)
|
||||
double precision, intent(inout) :: u_in(dim_in,N_st_diag)
|
||||
double precision, intent(out) :: energies(N_st_diag)
|
||||
integer, intent(in) :: dressing_state
|
||||
logical, intent(out) :: converged
|
||||
double precision, allocatable :: H_jj(:)
|
||||
|
||||
double precision, external :: diag_H_mat_elem, diag_S_mat_elem
|
||||
integer :: i,k
|
||||
ASSERT (N_st > 0)
|
||||
ASSERT (sze > 0)
|
||||
ASSERT (Nint > 0)
|
||||
ASSERT (Nint == N_int)
|
||||
PROVIDE mo_two_e_integrals_in_map
|
||||
allocate(H_jj(sze))
|
||||
|
||||
H_jj(1) = diag_h_mat_elem(dets_in(1,1,1),Nint)
|
||||
!$OMP PARALLEL DEFAULT(NONE) &
|
||||
!$OMP SHARED(sze,H_jj, dets_in,Nint) &
|
||||
!$OMP PRIVATE(i)
|
||||
!$OMP DO SCHEDULE(static)
|
||||
do i=2,sze
|
||||
H_jj(i) = diag_H_mat_elem(dets_in(1,1,i),Nint)
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
if (dressing_state > 0) then
|
||||
do k=1,N_st
|
||||
do i=1,sze
|
||||
H_jj(i) += u_in(i,k) * dressing_column_h(i,k)
|
||||
enddo
|
||||
enddo
|
||||
endif
|
||||
|
||||
call davidson_diag_cfg_hjj(dets_in,u_in,H_jj,energies,dim_in,sze,sze_csf,N_st,N_st_diag,Nint,dressing_state,converged)
|
||||
deallocate(H_jj)
|
||||
end
|
||||
|
||||
|
||||
subroutine davidson_diag_cfg_hjj(dets_in,u_in,H_jj,energies,dim_in,sze,sze_csf,N_st,N_st_diag_in,Nint,dressing_state,converged)
|
||||
use bitmasks
|
||||
use mmap_module
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Davidson diagonalization with specific diagonal elements of the H matrix
|
||||
!
|
||||
! H_jj : specific diagonal H matrix elements to diagonalize de Davidson
|
||||
!
|
||||
! dets_in : bitmasks corresponding to determinants
|
||||
!
|
||||
! u_in : guess coefficients on the various states. Overwritten
|
||||
! on exit
|
||||
!
|
||||
! dim_in : leftmost dimension of u_in
|
||||
!
|
||||
! sze : Number of determinants
|
||||
!
|
||||
! N_st : Number of eigenstates
|
||||
!
|
||||
! N_st_diag_in : Number of states in which H is diagonalized. Assumed > sze
|
||||
!
|
||||
END_DOC
|
||||
integer, intent(in) :: dim_in, sze, sze_csf, N_st, N_st_diag_in, Nint
|
||||
integer(bit_kind), intent(in) :: dets_in(Nint,2,sze)
|
||||
double precision, intent(in) :: H_jj(sze)
|
||||
integer, intent(in) :: dressing_state
|
||||
double precision, intent(inout) :: u_in(dim_in,N_st_diag_in)
|
||||
double precision, intent(out) :: energies(N_st_diag_in)
|
||||
|
||||
integer :: iter, N_st_diag
|
||||
integer :: i,j,k,l,m,kk,ii,ll
|
||||
logical, intent(inout) :: converged
|
||||
|
||||
double precision, external :: u_dot_v, u_dot_u
|
||||
|
||||
integer :: k_pairs, kl
|
||||
|
||||
integer :: iter2, itertot
|
||||
double precision, allocatable :: y(:,:), h(:,:), lambda(:)
|
||||
double precision, allocatable :: s_tmp(:,:)
|
||||
double precision :: diag_h_mat_elem
|
||||
double precision, allocatable :: residual_norm(:)
|
||||
character*(16384) :: write_buffer
|
||||
double precision :: to_print(2,N_st)
|
||||
double precision :: cpu, wall
|
||||
integer :: shift, shift2, itermax, istate
|
||||
double precision :: r1, r2, alpha
|
||||
logical :: state_ok(N_st_diag_in*davidson_sze_max)
|
||||
integer :: nproc_target
|
||||
integer :: order(N_st_diag_in)
|
||||
double precision :: cmax
|
||||
double precision, allocatable :: U(:,:), U_csf(:,:), overlap(:,:)
|
||||
double precision, allocatable :: tmpU(:,:), tmpW(:,:)
|
||||
double precision, pointer :: W(:,:), W_csf(:,:)
|
||||
logical :: disk_based
|
||||
double precision :: energy_shift(N_st_diag_in*davidson_sze_max)
|
||||
|
||||
include 'constants.include.F'
|
||||
|
||||
N_st_diag = N_st_diag_in
|
||||
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: U, W, y, h, lambda
|
||||
if (N_st_diag*3 > sze) then
|
||||
print *, 'error in Davidson :'
|
||||
print *, 'Increase n_det_max_full to ', N_st_diag*3
|
||||
stop -1
|
||||
endif
|
||||
|
||||
itermax = max(2,min(davidson_sze_max, sze/N_st_diag))+1
|
||||
itertot = 0
|
||||
|
||||
if (state_following) then
|
||||
allocate(overlap(N_st_diag*itermax, N_st_diag*itermax))
|
||||
else
|
||||
allocate(overlap(1,1)) ! avoid 'if' for deallocate
|
||||
endif
|
||||
overlap = 0.d0
|
||||
|
||||
PROVIDE nuclear_repulsion expected_s2 psi_bilinear_matrix_order psi_bilinear_matrix_order_reverse threshold_davidson_pt2 threshold_davidson_from_pt2
|
||||
|
||||
call write_time(6)
|
||||
write(6,'(A)') ''
|
||||
write(6,'(A)') 'Davidson Diagonalization'
|
||||
write(6,'(A)') '------------------------'
|
||||
write(6,'(A)') ''
|
||||
|
||||
! Find max number of cores to fit in memory
|
||||
! -----------------------------------------
|
||||
|
||||
nproc_target = nproc
|
||||
double precision :: rss
|
||||
integer :: maxab
|
||||
maxab = max(N_det_alpha_unique, N_det_beta_unique)+1
|
||||
|
||||
m=1
|
||||
disk_based = .False.
|
||||
call resident_memory(rss)
|
||||
do
|
||||
r1 = 8.d0 * &! bytes
|
||||
( dble(sze)*(N_st_diag) &! U
|
||||
+ dble(sze_csf)*(N_st_diag*itermax) &! U_csf
|
||||
+ dble(sze)*(N_st_diag) &! W
|
||||
+ dble(sze_csf)*(N_st_diag*itermax) &! W_csf
|
||||
+ 3.0d0*(N_st_diag*itermax)**2 &! h,y,s_tmp
|
||||
+ 1.d0*(N_st_diag*itermax) &! lambda
|
||||
+ 1.d0*(N_st_diag) &! residual_norm
|
||||
! In H_u_0_nstates_zmq
|
||||
+ 2.d0*(N_st_diag*N_det) &! u_t, v_t, on collector
|
||||
+ 2.d0*(N_st_diag*N_det) &! u_t, v_t, on slave
|
||||
+ 0.5d0*maxab &! idx0 in H_u_0_nstates_openmp_work_*
|
||||
+ nproc_target * &! In OMP section
|
||||
( 1.d0*(N_int*maxab) &! buffer
|
||||
+ 3.5d0*(maxab) ) &! singles_a, singles_b, doubles, idx
|
||||
) / 1024.d0**3
|
||||
|
||||
if (nproc_target == 0) then
|
||||
call check_mem(r1,irp_here)
|
||||
nproc_target = 1
|
||||
exit
|
||||
endif
|
||||
|
||||
if (r1+rss < qp_max_mem) then
|
||||
exit
|
||||
endif
|
||||
|
||||
if (itermax > 4) then
|
||||
itermax = itermax - 1
|
||||
else if (m==1.and.disk_based_davidson) then
|
||||
m=0
|
||||
disk_based = .True.
|
||||
itermax = 6
|
||||
else
|
||||
nproc_target = nproc_target - 1
|
||||
endif
|
||||
|
||||
enddo
|
||||
nthreads_davidson = nproc_target
|
||||
TOUCH nthreads_davidson
|
||||
call write_int(6,N_st,'Number of states')
|
||||
call write_int(6,N_st_diag,'Number of states in diagonalization')
|
||||
call write_int(6,sze,'Number of determinants')
|
||||
call write_int(6,sze_csf,'Number of CSFs')
|
||||
call write_int(6,nproc_target,'Number of threads for diagonalization')
|
||||
call write_double(6, r1, 'Memory(Gb)')
|
||||
if (disk_based) then
|
||||
print *, 'Using swap space to reduce RAM'
|
||||
endif
|
||||
|
||||
!---------------
|
||||
|
||||
write(6,'(A)') ''
|
||||
write_buffer = '====='
|
||||
do i=1,N_st
|
||||
write_buffer = trim(write_buffer)//' ================ ==========='
|
||||
enddo
|
||||
write(6,'(A)') write_buffer(1:6+41*N_st)
|
||||
write_buffer = 'Iter'
|
||||
do i=1,N_st
|
||||
write_buffer = trim(write_buffer)//' Energy Residual '
|
||||
enddo
|
||||
write(6,'(A)') write_buffer(1:6+41*N_st)
|
||||
write_buffer = '====='
|
||||
do i=1,N_st
|
||||
write_buffer = trim(write_buffer)//' ================ ==========='
|
||||
enddo
|
||||
write(6,'(A)') write_buffer(1:6+41*N_st)
|
||||
|
||||
|
||||
if (disk_based) then
|
||||
! Create memory-mapped files for W and S
|
||||
type(c_ptr) :: ptr_w, ptr_s
|
||||
integer :: fd_s, fd_w
|
||||
call mmap(trim(ezfio_work_dir)//'davidson_w', (/int(sze,8),int(N_st_diag*itermax,8)/),&
|
||||
8, fd_w, .False., ptr_w)
|
||||
call c_f_pointer(ptr_w, W_csf, (/sze_csf,N_st_diag*itermax/))
|
||||
else
|
||||
allocate(W(sze,N_st_diag),W_csf(sze_csf,N_st_diag*itermax))
|
||||
endif
|
||||
|
||||
allocate( &
|
||||
! Large
|
||||
U(sze,N_st_diag), &
|
||||
U_csf(sze_csf,N_st_diag*itermax), &
|
||||
|
||||
! Small
|
||||
h(N_st_diag*itermax,N_st_diag*itermax), &
|
||||
y(N_st_diag*itermax,N_st_diag*itermax), &
|
||||
s_tmp(N_st_diag*itermax,N_st_diag*itermax), &
|
||||
residual_norm(N_st_diag), &
|
||||
lambda(N_st_diag*itermax))
|
||||
|
||||
|
||||
h = 0.d0
|
||||
U = 0.d0
|
||||
y = 0.d0
|
||||
s_tmp = 0.d0
|
||||
|
||||
|
||||
ASSERT (N_st > 0)
|
||||
ASSERT (N_st_diag >= N_st)
|
||||
ASSERT (sze > 0)
|
||||
ASSERT (Nint > 0)
|
||||
ASSERT (Nint == N_int)
|
||||
|
||||
! Davidson iterations
|
||||
! ===================
|
||||
|
||||
converged = .False.
|
||||
call convertWFfromDETtoCSF(N_st_diag,u_in(1,1),U_csf(1,1))
|
||||
do k=N_st+1,N_st_diag
|
||||
do i=1,sze_csf
|
||||
call random_number(r1)
|
||||
call random_number(r2)
|
||||
r1 = dsqrt(-2.d0*dlog(r1))
|
||||
r2 = dtwo_pi*r2
|
||||
U_csf(i,k) = r1*dcos(r2) * u_csf(i,k-N_st)
|
||||
enddo
|
||||
U_csf(k,k) = u_csf(k,k) + 10.d0
|
||||
enddo
|
||||
do k=1,N_st_diag
|
||||
call normalize(U_csf(1,k),sze_csf)
|
||||
enddo
|
||||
call convertWFfromCSFtoDET(N_st_diag,U_csf(1,1),U(1,1))
|
||||
|
||||
do while (.not.converged)
|
||||
itertot = itertot+1
|
||||
if (itertot == 8) then
|
||||
exit
|
||||
endif
|
||||
|
||||
do iter=1,itermax-1
|
||||
|
||||
shift = N_st_diag*(iter-1)
|
||||
shift2 = N_st_diag*iter
|
||||
|
||||
! if ((iter > 1).or.(itertot == 1)) then
|
||||
! Compute |W_k> = \sum_i |i><i|H|u_k>
|
||||
! -----------------------------------
|
||||
|
||||
!call convertWFfromCSFtoDET(N_st_diag,U_csf(1,shift+1),U)
|
||||
PROVIDE mo_two_e_integrals_in_map mo_integrals_map big_array_exchange_integrals
|
||||
if ((sze > 100000).and.distributed_davidson) then
|
||||
!call H_u_0_nstates_zmq (W,U,N_st_diag,sze)
|
||||
allocate(tmpW(N_st_diag,sze_csf))
|
||||
allocate(tmpU(N_st_diag,sze_csf))
|
||||
do kk=1,N_st_diag
|
||||
do ii=1,sze_csf
|
||||
tmpU(kk,ii) = U_csf(ii,shift+kk)
|
||||
enddo
|
||||
enddo
|
||||
call calculate_sigma_vector_cfg_nst_naive_store(tmpW,tmpU,N_st_diag,sze_csf,1,sze_csf,0,1)
|
||||
do kk=1,N_st_diag
|
||||
do ii=1,sze_csf
|
||||
W_csf(ii,shift+kk)=tmpW(kk,ii)
|
||||
enddo
|
||||
enddo
|
||||
deallocate(tmpW)
|
||||
deallocate(tmpU)
|
||||
else
|
||||
!call H_u_0_nstates_openmp(W,U,N_st_diag,sze)
|
||||
allocate(tmpW(N_st_diag,sze_csf))
|
||||
allocate(tmpU(N_st_diag,sze_csf))
|
||||
do kk=1,N_st_diag
|
||||
do ii=1,sze_csf
|
||||
tmpU(kk,ii) = U_csf(ii,shift+kk)
|
||||
enddo
|
||||
enddo
|
||||
!tmpU =0.0d0
|
||||
!tmpU(1,2)=1.0d0
|
||||
double precision :: irp_rdtsc
|
||||
double precision :: ticks_0, ticks_1
|
||||
integer*8 :: irp_imax
|
||||
irp_imax = 1
|
||||
!ticks_0 = irp_rdtsc()
|
||||
call calculate_sigma_vector_cfg_nst_naive_store(tmpW,tmpU,N_st_diag,sze_csf,1,sze_csf,0,1)
|
||||
!ticks_1 = irp_rdtsc()
|
||||
!print *,' ----Cycles:',(ticks_1-ticks_0)/dble(irp_imax)," ----"
|
||||
do kk=1,N_st_diag
|
||||
do ii=1,sze_csf
|
||||
W_csf(ii,shift+kk)=tmpW(kk,ii)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
!U_csf = 0.0d0
|
||||
!U_csf(1,1) = 1.0d0
|
||||
!u_in = 0.0d0
|
||||
!call convertWFfromCSFtoDET(N_st_diag,tmpU,U2)
|
||||
!call H_u_0_nstates_openmp(u_in,U2,N_st_diag,sze)
|
||||
!call convertWFfromDETtoCSF(N_st_diag,u_in(1,1),W_csf2(1,1))
|
||||
!do i=1,sze_csf
|
||||
! print *,"I=",i," qp=",W_csf2(i,1)," my=",W_csf(i,1)," diff=",dabs(W_csf2(i,1))-dabs(W_csf(i,1))
|
||||
! if(dabs(dabs(W_csf2(i,1))-dabs(W_csf(i,1))) .gt. 1.0e-10)then
|
||||
! print *,"somo=",psi_configuration(1,1,i)," domo=",psi_configuration(1,2,i)," diff=",dabs(W_csf2(i,1))-dabs(W_csf(i,1))
|
||||
! endif
|
||||
!end do
|
||||
!stop
|
||||
deallocate(tmpW)
|
||||
deallocate(tmpU)
|
||||
endif
|
||||
! else
|
||||
! ! Already computed in update below
|
||||
! continue
|
||||
! endif
|
||||
|
||||
if (dressing_state > 0) then
|
||||
|
||||
if (N_st == 1) then
|
||||
|
||||
l = dressed_column_idx(1)
|
||||
double precision :: f
|
||||
f = 1.0d0/psi_coef(l,1)
|
||||
do istate=1,N_st_diag
|
||||
do i=1,sze
|
||||
W(i,istate) += dressing_column_h(i,1) *f * U(l,istate)
|
||||
W(l,istate) += dressing_column_h(i,1) *f * U(i,istate)
|
||||
enddo
|
||||
|
||||
enddo
|
||||
|
||||
else
|
||||
|
||||
call dgemm('T','N', N_st, N_st_diag, sze, 1.d0, &
|
||||
psi_coef, size(psi_coef,1), &
|
||||
U(1,1), size(U,1), 0.d0, s_tmp, size(s_tmp,1))
|
||||
|
||||
call dgemm('N','N', sze, N_st_diag, N_st, 1.0d0, &
|
||||
dressing_column_h, size(dressing_column_h,1), s_tmp, size(s_tmp,1), &
|
||||
1.d0, W(1,1), size(W,1))
|
||||
|
||||
|
||||
call dgemm('T','N', N_st, N_st_diag, sze, 1.d0, &
|
||||
dressing_column_h, size(dressing_column_h,1), &
|
||||
U(1,1), size(U,1), 0.d0, s_tmp, size(s_tmp,1))
|
||||
|
||||
call dgemm('N','N', sze, N_st_diag, N_st, 1.0d0, &
|
||||
psi_coef, size(psi_coef,1), s_tmp, size(s_tmp,1), &
|
||||
1.d0, W(1,1), size(W,1))
|
||||
|
||||
endif
|
||||
endif
|
||||
|
||||
!call convertWFfromDETtoCSF(N_st_diag,W,W_csf(1,shift+1))
|
||||
|
||||
! Compute h_kl = <u_k | W_l> = <u_k| H |u_l>
|
||||
! -------------------------------------------
|
||||
|
||||
call dgemm('T','N', shift2, shift2, sze_csf, &
|
||||
1.d0, U_csf, size(U_csf,1), W_csf, size(W_csf,1), &
|
||||
0.d0, h, size(h,1))
|
||||
call dgemm('T','N', shift2, shift2, sze_csf, &
|
||||
1.d0, U_csf, size(U_csf,1), U_csf, size(U_csf,1), &
|
||||
0.d0, s_tmp, size(s_tmp,1))
|
||||
|
||||
! Diagonalize h
|
||||
! ---------------
|
||||
|
||||
integer :: lwork, info
|
||||
double precision, allocatable :: work(:)
|
||||
|
||||
y = h
|
||||
lwork = -1
|
||||
allocate(work(1))
|
||||
call dsygv(1,'V','U',shift2,y,size(y,1), &
|
||||
s_tmp,size(s_tmp,1), lambda, work,lwork,info)
|
||||
lwork = int(work(1))
|
||||
deallocate(work)
|
||||
allocate(work(lwork))
|
||||
call dsygv(1,'V','U',shift2,y,size(y,1), &
|
||||
s_tmp,size(s_tmp,1), lambda, work,lwork,info)
|
||||
deallocate(work)
|
||||
if (info /= 0) then
|
||||
stop 'DSYGV Diagonalization failed'
|
||||
endif
|
||||
|
||||
! Compute Energy for each eigenvector
|
||||
! -----------------------------------
|
||||
|
||||
call dgemm('N','N',shift2,shift2,shift2, &
|
||||
1.d0, h, size(h,1), y, size(y,1), &
|
||||
0.d0, s_tmp, size(s_tmp,1))
|
||||
|
||||
call dgemm('T','N',shift2,shift2,shift2, &
|
||||
1.d0, y, size(y,1), s_tmp, size(s_tmp,1), &
|
||||
0.d0, h, size(h,1))
|
||||
|
||||
do k=1,shift2
|
||||
lambda(k) = h(k,k)
|
||||
enddo
|
||||
|
||||
if (state_following) then
|
||||
|
||||
overlap = -1.d0
|
||||
do i=1,shift2
|
||||
do k=1,shift2
|
||||
overlap(k,i) = dabs(y(k,i))
|
||||
enddo
|
||||
enddo
|
||||
do k=1,N_st
|
||||
cmax = -1.d0
|
||||
do i=1,N_st
|
||||
if (overlap(i,k) > cmax) then
|
||||
cmax = overlap(i,k)
|
||||
order(k) = i
|
||||
endif
|
||||
enddo
|
||||
do i=1,N_st_diag
|
||||
overlap(order(k),i) = -1.d0
|
||||
enddo
|
||||
enddo
|
||||
overlap = y
|
||||
do k=1,N_st
|
||||
l = order(k)
|
||||
if (k /= l) then
|
||||
y(1:shift2,k) = overlap(1:shift2,l)
|
||||
endif
|
||||
enddo
|
||||
do k=1,N_st
|
||||
overlap(k,1) = lambda(k)
|
||||
enddo
|
||||
|
||||
endif
|
||||
|
||||
|
||||
! Express eigenvectors of h in the csf basis
|
||||
! ------------------------------------------
|
||||
|
||||
call dgemm('N','N', sze_csf, N_st_diag, shift2, &
|
||||
1.d0, U_csf, size(U_csf,1), y, size(y,1), 0.d0, U_csf(1,shift2+1), size(U_csf,1))
|
||||
call convertWFfromCSFtoDET(N_st_diag,U_csf(1,shift2+1),U)
|
||||
|
||||
call dgemm('N','N', sze_csf, N_st_diag, shift2, &
|
||||
1.d0, W_csf, size(W_csf,1), y, size(y,1), 0.d0, W_csf(1,shift2+1), size(W_csf,1))
|
||||
call convertWFfromCSFtoDET(N_st_diag,W_csf(1,shift2+1),W)
|
||||
|
||||
! Compute residual vector and davidson step
|
||||
! -----------------------------------------
|
||||
|
||||
!if (without_diagonal) then
|
||||
!$OMP PARALLEL DO DEFAULT(SHARED) PRIVATE(i,k)
|
||||
do k=1,N_st_diag
|
||||
do i=1,sze
|
||||
U(i,k) = (lambda(k) * U(i,k) - W(i,k) ) &
|
||||
/max(H_jj(i) - lambda (k),1.d-2)
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END PARALLEL DO
|
||||
!else
|
||||
! !$OMP PARALLEL DO DEFAULT(SHARED) PRIVATE(i,k)
|
||||
! do k=1,N_st_diag
|
||||
! do i=1,sze
|
||||
! U(i,k) = (lambda(k) * U(i,k) - W(i,k) )
|
||||
! enddo
|
||||
! enddo
|
||||
! !$OMP END PARALLEL DO
|
||||
!endif
|
||||
|
||||
do k=1,N_st
|
||||
residual_norm(k) = u_dot_u(U(1,k),sze)
|
||||
to_print(1,k) = lambda(k) + nuclear_repulsion
|
||||
to_print(2,k) = residual_norm(k)
|
||||
enddo
|
||||
call convertWFfromDETtoCSF(N_st_diag,U,U_csf(1,shift2+1))
|
||||
|
||||
if ((itertot>1).and.(iter == 1)) then
|
||||
!don't print
|
||||
continue
|
||||
else
|
||||
write(*,'(1X,I3,1X,100(1X,F16.10,1X,E11.3))') iter-1, to_print(1:2,1:N_st)
|
||||
endif
|
||||
|
||||
! Check convergence
|
||||
if (iter > 1) then
|
||||
if (threshold_davidson_from_pt2) then
|
||||
converged = dabs(maxval(residual_norm(1:N_st))) < threshold_davidson_pt2
|
||||
else
|
||||
converged = dabs(maxval(residual_norm(1:N_st))) < threshold_davidson
|
||||
endif
|
||||
endif
|
||||
|
||||
do k=1,N_st
|
||||
if (residual_norm(k) > 1.d8) then
|
||||
print *, 'Davidson failed'
|
||||
stop -1
|
||||
endif
|
||||
enddo
|
||||
if (converged) then
|
||||
exit
|
||||
endif
|
||||
|
||||
logical, external :: qp_stop
|
||||
if (qp_stop()) then
|
||||
converged = .True.
|
||||
exit
|
||||
endif
|
||||
|
||||
|
||||
enddo
|
||||
|
||||
! Re-contract U
|
||||
! -------------
|
||||
|
||||
call dgemm('N','N', sze_csf, N_st_diag, shift2, 1.d0, &
|
||||
W_csf, size(W_csf,1), y, size(y,1), 0.d0, u_in, size(u_in,1))
|
||||
do k=1,N_st_diag
|
||||
do i=1,sze_csf
|
||||
W_csf(i,k) = u_in(i,k)
|
||||
enddo
|
||||
enddo
|
||||
call convertWFfromCSFtoDET(N_st_diag,W_csf,W)
|
||||
|
||||
call dgemm('N','N', sze_csf, N_st_diag, shift2, 1.d0, &
|
||||
U_csf, size(U_csf,1), y, size(y,1), 0.d0, u_in, size(u_in,1))
|
||||
do k=1,N_st_diag
|
||||
do i=1,sze_csf
|
||||
U_csf(i,k) = u_in(i,k)
|
||||
enddo
|
||||
enddo
|
||||
call convertWFfromCSFtoDET(N_st_diag,U_csf,U)
|
||||
|
||||
enddo
|
||||
|
||||
|
||||
call nullify_small_elements(sze,N_st_diag,U,size(U,1),threshold_davidson_pt2)
|
||||
do k=1,N_st_diag
|
||||
do i=1,sze
|
||||
u_in(i,k) = U(i,k)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
do k=1,N_st_diag
|
||||
energies(k) = lambda(k)
|
||||
enddo
|
||||
write_buffer = '======'
|
||||
do i=1,N_st
|
||||
write_buffer = trim(write_buffer)//' ================ ==========='
|
||||
enddo
|
||||
write(6,'(A)') trim(write_buffer)
|
||||
write(6,'(A)') ''
|
||||
call write_time(6)
|
||||
|
||||
if (disk_based)then
|
||||
! Remove temp files
|
||||
integer, external :: getUnitAndOpen
|
||||
call munmap( (/int(sze,8),int(N_st_diag*itermax,8)/), 8, fd_w, ptr_w )
|
||||
fd_w = getUnitAndOpen(trim(ezfio_work_dir)//'davidson_w','r')
|
||||
close(fd_w,status='delete')
|
||||
else
|
||||
deallocate(W, W_csf)
|
||||
endif
|
||||
|
||||
deallocate ( &
|
||||
residual_norm, &
|
||||
U, U_csf, overlap, &
|
||||
h, y, s_tmp, &
|
||||
lambda &
|
||||
)
|
||||
FREE nthreads_davidson
|
||||
end
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
@ -89,7 +89,7 @@ subroutine davidson_diag_csf_hjj(dets_in,u_in,H_jj,energies,dim_in,sze,sze_csf,N
|
||||
double precision, intent(out) :: energies(N_st_diag_in)
|
||||
|
||||
integer :: iter, N_st_diag
|
||||
integer :: i,j,k,l,m
|
||||
integer :: i,j,k,l,m,kk
|
||||
logical, intent(inout) :: converged
|
||||
|
||||
double precision, external :: u_dot_v, u_dot_u
|
||||
|
@ -154,7 +154,7 @@ subroutine davidson_diag_hjj_sjj(dets_in,u_in,H_jj,s2_out,energies,dim_in,sze,N_
|
||||
character*(16384) :: write_buffer
|
||||
double precision :: to_print(3,N_st)
|
||||
double precision :: cpu, wall
|
||||
integer :: shift, shift2, itermax, istate
|
||||
integer :: shift, shift2, itermax, istate, ii
|
||||
double precision :: r1, r2, alpha
|
||||
logical :: state_ok(N_st_diag_in*davidson_sze_max)
|
||||
integer :: nproc_target
|
||||
@ -361,7 +361,14 @@ subroutine davidson_diag_hjj_sjj(dets_in,u_in,H_jj,s2_out,energies,dim_in,sze,N_
|
||||
if ((sze > 100000).and.distributed_davidson) then
|
||||
call H_S2_u_0_nstates_zmq (W(1,shift+1),S_d,U(1,shift+1),N_st_diag,sze)
|
||||
else
|
||||
double precision :: irp_rdtsc
|
||||
double precision :: ticks_0, ticks_1
|
||||
integer*8 :: irp_imax
|
||||
irp_imax = 1
|
||||
!ticks_0 = irp_rdtsc()
|
||||
call H_S2_u_0_nstates_openmp(W(1,shift+1),S_d,U(1,shift+1),N_st_diag,sze)
|
||||
!ticks_1 = irp_rdtsc()
|
||||
!print *,' ----Cycles:',(ticks_1-ticks_0)/dble(irp_imax)," ----"
|
||||
endif
|
||||
S(1:sze,shift+1:shift+N_st_diag) = real(S_d(1:sze,1:N_st_diag))
|
||||
else
|
||||
|
@ -1,9 +1,20 @@
|
||||
BEGIN_PROVIDER [ character*(3), sigma_vector_algorithm ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! If 'det', use <Psi_det|H|Psi_det> in Davidson
|
||||
!
|
||||
! If 'cfg', use <Psi_csf|H|Psi_csf> in Davidson
|
||||
END_DOC
|
||||
sigma_vector_algorithm = 'det'
|
||||
!sigma_vector_algorithm = 'cfg'
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ double precision, CI_energy, (N_states_diag) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! :c:data:`n_states` lowest eigenvalues of the |CI| matrix
|
||||
END_DOC
|
||||
PROVIDE distributed_davidson
|
||||
|
||||
integer :: j
|
||||
character*(8) :: st
|
||||
@ -61,7 +72,7 @@ END_PROVIDER
|
||||
if (diag_algorithm == 'Davidson') then
|
||||
|
||||
if (do_csf) then
|
||||
! if (sigma_vector_algorithm == 'det') then
|
||||
if (sigma_vector_algorithm == 'det') then
|
||||
call davidson_diag_H_csf (psi_det, &
|
||||
CI_eigenvectors, &
|
||||
size(CI_eigenvectors,1), &
|
||||
@ -73,14 +84,14 @@ END_PROVIDER
|
||||
N_int, &
|
||||
0, &
|
||||
converged)
|
||||
! else if (sigma_vector_algorithm == 'cfg') then
|
||||
! call davidson_diag_H_csf(psi_det,CI_eigenvectors, &
|
||||
! size(CI_eigenvectors,1),CI_electronic_energy, &
|
||||
! N_det,N_csf,min(N_det,N_states),min(N_det,N_states_diag),N_int,0,converged)
|
||||
! else
|
||||
! print *, irp_here
|
||||
! stop 'bug'
|
||||
! endif
|
||||
else if (sigma_vector_algorithm == 'cfg') then
|
||||
call davidson_diag_H_cfg(psi_det,CI_eigenvectors, &
|
||||
size(CI_eigenvectors,1),CI_electronic_energy, &
|
||||
N_det,N_csf,min(N_det,N_states),min(N_det,N_states_diag),N_int,0,converged)
|
||||
else
|
||||
print *, irp_here
|
||||
stop 'bug'
|
||||
endif
|
||||
else
|
||||
call davidson_diag_HS2(psi_det, &
|
||||
CI_eigenvectors, &
|
||||
|
54
src/mo_localization/EZFIO.cfg
Normal file
54
src/mo_localization/EZFIO.cfg
Normal file
@ -0,0 +1,54 @@
|
||||
[localization_method]
|
||||
type: character*(32)
|
||||
doc: Method for the orbital localization. boys : Foster-Boys, pipek : Pipek-Mezey.
|
||||
interface: ezfio,provider,ocaml
|
||||
default: boys
|
||||
|
||||
[localization_max_nb_iter]
|
||||
type: integer
|
||||
doc: Maximal number of iterations for the orbital localization.
|
||||
interface: ezfio,provider,ocaml
|
||||
default: 1000
|
||||
|
||||
[localization_use_hessian]
|
||||
type: logical
|
||||
doc: If true, it uses the trust region algorithm with the gradient and the diagonal of the hessian. Else it computes the rotation between each pair of MOs that should be applied to maximize/minimize the localization criterion. The last option requieres a way smaller amount of memory but is not easy to converge.
|
||||
interface: ezfio,provider,ocaml
|
||||
default: true
|
||||
|
||||
[security_mo_class]
|
||||
type: logical
|
||||
doc: If true, call abort if the number of active orbital or the number of core + active orbitals is equal to the number of molecular orbitals, else uses the actual mo_class. It is a security if you forget to set the mo_class before the localization.
|
||||
interface: ezfio,provider,ocaml
|
||||
default: true
|
||||
|
||||
[thresh_loc_max_elem_grad]
|
||||
type: double precision
|
||||
doc: Threshold for the convergence, the localization exits when the largest element in the gradient is smaller than thresh_localization_max_elem_grad.
|
||||
interface: ezfio,provider,ocaml
|
||||
default: 1.e-6
|
||||
|
||||
[kick_in_mos]
|
||||
type: logical
|
||||
doc: If True, it applies a rotation of an angle angle_pre_rot between the MOs of a same mo_class before the localization.
|
||||
interface: ezfio,provider,ocaml
|
||||
default: true
|
||||
|
||||
[angle_pre_rot]
|
||||
type: double precision
|
||||
doc: To define the angle for the rotation of the MOs before the localization (in rad).
|
||||
interface: ezfio,provider,ocaml
|
||||
default: 0.1
|
||||
|
||||
[sort_mos_by_e]
|
||||
type: logical
|
||||
doc: If True, the MOs are sorted using the diagonal elements of the Fock matrix.
|
||||
interface: ezfio,provider,ocaml
|
||||
default: false
|
||||
|
||||
[debug_hf]
|
||||
type: logical
|
||||
doc: If True, prints the HF energy before/after the different steps of the localization. Only for debugging.
|
||||
interface: ezfio,provider,ocaml
|
||||
default: false
|
||||
|
2
src/mo_localization/NEED
Normal file
2
src/mo_localization/NEED
Normal file
@ -0,0 +1,2 @@
|
||||
hartree_fock
|
||||
utils_trust_region
|
108
src/mo_localization/README.md
Normal file
108
src/mo_localization/README.md
Normal file
@ -0,0 +1,108 @@
|
||||
# mo_localization
|
||||
|
||||
Some parameters can be changed with qp edit in the mo_localization section
|
||||
(cf below). Similarly for the trust region parameters in the
|
||||
utils_trust_region section. The localization without the trust region
|
||||
is not available for the moment.
|
||||
|
||||
The irf.f files can be generated from the org ones using emacs.
|
||||
If you modify the .org files, don't forget to do (you need emacs):
|
||||
```
|
||||
./TANGLE_org_mode.sh
|
||||
ninja
|
||||
```
|
||||
|
||||
# Orbital localisation
|
||||
To localize the MOs:
|
||||
```
|
||||
qp run localization
|
||||
```
|
||||
After that the ezfio directory contains the localized MOs
|
||||
|
||||
But to do so the mo_class must be defined before, run
|
||||
```
|
||||
qp set_mo_class -q
|
||||
```
|
||||
for more information or
|
||||
```
|
||||
qp set_mo_class -c [] -a [] -v [] -i [] -d []
|
||||
```
|
||||
to set the mo classes. We don't care about the name of the
|
||||
mo classes. The algorithm just localizes all the MOs of
|
||||
a given class between them, for all the classes, except the deleted MOs.
