9
1
mirror of https://github.com/QuantumPackage/qp2.git synced 2025-01-03 09:05:39 +01:00

Merge branch 'dev' into good-dev-tc

This commit is contained in:
Anthony Scemama 2022-11-19 15:26:05 +01:00
commit 1a708bcb81
64 changed files with 17387 additions and 391 deletions

2
configure vendored
View File

@ -369,7 +369,7 @@ else
echo ""
echo "${QP_ROOT}/build.ninja does not exist,"
echo "you need to specify the COMPILATION configuration file."
echo "See ./configure --help for more details."
echo "See ./configure -h for more details."
echo ""
fi

View File

@ -63,11 +63,11 @@ end
module Connect_msg : sig
type t = Tcp | Inproc | Ipc
val create : typ:string -> t
val create : string -> t
val to_string : t -> string
end = struct
type t = Tcp | Inproc | Ipc
let create ~typ =
let create typ =
match typ with
| "tcp" -> Tcp
| "inproc" -> Inproc
@ -515,9 +515,9 @@ let of_string s =
| Connect_ socket ->
Connect (Connect_msg.create socket)
| NewJob_ { state ; push_address_tcp ; push_address_inproc } ->
Newjob (Newjob_msg.create push_address_tcp push_address_inproc state)
Newjob (Newjob_msg.create ~address_tcp:push_address_tcp ~address_inproc:push_address_inproc ~state)
| EndJob_ state ->
Endjob (Endjob_msg.create state)
Endjob (Endjob_msg.create ~state)
| GetData_ { state ; client_id ; key } ->
GetData (GetData_msg.create ~client_id ~state ~key)
| PutData_ { state ; client_id ; key } ->

View File

@ -776,7 +776,7 @@ let run ~port =
Zmq.Socket.create zmq_context Zmq.Socket.rep
in
Zmq.Socket.set_linger_period rep_socket 1_000_000;
bind_socket "REP" rep_socket port;
bind_socket ~socket_type:"REP" ~socket:rep_socket ~port;
let initial_program_state =
{ queue = Queuing_system.create () ;

View File

@ -1097,7 +1097,7 @@ implicit none
integer nptsgridmax,nptsgrid
double precision coefs_pseudo,ptsgrid
parameter(nptsgridmax=50)
common/pseudos/coefs_pseudo(nptsgridmax),ptsgrid(nptsgridmax,3)
double precision common/pseudos/coefs_pseudo(nptsgridmax),ptsgrid(nptsgridmax,3)
!!!!!
integer npower_orb(3),l,m,i
double precision x,g_orb,two_pi,dx,dphi,term,orb_phi,ylm_real,sintheta,r_orb,phi,center_orb(3)
@ -1238,7 +1238,7 @@ end
double precision coefs_pseudo,ptsgrid
double precision p,q,r,s
parameter(nptsgridmax=50)
common/pseudos/coefs_pseudo(nptsgridmax),ptsgrid(nptsgridmax,3)
double precision common/pseudos/coefs_pseudo(nptsgridmax),ptsgrid(nptsgridmax,3)
p=1.d0/dsqrt(2.d0)
q=1.d0/dsqrt(3.d0)

View File

@ -174,9 +174,6 @@ BEGIN_PROVIDER [integer, n_core_inact_act_orb ]
n_core_inact_act_orb = (n_core_orb + n_inact_orb + n_act_orb)
END_PROVIDER
BEGIN_PROVIDER [ integer(bit_kind), core_bitmask , (N_int,2) ]
implicit none
BEGIN_DOC
@ -444,4 +441,3 @@ BEGIN_PROVIDER [integer, list_all_but_del_orb, (n_all_but_del_orb)]
enddo
END_PROVIDER

View File

@ -46,6 +46,24 @@ module cfunctions
real (kind=C_DOUBLE ),intent(out) :: csftodetmatrix(rowsmax,colsmax)
end subroutine getCSFtoDETTransformationMatrix
end interface
interface
subroutine gramSchmidt(A, m, n, B) bind(C, name='gramSchmidt')
import C_INT32_T, C_INT64_T, C_DOUBLE
integer(kind=C_INT32_T),value,intent(in) :: m
integer(kind=C_INT32_T),value,intent(in) :: n
real (kind=C_DOUBLE ),intent(in) :: A(m,n)
real (kind=C_DOUBLE ),intent(out) :: B(m,n)
end subroutine gramSchmidt
end interface
interface
subroutine gramSchmidt_qp(A, m, n, B) bind(C, name='gramSchmidt_qp')
import C_INT32_T, C_INT64_T, C_DOUBLE
integer(kind=C_INT32_T),value,intent(in) :: m
integer(kind=C_INT32_T),value,intent(in) :: n
real (kind=C_DOUBLE ),intent(in) :: A(m,n)
real (kind=C_DOUBLE ),intent(out) :: B(m,n)
end subroutine gramSchmidt_qp
end interface
end module cfunctions
subroutine f_dgemm(TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB, BETA, C, LDC) &

View File

@ -1,5 +1,6 @@
#include <stdint.h>
#include <stdio.h>
#include <assert.h>
#include "tree_utils.h"
void int_to_bin_digit(int64_t in, int count, int* out)
@ -28,19 +29,19 @@ void getncsfs1(int *inpnsomo, int *inpms, int *outncsfs){
int nsomo = *inpnsomo;
int ms = *inpms;
int nparcoupl = (nsomo + ms)/2;
*outncsfs = binom(nsomo, nparcoupl);
*outncsfs = binom((double)nsomo, (double)nparcoupl);
}
void getncsfs(int NSOMO, int MS, int *outncsfs){
int nparcoupl = (NSOMO + MS)/2;
int nparcouplp1 = ((NSOMO + MS)/2)+1;
int nparcoupl = (NSOMO + MS)/2; // n_alpha
int nparcouplp1 = ((NSOMO + MS)/2)+1; // n_alpha + 1
double tmpndets=0.0;
if(NSOMO == 0){
(*outncsfs) = 1;
return;
}
tmpndets = binom(NSOMO, nparcoupl);
(*outncsfs) = round(tmpndets - binom(NSOMO, nparcouplp1));
tmpndets = binom((double)NSOMO, (double)nparcoupl);
(*outncsfs) = round(tmpndets - binom((double)NSOMO, (double)nparcouplp1));
}
#include <stdint.h>
@ -252,6 +253,27 @@ void generateAllBFs(int64_t Isomo, int64_t MS, Tree *bftree, int *NBF, int *NSOM
buildTreeDriver(bftree, *NSOMO, MS, NBF);
}
void ortho_qr_csf(double *overlapMatrix, int lda, double *orthoMatrix, int rows, int cols);
// QR to orthogonalize CSFs does not work
//void gramSchmidt_qp(double *overlapMatrix, int rows, int cols, double *orthoMatrix){
// int i,j;
// //for(j=0;j<cols;++j){
// // for(i=0;i<rows;++i){
// // printf(" %3.2f ",overlapMatrix[j*rows + i]);
// // }
// // printf("\n");
// //}
// // Call the function ortho_qr from qp
// ortho_qr_csf(overlapMatrix, rows, orthoMatrix, rows, cols);
// //for(j=0;j<cols;++j){
// // for(i=0;i<rows;++i){
// // printf(" %3.2f ",orthoMatrix[j*rows + i]);
// // }
// // printf("\n");
// //}
//}
void gramSchmidt(double *overlapMatrix, int rows, int cols, double *orthoMatrix){
// vector
@ -341,8 +363,12 @@ void convertCSFtoDetBasis(int64_t Isomo, int MS, int rowsmax, int colsmax, doubl
Get BFtoDeterminant Matrix
************************************/
printf("In convertcsftodet\n");
//printf(" --- In convet ----\n");
convertBFtoDetBasis(Isomo, MS, &bftodetmatrixI, &rowsbftodetI, &colsbftodetI);
//printf(" --- done bf det basis ---- row=%d col=%d\n",rowsbftodetI,colsbftodetI);
//printRealMatrix(bftodetmatrixI,rowsbftodetI,colsbftodetI);
int rowsI = 0;
int colsI = 0;
@ -350,6 +376,8 @@ void convertCSFtoDetBasis(int64_t Isomo, int MS, int rowsmax, int colsmax, doubl
//getOverlapMatrix(Isomo, MS, &overlapMatrixI, &rowsI, &colsI, &NSOMO);
getOverlapMatrix_withDet(bftodetmatrixI, rowsbftodetI, colsbftodetI, Isomo, MS, &overlapMatrixI, &rowsI, &colsI, &NSOMO);
//printf("Overlap matrix\n");
//printRealMatrix(overlapMatrixI,rowsI,colsI);
/***********************************
Get Orthonormalization Matrix
@ -359,6 +387,9 @@ void convertCSFtoDetBasis(int64_t Isomo, int MS, int rowsmax, int colsmax, doubl
gramSchmidt(overlapMatrixI, rowsI, colsI, orthoMatrixI);
//printf("Ortho matrix\n");
//printRealMatrix(orthoMatrixI,rowsI,colsI);
/***********************************
Get Final CSF to Det Matrix
************************************/
@ -1340,11 +1371,11 @@ void getbftodetfunction(Tree *dettree, int NSOMO, int MS, int *BF1, double *rowv
for(int i = 0; i < npairs; i++){
for(int j = 0; j < NSOMO; j++) {
inpdet[j] = detslist[i*NSOMO + j];
printf(" %d ",inpdet[j]);
//printf(" %d ",inpdet[j]);
}
printf("\n");
//printf("\n");
findAddofDetDriver(dettree, NSOMO, inpdet, &addr);
printf("(%d) - addr = %d\n",i,addr);
//printf("(%d) - addr = %d\n",i,addr);
// Calculate the phase for cfg to QP2 conversion
//get_phase_cfg_to_qp_inpList(inpdet, NSOMO, &phase_cfg_to_qp);
//rowvec[addr] = 1.0 * phaselist[i]*phase_cfg_to_qp/sqrt(fac);
@ -1363,12 +1394,23 @@ void getbftodetfunction(Tree *dettree, int NSOMO, int MS, int *BF1, double *rowv
void convertBFtoDetBasis(int64_t Isomo, int MS, double **bftodetmatrixptr, int *rows, int *cols){
int NSOMO=0;
//printf("before getSetBits Isomo=%ld, NSOMO=%ld\n",Isomo,NSOMO);
getSetBits(Isomo, &NSOMO);
//printf("Isomo=%ld, NSOMO=%ld\n",Isomo,NSOMO);
int ndets = 0;
int NBF = 0;
double dNSOMO = NSOMO*1.0;
double nalpha = (NSOMO + MS)/2.0;
ndets = (int)binom(dNSOMO, nalpha);
//double dNSOMO = NSOMO*1.0;
// MS = alpha_num - beta_num
int nalpha = (NSOMO + MS)/2;
//printf(" in convertbftodet : MS=%d nalpha=%3.2f\n",MS,nalpha);
//ndets = (int)binom(dNSOMO, nalpha);
if(NSOMO > 0){
ndets = (int)binom((double)NSOMO, (double)nalpha);
}
else if(NSOMO == 0){
ndets = 1;
}
else printf("Something is wrong in calcMEdetpair\n");
Tree dettree = (Tree){ .rootNode = NULL, .NBF = -1 };
dettree.rootNode = malloc(sizeof(Node));
@ -1389,16 +1431,6 @@ void convertBFtoDetBasis(int64_t Isomo, int MS, double **bftodetmatrixptr, int *
}
else{
//int addr = -1;
//int inpdet[NSOMO];
//inpdet[0] = 1;
//inpdet[1] = 1;
//inpdet[2] = 1;
//inpdet[3] = 0;
//inpdet[4] = 0;
//inpdet[5] = 0;
//findAddofDetDriver(&dettree, NSOMO, inpdet, &addr);
int detlist[ndets];
getDetlistDriver(&dettree, NSOMO, detlist);
@ -1411,6 +1443,9 @@ void convertBFtoDetBasis(int64_t Isomo, int MS, double **bftodetmatrixptr, int *
generateAllBFs(Isomo, MS, &bftree, &NBF, &NSOMO);
// Initialize transformation matrix
//printf("MS=%d NBF=%d ndets=%d NSOMO=%d\n",MS,NBF,ndets,NSOMO);
assert( NBF > 0);
assert( ndets > 0);
(*bftodetmatrixptr) = malloc(NBF*ndets*sizeof(double));
(*rows) = NBF;
(*cols) = ndets;
@ -1465,9 +1500,10 @@ void convertBFtoDetBasisWithArrayDims(int64_t Isomo, int MS, int rowsmax, int co
getSetBits(Isomo, &NSOMO);
int ndets = 0;
int NBF = 0;
double dNSOMO = NSOMO*1.0;
double nalpha = (NSOMO + MS)/2.0;
ndets = (int)binom(dNSOMO, nalpha);
//double dNSOMO = NSOMO*1.0;
//double nalpha = (NSOMO + MS)/2.0;
int nalpha = (NSOMO + MS)/2;
ndets = (int)binom((double)NSOMO, (double)nalpha);
Tree dettree = (Tree){ .rootNode = NULL, .NBF = -1 };
dettree.rootNode = malloc(sizeof(Node));
@ -1551,6 +1587,7 @@ void getApqIJMatrixDims(int64_t Isomo, int64_t Jsomo, int64_t MS, int32_t *rowso
getncsfs(NSOMOJ, MS, &NBFJ);
(*rowsout) = NBFI;
(*colsout) = NBFJ;
//exit(0);
}
void getApqIJMatrixDriver(int64_t Isomo, int64_t Jsomo, int orbp, int orbq, int64_t MS, int64_t NMO, double **CSFICSFJApqIJptr, int *rowsout, int *colsout){
@ -1669,6 +1706,7 @@ void getApqIJMatrixDriverArrayInp(int64_t Isomo, int64_t Jsomo, int32_t orbp, in
int rowsbftodetI, colsbftodetI;
//printf(" 1Calling convertBFtoDetBasis Isomo=%ld MS=%ld\n",Isomo,MS);
convertBFtoDetBasis(Isomo, MS, &bftodetmatrixI, &rowsbftodetI, &colsbftodetI);
// Fill matrix
@ -1676,8 +1714,14 @@ void getApqIJMatrixDriverArrayInp(int64_t Isomo, int64_t Jsomo, int32_t orbp, in
int colsI = 0;
//getOverlapMatrix(Isomo, MS, &overlapMatrixI, &rowsI, &colsI, &NSOMO);
//getOverlapMatrix(Isomo, MS, &overlapMatrixI, &rowsI, &colsI, &NSOMO);
//printf("Isomo=%ld\n",Isomo);
getOverlapMatrix_withDet(bftodetmatrixI, rowsbftodetI, colsbftodetI, Isomo, MS, &overlapMatrixI, &rowsI, &colsI, &NSOMO);
if(Isomo == 0){
rowsI = 1;
colsI = 1;
}
//printf("Isomo=%ld\n",Isomo);
orthoMatrixI = malloc(rowsI*colsI*sizeof(double));
@ -1689,6 +1733,7 @@ void getApqIJMatrixDriverArrayInp(int64_t Isomo, int64_t Jsomo, int32_t orbp, in
int rowsbftodetJ, colsbftodetJ;
//printf(" 2Calling convertBFtoDetBasis Jsomo=%ld MS=%ld\n",Jsomo,MS);
convertBFtoDetBasis(Jsomo, MS, &bftodetmatrixJ, &rowsbftodetJ, &colsbftodetJ);
int rowsJ = 0;
@ -1696,6 +1741,10 @@ void getApqIJMatrixDriverArrayInp(int64_t Isomo, int64_t Jsomo, int32_t orbp, in
// Fill matrix
//getOverlapMatrix(Jsomo, MS, &overlapMatrixJ, &rowsJ, &colsJ, &NSOMO);
getOverlapMatrix_withDet(bftodetmatrixJ, rowsbftodetJ, colsbftodetJ, Jsomo, MS, &overlapMatrixJ, &rowsJ, &colsJ, &NSOMO);
if(Jsomo == 0){
rowsJ = 1;
colsJ = 1;
}
orthoMatrixJ = malloc(rowsJ*colsJ*sizeof(double));
@ -1713,18 +1762,25 @@ void getApqIJMatrixDriverArrayInp(int64_t Isomo, int64_t Jsomo, int32_t orbp, in
int transA=false;
int transB=false;
//printf("1Calling blas\n");
//printf("rowsA=%d colsA=%d\nrowB=%d colB=%d\n",rowsbftodetI,colsbftodetI,rowsA,colsA);
callBlasMatxMat(bftodetmatrixI, rowsbftodetI, colsbftodetI, ApqIJ, rowsA, colsA, bfIApqIJ, transA, transB);
//printf("done\n");
// now transform I in csf basis
double *CSFIApqIJ = malloc(rowsI*colsA*sizeof(double));
transA = false;
transB = false;
//printf("2Calling blas\n");
//printf("rowsA=%d colsA=%d\nrowB=%d colB=%d\n",rowsI,colsI,colsI,colsA);
callBlasMatxMat(orthoMatrixI, rowsI, colsI, bfIApqIJ, colsI, colsA, CSFIApqIJ, transA, transB);
// now transform J in BF basis
double *CSFIbfJApqIJ = malloc(rowsI*rowsbftodetJ*sizeof(double));
transA = false;
transB = true;
//printf("3Calling blas\n");
//printf("rowsA=%d colsA=%d\nrowB=%d colB=%d\n",rowsI,colsA,rowsbftodetJ,colsbftodetJ);
callBlasMatxMat(CSFIApqIJ, rowsI, colsA, bftodetmatrixJ, rowsbftodetJ, colsbftodetJ, CSFIbfJApqIJ, transA, transB);
// now transform J in CSF basis
@ -1735,13 +1791,14 @@ void getApqIJMatrixDriverArrayInp(int64_t Isomo, int64_t Jsomo, int32_t orbp, in
double *tmpCSFICSFJApqIJ = malloc(rowsI*rowsJ*sizeof(double));
transA = false;
transB = true;
//printf("4Calling blas\n");
//printf("rowsA=%d colsA=%d\nrowB=%d colB=%d\n",rowsI,rowsbftodetJ,rowsJ,colsJ);
callBlasMatxMat(CSFIbfJApqIJ, rowsI, rowsbftodetJ, orthoMatrixJ, rowsJ, colsJ, tmpCSFICSFJApqIJ, transA, transB);
// Transfer to actual buffer in Fortran order
for(int i = 0; i < rowsI; i++)
for(int j = 0; j < rowsJ; j++)
CSFICSFJApqIJ[j*rowsI + i] = tmpCSFICSFJApqIJ[i*rowsJ + j];
// Garbage collection
free(overlapMatrixI);
free(overlapMatrixJ);