|
||||
|
||||
If you just on kind of mo class to localize all the MOs between them
|
||||
you have to put:
|
||||
```
|
||||
qp set mo_localization security_mo_class false
|
||||
```
|
||||
|
||||
Before the localization, a kick is done for each mo class
|
||||
(except the deleted ones) to break the MOs. This is done by
|
||||
doing a rotation between the MOs.
|
||||
This feature can be removed by setting:
|
||||
```
|
||||
qp set mo_localization kick_in_mos false
|
||||
```
|
||||
and the default angle for the rotation can be changed with:
|
||||
```
|
||||
qp set mo_localization angle_pre_rot 1e-3 # or something else
|
||||
```
|
||||
|
||||
After the localization, the MOs of each class (except the deleted ones)
|
||||
can be sorted between them using the diagonal elements of
|
||||
the fock matrix with:
|
||||
```
|
||||
qp set mo_localization sort_mos_by_e true
|
||||
```
|
||||
|
||||
You can check the Hartree-Fock energy before/during/after the localization
|
||||
by putting (only for debugging):
|
||||
```
|
||||
qp set mo_localization debug_hf true
|
||||
```
|
||||
|
||||
## Foster-Boys & Pipek-Mezey
|
||||
Foster-Boys:
|
||||
```
|
||||
qp set mo_localization localization_method boys
|
||||
```
|
||||
|
||||
Pipek-Mezey:
|
||||
```
|
||||
qp set mo_localization localization_method pipek
|
||||
```
|
||||
|
||||
# Break the spatial symmetry of the MOs
|
||||
To break the spatial symmetry of the MOs:
|
||||
```
|
||||
qp run break_spatial_sym
|
||||
```
|
||||
The default angle for the rotations is too big for this kind of
|
||||
application, a value between 1e-3 and 1e-6 should break the spatial
|
||||
symmetry with just a small change in the energy:
|
||||
```
|
||||
qp set mo_localization angle_pre_rot 1e-3
|
||||
```
|
||||
|
||||
# With or without hessian + trust region
|
||||
With hessian + trust region
|
||||
```
|
||||
qp set mo_localization localisation_use_hessian true
|
||||
```
|
||||
It uses the trust region algorithm with the diagonal of the hessian of the
|
||||
localization criterion with respect to the MO rotations.
|
||||
|
||||
Without the hessian and the trust region
|
||||
```
|
||||
qp set mo_localization localisation_use_hessian false
|
||||
```
|
||||
By doing so it does not require to store the hessian but the
|
||||
convergence is not easy, in particular for virtual MOs.
|
||||
It seems that it not possible to converge with Pipek-Mezey
|
||||
localization with this approach.
|
||||
|
||||
# Further improvements:
|
||||
- Cleaner repo
|
||||
- Correction of the errors in the documentations
|
||||
- option with/without trust region
|
7
src/mo_localization/TANGLE_org_mode.sh
Executable file
7
src/mo_localization/TANGLE_org_mode.sh
Executable file
@ -0,0 +1,7 @@
|
||||
#!/bin/sh
|
||||
|
||||
list='ls *.org'
|
||||
for element in $list
|
||||
do
|
||||
emacs --batch $element -f org-babel-tangle
|
||||
done
|
42
src/mo_localization/break_spatial_sym.irp.f
Normal file
42
src/mo_localization/break_spatial_sym.irp.f
Normal file
@ -0,0 +1,42 @@
|
||||
! ! A small program to break the spatial symmetry of the MOs.
|
||||
|
||||
! ! You have to defined your MO classes or set security_mo_class to false
|
||||
! ! with:
|
||||
! ! qp set orbital_optimization security_mo_class false
|
||||
|
||||
! ! The default angle for the rotations is too big for this kind of
|
||||
! ! application, a value between 1e-3 and 1e-6 should break the spatial
|
||||
! ! symmetry with just a small change in the energy.
|
||||
|
||||
|
||||
program break_spatial_sym
|
||||
|
||||
!BEGIN_DOC
|
||||
! Break the symmetry of the MOs with a rotation
|
||||
!END_DOC
|
||||
|
||||
implicit none
|
||||
|
||||
kick_in_mos = .True.
|
||||
TOUCH kick_in_mos
|
||||
|
||||
print*, 'Security mo_class:', security_mo_class
|
||||
|
||||
! The default mo_classes are setted only if the MOs to localize are not specified
|
||||
if (security_mo_class .and. (dim_list_act_orb == mo_num .or. &
|
||||
dim_list_core_orb + dim_list_act_orb == mo_num)) then
|
||||
|
||||
print*, 'WARNING'
|
||||
print*, 'You must set different mo_class with qp set_mo_class'
|
||||
print*, 'If you want to kick all the orbitals:'
|
||||
print*, 'qp set orbital_optimization security_mo_class false'
|
||||
print*, ''
|
||||
print*, 'abort'
|
||||
|
||||
call abort
|
||||
|
||||
endif
|
||||
|
||||
call apply_pre_rotation
|
||||
|
||||
end
|
43
src/mo_localization/break_spatial_sym.org
Normal file
43
src/mo_localization/break_spatial_sym.org
Normal file
@ -0,0 +1,43 @@
|
||||
! A small program to break the spatial symmetry of the MOs.
|
||||
|
||||
! You have to defined your MO classes or set security_mo_class to false
|
||||
! with:
|
||||
! qp set orbital_optimization security_mo_class false
|
||||
|
||||
! The default angle for the rotations is too big for this kind of
|
||||
! application, a value between 1e-3 and 1e-6 should break the spatial
|
||||
! symmetry with just a small change in the energy.
|
||||
|
||||
#+BEGIN_SRC f90 :comments org :tangle break_spatial_sym.irp.f
|
||||
program break_spatial_sym
|
||||
|
||||
!BEGIN_DOC
|
||||
! Break the symmetry of the MOs with a rotation
|
||||
!END_DOC
|
||||
|
||||
implicit none
|
||||
|
||||
kick_in_mos = .True.
|
||||
TOUCH kick_in_mos
|
||||
|
||||
print*, 'Security mo_class:', security_mo_class
|
||||
|
||||
! The default mo_classes are setted only if the MOs to localize are not specified
|
||||
if (security_mo_class .and. (dim_list_act_orb == mo_num .or. &
|
||||
dim_list_core_orb + dim_list_act_orb == mo_num)) then
|
||||
|
||||
print*, 'WARNING'
|
||||
print*, 'You must set different mo_class with qp set_mo_class'
|
||||
print*, 'If you want to kick all the orbitals:'
|
||||
print*, 'qp set orbital_optimization security_mo_class false'
|
||||
print*, ''
|
||||
print*, 'abort'
|
||||
|
||||
call abort
|
||||
|
||||
endif
|
||||
|
||||
call apply_pre_rotation
|
||||
|
||||
end
|
||||
#+END_SRC
|
62
src/mo_localization/debug_gradient_loc.irp.f
Normal file
62
src/mo_localization/debug_gradient_loc.irp.f
Normal file
@ -0,0 +1,62 @@
|
||||
program debug_gradient_loc
|
||||
|
||||
!BEGIN_DOC
|
||||
! Check if the gradient is correct
|
||||
!END_DOC
|
||||
|
||||
implicit none
|
||||
|
||||
integer :: list_size, n
|
||||
integer, allocatable :: list(:)
|
||||
double precision, allocatable :: v_grad(:), v_grad2(:)
|
||||
double precision :: norm, max_elem, threshold, max_error
|
||||
integer :: i, nb_error
|
||||
|
||||
threshold = 1d-12
|
||||
|
||||
list = list_act
|
||||
list_size = dim_list_act_orb
|
||||
|
||||
n = list_size*(list_size-1)/2
|
||||
|
||||
allocate(v_grad(n),v_grad2(n))
|
||||
|
||||
if (localization_method == 'boys') then
|
||||
print*,'Foster-Boys'
|
||||
call gradient_FB(n,list_size,list,v_grad,max_elem,norm)
|
||||
call gradient_FB_omp(n,list_size,list,v_grad2,max_elem,norm)
|
||||
elseif (localization_method == 'pipek') then
|
||||
print*,'Pipek-Mezey'
|
||||
call gradient_PM(n,list_size,list,v_grad,max_elem,norm)
|
||||
call gradient_PM(n,list_size,list,v_grad2,max_elem,norm)
|
||||
else
|
||||
print*,'Unknown localization_method, please select boys or pipek'
|
||||
call abort
|
||||
endif
|
||||
|
||||
do i = 1, n
|
||||
print*,i,v_grad(i)
|
||||
enddo
|
||||
|
||||
v_grad = v_grad - v_grad2
|
||||
|
||||
nb_error = 0
|
||||
max_elem = 0d0
|
||||
|
||||
do i = 1, n
|
||||
if (dabs(v_grad(i)) > threshold) then
|
||||
print*,v_grad(i)
|
||||
nb_error = nb_error + 1
|
||||
if (dabs(v_grad(i)) > max_elem) then
|
||||
max_elem = v_grad(i)
|
||||
endif
|
||||
endif
|
||||
enddo
|
||||
|
||||
print*,'Threshold error', threshold
|
||||
print*, 'Nb error', nb_error
|
||||
print*,'Max error', max_elem
|
||||
|
||||
deallocate(v_grad,v_grad2)
|
||||
|
||||
end
|
64
src/mo_localization/debug_gradient_loc.org
Normal file
64
src/mo_localization/debug_gradient_loc.org
Normal file
@ -0,0 +1,64 @@
|
||||
#+BEGIN_SRC f90 :comments org :tangle debug_gradient_loc.irp.f
|
||||
program debug_gradient_loc
|
||||
|
||||
!BEGIN_DOC
|
||||
! Check if the gradient is correct
|
||||
!END_DOC
|
||||
|
||||
implicit none
|
||||
|
||||
integer :: list_size, n
|
||||
integer, allocatable :: list(:)
|
||||
double precision, allocatable :: v_grad(:), v_grad2(:)
|
||||
double precision :: norm, max_elem, threshold, max_error
|
||||
integer :: i, nb_error
|
||||
|
||||
threshold = 1d-12
|
||||
|
||||
list = list_act
|
||||
list_size = dim_list_act_orb
|
||||
|
||||
n = list_size*(list_size-1)/2
|
||||
|
||||
allocate(v_grad(n),v_grad2(n))
|
||||
|
||||
if (localization_method == 'boys') then
|
||||
print*,'Foster-Boys'
|
||||
call gradient_FB(n,list_size,list,v_grad,max_elem,norm)
|
||||
call gradient_FB_omp(n,list_size,list,v_grad2,max_elem,norm)
|
||||
elseif (localization_method == 'pipek') then
|
||||
print*,'Pipek-Mezey'
|
||||
call gradient_PM(n,list_size,list,v_grad,max_elem,norm)
|
||||
call gradient_PM(n,list_size,list,v_grad2,max_elem,norm)
|
||||
else
|
||||
print*,'Unknown localization_method, please select boys or pipek'
|
||||
call abort
|
||||
endif
|
||||
|
||||
do i = 1, n
|
||||
print*,i,v_grad(i)
|
||||
enddo
|
||||
|
||||
v_grad = v_grad - v_grad2
|
||||
|
||||
nb_error = 0
|
||||
max_elem = 0d0
|
||||
|
||||
do i = 1, n
|
||||
if (dabs(v_grad(i)) > threshold) then
|
||||
print*,v_grad(i)
|
||||
nb_error = nb_error + 1
|
||||
if (dabs(v_grad(i)) > max_elem) then
|
||||
max_elem = v_grad(i)
|
||||
endif
|
||||
endif
|
||||
enddo
|
||||
|
||||
print*,'Threshold error', threshold
|
||||
print*, 'Nb error', nb_error
|
||||
print*,'Max error', max_elem
|
||||
|
||||
deallocate(v_grad,v_grad2)
|
||||
|
||||
end
|
||||
#+END_SRC
|
62
src/mo_localization/debug_hessian_loc.irp.f
Normal file
62
src/mo_localization/debug_hessian_loc.irp.f
Normal file
@ -0,0 +1,62 @@
|
||||
program debug_hessian_loc
|
||||
|
||||
!BEGIN_DOC
|
||||
! Check if the hessian is correct
|
||||
!END_DOC
|
||||
|
||||
implicit none
|
||||
|
||||
integer :: list_size, n
|
||||
integer, allocatable :: list(:)
|
||||
double precision, allocatable :: H(:,:), H2(:,:)
|
||||
double precision :: threshold, max_error, max_elem
|
||||
integer :: i, nb_error
|
||||
|
||||
threshold = 1d-12
|
||||
|
||||
list = list_act
|
||||
list_size = dim_list_act_orb
|
||||
|
||||
n = list_size*(list_size-1)/2
|
||||
|
||||
allocate(H(n,n),H2(n,n))
|
||||
|
||||
if (localization_method == 'boys') then
|
||||
print*,'Foster-Boys'
|
||||
call hessian_FB(n,list_size,list,H)
|
||||
call hessian_FB_omp(n,list_size,list,H2)
|
||||
elseif(localization_method == 'pipek') then
|
||||
print*,'Pipek-Mezey'
|
||||
call hessian_PM(n,list_size,list,H)
|
||||
call hessian_PM(n,list_size,list,H2)
|
||||
else
|
||||
print*,'Unknown localization_method, please select boys or pipek'
|
||||
call abort
|
||||
endif
|
||||
|
||||
do i = 1, n
|
||||
print*,i,H(i,i)
|
||||
enddo
|
||||
|
||||
H = H - H2
|
||||
|
||||
nb_error = 0
|
||||
max_elem = 0d0
|
||||
|
||||
do i = 1, n
|
||||
if (dabs(H(i,i)) > threshold) then
|
||||
print*,H(i,i)
|
||||
nb_error = nb_error + 1
|
||||
if (dabs(H(i,i)) > max_elem) then
|
||||
max_elem = H(i,i)
|
||||
endif
|
||||
endif
|
||||
enddo
|
||||
|
||||
print*,'Threshold error', threshold
|
||||
print*, 'Nb error', nb_error
|
||||
print*,'Max error', max_elem
|
||||
|
||||
deallocate(H,H2)
|
||||
|
||||
end
|
64
src/mo_localization/debug_hessian_loc.org
Normal file
64
src/mo_localization/debug_hessian_loc.org
Normal file
@ -0,0 +1,64 @@
|
||||
#+BEGIN_SRC f90 :comments org :tangle debug_hessian_loc.irp.f
|
||||
program debug_hessian_loc
|
||||
|
||||
!BEGIN_DOC
|
||||
! Check if the hessian is correct
|
||||
!END_DOC
|
||||
|
||||
implicit none
|
||||
|
||||
integer :: list_size, n
|
||||
integer, allocatable :: list(:)
|
||||
double precision, allocatable :: H(:,:), H2(:,:)
|
||||
double precision :: threshold, max_error, max_elem
|
||||
integer :: i, nb_error
|
||||
|
||||
threshold = 1d-12
|
||||
|
||||
list = list_act
|
||||
list_size = dim_list_act_orb
|
||||
|
||||
n = list_size*(list_size-1)/2
|
||||
|
||||
allocate(H(n,n),H2(n,n))
|
||||
|
||||
if (localization_method == 'boys') then
|
||||
print*,'Foster-Boys'
|
||||
call hessian_FB(n,list_size,list,H)
|
||||
call hessian_FB_omp(n,list_size,list,H2)
|
||||
elseif(localization_method == 'pipek') then
|
||||
print*,'Pipek-Mezey'
|
||||
call hessian_PM(n,list_size,list,H)
|
||||
call hessian_PM(n,list_size,list,H2)
|
||||
else
|
||||
print*,'Unknown localization_method, please select boys or pipek'
|
||||
call abort
|
||||
endif
|
||||
|
||||
do i = 1, n
|
||||
print*,i,H(i,i)
|
||||
enddo
|
||||
|
||||
H = H - H2
|
||||
|
||||
nb_error = 0
|
||||
max_elem = 0d0
|
||||
|
||||
do i = 1, n
|
||||
if (dabs(H(i,i)) > threshold) then
|
||||
print*,H(i,i)
|
||||
nb_error = nb_error + 1
|
||||
if (dabs(H(i,i)) > max_elem) then
|
||||
max_elem = H(i,i)
|
||||
endif
|
||||
endif
|
||||
enddo
|
||||
|
||||
print*,'Threshold error', threshold
|
||||
print*, 'Nb error', nb_error
|
||||
print*,'Max error', max_elem
|
||||
|
||||
deallocate(H,H2)
|
||||
|
||||
end
|
||||
#+END_SRC
|
31
src/mo_localization/kick_the_mos.irp.f
Normal file
31
src/mo_localization/kick_the_mos.irp.f
Normal file
@ -0,0 +1,31 @@
|
||||
program kick_the_mos
|
||||
|
||||
!BEGIN_DOC
|
||||
! To do a small rotation of the MOs
|
||||
!END_DOC
|
||||
|
||||
implicit none
|
||||
|
||||
kick_in_mos = .True.
|
||||
TOUCH kick_in_mos
|
||||
|
||||
print*, 'Security mo_class:', security_mo_class
|
||||
|
||||
! The default mo_classes are setted only if the MOs to localize are not specified
|
||||
if (security_mo_class .and. (dim_list_act_orb == mo_num .or. &
|
||||
dim_list_core_orb + dim_list_act_orb == mo_num)) then
|
||||
|
||||
print*, 'WARNING'
|
||||
print*, 'You must set different mo_class with qp set_mo_class'
|
||||
print*, 'If you want to kick all the orbital:'
|
||||
print*, 'qp set Orbital_optimization security_mo_class false'
|
||||
print*, ''
|
||||
print*, 'abort'
|
||||
|
||||
call abort
|
||||
|
||||
endif
|
||||
|
||||
call apply_pre_rotation
|
||||
|
||||
end
|
33
src/mo_localization/kick_the_mos.org
Normal file
33
src/mo_localization/kick_the_mos.org
Normal file
@ -0,0 +1,33 @@
|
||||
#+BEGIN_SRC f90 :comments org :tangle kick_the_mos.irp.f
|
||||
program kick_the_mos
|
||||
|
||||
!BEGIN_DOC
|
||||
! To do a small rotation of the MOs
|
||||
!END_DOC
|
||||
|
||||
implicit none
|
||||
|
||||
kick_in_mos = .True.
|
||||
TOUCH kick_in_mos
|
||||
|
||||
print*, 'Security mo_class:', security_mo_class
|
||||
|
||||
! The default mo_classes are setted only if the MOs to localize are not specified
|
||||
if (security_mo_class .and. (dim_list_act_orb == mo_num .or. &
|
||||
dim_list_core_orb + dim_list_act_orb == mo_num)) then
|
||||
|
||||
print*, 'WARNING'
|
||||
print*, 'You must set different mo_class with qp set_mo_class'
|
||||
print*, 'If you want to kick all the orbital:'
|
||||
print*, 'qp set Orbital_optimization security_mo_class false'
|
||||
print*, ''
|
||||
print*, 'abort'
|
||||
|
||||
call abort
|
||||
|
||||
endif
|
||||
|
||||
call apply_pre_rotation
|
||||
|
||||
end
|
||||
#+END_SRC
|
531
src/mo_localization/localization.irp.f
Normal file
531
src/mo_localization/localization.irp.f
Normal file
@ -0,0 +1,531 @@
|
||||
program localization
|
||||
call run_localization
|
||||
end
|
||||
|
||||
|
||||
|
||||
|
||||
! Variables:
|
||||
! | pre_rot(mo_num, mo_num) | double precision | Matrix for the pre rotation |
|
||||
! | R(mo_num,mo_num) | double precision | Rotation matrix |
|
||||
! | tmp_R(:,:) | double precision | Rottation matrix in a subsapce |
|
||||
! | prev_mos(ao_num, mo_num) | double precision | Previous mo_coef |
|
||||
! | spatial_extent(mo_num) | double precision | Spatial extent of the orbitals |
|
||||
! | criterion | double precision | Localization criterion |
|
||||
! | prev_criterion | double precision | Previous criterion |
|
||||
! | criterion_model | double precision | Estimated next criterion |
|
||||
! | rho | double precision | Ratio to measure the agreement between the model |
|
||||
! | | | and the reality |
|
||||
! | delta | double precision | Radisu of the trust region |
|
||||
! | norm_grad | double precision | Norm of the gradient |
|
||||
! | info | integer | for dsyev from Lapack |
|
||||
! | max_elem | double precision | maximal element in the gradient |
|
||||
! | v_grad(:) | double precision | Gradient |
|
||||
! | H(:,:) | double precision | Hessian (diagonal) |
|
||||
! | e_val(:) | double precision | Eigenvalues of the hessian |
|
||||
! | W(:,:) | double precision | Eigenvectors of the hessian |
|
||||
! | tmp_x(:) | double precision | Step in 1D (in a subaspace) |
|
||||
! | tmp_m_x(:,:) | double precision | Step in 2D (in a subaspace) |
|
||||
! | tmp_list(:) | double precision | List of MOs in a mo_class |
|
||||
! | i,j,k | integer | Indexes in the full MO space |
|
||||
! | tmp_i, tmp_j, tmp_k | integer | Indexes in a subspace |
|
||||
! | l | integer | Index for the mo_class |
|
||||
! | key(:) | integer | Key to sort the eigenvalues of the hessian |
|
||||
! | nb_iter | integer | Number of iterations |
|
||||
! | must_exit | logical | To exit the trust region loop |
|
||||
! | cancel_step | logical | To cancel a step |
|
||||
! | not_*converged | logical | To localize the different mo classes |
|
||||
! | t* | double precision | To measure the time |
|
||||
! | n | integer | mo_num*(mo_num-1)/2, number of orbital parameters |
|
||||
! | tmp_n | integer | dim_subspace*(dim_subspace-1)/2 |
|
||||
! | | | Number of dimension in the subspace |
|
||||
|
||||
! Variables in qp_edit for the localization:
|
||||
! | localization_method |
|
||||
! | localization_max_nb_iter |
|
||||
! | default_mo_class |
|
||||
! | thresh_loc_max_elem_grad |
|
||||
! | kick_in_mos |
|
||||
! | angle_pre_rot |
|
||||
|
||||
! + all the variables for the trust region
|
||||
|
||||
! Cf. qp_edit orbital optimization
|
||||
|
||||
|
||||
subroutine run_localization
|
||||
|
||||
include 'pi.h'
|
||||
|
||||
BEGIN_DOC
|
||||
! Orbital localization
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
|
||||
! Variables
|
||||
double precision, allocatable :: pre_rot(:,:), R(:,:)
|
||||
double precision, allocatable :: prev_mos(:,:), spatial_extent(:), tmp_R(:,:)
|
||||
double precision :: criterion, norm_grad
|
||||
integer :: i,j,k,l,p, tmp_i, tmp_j, tmp_k
|
||||
integer :: info
|
||||
integer :: n, tmp_n, tmp_list_size
|
||||
double precision, allocatable :: v_grad(:), H(:,:), tmp_m_x(:,:), tmp_x(:),W(:,:),e_val(:)
|
||||
double precision :: max_elem, t1, t2, t3, t4, t5, t6
|
||||
integer, allocatable :: tmp_list(:), key(:)
|
||||
double precision :: prev_criterion, rho, delta, criterion_model
|
||||
integer :: nb_iter, nb_sub_iter
|
||||
logical :: not_converged, not_core_converged
|
||||
logical :: not_act_converged, not_inact_converged, not_virt_converged
|
||||
logical :: use_trust_region, must_exit, cancel_step,enforce_step_cancellation
|
||||
|
||||
n = mo_num*(mo_num-1)/2
|
||||
|
||||
! Allocation
|
||||
allocate(spatial_extent(mo_num))
|
||||
allocate(pre_rot(mo_num, mo_num), R(mo_num, mo_num))
|
||||
allocate(prev_mos(ao_num, mo_num))
|
||||
|
||||
! Locality before the localization
|
||||
call compute_spatial_extent(spatial_extent)
|
||||
|
||||
! Choice of the method (with qp_edit)
|
||||
print*,''
|
||||
print*,'Localization method:',localization_method
|
||||
if (localization_method == 'boys') then
|
||||
print*,'Foster-Boys localization'
|
||||
elseif (localization_method == 'pipek') then
|
||||
print*,'Pipek-Mezey localization'
|
||||
else
|
||||
print*,'Unknown localization_method, please select boys or pipek'
|
||||
call abort
|
||||
endif
|
||||
print*,''
|
||||
|
||||
! Localization criterion (FB, PM, ...) for each mo_class
|
||||
print*,'### Before the pre rotation'
|
||||
|
||||
! Debug
|
||||
if (debug_hf) then
|
||||
print*,'HF energy:', HF_energy
|
||||
endif
|
||||
|
||||
do l = 1, 4
|
||||
if (l==1) then ! core
|
||||
tmp_list_size = dim_list_core_orb
|
||||
elseif (l==2) then ! act
|
||||
tmp_list_size = dim_list_act_orb
|
||||
elseif (l==3) then ! inact
|
||||
tmp_list_size = dim_list_inact_orb
|
||||
else ! virt
|
||||
tmp_list_size = dim_list_virt_orb
|
||||
endif
|
||||
|
||||
! Allocation tmp array
|
||||
allocate(tmp_list(tmp_list_size))
|
||||
|
||||
! To give the list of MOs in a mo_class
|
||||
if (l==1) then ! core
|
||||
tmp_list = list_core
|
||||
elseif (l==2) then
|
||||
tmp_list = list_act
|
||||
elseif (l==3) then
|
||||
tmp_list = list_inact
|
||||
else
|
||||
tmp_list = list_virt
|
||||
endif
|
||||
|
||||
if (tmp_list_size >= 2) then
|
||||
call criterion_localization(tmp_list_size, tmp_list,criterion)
|
||||
print*,'Criterion:', criterion, mo_class(tmp_list(1))
|
||||
endif
|
||||
|
||||
deallocate(tmp_list)
|
||||
|
||||
enddo
|
||||
|
||||
! Debug
|
||||
!print*,'HF', HF_energy
|
||||
|
||||
print*, 'Security mo_class:', security_mo_class
|
||||
|
||||
! The default mo_classes are setted only if the MOs to localize are not specified
|
||||
if (security_mo_class .and. (n_act_orb == mo_num .or. &
|
||||
n_core_orb + n_act_orb == mo_num)) then
|
||||
|
||||
print*, 'WARNING'
|
||||
print*, 'You must set different mo_class with qp set_mo_class'
|
||||
print*, 'If you want to localize all the orbitals:'
|
||||
print*, 'qp set Orbital_optimization security_mo_class false'
|
||||
print*, ''
|
||||
print*, 'abort'
|
||||
|
||||
call abort
|
||||
|
||||
endif
|
||||
|
||||
! Loc
|
||||
|
||||
! Pre rotation, to give a little kick in the MOs
|
||||
call apply_pre_rotation()
|
||||
|
||||
! Criterion after the pre rotation
|
||||
! Localization criterion (FB, PM, ...) for each mo_class
|
||||
print*,'### After the pre rotation'
|
||||
|
||||
! Debug
|
||||
if (debug_hf) then
|
||||
touch mo_coef
|
||||
print*,'HF energy:', HF_energy
|
||||
endif
|
||||
|
||||
do l = 1, 4
|
||||
if (l==1) then ! core
|
||||
tmp_list_size = dim_list_core_orb
|
||||
elseif (l==2) then ! act
|
||||
tmp_list_size = dim_list_act_orb
|
||||
elseif (l==3) then ! inact
|
||||
tmp_list_size = dim_list_inact_orb
|
||||
else ! virt
|
||||
tmp_list_size = dim_list_virt_orb
|
||||
endif
|
||||
|
||||
if (tmp_list_size >= 2) then
|
||||
! Allocation tmp array
|
||||
allocate(tmp_list(tmp_list_size))
|
||||
|
||||
! To give the list of MOs in a mo_class
|
||||
if (l==1) then ! core
|
||||
tmp_list = list_core
|
||||
elseif (l==2) then
|
||||
tmp_list = list_act
|
||||
elseif (l==3) then
|
||||
tmp_list = list_inact
|
||||
else
|
||||
tmp_list = list_virt
|
||||
endif
|
||||
|
||||
call criterion_localization(tmp_list_size, tmp_list,criterion)
|
||||
print*,'Criterion:', criterion, trim(mo_class(tmp_list(1)))
|
||||
|
||||
deallocate(tmp_list)
|
||||
endif
|
||||
|
||||
enddo
|
||||
|
||||
! Debug
|
||||
!print*,'HF', HF_energy
|
||||
|
||||
print*,''
|
||||
print*,'========================'
|
||||
print*,' Orbital localization'
|
||||
print*,'========================'
|
||||
print*,''
|
||||
|
||||
!Initialization
|
||||
not_converged = .TRUE.
|
||||
|
||||
! To do the localization only if there is at least 2 MOs
|
||||
if (dim_list_core_orb >= 2) then
|
||||
not_core_converged = .TRUE.
|
||||
else
|
||||
not_core_converged = .FALSE.
|
||||
endif
|
||||
|
||||
if (dim_list_act_orb >= 2) then
|
||||
not_act_converged = .TRUE.
|
||||
else
|
||||
not_act_converged = .FALSE.
|
||||
endif
|
||||
|
||||
if (dim_list_inact_orb >= 2) then
|
||||
not_inact_converged = .TRUE.
|
||||
else
|
||||
not_inact_converged = .FALSE.
|
||||
endif
|
||||
|
||||
if (dim_list_virt_orb >= 2) then
|
||||
not_virt_converged = .TRUE.
|
||||
else
|
||||
not_virt_converged = .FALSE.
|
||||
endif
|
||||
|
||||
! Loop over the mo_classes
|
||||
do l = 1, 4
|
||||
|
||||
if (l==1) then ! core
|
||||
not_converged = not_core_converged
|
||||
tmp_list_size = dim_list_core_orb
|
||||
elseif (l==2) then ! act
|
||||
not_converged = not_act_converged
|
||||
tmp_list_size = dim_list_act_orb
|
||||
elseif (l==3) then ! inact
|
||||
not_converged = not_inact_converged
|
||||
tmp_list_size = dim_list_inact_orb
|
||||
else ! virt
|
||||
not_converged = not_virt_converged
|
||||
tmp_list_size = dim_list_virt_orb
|
||||
endif
|
||||
|
||||
! Next iteration if converged = true
|
||||
if (.not. not_converged) then
|
||||
cycle
|
||||
endif
|
||||
|
||||
! Allocation tmp array
|
||||
allocate(tmp_list(tmp_list_size))
|
||||
|
||||
! To give the list of MOs in a mo_class
|
||||
if (l==1) then ! core
|
||||
tmp_list = list_core
|
||||
elseif (l==2) then
|
||||
tmp_list = list_act
|
||||
elseif (l==3) then
|
||||
tmp_list = list_inact
|
||||
else
|
||||
tmp_list = list_virt
|
||||
endif
|
||||
|
||||
! Display
|
||||
if (not_converged) then
|
||||
print*,''
|
||||
print*,'###', trim(mo_class(tmp_list(1))), 'MOs ###'
|
||||
print*,''
|
||||
endif
|
||||
|
||||
! Size for the 2D -> 1D transformation
|
||||
tmp_n = tmp_list_size * (tmp_list_size - 1)/2
|
||||
|
||||
! Without hessian + trust region
|
||||
if (.not. localization_use_hessian) then
|
||||
|
||||
! Allocation of temporary arrays
|
||||
allocate(v_grad(tmp_n), tmp_m_x(tmp_list_size, tmp_list_size))
|
||||
allocate(tmp_R(tmp_list_size, tmp_list_size), tmp_x(tmp_n))
|
||||
|
||||
! Criterion
|
||||
call criterion_localization(tmp_list_size, tmp_list, prev_criterion)
|
||||
|
||||
! Init
|
||||
nb_iter = 0
|
||||
delta = 1d0
|
||||
|
||||
!Loop
|
||||
do while (not_converged)
|
||||
|
||||
print*,''
|
||||
print*,'***********************'
|
||||
print*,'Iteration', nb_iter
|
||||
print*,'***********************'
|
||||
print*,''
|
||||
|
||||
! Angles of rotation
|
||||
call theta_localization(tmp_list, tmp_list_size, tmp_m_x, max_elem)
|
||||
tmp_m_x = - tmp_m_x * delta
|
||||
|
||||
! Rotation submatrix
|
||||
call rotation_matrix(tmp_m_x, tmp_list_size, tmp_R, tmp_list_size, tmp_list_size, &
|
||||
info, enforce_step_cancellation)
|
||||
|
||||
! To ensure that the rotation matrix is unitary
|
||||
if (enforce_step_cancellation) then
|
||||
print*, 'Step cancellation, too large error in the rotation matrix'
|
||||
delta = delta * 0.5d0
|
||||
cycle
|
||||
else
|
||||
delta = min(delta * 2d0, 1d0)
|
||||
endif
|
||||
|
||||
! Full rotation matrix and application of the rotation
|
||||
call sub_to_full_rotation_matrix(tmp_list_size, tmp_list, tmp_R, R)
|
||||
call apply_mo_rotation(R, prev_mos)
|
||||
|
||||
! Update the needed data
|
||||
call update_data_localization()
|
||||
|
||||
! New criterion
|
||||
call criterion_localization(tmp_list_size, tmp_list, criterion)
|
||||
print*,'Criterion:', trim(mo_class(tmp_list(1))), nb_iter, criterion
|
||||
print*,'Max elem :', max_elem
|
||||
print*,'Delta :', delta
|
||||
|
||||
nb_iter = nb_iter + 1
|
||||
|
||||
! Exit
|
||||
if (nb_iter >= localization_max_nb_iter .or. dabs(max_elem) < thresh_loc_max_elem_grad) then
|
||||
not_converged = .False.
|
||||
endif
|
||||
enddo
|
||||
|
||||
! Save the changes
|
||||
call update_data_localization()
|
||||
call save_mos()
|
||||
TOUCH mo_coef
|
||||
|
||||
! Deallocate
|
||||
deallocate(v_grad, tmp_m_x, tmp_list)
|
||||
deallocate(tmp_R, tmp_x)
|
||||
|
||||
! Trust region
|
||||
else
|
||||
|
||||
! Allocation of temporary arrays
|
||||
allocate(v_grad(tmp_n), H(tmp_n, tmp_n), tmp_m_x(tmp_list_size, tmp_list_size))
|
||||
allocate(tmp_R(tmp_list_size, tmp_list_size))
|
||||
allocate(tmp_x(tmp_n), W(tmp_n,tmp_n), e_val(tmp_n), key(tmp_n))
|
||||
|
||||
! ### Initialization ###
|
||||
delta = 0d0 ! can be deleted (normally)
|
||||
nb_iter = 0 ! Must start at 0 !!!
|
||||
rho = 0.5d0 ! Must be 0.5
|
||||
|
||||
! Compute the criterion before the loop
|
||||
call criterion_localization(tmp_list_size, tmp_list, prev_criterion)
|
||||
|
||||
! Loop until the convergence
|
||||
do while (not_converged)
|
||||
|
||||
print*,''
|
||||
print*,'***********************'
|
||||
print*,'Iteration', nb_iter
|
||||
print*,'***********************'
|
||||
print*,''
|
||||
|
||||
! Gradient
|
||||
call gradient_localization(tmp_n, tmp_list_size, tmp_list, v_grad, max_elem, norm_grad)
|
||||
! Diagonal hessian
|
||||
call hessian_localization(tmp_n, tmp_list_size, tmp_list, H)
|
||||
|
||||
! Diagonalization of the diagonal hessian by hands
|
||||
!call diagonalization_hessian(tmp_n,H,e_val,w)
|
||||
do i = 1, tmp_n
|
||||
e_val(i) = H(i,i)
|
||||
enddo
|
||||
|
||||
! Key list for dsort
|
||||
do i = 1, tmp_n
|
||||
key(i) = i
|
||||
enddo
|
||||
|
||||
! Sort of the eigenvalues
|
||||
call dsort(e_val, key, tmp_n)
|
||||
|
||||
! Eigenvectors
|
||||
W = 0d0
|
||||
do i = 1, tmp_n
|
||||
j = key(i)
|
||||
W(j,i) = 1d0
|
||||
enddo
|
||||
|
||||
! To enter in the loop just after
|
||||
cancel_step = .True.
|
||||
nb_sub_iter = 0
|
||||
|
||||
! Loop to reduce the trust radius until the criterion decreases and rho >= thresh_rho
|
||||
do while (cancel_step)
|
||||
print*,'-----------------------------'
|
||||
print*, mo_class(tmp_list(1))
|
||||
print*,'Iteration:', nb_iter
|
||||
print*,'Sub iteration:', nb_sub_iter
|
||||
print*,'-----------------------------'
|
||||
|
||||
! Hessian,gradient,Criterion -> x
|
||||
call trust_region_step_w_expected_e(tmp_n, H, W, e_val, v_grad, prev_criterion, &
|
||||
rho, nb_iter, delta, criterion_model, tmp_x, must_exit)
|
||||
|
||||
! Internal loop exit condition
|
||||
if (must_exit) then
|
||||
print*,'trust_region_step_w_expected_e sent: Exit'
|
||||
exit
|
||||
endif
|
||||
|
||||
! 1D tmp -> 2D tmp
|
||||
call vec_to_mat_v2(tmp_n, tmp_list_size, tmp_x, tmp_m_x)
|
||||
|
||||
! Rotation submatrix (square matrix tmp_list_size by tmp_list_size)
|
||||
call rotation_matrix(tmp_m_x, tmp_list_size, tmp_R, tmp_list_size, tmp_list_size, &
|
||||
info, enforce_step_cancellation)
|
||||
|
||||
if (enforce_step_cancellation) then
|
||||
print*, 'Step cancellation, too large error in the rotation matrix'
|
||||
rho = 0d0
|
||||
cycle
|
||||
endif
|
||||
|
||||
! tmp_R to R, subspace to full space
|
||||
call sub_to_full_rotation_matrix(tmp_list_size, tmp_list, tmp_R, R)
|
||||
|
||||
! Rotation of the MOs
|
||||
call apply_mo_rotation(R, prev_mos)
|
||||
|
||||
! Update the things related to mo_coef
|
||||
call update_data_localization()
|
||||
|
||||
! Update the criterion
|
||||
call criterion_localization(tmp_list_size, tmp_list, criterion)
|
||||
print*,'Criterion:', trim(mo_class(tmp_list(1))), nb_iter, criterion
|
||||
|
||||
! Criterion -> step accepted or rejected
|
||||
call trust_region_is_step_cancelled(nb_iter, prev_criterion, criterion, &
|
||||
criterion_model, rho, cancel_step)
|
||||
|
||||
! Cancellation of the step, previous MOs
|
||||
if (cancel_step) then
|
||||
mo_coef = prev_mos
|
||||
endif
|
||||
|
||||
nb_sub_iter = nb_sub_iter + 1
|
||||
enddo
|
||||
!call save_mos() !### depend of the time for 1 iteration
|
||||
|
||||
! To exit the external loop if must_exti = .True.
|
||||
if (must_exit) then
|
||||
exit
|
||||
endif
|
||||
|
||||
! Step accepted, nb iteration + 1
|
||||
nb_iter = nb_iter + 1
|
||||
|
||||
! External loop exit conditions
|
||||
if (DABS(max_elem) < thresh_loc_max_elem_grad) then
|
||||
not_converged = .False.
|
||||
endif
|
||||
if (nb_iter > localization_max_nb_iter) then
|
||||
not_converged = .False.
|
||||
endif
|
||||
enddo
|
||||
|
||||
! Deallocation of temporary arrays
|
||||
deallocate(v_grad, H, tmp_m_x, tmp_R, tmp_list, tmp_x, W, e_val, key)
|
||||
|
||||
! Save the MOs
|
||||
call save_mos()
|
||||
TOUCH mo_coef
|
||||
|
||||
! Debug
|
||||
if (debug_hf) then
|
||||
touch mo_coef
|
||||
print*,'HF energy:', HF_energy
|
||||
endif
|
||||
|
||||
endif
|
||||
enddo
|
||||
|
||||
|
||||
TOUCH mo_coef
|
||||
|
||||
! To sort the MOs using the diagonal elements of the Fock matrix
|
||||
if (sort_mos_by_e) then
|
||||
call run_sort_by_fock_energies()
|
||||
endif
|
||||
|
||||
! Debug
|
||||
if (debug_hf) then
|
||||
touch mo_coef
|
||||
print*,'HF energy:', HF_energy
|
||||
endif
|
||||
|
||||
! Locality after the localization
|
||||
call compute_spatial_extent(spatial_extent)
|
||||
|
||||
end
|
2859
src/mo_localization/localization.org
Normal file
2859
src/mo_localization/localization.org
Normal file
File diff suppressed because it is too large
Load Diff
2054
src/mo_localization/localization_sub.irp.f
Normal file
2054
src/mo_localization/localization_sub.irp.f
Normal file
File diff suppressed because it is too large
Load Diff
@ -59,3 +59,45 @@ BEGIN_PROVIDER [ double precision, h_core_ri, (mo_num, mo_num) ]
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ double precision, h_act_ri, (mo_num, mo_num) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Active Hamiltonian with 3-index exchange integrals:
|
||||
!
|
||||
! $\tilde{h}{pq} = h_{pq} - \frac{1}{2}\sum_{k} g(pk,kq)$
|
||||
END_DOC
|
||||
|
||||
integer :: i,j, k
|
||||
integer :: p,q, r
|
||||
! core-core contribution
|
||||
h_act_ri = core_fock_operator
|
||||
!print *,' Bef----hact(1,14)=',h_act_ri(4,14)
|
||||
! act-act contribution
|
||||
do p=1,n_act_orb
|
||||
j=list_act(p)
|
||||
do q=1,n_act_orb
|
||||
i=list_act(q)
|
||||
h_act_ri(i,j) = mo_one_e_integrals(i,j)
|
||||
enddo
|
||||
do r=1,n_act_orb
|
||||
k=list_act(r)
|
||||
do q=1,n_act_orb
|
||||
i=list_act(q)
|
||||
h_act_ri(i,j) = h_act_ri(i,j) - 0.5 * big_array_exchange_integrals(k,i,j)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
! core-act contribution
|
||||
!do p=1,n_act_orb
|
||||
! j=list_core(p)
|
||||
! do k=1,n_core_orb
|
||||
! do q=1,n_act_orb
|
||||
! i=list_act(q)
|
||||
! h_act_ri(i,j) = h_act_ri(i,j) - 0.5 * big_array_exchange_integrals(k,i,j)
|
||||
! enddo
|
||||
! enddo
|
||||
!enddo
|
||||
!print *,' Aft----hact(1,14)=',h_act_ri(4,14), mo_one_e_integrals(4,14)
|
||||
END_PROVIDER
|
||||
|
||||
|
@ -1136,6 +1136,104 @@ subroutine ortho_svd(A,LDA,m,n)
|
||||
|
||||
end
|
||||
|
||||
! QR to orthonormalize CSFs does not work :-(
|
||||
!subroutine ortho_qr_withB(A,LDA,B,m,n)
|
||||
! implicit none
|
||||
! BEGIN_DOC
|
||||
! ! Orthogonalization using Q.R factorization
|
||||
! !
|
||||
! ! A : Overlap Matrix
|
||||
! !
|
||||
! ! LDA : leftmost dimension of A
|
||||
! !
|
||||
! ! m : Number of rows of A
|
||||
! !
|
||||
! ! n : Number of columns of A
|
||||
! !
|
||||
! ! B : Output orthogonal basis
|
||||
! !
|
||||
! END_DOC
|
||||
! integer, intent(in) :: m,n, LDA
|
||||
! double precision, intent(inout) :: A(LDA,n)
|
||||
! double precision, intent(inout) :: B(LDA,n)
|
||||
!
|
||||
! integer :: LWORK, INFO
|
||||
! integer, allocatable :: jpvt(:)
|
||||
! double precision, allocatable :: TAU(:), WORK(:)
|
||||
! double precision, allocatable :: C(:,:)
|
||||
! double precision :: norm
|
||||
! integer :: i,j
|
||||
!
|
||||
! allocate (TAU(min(m,n)), WORK(1))
|
||||
! allocate (jpvt(n))
|
||||
! !print *," In function ortho"
|
||||
! B = A
|
||||
!
|
||||
! jpvt(1:n)=1
|
||||
!
|
||||
! LWORK=-1
|
||||
! call dgeqp3( m, n, A, LDA, jpvt, TAU, WORK, LWORK, INFO )
|
||||
!
|
||||
! ! /!\ int(WORK(1)) becomes negative when WORK(1) > 2147483648
|
||||
! LWORK=max(n,int(WORK(1)))
|
||||
!
|
||||
! deallocate(WORK)
|
||||
! allocate(WORK(LWORK))
|
||||
! call dgeqp3(m, n, A, LDA, jpvt, TAU, WORK, LWORK, INFO )
|
||||
! print *,A
|
||||
! print *,jpvt
|
||||
! deallocate(WORK,TAU)
|
||||
! !stop
|
||||
!
|
||||
! !LWORK=-1
|
||||
! !call dgeqrf( m, n, A, LDA, TAU, WORK, LWORK, INFO )
|
||||
! !! /!\ int(WORK(1)) becomes negative when WORK(1) > 2147483648
|
||||
! !LWORK=max(n,int(WORK(1)))
|
||||
!
|
||||
! !deallocate(WORK)
|
||||
! !allocate(WORK(LWORK))
|
||||
! !call dgeqrf(m, n, A, LDA, TAU, WORK, LWORK, INFO )
|
||||
!
|
||||
! !LWORK=-1
|
||||
! !call dorgqr(m, n, n, A, LDA, TAU, WORK, LWORK, INFO)
|
||||
! !! /!\ int(WORK(1)) becomes negative when WORK(1) > 2147483648
|
||||
! !LWORK=max(n,int(WORK(1)))
|
||||
!
|
||||
! !deallocate(WORK)
|
||||
! !allocate(WORK(LWORK))
|
||||
! !call dorgqr(m, n, n, A, LDA, TAU, WORK, LWORK, INFO)
|
||||
! !
|
||||
! !allocate(C(LDA,n))
|
||||
! !call dgemm('N','N',m,n,n,1.0d0,B,LDA,A,LDA,0.0d0,C,LDA)
|
||||
! !norm = 0.0d0
|
||||
! !B = 0.0d0
|
||||
! !!print *,C
|
||||
! !do i=1,m
|
||||
! ! norm = 0.0d0
|
||||
! ! do j=1,n
|
||||
! ! norm = norm + C(j,i)*C(j,i)
|
||||
! ! end do
|
||||
! ! norm = 1.0d0/dsqrt(norm)
|
||||
! ! do j=1,n
|
||||
! ! B(j,i) = C(j,i)
|
||||
! ! end do
|
||||
! !end do
|
||||
! !print *,B
|
||||
!
|
||||
!
|
||||
! !deallocate(WORK,TAU)
|
||||
!end
|
||||
|
||||
!subroutine ortho_qr_csf(A, LDA, B, m, n) bind(C, name="ortho_qr_csf")
|
||||
! use iso_c_binding
|
||||
! integer(c_int32_t), value :: LDA
|
||||
! integer(c_int32_t), value :: m
|
||||
! integer(c_int32_t), value :: n
|
||||
! integer(c_int16_t) :: A(LDA,n)
|
||||
! integer(c_int16_t) :: B(LDA,n)
|
||||
! call ortho_qr_withB(A,LDA,B,m,n)
|
||||
!end subroutine ortho_qr_csf
|
||||
|
||||
subroutine ortho_qr(A,LDA,m,n)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
|
@ -430,3 +430,28 @@ subroutine lowercase(txt,n)
|
||||
enddo
|
||||
end
|
||||
|
||||
subroutine v2_over_x(v,x,res)
|
||||
|
||||
!BEGIN_DOC
|
||||
! Two by two diagonalization to avoid the divergence in v^2/x when x goes to 0
|
||||
!END_DOC
|
||||
|
||||
implicit none
|
||||
|
||||
double precision, intent(in) :: v, x
|
||||
double precision, intent(out) :: res
|
||||
|
||||
double precision :: delta_E, tmp, val
|
||||
|
||||
res = 0d0
|
||||
delta_E = x
|
||||
if (v == 0.d0) return
|
||||
|
||||
val = 2d0 * v
|
||||
tmp = dsqrt(delta_E * delta_E + val * val)
|
||||
if (delta_E < 0.d0) then
|
||||
tmp = -tmp
|
||||
endif
|
||||
res = 0.5d0 * (tmp - delta_E)
|
||||
|
||||
end
|
||||
|
89
src/utils_trust_region/EZFIO.cfg
Normal file
89
src/utils_trust_region/EZFIO.cfg
Normal file
@ -0,0 +1,89 @@
|
||||
[thresh_delta]
|
||||
type: double precision
|
||||
doc: Threshold to stop the optimization if the radius of the trust region delta < thresh_delta
|
||||
interface: ezfio,provider,ocaml
|
||||
default: 1.e-10
|
||||
|
||||
[thresh_rho]
|
||||
type: double precision
|
||||
doc: Threshold for the step acceptance in the trust region algorithm, if (rho .geq. thresh_rho) the step is accepted, else the step is cancelled and a smaller step is tried until (rho .geq. thresh_rho)
|
||||
interface: ezfio,provider,ocaml
|
||||
default: 0.1
|
||||
|
||||
[thresh_eig]
|
||||
type: double precision
|
||||
doc: Threshold to consider when an eigenvalue is 0 in the trust region algorithm
|
||||
interface: ezfio,provider,ocaml
|
||||
default: 1.e-12
|
||||
|
||||
[thresh_model]
|
||||
type: double precision
|
||||
doc: If if ABS(criterion - criterion_model) < thresh_model, the program exit the trust region algorithm
|
||||
interface: ezfio,provider,ocaml
|
||||
default: 1.e-12
|
||||
|
||||
[absolute_eig]
|
||||
type: logical
|
||||
doc: If True, the algorithm replace the eigenvalues of the hessian by their absolute value to compute the step (in the trust region)
|
||||
interface: ezfio,provider,ocaml
|
||||
default: false
|
||||
|
||||
[thresh_wtg]
|
||||
type: double precision
|
||||
doc: Threshold in the trust region algorithm to considere when the dot product of the eigenvector W by the gradient v_grad is equal to 0. Must be smaller than thresh_eig by several order of magnitude to avoid numerical problem. If the research of the optimal lambda cannot reach the condition (||x|| .eq. delta) because (||x|| .lt. delta), the reason might be that thresh_wtg is too big or/and thresh_eig is too small
|
||||
interface: ezfio,provider,ocaml
|
||||
default: 1.e-6
|
||||
|
||||
[thresh_wtg2]
|
||||
type: double precision
|
||||
doc: Threshold in the trust region algorithm to considere when the dot product of the eigenvector W by the gradient v_grad is 0 in the case of avoid_saddle .eq. true. There is no particular reason to put a different value that thresh_wtg, but it can be useful one day
|
||||
interface: ezfio,provider,ocaml
|
||||
default: 1.e-6
|
||||
|
||||
[avoid_saddle]
|
||||
type: logical
|
||||
doc: Test to avoid saddle point, active if true
|
||||
interface: ezfio,provider,ocaml
|
||||
default: false
|
||||
|
||||
[version_avoid_saddle]
|
||||
type: integer
|
||||
doc: cf. trust region, not stable
|
||||
interface: ezfio,provider,ocaml
|
||||
default: 3
|
||||
|
||||
[thresh_rho_2]
|
||||
type: double precision
|
||||
doc: Threshold for the step acceptance for the research of lambda in the trust region algorithm, if (rho_2 .geq. thresh_rho_2) the step is accepted, else the step is rejected
|
||||
interface: ezfio,provider,ocaml
|
||||
default: 0.1
|
||||
|
||||
[thresh_cc]
|
||||
type: double precision
|
||||
doc: Threshold to stop the research of the optimal lambda in the trust region algorithm when (dabs(1d0-||x||^2/delta^2) < thresh_cc)
|
||||
interface: ezfio,provider,ocaml
|
||||
default: 1.e-6
|
||||
|
||||
[thresh_model_2]
|
||||
type: double precision
|
||||
doc: if (ABS(criterion - criterion_model) < thresh_model_2), i.e., the difference between the actual criterion and the predicted next criterion, during the research of the optimal lambda in the trust region algorithm it prints a warning
|
||||
interface: ezfio,provider,ocaml
|
||||
default: 1.e-12
|
||||
|
||||
[version_lambda_search]
|
||||
type: integer
|
||||
doc: Research of the optimal lambda in the trust region algorithm to constrain the norm of the step by solving: 1 -> ||x||^2 - delta^2 .eq. 0, 2 -> 1/||x||^2 - 1/delta^2 .eq. 0
|
||||
interface: ezfio,provider,ocaml
|
||||
default: 2
|
||||
|
||||
[nb_it_max_lambda]
|
||||
type: integer
|
||||
doc: Maximal number of iterations for the research of the optimal lambda in the trust region algorithm
|
||||
interface: ezfio,provider,ocaml
|
||||
default: 100
|
||||
|
||||
[nb_it_max_pre_search]
|
||||
type: integer
|
||||
doc: Maximal number of iterations for the pre-research of the optimal lambda in the trust region algorithm
|
||||
interface: ezfio,provider,ocaml
|
||||
default: 40
|
1
src/utils_trust_region/NEED
Normal file
1
src/utils_trust_region/NEED
Normal file
@ -0,0 +1 @@
|
||||
hartree_fock
|
5
src/utils_trust_region/README.rst
Normal file
5
src/utils_trust_region/README.rst
Normal file
@ -0,0 +1,5 @@
|
||||
============
|
||||
trust_region
|
||||
============
|
||||
|
||||
The documentation can be found in the org files.
|
7
src/utils_trust_region/TANGLE_org_mode.sh
Executable file
7
src/utils_trust_region/TANGLE_org_mode.sh
Executable file
@ -0,0 +1,7 @@
|
||||
#!/bin/sh
|
||||
|
||||
list='ls *.org'
|
||||
for element in $list
|
||||
do
|
||||
emacs --batch $element -f org-babel-tangle
|
||||
done
|
248
src/utils_trust_region/algo_trust.irp.f
Normal file
248
src/utils_trust_region/algo_trust.irp.f
Normal file
@ -0,0 +1,248 @@
|
||||
! Algorithm for the trust region
|
||||
|
||||
! step_in_trust_region:
|
||||
! Computes the step in the trust region (delta)
|
||||
! (automatically sets at the iteration 0 and which evolves during the
|
||||
! process in function of the evolution of rho). The step is computing by
|
||||
! constraining its norm with a lagrange multiplier.
|
||||
! Since the calculation of the step is based on the Newton method, an
|
||||
! estimation of the gain in energy is given using the Taylors series
|
||||
! truncated at the second order (criterion_model).
|
||||
! If (DABS(criterion-criterion_model) < 1d-12) then
|
||||
! must_exit = .True.
|
||||
! else
|
||||
! must_exit = .False.
|
||||
|
||||
! This estimation of the gain in energy is used by
|
||||
! is_step_cancel_trust_region to say if the step is accepted or cancelled.
|
||||
|
||||
! If the step must be cancelled, the calculation restart from the same
|
||||
! hessian and gradient and recomputes the step but in a smaller trust
|
||||
! region and so on until the step is accepted. If the step is accepted
|
||||
! the hessian and the gradient are recomputed to produce a new step.
|
||||
|
||||
! Example:
|
||||
|
||||
|
||||
! !### Initialization ###
|
||||
! delta = 0d0
|
||||
! nb_iter = 0 ! Must start at 0 !!!
|
||||
! rho = 0.5d0
|
||||
! not_converged = .True.
|
||||
!
|
||||
! ! ### TODO ###
|
||||
! ! Compute the criterion before the loop
|
||||
! call #your_criterion(prev_criterion)
|
||||
!
|
||||
! do while (not_converged)
|
||||
! ! ### TODO ##
|
||||
! ! Call your gradient
|
||||
! ! Call you hessian
|
||||
! call #your_gradient(v_grad) (1D array)
|
||||
! call #your_hessian(H) (2D array)
|
||||
!
|
||||
! ! ### TODO ###
|
||||
! ! Diagonalization of the hessian
|
||||
! call diagonalization_hessian(n,H,e_val,w)
|
||||
!
|
||||
! cancel_step = .True. ! To enter in the loop just after
|
||||
! ! Loop to Reduce the trust radius until the criterion decreases and rho >= thresh_rho
|
||||
! do while (cancel_step)
|
||||
!
|
||||
! ! Hessian,gradient,Criterion -> x
|
||||
! call trust_region_step_w_expected_e(tmp_n,W,e_val,v_grad,prev_criterion,rho,nb_iter,delta,criterion_model,tmp_x,must_exit)
|
||||
!
|
||||
! if (must_exit) then
|
||||
! ! ### Message ###
|
||||
! ! if step_in_trust_region sets must_exit on true for numerical reasons
|
||||
! print*,'algo_trust1 sends the message : Exit'
|
||||
! !### exit ###
|
||||
! endif
|
||||
!
|
||||
! !### TODO ###
|
||||
! ! Compute x -> m_x
|
||||
! ! Compute m_x -> R
|
||||
! ! Apply R and keep the previous MOs...
|
||||
! ! Update/touch
|
||||
! ! Compute the new criterion/energy -> criterion
|
||||
!
|
||||
! call #your_routine_1D_to_2D_antisymmetric_array(x,m_x)
|
||||
! call #your_routine_2D_antisymmetric_array_to_rotation_matrix(m_x,R)
|
||||
! call #your_routine_to_apply_the_rotation_matrix(R,prev_mos)
|
||||
!
|
||||
! TOUCH #your_variables
|
||||
!
|
||||
! call #your_criterion(criterion)
|
||||
!
|
||||
! ! Criterion -> step accepted or rejected
|
||||
! call trust_region_is_step_cancelled(nb_iter,prev_criterion, criterion, criterion_model,rho,cancel_step)
|
||||
!
|
||||
! ! ### TODO ###
|
||||
! !if (cancel_step) then
|
||||
! ! Cancel the previous step (mo_coef = prev_mos if you keep them...)
|
||||
! !endif
|
||||
! #if (cancel_step) then
|
||||
! #mo_coef = prev_mos
|
||||
! #endif
|
||||
!
|
||||
! enddo
|
||||
!
|
||||
! !call save_mos() !### depend of the time for 1 iteration
|
||||
!
|
||||
! ! To exit the external loop if must_exit = .True.
|
||||
! if (must_exit) then
|
||||
! !### exit ###
|
||||
! endif
|
||||
!
|
||||
! ! Step accepted, nb iteration + 1
|
||||
! nb_iter = nb_iter + 1
|
||||
!
|
||||
! ! ### TODO ###
|
||||
! !if (###Conditions###) then
|
||||
! ! no_converged = .False.
|
||||
! !endif
|
||||
! #if (#your_conditions) then
|
||||
! # not_converged = .False.
|
||||
! #endif
|
||||
!
|
||||
! enddo
|
||||
|
||||
|
||||
|
||||
! Variables:
|
||||
|
||||
! Input:
|
||||
! | n | integer | m*(m-1)/2 |
|
||||
! | m | integer | number of mo in the mo_class |
|
||||
! | H(n,n) | double precision | Hessian |
|
||||
! | v_grad(n) | double precision | Gradient |
|
||||
! | W(n,n) | double precision | Eigenvectors of the hessian |
|
||||
! | e_val(n) | double precision | Eigenvalues of the hessian |
|
||||
! | criterion | double precision | Actual criterion |
|
||||
! | prev_criterion | double precision | Value of the criterion before the first iteration/after the previous iteration |
|
||||
! | rho | double precision | Given by is_step_cancel_trus_region |
|
||||
! | | | Agreement between the real function and the Taylor series (2nd order) |
|
||||
! | nb_iter | integer | Actual number of iterations |
|
||||
|
||||
! Input/output:
|
||||
! | delta | double precision | Radius of the trust region |
|
||||
|
||||
! Output:
|
||||
! | criterion_model | double precision | Predicted criterion after the rotation |
|
||||
! | x(n) | double precision | Step |
|
||||
! | must_exit | logical | If the program must exit the loop |
|
||||
|
||||
|
||||
subroutine trust_region_step_w_expected_e(n,H,W,e_val,v_grad,prev_criterion,rho,nb_iter,delta,criterion_model,x,must_exit)
|
||||
|
||||
include 'pi.h'
|
||||
|
||||
BEGIN_DOC
|
||||
! Compute the step and the expected criterion/energy after the step
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
|
||||
! in
|
||||
integer, intent(in) :: n, nb_iter
|
||||
double precision, intent(in) :: H(n,n), W(n,n), v_grad(n)
|
||||
double precision, intent(in) :: rho, prev_criterion
|
||||
|
||||
! inout
|
||||
double precision, intent(inout) :: delta, e_val(n)
|
||||
|
||||
! out
|
||||
double precision, intent(out) :: criterion_model, x(n)
|
||||
logical, intent(out) :: must_exit
|
||||
|
||||
! internal
|
||||
integer :: info
|
||||
|
||||
must_exit = .False.
|
||||
|
||||
call trust_region_step(n,nb_iter,v_grad,rho,e_val,W,x,delta)
|
||||
|
||||
call trust_region_expected_e(n,v_grad,H,x,prev_criterion,criterion_model)
|
||||
|
||||
! exit if DABS(prev_criterion - criterion_model) < 1d-12
|
||||
if (DABS(prev_criterion - criterion_model) < thresh_model) then
|
||||
print*,''
|
||||
print*,'###############################################################################'
|
||||
print*,'DABS(prev_criterion - criterion_model) <', thresh_model, 'stop the trust region'
|
||||
print*,'###############################################################################'
|
||||
print*,''
|
||||
must_exit = .True.
|
||||
endif
|
||||
|
||||
if (delta < thresh_delta) then
|
||||
print*,''
|
||||
print*,'##############################################'
|
||||
print*,'Delta <', thresh_delta, 'stop the trust region'
|
||||
print*,'##############################################'
|
||||
print*,''
|
||||
must_exit = .True.
|
||||
endif
|
||||
|
||||
! Add after the call to this subroutine, a statement:
|
||||
! "if (must_exit) then
|
||||
! exit
|
||||
! endif"
|
||||
! in order to exit the optimization loop
|
||||
|
||||
end subroutine
|
||||
|
||||
|
||||
|
||||
! Variables:
|
||||
|
||||
! Input:
|
||||
! | nb_iter | integer | actual number of iterations |
|
||||
! | prev_criterion | double precision | criterion before the application of the step x |
|
||||
! | criterion | double precision | criterion after the application of the step x |
|
||||
! | criterion_model | double precision | predicted criterion after the application of x |
|
||||
|
||||
! Output:
|
||||
! | rho | double precision | Agreement between the predicted criterion and the real new criterion |
|
||||
! | cancel_step | logical | If the step must be cancelled |
|
||||
|
||||
|
||||
subroutine trust_region_is_step_cancelled(nb_iter,prev_criterion, criterion, criterion_model,rho,cancel_step)
|
||||
|
||||
include 'pi.h'
|
||||
|
||||
BEGIN_DOC
|
||||
! Compute if the step should be cancelled
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
|
||||
! in
|
||||
double precision, intent(in) :: prev_criterion, criterion, criterion_model
|
||||
|
||||
! inout
|
||||
integer, intent(inout) :: nb_iter
|
||||
|
||||
! out
|
||||
logical, intent(out) :: cancel_step
|
||||
double precision, intent(out) :: rho
|
||||
|
||||
! Computes rho
|
||||
call trust_region_rho(prev_criterion,criterion,criterion_model,rho)
|
||||
|
||||
if (nb_iter == 0) then
|
||||
nb_iter = 1 ! in order to enable the change of delta if the first iteration is cancelled
|
||||
endif
|
||||
|
||||
! If rho < thresh_rho -> give something in output to cancel the step
|
||||
if (rho >= thresh_rho) then !0.1d0) then
|
||||
! The step is accepted
|
||||
cancel_step = .False.
|
||||
else
|
||||
! The step is rejected
|
||||
cancel_step = .True.
|
||||
print*, '***********************'
|
||||
print*, 'Step cancel : rho <', thresh_rho
|
||||
print*, '***********************'
|
||||
endif
|
||||
|
||||
end subroutine
|
593
src/utils_trust_region/algo_trust.org
Normal file
593
src/utils_trust_region/algo_trust.org
Normal file
@ -0,0 +1,593 @@
|
||||
* Algorithm for the trust region
|
||||
|
||||
step_in_trust_region:
|
||||
Computes the step in the trust region (delta)
|
||||
(automatically sets at the iteration 0 and which evolves during the
|
||||
process in function of the evolution of rho). The step is computing by
|
||||
constraining its norm with a lagrange multiplier.
|
||||
Since the calculation of the step is based on the Newton method, an
|
||||
estimation of the gain in energy is given using the Taylors series
|
||||
truncated at the second order (criterion_model).
|
||||
If (DABS(criterion-criterion_model) < 1d-12) then
|
||||
must_exit = .True.
|
||||
else
|
||||
must_exit = .False.
|
||||
|
||||
This estimation of the gain in energy is used by
|
||||
is_step_cancel_trust_region to say if the step is accepted or cancelled.
|
||||
|
||||
If the step must be cancelled, the calculation restart from the same
|
||||
hessian and gradient and recomputes the step but in a smaller trust
|
||||
region and so on until the step is accepted. If the step is accepted
|
||||
the hessian and the gradient are recomputed to produce a new step.
|
||||
|
||||
Example:
|
||||
|
||||
#+BEGIN_SRC f90 :comments org :tangle algo_trust.irp.f
|
||||
! !### Initialization ###
|
||||
! delta = 0d0
|
||||
! nb_iter = 0 ! Must start at 0 !!!
|
||||
! rho = 0.5d0
|
||||
! not_converged = .True.
|
||||
!
|
||||
! ! ### TODO ###
|
||||
! ! Compute the criterion before the loop
|
||||
! call #your_criterion(prev_criterion)
|
||||
!
|
||||
! do while (not_converged)
|
||||
! ! ### TODO ##
|
||||
! ! Call your gradient
|
||||
! ! Call you hessian
|
||||
! call #your_gradient(v_grad) (1D array)
|
||||
! call #your_hessian(H) (2D array)
|
||||
!
|
||||
! ! ### TODO ###
|
||||
! ! Diagonalization of the hessian
|
||||
! call diagonalization_hessian(n,H,e_val,w)
|
||||
!
|
||||
! cancel_step = .True. ! To enter in the loop just after
|
||||
! ! Loop to Reduce the trust radius until the criterion decreases and rho >= thresh_rho
|
||||
! do while (cancel_step)
|
||||
!
|
||||
! ! Hessian,gradient,Criterion -> x
|
||||
! call trust_region_step_w_expected_e(tmp_n,W,e_val,v_grad,prev_criterion,rho,nb_iter,delta,criterion_model,tmp_x,must_exit)
|
||||
!
|
||||
! if (must_exit) then
|
||||
! ! ### Message ###
|
||||
! ! if step_in_trust_region sets must_exit on true for numerical reasons
|
||||
! print*,'algo_trust1 sends the message : Exit'
|
||||
! !### exit ###
|
||||
! endif
|
||||
!
|
||||
! !### TODO ###
|
||||
! ! Compute x -> m_x
|
||||
! ! Compute m_x -> R
|
||||
! ! Apply R and keep the previous MOs...
|
||||
! ! Update/touch
|
||||
! ! Compute the new criterion/energy -> criterion
|
||||
!
|
||||
! call #your_routine_1D_to_2D_antisymmetric_array(x,m_x)
|
||||
! call #your_routine_2D_antisymmetric_array_to_rotation_matrix(m_x,R)
|
||||
! call #your_routine_to_apply_the_rotation_matrix(R,prev_mos)
|
||||
!
|
||||
! TOUCH #your_variables
|
||||
!
|
||||
! call #your_criterion(criterion)
|
||||
!
|
||||
! ! Criterion -> step accepted or rejected
|
||||
! call trust_region_is_step_cancelled(nb_iter,prev_criterion, criterion, criterion_model,rho,cancel_step)
|
||||
!
|
||||
! ! ### TODO ###
|
||||
! !if (cancel_step) then
|
||||
! ! Cancel the previous step (mo_coef = prev_mos if you keep them...)
|
||||
! !endif
|
||||
! #if (cancel_step) then
|
||||
! #mo_coef = prev_mos
|
||||
! #endif
|
||||
!
|
||||
! enddo
|
||||
!
|
||||
! !call save_mos() !### depend of the time for 1 iteration
|
||||
!
|
||||
! ! To exit the external loop if must_exit = .True.
|
||||
! if (must_exit) then
|
||||
! !### exit ###
|
||||
! endif
|
||||
!
|
||||
! ! Step accepted, nb iteration + 1
|
||||
! nb_iter = nb_iter + 1
|
||||
!
|
||||
! ! ### TODO ###
|
||||
! !if (###Conditions###) then
|
||||
! ! no_converged = .False.
|
||||
! !endif
|
||||
! #if (#your_conditions) then
|
||||
! # not_converged = .False.
|
||||
! #endif
|
||||
!
|
||||
! enddo
|
||||
#+END_SRC
|
||||
|
||||
Variables:
|
||||
|
||||
Input:
|
||||
| n | integer | m*(m-1)/2 |
|
||||
| m | integer | number of mo in the mo_class |
|
||||
| H(n,n) | double precision | Hessian |
|
||||
| v_grad(n) | double precision | Gradient |
|
||||
| W(n,n) | double precision | Eigenvectors of the hessian |
|
||||
| e_val(n) | double precision | Eigenvalues of the hessian |
|
||||
| criterion | double precision | Actual criterion |
|
||||
| prev_criterion | double precision | Value of the criterion before the first iteration/after the previous iteration |
|
||||
| rho | double precision | Given by is_step_cancel_trus_region |
|
||||
| | | Agreement between the real function and the Taylor series (2nd order) |
|
||||
| nb_iter | integer | Actual number of iterations |
|
||||
|
||||
Input/output:
|
||||
| delta | double precision | Radius of the trust region |
|
||||
|
||||
Output:
|
||||
| criterion_model | double precision | Predicted criterion after the rotation |
|
||||
| x(n) | double precision | Step |
|
||||
| must_exit | logical | If the program must exit the loop |
|
||||
|
||||
#+BEGIN_SRC f90 :comments org :tangle algo_trust.irp.f
|
||||
subroutine trust_region_step_w_expected_e(n,H,W,e_val,v_grad,prev_criterion,rho,nb_iter,delta,criterion_model,x,must_exit)
|
||||
|
||||
include 'pi.h'
|
||||
|
||||
BEGIN_DOC
|
||||
! Compute the step and the expected criterion/energy after the step
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
|
||||
! in
|
||||
integer, intent(in) :: n, nb_iter
|
||||
double precision, intent(in) :: H(n,n), W(n,n), v_grad(n)
|
||||
double precision, intent(in) :: rho, prev_criterion
|
||||
|
||||
! inout
|
||||
double precision, intent(inout) :: delta, e_val(n)
|
||||
|
||||
! out
|
||||
double precision, intent(out) :: criterion_model, x(n)
|
||||
logical, intent(out) :: must_exit
|
||||
|
||||
! internal
|
||||
integer :: info
|
||||
|
||||
must_exit = .False.