View File

@ -1,3 +1,592 @@
use bitmasks
BEGIN_PROVIDER [ integer(bit_kind), alphasIcfg_list , (N_int,2,N_configuration,mo_num*(mo_num))]
&BEGIN_PROVIDER [ integer, NalphaIcfg_list, (N_configuration) ]
implicit none
!use bitmasks
BEGIN_DOC
! Documentation for alphasI
! Returns the associated alpha's for
! the input configuration Icfg.
END_DOC
integer :: idxI ! The id of the Ith CFG
integer(bit_kind) :: Icfg(N_int,2)
integer :: NalphaIcfg
logical,dimension(:,:),allocatable :: tableUniqueAlphas
integer :: listholes(mo_num)
integer :: holetype(mo_num) ! 1-> SOMO 2->DOMO
integer :: nholes
integer :: nvmos
integer :: listvmos(mo_num)
integer :: vmotype(mo_num) ! 1 -> VMO 2 -> SOMO
integer*8 :: Idomo
integer*8 :: Isomo
integer*8 :: Jdomo
integer*8 :: Jsomo
integer*8 :: diffSOMO
integer*8 :: diffDOMO
integer*8 :: xordiffSOMODOMO
integer :: ndiffSOMO
integer :: ndiffDOMO
integer :: nxordiffSOMODOMO
integer :: ndiffAll
integer :: i,ii
integer :: j,jj
integer :: k,kk
integer :: kstart
integer :: kend
integer :: Nsomo_I
integer :: hole
integer :: p
integer :: q
integer :: countalphas
logical :: pqAlreadyGenQ
logical :: pqExistsQ
logical :: ppExistsQ
integer*8 :: MS
double precision :: t0, t1
call wall_time(t0)
MS = elec_alpha_num-elec_beta_num
allocate(tableUniqueAlphas(mo_num,mo_num))
NalphaIcfg_list = 0
do idxI = 1, N_configuration
Icfg = psi_configuration(:,:,idxI)
Isomo = iand(act_bitmask(1,1),Icfg(1,1))
Idomo = iand(act_bitmask(1,1),Icfg(1,2))
! find out all pq holes possible
nholes = 0
! holes in SOMO
do ii = 1,n_act_orb
i = list_act(ii)
if(POPCNT(IAND(Isomo,IBSET(0_8,i-1))) .EQ. 1) then
nholes += 1
listholes(nholes) = i
holetype(nholes) = 1
endif
end do
! holes in DOMO
do ii = 1,n_act_orb
i = list_act(ii)
if(POPCNT(IAND(Idomo,IBSET(0_8,i-1))) .EQ. 1) then
nholes += 1
listholes(nholes) = i
holetype(nholes) = 2
endif
end do
! find vmos
listvmos = -1
vmotype = -1
nvmos = 0
do ii = 1,n_act_orb
i = list_act(ii)
if(IAND(Idomo,(IBSET(0_8,i-1))) .EQ. 0) then
if(IAND(Isomo,(IBSET(0_8,i-1))) .EQ. 0) then
nvmos += 1
listvmos(nvmos) = i
vmotype(nvmos) = 1
else if(POPCNT(IAND(Isomo,(IBSET(0_8,i-1)))) .EQ. 1) then
nvmos += 1
listvmos(nvmos) = i
vmotype(nvmos) = 2
end if
end if
end do
tableUniqueAlphas = .FALSE.
! Now find the allowed (p,q) excitations
Isomo = iand(act_bitmask(1,1),Icfg(1,1))
Idomo = iand(act_bitmask(1,1),Icfg(1,2))
Nsomo_I = POPCNT(Isomo)
if(Nsomo_I .EQ. 0) then
kstart = 1
else
kstart = cfg_seniority_index(max(NSOMOMin,Nsomo_I-2))
endif
kend = idxI-1
do i = 1,nholes
p = listholes(i)
do j = 1,nvmos
q = listvmos(j)
if(p .EQ. q) cycle
if(holetype(i) .EQ. 1 .AND. vmotype(j) .EQ. 1) then
! SOMO -> VMO
Jsomo = IBCLR(Isomo,p-1)
Jsomo = IBSET(Jsomo,q-1)
Jdomo = Idomo
kstart = max(1,cfg_seniority_index(max(NSOMOMin,Nsomo_I-2)))
kend = idxI-1
else if(holetype(i) .EQ. 1 .AND. vmotype(j) .EQ. 2) then
! SOMO -> SOMO
Jsomo = IBCLR(Isomo,p-1)
Jsomo = IBCLR(Jsomo,q-1)
Jdomo = IBSET(Idomo,q-1)
! Check for Minimal alpha electrons (MS)
if(POPCNT(Jsomo).ge.MS)then
kstart = max(1,cfg_seniority_index(max(NSOMOMin,Nsomo_I-4)))
kend = idxI-1
else
cycle
endif
else if(holetype(i) .EQ. 2 .AND. vmotype(j) .EQ. 1) then
! DOMO -> VMO
Jsomo = IBSET(Isomo,p-1)
Jsomo = IBSET(Jsomo,q-1)
Jdomo = IBCLR(Idomo,p-1)
kstart = cfg_seniority_index(Nsomo_I)
kend = idxI-1
else if(holetype(i) .EQ. 2 .AND. vmotype(j) .EQ. 2) then
! DOMO -> SOMO
Jsomo = IBSET(Isomo,p-1)
Jsomo = IBCLR(Jsomo,q-1)
Jdomo = IBCLR(Idomo,p-1)
Jdomo = IBSET(Jdomo,q-1)
kstart = max(1,cfg_seniority_index(max(NSOMOMin,Nsomo_I-2)))
kend = idxI-1
else
print*,"Something went wrong in obtain_associated_alphaI"
endif
! Check for Minimal alpha electrons (MS)
if(POPCNT(Jsomo).lt.MS)then
cycle
endif
! Again, we don't have to search from 1
! we just use seniority to find the
! first index with NSOMO - 2 to NSOMO + 2
! this is what is done in kstart, kend
pqAlreadyGenQ = .FALSE.
! First check if it can be generated before
do k = kstart, kend
diffSOMO = IEOR(Jsomo,iand(reunion_of_act_virt_bitmask(1,1),psi_configuration(1,1,k)))
ndiffSOMO = POPCNT(diffSOMO)
if((ndiffSOMO .NE. 0) .AND. (ndiffSOMO .NE. 2)) cycle
diffDOMO = IEOR(Jdomo,iand(reunion_of_act_virt_bitmask(1,1),psi_configuration(1,2,k)))
xordiffSOMODOMO = IEOR(diffSOMO,diffDOMO)
ndiffDOMO = POPCNT(diffDOMO)
nxordiffSOMODOMO = POPCNT(xordiffSOMODOMO)
nxordiffSOMODOMO += ndiffSOMO + ndiffDOMO
!if(POPCNT(IEOR(diffSOMO,diffDOMO)) .LE. 1 .AND. ndiffDOMO .LT. 3) then
if((ndiffSOMO+ndiffDOMO) .EQ. 0) then
pqAlreadyGenQ = .TRUE.
ppExistsQ = .TRUE.
EXIT
endif
if((nxordiffSOMODOMO .EQ. 4) .AND. ndiffSOMO .EQ. 2) then
pqAlreadyGenQ = .TRUE.
EXIT
endif
end do
if(pqAlreadyGenQ) cycle
pqExistsQ = .FALSE.
if(.NOT. pqExistsQ) then
tableUniqueAlphas(p,q) = .TRUE.
endif
end do
end do
!print *,tableUniqueAlphas(:,:)
! prune list of alphas
Isomo = Icfg(1,1)
Idomo = Icfg(1,2)
Jsomo = Icfg(1,1)
Jdomo = Icfg(1,2)
NalphaIcfg = 0
do i = 1, nholes
p = listholes(i)
do j = 1, nvmos
q = listvmos(j)
if(p .EQ. q) cycle
if(tableUniqueAlphas(p,q)) then
if(holetype(i) .EQ. 1 .AND. vmotype(j) .EQ. 1) then
! SOMO -> VMO
Jsomo = IBCLR(Isomo,p-1)
Jsomo = IBSET(Jsomo,q-1)
Jdomo = Idomo
else if(holetype(i) .EQ. 1 .AND. vmotype(j) .EQ. 2) then
! SOMO -> SOMO
Jsomo = IBCLR(Isomo,p-1)
Jsomo = IBCLR(Jsomo,q-1)
Jdomo = IBSET(Idomo,q-1)
if(POPCNT(Jsomo).ge.MS)then
kstart = max(1,cfg_seniority_index(max(NSOMOMin,Nsomo_I-4)))
kend = idxI-1
else
cycle
endif
else if(holetype(i) .EQ. 2 .AND. vmotype(j) .EQ. 1) then
! DOMO -> VMO
Jsomo = IBSET(Isomo,p-1)
Jsomo = IBSET(Jsomo,q-1)
Jdomo = IBCLR(Idomo,p-1)
else if(holetype(i) .EQ. 2 .AND. vmotype(j) .EQ. 2) then
! DOMO -> SOMO
Jsomo = IBSET(Isomo,p-1)
Jsomo = IBCLR(Jsomo,q-1)
Jdomo = IBCLR(Idomo,p-1)
Jdomo = IBSET(Jdomo,q-1)
else
print*,"Something went wrong in obtain_associated_alphaI"
endif
! SOMO
!print *,i,j,"|",NalphaIcfg, Jsomo, IOR(Jdomo,ISHFT(1_8,n_core_orb)-1)
if(POPCNT(Jsomo) .ge. NSOMOMin) then
NalphaIcfg += 1
alphasIcfg_list(1,1,idxI,NalphaIcfg) = Jsomo
alphasIcfg_list(1,2,idxI,NalphaIcfg) = IOR(Jdomo,ISHFT(1_8,n_core_orb)-1)
NalphaIcfg_list(idxI) = NalphaIcfg
endif
endif
end do
end do
! Check if this Icfg has been previously generated as a mono
ppExistsQ = .False.
Isomo = iand(reunion_of_act_virt_bitmask(1,1),Icfg(1,1))
Idomo = iand(reunion_of_act_virt_bitmask(1,1),Icfg(1,2))
kstart = max(1,cfg_seniority_index(max(NSOMOMin,Nsomo_I-2)))
do k = kstart, idxI-1
diffSOMO = IEOR(Isomo,iand(act_bitmask(1,1),psi_configuration(1,1,k)))
ndiffSOMO = POPCNT(diffSOMO)
if (ndiffSOMO /= 2) cycle
diffDOMO = IEOR(Idomo,iand(act_bitmask(1,1),psi_configuration(1,2,k)))
xordiffSOMODOMO = IEOR(diffSOMO,diffDOMO)
ndiffDOMO = POPCNT(diffDOMO)
nxordiffSOMODOMO = POPCNT(xordiffSOMODOMO)
if((ndiffSOMO+ndiffDOMO+nxordiffSOMODOMO .EQ. 4)) then
ppExistsQ = .TRUE.
EXIT
endif
end do
! Diagonal part (pp,qq)
if(nholes > 0 .AND. (.NOT. ppExistsQ))then
! SOMO
if(POPCNT(Jsomo) .ge. NSOMOMin) then
NalphaIcfg += 1
alphasIcfg_list(1,1,idxI,NalphaIcfg) = Icfg(1,1)
alphasIcfg_list(1,2,idxI,NalphaIcfg) = Icfg(1,2)
NalphaIcfg_list(idxI) = NalphaIcfg
endif
endif
NalphaIcfg = 0
enddo ! end loop idxI
call wall_time(t1)
print *, 'Preparation : ', t1 - t0
END_PROVIDER
subroutine obtain_associated_alphaI(idxI, Icfg, alphasIcfg, NalphaIcfg)
implicit none
use bitmasks
BEGIN_DOC
! Documentation for alphasI
! Returns the associated alpha's for
! the input configuration Icfg.
END_DOC
integer,intent(in) :: idxI ! The id of the Ith CFG
integer(bit_kind),intent(in) :: Icfg(N_int,2)
integer,intent(out) :: NalphaIcfg
integer(bit_kind),intent(out) :: alphasIcfg(N_int,2,*)
logical,dimension(:,:),allocatable :: tableUniqueAlphas
integer :: listholes(mo_num)
integer :: holetype(mo_num) ! 1-> SOMO 2->DOMO
integer :: nholes
integer :: nvmos
integer :: listvmos(mo_num)
integer :: vmotype(mo_num) ! 1 -> VMO 2 -> SOMO
integer*8 :: Idomo
integer*8 :: Isomo
integer*8 :: Jdomo
integer*8 :: Jsomo
integer*8 :: diffSOMO
integer*8 :: diffDOMO
integer*8 :: xordiffSOMODOMO
integer :: ndiffSOMO
integer :: ndiffDOMO
integer :: nxordiffSOMODOMO
integer :: ndiffAll
integer :: i, ii
integer :: j, jj
integer :: k, kk
integer :: kstart
integer :: kend
integer :: Nsomo_I
integer :: hole
integer :: p
integer :: q
integer :: countalphas
logical :: pqAlreadyGenQ
logical :: pqExistsQ
logical :: ppExistsQ
Isomo = iand(act_bitmask(1,1),Icfg(1,1))
Idomo = iand(act_bitmask(1,1),Icfg(1,2))
!print*,"Input cfg"
!call debug_spindet(Isomo,1)
!call debug_spindet(Idomo,1)
! find out all pq holes possible
nholes = 0
! holes in SOMO
do ii = 1,n_act_orb
i = list_act(ii)
if(POPCNT(IAND(Isomo,IBSET(0_8,i-1))) .EQ. 1) then
nholes += 1
listholes(nholes) = i
holetype(nholes) = 1
endif
end do
! holes in DOMO
do ii = 1,n_act_orb
i = list_act(ii)
if(POPCNT(IAND(Idomo,IBSET(0_8,i-1))) .EQ. 1) then
nholes += 1