|
||||
|
||||
call trust_region_step(n,nb_iter,v_grad,rho,e_val,W,x,delta)
|
||||
|
||||
call trust_region_expected_e(n,v_grad,H,x,prev_criterion,criterion_model)
|
||||
|
||||
! exit if DABS(prev_criterion - criterion_model) < 1d-12
|
||||
if (DABS(prev_criterion - criterion_model) < thresh_model) then
|
||||
print*,''
|
||||
print*,'###############################################################################'
|
||||
print*,'DABS(prev_criterion - criterion_model) <', thresh_model, 'stop the trust region'
|
||||
print*,'###############################################################################'
|
||||
print*,''
|
||||
must_exit = .True.
|
||||
endif
|
||||
|
||||
if (delta < thresh_delta) then
|
||||
print*,''
|
||||
print*,'##############################################'
|
||||
print*,'Delta <', thresh_delta, 'stop the trust region'
|
||||
print*,'##############################################'
|
||||
print*,''
|
||||
must_exit = .True.
|
||||
endif
|
||||
|
||||
! Add after the call to this subroutine, a statement:
|
||||
! "if (must_exit) then
|
||||
! exit
|
||||
! endif"
|
||||
! in order to exit the optimization loop
|
||||
|
||||
end subroutine
|
||||
#+END_SRC
|
||||
|
||||
Variables:
|
||||
|
||||
Input:
|
||||
| nb_iter | integer | actual number of iterations |
|
||||
| prev_criterion | double precision | criterion before the application of the step x |
|
||||
| criterion | double precision | criterion after the application of the step x |
|
||||
| criterion_model | double precision | predicted criterion after the application of x |
|
||||
|
||||
Output:
|
||||
| rho | double precision | Agreement between the predicted criterion and the real new criterion |
|
||||
| cancel_step | logical | If the step must be cancelled |
|
||||
|
||||
#+BEGIN_SRC f90 :comments org :tangle algo_trust.irp.f
|
||||
subroutine trust_region_is_step_cancelled(nb_iter,prev_criterion, criterion, criterion_model,rho,cancel_step)
|
||||
|
||||
include 'pi.h'
|
||||
|
||||
BEGIN_DOC
|
||||
! Compute if the step should be cancelled
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
|
||||
! in
|
||||
double precision, intent(in) :: prev_criterion, criterion, criterion_model
|
||||
|
||||
! inout
|
||||
integer, intent(inout) :: nb_iter
|
||||
|
||||
! out
|
||||
logical, intent(out) :: cancel_step
|
||||
double precision, intent(out) :: rho
|
||||
|
||||
! Computes rho
|
||||
call trust_region_rho(prev_criterion,criterion,criterion_model,rho)
|
||||
|
||||
if (nb_iter == 0) then
|
||||
nb_iter = 1 ! in order to enable the change of delta if the first iteration is cancelled
|
||||
endif
|
||||
|
||||
! If rho < thresh_rho -> give something in output to cancel the step
|
||||
if (rho >= thresh_rho) then !0.1d0) then
|
||||
! The step is accepted
|
||||
cancel_step = .False.
|
||||
else
|
||||
! The step is rejected
|
||||
cancel_step = .True.
|
||||
print*, '***********************'
|
||||
print*, 'Step cancel : rho <', thresh_rho
|
||||
print*, '***********************'
|
||||
endif
|
||||
|
||||
end subroutine
|
||||
#+END_SRC
|
||||
|
||||
** Template for MOs
|
||||
#+BEGIN_SRC f90 :comments org :tangle trust_region_template_mos.txt
|
||||
subroutine algo_trust_template(tmp_n, tmp_list_size, tmp_list)
|
||||
|
||||
implicit none
|
||||
|
||||
! Variables
|
||||
|
||||
! In
|
||||
integer, intent(in) :: tmp_n, tmp_list_size, tmp_list(tmp_list_size)
|
||||
|
||||
! Out
|
||||
! Rien ou un truc pour savoir si ça c'est bien passé
|
||||
|
||||
! Internal
|
||||
double precision, allocatable :: e_val(:), W(:,:), tmp_R(:,:), R(:,:), tmp_x(:), tmp_m_x(:,:)
|
||||
double precision, allocatable :: prev_mos(:,:)
|
||||
double precision :: criterion, prev_criterion, criterion_model
|
||||
double precision :: delta, rho
|
||||
logical :: not_converged, cancel_step, must_exit, enforce_step_cancellation
|
||||
integer :: nb_iter, info, nb_sub_iter
|
||||
integer :: i,j,tmp_i,tmp_j
|
||||
|
||||
allocate(W(tmp_n, tmp_n),e_val(tmp_n),tmp_x(tmp_n),tmp_m_x(tmp_list_size, tmp_list_size))
|
||||
allocate(tmp_R(tmp_list_size, tmp_list_size), R(mo_num, mo_num))
|
||||
allocate(prev_mos(ao_num, mo_num))
|
||||
|
||||
! Provide the criterion, but unnecessary because it's done
|
||||
! automatically
|
||||
PROVIDE C_PROVIDER H_PROVIDER g_PROVIDER cc_PROVIDER
|
||||
|
||||
! Initialization
|
||||
delta = 0d0
|
||||
nb_iter = 0 ! Must start at 0 !!!
|
||||
rho = 0.5d0 ! Must start at 0.5
|
||||
not_converged = .True. ! Must be true
|
||||
|
||||
! Compute the criterion before the loop
|
||||
prev_criterion = C_PROVIDER
|
||||
|
||||
do while (not_converged)
|
||||
|
||||
print*,''
|
||||
print*,'******************'
|
||||
print*,'Iteration', nb_iter
|
||||
print*,'******************'
|
||||
print*,''
|
||||
|
||||
! The new hessian and gradient are computed at the end of the previous iteration
|
||||
! Diagonalization of the hessian
|
||||
call diagonalization_hessian(tmp_n, H_PROVIDER, e_val, W)
|
||||
|
||||
cancel_step = .True. ! To enter in the loop just after
|
||||
nb_sub_iter = 0
|
||||
|
||||
! Loop to Reduce the trust radius until the criterion decreases and rho >= thresh_rho
|
||||
do while (cancel_step)
|
||||
|
||||
print*,'-----------------------------'
|
||||
print*,'Iteration:', nb_iter
|
||||
print*,'Sub iteration:', nb_sub_iter
|
||||
print*,'-----------------------------'
|
||||
|
||||
! Hessian,gradient,Criterion -> x
|
||||
call trust_region_step_w_expected_e(tmp_n, H_PROVIDER, W, e_val, g_PROVIDER, &
|
||||
prev_criterion, rho, nb_iter, delta, criterion_model, tmp_x, must_exit)
|
||||
|
||||
if (must_exit) then
|
||||
! if step_in_trust_region sets must_exit on true for numerical reasons
|
||||
print*,'trust_region_step_w_expected_e sent the message : Exit'
|
||||
exit
|
||||
endif
|
||||
|
||||
! 1D tmp -> 2D tmp
|
||||
call vec_to_mat_v2(tmp_n, tmp_list_size, tmp_x, tmp_m_x)
|
||||
|
||||
! Rotation submatrix (square matrix tmp_list_size by tmp_list_size)
|
||||
call rotation_matrix(tmp_m_x, tmp_list_size, tmp_R, tmp_list_size, tmp_list_size, info, enforce_step_cancellation)
|
||||
|
||||
if (enforce_step_cancellation) then
|
||||
print*, 'Forces the step cancellation, too large error in the rotation matrix'
|
||||
rho = 0d0
|
||||
cycle
|
||||
endif
|
||||
|
||||
! tmp_R to R, subspace to full space
|
||||
call sub_to_full_rotation_matrix(tmp_list_size, tmp_list, tmp_R, R)
|
||||
|
||||
! Rotation of the MOs
|
||||
call apply_mo_rotation(R, prev_mos)
|
||||
|
||||
! touch mo_coef
|
||||
call clear_mo_map ! Only if you are using the bi-electronic integrals
|
||||
! mo_coef becomes valid
|
||||
! And avoid the recomputation of the providers which depend of mo_coef
|
||||
TOUCH mo_coef C_PROVIDER H_PROVIDER g_PROVIDER cc_PROVIDER
|
||||
|
||||
! To update the other parameters if needed
|
||||
call #update_parameters()
|
||||
|
||||
! To enforce the program to provide new criterion after the update
|
||||
! of the parameters
|
||||
FREE C_PROVIDER
|
||||
PROVIDE C_PROVIDER
|
||||
criterion = C_PROVIDER
|
||||
|
||||
! Criterion -> step accepted or rejected
|
||||
call trust_region_is_step_cancelled(nb_iter, prev_criterion, criterion, criterion_model, rho, cancel_step)
|
||||
|
||||
! Cancellation of the step ?
|
||||
if (cancel_step) then
|
||||
! Replacement by the previous MOs
|
||||
mo_coef = prev_mos
|
||||
! call save_mos() ! depends of the time for 1 iteration
|
||||
|
||||
! No need to clear_mo_map since we don't recompute the gradient and the hessian
|
||||
! mo_coef becomes valid
|
||||
! Avoid the recomputation of the providers which depend of mo_coef
|
||||
TOUCH mo_coef H_PROVIDER g_PROVIDER C_PROVIDER cc_PROVIDER
|
||||
else
|
||||
! The step is accepted:
|
||||
! criterion -> prev criterion
|
||||
|
||||
! The replacement "criterion -> prev criterion" is already done
|
||||
! in trust_region_rho, so if the criterion does not have a reason
|
||||
! to change, it will change nothing for the criterion and will
|
||||
! force the program to provide the new hessian, gradient and
|
||||
! convergence criterion for the next iteration.
|
||||
! But in the case of orbital optimization we diagonalize the CI
|
||||
! matrix after the "FREE" statement, so the criterion will change
|
||||
|
||||
FREE C_PROVIDER H_PROVIDER g_PROVIDER cc_PROVIDER
|
||||
PROVIDE C_PROVIDER H_PROVIDER g_PROVIDER cc_PROVIDER
|
||||
prev_criterion = C_PROVIDER
|
||||
|
||||
endif
|
||||
|
||||
nb_sub_iter = nb_sub_iter + 1
|
||||
enddo
|
||||
|
||||
! call save_mos() ! depends of the time for 1 iteration
|
||||
|
||||
! To exit the external loop if must_exit = .True.
|
||||
if (must_exit) then
|
||||
exit
|
||||
endif
|
||||
|
||||
! Step accepted, nb iteration + 1
|
||||
nb_iter = nb_iter + 1
|
||||
|
||||
! Provide the convergence criterion
|
||||
! Provide the gradient and the hessian for the next iteration
|
||||
PROVIDE cc_PROVIDER
|
||||
|
||||
! To exit
|
||||
if (dabs(cc_PROVIDER) < thresh_opt_max_elem_grad) then
|
||||
not_converged = .False.
|
||||
endif
|
||||
|
||||
if (nb_iter > optimization_max_nb_iter) then
|
||||
not_converged = .False.
|
||||
endif
|
||||
|
||||
if (delta < thresh_delta) then
|
||||
not_converged = .False.
|
||||
endif
|
||||
|
||||
enddo
|
||||
|
||||
! Save the final MOs
|
||||
call save_mos()
|
||||
|
||||
! Diagonalization of the hessian
|
||||
! (To see the eigenvalues at the end of the optimization)
|
||||
call diagonalization_hessian(tmp_n, H_PROVIDER, e_val, W)
|
||||
|
||||
deallocate(e_val, W, tmp_R, R, tmp_x, prev_mos)
|
||||
|
||||
end
|
||||
#+END_SRC
|
||||
|
||||
** Cartesian version
|
||||
#+BEGIN_SRC f90 :comments org :tangle trust_region_template_xyz.txt
|
||||
subroutine algo_trust_cartesian_template(tmp_n)
|
||||
|
||||
implicit none
|
||||
|
||||
! Variables
|
||||
|
||||
! In
|
||||
integer, intent(in) :: tmp_n
|
||||
|
||||
! Out
|
||||
! Rien ou un truc pour savoir si ça c'est bien passé
|
||||
|
||||
! Internal
|
||||
double precision, allocatable :: e_val(:), W(:,:), tmp_x(:)
|
||||
double precision :: criterion, prev_criterion, criterion_model
|
||||
double precision :: delta, rho
|
||||
logical :: not_converged, cancel_step, must_exit
|
||||
integer :: nb_iter, nb_sub_iter
|
||||
integer :: i,j
|
||||
|
||||
allocate(W(tmp_n, tmp_n),e_val(tmp_n),tmp_x(tmp_n))
|
||||
|
||||
PROVIDE C_PROVIDER X_PROVIDER H_PROVIDER g_PROVIDER
|
||||
|
||||
! Initialization
|
||||
delta = 0d0
|
||||
nb_iter = 0 ! Must start at 0 !!!
|
||||
rho = 0.5d0 ! Must start at 0.5
|
||||
not_converged = .True. ! Must be true
|
||||
|
||||
! Compute the criterion before the loop
|
||||
prev_criterion = C_PROVIDER
|
||||
|
||||
do while (not_converged)
|
||||
|
||||
print*,''
|
||||
print*,'******************'
|
||||
print*,'Iteration', nb_iter
|
||||
print*,'******************'
|
||||
print*,''
|
||||
|
||||
if (nb_iter > 0) then
|
||||
PROVIDE H_PROVIDER g_PROVIDER
|
||||
endif
|
||||
|
||||
! Diagonalization of the hessian
|
||||
call diagonalization_hessian(tmp_n, H_PROVIDER, e_val, W)
|
||||
|
||||
cancel_step = .True. ! To enter in the loop just after
|
||||
nb_sub_iter = 0
|
||||
|
||||
! Loop to Reduce the trust radius until the criterion decreases and rho >= thresh_rho
|
||||
do while (cancel_step)
|
||||
|
||||
print*,'-----------------------------'
|
||||
print*,'Iteration:', nb_iter
|
||||
print*,'Sub iteration:', nb_sub_iter
|
||||
print*,'-----------------------------'
|
||||
|
||||
! Hessian,gradient,Criterion -> x
|
||||
call trust_region_step_w_expected_e(tmp_n, H_PROVIDER, W, e_val, g_PROVIDER, &
|
||||
prev_criterion, rho, nb_iter, delta, criterion_model, tmp_x, must_exit)
|
||||
|
||||
if (must_exit) then
|
||||
! if step_in_trust_region sets must_exit on true for numerical reasons
|
||||
print*,'trust_region_step_w_expected_e sent the message : Exit'
|
||||
exit
|
||||
endif
|
||||
|
||||
! New coordinates, check the sign
|
||||
X_PROVIDER = X_PROVIDER - tmp_x
|
||||
|
||||
! touch X_PROVIDER
|
||||
TOUCH X_PROVIDER H_PROVIDER g_PROVIDER cc_PROVIDER
|
||||
|
||||
! To update the other parameters if needed
|
||||
call #update_parameters()
|
||||
|
||||
! New criterion
|
||||
PROVIDE C_PROVIDER ! Unnecessary
|
||||
criterion = C_PROVIDER
|
||||
|
||||
! Criterion -> step accepted or rejected
|
||||
call trust_region_is_step_cancelled(nb_iter, prev_criterion, criterion, criterion_model, rho, cancel_step)
|
||||
|
||||
! Cancel the previous step
|
||||
if (cancel_step) then
|
||||
! Replacement by the previous coordinates, check the sign
|
||||
X_PROVIDER = X_PROVIDER + tmp_x
|
||||
|
||||
! Avoid the recomputation of the hessian and the gradient
|
||||
TOUCH X_PROVIDER H_PROVIDER g_PROVIDER C_PROVIDER cc_PROVIDER
|
||||
endif
|
||||
|
||||
nb_sub_iter = nb_sub_iter + 1
|
||||
enddo
|
||||
|
||||
! To exit the external loop if must_exit = .True.
|
||||
if (must_exit) then
|
||||
exit
|
||||
endif
|
||||
|
||||
! Step accepted, nb iteration + 1
|
||||
nb_iter = nb_iter + 1
|
||||
|
||||
PROVIDE cc_PROVIDER
|
||||
|
||||
! To exit
|
||||
if (dabs(cc_PROVIDER) < thresh_opt_max_elem_grad) then
|
||||
not_converged = .False.
|
||||
endif
|
||||
|
||||
if (nb_iter > optimization_max_nb_iter) then
|
||||
not_converged = .False.
|
||||
endif
|
||||
|
||||
if (delta < thresh_delta) then
|
||||
not_converged = .False.
|
||||
endif
|
||||
|
||||
enddo
|
||||
|
||||
deallocate(e_val, W, tmp_x)
|
||||
|
||||
end
|
||||
#+END_SRC
|
||||
|
||||
** Script template
|
||||
#+BEGIN_SRC bash :tangle script_template_mos.sh
|
||||
#!/bin/bash
|
||||
|
||||
your_file=
|
||||
|
||||
your_C_PROVIDER=
|
||||
your_H_PROVIDER=
|
||||
your_g_PROVIDER=
|
||||
your_cc_PROVIDER=
|
||||
|
||||
sed "s/C_PROVIDER/$your_C_PROVIDER/g" trust_region_template_mos.txt > $your_file
|
||||
sed -i "s/H_PROVIDER/$your_H_PROVIDER/g" $your_file
|
||||
sed -i "s/g_PROVIDER/$your_g_PROVIDER/g" $your_file
|
||||
sed -i "s/cc_PROVIDER/$your_cc_PROVIDER/g" $your_file
|
||||
#+END_SRC
|
||||
|
||||
#+BEGIN_SRC bash :tangle script_template_xyz.sh
|
||||
#!/bin/bash
|
||||
|
||||
your_file=
|
||||
|
||||
your_C_PROVIDER=
|
||||
your_X_PROVIDER=
|
||||
your_H_PROVIDER=
|
||||
your_g_PROVIDER=
|
||||
your_cc_PROVIDER=
|
||||
|
||||
sed "s/C_PROVIDER/$your_C_PROVIDER/g" trust_region_template_xyz.txt > $your_file
|
||||
sed -i "s/X_PROVIDER/$your_X_PROVIDER/g" $your_file
|
||||
sed -i "s/H_PROVIDER/$your_H_PROVIDER/g" $your_file
|
||||
sed -i "s/g_PROVIDER/$your_g_PROVIDER/g" $your_file
|
||||
sed -i "s/cc_PROVIDER/$your_cc_PROVIDER/g" $your_file
|
||||
#+END_SRC
|
||||
|
85
src/utils_trust_region/apply_mo_rotation.irp.f
Normal file
85
src/utils_trust_region/apply_mo_rotation.irp.f
Normal file
@ -0,0 +1,85 @@
|
||||
! Apply MO rotation
|
||||
! Subroutine to apply the rotation matrix to the coefficients of the
|
||||
! MOs.
|
||||
|
||||
! New MOs = Old MOs . Rotation matrix
|
||||
|
||||
! *Compute the new MOs with the previous MOs and a rotation matrix*
|
||||
|
||||
! Provided:
|
||||
! | mo_num | integer | number of MOs |
|
||||
! | ao_num | integer | number of AOs |
|
||||
! | mo_coef(ao_num,mo_num) | double precision | coefficients of the MOs |
|
||||
|
||||
! Intent in:
|
||||
! | R(mo_num,mo_num) | double precision | rotation matrix |
|
||||
|
||||
! Intent out:
|
||||
! | prev_mos(ao_num,mo_num) | double precision | MOs before the rotation |
|
||||
|
||||
! Internal:
|
||||
! | new_mos(ao_num,mo_num) | double precision | MOs after the rotation |
|
||||
! | i,j | integer | indexes |
|
||||
|
||||
subroutine apply_mo_rotation(R,prev_mos)
|
||||
|
||||
include 'pi.h'
|
||||
|
||||
BEGIN_DOC
|
||||
! Compute the new MOs knowing the rotation matrix
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
|
||||
! Variables
|
||||
|
||||
! in
|
||||
double precision, intent(in) :: R(mo_num,mo_num)
|
||||
|
||||
! out
|
||||
double precision, intent(out) :: prev_mos(ao_num,mo_num)
|
||||
|
||||
! internal
|
||||
double precision, allocatable :: new_mos(:,:)
|
||||
integer :: i,j
|
||||
double precision :: t1,t2,t3
|
||||
|
||||
print*,''
|
||||
print*,'---apply_mo_rotation---'
|
||||
|
||||
call wall_time(t1)
|
||||
|
||||
! Allocation
|
||||
allocate(new_mos(ao_num,mo_num))
|
||||
|
||||
! Calculation
|
||||
|
||||
! Product of old MOs (mo_coef) by Rotation matrix (R)
|
||||
call dgemm('N','N',ao_num,mo_num,mo_num,1d0,mo_coef,size(mo_coef,1),R,size(R,1),0d0,new_mos,size(new_mos,1))
|
||||
|
||||
prev_mos = mo_coef
|
||||
mo_coef = new_mos
|
||||
|
||||
!if (debug) then
|
||||
! print*,'New mo_coef : '
|
||||
! do i = 1, mo_num
|
||||
! write(*,'(100(F10.5))') mo_coef(i,:)
|
||||
! enddo
|
||||
!endif
|
||||
|
||||
! Save the new MOs and change the label
|
||||
mo_label = 'MCSCF'
|
||||
!call save_mos
|
||||
call ezfio_set_determinants_mo_label(mo_label)
|
||||
|
||||
!print*,'Done, MOs saved'
|
||||
|
||||
! Deallocation, end
|
||||
deallocate(new_mos)
|
||||
|
||||
call wall_time(t2)
|
||||
t3 = t2 - t1
|
||||
print*,'Time in apply mo rotation:', t3
|
||||
print*,'---End apply_mo_rotation---'
|
||||
|
||||
end subroutine
|
86
src/utils_trust_region/apply_mo_rotation.org
Normal file
86
src/utils_trust_region/apply_mo_rotation.org
Normal file
@ -0,0 +1,86 @@
|
||||
* Apply MO rotation
|
||||
Subroutine to apply the rotation matrix to the coefficients of the
|
||||
MOs.
|
||||
|
||||
New MOs = Old MOs . Rotation matrix
|
||||
|
||||
*Compute the new MOs with the previous MOs and a rotation matrix*
|
||||
|
||||
Provided:
|
||||
| mo_num | integer | number of MOs |
|
||||
| ao_num | integer | number of AOs |
|
||||
| mo_coef(ao_num,mo_num) | double precision | coefficients of the MOs |
|
||||
|
||||
Intent in:
|
||||
| R(mo_num,mo_num) | double precision | rotation matrix |
|
||||
|
||||
Intent out:
|
||||
| prev_mos(ao_num,mo_num) | double precision | MOs before the rotation |
|
||||
|
||||
Internal:
|
||||
| new_mos(ao_num,mo_num) | double precision | MOs after the rotation |
|
||||
| i,j | integer | indexes |
|
||||
#+BEGIN_SRC f90 :comments org :tangle apply_mo_rotation.irp.f
|
||||
subroutine apply_mo_rotation(R,prev_mos)
|
||||
|
||||
include 'pi.h'
|
||||
|
||||
BEGIN_DOC
|
||||
! Compute the new MOs knowing the rotation matrix
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
|
||||
! Variables
|
||||
|
||||
! in
|
||||
double precision, intent(in) :: R(mo_num,mo_num)
|
||||
|
||||
! out
|
||||
double precision, intent(out) :: prev_mos(ao_num,mo_num)
|
||||
|
||||
! internal
|
||||
double precision, allocatable :: new_mos(:,:)
|
||||
integer :: i,j
|
||||
double precision :: t1,t2,t3
|
||||
|
||||
print*,''
|
||||
print*,'---apply_mo_rotation---'
|
||||
|
||||
call wall_time(t1)
|
||||
|
||||
! Allocation
|
||||
allocate(new_mos(ao_num,mo_num))
|
||||
|
||||
! Calculation
|
||||
|
||||
! Product of old MOs (mo_coef) by Rotation matrix (R)
|
||||
call dgemm('N','N',ao_num,mo_num,mo_num,1d0,mo_coef,size(mo_coef,1),R,size(R,1),0d0,new_mos,size(new_mos,1))
|
||||
|
||||
prev_mos = mo_coef
|
||||
mo_coef = new_mos
|
||||
|
||||
!if (debug) then
|
||||
! print*,'New mo_coef : '
|
||||
! do i = 1, mo_num
|
||||
! write(*,'(100(F10.5))') mo_coef(i,:)
|
||||
! enddo
|
||||
!endif
|
||||
|
||||
! Save the new MOs and change the label
|
||||
mo_label = 'MCSCF'
|
||||
!call save_mos
|
||||
call ezfio_set_determinants_mo_label(mo_label)
|
||||
|
||||
!print*,'Done, MOs saved'
|
||||
|
||||
! Deallocation, end
|
||||
deallocate(new_mos)
|
||||
|
||||
call wall_time(t2)
|
||||
t3 = t2 - t1
|
||||
print*,'Time in apply mo rotation:', t3
|
||||
print*,'---End apply_mo_rotation---'
|
||||
|
||||
end subroutine
|
||||
#+END_SRC
|
61
src/utils_trust_region/mat_to_vec_index.irp.f
Normal file
61
src/utils_trust_region/mat_to_vec_index.irp.f
Normal file
@ -0,0 +1,61 @@
|
||||
! Matrix to vector index
|
||||
|
||||
! *Compute the index i of a vector element from the indexes p,q of a
|
||||
! matrix element*
|
||||
|
||||
! Lower diagonal matrix (p,q), p > q -> vector (i)
|
||||
|
||||
! If a matrix is antisymmetric it can be reshaped as a vector. And the
|
||||
! vector can be reshaped as an antisymmetric matrix
|
||||
|
||||
! \begin{align*}
|
||||
! \begin{pmatrix}
|
||||
! 0 & -1 & -2 & -4 \\
|
||||
! 1 & 0 & -3 & -5 \\
|
||||
! 2 & 3 & 0 & -6 \\
|
||||
! 4 & 5 & 6 & 0
|
||||
! \end{pmatrix}
|
||||
! \Leftrightarrow
|
||||
! \begin{pmatrix}
|
||||
! 1 & 2 & 3 & 4 & 5 & 6
|
||||
! \end{pmatrix}
|
||||
! \end{align*}
|
||||
|
||||
! !!! Here the algorithm only work for the lower diagonal !!!
|
||||
|
||||
! Input:
|
||||
! | p,q | integer | indexes of a matrix element in the lower diagonal |
|
||||
! | | | p > q, q -> column |
|
||||
! | | | p -> row, |
|
||||
! | | | q -> column |
|
||||
|
||||
! Input:
|
||||
! | i | integer | corresponding index in the vector |
|
||||
|
||||
|
||||
subroutine mat_to_vec_index(p,q,i)
|
||||
|
||||
include 'pi.h'
|
||||
|
||||
implicit none
|
||||
|
||||
! Variables
|
||||
|
||||
! in
|
||||
integer, intent(in) :: p,q
|
||||
|
||||
! out
|
||||
integer, intent(out) :: i
|
||||
|
||||
! internal
|
||||
integer :: a,b
|
||||
double precision :: da
|
||||
|
||||
! Calculation
|
||||
|
||||
a = p-1
|
||||
b = a*(a-1)/2
|
||||
|
||||
i = q+b
|
||||
|
||||
end subroutine
|
63
src/utils_trust_region/mat_to_vec_index.org
Normal file
63
src/utils_trust_region/mat_to_vec_index.org
Normal file
@ -0,0 +1,63 @@
|
||||
* Matrix to vector index
|
||||
|
||||
*Compute the index i of a vector element from the indexes p,q of a
|
||||
matrix element*
|
||||
|
||||
Lower diagonal matrix (p,q), p > q -> vector (i)
|
||||
|
||||
If a matrix is antisymmetric it can be reshaped as a vector. And the
|
||||
vector can be reshaped as an antisymmetric matrix
|
||||
|
||||
\begin{align*}
|
||||
\begin{pmatrix}
|
||||
0 & -1 & -2 & -4 \\
|
||||
1 & 0 & -3 & -5 \\
|
||||
2 & 3 & 0 & -6 \\
|
||||
4 & 5 & 6 & 0
|
||||
\end{pmatrix}
|
||||
\Leftrightarrow
|
||||
\begin{pmatrix}
|
||||
1 & 2 & 3 & 4 & 5 & 6
|
||||
\end{pmatrix}
|
||||
\end{align*}
|
||||
|
||||
!!! Here the algorithm only work for the lower diagonal !!!
|
||||
|
||||
Input:
|
||||
| p,q | integer | indexes of a matrix element in the lower diagonal |
|
||||
| | | p > q, q -> column |
|
||||
| | | p -> row, |
|
||||
| | | q -> column |
|
||||
|
||||
Input:
|
||||
| i | integer | corresponding index in the vector |
|
||||
|
||||
#+BEGIN_SRC f90 :comments org :tangle mat_to_vec_index.irp.f
|
||||
subroutine mat_to_vec_index(p,q,i)
|
||||
|
||||
include 'pi.h'
|
||||
|
||||
implicit none
|
||||
|
||||
! Variables
|
||||
|
||||
! in
|
||||
integer, intent(in) :: p,q
|
||||
|
||||
! out
|
||||
integer, intent(out) :: i
|
||||
|
||||
! internal
|
||||
integer :: a,b
|
||||
double precision :: da
|
||||
|
||||
! Calculation
|
||||
|
||||
a = p-1
|
||||
b = a*(a-1)/2
|
||||
|
||||
i = q+b
|
||||
|
||||
end subroutine
|
||||
#+END_SRC
|
||||
|
2
src/utils_trust_region/pi.h
Normal file
2
src/utils_trust_region/pi.h
Normal file
@ -0,0 +1,2 @@
|
||||
!logical, parameter :: debug=.False.
|
||||
double precision, parameter :: pi = 3.1415926535897932d0
|
443
src/utils_trust_region/rotation_matrix.irp.f
Normal file
443
src/utils_trust_region/rotation_matrix.irp.f
Normal file
@ -0,0 +1,443 @@
|
||||
! Rotation matrix
|
||||
|
||||
! *Build a rotation matrix from an antisymmetric matrix*
|
||||
|
||||
! Compute a rotation matrix $\textbf{R}$ from an antisymmetric matrix $$\textbf{A}$$ such as :
|
||||
! $$
|
||||
! \textbf{R}=\exp(\textbf{A})
|
||||
! $$
|
||||
|
||||
! So :
|
||||
! \begin{align*}
|
||||
! \textbf{R}=& \exp(\textbf{A}) \\
|
||||
! =& \sum_k^{\infty} \frac{1}{k!}\textbf{A}^k \\
|
||||
! =& \textbf{W} \cdot \cos(\tau) \cdot \textbf{W}^{\dagger} + \textbf{W} \cdot \tau^{-1} \cdot \sin(\tau) \cdot \textbf{W}^{\dagger} \cdot \textbf{A}
|
||||
! \end{align*}
|
||||
|
||||
! With :
|
||||
! $\textbf{W}$ : eigenvectors of $\textbf{A}^2$
|
||||
! $\tau$ : $\sqrt{-x}$
|
||||
! $x$ : eigenvalues of $\textbf{A}^2$
|
||||
|
||||
! Input:
|
||||
! | A(n,n) | double precision | antisymmetric matrix |
|
||||
! | n | integer | number of columns of the A matrix |
|
||||
! | LDA | integer | specifies the leading dimension of A, must be at least max(1,n) |
|
||||
! | LDR | integer | specifies the leading dimension of R, must be at least max(1,n) |
|
||||
|
||||
! Output:
|
||||
! | R(n,n) | double precision | Rotation matrix |
|
||||
! | info | integer | if info = 0, the execution is successful |
|
||||
! | | | if info = k, the k-th parameter has an illegal value |
|
||||
! | | | if info = -k, the algorithm failed |
|
||||
|
||||
! Internal:
|
||||
! | B(n,n) | double precision | B = A.A |
|
||||
! | work(lwork,n) | double precision | work matrix for dysev, dimension max(1,lwork) |
|
||||
! | lwork | integer | dimension of the syev work array >= max(1, 3n-1) |
|
||||
! | W(n,n) | double precision | eigenvectors of B |
|
||||
! | e_val(n) | double precision | eigenvalues of B |
|
||||
! | m_diag(n,n) | double precision | diagonal matrix with the eigenvalues of B |
|
||||
! | cos_tau(n,n) | double precision | diagonal matrix with cos(tau) values |
|
||||
! | sin_tau(n,n) | double precision | diagonal matrix with sin cos(tau) values |
|
||||
! | tau_m1(n,n) | double precision | diagonal matrix with (tau)^-1 values |
|
||||
! | part_1(n,n) | double precision | matrix W.cos_tau.W^t |
|
||||
! | part_1a(n,n) | double precision | matrix cos_tau.W^t |
|
||||
! | part_2(n,n) | double precision | matrix W.tau_m1.sin_tau.W^t.A |
|
||||
! | part_2a(n,n) | double precision | matrix W^t.A |
|
||||
! | part_2b(n,n) | double precision | matrix sin_tau.W^t.A |
|
||||
! | part_2c(n,n) | double precision | matrix tau_m1.sin_tau.W^t.A |
|
||||
! | RR_t(n,n) | double precision | R.R^t must be equal to the identity<=> R.R^t-1=0 <=> norm = 0 |
|
||||
! | norm | integer | norm of R.R^t-1, must be equal to 0 |
|
||||
! | i,j | integer | indexes |
|
||||
|
||||
! Functions:
|
||||
! | dnrm2 | double precision | Lapack function, compute the norm of a matrix |
|
||||
! | disnan | logical | Lapack function, check if an element is NaN |
|
||||
|
||||
|
||||
|
||||
subroutine rotation_matrix(A,LDA,R,LDR,n,info,enforce_step_cancellation)
|
||||
|
||||
implicit none
|
||||
|
||||
BEGIN_DOC
|
||||
! Rotation matrix to rotate the molecular orbitals.
|
||||
! If the rotation is too large the transformation is not unitary and must be cancelled.
|
||||
END_DOC
|
||||
|
||||
include 'pi.h'
|
||||
|
||||
! Variables
|
||||
|
||||
! in
|
||||
integer, intent(in) :: n,LDA,LDR
|
||||
double precision, intent(inout) :: A(LDA,n)
|
||||
|
||||
! out
|
||||
double precision, intent(out) :: R(LDR,n)
|
||||
integer, intent(out) :: info
|
||||
logical, intent(out) :: enforce_step_cancellation
|
||||
|
||||
! internal
|
||||
double precision, allocatable :: B(:,:)
|
||||
double precision, allocatable :: work(:,:)
|
||||
double precision, allocatable :: W(:,:), e_val(:)
|
||||
double precision, allocatable :: m_diag(:,:),cos_tau(:,:),sin_tau(:,:),tau_m1(:,:)
|
||||
double precision, allocatable :: part_1(:,:),part_1a(:,:)
|
||||
double precision, allocatable :: part_2(:,:),part_2a(:,:),part_2b(:,:),part_2c(:,:)
|
||||
double precision, allocatable :: RR_t(:,:)
|
||||
integer :: i,j
|
||||
integer :: info2, lwork ! for dsyev
|
||||
double precision :: norm, max_elem, max_elem_A, t1,t2,t3
|
||||
|
||||
! function
|
||||
double precision :: dnrm2
|
||||
logical :: disnan
|
||||
|
||||
print*,''
|
||||
print*,'---rotation_matrix---'
|
||||
|
||||
call wall_time(t1)
|
||||
|
||||
! Allocation
|
||||
allocate(B(n,n))
|
||||
allocate(m_diag(n,n),cos_tau(n,n),sin_tau(n,n),tau_m1(n,n))
|
||||
allocate(W(n,n),e_val(n))
|
||||
allocate(part_1(n,n),part_1a(n,n))
|
||||
allocate(part_2(n,n),part_2a(n,n),part_2b(n,n),part_2c(n,n))
|
||||
allocate(RR_t(n,n))
|
||||
|
||||
! Pre-conditions
|
||||
|
||||
! Initialization
|
||||
info=0
|
||||
enforce_step_cancellation = .False.