listholes(nholes) = i
holetype(nholes) = 2
endif
end do
! find vmos
listvmos = -1
vmotype = -1
nvmos = 0
do ii = 1,n_act_orb
i = list_act(ii)
!print *,i,IBSET(0,i-1),POPCNT(IAND(Isomo,(IBSET(0_8,i-1)))), POPCNT(IAND(Idomo,(IBSET(0_8,i-1))))
if(POPCNT(IAND(Isomo,(IBSET(0_8,i-1)))) .EQ. 0 .AND. POPCNT(IAND(Idomo,(IBSET(0_8,i-1)))) .EQ. 0) then
nvmos += 1
listvmos(nvmos) = i
vmotype(nvmos) = 1
else if(POPCNT(IAND(Isomo,(IBSET(0_8,i-1)))) .EQ. 1 .AND. POPCNT(IAND(Idomo,(IBSET(0_8,i-1)))) .EQ. 0 ) then
nvmos += 1
listvmos(nvmos) = i
vmotype(nvmos) = 2
end if
end do
!print *,"Nvmo=",nvmos
!print *,listvmos
!print *,vmotype
allocate(tableUniqueAlphas(mo_num,mo_num))
tableUniqueAlphas = .FALSE.
! Now find the allowed (p,q) excitations
Isomo = iand(act_bitmask(1,1),Icfg(1,1))
Idomo = iand(act_bitmask(1,1),Icfg(1,2))
Nsomo_I = POPCNT(Isomo)
if(Nsomo_I .EQ. 0) then
kstart = 1
else
kstart = cfg_seniority_index(max(NSOMOMin,Nsomo_I-2))
endif
kend = idxI-1
!print *,"Isomo"
!call debug_spindet(Isomo,1)
!call debug_spindet(Idomo,1)
!print *,"Nholes=",nholes," Nvmos=",nvmos, " idxi=",idxI
!do i = 1,nholes
! print *,i,"->",listholes(i)
!enddo
!do i = 1,nvmos
! print *,i,"->",listvmos(i)
!enddo
do i = 1,nholes
p = listholes(i)
do j = 1,nvmos
q = listvmos(j)
if(p .EQ. q) cycle
if(holetype(i) .EQ. 1 .AND. vmotype(j) .EQ. 1) then
! SOMO -> VMO
Jsomo = IBCLR(Isomo,p-1)
Jsomo = IBSET(Jsomo,q-1)
Jdomo = Idomo
kstart = max(1,cfg_seniority_index(max(NSOMOMin,Nsomo_I-2)))
kend = idxI-1
else if(holetype(i) .EQ. 1 .AND. vmotype(j) .EQ. 2) then
! SOMO -> SOMO
Jsomo = IBCLR(Isomo,p-1)
Jsomo = IBCLR(Jsomo,q-1)
Jdomo = IBSET(Idomo,q-1)
kstart = max(1,cfg_seniority_index(max(NSOMOMin,Nsomo_I-4)))
kend = idxI-1
else if(holetype(i) .EQ. 2 .AND. vmotype(j) .EQ. 1) then
! DOMO -> VMO
Jsomo = IBSET(Isomo,p-1)
Jsomo = IBSET(Jsomo,q-1)
Jdomo = IBCLR(Idomo,p-1)
kstart = cfg_seniority_index(Nsomo_I)
kend = idxI-1
else if(holetype(i) .EQ. 2 .AND. vmotype(j) .EQ. 2) then
! DOMO -> SOMO
Jsomo = IBSET(Isomo,p-1)
Jsomo = IBCLR(Jsomo,q-1)
Jdomo = IBCLR(Idomo,p-1)
Jdomo = IBSET(Jdomo,q-1)
kstart = max(1,cfg_seniority_index(max(NSOMOMin,Nsomo_I-2)))
kend = idxI-1
else
print*,"Something went wrong in obtain_associated_alphaI"
endif
! Again, we don't have to search from 1
! we just use seniortiy to find the
! first index with NSOMO - 2 to NSOMO + 2
! this is what is done in kstart, kend
pqAlreadyGenQ = .FALSE.
! First check if it can be generated before
do k = kstart, kend
diffSOMO = IEOR(Jsomo,iand(act_bitmask(1,1),psi_configuration(1,1,k)))
ndiffSOMO = POPCNT(diffSOMO)
if((ndiffSOMO .NE. 0) .AND. (ndiffSOMO .NE. 2)) cycle
diffDOMO = IEOR(Jdomo,iand(act_bitmask(1,1),psi_configuration(1,2,k)))
xordiffSOMODOMO = IEOR(diffSOMO,diffDOMO)
ndiffDOMO = POPCNT(diffDOMO)
nxordiffSOMODOMO = POPCNT(xordiffSOMODOMO)
nxordiffSOMODOMO += ndiffSOMO + ndiffDOMO
!if(POPCNT(IEOR(diffSOMO,diffDOMO)) .LE. 1 .AND. ndiffDOMO .LT. 3) then
if((ndiffSOMO+ndiffDOMO) .EQ. 0) then
pqAlreadyGenQ = .TRUE.
ppExistsQ = .TRUE.
EXIT
endif
if((nxordiffSOMODOMO .EQ. 4) .AND. ndiffSOMO .EQ. 2) then
pqAlreadyGenQ = .TRUE.
!EXIT
!ppExistsQ = .TRUE.
!print *,i,k,ndiffSOMO,ndiffDOMO
!call debug_spindet(Jsomo,1)
!call debug_spindet(Jdomo,1)
!call debug_spindet(iand(reunion_of_act_virt_bitmask(1,1),psi_configuration(1,1,k)),1)
!call debug_spindet(iand(reunion_of_act_virt_bitmask(1,1),psi_configuration(1,2,k)),1)
EXIT
endif
end do
!print *,"(,",p,",",q,")",pqAlreadyGenQ
if(pqAlreadyGenQ) cycle
pqExistsQ = .FALSE.
! now check if this exists in the selected list
!do k = idxI+1, N_configuration
! diffSOMO = IEOR(OR(reunion_of_act_virt_bitmask(1,1),Jsomo),psi_configuration(1,1,k))
! diffDOMO = IEOR(OR(reunion_of_act_virt_bitmask(1,1),Jdomo),psi_configuration(1,2,k))
! ndiffSOMO = POPCNT(diffSOMO)
! ndiffDOMO = POPCNT(diffDOMO)
! if((ndiffSOMO + ndiffDOMO) .EQ. 0) then
! pqExistsQ = .TRUE.
! EXIT
! endif
!end do
if(.NOT. pqExistsQ) then
tableUniqueAlphas(p,q) = .TRUE.
!print *,p,q
!call debug_spindet(Jsomo,1)
!call debug_spindet(Jdomo,1)
endif
end do
end do
!print *,tableUniqueAlphas(:,:)
! prune list of alphas
Isomo = Icfg(1,1)
Idomo = Icfg(1,2)
Jsomo = Icfg(1,1)
Jdomo = Icfg(1,2)
NalphaIcfg = 0
do i = 1, nholes
p = listholes(i)
do j = 1, nvmos
q = listvmos(j)
if(p .EQ. q) cycle
if(tableUniqueAlphas(p,q)) then
if(holetype(i) .EQ. 1 .AND. vmotype(j) .EQ. 1) then
! SOMO -> VMO
Jsomo = IBCLR(Isomo,p-1)
Jsomo = IBSET(Jsomo,q-1)
Jdomo = Idomo
else if(holetype(i) .EQ. 1 .AND. vmotype(j) .EQ. 2) then
! SOMO -> SOMO
Jsomo = IBCLR(Isomo,p-1)
Jsomo = IBCLR(Jsomo,q-1)
Jdomo = IBSET(Idomo,q-1)
else if(holetype(i) .EQ. 2 .AND. vmotype(j) .EQ. 1) then
! DOMO -> VMO
Jsomo = IBSET(Isomo,p-1)
Jsomo = IBSET(Jsomo,q-1)
Jdomo = IBCLR(Idomo,p-1)
else if(holetype(i) .EQ. 2 .AND. vmotype(j) .EQ. 2) then
! DOMO -> SOMO
Jsomo = IBSET(Isomo,p-1)
Jsomo = IBCLR(Jsomo,q-1)
Jdomo = IBCLR(Idomo,p-1)
Jdomo = IBSET(Jdomo,q-1)
else
print*,"Something went wrong in obtain_associated_alphaI"
endif
! SOMO
NalphaIcfg += 1
!print *,i,j,"|",NalphaIcfg
alphasIcfg(1,1,NalphaIcfg) = Jsomo
alphasIcfg(1,2,NalphaIcfg) = IOR(Jdomo,ISHFT(1_8,n_core_orb)-1)
!print *,"I = ",idxI, " Na=",NalphaIcfg," - ",Jsomo, IOR(Jdomo,ISHFT(1_8,n_core_orb)-1)
endif
end do
end do
! Check if this Icfg has been previously generated as a mono
ppExistsQ = .False.
Isomo = iand(act_bitmask(1,1),Icfg(1,1))
Idomo = iand(act_bitmask(1,1),Icfg(1,2))
do k = 1, idxI-1
diffSOMO = IEOR(Isomo,iand(act_bitmask(1,1),psi_configuration(1,1,k)))
diffDOMO = IEOR(Idomo,iand(act_bitmask(1,1),psi_configuration(1,2,k)))
xordiffSOMODOMO = IEOR(diffSOMO,diffDOMO)
ndiffSOMO = POPCNT(diffSOMO)
ndiffDOMO = POPCNT(diffDOMO)
nxordiffSOMODOMO = POPCNT(xordiffSOMODOMO)
if((ndiffSOMO+ndiffDOMO+nxordiffSOMODOMO .EQ. 4) .AND. ndiffSOMO .EQ. 2) then
ppExistsQ = .TRUE.
EXIT
endif
end do
! Diagonal part (pp,qq)
if(nholes > 0 .AND. (.NOT. ppExistsQ))then
! SOMO
NalphaIcfg += 1
!print *,p,q,"|",holetype(i),vmotype(j),NalphaIcfg
!call debug_spindet(Idomo,1)
!call debug_spindet(Jdomo,1)
alphasIcfg(1,1,NalphaIcfg) = Icfg(1,1)
alphasIcfg(1,2,NalphaIcfg) = Icfg(1,2)
endif
end subroutine
function getNSOMO(Icfg) result(NSOMO)
implicit none
integer(bit_kind),intent(in) :: Icfg(N_int,2)
@ -8,98 +597,3 @@
NSOMO += POPCNT(Icfg(i,1))
enddo
end function getNSOMO
subroutine convertOrbIdsToModelSpaceIds(Ialpha, Jcfg, p, q, extype, pmodel, qmodel)
implicit none
BEGIN_DOC
! This function converts the orbital ids
! in real space to those used in model space
! in order to identify the matrices required
! for the calculation of MEs.
!
! The type of excitations are ordered as follows:
! Type 1 - SOMO -> SOMO
! Type 2 - DOMO -> VMO
! Type 3 - SOMO -> VMO
! Type 4 - DOMO -> SOMO
END_DOC
integer(bit_kind),intent(in) :: Ialpha(N_int,2)
integer(bit_kind),intent(in) :: Jcfg(N_int,2)
integer,intent(in) :: p,q
integer,intent(in) :: extype
integer,intent(out) :: pmodel,qmodel
integer*8 :: Isomo
integer*8 :: Idomo
integer*8 :: Jsomo
integer*8 :: Jdomo
integer*8 :: mask
integer*8 :: Isomotmp
integer*8 :: Jsomotmp
integer :: pos0,pos0prev
! TODO Flag (print) when model space indices is > 64
Isomo = Ialpha(1,1)
Idomo = Ialpha(1,2)
Jsomo = Jcfg(1,1)
Jdomo = Jcfg(1,2)
pos0prev = 0
pmodel = p
qmodel = q
if(p .EQ. q) then
pmodel = 1
qmodel = 1
else
!print *,"input pq=",p,q,"extype=",extype
!call debug_spindet(Isomo,1)
!call debug_spindet(Idomo,1)
!call debug_spindet(Jsomo,1)
!call debug_spindet(Jdomo,1)
select case(extype)
case (1)
! SOMO -> SOMO
! remove all domos
!print *,"type -> SOMO -> SOMO"
mask = ISHFT(1_8,p) - 1
Isomotmp = IAND(Isomo,mask)
pmodel = POPCNT(mask) - POPCNT(XOR(Isomotmp,mask))
mask = ISHFT(1_8,q) - 1
Isomotmp = IAND(Isomo,mask)
qmodel = POPCNT(mask) - POPCNT(XOR(Isomotmp,mask))
case (2)
! DOMO -> VMO
! remove all domos except one at p
!print *,"type -> DOMO -> VMO"
mask = ISHFT(1_8,p) - 1
Jsomotmp = IAND(Jsomo,mask)
pmodel = POPCNT(mask) - POPCNT(XOR(Jsomotmp,mask))
mask = ISHFT(1_8,q) - 1
Jsomotmp = IAND(Jsomo,mask)
qmodel = POPCNT(mask) - POPCNT(XOR(Jsomotmp,mask))
case (3)
! SOMO -> VMO
!print *,"type -> SOMO -> VMO"
!Isomo = IEOR(Isomo,Jsomo)
mask = ISHFT(1_8,p) - 1
Isomo = IAND(Isomo,mask)
pmodel = POPCNT(mask) - POPCNT(XOR(Isomo,mask))
mask = ISHFT(1_8,q) - 1
Jsomo = IAND(Jsomo,mask)
qmodel = POPCNT(mask) - POPCNT(XOR(Jsomo,mask))
case (4)
! DOMO -> SOMO
! remove all domos except one at p
!print *,"type -> DOMO -> SOMO"
!Isomo = IEOR(Isomo,Jsomo)
mask = ISHFT(1_8,p) - 1
Jsomo = IAND(Jsomo,mask)
pmodel = POPCNT(mask) - POPCNT(XOR(Jsomo,mask))
mask = ISHFT(1_8,q) - 1
Isomo = IAND(Isomo,mask)
qmodel = POPCNT(mask) - POPCNT(XOR(Isomo,mask))
case default
print *,"something is wrong in convertOrbIdsToModelSpaceIds"
end select
endif
!print *,p,q,"model ids=",pmodel,qmodel
end subroutine convertOrbIdsToModelSpaceIds