|
||||
|
||||
! Size of matrix A must be at least 1 by 1
|
||||
if (n<1) then
|
||||
info = 3
|
||||
print*, 'WARNING: invalid parameter 5'
|
||||
print*, 'n<1'
|
||||
return
|
||||
endif
|
||||
|
||||
! Leading dimension of A must be >= n
|
||||
if (LDA < n) then
|
||||
info = 25
|
||||
print*, 'WARNING: invalid parameter 2 or 5'
|
||||
print*, 'LDA < n'
|
||||
return
|
||||
endif
|
||||
|
||||
! Leading dimension of A must be >= n
|
||||
if (LDR < n) then
|
||||
info = 4
|
||||
print*, 'WARNING: invalid parameter 4'
|
||||
print*, 'LDR < n'
|
||||
return
|
||||
endif
|
||||
|
||||
! Matrix elements of A must by non-NaN
|
||||
do j = 1, n
|
||||
do i = 1, n
|
||||
if (disnan(A(i,j))) then
|
||||
info=1
|
||||
print*, 'WARNING: invalid parameter 1'
|
||||
print*, 'NaN element in A matrix'
|
||||
return
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
|
||||
do i = 1, n
|
||||
if (A(i,i) /= 0d0) then
|
||||
print*, 'WARNING: matrix A is not antisymmetric'
|
||||
print*, 'Non 0 element on the diagonal', i, A(i,i)
|
||||
call ABORT
|
||||
endif
|
||||
enddo
|
||||
|
||||
do j = 1, n
|
||||
do i = 1, n
|
||||
if (A(i,j)+A(j,i)>1d-16) then
|
||||
print*, 'WANRING: matrix A is not antisymmetric'
|
||||
print*, 'A(i,j) /= - A(j,i):', i,j,A(i,j), A(j,i)
|
||||
print*, 'diff:', A(i,j)+A(j,i)
|
||||
call ABORT
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! Fix for too big elements ! bad idea better to cancel if the error is too big
|
||||
!do j = 1, n
|
||||
! do i = 1, n
|
||||
! A(i,j) = mod(A(i,j),2d0*pi)
|
||||
! if (dabs(A(i,j)) > pi) then
|
||||
! A(i,j) = 0d0
|
||||
! endif
|
||||
! enddo
|
||||
!enddo
|
||||
|
||||
max_elem_A = 0d0
|
||||
do j = 1, n
|
||||
do i = 1, n
|
||||
if (ABS(A(i,j)) > ABS(max_elem_A)) then
|
||||
max_elem_A = A(i,j)
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
print*,'max element in A', max_elem_A
|
||||
|
||||
if (ABS(max_elem_A) > 2 * pi) then
|
||||
print*,''
|
||||
print*,'WARNING: ABS(max_elem_A) > 2 pi '
|
||||
print*,''
|
||||
endif
|
||||
|
||||
! B=A.A
|
||||
! - Calculation of the matrix $\textbf{B} = \textbf{A}^2$
|
||||
! - Diagonalization of $\textbf{B}$
|
||||
! W, the eigenvectors
|
||||
! e_val, the eigenvalues
|
||||
|
||||
|
||||
! Compute B=A.A
|
||||
|
||||
call dgemm('N','N',n,n,n,1d0,A,size(A,1),A,size(A,1),0d0,B,size(B,1))
|
||||
|
||||
! Copy B in W, diagonalization will put the eigenvectors in W
|
||||
W=B
|
||||
|
||||
! Diagonalization of B
|
||||
! Eigenvalues -> e_val
|
||||
! Eigenvectors -> W
|
||||
lwork = 3*n-1
|
||||
allocate(work(lwork,n))
|
||||
|
||||
print*,'Starting diagonalization ...'
|
||||
|
||||
call dsyev('V','U',n,W,size(W,1),e_val,work,lwork,info2)
|
||||
|
||||
deallocate(work)
|
||||
|
||||
if (info2 == 0) then
|
||||
print*, 'Diagonalization : Done'
|
||||
elseif (info2 < 0) then
|
||||
print*, 'WARNING: error in the diagonalization'
|
||||
print*, 'Illegal value of the ', info2,'-th parameter'
|
||||
else
|
||||
print*, "WARNING: Diagonalization failed to converge"
|
||||
endif
|
||||
|
||||
! Tau^-1, cos(tau), sin(tau)
|
||||
! $$\tau = \sqrt{-x}$$
|
||||
! - Calculation of $\cos(\tau)$ $\Leftrightarrow$ $\cos(\sqrt{-x})$
|
||||
! - Calculation of $\sin(\tau)$ $\Leftrightarrow$ $\sin(\sqrt{-x})$
|
||||
! - Calculation of $\tau^{-1}$ $\Leftrightarrow$ $(\sqrt{-x})^{-1}$
|
||||
! These matrices are diagonals
|
||||
|
||||
! Diagonal matrix m_diag
|
||||
do j = 1, n
|
||||
if (e_val(j) >= -1d-12) then !0.d0) then !!! e_avl(i) must be < -1d-12 to avoid numerical problems
|
||||
e_val(j) = 0.d0
|
||||
else
|
||||
e_val(j) = - e_val(j)
|
||||
endif
|
||||
enddo
|
||||
|
||||
m_diag = 0.d0
|
||||
do i = 1, n
|
||||
m_diag(i,i) = e_val(i)
|
||||
enddo
|
||||
|
||||
! cos_tau
|
||||
do j = 1, n
|
||||
do i = 1, n
|
||||
if (i==j) then
|
||||
cos_tau(i,j) = dcos(dsqrt(e_val(i)))
|
||||
else
|
||||
cos_tau(i,j) = 0d0
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! sin_tau
|
||||
do j = 1, n
|
||||
do i = 1, n
|
||||
if (i==j) then
|
||||
sin_tau(i,j) = dsin(dsqrt(e_val(i)))
|
||||
else
|
||||
sin_tau(i,j) = 0d0
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! Debug, display the cos_tau and sin_tau matrix
|
||||
!if (debug) then
|
||||
! print*, 'cos_tau'
|
||||
! do i = 1, n
|
||||
! print*, cos_tau(i,:)
|
||||
! enddo
|
||||
! print*, 'sin_tau'
|
||||
! do i = 1, n
|
||||
! print*, sin_tau(i,:)
|
||||
! enddo
|
||||
!endif
|
||||
|
||||
! tau^-1
|
||||
do j = 1, n
|
||||
do i = 1, n
|
||||
if ((i==j) .and. (e_val(i) > 1d-16)) then!0d0)) then !!! Convergence problem can come from here if the threshold is too big/small
|
||||
tau_m1(i,j) = 1d0/(dsqrt(e_val(i)))
|
||||
else
|
||||
tau_m1(i,j) = 0d0
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
|
||||
max_elem = 0d0
|
||||
do i = 1, n
|
||||
if (ABS(tau_m1(i,i)) > ABS(max_elem)) then
|
||||
max_elem = tau_m1(i,i)
|
||||
endif
|
||||
enddo
|
||||
print*,'max elem tau^-1:', max_elem
|
||||
|
||||
! Debug
|
||||
!print*,'eigenvalues:'
|
||||
!do i = 1, n
|
||||
! print*, e_val(i)
|
||||
!enddo
|
||||
|
||||
!Debug, display tau^-1
|
||||
!if (debug) then
|
||||
! print*, 'tau^-1'
|
||||
! do i = 1, n
|
||||
! print*,tau_m1(i,:)
|
||||
! enddo
|
||||
!endif
|
||||
|
||||
! Rotation matrix
|
||||
! \begin{align*}
|
||||
! \textbf{R} = \textbf{W} \cos(\tau) \textbf{W}^{\dagger} + \textbf{W} \tau^{-1} \sin(\tau) \textbf{W}^{\dagger} \textbf{A}
|
||||
! \end{align*}
|
||||
! \begin{align*}
|
||||
! \textbf{Part1} = \textbf{W} \cos(\tau) \textbf{W}^{\dagger}
|
||||
! \end{align*}
|
||||
! \begin{align*}
|
||||
! \textbf{Part2} = \textbf{W} \tau^{-1} \sin(\tau) \textbf{W}^{\dagger} \textbf{A}
|
||||
! \end{align*}
|
||||
|
||||
! First:
|
||||
! part_1 = dgemm(W, dgemm(cos_tau, W^t))
|
||||
! part_1a = dgemm(cos_tau, W^t)
|
||||
! part_1 = dgemm(W, part_1a)
|
||||
! And:
|
||||
! part_2= dgemm(W, dgemm(tau_m1, dgemm(sin_tau, dgemm(W^t, A))))
|
||||
! part_2a = dgemm(W^t, A)
|
||||
! part_2b = dgemm(sin_tau, part_2a)
|
||||
! part_2c = dgemm(tau_m1, part_2b)
|
||||
! part_2 = dgemm(W, part_2c)
|
||||
! Finally:
|
||||
! Rotation matrix, R = part_1+part_2
|
||||
|
||||
! If $R$ is a rotation matrix:
|
||||
! $R.R^T=R^T.R=\textbf{1}$
|
||||
|
||||
! part_1
|
||||
call dgemm('N','T',n,n,n,1d0,cos_tau,size(cos_tau,1),W,size(W,1),0d0,part_1a,size(part_1a,1))
|
||||
call dgemm('N','N',n,n,n,1d0,W,size(W,1),part_1a,size(part_1a,1),0d0,part_1,size(part_1,1))
|
||||
|
||||
! part_2
|
||||
call dgemm('T','N',n,n,n,1d0,W,size(W,1),A,size(A,1),0d0,part_2a,size(part_2a,1))
|
||||
call dgemm('N','N',n,n,n,1d0,sin_tau,size(sin_tau,1),part_2a,size(part_2a,1),0d0,part_2b,size(part_2b,1))
|
||||
call dgemm('N','N',n,n,n,1d0,tau_m1,size(tau_m1,1),part_2b,size(part_2b,1),0d0,part_2c,size(part_2c,1))
|
||||
call dgemm('N','N',n,n,n,1d0,W,size(W,1),part_2c,size(part_2c,1),0d0,part_2,size(part_2,1))
|
||||
|
||||
! Rotation matrix R
|
||||
R = part_1 + part_2
|
||||
|
||||
! Matrix check
|
||||
! R.R^t and R^t.R must be equal to identity matrix
|
||||
do j = 1, n
|
||||
do i=1,n
|
||||
if (i==j) then
|
||||
RR_t(i,j) = 1d0
|
||||
else
|
||||
RR_t(i,j) = 0d0
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
|
||||
call dgemm('N','T',n,n,n,1d0,R,size(R,1),R,size(R,1),-1d0,RR_t,size(RR_t,1))
|
||||
|
||||
norm = dnrm2(n*n,RR_t,1)
|
||||
print*, 'Rotation matrix check, norm R.R^T = ', norm
|
||||
|
||||
! Debug
|
||||
!if (debug) then
|
||||
! print*, 'RR_t'
|
||||
! do i = 1, n
|
||||
! print*, RR_t(i,:)
|
||||
! enddo
|
||||
!endif
|
||||
|
||||
! Post conditions
|
||||
|
||||
! Check if R.R^T=1
|
||||
max_elem = 0d0
|
||||
do j = 1, n
|
||||
do i = 1, n
|
||||
if (ABS(RR_t(i,j)) > ABS(max_elem)) then
|
||||
max_elem = RR_t(i,j)
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
|
||||
print*, 'Max error in R.R^T:', max_elem
|
||||
print*, 'e_val(1):', e_val(1)
|
||||
print*, 'e_val(n):', e_val(n)
|
||||
print*, 'max elem in A:', max_elem_A
|
||||
|
||||
if (ABS(max_elem) > 1d-12) then
|
||||
print*, 'WARNING: max error in R.R^T > 1d-12'
|
||||
print*, 'Enforce the step cancellation'
|
||||
enforce_step_cancellation = .True.
|
||||
endif
|
||||
|
||||
! Matrix elements of R must by non-NaN
|
||||
do j = 1,n
|
||||
do i = 1,LDR
|
||||
if (disnan(R(i,j))) then
|
||||
info = 666
|
||||
print*, 'NaN in rotation matrix'
|
||||
call ABORT
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! Display
|
||||
!if (debug) then
|
||||
! print*,'Rotation matrix :'
|
||||
! do i = 1, n
|
||||
! write(*,'(100(F10.5))') R(i,:)
|
||||
! enddo
|
||||
!endif
|
||||
|
||||
! Deallocation, end
|
||||
|
||||
deallocate(B)
|
||||
deallocate(m_diag,cos_tau,sin_tau,tau_m1)
|
||||
deallocate(W,e_val)
|
||||
deallocate(part_1,part_1a)
|
||||
deallocate(part_2,part_2a,part_2b,part_2c)
|
||||
deallocate(RR_t)
|
||||
|
||||
call wall_time(t2)
|
||||
t3 = t2-t1
|
||||
print*,'Time in rotation matrix:', t3
|
||||
|
||||
print*,'---End rotation_matrix---'
|
||||
|
||||
end subroutine
|
454
src/utils_trust_region/rotation_matrix.org
Normal file
454
src/utils_trust_region/rotation_matrix.org
Normal file
@ -0,0 +1,454 @@
|
||||
* Rotation matrix
|
||||
|
||||
*Build a rotation matrix from an antisymmetric matrix*
|
||||
|
||||
Compute a rotation matrix $\textbf{R}$ from an antisymmetric matrix $$\textbf{A}$$ such as :
|
||||
$$
|
||||
\textbf{R}=\exp(\textbf{A})
|
||||
$$
|
||||
|
||||
So :
|
||||
\begin{align*}
|
||||
\textbf{R}=& \exp(\textbf{A}) \\
|
||||
=& \sum_k^{\infty} \frac{1}{k!}\textbf{A}^k \\
|
||||
=& \textbf{W} \cdot \cos(\tau) \cdot \textbf{W}^{\dagger} + \textbf{W} \cdot \tau^{-1} \cdot \sin(\tau) \cdot \textbf{W}^{\dagger} \cdot \textbf{A}
|
||||
\end{align*}
|
||||
|
||||
With :
|
||||
$\textbf{W}$ : eigenvectors of $\textbf{A}^2$
|
||||
$\tau$ : $\sqrt{-x}$
|
||||
$x$ : eigenvalues of $\textbf{A}^2$
|
||||
|
||||
Input:
|
||||
| A(n,n) | double precision | antisymmetric matrix |
|
||||
| n | integer | number of columns of the A matrix |
|
||||
| LDA | integer | specifies the leading dimension of A, must be at least max(1,n) |
|
||||
| LDR | integer | specifies the leading dimension of R, must be at least max(1,n) |
|
||||
|
||||
Output:
|
||||
| R(n,n) | double precision | Rotation matrix |
|
||||
| info | integer | if info = 0, the execution is successful |
|
||||
| | | if info = k, the k-th parameter has an illegal value |
|
||||
| | | if info = -k, the algorithm failed |
|
||||
|
||||
Internal:
|
||||
| B(n,n) | double precision | B = A.A |
|
||||
| work(lwork,n) | double precision | work matrix for dysev, dimension max(1,lwork) |
|
||||
| lwork | integer | dimension of the syev work array >= max(1, 3n-1) |
|
||||
| W(n,n) | double precision | eigenvectors of B |
|
||||
| e_val(n) | double precision | eigenvalues of B |
|
||||
| m_diag(n,n) | double precision | diagonal matrix with the eigenvalues of B |
|
||||
| cos_tau(n,n) | double precision | diagonal matrix with cos(tau) values |
|
||||
| sin_tau(n,n) | double precision | diagonal matrix with sin cos(tau) values |
|
||||
| tau_m1(n,n) | double precision | diagonal matrix with (tau)^-1 values |
|
||||
| part_1(n,n) | double precision | matrix W.cos_tau.W^t |
|
||||
| part_1a(n,n) | double precision | matrix cos_tau.W^t |
|
||||
| part_2(n,n) | double precision | matrix W.tau_m1.sin_tau.W^t.A |
|
||||
| part_2a(n,n) | double precision | matrix W^t.A |
|
||||
| part_2b(n,n) | double precision | matrix sin_tau.W^t.A |
|
||||
| part_2c(n,n) | double precision | matrix tau_m1.sin_tau.W^t.A |
|
||||
| RR_t(n,n) | double precision | R.R^t must be equal to the identity<=> R.R^t-1=0 <=> norm = 0 |
|
||||
| norm | integer | norm of R.R^t-1, must be equal to 0 |
|
||||
| i,j | integer | indexes |
|
||||
|
||||
Functions:
|
||||
| dnrm2 | double precision | Lapack function, compute the norm of a matrix |
|
||||
| disnan | logical | Lapack function, check if an element is NaN |
|
||||
|
||||
|
||||
#+BEGIN_SRC f90 :comments org :tangle rotation_matrix.irp.f
|
||||
subroutine rotation_matrix(A,LDA,R,LDR,n,info,enforce_step_cancellation)
|
||||
|
||||
implicit none
|
||||
|
||||
BEGIN_DOC
|
||||
! Rotation matrix to rotate the molecular orbitals.
|
||||
! If the rotation is too large the transformation is not unitary and must be cancelled.
|
||||
END_DOC
|
||||
|
||||
include 'pi.h'
|
||||
|
||||
! Variables
|
||||
|
||||
! in
|
||||
integer, intent(in) :: n,LDA,LDR
|
||||
double precision, intent(inout) :: A(LDA,n)
|
||||
|
||||
! out
|
||||
double precision, intent(out) :: R(LDR,n)
|
||||
integer, intent(out) :: info
|
||||
logical, intent(out) :: enforce_step_cancellation
|
||||
|
||||
! internal
|
||||
double precision, allocatable :: B(:,:)
|
||||
double precision, allocatable :: work(:,:)
|
||||
double precision, allocatable :: W(:,:), e_val(:)
|
||||
double precision, allocatable :: m_diag(:,:),cos_tau(:,:),sin_tau(:,:),tau_m1(:,:)
|
||||
double precision, allocatable :: part_1(:,:),part_1a(:,:)
|
||||
double precision, allocatable :: part_2(:,:),part_2a(:,:),part_2b(:,:),part_2c(:,:)
|
||||
double precision, allocatable :: RR_t(:,:)
|
||||
integer :: i,j
|
||||
integer :: info2, lwork ! for dsyev
|
||||
double precision :: norm, max_elem, max_elem_A, t1,t2,t3
|
||||
|
||||
! function
|
||||
double precision :: dnrm2
|
||||
logical :: disnan
|
||||
|
||||
print*,''
|
||||
print*,'---rotation_matrix---'
|
||||
|
||||
call wall_time(t1)
|
||||
|
||||
! Allocation
|
||||
allocate(B(n,n))
|
||||
allocate(m_diag(n,n),cos_tau(n,n),sin_tau(n,n),tau_m1(n,n))
|
||||
allocate(W(n,n),e_val(n))
|
||||
allocate(part_1(n,n),part_1a(n,n))
|
||||
allocate(part_2(n,n),part_2a(n,n),part_2b(n,n),part_2c(n,n))
|
||||
allocate(RR_t(n,n))
|
||||
#+END_SRC
|
||||
|
||||
** Pre-conditions
|
||||
#+BEGIN_SRC f90 :comments org :tangle rotation_matrix.irp.f
|
||||
! Initialization
|
||||
info=0
|
||||
enforce_step_cancellation = .False.
|
||||
|
||||
! Size of matrix A must be at least 1 by 1
|
||||
if (n<1) then
|
||||
info = 3
|
||||
print*, 'WARNING: invalid parameter 5'
|
||||
print*, 'n<1'
|
||||
return
|
||||
endif
|
||||
|
||||
! Leading dimension of A must be >= n
|
||||
if (LDA < n) then
|
||||
info = 25
|
||||
print*, 'WARNING: invalid parameter 2 or 5'
|
||||
print*, 'LDA < n'
|
||||
return
|
||||
endif
|
||||
|
||||
! Leading dimension of A must be >= n
|
||||
if (LDR < n) then
|
||||
info = 4
|
||||
print*, 'WARNING: invalid parameter 4'
|
||||
print*, 'LDR < n'
|
||||
return
|
||||
endif
|
||||
|
||||
! Matrix elements of A must by non-NaN
|
||||
do j = 1, n
|
||||
do i = 1, n
|
||||
if (disnan(A(i,j))) then
|
||||
info=1
|
||||
print*, 'WARNING: invalid parameter 1'
|
||||
print*, 'NaN element in A matrix'
|
||||
return
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
|
||||
do i = 1, n
|
||||
if (A(i,i) /= 0d0) then
|
||||
print*, 'WARNING: matrix A is not antisymmetric'
|
||||
print*, 'Non 0 element on the diagonal', i, A(i,i)
|
||||
call ABORT
|
||||
endif
|
||||
enddo
|
||||
|
||||
do j = 1, n
|
||||
do i = 1, n
|
||||
if (A(i,j)+A(j,i)>1d-16) then
|
||||
print*, 'WANRING: matrix A is not antisymmetric'
|
||||
print*, 'A(i,j) /= - A(j,i):', i,j,A(i,j), A(j,i)
|
||||
print*, 'diff:', A(i,j)+A(j,i)
|
||||
call ABORT
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! Fix for too big elements ! bad idea better to cancel if the error is too big
|
||||
!do j = 1, n
|
||||
! do i = 1, n
|
||||
! A(i,j) = mod(A(i,j),2d0*pi)
|
||||
! if (dabs(A(i,j)) > pi) then
|
||||
! A(i,j) = 0d0
|
||||
! endif
|
||||
! enddo
|
||||
!enddo
|
||||
|
||||
max_elem_A = 0d0
|
||||
do j = 1, n
|
||||
do i = 1, n
|
||||
if (ABS(A(i,j)) > ABS(max_elem_A)) then
|
||||
max_elem_A = A(i,j)
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
print*,'max element in A', max_elem_A
|
||||
|
||||
if (ABS(max_elem_A) > 2 * pi) then
|
||||
print*,''
|
||||
print*,'WARNING: ABS(max_elem_A) > 2 pi '
|
||||
print*,''
|
||||
endif
|
||||
|
||||
#+END_SRC
|
||||
|
||||
** Calculations
|
||||
|
||||
*** B=A.A
|
||||
- Calculation of the matrix $\textbf{B} = \textbf{A}^2$
|
||||
- Diagonalization of $\textbf{B}$
|
||||
W, the eigenvectors
|
||||
e_val, the eigenvalues
|
||||
|
||||
#+BEGIN_SRC f90 :comments org :tangle rotation_matrix.irp.f
|
||||
! Compute B=A.A
|
||||
|
||||
call dgemm('N','N',n,n,n,1d0,A,size(A,1),A,size(A,1),0d0,B,size(B,1))
|
||||
|
||||
! Copy B in W, diagonalization will put the eigenvectors in W
|
||||
W=B
|
||||
|
||||
! Diagonalization of B
|
||||
! Eigenvalues -> e_val
|
||||
! Eigenvectors -> W
|
||||
lwork = 3*n-1
|
||||
allocate(work(lwork,n))
|
||||
|
||||
print*,'Starting diagonalization ...'
|
||||
|
||||
call dsyev('V','U',n,W,size(W,1),e_val,work,lwork,info2)
|
||||
|
||||
deallocate(work)
|
||||
|
||||
if (info2 == 0) then
|
||||
print*, 'Diagonalization : Done'
|
||||
elseif (info2 < 0) then
|
||||
print*, 'WARNING: error in the diagonalization'
|
||||
print*, 'Illegal value of the ', info2,'-th parameter'
|
||||
else
|
||||
print*, "WARNING: Diagonalization failed to converge"
|
||||
endif
|
||||
#+END_SRC
|
||||
|
||||
*** Tau^-1, cos(tau), sin(tau)
|
||||
$$\tau = \sqrt{-x}$$
|
||||
- Calculation of $\cos(\tau)$ $\Leftrightarrow$ $\cos(\sqrt{-x})$
|
||||
- Calculation of $\sin(\tau)$ $\Leftrightarrow$ $\sin(\sqrt{-x})$
|
||||
- Calculation of $\tau^{-1}$ $\Leftrightarrow$ $(\sqrt{-x})^{-1}$
|
||||
These matrices are diagonals
|
||||
#+BEGIN_SRC f90 :comments org :tangle rotation_matrix.irp.f
|
||||
! Diagonal matrix m_diag
|
||||
do j = 1, n
|
||||
if (e_val(j) >= -1d-12) then !0.d0) then !!! e_avl(i) must be < -1d-12 to avoid numerical problems
|
||||
e_val(j) = 0.d0
|
||||
else
|
||||
e_val(j) = - e_val(j)
|
||||
endif
|
||||
enddo
|
||||
|
||||
m_diag = 0.d0
|
||||
do i = 1, n
|
||||
m_diag(i,i) = e_val(i)
|
||||
enddo
|
||||
|
||||
! cos_tau
|
||||
do j = 1, n
|
||||
do i = 1, n
|
||||
if (i==j) then
|
||||
cos_tau(i,j) = dcos(dsqrt(e_val(i)))
|
||||
else
|
||||
cos_tau(i,j) = 0d0
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! sin_tau
|
||||
do j = 1, n
|
||||
do i = 1, n
|
||||
if (i==j) then
|
||||
sin_tau(i,j) = dsin(dsqrt(e_val(i)))
|
||||
else
|
||||
sin_tau(i,j) = 0d0
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! Debug, display the cos_tau and sin_tau matrix
|
||||
!if (debug) then
|
||||
! print*, 'cos_tau'
|
||||
! do i = 1, n
|
||||
! print*, cos_tau(i,:)
|
||||
! enddo
|
||||
! print*, 'sin_tau'
|
||||
! do i = 1, n
|
||||
! print*, sin_tau(i,:)
|
||||
! enddo
|
||||
!endif
|
||||
|
||||
! tau^-1
|
||||
do j = 1, n
|
||||
do i = 1, n
|
||||
if ((i==j) .and. (e_val(i) > 1d-16)) then!0d0)) then !!! Convergence problem can come from here if the threshold is too big/small
|
||||
tau_m1(i,j) = 1d0/(dsqrt(e_val(i)))
|
||||
else
|
||||
tau_m1(i,j) = 0d0
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
|
||||
max_elem = 0d0
|
||||
do i = 1, n
|
||||
if (ABS(tau_m1(i,i)) > ABS(max_elem)) then
|
||||
max_elem = tau_m1(i,i)
|
||||
endif
|
||||
enddo
|
||||
print*,'max elem tau^-1:', max_elem
|
||||
|
||||
! Debug
|
||||
!print*,'eigenvalues:'
|
||||
!do i = 1, n
|
||||
! print*, e_val(i)
|
||||
!enddo
|
||||
|
||||
!Debug, display tau^-1
|
||||
!if (debug) then
|
||||
! print*, 'tau^-1'
|
||||
! do i = 1, n
|
||||
! print*,tau_m1(i,:)
|
||||
! enddo
|
||||
!endif
|
||||
#+END_SRC
|
||||
|
||||
*** Rotation matrix
|
||||
\begin{align*}
|
||||
\textbf{R} = \textbf{W} \cos(\tau) \textbf{W}^{\dagger} + \textbf{W} \tau^{-1} \sin(\tau) \textbf{W}^{\dagger} \textbf{A}
|
||||
\end{align*}
|
||||
\begin{align*}
|
||||
\textbf{Part1} = \textbf{W} \cos(\tau) \textbf{W}^{\dagger}
|
||||
\end{align*}
|
||||
\begin{align*}
|
||||
\textbf{Part2} = \textbf{W} \tau^{-1} \sin(\tau) \textbf{W}^{\dagger} \textbf{A}
|
||||
\end{align*}
|
||||
|
||||
First:
|
||||
part_1 = dgemm(W, dgemm(cos_tau, W^t))
|
||||
part_1a = dgemm(cos_tau, W^t)
|
||||
part_1 = dgemm(W, part_1a)
|
||||
And:
|
||||
part_2= dgemm(W, dgemm(tau_m1, dgemm(sin_tau, dgemm(W^t, A))))
|
||||
part_2a = dgemm(W^t, A)
|
||||
part_2b = dgemm(sin_tau, part_2a)
|
||||
part_2c = dgemm(tau_m1, part_2b)
|
||||
part_2 = dgemm(W, part_2c)
|
||||
Finally:
|
||||
Rotation matrix, R = part_1+part_2
|
||||
|
||||
If $R$ is a rotation matrix:
|
||||
$R.R^T=R^T.R=\textbf{1}$
|
||||
#+BEGIN_SRC f90 :comments org :tangle rotation_matrix.irp.f
|
||||
! part_1
|
||||
call dgemm('N','T',n,n,n,1d0,cos_tau,size(cos_tau,1),W,size(W,1),0d0,part_1a,size(part_1a,1))
|
||||
call dgemm('N','N',n,n,n,1d0,W,size(W,1),part_1a,size(part_1a,1),0d0,part_1,size(part_1,1))
|
||||
|
||||
! part_2
|
||||
call dgemm('T','N',n,n,n,1d0,W,size(W,1),A,size(A,1),0d0,part_2a,size(part_2a,1))
|
||||
call dgemm('N','N',n,n,n,1d0,sin_tau,size(sin_tau,1),part_2a,size(part_2a,1),0d0,part_2b,size(part_2b,1))
|
||||
call dgemm('N','N',n,n,n,1d0,tau_m1,size(tau_m1,1),part_2b,size(part_2b,1),0d0,part_2c,size(part_2c,1))
|
||||
call dgemm('N','N',n,n,n,1d0,W,size(W,1),part_2c,size(part_2c,1),0d0,part_2,size(part_2,1))
|
||||
|
||||
! Rotation matrix R
|
||||
R = part_1 + part_2
|
||||
|
||||
! Matrix check
|
||||
! R.R^t and R^t.R must be equal to identity matrix
|
||||
do j = 1, n
|
||||
do i=1,n
|
||||
if (i==j) then
|
||||
RR_t(i,j) = 1d0
|
||||
else
|
||||
RR_t(i,j) = 0d0
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
|
||||
call dgemm('N','T',n,n,n,1d0,R,size(R,1),R,size(R,1),-1d0,RR_t,size(RR_t,1))
|
||||
|
||||
norm = dnrm2(n*n,RR_t,1)
|
||||
print*, 'Rotation matrix check, norm R.R^T = ', norm
|
||||
|
||||
! Debug
|
||||
!if (debug) then
|
||||
! print*, 'RR_t'
|
||||
! do i = 1, n
|
||||
! print*, RR_t(i,:)
|
||||
! enddo
|
||||
!endif
|
||||
#+END_SRC
|
||||
|
||||
*** Post conditions
|
||||
#+BEGIN_SRC f90 :comments org :tangle rotation_matrix.irp.f
|
||||
! Check if R.R^T=1
|
||||
max_elem = 0d0
|
||||
do j = 1, n
|
||||
do i = 1, n
|
||||
if (ABS(RR_t(i,j)) > ABS(max_elem)) then
|
||||
max_elem = RR_t(i,j)
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
|
||||
print*, 'Max error in R.R^T:', max_elem
|
||||
print*, 'e_val(1):', e_val(1)
|
||||
print*, 'e_val(n):', e_val(n)
|
||||
print*, 'max elem in A:', max_elem_A
|
||||
|
||||
if (ABS(max_elem) > 1d-12) then
|
||||
print*, 'WARNING: max error in R.R^T > 1d-12'
|
||||
print*, 'Enforce the step cancellation'
|
||||
enforce_step_cancellation = .True.
|
||||
endif
|
||||
|
||||
! Matrix elements of R must by non-NaN
|
||||
do j = 1,n
|
||||
do i = 1,LDR
|
||||
if (disnan(R(i,j))) then
|
||||
info = 666
|
||||
print*, 'NaN in rotation matrix'
|
||||
call ABORT
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! Display
|
||||
!if (debug) then
|
||||
! print*,'Rotation matrix :'
|
||||
! do i = 1, n
|
||||
! write(*,'(100(F10.5))') R(i,:)
|
||||
! enddo
|
||||
!endif
|
||||
#+END_SRC
|
||||
|
||||
** Deallocation, end
|
||||
#+BEGIN_SRC f90 :comments org :tangle rotation_matrix.irp.f
|
||||
deallocate(B)
|
||||
deallocate(m_diag,cos_tau,sin_tau,tau_m1)
|
||||
deallocate(W,e_val)
|
||||
deallocate(part_1,part_1a)
|
||||
deallocate(part_2,part_2a,part_2b,part_2c)
|
||||
deallocate(RR_t)
|
||||
|
||||
call wall_time(t2)
|
||||
t3 = t2-t1
|
||||
print*,'Time in rotation matrix:', t3
|
||||
|
||||
print*,'---End rotation_matrix---'
|
||||
|
||||
end subroutine
|
||||
#+END_SRC
|
||||
|
64
src/utils_trust_region/sub_to_full_rotation_matrix.irp.f
Normal file
64
src/utils_trust_region/sub_to_full_rotation_matrix.irp.f
Normal file
@ -0,0 +1,64 @@
|
||||
! Rotation matrix in a subspace to rotation matrix in the full space
|
||||
|
||||
! Usually, we are using a list of MOs, for exemple the active ones. When
|
||||
! we compute a rotation matrix to rotate the MOs, we just compute a
|
||||
! rotation matrix for these MOs in order to reduce the size of the
|
||||
! matrix which has to be computed. Since the computation of a rotation
|
||||
! matrix scale in $O(N^3)$ with $N$ the number of MOs, it's better to
|
||||
! reuce the number of MOs involved.
|
||||
! After that we replace the rotation matrix in the full space by
|
||||
! building the elements of the rotation matrix in the full space from
|
||||
! the elements of the rotation matrix in the subspace and adding some 0
|
||||
! on the extradiagonal elements and some 1 on the diagonal elements,
|
||||
! for the MOs that are not involved in the rotation.
|
||||
|
||||
! Provided:
|
||||
! | mo_num | integer | Number of MOs |
|
||||
|
||||
! Input:
|
||||
! | m | integer | Size of tmp_list, m <= mo_num |
|
||||
! | tmp_list(m) | integer | List of MOs |
|
||||
! | tmp_R(m,m) | double precision | Rotation matrix in the space of |
|
||||
! | | | the MOs containing by tmp_list |
|
||||
|
||||
! Output:
|
||||
! | R(mo_num,mo_num | double precision | Rotation matrix in the space |
|
||||
! | | | of all the MOs |
|
||||
|
||||
! Internal:
|
||||
! | i,j | integer | indexes in the full space |
|
||||
! | tmp_i,tmp_j | integer | indexes in the subspace |
|
||||
|
||||
|
||||
subroutine sub_to_full_rotation_matrix(m,tmp_list,tmp_R,R)
|
||||
|
||||
BEGIN_DOC
|
||||
! Compute the full rotation matrix from a smaller one
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
|
||||
! in
|
||||
integer, intent(in) :: m, tmp_list(m)
|
||||
double precision, intent(in) :: tmp_R(m,m)
|
||||
|
||||
! out
|
||||
double precision, intent(out) :: R(mo_num,mo_num)
|
||||
|
||||
! internal
|
||||
integer :: i,j,tmp_i,tmp_j
|
||||
|
||||
! tmp_R to R, subspace to full space
|
||||
R = 0d0
|
||||
do i = 1, mo_num
|
||||
R(i,i) = 1d0 ! 1 on the diagonal because it is a rotation matrix, 1 = nothing change for the corresponding orbital
|
||||
enddo
|
||||
do tmp_j = 1, m
|
||||
j = tmp_list(tmp_j)
|
||||
do tmp_i = 1, m
|
||||
i = tmp_list(tmp_i)
|
||||
R(i,j) = tmp_R(tmp_i,tmp_j)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
end
|
65
src/utils_trust_region/sub_to_full_rotation_matrix.org
Normal file
65
src/utils_trust_region/sub_to_full_rotation_matrix.org
Normal file
@ -0,0 +1,65 @@
|
||||
* Rotation matrix in a subspace to rotation matrix in the full space
|
||||
|
||||
Usually, we are using a list of MOs, for exemple the active ones. When
|
||||
we compute a rotation matrix to rotate the MOs, we just compute a
|
||||
rotation matrix for these MOs in order to reduce the size of the
|
||||
matrix which has to be computed. Since the computation of a rotation
|
||||
matrix scale in $O(N^3)$ with $N$ the number of MOs, it's better to
|
||||
reuce the number of MOs involved.