View File

@ -458,8 +458,9 @@ end
END_PROVIDER
BEGIN_PROVIDER [ integer, cfg_seniority_index, (0:elec_num) ]
BEGIN_PROVIDER [ integer, cfg_seniority_index, (0:elec_num+2) ]
&BEGIN_PROVIDER [ integer, cfg_nsomo_max ]
&BEGIN_PROVIDER [ integer, cfg_nsomo_min ]
implicit none
BEGIN_DOC
! Returns the index in psi_configuration of the first cfg with
@ -467,9 +468,10 @@ END_PROVIDER
!
! cfg_nsomo_max : Max number of SOMO in the current wave function
END_DOC
integer :: i, k, s, sold
integer :: i, k, s, sold, soldmin
cfg_seniority_index(:) = -1
sold = -1
soldmin = 2000
cfg_nsomo_max = 0
do i=1,N_configuration
s = 0
@ -482,6 +484,10 @@ END_PROVIDER
cfg_seniority_index(s) = i
cfg_nsomo_max = s
endif
if (soldmin .GT. s ) then
soldmin = s
cfg_nsomo_min = s
endif
enddo
END_PROVIDER
@ -743,7 +749,7 @@ BEGIN_PROVIDER [ integer(bit_kind), dominant_dets_of_cfgs, (N_int,2,N_dominant_d
enddo
END_PROVIDER
subroutine binary_search_cfg(cfgInp,addcfg)
subroutine binary_search_cfg(cfgInp,addcfg,bit_tmp)
use bitmasks
implicit none
BEGIN_DOC
@ -755,29 +761,100 @@ subroutine binary_search_cfg(cfgInp,addcfg)
END_DOC
integer(bit_kind), intent(in) :: cfgInp(N_int,2)
integer , intent(out) :: addcfg
integer :: i,j,k,r,l
integer*8 :: key, key2
logical :: found
!integer*8, allocatable :: bit_tmp(:)
!integer*8, external :: configuration_search_key
integer*8, intent(in) :: bit_tmp(0:N_configuration+1)
!allocate(bit_tmp(0:N_configuration))
!bit_tmp(0) = 0
do i=1,N_configuration
!bit_tmp(i) = configuration_search_key(psi_configuration(1,1,i),N_int)
logical :: found
integer :: l, r, j, k
integer*8 :: key
integer*8, external :: configuration_search_key
key = configuration_search_key(cfgInp,N_int)
! Binary search
l = 0
r = N_configuration+1
IRP_IF WITHOUT_SHIFTRL
j = ishft(r-l,-1)
IRP_ELSE
j = shiftr(r-l,1)
IRP_ENDIF
do while (j>=1)
j = j+l
if (bit_tmp(j) == key) then
! Find 1st element which matches the key
if (j > 1) then
do while (j>1 .and. bit_tmp(j-1) == key)
j = j-1
enddo
endif
! Find correct element matching the key
do while (bit_tmp(j) == key)
found = .True.
do k=1,N_int
found = found .and. (psi_configuration(k,1,i) == cfgInp(k,1)) &
.and. (psi_configuration(k,2,i) == cfgInp(k,2))
found = found .and. (psi_configuration(k,1,j) == cfgInp(k,1))&
.and. (psi_configuration(k,2,j) == cfgInp(k,2))
enddo
if (found) then
addcfg = i
exit
addcfg = j
return
endif
j = j+1
enddo
addcfg = -1
return
else if (bit_tmp(j) > key) then
r = j
else
l = j
endif
IRP_IF WITHOUT_SHIFTRL
j = ishft(r-l,-1)
IRP_ELSE
j = shiftr(r-l,1)
IRP_ENDIF
enddo
addcfg = -1
return
end subroutine
!subroutine binary_search_cfg(cfgInp,addcfg)
! use bitmasks
! implicit none
! BEGIN_DOC
! ! Documentation for binary_search
! !
! ! Does a binary search to find
! ! the address of a configuration in a list of
! ! configurations.
! END_DOC
! integer(bit_kind), intent(in) :: cfgInp(N_int,2)
! integer , intent(out) :: addcfg
! integer :: i,j,k,r,l
! integer*8 :: key, key2
! logical :: found
! !integer*8, allocatable :: bit_tmp(:)
! !integer*8, external :: configuration_search_key
!
! !allocate(bit_tmp(0:N_configuration))
! !bit_tmp(0) = 0
! do i=1,N_configuration
! !bit_tmp(i) = configuration_search_key(psi_configuration(1,1,i),N_int)
! found = .True.
! do k=1,N_int
! found = found .and. (psi_configuration(k,1,i) == cfgInp(k,1)) &
! .and. (psi_configuration(k,2,i) == cfgInp(k,2))
! enddo
! if (found) then
! addcfg = i
! exit
! endif
! enddo
!
!end subroutine
!
BEGIN_PROVIDER [ integer, psi_configuration_to_psi_det, (2,N_configuration) ]
&BEGIN_PROVIDER [ integer, psi_configuration_to_psi_det_data, (N_det) ]

View File

@ -1,3 +1,16 @@
BEGIN_PROVIDER [ double precision, psi_csf_coef, (N_csf, N_states) ]
implicit none
BEGIN_DOC
! Wafe function in CSF basis
END_DOC
double precision, allocatable :: buffer(:,:)
allocate ( buffer(N_det, N_states) )
buffer(1:N_det, 1:N_states) = psi_coef(1:N_det, 1:N_states)
call convertWFfromDETtoCSF(N_states, buffer, psi_csf_coef)
END_PROVIDER
subroutine convertWFfromDETtoCSF(N_st,psi_coef_det_in, psi_coef_cfg_out)
use cfunctions
use bitmasks
@ -12,7 +25,7 @@ subroutine convertWFfromDETtoCSF(N_st,psi_coef_det_in, psi_coef_cfg_out)
double precision, intent(out) :: psi_coef_cfg_out(n_CSF,N_st)
integer*8 :: Isomo, Idomo, mask
integer(bit_kind) :: Ialpha(N_int) ,Ibeta(N_int)
integer :: rows, cols, i, j, k
integer :: rows, cols, i, j, k, salpha
integer :: startdet, enddet
integer :: ndetI
integer :: getNSOMO
@ -26,6 +39,8 @@ subroutine convertWFfromDETtoCSF(N_st,psi_coef_det_in, psi_coef_cfg_out)
integer s, bfIcfg
integer countcsf
integer MS
MS = elec_alpha_num-elec_beta_num
countcsf = 0
phasedet = 1.0d0
do i = 1,N_configuration
@ -44,12 +59,19 @@ subroutine convertWFfromDETtoCSF(N_st,psi_coef_det_in, psi_coef_cfg_out)
enddo
enddo
s = 0
s = 0 ! s == total number of SOMOs
do k=1,N_int
if (psi_configuration(k,1,i) == 0_bit_kind) cycle
s = s + popcnt(psi_configuration(k,1,i))
enddo
bfIcfg = max(1,nint((binom(s,(s+1)/2)-binom(s,((s+1)/2)+1))))
if(iand(s,1) .EQ. 0) then
salpha = (s + MS)/2
bfIcfg = max(1,nint((binom(s,salpha)-binom(s,salpha+1))))
else
salpha = (s + MS)/2
bfIcfg = max(1,nint((binom(s,salpha)-binom(s,salpha+1))))
endif
! perhaps blocking with CFGs of same seniority
! can be more efficient
@ -80,7 +102,7 @@ subroutine convertWFfromCSFtoDET(N_st,psi_coef_cfg_in, psi_coef_det)
double precision,intent(in) :: psi_coef_cfg_in(n_CSF,N_st)
double precision,intent(out) :: psi_coef_det(N_det,N_st)
double precision :: tmp_psi_coef_det(maxDetDimPerBF,N_st)
integer :: s, bfIcfg
integer :: s, bfIcfg, salpha
integer :: countcsf
integer(bit_kind) :: Ialpha(N_int), Ibeta(N_int)
integer :: rows, cols, i, j, k
@ -91,6 +113,8 @@ subroutine convertWFfromCSFtoDET(N_st,psi_coef_cfg_in, psi_coef_det)
double precision,allocatable :: tempCoeff (:,:)
double precision :: phasedet
integer :: idx
integer MS
MS = elec_alpha_num-elec_beta_num
countcsf = 0
@ -104,7 +128,8 @@ subroutine convertWFfromCSFtoDET(N_st,psi_coef_cfg_in, psi_coef_det)
if (psi_configuration(k,1,i) == 0_bit_kind) cycle
s = s + popcnt(psi_configuration(k,1,i))
enddo
bfIcfg = max(1,nint((binom(s,(s+1)/2)-binom(s,((s+1)/2)+1))))
salpha = (s + MS)/2
bfIcfg = max(1,nint((binom(s,salpha)-binom(s,salpha+1))))
allocate(tempCoeff(bfIcfg,N_st))

View File

@ -226,7 +226,7 @@ subroutine generate_all_singles_cfg(cfg,singles,n_singles,Nint)
enddo
end
subroutine generate_all_singles_cfg_with_type(cfgInp,singles,idxs_singles,pq_singles,ex_type_singles,n_singles,Nint)
subroutine generate_all_singles_cfg_with_type(bit_tmp,cfgInp,singles,idxs_singles,pq_singles,ex_type_singles,n_singles,Nint)
implicit none
use bitmasks
BEGIN_DOC
@ -238,6 +238,7 @@ subroutine generate_all_singles_cfg_with_type(cfgInp,singles,idxs_singles,pq_sin
! ex_type_singles : on output contains type of excitations :
!
END_DOC
integer*8, intent(in) :: bit_tmp(0:N_configuration+1)
integer, intent(in) :: Nint
integer, intent(inout) :: n_singles
integer, intent(out) :: idxs_singles(*)
@ -248,20 +249,26 @@ subroutine generate_all_singles_cfg_with_type(cfgInp,singles,idxs_singles,pq_sin
integer(bit_kind) :: Jdet(Nint,2)
integer :: i,k, n_singles_ma, i_hole, i_particle, ex_type, addcfg
integer :: ii,kk
integer(bit_kind) :: single(Nint,2)
logical :: i_ok
n_singles = 0
!TODO
!Make list of Somo and Domo for holes
!Make list of Unocc and Somo for particles
do i_hole = 1+n_core_orb, n_core_orb + n_act_orb
do i_particle = 1+n_core_orb, n_core_orb + n_act_orb
!do i_hole = 1+n_core_orb, n_core_orb + n_act_orb
do ii = 1, n_act_orb
i_hole = list_act(ii)
!do i_particle = 1+n_core_orb, n_core_orb + n_act_orb
do kk = 1, n_act_orb
i_particle = list_act(kk)
if(i_hole .EQ. i_particle) cycle
addcfg = -1
call do_single_excitation_cfg_with_type(cfgInp,single,i_hole,i_particle,ex_type,i_ok)
if (i_ok) then
call binary_search_cfg(single,addcfg)
call binary_search_cfg(single,addcfg,bit_tmp)
if(addcfg .EQ. -1) cycle
n_singles = n_singles + 1
do k=1,Nint

View File

@ -0,0 +1,397 @@
subroutine obtain_connected_J_givenI(idxI, givenI, connectedI, idxs_connectedI, nconnectedI,ntotalconnectedI)
implicit none
use bitmasks
BEGIN_DOC
! Documentation for obtain_connected_I_foralpha
! This function returns all those selected configurations
! which are connected to the input configuration
! givenI by a single excitation.
!
! The type of excitations are ordered as follows:
! Type 1 - SOMO -> SOMO
! Type 2 - DOMO -> VMO
! Type 3 - SOMO -> VMO
! Type 4 - DOMO -> SOMO
!
! Order of operators
! \alpha> = a^\dag_p a_q |I> = E_pq |I>
END_DOC
integer ,intent(in) :: idxI
integer(bit_kind),intent(in) :: givenI(N_int,2)
integer(bit_kind),intent(out) :: connectedI(N_int,2,*)
integer ,intent(out) :: idxs_connectedI(*)
integer,intent(out) :: nconnectedI
integer,intent(out) :: ntotalconnectedI
integer*8 :: Idomo
integer*8 :: Isomo
integer*8 :: Jdomo
integer*8 :: Jsomo
integer*8 :: IJsomo
integer*8 :: diffSOMO
integer*8 :: diffDOMO
integer*8 :: xordiffSOMODOMO
integer :: ndiffSOMO
integer :: ndiffDOMO
integer :: nxordiffSOMODOMO
integer :: iii,ii,i,j,k,l,p,q,nsomoJ,nsomoalpha,starti,endi,extyp,nholes
integer :: listholes(mo_num)
integer :: holetype(mo_num)
integer :: end_index
integer :: Nsomo_I
!
! 2 2 1 1 0 0 : 1 1 0 0 0 0
! 0 0 1 1 0 0
!
! 2 1 1 1 1 0 : 1 0 0 0 0 0
! 0 1 1 1 1 0
!xorS 0 1 0 0 1 0 : 2
!xorD 0 1 0 0 0 0 : 1
!xorSD 0 0 0 0 1 0 : 1
! -----
! 4
! 1 1 1 1 1 1 : 0 0 0 0 0 0
! 1 1 1 1 1 1
! 1 1 0 0 1 1 : 4
! 1 1 0 0 0 0 : 2
! 0 0 0 0 1 1 : 2
! -----
! 8
!
nconnectedI = 0
ntotalconnectedI = 0
end_index = N_configuration
! Since CFGs are sorted wrt to seniority
! we don't have to search the full CFG list
Isomo = givenI(1,1)
Idomo = givenI(1,2)
Nsomo_I = POPCNT(Isomo)
end_index = min(N_configuration,cfg_seniority_index(min(Nsomo_I+6,elec_num))-1)
if(end_index .LT. 0) end_index= N_configuration
!end_index = N_configuration
!print *,"Start and End = ",idxI, end_index
p = 0
q = 0
do i=idxI,end_index
!if(.True.) then
! nconnectedI += 1
! connectedI(:,:,nconnectedI) = psi_configuration(:,:,i)
! idxs_connectedI(nconnectedI)=i
! cycle
!endif
Isomo = givenI(1,1)
Idomo = givenI(1,2)
Jsomo = psi_configuration(1,1,i)
Jdomo = psi_configuration(1,2,i)
diffSOMO = IEOR(Isomo,Jsomo)
ndiffSOMO = POPCNT(diffSOMO)
diffDOMO = IEOR(Idomo,Jdomo)
xordiffSOMODOMO = IEOR(diffSOMO,diffDOMO)
ndiffDOMO = POPCNT(diffDOMO)
nxordiffSOMODOMO = POPCNT(xordiffSOMODOMO)
nxordiffSOMODOMO += ndiffSOMO + ndiffDOMO
if((nxordiffSOMODOMO .EQ. 4) .AND. ndiffSOMO .EQ. 2) then
!-------
! MONO |
!-------
nconnectedI += 1
connectedI(:,:,nconnectedI) = psi_configuration(:,:,i)
idxs_connectedI(nconnectedI)=i
ntotalconnectedI += max(1,(psi_config_data(i,2)-psi_config_data(i,1)+1))
else if((nxordiffSOMODOMO .EQ. 8) .AND. ndiffSOMO .EQ. 4) then
!----------------------------
! DOMO -> VMO + DOMO -> VMO |
!----------------------------
nconnectedI += 1
connectedI(:,:,nconnectedI) = psi_configuration(:,:,i)
idxs_connectedI(nconnectedI)=i
ntotalconnectedI += max(1,(psi_config_data(i,2)-psi_config_data(i,1)+1))
else if((nxordiffSOMODOMO .EQ. 6) .AND. ndiffSOMO .EQ. 2) then
!----------------------------
! DOUBLE
!----------------------------
nconnectedI += 1
connectedI(:,:,nconnectedI) = psi_configuration(:,:,i)
idxs_connectedI(nconnectedI)=i
ntotalconnectedI += max(1,(psi_config_data(i,2)-psi_config_data(i,1)+1))
else if((nxordiffSOMODOMO .EQ. 2) .AND. ndiffSOMO .EQ. 3) then
!-----------------
! DOUBLE
!-----------------
nconnectedI += 1
connectedI(:,:,nconnectedI) = psi_configuration(:,:,i)
idxs_connectedI(nconnectedI)=i
ntotalconnectedI += max(1,(psi_config_data(i,2)-psi_config_data(i,1)+1))
else if((nxordiffSOMODOMO .EQ. 4) .AND. ndiffSOMO .EQ. 0) then
!-----------------
! DOUBLE
!-----------------
nconnectedI += 1
connectedI(:,:,nconnectedI) = psi_configuration(:,:,i)
idxs_connectedI(nconnectedI)=i
ntotalconnectedI += max(1,(psi_config_data(i,2)-psi_config_data(i,1)+1))
else if((ndiffSOMO + ndiffDOMO) .EQ. 0) then
!--------
! I = I |
!--------
nconnectedI += 1
connectedI(:,:,nconnectedI) = psi_configuration(:,:,i)
idxs_connectedI(nconnectedI)= i
! find out all pq holes possible
nholes = 0
! holes in SOMO
Isomo = psi_configuration(1,1,i)
Idomo = psi_configuration(1,2,i)
do iii = 1,n_act_orb
ii = list_act(iii)
if(POPCNT(IAND(Isomo,IBSET(0_8,ii-1))) .EQ. 1) then
nholes += 1
listholes(nholes) = ii
holetype(nholes) = 1
endif
end do
! holes in DOMO
do iii = 1,n_act_orb
ii = list_act(iii)
if(POPCNT(IAND(Idomo,IBSET(0_8,ii-1))) .EQ. 1) then
nholes += 1
listholes(nholes) = ii
holetype(nholes) = 2
endif
end do
ntotalconnectedI += max(1,(psi_config_data(i,2)-psi_config_data(i,1)+1)*nholes)
endif
end do
end subroutine obtain_connected_J_givenI
subroutine obtain_connected_I_foralpha(idxI, Ialpha, connectedI, idxs_connectedI, nconnectedI, excitationIds, excitationTypes, diagfactors)
implicit none
use bitmasks
BEGIN_DOC
! Documentation for obtain_connected_I_foralpha
! This function returns all those selected configurations
! which are connected to the input configuration
! Ialpha by a single excitation.
!
! The type of excitations are ordered as follows:
! Type 1 - SOMO -> SOMO
! Type 2 - DOMO -> VMO
! Type 3 - SOMO -> VMO
! Type 4 - DOMO -> SOMO
!
! Order of operators
! \alpha> = a^\dag_p a_q |I> = E_pq |I>
END_DOC
integer ,intent(in) :: idxI
integer(bit_kind),intent(in) :: Ialpha(N_int,2)
integer(bit_kind),intent(out) :: connectedI(N_int,2,*)
integer ,intent(out) :: idxs_connectedI(*)
integer,intent(out) :: nconnectedI
integer,intent(out) :: excitationIds(2,*)
integer,intent(out) :: excitationTypes(*)
real*8 ,intent(out) :: diagfactors(*)
integer*8 :: Idomo
integer*8 :: Isomo
integer*8 :: Jdomo
integer*8 :: Jsomo
integer*8 :: IJsomo
integer*8 :: diffSOMO
integer*8 :: diffDOMO
integer*8 :: xordiffSOMODOMO
integer :: ndiffSOMO
integer :: ndiffDOMO
integer :: nxordiffSOMODOMO
integer :: iii,ii,i,j,k,l,p,q,nsomoJ,nsomoalpha,starti,endi,extyp,nholes
integer :: listholes(mo_num)
integer :: holetype(mo_num)
integer :: end_index
integer :: Nsomo_alpha
integer*8 :: MS
MS = elec_alpha_num-elec_beta_num
nconnectedI = 0
end_index = N_configuration
! Since CFGs are sorted wrt to seniority
! we don't have to search the full CFG list
Isomo = Ialpha(1,1)
Idomo = Ialpha(1,2)
Nsomo_alpha = POPCNT(Isomo)
end_index = min(N_configuration,cfg_seniority_index(min(Nsomo_alpha+4,elec_num))-1)
if(end_index .LT. 0) end_index= N_configuration
end_index = N_configuration
p = 0
q = 0
if (N_int > 1) stop 'obtain_connected_i_foralpha : N_int > 1'
do i=idxI,end_index
Isomo = Ialpha(1,1)
Idomo = Ialpha(1,2)
Jsomo = psi_configuration(1,1,i)
Jdomo = psi_configuration(1,2,i)
! Check for Minimal alpha electrons (MS)
if(POPCNT(Isomo).lt.MS)then
cycle
endif
diffSOMO = IEOR(Isomo,Jsomo)
ndiffSOMO = POPCNT(diffSOMO)
!if(idxI.eq.1)then
! print *," \t idxI=",i," diffS=",ndiffSOMO," popJs=", POPCNT(Jsomo)," popIs=",POPCNT(Isomo)
!endif
diffDOMO = IEOR(Idomo,Jdomo)
xordiffSOMODOMO = IEOR(diffSOMO,diffDOMO)
ndiffDOMO = POPCNT(diffDOMO)
nxordiffSOMODOMO = POPCNT(xordiffSOMODOMO)
nxordiffSOMODOMO += ndiffSOMO + ndiffDOMO
if((nxordiffSOMODOMO .EQ. 4) .AND. ndiffSOMO .EQ. 2) then
select case(ndiffDOMO)
case (0)
! SOMO -> VMO
!print *,"obt SOMO -> VMO"
extyp = 3
IJsomo = IEOR(Isomo, Jsomo)
!IRP_IF WITHOUT_TRAILZ
! p = (popcnt(ieor( IAND(Isomo,IJsomo) , IAND(Isomo,IJsomo) -1))-1) + 1
!IRP_ELSE
p = TRAILZ(IAND(Isomo,IJsomo)) + 1
!IRP_ENDIF
IJsomo = IBCLR(IJsomo,p-1)
!IRP_IF WITHOUT_TRAILZ
! q = (popcnt(ieor(IJsomo,IJsomo-1))-1) + 1
!IRP_ELSE
q = TRAILZ(IJsomo) + 1
!IRP_ENDIF
case (1)
! DOMO -> VMO
! or
! SOMO -> SOMO
nsomoJ = POPCNT(Jsomo)
nsomoalpha = POPCNT(Isomo)
if(nsomoJ .GT. nsomoalpha) then
! DOMO -> VMO
!print *,"obt DOMO -> VMO"
extyp = 2
!IRP_IF WITHOUT_TRAILZ
! p = (popcnt(ieor( IEOR(Idomo,Jdomo),IEOR(Idomo,Jdomo) -1))-1) + 1
!IRP_ELSE
p = TRAILZ(IEOR(Idomo,Jdomo)) + 1
!IRP_ENDIF
Isomo = IEOR(Isomo, Jsomo)
Isomo = IBCLR(Isomo,p-1)
!IRP_IF WITHOUT_TRAILZ
! q = (popcnt(ieor(Isomo,Isomo-1))-1) + 1
!IRP_ELSE
q = TRAILZ(Isomo) + 1
!IRP_ENDIF
else
! SOMO -> SOMO
!print *,"obt SOMO -> SOMO"
extyp = 1
!IRP_IF WITHOUT_TRAILZ
! q = (popcnt(ieor( IEOR(Idomo,Jdomo), IEOR(Idomo,Jdomo)-1))-1) + 1
!IRP_ELSE
q = TRAILZ(IEOR(Idomo,Jdomo)) + 1
!IRP_ENDIF
Isomo = IEOR(Isomo, Jsomo)
Isomo = IBCLR(Isomo,q-1)
!IRP_IF WITHOUT_TRAILZ
! p = (popcnt(ieor(Isomo,Isomo-1))-1) + 1
!IRP_ELSE
p = TRAILZ(Isomo) + 1
!IRP_ENDIF
! Check for Minimal alpha electrons (MS)
!if(POPCNT(Isomo).lt.MS)then
! cycle
!endif
end if
case (2)
! DOMO -> SOMO
!print *,"obt DOMO -> SOMO"
extyp = 4
IJsomo = IEOR(Isomo, Jsomo)
!IRP_IF WITHOUT_TRAILZ
! p = (popcnt(ieor( IAND(Jsomo,IJsomo), IAND(Jsomo,IJsomo)-1))-1) + 1
!IRP_ELSE
p = TRAILZ(IAND(Jsomo,IJsomo)) + 1
!IRP_ENDIF
IJsomo = IBCLR(IJsomo,p-1)
!IRP_IF WITHOUT_TRAILZ
! q = (popcnt(ieor( IJsomo , IJsomo -1))-1) + 1
!IRP_ELSE
q = TRAILZ(IJsomo) + 1
!IRP_ENDIF
case default
print *,"something went wront in get connectedI"
end select
starti = psi_config_data(i,1)
endi = psi_config_data(i,2)
nconnectedI += 1
do k=1,N_int
connectedI(k,1,nconnectedI) = psi_configuration(k,1,i)
connectedI(k,2,nconnectedI) = psi_configuration(k,2,i)
enddo
idxs_connectedI(nconnectedI)=starti
excitationIds(1,nconnectedI)=p
excitationIds(2,nconnectedI)=q
excitationTypes(nconnectedI) = extyp
diagfactors(nconnectedI) = 1.0d0
else if((ndiffSOMO + ndiffDOMO) .EQ. 0) then
! find out all pq holes possible
nholes = 0
! holes in SOMO
Isomo = psi_configuration(1,1,i)
Idomo = psi_configuration(1,2,i)
do iii = 1,n_act_orb
ii = list_act(iii)
if(POPCNT(IAND(Isomo,IBSET(0_8,ii-1))) .EQ. 1) then
nholes += 1
listholes(nholes) = ii
holetype(nholes) = 1
endif
end do
! holes in DOMO
do iii = 1,n_act_orb
ii = list_act(iii)
if(POPCNT(IAND(Idomo,IBSET(0_8,ii-1))) .EQ. 1) then
nholes += 1
listholes(nholes) = ii
holetype(nholes) = 2
endif
end do
do k=1,nholes
p = listholes(k)
q = p
extyp = 1
if(holetype(k) .EQ. 1) then
starti = psi_config_data(i,1)
endi = psi_config_data(i,2)
nconnectedI += 1
connectedI(:,:,nconnectedI) = psi_configuration(:,:,i)
idxs_connectedI(nconnectedI)=starti
excitationIds(1,nconnectedI)=p
excitationIds(2,nconnectedI)=q
excitationTypes(nconnectedI) = extyp
diagfactors(nconnectedI) = 1.0d0
else
starti = psi_config_data(i,1)
endi = psi_config_data(i,2)
nconnectedI += 1
connectedI(:,:,nconnectedI) = psi_configuration(:,:,i)
idxs_connectedI(nconnectedI)=starti
excitationIds(1,nconnectedI)=p
excitationIds(2,nconnectedI)=q
excitationTypes(nconnectedI) = extyp
diagfactors(nconnectedI) = 2.0d0
endif
enddo
endif
end do
end subroutine obtain_connected_I_foralpha