|
||||
After that we replace the rotation matrix in the full space by
|
||||
building the elements of the rotation matrix in the full space from
|
||||
the elements of the rotation matrix in the subspace and adding some 0
|
||||
on the extradiagonal elements and some 1 on the diagonal elements,
|
||||
for the MOs that are not involved in the rotation.
|
||||
|
||||
Provided:
|
||||
| mo_num | integer | Number of MOs |
|
||||
|
||||
Input:
|
||||
| m | integer | Size of tmp_list, m <= mo_num |
|
||||
| tmp_list(m) | integer | List of MOs |
|
||||
| tmp_R(m,m) | double precision | Rotation matrix in the space of |
|
||||
| | | the MOs containing by tmp_list |
|
||||
|
||||
Output:
|
||||
| R(mo_num,mo_num | double precision | Rotation matrix in the space |
|
||||
| | | of all the MOs |
|
||||
|
||||
Internal:
|
||||
| i,j | integer | indexes in the full space |
|
||||
| tmp_i,tmp_j | integer | indexes in the subspace |
|
||||
|
||||
#+BEGIN_SRC f90 :comments org :tangle sub_to_full_rotation_matrix.irp.f
|
||||
subroutine sub_to_full_rotation_matrix(m,tmp_list,tmp_R,R)
|
||||
|
||||
BEGIN_DOC
|
||||
! Compute the full rotation matrix from a smaller one
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
|
||||
! in
|
||||
integer, intent(in) :: m, tmp_list(m)
|
||||
double precision, intent(in) :: tmp_R(m,m)
|
||||
|
||||
! out
|
||||
double precision, intent(out) :: R(mo_num,mo_num)
|
||||
|
||||
! internal
|
||||
integer :: i,j,tmp_i,tmp_j
|
||||
|
||||
! tmp_R to R, subspace to full space
|
||||
R = 0d0
|
||||
do i = 1, mo_num
|
||||
R(i,i) = 1d0 ! 1 on the diagonal because it is a rotation matrix, 1 = nothing change for the corresponding orbital
|
||||
enddo
|
||||
do tmp_j = 1, m
|
||||
j = tmp_list(tmp_j)
|
||||
do tmp_i = 1, m
|
||||
i = tmp_list(tmp_i)
|
||||
R(i,j) = tmp_R(tmp_i,tmp_j)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
end
|
||||
#+END_SRC
|
119
src/utils_trust_region/trust_region_expected_e.irp.f
Normal file
119
src/utils_trust_region/trust_region_expected_e.irp.f
Normal file
@ -0,0 +1,119 @@
|
||||
! Predicted energy : e_model
|
||||
|
||||
! *Compute the energy predicted by the Taylor series*
|
||||
|
||||
! The energy is predicted using a Taylor expansion truncated at te 2nd
|
||||
! order :
|
||||
|
||||
! \begin{align*}
|
||||
! E_{k+1} = E_{k} + \textbf{g}_k^{T} \cdot \textbf{x}_{k+1} + \frac{1}{2} \cdot \textbf{x}_{k+1}^T \cdot \textbf{H}_{k} \cdot \textbf{x}_{k+1} + \mathcal{O}(\textbf{x}_{k+1}^2)
|
||||
! \end{align*}
|
||||
|
||||
! Input:
|
||||
! | n | integer | m*(m-1)/2 |
|
||||
! | v_grad(n) | double precision | gradient |
|
||||
! | H(n,n) | double precision | hessian |
|
||||
! | x(n) | double precision | Step in the trust region |
|
||||
! | prev_energy | double precision | previous energy |
|
||||
|
||||
! Output:
|
||||
! | e_model | double precision | predicted energy after the rotation of the MOs |
|
||||
|
||||
! Internal:
|
||||
! | part_1 | double precision | v_grad^T.x |
|
||||
! | part_2 | double precision | 1/2 . x^T.H.x |
|
||||
! | part_2a | double precision | H.x |
|
||||
! | i,j | integer | indexes |
|
||||
|
||||
! Function:
|
||||
! | ddot | double precision | dot product (Lapack) |
|
||||
|
||||
|
||||
subroutine trust_region_expected_e(n,v_grad,H,x,prev_energy,e_model)
|
||||
|
||||
include 'pi.h'
|
||||
|
||||
BEGIN_DOC
|
||||
! Compute the expected criterion/energy after the application of the step x
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
|
||||
! Variables
|
||||
|
||||
! in
|
||||
integer, intent(in) :: n
|
||||
double precision, intent(in) :: v_grad(n),H(n,n),x(n)
|
||||
double precision, intent(in) :: prev_energy
|
||||
|
||||
! out
|
||||
double precision, intent(out) :: e_model
|
||||
|
||||
! internal
|
||||
double precision :: part_1, part_2, t1,t2,t3
|
||||
double precision, allocatable :: part_2a(:)
|
||||
|
||||
integer :: i,j
|
||||
|
||||
!Function
|
||||
double precision :: ddot
|
||||
|
||||
print*,''
|
||||
print*,'---Trust_e_model---'
|
||||
|
||||
call wall_time(t1)
|
||||
|
||||
! Allocation
|
||||
allocate(part_2a(n))
|
||||
|
||||
! Calculations
|
||||
|
||||
! part_1 corresponds to the product g.x
|
||||
! part_2a corresponds to the product H.x
|
||||
! part_2 corresponds to the product 0.5*(x^T.H.x)
|
||||
|
||||
! TODO: remove the dot products
|
||||
|
||||
|
||||
! Product v_grad.x
|
||||
part_1 = ddot(n,v_grad,1,x,1)
|
||||
|
||||
!if (debug) then
|
||||
print*,'g.x : ', part_1
|
||||
!endif
|
||||
|
||||
! Product H.x
|
||||
call dgemv('N',n,n,1d0,H,size(H,1),x,1,0d0,part_2a,1)
|
||||
|
||||
! Product 1/2 . x^T.H.x
|
||||
part_2 = 0.5d0 * ddot(n,x,1,part_2a,1)
|
||||
|
||||
!if (debug) then
|
||||
print*,'1/2*x^T.H.x : ', part_2
|
||||
!endif
|
||||
|
||||
print*,'prev_energy', prev_energy
|
||||
|
||||
! Sum
|
||||
e_model = prev_energy + part_1 + part_2
|
||||
|
||||
! Writing the predicted energy
|
||||
print*, 'Predicted energy after the rotation : ', e_model
|
||||
print*, 'Previous energy - predicted energy:', prev_energy - e_model
|
||||
|
||||
! Can be deleted, already in another subroutine
|
||||
if (DABS(prev_energy - e_model) < 1d-12 ) then
|
||||
print*,'WARNING: ABS(prev_energy - e_model) < 1d-12'
|
||||
endif
|
||||
|
||||
! Deallocation
|
||||
deallocate(part_2a)
|
||||
|
||||
call wall_time(t2)
|
||||
t3 = t2 - t1
|
||||
print*,'Time in trust e model:', t3
|
||||
|
||||
print*,'---End trust_e_model---'
|
||||
print*,''
|
||||
|
||||
end subroutine
|
121
src/utils_trust_region/trust_region_expected_e.org
Normal file
121
src/utils_trust_region/trust_region_expected_e.org
Normal file
@ -0,0 +1,121 @@
|
||||
* Predicted energy : e_model
|
||||
|
||||
*Compute the energy predicted by the Taylor series*
|
||||
|
||||
The energy is predicted using a Taylor expansion truncated at te 2nd
|
||||
order :
|
||||
|
||||
\begin{align*}
|
||||
E_{k+1} = E_{k} + \textbf{g}_k^{T} \cdot \textbf{x}_{k+1} + \frac{1}{2} \cdot \textbf{x}_{k+1}^T \cdot \textbf{H}_{k} \cdot \textbf{x}_{k+1} + \mathcal{O}(\textbf{x}_{k+1}^2)
|
||||
\end{align*}
|
||||
|
||||
Input:
|
||||
| n | integer | m*(m-1)/2 |
|
||||
| v_grad(n) | double precision | gradient |
|
||||
| H(n,n) | double precision | hessian |
|
||||
| x(n) | double precision | Step in the trust region |
|
||||
| prev_energy | double precision | previous energy |
|
||||
|
||||
Output:
|
||||
| e_model | double precision | predicted energy after the rotation of the MOs |
|
||||
|
||||
Internal:
|
||||
| part_1 | double precision | v_grad^T.x |
|
||||
| part_2 | double precision | 1/2 . x^T.H.x |
|
||||
| part_2a | double precision | H.x |
|
||||
| i,j | integer | indexes |
|
||||
|
||||
Function:
|
||||
| ddot | double precision | dot product (Lapack) |
|
||||
|
||||
#+BEGIN_SRC f90 :comments org :tangle trust_region_expected_e.irp.f
|
||||
subroutine trust_region_expected_e(n,v_grad,H,x,prev_energy,e_model)
|
||||
|
||||
include 'pi.h'
|
||||
|
||||
BEGIN_DOC
|
||||
! Compute the expected criterion/energy after the application of the step x
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
|
||||
! Variables
|
||||
|
||||
! in
|
||||
integer, intent(in) :: n
|
||||
double precision, intent(in) :: v_grad(n),H(n,n),x(n)
|
||||
double precision, intent(in) :: prev_energy
|
||||
|
||||
! out
|
||||
double precision, intent(out) :: e_model
|
||||
|
||||
! internal
|
||||
double precision :: part_1, part_2, t1,t2,t3
|
||||
double precision, allocatable :: part_2a(:)
|
||||
|
||||
integer :: i,j
|
||||
|
||||
!Function
|
||||
double precision :: ddot
|
||||
|
||||
print*,''
|
||||
print*,'---Trust_e_model---'
|
||||
|
||||
call wall_time(t1)
|
||||
|
||||
! Allocation
|
||||
allocate(part_2a(n))
|
||||
#+END_SRC
|
||||
|
||||
** Calculations
|
||||
|
||||
part_1 corresponds to the product g.x
|
||||
part_2a corresponds to the product H.x
|
||||
part_2 corresponds to the product 0.5*(x^T.H.x)
|
||||
|
||||
TODO: remove the dot products
|
||||
|
||||
#+BEGIN_SRC f90 :comments org :tangle trust_region_expected_e.irp.f
|
||||
! Product v_grad.x
|
||||
part_1 = ddot(n,v_grad,1,x,1)
|
||||
|
||||
!if (debug) then
|
||||
print*,'g.x : ', part_1
|
||||
!endif
|
||||
|
||||
! Product H.x
|
||||
call dgemv('N',n,n,1d0,H,size(H,1),x,1,0d0,part_2a,1)
|
||||
|
||||
! Product 1/2 . x^T.H.x
|
||||
part_2 = 0.5d0 * ddot(n,x,1,part_2a,1)
|
||||
|
||||
!if (debug) then
|
||||
print*,'1/2*x^T.H.x : ', part_2
|
||||
!endif
|
||||
|
||||
print*,'prev_energy', prev_energy
|
||||
|
||||
! Sum
|
||||
e_model = prev_energy + part_1 + part_2
|
||||
|
||||
! Writing the predicted energy
|
||||
print*, 'Predicted energy after the rotation : ', e_model
|
||||
print*, 'Previous energy - predicted energy:', prev_energy - e_model
|
||||
|
||||
! Can be deleted, already in another subroutine
|
||||
if (DABS(prev_energy - e_model) < 1d-12 ) then
|
||||
print*,'WARNING: ABS(prev_energy - e_model) < 1d-12'
|
||||
endif
|
||||
|
||||
! Deallocation
|
||||
deallocate(part_2a)
|
||||
|
||||
call wall_time(t2)
|
||||
t3 = t2 - t1
|
||||
print*,'Time in trust e model:', t3
|
||||
|
||||
print*,'---End trust_e_model---'
|
||||
print*,''
|
||||
|
||||
end subroutine
|
||||
#+END_SRC
|
1655
src/utils_trust_region/trust_region_optimal_lambda.irp.f
Normal file
1655
src/utils_trust_region/trust_region_optimal_lambda.irp.f
Normal file
File diff suppressed because it is too large
Load Diff
1665
src/utils_trust_region/trust_region_optimal_lambda.org
Normal file
1665
src/utils_trust_region/trust_region_optimal_lambda.org
Normal file
File diff suppressed because it is too large
Load Diff
121
src/utils_trust_region/trust_region_rho.irp.f
Normal file
121
src/utils_trust_region/trust_region_rho.irp.f
Normal file
@ -0,0 +1,121 @@
|
||||
! Agreement with the model: Rho
|
||||
|
||||
! *Compute the ratio : rho = (prev_energy - energy) / (prev_energy - e_model)*
|
||||
|
||||
! Rho represents the agreement between the model (the predicted energy
|
||||
! by the Taylor expansion truncated at the 2nd order) and the real
|
||||
! energy :
|
||||
|
||||
! \begin{equation}
|
||||
! \rho^{k+1} = \frac{E^{k} - E^{k+1}}{E^{k} - m^{k+1}}
|
||||
! \end{equation}
|
||||
! With :
|
||||
! $E^{k}$ the energy at the previous iteration
|
||||
! $E^{k+1}$ the energy at the actual iteration
|
||||
! $m^{k+1}$ the predicted energy for the actual iteration
|
||||
! (cf. trust_e_model)
|
||||
|
||||
! If $\rho \approx 1$, the agreement is good, contrary to $\rho \approx 0$.
|
||||
! If $\rho \leq 0$ the previous energy is lower than the actual
|
||||
! energy. We have to cancel the last step and use a smaller trust
|
||||
! region.
|
||||
! Here we cancel the last step if $\rho < 0.1$, because even if
|
||||
! the energy decreases, the agreement is bad, i.e., the Taylor expansion
|
||||
! truncated at the second order doesn't represent correctly the energy
|
||||
! landscape. So it's better to cancel the step and restart with a
|
||||
! smaller trust region.
|
||||
|
||||
! Provided in qp_edit:
|
||||
! | thresh_rho |
|
||||
|
||||
! Input:
|
||||
! | prev_energy | double precision | previous energy (energy before the rotation) |
|
||||
! | e_model | double precision | predicted energy after the rotation |
|
||||
|
||||
! Output:
|
||||
! | rho | double precision | the agreement between the model (predicted) and the real energy |
|
||||
! | prev_energy | double precision | if rho >= 0.1 the actual energy becomes the previous energy |
|
||||
! | | | else the previous energy doesn't change |
|
||||
|
||||
! Internal:
|
||||
! | energy | double precision | energy (real) after the rotation |
|
||||
! | i | integer | index |
|
||||
! | t* | double precision | time |
|
||||
|
||||
|
||||
subroutine trust_region_rho(prev_energy, energy,e_model,rho)
|
||||
|
||||
include 'pi.h'
|
||||
|
||||
BEGIN_DOC
|
||||
! Compute rho, the agreement between the predicted criterion/energy and the real one
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
|
||||
! Variables
|
||||
|
||||
! In
|
||||
double precision, intent(inout) :: prev_energy
|
||||
double precision, intent(in) :: e_model, energy
|
||||
|
||||
! Out
|
||||
double precision, intent(out) :: rho
|
||||
|
||||
! Internal
|
||||
double precision :: t1, t2, t3
|
||||
integer :: i
|
||||
|
||||
print*,''
|
||||
print*,'---Rho_model---'
|
||||
|
||||
call wall_time(t1)
|
||||
|
||||
! Rho
|
||||
! \begin{equation}
|
||||
! \rho^{k+1} = \frac{E^{k} - E^{k+1}}{E^{k} - m^{k+1}}
|
||||
! \end{equation}
|
||||
|
||||
! In function of $\rho$ th step can be accepted or cancelled.
|
||||
|
||||
! If we cancel the last step (k+1), the previous energy (k) doesn't
|
||||
! change!
|
||||
! If the step (k+1) is accepted, then the "previous energy" becomes E(k+1)
|
||||
|
||||
|
||||
! Already done in an other subroutine
|
||||
!if (ABS(prev_energy - e_model) < 1d-12) then
|
||||
! print*,'WARNING: prev_energy - e_model < 1d-12'
|
||||
! print*,'=> rho will tend toward infinity'
|
||||
! print*,'Check you convergence criterion !'
|
||||
!endif
|
||||
|
||||
rho = (prev_energy - energy) / (prev_energy - e_model)
|
||||
|
||||
print*, 'previous energy, prev_energy :', prev_energy
|
||||
print*, 'predicted energy, e_model :', e_model
|
||||
print*, 'real energy, energy :', energy
|
||||
print*, 'prev_energy - energy :', prev_energy - energy
|
||||
print*, 'prev_energy - e_model :', prev_energy - e_model
|
||||
print*, 'Rho :', rho
|
||||
print*, 'Threshold for rho:', thresh_rho
|
||||
|
||||
! Modification of prev_energy in function of rho
|
||||
if (rho < thresh_rho) then !0.1) then
|
||||
! the step is cancelled
|
||||
print*, 'Rho <', thresh_rho,', the previous energy does not changed'
|
||||
print*, 'prev_energy :', prev_energy
|
||||
else
|
||||
! the step is accepted
|
||||
prev_energy = energy
|
||||
print*, 'Rho >=', thresh_rho,', energy -> prev_energy :', energy
|
||||
endif
|
||||
|
||||
call wall_time(t2)
|
||||
t3 = t2 - t1
|
||||
print*,'Time in rho model:', t3
|
||||
|
||||
print*,'---End rho_model---'
|
||||
print*,''
|
||||
|
||||
end subroutine
|
123
src/utils_trust_region/trust_region_rho.org
Normal file
123
src/utils_trust_region/trust_region_rho.org
Normal file
@ -0,0 +1,123 @@
|
||||
* Agreement with the model: Rho
|
||||
|
||||
*Compute the ratio : rho = (prev_energy - energy) / (prev_energy - e_model)*
|
||||
|
||||
Rho represents the agreement between the model (the predicted energy
|
||||
by the Taylor expansion truncated at the 2nd order) and the real
|
||||
energy :
|
||||
|
||||
\begin{equation}
|
||||
\rho^{k+1} = \frac{E^{k} - E^{k+1}}{E^{k} - m^{k+1}}
|
||||
\end{equation}
|
||||
With :
|
||||
$E^{k}$ the energy at the previous iteration
|
||||
$E^{k+1}$ the energy at the actual iteration
|
||||
$m^{k+1}$ the predicted energy for the actual iteration
|
||||
(cf. trust_e_model)
|
||||
|
||||
If $\rho \approx 1$, the agreement is good, contrary to $\rho \approx 0$.
|
||||
If $\rho \leq 0$ the previous energy is lower than the actual
|
||||
energy. We have to cancel the last step and use a smaller trust
|
||||
region.
|
||||
Here we cancel the last step if $\rho < 0.1$, because even if
|
||||
the energy decreases, the agreement is bad, i.e., the Taylor expansion
|
||||
truncated at the second order doesn't represent correctly the energy
|
||||
landscape. So it's better to cancel the step and restart with a
|
||||
smaller trust region.
|
||||
|
||||
Provided in qp_edit:
|
||||
| thresh_rho |
|
||||
|
||||
Input:
|
||||
| prev_energy | double precision | previous energy (energy before the rotation) |
|
||||
| e_model | double precision | predicted energy after the rotation |
|
||||
|
||||
Output:
|
||||
| rho | double precision | the agreement between the model (predicted) and the real energy |
|
||||
| prev_energy | double precision | if rho >= 0.1 the actual energy becomes the previous energy |
|
||||
| | | else the previous energy doesn't change |
|
||||
|
||||
Internal:
|
||||
| energy | double precision | energy (real) after the rotation |
|
||||
| i | integer | index |
|
||||
| t* | double precision | time |
|
||||
|
||||
#+BEGIN_SRC f90 :comments org :tangle trust_region_rho.irp.f
|
||||
subroutine trust_region_rho(prev_energy, energy,e_model,rho)
|
||||
|
||||
include 'pi.h'
|
||||
|
||||
BEGIN_DOC
|
||||
! Compute rho, the agreement between the predicted criterion/energy and the real one
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
|
||||
! Variables
|
||||
|
||||
! In
|
||||
double precision, intent(inout) :: prev_energy
|
||||
double precision, intent(in) :: e_model, energy
|
||||
|
||||
! Out
|
||||
double precision, intent(out) :: rho
|
||||
|
||||
! Internal
|
||||
double precision :: t1, t2, t3
|
||||
integer :: i
|
||||
|
||||
print*,''
|
||||
print*,'---Rho_model---'
|
||||
|
||||
call wall_time(t1)
|
||||
#+END_SRC
|
||||
|
||||
** Rho
|
||||
\begin{equation}
|
||||
\rho^{k+1} = \frac{E^{k} - E^{k+1}}{E^{k} - m^{k+1}}
|
||||
\end{equation}
|
||||
|
||||
In function of $\rho$ th step can be accepted or cancelled.
|
||||
|
||||
If we cancel the last step (k+1), the previous energy (k) doesn't
|
||||
change!
|
||||
If the step (k+1) is accepted, then the "previous energy" becomes E(k+1)
|
||||
|
||||
#+BEGIN_SRC f90 :comments org :tangle trust_region_rho.irp.f
|
||||
! Already done in an other subroutine
|
||||
!if (ABS(prev_energy - e_model) < 1d-12) then
|
||||
! print*,'WARNING: prev_energy - e_model < 1d-12'
|
||||
! print*,'=> rho will tend toward infinity'
|
||||
! print*,'Check you convergence criterion !'
|
||||
!endif
|
||||
|
||||
rho = (prev_energy - energy) / (prev_energy - e_model)
|
||||
|
||||
print*, 'previous energy, prev_energy :', prev_energy
|
||||
print*, 'predicted energy, e_model :', e_model
|
||||
print*, 'real energy, energy :', energy
|
||||
print*, 'prev_energy - energy :', prev_energy - energy
|
||||
print*, 'prev_energy - e_model :', prev_energy - e_model
|
||||
print*, 'Rho :', rho
|
||||
print*, 'Threshold for rho:', thresh_rho
|
||||
|
||||
! Modification of prev_energy in function of rho
|
||||
if (rho < thresh_rho) then !0.1) then
|
||||
! the step is cancelled
|
||||
print*, 'Rho <', thresh_rho,', the previous energy does not changed'
|
||||
print*, 'prev_energy :', prev_energy
|
||||
else
|
||||
! the step is accepted
|
||||
prev_energy = energy
|
||||
print*, 'Rho >=', thresh_rho,', energy -> prev_energy :', energy
|
||||
endif
|
||||
|
||||
call wall_time(t2)
|
||||
t3 = t2 - t1
|
||||
print*,'Time in rho model:', t3
|
||||
|
||||
print*,'---End rho_model---'
|
||||
print*,''
|
||||
|
||||
end subroutine
|
||||
#+END_SRC
|
716
src/utils_trust_region/trust_region_step.irp.f
Normal file
716
src/utils_trust_region/trust_region_step.irp.f
Normal file
@ -0,0 +1,716 @@
|
||||
! Trust region
|
||||
|
||||
! *Compute the next step with the trust region algorithm*
|
||||
|
||||
! The Newton method is an iterative method to find a minimum of a given
|
||||
! function. It uses a Taylor series truncated at the second order of the
|
||||
! targeted function and gives its minimizer. The minimizer is taken as
|
||||
! the new position and the same thing is done. And by doing so
|
||||
! iteratively the method find a minimum, a local or global one depending
|
||||
! of the starting point and the convexity/nonconvexity of the targeted
|
||||
! function.
|
||||
|
||||
! The goal of the trust region is to constrain the step size of the
|
||||
! Newton method in a certain area around the actual position, where the
|
||||
! Taylor series is a good approximation of the targeted function. This
|
||||
! area is called the "trust region".
|
||||
|
||||
! In addition, in function of the agreement between the Taylor
|
||||
! development of the energy and the real energy, the size of the trust
|
||||
! region will be updated at each iteration. By doing so, the step sizes
|
||||
! are not too larges. In addition, since we add a criterion to cancel the
|
||||
! step if the energy increases (more precisely if rho < 0.1), so it's
|
||||
! impossible to diverge. \newline
|
||||
|
||||
! References: \newline
|
||||
! Nocedal & Wright, Numerical Optimization, chapter 4 (1999), \newline
|
||||
! https://link.springer.com/book/10.1007/978-0-387-40065-5, \newline
|
||||
! ISBN: 978-0-387-40065-5 \newline
|
||||
|
||||
! By using the first and the second derivatives, the Newton method gives
|
||||
! a step:
|
||||
! \begin{align*}
|
||||
! \textbf{x}_{(k+1)}^{\text{Newton}} = - \textbf{H}_{(k)}^{-1} \cdot
|
||||
! \textbf{g}_{(k)}
|
||||
! \end{align*}
|
||||
! which leads to the minimizer of the Taylor series.
|
||||
! !!! Warning: the Newton method gives the minimizer if and only if
|
||||
! $\textbf{H}$ is positive definite, else it leads to a saddle point !!!
|
||||
! But we want a step $\textbf{x}_{(k+1)}$ with a constraint on its (euclidian) norm:
|
||||
! \begin{align*}
|
||||
! ||\textbf{x}_{(k+1)}|| \leq \Delta_{(k+1)}
|
||||
! \end{align*}
|
||||
! which is equivalent to
|
||||
! \begin{align*}
|
||||
! \textbf{x}_{(k+1)}^T \cdot \textbf{x}_{(k+1)} \leq \Delta_{(k+1)}^2
|
||||
! \end{align*}
|
||||
|
||||
! with: \newline
|
||||
! $\textbf{x}_{(k+1)}$ is the step for the k+1-th iteration (vector of
|
||||
! size n) \newline
|
||||
! $\textbf{H}_{(k)}$ is the hessian at the k-th iteration (n by n
|
||||
! matrix) \newline
|
||||
! $\textbf{g}_{(k)}$ is the gradient at the k-th iteration (vector of
|
||||
! size n) \newline
|
||||
! $\Delta_{(k+1)}$ is the trust radius for the (k+1)-th iteration
|
||||
! \newline
|
||||
|
||||
! Thus we want to constrain the step size $\textbf{x}_{(k+1)}$ into a
|
||||
! hypersphere of radius $\Delta_{(k+1)}$.\newline
|
||||
|
||||
! So, if $||\textbf{x}_{(k+1)}^{\text{Newton}}|| \leq \Delta_{(k)}$ and
|
||||
! $\textbf{H}$ is positive definite, the
|
||||
! solution is the step given by the Newton method
|
||||
! $\textbf{x}_{(k+1)} = \textbf{x}_{(k+1)}^{\text{Newton}}$.
|
||||
! Else we have to constrain the step size. For simplicity we will remove
|
||||
! the index $_{(k)}$ and $_{(k+1)}$. To restict the step size, we have
|
||||
! to put a constraint on $\textbf{x}$ with a Lagrange multiplier.
|
||||
! Starting from the Taylor series of a function E (here, the energy)
|
||||
! truncated at the 2nd order, we have:
|
||||
! \begin{align*}
|
||||
! E(\textbf{x}) = E +\textbf{g}^T \cdot \textbf{x} + \frac{1}{2}
|
||||
! \cdot \textbf{x}^T \cdot \textbf{H} \cdot \textbf{x} +
|
||||
! \mathcal{O}(\textbf{x}^2)
|
||||
! \end{align*}
|
||||
|
||||
! With the constraint on the norm of $\textbf{x}$ we can write the
|
||||
! Lagrangian
|
||||
! \begin{align*}
|
||||
! \mathcal{L}(\textbf{x},\lambda) = E + \textbf{g}^T \cdot \textbf{x}
|
||||
! + \frac{1}{2} \cdot \textbf{x}^T \cdot \textbf{H} \cdot \textbf{x}
|
||||
! + \frac{1}{2} \lambda (\textbf{x}^T \cdot \textbf{x} - \Delta^2)
|
||||
! \end{align*}
|
||||
! Where: \newline
|
||||
! $\lambda$ is the Lagrange multiplier \newline
|
||||
! $E$ is the energy at the k-th iteration $\Leftrightarrow
|
||||
! E(\textbf{x} = \textbf{0})$ \newline
|
||||
|
||||
! To solve this equation, we search a stationary point where the first
|
||||
! derivative of $\mathcal{L}$ with respect to $\textbf{x}$ becomes 0, i.e.
|
||||
! \begin{align*}
|
||||
! \frac{\partial \mathcal{L}(\textbf{x},\lambda)}{\partial \textbf{x}}=0
|
||||
! \end{align*}
|
||||
|
||||
! The derivative is:
|
||||
! \begin{align*}
|
||||
! \frac{\partial \mathcal{L}(\textbf{x},\lambda)}{\partial \textbf{x}}
|
||||
! = \textbf{g} + \textbf{H} \cdot \textbf{x} + \lambda \cdot \textbf{x}
|
||||
! \end{align*}
|
||||
|
||||
! So, we search $\textbf{x}$ such as:
|
||||
! \begin{align*}
|
||||
! \frac{\partial \mathcal{L}(\textbf{x},\lambda)}{\partial \textbf{x}}
|
||||
! = \textbf{g} + \textbf{H} \cdot \textbf{x} + \lambda \cdot \textbf{x} = 0
|
||||
! \end{align*}
|
||||
|
||||
! We can rewrite that as:
|
||||
! \begin{align*}
|
||||
! \textbf{g} + \textbf{H} \cdot \textbf{x} + \lambda \cdot \textbf{x}
|
||||
! = \textbf{g} + (\textbf{H} +\textbf{I} \lambda) \cdot \textbf{x} = 0
|
||||
! \end{align*}
|
||||
! with $\textbf{I}$ is the identity matrix.
|
||||
|
||||
! By doing so, the solution is:
|
||||
! \begin{align*}
|
||||
! (\textbf{H} +\textbf{I} \lambda) \cdot \textbf{x}= -\textbf{g}
|
||||
! \end{align*}
|
||||
! \begin{align*}
|
||||
! \textbf{x}= - (\textbf{H} + \textbf{I} \lambda)^{-1} \cdot \textbf{g}
|
||||
! \end{align*}
|
||||
! with $\textbf{x}^T \textbf{x} = \Delta^2$.
|
||||
|
||||
! We have to solve this previous equation to find this $\textbf{x}$ in the
|
||||
! trust region, i.e. $||\textbf{x}|| = \Delta$. Now, this problem is
|
||||
! just a one dimension problem because we can express $\textbf{x}$ as a
|
||||
! function of $\lambda$:
|
||||
! \begin{align*}
|
||||
! \textbf{x}(\lambda) = - (\textbf{H} + \textbf{I} \lambda)^{-1} \cdot \textbf{g}
|
||||
! \end{align*}
|
||||
|
||||
! We start from the fact that the hessian is diagonalizable. So we have:
|
||||
! \begin{align*}
|
||||
! \textbf{H} = \textbf{W} \cdot \textbf{h} \cdot \textbf{W}^T
|
||||
! \end{align*}
|
||||
! with: \newline
|
||||
! $\textbf{H}$, the hessian matrix \newline
|
||||
! $\textbf{W}$, the matrix containing the eigenvectors \newline
|
||||
! $\textbf{w}_i$, the i-th eigenvector, i.e. i-th column of $\textbf{W}$ \newline
|
||||
! $\textbf{h}$, the matrix containing the eigenvalues in ascending order \newline
|
||||
! $h_i$, the i-th eigenvalue in ascending order \newline
|
||||
|
||||
! Now we use the fact that adding a constant on the diagonal just shifts
|
||||
! the eigenvalues:
|
||||
! \begin{align*}
|
||||
! \textbf{H} + \textbf{I} \lambda = \textbf{W} \cdot (\textbf{h}
|
||||
! +\textbf{I} \lambda) \cdot \textbf{W}^T
|
||||
! \end{align*}
|
||||
|
||||
! By doing so we can express $\textbf{x}$ as a function of $\lambda$
|
||||
! \begin{align*}
|
||||
! \textbf{x}(\lambda) = - \sum_{i=1}^n \frac{\textbf{w}_i^T \cdot
|
||||
! \textbf{g}}{h_i + \lambda} \cdot \textbf{w}_i
|
||||
! \end{align*}
|
||||
! with $\lambda \neq - h_i$.
|
||||
|
||||
! An interesting thing in our case is the norm of $\textbf{x}$,
|
||||
! because we want $||\textbf{x}|| = \Delta$. Due to the orthogonality of
|
||||
! the eigenvectors $\left\{\textbf{w} \right\} _{i=1}^n$ we have:
|
||||
! \begin{align*}
|
||||
! ||\textbf{x}(\lambda)||^2 = \sum_{i=1}^n \frac{(\textbf{w}_i^T \cdot
|
||||
! \textbf{g})^2}{(h_i + \lambda)^2}
|
||||
! \end{align*}
|
||||
|
||||
! So the $||\textbf{x}(\lambda)||^2$ is just a function of $\lambda$.
|
||||
! And if we study the properties of this function we see that:
|
||||
! \begin{align*}
|
||||
! \lim_{\lambda\to\infty} ||\textbf{x}(\lambda)|| = 0
|
||||
! \end{align*}
|
||||
! and if $\textbf{w}_i^T \cdot \textbf{g} \neq 0$:
|
||||
! \begin{align*}
|
||||
! \lim_{\lambda\to -h_i} ||\textbf{x}(\lambda)|| = + \infty
|
||||
! \end{align*}
|
||||
|
||||
! From these limits and knowing that $h_1$ is the lowest eigenvalue, we
|
||||
! can conclude that $||\textbf{x}(\lambda)||$ is a continuous and
|
||||
! strictly decreasing function on the interval $\lambda \in
|
||||
! (-h_1;\infty)$. Thus, there is one $\lambda$ in this interval which
|
||||
! gives $||\textbf{x}(\lambda)|| = \Delta$, consequently there is one
|
||||
! solution.
|
||||
|
||||
! Since $\textbf{x} = - (\textbf{H} + \lambda \textbf{I})^{-1} \cdot
|
||||
! \textbf{g}$ and we want to reduce the norm of $\textbf{x}$, clearly,
|
||||
! $\lambda > 0$ ($\lambda = 0$ is the unconstraint solution). But the
|
||||
! Newton method is only defined for a positive definite hessian matrix,
|
||||
! so $(\textbf{H} + \textbf{I} \lambda)$ must be positive
|
||||
! definite. Consequently, in the case where $\textbf{H}$ is not positive
|
||||
! definite, to ensure the positive definiteness, $\lambda$ must be
|
||||
! greater than $- h_1$.