File diff suppressed because it is too large Load Diff

View File

@ -1,3 +1,4 @@
#include <assert.h>
#include "tree_utils.h"
void buildTree(Tree *bftree,
@ -52,6 +53,7 @@ void buildTreeDriver(Tree *bftree, int NSOMO, int MS, int *NBF){
int icpl = 0; // keep track of the ith ms (cannot be -ve)
int addr = 0; // Counts the total BF's
assert(bftree->rootNode->addr == 0);
buildTree(bftree, &(bftree->rootNode), isomo, izeros, icpl, NSOMO, MS);
*NBF = bftree->rootNode->addr;
@ -264,6 +266,8 @@ void genDetBasis(Tree *dettree, int Isomo, int MS, int *ndets){
int NSOMO=0;
getSetBits(Isomo, &NSOMO);
genDetsDriver(dettree, NSOMO, MS, ndets);
// Closed shell case
if(NSOMO==0) (*ndets) = 1;
}
@ -311,3 +315,13 @@ void callBlasMatxMat(double *A, int rowA, int colA, double *B, int rowB, int col
break;
}
}
void printRealMatrix(double *orthoMatrix, int rows, int cols){
int i,j;
for(i=0;i<rows;++i){
for(j=0;j<cols;++j){
printf(" %3.5f ",orthoMatrix[i*cols + j]);
}
printf("\n");
}
}

View File

@ -47,6 +47,7 @@ void generateAllBFs(int64_t Isomo, int64_t MS, Tree *bftree, int *NBF, int *NSOM
void getSetBits(int64_t n, int *nsetbits);
void getOverlapMatrix(int64_t Isomo, int64_t MS, double **overlapMatrixptr, int *rows, int *cols, int *NSOMOout);
void getOverlapMatrix_withDet(double *bftodetmatrixI, int rowsbftodetI, int colsbftodetI, int64_t Isomo, int64_t MS, double **overlapMatrixI, int *rowsI, int *colsI, int *NSOMO);
void gramSchmidt_qp(double *overlapMatrix, int rows, int cols, double *orthoMatrix);
void gramSchmidt(double *overlapMatrix, int rows, int cols, double *orthoMatrix);