|
||||
! \begin{align*}
|
||||
! \lambda > 0 \quad \text{and} \quad \lambda \geq - h_1
|
||||
! \end{align*}
|
||||
|
||||
! From that there are five cases:
|
||||
! - if $\textbf{H}$ is positive definite, $-h_1 < 0$, $\lambda \in (0,\infty)$
|
||||
! - if $\textbf{H}$ is not positive definite and $\textbf{w}_1^T \cdot
|
||||
! \textbf{g} \neq 0$, $(\textbf{H} + \textbf{I}
|
||||
! \lambda)$
|
||||
! must be positve definite, $-h_1 > 0$, $\lambda \in (-h_1, \infty)$
|
||||
! - if $\textbf{H}$ is not positive definite , $\textbf{w}_1^T \cdot
|
||||
! \textbf{g} = 0$ and $||\textbf{x}(-h_1)|| > \Delta$ by removing
|
||||
! $j=1$ in the sum, $(\textbf{H} + \textbf{I} \lambda)$ must be
|
||||
! positive definite, $-h_1 > 0$, $\lambda \in (-h_1, \infty$)
|
||||
! - if $\textbf{H}$ is not positive definite , $\textbf{w}_1^T \cdot
|
||||
! \textbf{g} = 0$ and $||\textbf{x}(-h_1)|| \leq \Delta$ by removing
|
||||
! $j=1$ in the sum, $(\textbf{H} + \textbf{I} \lambda)$ must be
|
||||
! positive definite, $-h_1 > 0$, $\lambda = -h_1$). This case is
|
||||
! similar to the case where $\textbf{H}$ and $||\textbf{x}(\lambda =
|
||||
! 0)|| \leq \Delta$
|
||||
! but we can also add to $\textbf{x}$, the first eigenvector $\textbf{W}_1$
|
||||
! time a constant to ensure the condition $||\textbf{x}(\lambda =
|
||||
! -h_1)|| = \Delta$ and escape from the saddle point
|
||||
|
||||
! Thus to find the solution, we can write:
|
||||
! \begin{align*}
|
||||
! ||\textbf{x}(\lambda)|| = \Delta
|
||||
! \end{align*}
|
||||
! \begin{align*}
|
||||
! ||\textbf{x}(\lambda)|| - \Delta = 0
|
||||
! \end{align*}
|
||||
|
||||
! Taking the square of this equation
|
||||
! \begin{align*}
|
||||
! (||\textbf{x}(\lambda)|| - \Delta)^2 = 0
|
||||
! \end{align*}
|
||||
! we have a function with one minimum for the optimal $\lambda$.
|
||||
! Since we have the formula of $||\textbf{x}(\lambda)||^2$, we solve
|
||||
! \begin{align*}
|
||||
! (||\textbf{x}(\lambda)||^2 - \Delta^2)^2 = 0
|
||||
! \end{align*}
|
||||
|
||||
! But in practice, it is more effective to solve:
|
||||
! \begin{align*}
|
||||
! (\frac{1}{||\textbf{x}(\lambda)||^2} - \frac{1}{\Delta^2})^2 = 0
|
||||
! \end{align*}
|
||||
|
||||
! To do that, we just use the Newton method with "trust_newton" using
|
||||
! first and second derivative of $(||\textbf{x}(\lambda)||^2 -
|
||||
! \Delta^2)^2$ with respect to $\textbf{x}$.
|
||||
! This will give the optimal $\lambda$ to compute the
|
||||
! solution $\textbf{x}$ with the formula seen previously:
|
||||
! \begin{align*}
|
||||
! \textbf{x}(\lambda) = - \sum_{i=1}^n \frac{\textbf{w}_i^T \cdot
|
||||
! \textbf{g}}{h_i + \lambda} \cdot \textbf{w}_i
|
||||
! \end{align*}
|
||||
|
||||
! The solution $\textbf{x}(\lambda)$ with the optimal $\lambda$ is our
|
||||
! step to go from the (k)-th to the (k+1)-th iteration, is noted $\textbf{x}^*$.
|
||||
|
||||
|
||||
|
||||
|
||||
! Evolution of the trust region
|
||||
|
||||
! We initialize the trust region at the first iteration using a radius
|
||||
! \begin{align*}
|
||||
! \Delta = ||\textbf{x}(\lambda=0)||
|
||||
! \end{align*}
|
||||
|
||||
! And for the next iteration the trust region will evolves depending of
|
||||
! the agreement of the energy prediction based on the Taylor series
|
||||
! truncated at the 2nd order and the real energy. If the Taylor series
|
||||
! truncated at the 2nd order represents correctly the energy landscape
|
||||
! the trust region will be extent else it will be reduced. In order to
|
||||
! mesure this agreement we use the ratio rho cf. "rho_model" and
|
||||
! "trust_e_model". From that we use the following values:
|
||||
! - if $\rho \geq 0.75$, then $\Delta = 2 \Delta$,
|
||||
! - if $0.5 \geq \rho < 0.75$, then $\Delta = \Delta$,
|
||||
! - if $0.25 \geq \rho < 0.5$, then $\Delta = 0.5 \Delta$,
|
||||
! - if $\rho < 0.25$, then $\Delta = 0.25 \Delta$.
|
||||
|
||||
! In addition, if $\rho < 0.1$ the iteration is cancelled, so it
|
||||
! restarts with a smaller trust region until the energy decreases.
|
||||
|
||||
|
||||
|
||||
|
||||
! Summary
|
||||
|
||||
! To summarize, knowing the hessian (eigenvectors and eigenvalues), the
|
||||
! gradient and the radius of the trust region we can compute the norm of
|
||||
! the Newton step
|
||||
! \begin{align*}
|
||||
! ||\textbf{x}(\lambda = 0)||^2 = ||- \textbf{H}^{-1} \cdot \textbf{g}||^2 = \sum_{i=1}^n
|
||||
! \frac{(\textbf{w}_i^T \cdot \textbf{g})^2}{(h_i + \lambda)^2}, \quad h_i \neq 0
|
||||
! \end{align*}
|
||||
|
||||
! - if $h_1 \geq 0$, $||\textbf{x}(\lambda = 0)|| \leq \Delta$ and
|
||||
! $\textbf{x}(\lambda=0)$ is in the trust region and it is not
|
||||
! necessary to put a constraint on $\textbf{x}$, the solution is the
|
||||
! unconstrained one, $\textbf{x}^* = \textbf{x}(\lambda = 0)$.
|
||||
! - else if $h_1 < 0$, $\textbf{w}_1^T \cdot \textbf{g} = 0$ and
|
||||
! $||\textbf{x}(\lambda = -h_1)|| \leq \Delta$ (by removing $j=1$ in
|
||||
! the sum), the solution is $\textbf{x}^* = \textbf{x}(\lambda =
|
||||
! -h_1)$, similarly to the previous case.
|
||||
! But we can add to $\textbf{x}$, the first eigenvector $\textbf{W}_1$
|
||||
! time a constant to ensure the condition $||\textbf{x}(\lambda =
|
||||
! -h_1)|| = \Delta$ and escape from the saddle point
|
||||
! - else if $h_1 < 0$ and $\textbf{w}_1^T \cdot \textbf{g} \neq 0$ we
|
||||
! have to search $\lambda \in (-h_1, \infty)$ such as
|
||||
! $\textbf{x}(\lambda) = \Delta$ by solving with the Newton method
|
||||
! \begin{align*}
|
||||
! (||\textbf{x}(\lambda)||^2 - \Delta^2)^2 = 0
|
||||
! \end{align*}
|
||||
! or
|
||||
! \begin{align*}
|
||||
! (\frac{1}{||\textbf{x}(\lambda)||^2} - \frac{1}{\Delta^2})^2 = 0
|
||||
! \end{align*}
|
||||
! which is numerically more stable. And finally compute
|
||||
! \begin{align*}
|
||||
! \textbf{x}^* = \textbf{x}(\lambda) = - \sum_{i=1}^n \frac{\textbf{w}_i^T \cdot
|
||||
! \textbf{g}}{h_i + \lambda} \cdot \textbf{w}_i
|
||||
! \end{align*}
|
||||
! - else if $h_1 \geq 0$ and $||\textbf{x}(\lambda = 0)|| > \Delta$ we
|
||||
! do exactly the same thing that the previous case but we search
|
||||
! $\lambda \in (0, \infty)$
|
||||
! - else if $h_1 < 0$ and $\textbf{w}_1^T \cdot \textbf{g} = 0$ and
|
||||
! $||\textbf{x}(\lambda = -h_1)|| > \Delta$ (by removing $j=1$ in the
|
||||
! sum), again we do exactly the same thing that the previous case
|
||||
! searching $\lambda \in (-h_1, \infty)$.
|
||||
|
||||
|
||||
! For the cases where $\textbf{w}_1^T \cdot \textbf{g} = 0$ it is not
|
||||
! necessary in fact to remove the $j = 1$ in the sum since the term
|
||||
! where $h_i - \lambda < 10^{-6}$ are not computed.
|
||||
|
||||
! After that, we take this vector $\textbf{x}^*$, called "x", and we do
|
||||
! the transformation to an antisymmetric matrix $\textbf{X}$, called
|
||||
! m_x. This matrix $\textbf{X}$ will be used to compute a rotation
|
||||
! matrix $\textbf{R}= \exp(\textbf{X})$ in "rotation_matrix".
|
||||
|
||||
! NB:
|
||||
! An improvement can be done using a elleptical trust region.
|
||||
|
||||
|
||||
|
||||
|
||||
! Code
|
||||
|
||||
! Provided:
|
||||
! | mo_num | integer | number of MOs |
|
||||
|
||||
! Cf. qp_edit in orbital optimization section, for some constants/thresholds
|
||||
|
||||
! Input:
|
||||
! | m | integer | number of MOs |
|
||||
! | n | integer | m*(m-1)/2 |
|
||||
! | H(n, n) | double precision | hessian |
|
||||
! | v_grad(n) | double precision | gradient |
|
||||
! | e_val(n) | double precision | eigenvalues of the hessian |
|
||||
! | W(n, n) | double precision | eigenvectors of the hessian |
|
||||
! | rho | double precision | agreement between the model and the reality, |
|
||||
! | | | represents the quality of the energy prediction |
|
||||
! | nb_iter | integer | number of iteration |
|
||||
|
||||
! Input/Ouput:
|
||||
! | delta | double precision | radius of the trust region |
|
||||
|
||||
! Output:
|
||||
! | x(n) | double precision | vector containing the step |
|
||||
|
||||
! Internal:
|
||||
! | accu | double precision | temporary variable to compute the step |
|
||||
! | lambda | double precision | lagrange multiplier |
|
||||
! | trust_radius2 | double precision | square of the radius of the trust region |
|
||||
! | norm2_x | double precision | norm^2 of the vector x |
|
||||
! | norm2_g | double precision | norm^2 of the vector containing the gradient |
|
||||
! | tmp_wtg(n) | double precision | tmp_wtg(i) = w_i^T . g |
|
||||
! | i, j, k | integer | indexes |
|
||||
|
||||
! Function:
|
||||
! | dnrm2 | double precision | Blas function computing the norm |
|
||||
! | f_norm_trust_region_omp | double precision | compute the value of norm(x(lambda)^2) |
|
||||
|
||||
|
||||
subroutine trust_region_step(n,nb_iter,v_grad,rho,e_val,w,x,delta)
|
||||
|
||||
include 'pi.h'
|
||||
|
||||
BEGIN_DOC
|
||||
! Compuet the step in the trust region
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
|
||||
! Variables
|
||||
|
||||
! in
|
||||
integer, intent(in) :: n
|
||||
double precision, intent(in) :: v_grad(n), rho
|
||||
integer, intent(inout) :: nb_iter
|
||||
double precision, intent(in) :: e_val(n), w(n,n)
|
||||
|
||||
! inout
|
||||
double precision, intent(inout) :: delta
|
||||
|
||||
! out
|
||||
double precision, intent(out) :: x(n)
|
||||
|
||||
! Internal
|
||||
double precision :: accu, lambda, trust_radius2
|
||||
double precision :: norm2_x, norm2_g
|
||||
double precision, allocatable :: tmp_wtg(:)
|
||||
integer :: i,j,k
|
||||
double precision :: t1,t2,t3
|
||||
integer :: n_neg_eval
|
||||
|
||||
|
||||
! Functions
|
||||
double precision :: ddot, dnrm2
|
||||
double precision :: f_norm_trust_region_omp
|
||||
|
||||
print*,''
|
||||
print*,'=================='
|
||||
print*,'---Trust_region---'
|
||||
print*,'=================='
|
||||
|
||||
call wall_time(t1)
|
||||
|
||||
! Allocation
|
||||
allocate(tmp_wtg(n))
|
||||
|
||||
! Initialization and norm
|
||||
|
||||
! The norm of the step size will be useful for the trust region
|
||||
! algorithm. We start from a first guess and the radius of the trust
|
||||
! region will evolve during the optimization.
|
||||
|
||||
! avoid_saddle is actually a test to avoid saddle points
|
||||
|
||||
|
||||
! Initialization of the Lagrange multiplier
|
||||
lambda = 0d0
|
||||
|
||||
! List of w^T.g, to avoid the recomputation
|
||||
tmp_wtg = 0d0
|
||||
do j = 1, n
|
||||
do i = 1, n
|
||||
tmp_wtg(j) = tmp_wtg(j) + w(i,j) * v_grad(i)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! Replacement of the small tmp_wtg corresponding to a negative eigenvalue
|
||||
! in the case of avoid_saddle
|
||||
if (avoid_saddle .and. e_val(1) < - thresh_eig) then
|
||||
i = 2
|
||||
! Number of negative eigenvalues
|
||||
do while (e_val(i) < - thresh_eig)
|
||||
if (tmp_wtg(i) < thresh_wtg2) then
|
||||
if (version_avoid_saddle == 1) then
|
||||
tmp_wtg(i) = 1d0
|
||||
elseif (version_avoid_saddle == 2) then
|
||||
tmp_wtg(i) = DABS(e_val(i))
|
||||
elseif (version_avoid_saddle == 3) then
|
||||
tmp_wtg(i) = dsqrt(DABS(e_val(i)))
|
||||
else
|
||||
tmp_wtg(i) = thresh_wtg2
|
||||
endif
|
||||
endif
|
||||
i = i + 1
|
||||
enddo
|
||||
|
||||
! For the fist one it's a little bit different
|
||||
if (tmp_wtg(1) < thresh_wtg2) then
|
||||
tmp_wtg(1) = 0d0
|
||||
endif
|
||||
|
||||
endif
|
||||
|
||||
! Norm^2 of x, ||x||^2
|
||||
norm2_x = f_norm_trust_region_omp(n,e_val,tmp_wtg,0d0)
|
||||
! We just use this norm for the nb_iter = 0 in order to initialize the trust radius delta
|
||||
! We don't care about the sign of the eigenvalue we just want the size of the step in a normal Newton-Raphson algorithm
|
||||
! Anyway if the step is too big it will be reduced
|
||||
print*,'||x||^2 :', norm2_x
|
||||
|
||||
! Norm^2 of the gradient, ||v_grad||^2
|
||||
norm2_g = (dnrm2(n,v_grad,1))**2
|
||||
print*,'||grad||^2 :', norm2_g
|
||||
|
||||
! Trust radius initialization
|
||||
|
||||
! At the first iteration (nb_iter = 0) we initialize the trust region
|
||||
! with the norm of the step generate by the Newton's method ($\textbf{x}_1 =
|
||||
! (\textbf{H}_0)^{-1} \cdot \textbf{g}_0$,
|
||||
! we compute this norm using f_norm_trust_region_omp as explain just
|
||||
! below)
|
||||
|
||||
|
||||
! trust radius
|
||||
if (nb_iter == 0) then
|
||||
trust_radius2 = norm2_x
|
||||
! To avoid infinite loop of cancellation of this first step
|
||||
! without changing delta
|
||||
nb_iter = 1
|
||||
|
||||
! Compute delta, delta = sqrt(trust_radius)
|
||||
delta = dsqrt(trust_radius2)
|
||||
endif
|
||||
|
||||
! Modification of the trust radius
|
||||
|
||||
! In function of rho (which represents the agreement between the model
|
||||
! and the reality, cf. rho_model) the trust region evolves. We update
|
||||
! delta (the radius of the trust region).
|
||||
|
||||
! To avoid too big trust region we put a maximum size.
|
||||
|
||||
|
||||
! Modification of the trust radius in function of rho
|
||||
if (rho >= 0.75d0) then
|
||||
delta = 2d0 * delta
|
||||
elseif (rho >= 0.5d0) then
|
||||
delta = delta
|
||||
elseif (rho >= 0.25d0) then
|
||||
delta = 0.5d0 * delta
|
||||
else
|
||||
delta = 0.25d0 * delta
|
||||
endif
|
||||
|
||||
! Maximum size of the trust region
|
||||
!if (delta > 0.5d0 * n * pi) then
|
||||
! delta = 0.5d0 * n * pi
|
||||
! print*,'Delta > delta_max, delta = 0.5d0 * n * pi'
|
||||
!endif
|
||||
|
||||
if (delta > 1d10) then
|
||||
delta = 1d10
|
||||
endif
|
||||
|
||||
print*, 'Delta :', delta
|
||||
|
||||
! Calculation of the optimal lambda
|
||||
|
||||
! We search the solution of $(||x||^2 - \Delta^2)^2 = 0$
|
||||
! - If $||\textbf{x}|| > \Delta$ or $h_1 < 0$ we have to add a constant
|
||||
! $\lambda > 0 \quad \text{and} \quad \lambda > -h_1$
|
||||
! - If $||\textbf{x}|| \leq \Delta$ and $h_1 \geq 0$ the solution is the
|
||||
! unconstrained one, $\lambda = 0$
|
||||
|
||||
! You will find more details at the beginning
|
||||
|
||||
|
||||
! By giving delta, we search (||x||^2 - delta^2)^2 = 0
|
||||
! and not (||x||^2 - delta)^2 = 0
|
||||
|
||||
! Research of lambda to solve ||x(lambda)|| = Delta
|
||||
|
||||
! Display
|
||||
print*, 'e_val(1) = ', e_val(1)
|
||||
print*, 'w_1^T.g =', tmp_wtg(1)
|
||||
|
||||
! H positive definite
|
||||
if (e_val(1) > - thresh_eig) then
|
||||
norm2_x = f_norm_trust_region_omp(n,e_val,tmp_wtg,0d0)
|
||||
print*, '||x(0)||=', dsqrt(norm2_x)
|
||||
print*, 'Delta=', delta
|
||||
|
||||
! H positive definite, ||x(lambda = 0)|| <= Delta
|
||||
if (dsqrt(norm2_x) <= delta) then
|
||||
print*, 'H positive definite, ||x(lambda = 0)|| <= Delta'
|
||||
print*, 'lambda = 0, no lambda optimization'
|
||||
lambda = 0d0
|
||||
|
||||
! H positive definite, ||x(lambda = 0)|| > Delta
|
||||
else
|
||||
! Constraint solution
|
||||
print*, 'H positive definite, ||x(lambda = 0)|| > Delta'
|
||||
print*,'Computation of the optimal lambda...'
|
||||
call trust_region_optimal_lambda(n,e_val,tmp_wtg,delta,lambda)
|
||||
endif
|
||||
|
||||
! H indefinite
|
||||
else
|
||||
if (DABS(tmp_wtg(1)) < thresh_wtg) then
|
||||
norm2_x = f_norm_trust_region_omp(n,e_val,tmp_wtg, - e_val(1))
|
||||
print*, 'w_1^T.g <', thresh_wtg,', ||x(lambda = -e_val(1))|| =', dsqrt(norm2_x)
|
||||
endif
|
||||
|
||||
! H indefinite, w_1^T.g = 0, ||x(lambda = -e_val(1))|| <= Delta
|
||||
if (dsqrt(norm2_x) <= delta .and. DABS(tmp_wtg(1)) < thresh_wtg) then
|
||||
! Add e_val(1) in order to have (H - e_val(1) I) positive definite
|
||||
print*, 'H indefinite, w_1^T.g = 0, ||x(lambda = -e_val(1))|| <= Delta'
|
||||
print*, 'lambda = -e_val(1), no lambda optimization'
|
||||
lambda = - e_val(1)
|
||||
|
||||
! H indefinite, w_1^T.g = 0, ||x(lambda = -e_val(1))|| > Delta
|
||||
! and
|
||||
! H indefinite, w_1^T.g =/= 0
|
||||
else
|
||||
! Constraint solution/ add lambda
|
||||
if (DABS(tmp_wtg(1)) < thresh_wtg) then
|
||||
print*, 'H indefinite, w_1^T.g = 0, ||x(lambda = -e_val(1))|| > Delta'
|
||||
else
|
||||
print*, 'H indefinite, w_1^T.g =/= 0'
|
||||
endif
|
||||
print*, 'Computation of the optimal lambda...'
|
||||
call trust_region_optimal_lambda(n,e_val,tmp_wtg,delta,lambda)
|
||||
endif
|
||||
|
||||
endif
|
||||
|
||||
! Recomputation of the norm^2 of the step x
|
||||
norm2_x = f_norm_trust_region_omp(n,e_val,tmp_wtg,lambda)
|
||||
print*,''
|
||||
print*,'Summary after the trust region:'
|
||||
print*,'lambda:', lambda
|
||||
print*,'||x||:', dsqrt(norm2_x)
|
||||
print*,'delta:', delta
|
||||
|
||||
! Calculation of the step x
|
||||
|
||||
! x refers to $\textbf{x}^*$
|
||||
! We compute x in function of lambda using its formula :
|
||||
! \begin{align*}
|
||||
! \textbf{x}^* = \textbf{x}(\lambda) = - \sum_{i=1}^n \frac{\textbf{w}_i^T \cdot \textbf{g}}{h_i
|
||||
! + \lambda} \cdot \textbf{w}_i
|
||||
! \end{align*}
|
||||
|
||||
|
||||
! Initialisation
|
||||
x = 0d0
|
||||
|
||||
! Calculation of the step x
|
||||
|
||||
! Normal version
|
||||
if (.not. absolute_eig) then
|
||||
|
||||
do i = 1, n
|
||||
if (DABS(e_val(i)) > thresh_eig .and. DABS(e_val(i)+lambda) > thresh_eig) then
|
||||
do j = 1, n
|
||||
x(j) = x(j) - tmp_wtg(i) * W(j,i) / (e_val(i) + lambda)
|
||||
enddo
|
||||
endif
|
||||
enddo
|
||||
|
||||
! Version to use the absolute value of the eigenvalues
|
||||
else
|
||||
|
||||
do i = 1, n
|
||||
if (DABS(e_val(i)) > thresh_eig) then
|
||||
do j = 1, n
|
||||
x(j) = x(j) - tmp_wtg(i) * W(j,i) / (DABS(e_val(i)) + lambda)
|
||||
enddo
|
||||
endif
|
||||
enddo
|
||||
|
||||
endif
|
||||
|
||||
double precision :: beta, norm_x
|
||||
|
||||
! Test
|
||||
! If w_1^T.g = 0, the lim of ||x(lambda)|| when lambda tend to -e_val(1)
|
||||
! is not + infinity. So ||x(lambda=-e_val(1))|| < delta, we add the first
|
||||
! eigenvectors multiply by a constant to ensure the condition
|
||||
! ||x(lambda=-e_val(1))|| = delta and escape the saddle point
|
||||
if (avoid_saddle .and. e_val(1) < - thresh_eig) then
|
||||
if (tmp_wtg(1) < 1d-15 .and. (1d0 - dsqrt(norm2_x)/delta) > 1d-3 ) then
|
||||
|
||||
! norm of x
|
||||
norm_x = dnrm2(n,x,1)
|
||||
|
||||
! Computes the coefficient for the w_1
|
||||
beta = delta**2 - norm_x**2
|
||||
|
||||
! Updates the step x
|
||||
x = x + W(:,1) * dsqrt(beta)
|
||||
|
||||
! Recomputes the norm to check
|
||||
norm_x = dnrm2(n,x,1)
|
||||
|
||||
print*, 'Add w_1 * dsqrt(delta^2 - ||x||^2):'
|
||||
print*, '||x||', norm_x
|
||||
endif
|
||||
endif
|
||||
|
||||
! Transformation of x
|
||||
|
||||
! x is a vector of size n, so it can be write as a m by m
|
||||
! antisymmetric matrix m_x cf. "mat_to_vec_index" and "vec_to_mat_index".
|
||||
|
||||
|
||||
! ! Step transformation vector -> matrix
|
||||
! ! Vector with n element -> mo_num by mo_num matrix
|
||||
! do j = 1, m
|
||||
! do i = 1, m
|
||||
! if (i>j) then
|
||||
! call mat_to_vec_index(i,j,k)
|
||||
! m_x(i,j) = x(k)
|
||||
! else
|
||||
! m_x(i,j) = 0d0
|
||||
! endif
|
||||
! enddo
|
||||
! enddo
|
||||
!
|
||||
! ! Antisymmetrization of the previous matrix
|
||||
! do j = 1, m
|
||||
! do i = 1, m
|
||||
! if (i<j) then
|
||||
! m_x(i,j) = - m_x(j,i)
|
||||
! endif
|
||||
! enddo
|
||||
! enddo
|
||||
|
||||
! Deallocation, end
|
||||
|
||||
|
||||
deallocate(tmp_wtg)
|
||||
|
||||
call wall_time(t2)
|
||||
t3 = t2 - t1
|
||||
print*,'Time in trust_region:', t3
|
||||
print*,'======================'
|
||||
print*,'---End trust_region---'
|
||||
print*,'======================'
|
||||
print*,''
|
||||
|
||||
end
|
726
src/utils_trust_region/trust_region_step.org
Normal file
726
src/utils_trust_region/trust_region_step.org
Normal file
@ -0,0 +1,726 @@
|
||||
* Trust region
|
||||
|
||||
*Compute the next step with the trust region algorithm*
|
||||
|
||||
The Newton method is an iterative method to find a minimum of a given
|
||||
function. It uses a Taylor series truncated at the second order of the
|
||||
targeted function and gives its minimizer. The minimizer is taken as
|
||||
the new position and the same thing is done. And by doing so
|
||||
iteratively the method find a minimum, a local or global one depending
|
||||
of the starting point and the convexity/nonconvexity of the targeted
|
||||
function.
|
||||
|
||||
The goal of the trust region is to constrain the step size of the
|
||||
Newton method in a certain area around the actual position, where the
|
||||
Taylor series is a good approximation of the targeted function. This
|
||||
area is called the "trust region".
|
||||
|
||||
In addition, in function of the agreement between the Taylor
|
||||
development of the energy and the real energy, the size of the trust
|
||||
region will be updated at each iteration. By doing so, the step sizes
|
||||
are not too larges. In addition, since we add a criterion to cancel the
|
||||
step if the energy increases (more precisely if rho < 0.1), so it's
|
||||
impossible to diverge. \newline
|
||||
|
||||
References: \newline
|
||||
Nocedal & Wright, Numerical Optimization, chapter 4 (1999), \newline
|
||||
https://link.springer.com/book/10.1007/978-0-387-40065-5, \newline
|
||||
ISBN: 978-0-387-40065-5 \newline
|
||||
|
||||
By using the first and the second derivatives, the Newton method gives
|
||||
a step:
|
||||
\begin{align*}
|
||||
\textbf{x}_{(k+1)}^{\text{Newton}} = - \textbf{H}_{(k)}^{-1} \cdot
|
||||
\textbf{g}_{(k)}
|
||||
\end{align*}
|
||||
which leads to the minimizer of the Taylor series.
|
||||
!!! Warning: the Newton method gives the minimizer if and only if
|
||||
$\textbf{H}$ is positive definite, else it leads to a saddle point !!!
|
||||
But we want a step $\textbf{x}_{(k+1)}$ with a constraint on its (euclidian) norm:
|
||||
\begin{align*}
|
||||
||\textbf{x}_{(k+1)}|| \leq \Delta_{(k+1)}
|
||||
\end{align*}
|
||||
which is equivalent to
|
||||
\begin{align*}
|
||||
\textbf{x}_{(k+1)}^T \cdot \textbf{x}_{(k+1)} \leq \Delta_{(k+1)}^2
|
||||
\end{align*}
|
||||
|
||||
with: \newline
|
||||
$\textbf{x}_{(k+1)}$ is the step for the k+1-th iteration (vector of
|
||||
size n) \newline
|
||||
$\textbf{H}_{(k)}$ is the hessian at the k-th iteration (n by n
|
||||
matrix) \newline
|
||||
$\textbf{g}_{(k)}$ is the gradient at the k-th iteration (vector of
|
||||
size n) \newline
|
||||
$\Delta_{(k+1)}$ is the trust radius for the (k+1)-th iteration
|
||||
\newline
|
||||
|
||||
Thus we want to constrain the step size $\textbf{x}_{(k+1)}$ into a
|
||||
hypersphere of radius $\Delta_{(k+1)}$.\newline
|
||||
|
||||
So, if $||\textbf{x}_{(k+1)}^{\text{Newton}}|| \leq \Delta_{(k)}$ and
|
||||
$\textbf{H}$ is positive definite, the
|
||||
solution is the step given by the Newton method
|
||||
$\textbf{x}_{(k+1)} = \textbf{x}_{(k+1)}^{\text{Newton}}$.
|
||||
Else we have to constrain the step size. For simplicity we will remove
|
||||
the index $_{(k)}$ and $_{(k+1)}$. To restict the step size, we have
|
||||
to put a constraint on $\textbf{x}$ with a Lagrange multiplier.
|
||||
Starting from the Taylor series of a function E (here, the energy)
|
||||
truncated at the 2nd order, we have:
|
||||
\begin{align*}
|
||||
E(\textbf{x}) = E +\textbf{g}^T \cdot \textbf{x} + \frac{1}{2}
|
||||
\cdot \textbf{x}^T \cdot \textbf{H} \cdot \textbf{x} +
|
||||
\mathcal{O}(\textbf{x}^2)
|
||||
\end{align*}
|
||||
|
||||
With the constraint on the norm of $\textbf{x}$ we can write the
|
||||
Lagrangian
|
||||
\begin{align*}
|
||||
\mathcal{L}(\textbf{x},\lambda) = E + \textbf{g}^T \cdot \textbf{x}
|
||||
+ \frac{1}{2} \cdot \textbf{x}^T \cdot \textbf{H} \cdot \textbf{x}
|
||||
+ \frac{1}{2} \lambda (\textbf{x}^T \cdot \textbf{x} - \Delta^2)
|
||||
\end{align*}
|
||||
Where: \newline
|
||||
$\lambda$ is the Lagrange multiplier \newline
|
||||
$E$ is the energy at the k-th iteration $\Leftrightarrow
|
||||
E(\textbf{x} = \textbf{0})$ \newline
|
||||
|
||||
To solve this equation, we search a stationary point where the first
|
||||
derivative of $\mathcal{L}$ with respect to $\textbf{x}$ becomes 0, i.e.
|
||||
\begin{align*}
|
||||
\frac{\partial \mathcal{L}(\textbf{x},\lambda)}{\partial \textbf{x}}=0
|
||||
\end{align*}
|
||||
|
||||
The derivative is:
|
||||
\begin{align*}
|
||||
\frac{\partial \mathcal{L}(\textbf{x},\lambda)}{\partial \textbf{x}}
|
||||
= \textbf{g} + \textbf{H} \cdot \textbf{x} + \lambda \cdot \textbf{x}
|
||||
\end{align*}
|
||||
|
||||
So, we search $\textbf{x}$ such as:
|
||||
\begin{align*}
|
||||
\frac{\partial \mathcal{L}(\textbf{x},\lambda)}{\partial \textbf{x}}
|
||||
= \textbf{g} + \textbf{H} \cdot \textbf{x} + \lambda \cdot \textbf{x} = 0
|
||||
\end{align*}
|
||||
|
||||
We can rewrite that as:
|
||||
\begin{align*}
|
||||
\textbf{g} + \textbf{H} \cdot \textbf{x} + \lambda \cdot \textbf{x}
|
||||
= \textbf{g} + (\textbf{H} +\textbf{I} \lambda) \cdot \textbf{x} = 0
|
||||
\end{align*}
|
||||
with $\textbf{I}$ is the identity matrix.
|
||||
|
||||
By doing so, the solution is:
|
||||
\begin{align*}
|
||||
(\textbf{H} +\textbf{I} \lambda) \cdot \textbf{x}= -\textbf{g}
|
||||
\end{align*}
|
||||
\begin{align*}
|
||||
\textbf{x}= - (\textbf{H} + \textbf{I} \lambda)^{-1} \cdot \textbf{g}
|
||||
\end{align*}
|
||||
with $\textbf{x}^T \textbf{x} = \Delta^2$.
|
||||
|
||||
We have to solve this previous equation to find this $\textbf{x}$ in the
|
||||
trust region, i.e. $||\textbf{x}|| = \Delta$. Now, this problem is
|
||||
just a one dimension problem because we can express $\textbf{x}$ as a
|
||||
function of $\lambda$:
|
||||
\begin{align*}
|
||||
\textbf{x}(\lambda) = - (\textbf{H} + \textbf{I} \lambda)^{-1} \cdot \textbf{g}
|
||||
\end{align*}
|
||||
|
||||
We start from the fact that the hessian is diagonalizable. So we have:
|
||||
\begin{align*}
|
||||
\textbf{H} = \textbf{W} \cdot \textbf{h} \cdot \textbf{W}^T
|
||||
\end{align*}
|
||||
with: \newline
|
||||
$\textbf{H}$, the hessian matrix \newline
|
||||
$\textbf{W}$, the matrix containing the eigenvectors \newline
|
||||
$\textbf{w}_i$, the i-th eigenvector, i.e. i-th column of $\textbf{W}$ \newline
|
||||
$\textbf{h}$, the matrix containing the eigenvalues in ascending order \newline
|
||||
$h_i$, the i-th eigenvalue in ascending order \newline
|
||||
|
||||
Now we use the fact that adding a constant on the diagonal just shifts
|
||||
the eigenvalues:
|
||||
\begin{align*}
|
||||
\textbf{H} + \textbf{I} \lambda = \textbf{W} \cdot (\textbf{h}
|
||||
+\textbf{I} \lambda) \cdot \textbf{W}^T
|
||||
\end{align*}
|
||||
|
||||
By doing so we can express $\textbf{x}$ as a function of $\lambda$
|
||||
\begin{align*}
|
||||
\textbf{x}(\lambda) = - \sum_{i=1}^n \frac{\textbf{w}_i^T \cdot
|
||||
\textbf{g}}{h_i + \lambda} \cdot \textbf{w}_i
|
||||
\end{align*}
|
||||
with $\lambda \neq - h_i$.
|
||||
|
||||
An interesting thing in our case is the norm of $\textbf{x}$,
|
||||
because we want $||\textbf{x}|| = \Delta$. Due to the orthogonality of
|
||||
the eigenvectors $\left\{\textbf{w} \right\} _{i=1}^n$ we have:
|
||||
\begin{align*}
|
||||
||\textbf{x}(\lambda)||^2 = \sum_{i=1}^n \frac{(\textbf{w}_i^T \cdot
|
||||
\textbf{g})^2}{(h_i + \lambda)^2}
|
||||
\end{align*}
|
||||
|
||||
So the $||\textbf{x}(\lambda)||^2$ is just a function of $\lambda$.