View File

@ -0,0 +1,624 @@
subroutine davidson_diag_h_cfg(dets_in,u_in,dim_in,energies,sze,sze_csf,N_st,N_st_diag,Nint,dressing_state,converged)
use bitmasks
implicit none
BEGIN_DOC
! Davidson diagonalization.
!
! dets_in : bitmasks corresponding to determinants
!
! u_in : guess coefficients on the various states. Overwritten
! on exit
!
! dim_in : leftmost dimension of u_in
!
! sze : Number of determinants
!
! N_st : Number of eigenstates
!
END_DOC
integer, intent(in) :: dim_in, sze, sze_csf, N_st, N_st_diag, Nint
integer(bit_kind), intent(in) :: dets_in(Nint,2,sze)
double precision, intent(inout) :: u_in(dim_in,N_st_diag)
double precision, intent(out) :: energies(N_st_diag)
integer, intent(in) :: dressing_state
logical, intent(out) :: converged
double precision, allocatable :: H_jj(:)
double precision, external :: diag_H_mat_elem, diag_S_mat_elem
integer :: i,k
ASSERT (N_st > 0)
ASSERT (sze > 0)
ASSERT (Nint > 0)
ASSERT (Nint == N_int)
PROVIDE mo_two_e_integrals_in_map
allocate(H_jj(sze))
H_jj(1) = diag_h_mat_elem(dets_in(1,1,1),Nint)
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP SHARED(sze,H_jj, dets_in,Nint) &
!$OMP PRIVATE(i)
!$OMP DO SCHEDULE(static)
do i=2,sze
H_jj(i) = diag_H_mat_elem(dets_in(1,1,i),Nint)
enddo
!$OMP END DO
!$OMP END PARALLEL
if (dressing_state > 0) then
do k=1,N_st
do i=1,sze
H_jj(i) += u_in(i,k) * dressing_column_h(i,k)
enddo
enddo
endif
call davidson_diag_cfg_hjj(dets_in,u_in,H_jj,energies,dim_in,sze,sze_csf,N_st,N_st_diag,Nint,dressing_state,converged)
deallocate(H_jj)
end
subroutine davidson_diag_cfg_hjj(dets_in,u_in,H_jj,energies,dim_in,sze,sze_csf,N_st,N_st_diag_in,Nint,dressing_state,converged)
use bitmasks
use mmap_module
implicit none
BEGIN_DOC
! Davidson diagonalization with specific diagonal elements of the H matrix
!
! H_jj : specific diagonal H matrix elements to diagonalize de Davidson
!
! dets_in : bitmasks corresponding to determinants
!
! u_in : guess coefficients on the various states. Overwritten
! on exit
!
! dim_in : leftmost dimension of u_in
!
! sze : Number of determinants
!
! N_st : Number of eigenstates
!
! N_st_diag_in : Number of states in which H is diagonalized. Assumed > sze
!
END_DOC
integer, intent(in) :: dim_in, sze, sze_csf, N_st, N_st_diag_in, Nint
integer(bit_kind), intent(in) :: dets_in(Nint,2,sze)
double precision, intent(in) :: H_jj(sze)
integer, intent(in) :: dressing_state
double precision, intent(inout) :: u_in(dim_in,N_st_diag_in)
double precision, intent(out) :: energies(N_st_diag_in)
integer :: iter, N_st_diag
integer :: i,j,k,l,m,kk,ii,ll
logical, intent(inout) :: converged
double precision, external :: u_dot_v, u_dot_u
integer :: k_pairs, kl
integer :: iter2, itertot
double precision, allocatable :: y(:,:), h(:,:), lambda(:)
double precision, allocatable :: s_tmp(:,:)
double precision :: diag_h_mat_elem
double precision, allocatable :: residual_norm(:)
character*(16384) :: write_buffer
double precision :: to_print(2,N_st)
double precision :: cpu, wall
integer :: shift, shift2, itermax, istate
double precision :: r1, r2, alpha
logical :: state_ok(N_st_diag_in*davidson_sze_max)
integer :: nproc_target
integer :: order(N_st_diag_in)
double precision :: cmax
double precision, allocatable :: U(:,:), U_csf(:,:), overlap(:,:)
double precision, allocatable :: tmpU(:,:), tmpW(:,:)
double precision, pointer :: W(:,:), W_csf(:,:)
logical :: disk_based
double precision :: energy_shift(N_st_diag_in*davidson_sze_max)
include 'constants.include.F'
N_st_diag = N_st_diag_in
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: U, W, y, h, lambda
if (N_st_diag*3 > sze) then
print *, 'error in Davidson :'
print *, 'Increase n_det_max_full to ', N_st_diag*3
stop -1
endif
itermax = max(2,min(davidson_sze_max, sze/N_st_diag))+1
itertot = 0
if (state_following) then
allocate(overlap(N_st_diag*itermax, N_st_diag*itermax))
else
allocate(overlap(1,1)) ! avoid 'if' for deallocate
endif
overlap = 0.d0
PROVIDE nuclear_repulsion expected_s2 psi_bilinear_matrix_order psi_bilinear_matrix_order_reverse threshold_davidson_pt2 threshold_davidson_from_pt2
call write_time(6)
write(6,'(A)') ''
write(6,'(A)') 'Davidson Diagonalization'
write(6,'(A)') '------------------------'
write(6,'(A)') ''
! Find max number of cores to fit in memory
! -----------------------------------------
nproc_target = nproc
double precision :: rss
integer :: maxab
maxab = max(N_det_alpha_unique, N_det_beta_unique)+1
m=1
disk_based = .False.
call resident_memory(rss)
do
r1 = 8.d0 * &! bytes
( dble(sze)*(N_st_diag) &! U
+ dble(sze_csf)*(N_st_diag*itermax) &! U_csf
+ dble(sze)*(N_st_diag) &! W
+ dble(sze_csf)*(N_st_diag*itermax) &! W_csf
+ 3.0d0*(N_st_diag*itermax)**2 &! h,y,s_tmp
+ 1.d0*(N_st_diag*itermax) &! lambda
+ 1.d0*(N_st_diag) &! residual_norm
! In H_u_0_nstates_zmq
+ 2.d0*(N_st_diag*N_det) &! u_t, v_t, on collector
+ 2.d0*(N_st_diag*N_det) &! u_t, v_t, on slave
+ 0.5d0*maxab &! idx0 in H_u_0_nstates_openmp_work_*
+ nproc_target * &! In OMP section
( 1.d0*(N_int*maxab) &! buffer
+ 3.5d0*(maxab) ) &! singles_a, singles_b, doubles, idx
) / 1024.d0**3
if (nproc_target == 0) then
call check_mem(r1,irp_here)
nproc_target = 1
exit
endif
if (r1+rss < qp_max_mem) then
exit
endif
if (itermax > 4) then
itermax = itermax - 1
else if (m==1.and.disk_based_davidson) then
m=0
disk_based = .True.
itermax = 6
else
nproc_target = nproc_target - 1
endif
enddo
nthreads_davidson = nproc_target
TOUCH nthreads_davidson
call write_int(6,N_st,'Number of states')
call write_int(6,N_st_diag,'Number of states in diagonalization')
call write_int(6,sze,'Number of determinants')
call write_int(6,sze_csf,'Number of CSFs')
call write_int(6,nproc_target,'Number of threads for diagonalization')
call write_double(6, r1, 'Memory(Gb)')
if (disk_based) then
print *, 'Using swap space to reduce RAM'
endif
!---------------
write(6,'(A)') ''
write_buffer = '====='
do i=1,N_st
write_buffer = trim(write_buffer)//' ================ ==========='
enddo
write(6,'(A)') write_buffer(1:6+41*N_st)
write_buffer = 'Iter'
do i=1,N_st
write_buffer = trim(write_buffer)//' Energy Residual '
enddo
write(6,'(A)') write_buffer(1:6+41*N_st)
write_buffer = '====='
do i=1,N_st
write_buffer = trim(write_buffer)//' ================ ==========='
enddo
write(6,'(A)') write_buffer(1:6+41*N_st)
if (disk_based) then
! Create memory-mapped files for W and S
type(c_ptr) :: ptr_w, ptr_s
integer :: fd_s, fd_w
call mmap(trim(ezfio_work_dir)//'davidson_w', (/int(sze,8),int(N_st_diag*itermax,8)/),&
8, fd_w, .False., ptr_w)
call c_f_pointer(ptr_w, W_csf, (/sze_csf,N_st_diag*itermax/))
else
allocate(W(sze,N_st_diag),W_csf(sze_csf,N_st_diag*itermax))
endif
allocate( &
! Large
U(sze,N_st_diag), &
U_csf(sze_csf,N_st_diag*itermax), &
! Small
h(N_st_diag*itermax,N_st_diag*itermax), &
y(N_st_diag*itermax,N_st_diag*itermax), &
s_tmp(N_st_diag*itermax,N_st_diag*itermax), &
residual_norm(N_st_diag), &
lambda(N_st_diag*itermax))
h = 0.d0
U = 0.d0
y = 0.d0
s_tmp = 0.d0
ASSERT (N_st > 0)
ASSERT (N_st_diag >= N_st)
ASSERT (sze > 0)
ASSERT (Nint > 0)
ASSERT (Nint == N_int)
! Davidson iterations
! ===================
converged = .False.
call convertWFfromDETtoCSF(N_st_diag,u_in(1,1),U_csf(1,1))
do k=N_st+1,N_st_diag
do i=1,sze_csf
call random_number(r1)
call random_number(r2)
r1 = dsqrt(-2.d0*dlog(r1))
r2 = dtwo_pi*r2
U_csf(i,k) = r1*dcos(r2) * u_csf(i,k-N_st)
enddo
U_csf(k,k) = u_csf(k,k) + 10.d0
enddo
do k=1,N_st_diag
call normalize(U_csf(1,k),sze_csf)
enddo
call convertWFfromCSFtoDET(N_st_diag,U_csf(1,1),U(1,1))
do while (.not.converged)
itertot = itertot+1
if (itertot == 8) then
exit
endif
do iter=1,itermax-1
shift = N_st_diag*(iter-1)
shift2 = N_st_diag*iter
! if ((iter > 1).or.(itertot == 1)) then
! Compute |W_k> = \sum_i |i><i|H|u_k>
! -----------------------------------
!call convertWFfromCSFtoDET(N_st_diag,U_csf(1,shift+1),U)
PROVIDE mo_two_e_integrals_in_map mo_integrals_map big_array_exchange_integrals
if ((sze > 100000).and.distributed_davidson) then
!call H_u_0_nstates_zmq (W,U,N_st_diag,sze)
allocate(tmpW(N_st_diag,sze_csf))
allocate(tmpU(N_st_diag,sze_csf))
do kk=1,N_st_diag
do ii=1,sze_csf
tmpU(kk,ii) = U_csf(ii,shift+kk)
enddo
enddo
call calculate_sigma_vector_cfg_nst_naive_store(tmpW,tmpU,N_st_diag,sze_csf,1,sze_csf,0,1)
do kk=1,N_st_diag
do ii=1,sze_csf
W_csf(ii,shift+kk)=tmpW(kk,ii)
enddo
enddo
deallocate(tmpW)
deallocate(tmpU)
else
!call H_u_0_nstates_openmp(W,U,N_st_diag,sze)
allocate(tmpW(N_st_diag,sze_csf))
allocate(tmpU(N_st_diag,sze_csf))
do kk=1,N_st_diag
do ii=1,sze_csf
tmpU(kk,ii) = U_csf(ii,shift+kk)
enddo
enddo
!tmpU =0.0d0
!tmpU(1,2)=1.0d0
double precision :: irp_rdtsc
double precision :: ticks_0, ticks_1
integer*8 :: irp_imax
irp_imax = 1
!ticks_0 = irp_rdtsc()
call calculate_sigma_vector_cfg_nst_naive_store(tmpW,tmpU,N_st_diag,sze_csf,1,sze_csf,0,1)
!ticks_1 = irp_rdtsc()
!print *,' ----Cycles:',(ticks_1-ticks_0)/dble(irp_imax)," ----"
do kk=1,N_st_diag
do ii=1,sze_csf
W_csf(ii,shift+kk)=tmpW(kk,ii)
enddo
enddo
!U_csf = 0.0d0
!U_csf(1,1) = 1.0d0
!u_in = 0.0d0
!call convertWFfromCSFtoDET(N_st_diag,tmpU,U2)
!call H_u_0_nstates_openmp(u_in,U2,N_st_diag,sze)
!call convertWFfromDETtoCSF(N_st_diag,u_in(1,1),W_csf2(1,1))
!do i=1,sze_csf
! print *,"I=",i," qp=",W_csf2(i,1)," my=",W_csf(i,1)," diff=",dabs(W_csf2(i,1))-dabs(W_csf(i,1))
! if(dabs(dabs(W_csf2(i,1))-dabs(W_csf(i,1))) .gt. 1.0e-10)then
! print *,"somo=",psi_configuration(1,1,i)," domo=",psi_configuration(1,2,i)," diff=",dabs(W_csf2(i,1))-dabs(W_csf(i,1))
! endif
!end do
!stop
deallocate(tmpW)
deallocate(tmpU)
endif
! else
! ! Already computed in update below
! continue
! endif
if (dressing_state > 0) then
if (N_st == 1) then
l = dressed_column_idx(1)
double precision :: f
f = 1.0d0/psi_coef(l,1)
do istate=1,N_st_diag
do i=1,sze
W(i,istate) += dressing_column_h(i,1) *f * U(l,istate)
W(l,istate) += dressing_column_h(i,1) *f * U(i,istate)
enddo
enddo
else
call dgemm('T','N', N_st, N_st_diag, sze, 1.d0, &
psi_coef, size(psi_coef,1), &
U(1,1), size(U,1), 0.d0, s_tmp, size(s_tmp,1))
call dgemm('N','N', sze, N_st_diag, N_st, 1.0d0, &
dressing_column_h, size(dressing_column_h,1), s_tmp, size(s_tmp,1), &
1.d0, W(1,1), size(W,1))
call dgemm('T','N', N_st, N_st_diag, sze, 1.d0, &
dressing_column_h, size(dressing_column_h,1), &
U(1,1), size(U,1), 0.d0, s_tmp, size(s_tmp,1))
call dgemm('N','N', sze, N_st_diag, N_st, 1.0d0, &
psi_coef, size(psi_coef,1), s_tmp, size(s_tmp,1), &
1.d0, W(1,1), size(W,1))
endif
endif
!call convertWFfromDETtoCSF(N_st_diag,W,W_csf(1,shift+1))
! Compute h_kl = <u_k | W_l> = <u_k| H |u_l>
! -------------------------------------------
call dgemm('T','N', shift2, shift2, sze_csf, &
1.d0, U_csf, size(U_csf,1), W_csf, size(W_csf,1), &
0.d0, h, size(h,1))
call dgemm('T','N', shift2, shift2, sze_csf, &
1.d0, U_csf, size(U_csf,1), U_csf, size(U_csf,1), &
0.d0, s_tmp, size(s_tmp,1))
! Diagonalize h
! ---------------
integer :: lwork, info
double precision, allocatable :: work(:)
y = h
lwork = -1
allocate(work(1))
call dsygv(1,'V','U',shift2,y,size(y,1), &
s_tmp,size(s_tmp,1), lambda, work,lwork,info)
lwork = int(work(1))
deallocate(work)
allocate(work(lwork))
call dsygv(1,'V','U',shift2,y,size(y,1), &
s_tmp,size(s_tmp,1), lambda, work,lwork,info)
deallocate(work)
if (info /= 0) then
stop 'DSYGV Diagonalization failed'
endif
! Compute Energy for each eigenvector
! -----------------------------------
call dgemm('N','N',shift2,shift2,shift2, &
1.d0, h, size(h,1), y, size(y,1), &
0.d0, s_tmp, size(s_tmp,1))
call dgemm('T','N',shift2,shift2,shift2, &
1.d0, y, size(y,1), s_tmp, size(s_tmp,1), &
0.d0, h, size(h,1))
do k=1,shift2
lambda(k) = h(k,k)
enddo
if (state_following) then
overlap = -1.d0
do i=1,shift2
do k=1,shift2
overlap(k,i) = dabs(y(k,i))
enddo
enddo
do k=1,N_st
cmax = -1.d0
do i=1,N_st
if (overlap(i,k) > cmax) then
cmax = overlap(i,k)
order(k) = i
endif
enddo
do i=1,N_st_diag
overlap(order(k),i) = -1.d0
enddo
enddo
overlap = y
do k=1,N_st
l = order(k)
if (k /= l) then
y(1:shift2,k) = overlap(1:shift2,l)
endif
enddo
do k=1,N_st
overlap(k,1) = lambda(k)
enddo
endif
! Express eigenvectors of h in the csf basis
! ------------------------------------------
call dgemm('N','N', sze_csf, N_st_diag, shift2, &
1.d0, U_csf, size(U_csf,1), y, size(y,1), 0.d0, U_csf(1,shift2+1), size(U_csf,1))
call convertWFfromCSFtoDET(N_st_diag,U_csf(1,shift2+1),U)
call dgemm('N','N', sze_csf, N_st_diag, shift2, &
1.d0, W_csf, size(W_csf,1), y, size(y,1), 0.d0, W_csf(1,shift2+1), size(W_csf,1))
call convertWFfromCSFtoDET(N_st_diag,W_csf(1,shift2+1),W)
! Compute residual vector and davidson step
! -----------------------------------------
!if (without_diagonal) then
!$OMP PARALLEL DO DEFAULT(SHARED) PRIVATE(i,k)
do k=1,N_st_diag
do i=1,sze
U(i,k) = (lambda(k) * U(i,k) - W(i,k) ) &
/max(H_jj(i) - lambda (k),1.d-2)
enddo
enddo
!$OMP END PARALLEL DO
!else
! !$OMP PARALLEL DO DEFAULT(SHARED) PRIVATE(i,k)
! do k=1,N_st_diag
! do i=1,sze
! U(i,k) = (lambda(k) * U(i,k) - W(i,k) )
! enddo
! enddo
! !$OMP END PARALLEL DO
!endif
do k=1,N_st
residual_norm(k) = u_dot_u(U(1,k),sze)
to_print(1,k) = lambda(k) + nuclear_repulsion
to_print(2,k) = residual_norm(k)
enddo
call convertWFfromDETtoCSF(N_st_diag,U,U_csf(1,shift2+1))
if ((itertot>1).and.(iter == 1)) then
!don't print
continue
else
write(*,'(1X,I3,1X,100(1X,F16.10,1X,E11.3))') iter-1, to_print(1:2,1:N_st)
endif
! Check convergence
if (iter > 1) then
if (threshold_davidson_from_pt2) then
converged = dabs(maxval(residual_norm(1:N_st))) < threshold_davidson_pt2
else
converged = dabs(maxval(residual_norm(1:N_st))) < threshold_davidson
endif
endif
do k=1,N_st
if (residual_norm(k) > 1.d8) then
print *, 'Davidson failed'
stop -1
endif
enddo
if (converged) then
exit
endif
logical, external :: qp_stop
if (qp_stop()) then
converged = .True.
exit
endif
enddo
! Re-contract U
! -------------
call dgemm('N','N', sze_csf, N_st_diag, shift2, 1.d0, &
W_csf, size(W_csf,1), y, size(y,1), 0.d0, u_in, size(u_in,1))
do k=1,N_st_diag
do i=1,sze_csf
W_csf(i,k) = u_in(i,k)
enddo
enddo
call convertWFfromCSFtoDET(N_st_diag,W_csf,W)
call dgemm('N','N', sze_csf, N_st_diag, shift2, 1.d0, &
U_csf, size(U_csf,1), y, size(y,1), 0.d0, u_in, size(u_in,1))
do k=1,N_st_diag
do i=1,sze_csf
U_csf(i,k) = u_in(i,k)
enddo
enddo
call convertWFfromCSFtoDET(N_st_diag,U_csf,U)
enddo
call nullify_small_elements(sze,N_st_diag,U,size(U,1),threshold_davidson_pt2)
do k=1,N_st_diag
do i=1,sze
u_in(i,k) = U(i,k)
enddo
enddo
do k=1,N_st_diag
energies(k) = lambda(k)
enddo
write_buffer = '======'
do i=1,N_st
write_buffer = trim(write_buffer)//' ================ ==========='
enddo
write(6,'(A)') trim(write_buffer)
write(6,'(A)') ''
call write_time(6)
if (disk_based)then
! Remove temp files
integer, external :: getUnitAndOpen
call munmap( (/int(sze,8),int(N_st_diag*itermax,8)/), 8, fd_w, ptr_w )
fd_w = getUnitAndOpen(trim(ezfio_work_dir)//'davidson_w','r')
close(fd_w,status='delete')
else
deallocate(W, W_csf)
endif
deallocate ( &
residual_norm, &
U, U_csf, overlap, &
h, y, s_tmp, &
lambda &
)
FREE nthreads_davidson
end