|
||||
And if we study the properties of this function we see that:
|
||||
\begin{align*}
|
||||
\lim_{\lambda\to\infty} ||\textbf{x}(\lambda)|| = 0
|
||||
\end{align*}
|
||||
and if $\textbf{w}_i^T \cdot \textbf{g} \neq 0$:
|
||||
\begin{align*}
|
||||
\lim_{\lambda\to -h_i} ||\textbf{x}(\lambda)|| = + \infty
|
||||
\end{align*}
|
||||
|
||||
From these limits and knowing that $h_1$ is the lowest eigenvalue, we
|
||||
can conclude that $||\textbf{x}(\lambda)||$ is a continuous and
|
||||
strictly decreasing function on the interval $\lambda \in
|
||||
(-h_1;\infty)$. Thus, there is one $\lambda$ in this interval which
|
||||
gives $||\textbf{x}(\lambda)|| = \Delta$, consequently there is one
|
||||
solution.
|
||||
|
||||
Since $\textbf{x} = - (\textbf{H} + \lambda \textbf{I})^{-1} \cdot
|
||||
\textbf{g}$ and we want to reduce the norm of $\textbf{x}$, clearly,
|
||||
$\lambda > 0$ ($\lambda = 0$ is the unconstraint solution). But the
|
||||
Newton method is only defined for a positive definite hessian matrix,
|
||||
so $(\textbf{H} + \textbf{I} \lambda)$ must be positive
|
||||
definite. Consequently, in the case where $\textbf{H}$ is not positive
|
||||
definite, to ensure the positive definiteness, $\lambda$ must be
|
||||
greater than $- h_1$.
|
||||
\begin{align*}
|
||||
\lambda > 0 \quad \text{and} \quad \lambda \geq - h_1
|
||||
\end{align*}
|
||||
|
||||
From that there are five cases:
|
||||
- if $\textbf{H}$ is positive definite, $-h_1 < 0$, $\lambda \in (0,\infty)$
|
||||
- if $\textbf{H}$ is not positive definite and $\textbf{w}_1^T \cdot
|
||||
\textbf{g} \neq 0$, $(\textbf{H} + \textbf{I}
|
||||
\lambda)$
|
||||
must be positve definite, $-h_1 > 0$, $\lambda \in (-h_1, \infty)$
|
||||
- if $\textbf{H}$ is not positive definite , $\textbf{w}_1^T \cdot
|
||||
\textbf{g} = 0$ and $||\textbf{x}(-h_1)|| > \Delta$ by removing
|
||||
$j=1$ in the sum, $(\textbf{H} + \textbf{I} \lambda)$ must be
|
||||
positive definite, $-h_1 > 0$, $\lambda \in (-h_1, \infty$)
|
||||
- if $\textbf{H}$ is not positive definite , $\textbf{w}_1^T \cdot
|
||||
\textbf{g} = 0$ and $||\textbf{x}(-h_1)|| \leq \Delta$ by removing
|
||||
$j=1$ in the sum, $(\textbf{H} + \textbf{I} \lambda)$ must be
|
||||
positive definite, $-h_1 > 0$, $\lambda = -h_1$). This case is
|
||||
similar to the case where $\textbf{H}$ and $||\textbf{x}(\lambda =
|
||||
0)|| \leq \Delta$
|
||||
but we can also add to $\textbf{x}$, the first eigenvector $\textbf{W}_1$
|
||||
time a constant to ensure the condition $||\textbf{x}(\lambda =
|
||||
-h_1)|| = \Delta$ and escape from the saddle point
|
||||
|
||||
Thus to find the solution, we can write:
|
||||
\begin{align*}
|
||||
||\textbf{x}(\lambda)|| = \Delta
|
||||
\end{align*}
|
||||
\begin{align*}
|
||||
||\textbf{x}(\lambda)|| - \Delta = 0
|
||||
\end{align*}
|
||||
|
||||
Taking the square of this equation
|
||||
\begin{align*}
|
||||
(||\textbf{x}(\lambda)|| - \Delta)^2 = 0
|
||||
\end{align*}
|
||||
we have a function with one minimum for the optimal $\lambda$.
|
||||
Since we have the formula of $||\textbf{x}(\lambda)||^2$, we solve
|
||||
\begin{align*}
|
||||
(||\textbf{x}(\lambda)||^2 - \Delta^2)^2 = 0
|
||||
\end{align*}
|
||||
|
||||
But in practice, it is more effective to solve:
|
||||
\begin{align*}
|
||||
(\frac{1}{||\textbf{x}(\lambda)||^2} - \frac{1}{\Delta^2})^2 = 0
|
||||
\end{align*}
|
||||
|
||||
To do that, we just use the Newton method with "trust_newton" using
|
||||
first and second derivative of $(||\textbf{x}(\lambda)||^2 -
|
||||
\Delta^2)^2$ with respect to $\textbf{x}$.
|
||||
This will give the optimal $\lambda$ to compute the
|
||||
solution $\textbf{x}$ with the formula seen previously:
|
||||
\begin{align*}
|
||||
\textbf{x}(\lambda) = - \sum_{i=1}^n \frac{\textbf{w}_i^T \cdot
|
||||
\textbf{g}}{h_i + \lambda} \cdot \textbf{w}_i
|
||||
\end{align*}
|
||||
|
||||
The solution $\textbf{x}(\lambda)$ with the optimal $\lambda$ is our
|
||||
step to go from the (k)-th to the (k+1)-th iteration, is noted $\textbf{x}^*$.
|
||||
|
||||
#+BEGIN_SRC f90 :comments org :tangle trust_region_step.irp.f
|
||||
#+END_SRC
|
||||
|
||||
** Evolution of the trust region
|
||||
|
||||
We initialize the trust region at the first iteration using a radius
|
||||
\begin{align*}
|
||||
\Delta = ||\textbf{x}(\lambda=0)||
|
||||
\end{align*}
|
||||
|
||||
And for the next iteration the trust region will evolves depending of
|
||||
the agreement of the energy prediction based on the Taylor series
|
||||
truncated at the 2nd order and the real energy. If the Taylor series
|
||||
truncated at the 2nd order represents correctly the energy landscape
|
||||
the trust region will be extent else it will be reduced. In order to
|
||||
mesure this agreement we use the ratio rho cf. "rho_model" and
|
||||
"trust_e_model". From that we use the following values:
|
||||
- if $\rho \geq 0.75$, then $\Delta = 2 \Delta$,
|
||||
- if $0.5 \geq \rho < 0.75$, then $\Delta = \Delta$,
|
||||
- if $0.25 \geq \rho < 0.5$, then $\Delta = 0.5 \Delta$,
|
||||
- if $\rho < 0.25$, then $\Delta = 0.25 \Delta$.
|
||||
|
||||
In addition, if $\rho < 0.1$ the iteration is cancelled, so it
|
||||
restarts with a smaller trust region until the energy decreases.
|
||||
|
||||
#+BEGIN_SRC f90 :comments org :tangle trust_region_step.irp.f
|
||||
#+END_SRC
|
||||
|
||||
** Summary
|
||||
|
||||
To summarize, knowing the hessian (eigenvectors and eigenvalues), the
|
||||
gradient and the radius of the trust region we can compute the norm of
|
||||
the Newton step
|
||||
\begin{align*}
|
||||
||\textbf{x}(\lambda = 0)||^2 = ||- \textbf{H}^{-1} \cdot \textbf{g}||^2 = \sum_{i=1}^n
|
||||
\frac{(\textbf{w}_i^T \cdot \textbf{g})^2}{(h_i + \lambda)^2}, \quad h_i \neq 0
|
||||
\end{align*}
|
||||
|
||||
- if $h_1 \geq 0$, $||\textbf{x}(\lambda = 0)|| \leq \Delta$ and
|
||||
$\textbf{x}(\lambda=0)$ is in the trust region and it is not
|
||||
necessary to put a constraint on $\textbf{x}$, the solution is the
|
||||
unconstrained one, $\textbf{x}^* = \textbf{x}(\lambda = 0)$.
|
||||
- else if $h_1 < 0$, $\textbf{w}_1^T \cdot \textbf{g} = 0$ and
|
||||
$||\textbf{x}(\lambda = -h_1)|| \leq \Delta$ (by removing $j=1$ in
|
||||
the sum), the solution is $\textbf{x}^* = \textbf{x}(\lambda =
|
||||
-h_1)$, similarly to the previous case.
|
||||
But we can add to $\textbf{x}$, the first eigenvector $\textbf{W}_1$
|
||||
time a constant to ensure the condition $||\textbf{x}(\lambda =
|
||||
-h_1)|| = \Delta$ and escape from the saddle point
|
||||
- else if $h_1 < 0$ and $\textbf{w}_1^T \cdot \textbf{g} \neq 0$ we
|
||||
have to search $\lambda \in (-h_1, \infty)$ such as
|
||||
$\textbf{x}(\lambda) = \Delta$ by solving with the Newton method
|
||||
\begin{align*}
|
||||
(||\textbf{x}(\lambda)||^2 - \Delta^2)^2 = 0
|
||||
\end{align*}
|
||||
or
|
||||
\begin{align*}
|
||||
(\frac{1}{||\textbf{x}(\lambda)||^2} - \frac{1}{\Delta^2})^2 = 0
|
||||
\end{align*}
|
||||
which is numerically more stable. And finally compute
|
||||
\begin{align*}
|
||||
\textbf{x}^* = \textbf{x}(\lambda) = - \sum_{i=1}^n \frac{\textbf{w}_i^T \cdot
|
||||
\textbf{g}}{h_i + \lambda} \cdot \textbf{w}_i
|
||||
\end{align*}
|
||||
- else if $h_1 \geq 0$ and $||\textbf{x}(\lambda = 0)|| > \Delta$ we
|
||||
do exactly the same thing that the previous case but we search
|
||||
$\lambda \in (0, \infty)$
|
||||
- else if $h_1 < 0$ and $\textbf{w}_1^T \cdot \textbf{g} = 0$ and
|
||||
$||\textbf{x}(\lambda = -h_1)|| > \Delta$ (by removing $j=1$ in the
|
||||
sum), again we do exactly the same thing that the previous case
|
||||
searching $\lambda \in (-h_1, \infty)$.
|
||||
|
||||
|
||||
For the cases where $\textbf{w}_1^T \cdot \textbf{g} = 0$ it is not
|
||||
necessary in fact to remove the $j = 1$ in the sum since the term
|
||||
where $h_i - \lambda < 10^{-6}$ are not computed.
|
||||
|
||||
After that, we take this vector $\textbf{x}^*$, called "x", and we do
|
||||
the transformation to an antisymmetric matrix $\textbf{X}$, called
|
||||
m_x. This matrix $\textbf{X}$ will be used to compute a rotation
|
||||
matrix $\textbf{R}= \exp(\textbf{X})$ in "rotation_matrix".
|
||||
|
||||
NB:
|
||||
An improvement can be done using a elleptical trust region.
|
||||
|
||||
#+BEGIN_SRC f90 :comments org :tangle trust_region_step.irp.f
|
||||
#+END_SRC
|
||||
|
||||
** Code
|
||||
|
||||
Provided:
|
||||
| mo_num | integer | number of MOs |
|
||||
|
||||
Cf. qp_edit in orbital optimization section, for some constants/thresholds
|
||||
|
||||
Input:
|
||||
| m | integer | number of MOs |
|
||||
| n | integer | m*(m-1)/2 |
|
||||
| H(n, n) | double precision | hessian |
|
||||
| v_grad(n) | double precision | gradient |
|
||||
| e_val(n) | double precision | eigenvalues of the hessian |
|
||||
| W(n, n) | double precision | eigenvectors of the hessian |
|
||||
| rho | double precision | agreement between the model and the reality, |
|
||||
| | | represents the quality of the energy prediction |
|
||||
| nb_iter | integer | number of iteration |
|
||||
|
||||
Input/Ouput:
|
||||
| delta | double precision | radius of the trust region |
|
||||
|
||||
Output:
|
||||
| x(n) | double precision | vector containing the step |
|
||||
|
||||
Internal:
|
||||
| accu | double precision | temporary variable to compute the step |
|
||||
| lambda | double precision | lagrange multiplier |
|
||||
| trust_radius2 | double precision | square of the radius of the trust region |
|
||||
| norm2_x | double precision | norm^2 of the vector x |
|
||||
| norm2_g | double precision | norm^2 of the vector containing the gradient |
|
||||
| tmp_wtg(n) | double precision | tmp_wtg(i) = w_i^T . g |
|
||||
| i, j, k | integer | indexes |
|
||||
|
||||
Function:
|
||||
| dnrm2 | double precision | Blas function computing the norm |
|
||||
| f_norm_trust_region_omp | double precision | compute the value of norm(x(lambda)^2) |
|
||||
|
||||
#+BEGIN_SRC f90 :comments org :tangle trust_region_step.irp.f
|
||||
subroutine trust_region_step(n,nb_iter,v_grad,rho,e_val,w,x,delta)
|
||||
|
||||
include 'pi.h'
|
||||
|
||||
BEGIN_DOC
|
||||
! Compuet the step in the trust region
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
|
||||
! Variables
|
||||
|
||||
! in
|
||||
integer, intent(in) :: n
|
||||
double precision, intent(in) :: v_grad(n), rho
|
||||
integer, intent(inout) :: nb_iter
|
||||
double precision, intent(in) :: e_val(n), w(n,n)
|
||||
|
||||
! inout
|
||||
double precision, intent(inout) :: delta
|
||||
|
||||
! out
|
||||
double precision, intent(out) :: x(n)
|
||||
|
||||
! Internal
|
||||
double precision :: accu, lambda, trust_radius2
|
||||
double precision :: norm2_x, norm2_g
|
||||
double precision, allocatable :: tmp_wtg(:)
|
||||
integer :: i,j,k
|
||||
double precision :: t1,t2,t3
|
||||
integer :: n_neg_eval
|
||||
|
||||
|
||||
! Functions
|
||||
double precision :: ddot, dnrm2
|
||||
double precision :: f_norm_trust_region_omp
|
||||
|
||||
print*,''
|
||||
print*,'=================='
|
||||
print*,'---Trust_region---'
|
||||
print*,'=================='
|
||||
|
||||
call wall_time(t1)
|
||||
|
||||
! Allocation
|
||||
allocate(tmp_wtg(n))
|
||||
#+END_SRC
|
||||
|
||||
|
||||
*** Initialization and norm
|
||||
|
||||
The norm of the step size will be useful for the trust region
|
||||
algorithm. We start from a first guess and the radius of the trust
|
||||
region will evolve during the optimization.
|
||||
|
||||
avoid_saddle is actually a test to avoid saddle points
|
||||
|
||||
#+BEGIN_SRC f90 :comments org :tangle trust_region_step.irp.f
|
||||
! Initialization of the Lagrange multiplier
|
||||
lambda = 0d0
|
||||
|
||||
! List of w^T.g, to avoid the recomputation
|
||||
tmp_wtg = 0d0
|
||||
do j = 1, n
|
||||
do i = 1, n
|
||||
tmp_wtg(j) = tmp_wtg(j) + w(i,j) * v_grad(i)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! Replacement of the small tmp_wtg corresponding to a negative eigenvalue
|
||||
! in the case of avoid_saddle
|
||||
if (avoid_saddle .and. e_val(1) < - thresh_eig) then
|
||||
i = 2
|
||||
! Number of negative eigenvalues
|
||||
do while (e_val(i) < - thresh_eig)
|
||||
if (tmp_wtg(i) < thresh_wtg2) then
|
||||
if (version_avoid_saddle == 1) then
|
||||
tmp_wtg(i) = 1d0
|
||||
elseif (version_avoid_saddle == 2) then
|
||||
tmp_wtg(i) = DABS(e_val(i))
|
||||
elseif (version_avoid_saddle == 3) then
|
||||
tmp_wtg(i) = dsqrt(DABS(e_val(i)))
|
||||
else
|
||||
tmp_wtg(i) = thresh_wtg2
|
||||
endif
|
||||
endif
|
||||
i = i + 1
|
||||
enddo
|
||||
|
||||
! For the fist one it's a little bit different
|
||||
if (tmp_wtg(1) < thresh_wtg2) then
|
||||
tmp_wtg(1) = 0d0
|
||||
endif
|
||||
|
||||
endif
|
||||
|
||||
! Norm^2 of x, ||x||^2
|
||||
norm2_x = f_norm_trust_region_omp(n,e_val,tmp_wtg,0d0)
|
||||
! We just use this norm for the nb_iter = 0 in order to initialize the trust radius delta
|
||||
! We don't care about the sign of the eigenvalue we just want the size of the step in a normal Newton-Raphson algorithm
|
||||
! Anyway if the step is too big it will be reduced
|
||||
print*,'||x||^2 :', norm2_x
|
||||
|
||||
! Norm^2 of the gradient, ||v_grad||^2
|
||||
norm2_g = (dnrm2(n,v_grad,1))**2
|
||||
print*,'||grad||^2 :', norm2_g
|
||||
#+END_SRC
|
||||
|
||||
*** Trust radius initialization
|
||||
|
||||
At the first iteration (nb_iter = 0) we initialize the trust region
|
||||
with the norm of the step generate by the Newton's method ($\textbf{x}_1 =
|
||||
(\textbf{H}_0)^{-1} \cdot \textbf{g}_0$,
|
||||
we compute this norm using f_norm_trust_region_omp as explain just
|
||||
below)
|
||||
|
||||
#+BEGIN_SRC f90 :comments org :tangle trust_region_step.irp.f
|
||||
! trust radius
|
||||
if (nb_iter == 0) then
|
||||
trust_radius2 = norm2_x
|
||||
! To avoid infinite loop of cancellation of this first step
|
||||
! without changing delta
|
||||
nb_iter = 1
|
||||
|
||||
! Compute delta, delta = sqrt(trust_radius)
|
||||
delta = dsqrt(trust_radius2)
|
||||
endif
|
||||
#+END_SRC
|
||||
|
||||
*** Modification of the trust radius
|
||||
|
||||
In function of rho (which represents the agreement between the model
|
||||
and the reality, cf. rho_model) the trust region evolves. We update
|
||||
delta (the radius of the trust region).
|
||||
|
||||
To avoid too big trust region we put a maximum size.
|
||||
|
||||
#+BEGIN_SRC f90 :comments org :tangle trust_region_step.irp.f
|
||||
! Modification of the trust radius in function of rho
|
||||
if (rho >= 0.75d0) then
|
||||
delta = 2d0 * delta
|
||||
elseif (rho >= 0.5d0) then
|
||||
delta = delta
|
||||
elseif (rho >= 0.25d0) then
|
||||
delta = 0.5d0 * delta
|
||||
else
|
||||
delta = 0.25d0 * delta
|
||||
endif
|
||||
|
||||
! Maximum size of the trust region
|
||||
!if (delta > 0.5d0 * n * pi) then
|
||||
! delta = 0.5d0 * n * pi
|
||||
! print*,'Delta > delta_max, delta = 0.5d0 * n * pi'
|
||||
!endif
|
||||
|
||||
if (delta > 1d10) then
|
||||
delta = 1d10
|
||||
endif
|
||||
|
||||
print*, 'Delta :', delta
|
||||
#+END_SRC
|
||||
|
||||
*** Calculation of the optimal lambda
|
||||
|
||||
We search the solution of $(||x||^2 - \Delta^2)^2 = 0$
|
||||
- If $||\textbf{x}|| > \Delta$ or $h_1 < 0$ we have to add a constant
|
||||
$\lambda > 0 \quad \text{and} \quad \lambda > -h_1$
|
||||
- If $||\textbf{x}|| \leq \Delta$ and $h_1 \geq 0$ the solution is the
|
||||
unconstrained one, $\lambda = 0$
|
||||
|
||||
You will find more details at the beginning
|
||||
|
||||
#+BEGIN_SRC f90 :comments org :tangle trust_region_step.irp.f
|
||||
! By giving delta, we search (||x||^2 - delta^2)^2 = 0
|
||||
! and not (||x||^2 - delta)^2 = 0
|
||||
|
||||
! Research of lambda to solve ||x(lambda)|| = Delta
|
||||
|
||||
! Display
|
||||
print*, 'e_val(1) = ', e_val(1)
|
||||
print*, 'w_1^T.g =', tmp_wtg(1)
|
||||
|
||||
! H positive definite
|
||||
if (e_val(1) > - thresh_eig) then
|
||||
norm2_x = f_norm_trust_region_omp(n,e_val,tmp_wtg,0d0)
|
||||
print*, '||x(0)||=', dsqrt(norm2_x)
|
||||
print*, 'Delta=', delta
|
||||
|
||||
! H positive definite, ||x(lambda = 0)|| <= Delta
|
||||
if (dsqrt(norm2_x) <= delta) then
|
||||
print*, 'H positive definite, ||x(lambda = 0)|| <= Delta'
|
||||
print*, 'lambda = 0, no lambda optimization'
|
||||
lambda = 0d0
|
||||
|
||||
! H positive definite, ||x(lambda = 0)|| > Delta
|
||||
else
|
||||
! Constraint solution
|
||||
print*, 'H positive definite, ||x(lambda = 0)|| > Delta'
|
||||
print*,'Computation of the optimal lambda...'
|
||||
call trust_region_optimal_lambda(n,e_val,tmp_wtg,delta,lambda)
|
||||
endif
|
||||
|
||||
! H indefinite
|
||||
else
|
||||
if (DABS(tmp_wtg(1)) < thresh_wtg) then
|
||||
norm2_x = f_norm_trust_region_omp(n,e_val,tmp_wtg, - e_val(1))
|
||||
print*, 'w_1^T.g <', thresh_wtg,', ||x(lambda = -e_val(1))|| =', dsqrt(norm2_x)
|
||||
endif
|
||||
|
||||
! H indefinite, w_1^T.g = 0, ||x(lambda = -e_val(1))|| <= Delta
|
||||
if (dsqrt(norm2_x) <= delta .and. DABS(tmp_wtg(1)) < thresh_wtg) then
|
||||
! Add e_val(1) in order to have (H - e_val(1) I) positive definite
|
||||
print*, 'H indefinite, w_1^T.g = 0, ||x(lambda = -e_val(1))|| <= Delta'
|
||||
print*, 'lambda = -e_val(1), no lambda optimization'
|
||||
lambda = - e_val(1)
|
||||
|
||||
! H indefinite, w_1^T.g = 0, ||x(lambda = -e_val(1))|| > Delta
|
||||
! and
|
||||
! H indefinite, w_1^T.g =/= 0
|
||||
else
|
||||
! Constraint solution/ add lambda
|
||||
if (DABS(tmp_wtg(1)) < thresh_wtg) then
|
||||
print*, 'H indefinite, w_1^T.g = 0, ||x(lambda = -e_val(1))|| > Delta'
|
||||
else
|
||||
print*, 'H indefinite, w_1^T.g =/= 0'
|
||||
endif
|
||||
print*, 'Computation of the optimal lambda...'
|
||||
call trust_region_optimal_lambda(n,e_val,tmp_wtg,delta,lambda)
|
||||
endif
|
||||
|
||||
endif
|
||||
|
||||
! Recomputation of the norm^2 of the step x
|
||||
norm2_x = f_norm_trust_region_omp(n,e_val,tmp_wtg,lambda)
|
||||
print*,''
|
||||
print*,'Summary after the trust region:'
|
||||
print*,'lambda:', lambda
|
||||
print*,'||x||:', dsqrt(norm2_x)
|
||||
print*,'delta:', delta
|
||||
#+END_SRC
|
||||
|
||||
*** Calculation of the step x
|
||||
|
||||
x refers to $\textbf{x}^*$
|
||||
We compute x in function of lambda using its formula :
|
||||
\begin{align*}
|
||||
\textbf{x}^* = \textbf{x}(\lambda) = - \sum_{i=1}^n \frac{\textbf{w}_i^T \cdot \textbf{g}}{h_i
|
||||
+ \lambda} \cdot \textbf{w}_i
|
||||
\end{align*}
|
||||
|
||||
#+BEGIN_SRC f90 :comments org :tangle trust_region_step.irp.f
|
||||
! Initialisation
|
||||
x = 0d0
|
||||
|
||||
! Calculation of the step x
|
||||
|
||||
! Normal version
|
||||
if (.not. absolute_eig) then
|
||||
|
||||
do i = 1, n
|
||||
if (DABS(e_val(i)) > thresh_eig .and. DABS(e_val(i)+lambda) > thresh_eig) then
|
||||
do j = 1, n
|
||||
x(j) = x(j) - tmp_wtg(i) * W(j,i) / (e_val(i) + lambda)
|
||||
enddo
|
||||
endif
|
||||
enddo
|
||||
|
||||
! Version to use the absolute value of the eigenvalues
|
||||
else
|
||||
|
||||
do i = 1, n
|
||||
if (DABS(e_val(i)) > thresh_eig) then
|
||||
do j = 1, n
|
||||
x(j) = x(j) - tmp_wtg(i) * W(j,i) / (DABS(e_val(i)) + lambda)
|
||||
enddo
|
||||
endif
|
||||
enddo
|
||||
|
||||
endif
|
||||
|
||||
double precision :: beta, norm_x
|
||||
|
||||
! Test
|
||||
! If w_1^T.g = 0, the lim of ||x(lambda)|| when lambda tend to -e_val(1)
|
||||
! is not + infinity. So ||x(lambda=-e_val(1))|| < delta, we add the first
|
||||
! eigenvectors multiply by a constant to ensure the condition
|
||||
! ||x(lambda=-e_val(1))|| = delta and escape the saddle point
|
||||
if (avoid_saddle .and. e_val(1) < - thresh_eig) then
|
||||
if (tmp_wtg(1) < 1d-15 .and. (1d0 - dsqrt(norm2_x)/delta) > 1d-3 ) then
|
||||
|
||||
! norm of x
|
||||
norm_x = dnrm2(n,x,1)
|
||||
|
||||
! Computes the coefficient for the w_1
|
||||
beta = delta**2 - norm_x**2
|
||||
|
||||
! Updates the step x
|
||||
x = x + W(:,1) * dsqrt(beta)
|
||||
|
||||
! Recomputes the norm to check
|
||||
norm_x = dnrm2(n,x,1)
|
||||
|
||||
print*, 'Add w_1 * dsqrt(delta^2 - ||x||^2):'
|
||||
print*, '||x||', norm_x
|
||||
endif
|
||||
endif
|
||||
#+END_SRC
|
||||
|
||||
*** Transformation of x
|
||||
|
||||
x is a vector of size n, so it can be write as a m by m
|
||||
antisymmetric matrix m_x cf. "mat_to_vec_index" and "vec_to_mat_index".
|
||||
|
||||
#+BEGIN_SRC f90 :comments org :tangle trust_region_step.irp.f
|
||||
! ! Step transformation vector -> matrix
|
||||
! ! Vector with n element -> mo_num by mo_num matrix
|
||||
! do j = 1, m
|
||||
! do i = 1, m
|
||||
! if (i>j) then
|
||||
! call mat_to_vec_index(i,j,k)
|
||||
! m_x(i,j) = x(k)
|
||||
! else
|
||||
! m_x(i,j) = 0d0
|
||||
! endif
|
||||
! enddo
|
||||
! enddo
|
||||
!
|
||||
! ! Antisymmetrization of the previous matrix
|
||||
! do j = 1, m
|
||||
! do i = 1, m
|
||||
! if (i<j) then
|
||||
! m_x(i,j) = - m_x(j,i)
|
||||
! endif
|
||||
! enddo
|
||||
! enddo
|
||||
#+END_SRC
|
||||
|
||||
*** Deallocation, end
|
||||
|
||||
#+BEGIN_SRC f90 :comments org :tangle trust_region_step.irp.f
|
||||
deallocate(tmp_wtg)
|
||||
|
||||
call wall_time(t2)
|
||||
t3 = t2 - t1
|
||||
print*,'Time in trust_region:', t3
|
||||
print*,'======================'
|
||||
print*,'---End trust_region---'
|
||||
print*,'======================'
|
||||
print*,''
|
||||
|
||||
end
|
||||
#+END_SRC
|
||||
|
71
src/utils_trust_region/vec_to_mat_index.irp.f
Normal file
71
src/utils_trust_region/vec_to_mat_index.irp.f
Normal file
@ -0,0 +1,71 @@
|
||||
! Vector to matrix indexes
|
||||
|
||||
! *Compute the indexes p,q of a matrix element with the vector index i*
|
||||
|
||||
! Vector (i) -> lower diagonal matrix (p,q), p > q
|
||||
|
||||
! If a matrix is antisymmetric it can be reshaped as a vector. And the
|
||||
! vector can be reshaped as an antisymmetric matrix
|
||||
|
||||
! \begin{align*}
|
||||
! \begin{pmatrix}
|
||||
! 0 & -1 & -2 & -4 \\
|
||||
! 1 & 0 & -3 & -5 \\
|
||||
! 2 & 3 & 0 & -6 \\
|
||||
! 4 & 5 & 6 & 0
|
||||
! \end{pmatrix}
|
||||
! \Leftrightarrow
|
||||
! \begin{pmatrix}
|
||||
! 1 & 2 & 3 & 4 & 5 & 6
|
||||
! \end{pmatrix}
|
||||
! \end{align*}
|
||||
|
||||
! !!! Here the algorithm only work for the lower diagonal !!!
|
||||
|
||||
! Input:
|
||||
! | i | integer | index in the vector |
|
||||
|
||||
! Ouput:
|
||||
! | p,q | integer | corresponding indexes in the lower diagonal of a matrix |
|
||||
! | | | p > q, |
|
||||
! | | | p -> row, |
|
||||
! | | | q -> column |
|
||||
|
||||
|
||||
subroutine vec_to_mat_index(i,p,q)
|
||||
|
||||
include 'pi.h'
|
||||
|
||||
BEGIN_DOC
|
||||
! Compute the indexes (p,q) of the element in the lower diagonal matrix knowing
|
||||
! its index i a vector
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
|
||||
! Variables
|
||||
|
||||
! in
|
||||
integer,intent(in) :: i
|
||||
|
||||
! out
|
||||
integer, intent(out) :: p,q
|
||||
|
||||
! internal
|
||||
integer :: a,b
|
||||
double precision :: da
|
||||
|
||||
da = 0.5d0*(1+ sqrt(1d0+8d0*DBLE(i)))
|
||||
a = INT(da)
|
||||
if ((a*(a-1))/2==i) then
|
||||
p = a-1
|
||||
else
|
||||
p = a
|
||||
endif
|
||||
b = p*(p-1)/2
|
||||
|
||||
! Matrix element indexes
|
||||
p = p + 1
|
||||
q = i - b
|
||||
|
||||
end subroutine
|
72
src/utils_trust_region/vec_to_mat_index.org
Normal file
72
src/utils_trust_region/vec_to_mat_index.org
Normal file
@ -0,0 +1,72 @@
|
||||
* Vector to matrix indexes
|
||||
|
||||
*Compute the indexes p,q of a matrix element with the vector index i*
|
||||
|
||||
Vector (i) -> lower diagonal matrix (p,q), p > q
|
||||
|
||||
If a matrix is antisymmetric it can be reshaped as a vector. And the
|
||||
vector can be reshaped as an antisymmetric matrix
|
||||
|
||||
\begin{align*}
|
||||
\begin{pmatrix}
|
||||
0 & -1 & -2 & -4 \\
|
||||
1 & 0 & -3 & -5 \\
|
||||
2 & 3 & 0 & -6 \\
|
||||
4 & 5 & 6 & 0
|
||||
\end{pmatrix}
|
||||
\Leftrightarrow
|
||||
\begin{pmatrix}
|
||||
1 & 2 & 3 & 4 & 5 & 6
|
||||
\end{pmatrix}
|
||||
\end{align*}
|
||||
|
||||
!!! Here the algorithm only work for the lower diagonal !!!
|
||||
|
||||
Input:
|
||||
| i | integer | index in the vector |
|
||||
|
||||
Ouput:
|
||||
| p,q | integer | corresponding indexes in the lower diagonal of a matrix |
|
||||
| | | p > q, |
|
||||
| | | p -> row, |
|
||||
| | | q -> column |
|
||||
|
||||
#+BEGIN_SRC f90 :comments org :tangle vec_to_mat_index.irp.f
|
||||
subroutine vec_to_mat_index(i,p,q)
|
||||
|
||||
include 'pi.h'
|
||||
|
||||
BEGIN_DOC
|
||||
! Compute the indexes (p,q) of the element in the lower diagonal matrix knowing
|
||||
! its index i a vector
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
|
||||
! Variables
|
||||
|
||||
! in
|
||||
integer,intent(in) :: i
|
||||
|
||||
! out
|
||||
integer, intent(out) :: p,q
|
||||
|
||||
! internal
|
||||
integer :: a,b
|
||||
double precision :: da
|
||||
|
||||
da = 0.5d0*(1+ sqrt(1d0+8d0*DBLE(i)))
|
||||
a = INT(da)
|
||||
if ((a*(a-1))/2==i) then
|
||||
p = a-1
|
||||
else
|
||||
p = a
|
||||
endif
|
||||
b = p*(p-1)/2
|
||||
|
||||
! Matrix element indexes
|
||||
p = p + 1
|
||||
q = i - b
|
||||
|
||||
end subroutine
|
||||
#+END_SRC
|
39
src/utils_trust_region/vec_to_mat_v2.irp.f
Normal file
39
src/utils_trust_region/vec_to_mat_v2.irp.f
Normal file
@ -0,0 +1,39 @@
|
||||
! Vect to antisymmetric matrix using mat_to_vec_index
|
||||
|
||||
! Vector to antisymmetric matrix transformation using mat_to_vec_index
|
||||
! subroutine.
|
||||
|
||||
! Can be done in OMP (for the first part and with omp critical for the second)
|
||||
|
||||
|
||||
subroutine vec_to_mat_v2(n,m,v_x,m_x)
|
||||
|
||||
BEGIN_DOC
|
||||
! Vector to antisymmetric matrix
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
|
||||
integer, intent(in) :: n,m
|
||||
double precision, intent(in) :: v_x(n)
|
||||
double precision, intent(out) :: m_x(m,m)
|
||||
|
||||
integer :: i,j,k
|
||||
|
||||
! 1D -> 2D lower diagonal
|
||||
m_x = 0d0
|
||||
do j = 1, m - 1
|
||||
do i = j + 1, m
|
||||
call mat_to_vec_index(i,j,k)
|
||||
m_x(i,j) = v_x(k)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! Antisym
|
||||
do i = 1, m - 1
|
||||
do j = i + 1, m
|
||||
m_x(i,j) = - m_x(j,i)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
end
|
40
src/utils_trust_region/vec_to_mat_v2.org
Normal file
40
src/utils_trust_region/vec_to_mat_v2.org
Normal file
@ -0,0 +1,40 @@
|
||||
* Vect to antisymmetric matrix using mat_to_vec_index
|
||||
|
||||
Vector to antisymmetric matrix transformation using mat_to_vec_index
|
||||
subroutine.
|
||||
|
||||
Can be done in OMP (for the first part and with omp critical for the second)
|
||||
|
||||
#+BEGIN_SRC f90 :comments org :tangle vec_to_mat_v2.irp.f
|
||||
subroutine vec_to_mat_v2(n,m,v_x,m_x)
|
||||
|
||||
BEGIN_DOC
|
||||
! Vector to antisymmetric matrix
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
|
||||
integer, intent(in) :: n,m
|
||||
double precision, intent(in) :: v_x(n)
|
||||
double precision, intent(out) :: m_x(m,m)
|
||||
|
||||
integer :: i,j,k
|
||||
|
||||
! 1D -> 2D lower diagonal
|
||||
m_x = 0d0
|
||||
do j = 1, m - 1
|
||||
do i = j + 1, m
|
||||
call mat_to_vec_index(i,j,k)
|
||||
m_x(i,j) = v_x(k)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! Antisym
|
||||
do i = 1, m - 1
|
||||
do j = i + 1, m
|
||||
m_x(i,j) = - m_x(j,i)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
end
|
||||
#+END_SRC
|
Loading…
Reference in New Issue
Block a user