View File

@ -89,7 +89,7 @@ subroutine davidson_diag_csf_hjj(dets_in,u_in,H_jj,energies,dim_in,sze,sze_csf,N
double precision, intent(out) :: energies(N_st_diag_in)
integer :: iter, N_st_diag
integer :: i,j,k,l,m
integer :: i,j,k,l,m,kk
logical, intent(inout) :: converged
double precision, external :: u_dot_v, u_dot_u

View File

@ -154,7 +154,7 @@ subroutine davidson_diag_hjj_sjj(dets_in,u_in,H_jj,s2_out,energies,dim_in,sze,N_
character*(16384) :: write_buffer
double precision :: to_print(3,N_st)
double precision :: cpu, wall
integer :: shift, shift2, itermax, istate
integer :: shift, shift2, itermax, istate, ii
double precision :: r1, r2, alpha
logical :: state_ok(N_st_diag_in*davidson_sze_max)
integer :: nproc_target
@ -361,7 +361,14 @@ subroutine davidson_diag_hjj_sjj(dets_in,u_in,H_jj,s2_out,energies,dim_in,sze,N_
if ((sze > 100000).and.distributed_davidson) then
call H_S2_u_0_nstates_zmq (W(1,shift+1),S_d,U(1,shift+1),N_st_diag,sze)
else
double precision :: irp_rdtsc
double precision :: ticks_0, ticks_1
integer*8 :: irp_imax
irp_imax = 1
!ticks_0 = irp_rdtsc()
call H_S2_u_0_nstates_openmp(W(1,shift+1),S_d,U(1,shift+1),N_st_diag,sze)
!ticks_1 = irp_rdtsc()
!print *,' ----Cycles:',(ticks_1-ticks_0)/dble(irp_imax)," ----"
endif
S(1:sze,shift+1:shift+N_st_diag) = real(S_d(1:sze,1:N_st_diag))
else

View File

@ -1,9 +1,20 @@
BEGIN_PROVIDER [ character*(3), sigma_vector_algorithm ]
implicit none
BEGIN_DOC
! If 'det', use <Psi_det|H|Psi_det> in Davidson
!
! If 'cfg', use <Psi_csf|H|Psi_csf> in Davidson
END_DOC
sigma_vector_algorithm = 'det'
!sigma_vector_algorithm = 'cfg'
END_PROVIDER
BEGIN_PROVIDER [ double precision, CI_energy, (N_states_diag) ]
implicit none
BEGIN_DOC
! :c:data:`n_states` lowest eigenvalues of the |CI| matrix
END_DOC
PROVIDE distributed_davidson
integer :: j
character*(8) :: st
@ -61,7 +72,7 @@ END_PROVIDER
if (diag_algorithm == 'Davidson') then
if (do_csf) then
! if (sigma_vector_algorithm == 'det') then
if (sigma_vector_algorithm == 'det') then
call davidson_diag_H_csf (psi_det, &
CI_eigenvectors, &
size(CI_eigenvectors,1), &
@ -73,14 +84,14 @@ END_PROVIDER
N_int, &
0, &
converged)
! else if (sigma_vector_algorithm == 'cfg') then
! call davidson_diag_H_csf(psi_det,CI_eigenvectors, &
! size(CI_eigenvectors,1),CI_electronic_energy, &
! N_det,N_csf,min(N_det,N_states),min(N_det,N_states_diag),N_int,0,converged)
! else
! print *, irp_here
! stop 'bug'
! endif
else if (sigma_vector_algorithm == 'cfg') then
call davidson_diag_H_cfg(psi_det,CI_eigenvectors, &
size(CI_eigenvectors,1),CI_electronic_energy, &
N_det,N_csf,min(N_det,N_states),min(N_det,N_states_diag),N_int,0,converged)
else
print *, irp_here
stop 'bug'
endif
else
call davidson_diag_HS2(psi_det, &
CI_eigenvectors, &

View File

@ -0,0 +1,54 @@
[localization_method]
type: character*(32)
doc: Method for the orbital localization. boys : Foster-Boys, pipek : Pipek-Mezey.
interface: ezfio,provider,ocaml
default: boys
[localization_max_nb_iter]
type: integer
doc: Maximal number of iterations for the orbital localization.
interface: ezfio,provider,ocaml
default: 1000
[localization_use_hessian]
type: logical
doc: If true, it uses the trust region algorithm with the gradient and the diagonal of the hessian. Else it computes the rotation between each pair of MOs that should be applied to maximize/minimize the localization criterion. The last option requieres a way smaller amount of memory but is not easy to converge.
interface: ezfio,provider,ocaml
default: true
[security_mo_class]
type: logical
doc: If true, call abort if the number of active orbital or the number of core + active orbitals is equal to the number of molecular orbitals, else uses the actual mo_class. It is a security if you forget to set the mo_class before the localization.
interface: ezfio,provider,ocaml
default: true
[thresh_loc_max_elem_grad]
type: double precision
doc: Threshold for the convergence, the localization exits when the largest element in the gradient is smaller than thresh_localization_max_elem_grad.
interface: ezfio,provider,ocaml
default: 1.e-6
[kick_in_mos]
type: logical
doc: If True, it applies a rotation of an angle angle_pre_rot between the MOs of a same mo_class before the localization.
interface: ezfio,provider,ocaml
default: true
[angle_pre_rot]
type: double precision
doc: To define the angle for the rotation of the MOs before the localization (in rad).
interface: ezfio,provider,ocaml
default: 0.1
[sort_mos_by_e]
type: logical
doc: If True, the MOs are sorted using the diagonal elements of the Fock matrix.
interface: ezfio,provider,ocaml
default: false
[debug_hf]
type: logical
doc: If True, prints the HF energy before/after the different steps of the localization. Only for debugging.
interface: ezfio,provider,ocaml
default: false

2
src/mo_localization/NEED Normal file
View File

@ -0,0 +1,2 @@
hartree_fock
utils_trust_region

View File

@ -0,0 +1,108 @@
# mo_localization
Some parameters can be changed with qp edit in the mo_localization section
(cf below). Similarly for the trust region parameters in the
utils_trust_region section. The localization without the trust region
is not available for the moment.
The irf.f files can be generated from the org ones using emacs.
If you modify the .org files, don't forget to do (you need emacs):
```
./TANGLE_org_mode.sh
ninja
```
# Orbital localisation
To localize the MOs:
```
qp run localization
```
After that the ezfio directory contains the localized MOs
But to do so the mo_class must be defined before, run
```
qp set_mo_class -q
```
for more information or
```
qp set_mo_class -c [] -a [] -v [] -i [] -d []
```
to set the mo classes. We don't care about the name of the
mo classes. The algorithm just localizes all the MOs of
a given class between them, for all the classes, except the deleted MOs.
If you just on kind of mo class to localize all the MOs between them
you have to put:
```
qp set mo_localization security_mo_class false
```
Before the localization, a kick is done for each mo class
(except the deleted ones) to break the MOs. This is done by
doing a rotation between the MOs.
This feature can be removed by setting:
```
qp set mo_localization kick_in_mos false
```
and the default angle for the rotation can be changed with:
```
qp set mo_localization angle_pre_rot 1e-3 # or something else
```
After the localization, the MOs of each class (except the deleted ones)
can be sorted between them using the diagonal elements of
the fock matrix with:
```
qp set mo_localization sort_mos_by_e true
```
You can check the Hartree-Fock energy before/during/after the localization
by putting (only for debugging):
```
qp set mo_localization debug_hf true
```
## Foster-Boys & Pipek-Mezey
Foster-Boys:
```
qp set mo_localization localization_method boys
```
Pipek-Mezey:
```
qp set mo_localization localization_method pipek
```
# Break the spatial symmetry of the MOs
To break the spatial symmetry of the MOs:
```
qp run break_spatial_sym
```
The default angle for the rotations is too big for this kind of
application, a value between 1e-3 and 1e-6 should break the spatial
symmetry with just a small change in the energy:
```
qp set mo_localization angle_pre_rot 1e-3
```
# With or without hessian + trust region
With hessian + trust region
```
qp set mo_localization localisation_use_hessian true
```
It uses the trust region algorithm with the diagonal of the hessian of the
localization criterion with respect to the MO rotations.
Without the hessian and the trust region
```
qp set mo_localization localisation_use_hessian false
```
By doing so it does not require to store the hessian but the
convergence is not easy, in particular for virtual MOs.
It seems that it not possible to converge with Pipek-Mezey
localization with this approach.
# Further improvements:
- Cleaner repo
- Correction of the errors in the documentations
- option with/without trust region

View File

@ -0,0 +1,7 @@
#!/bin/sh
list='ls *.org'
for element in $list
do
emacs --batch $element -f org-babel-tangle
done

View File

@ -0,0 +1,42 @@
! ! A small program to break the spatial symmetry of the MOs.
! ! You have to defined your MO classes or set security_mo_class to false
! ! with:
! ! qp set orbital_optimization security_mo_class false
! ! The default angle for the rotations is too big for this kind of
! ! application, a value between 1e-3 and 1e-6 should break the spatial
! ! symmetry with just a small change in the energy.
program break_spatial_sym
!BEGIN_DOC
! Break the symmetry of the MOs with a rotation
!END_DOC
implicit none
kick_in_mos = .True.
TOUCH kick_in_mos
print*, 'Security mo_class:', security_mo_class
! The default mo_classes are setted only if the MOs to localize are not specified
if (security_mo_class .and. (dim_list_act_orb == mo_num .or. &
dim_list_core_orb + dim_list_act_orb == mo_num)) then
print*, 'WARNING'
print*, 'You must set different mo_class with qp set_mo_class'
print*, 'If you want to kick all the orbitals:'
print*, 'qp set orbital_optimization security_mo_class false'
print*, ''
print*, 'abort'
call abort
endif
call apply_pre_rotation
end

View File

@ -0,0 +1,43 @@
! A small program to break the spatial symmetry of the MOs.
! You have to defined your MO classes or set security_mo_class to false
! with:
! qp set orbital_optimization security_mo_class false
! The default angle for the rotations is too big for this kind of
! application, a value between 1e-3 and 1e-6 should break the spatial
! symmetry with just a small change in the energy.
#+BEGIN_SRC f90 :comments org :tangle break_spatial_sym.irp.f
program break_spatial_sym
!BEGIN_DOC
! Break the symmetry of the MOs with a rotation
!END_DOC
implicit none
kick_in_mos = .True.
TOUCH kick_in_mos
print*, 'Security mo_class:', security_mo_class
! The default mo_classes are setted only if the MOs to localize are not specified
if (security_mo_class .and. (dim_list_act_orb == mo_num .or. &
dim_list_core_orb + dim_list_act_orb == mo_num)) then
print*, 'WARNING'
print*, 'You must set different mo_class with qp set_mo_class'
print*, 'If you want to kick all the orbitals:'
print*, 'qp set orbital_optimization security_mo_class false'
print*, ''
print*, 'abort'
call abort
endif
call apply_pre_rotation
end
#+END_SRC

View File

@ -0,0 +1,62 @@
program debug_gradient_loc
!BEGIN_DOC
! Check if the gradient is correct
!END_DOC
implicit none
integer :: list_size, n
integer, allocatable :: list(:)
double precision, allocatable :: v_grad(:), v_grad2(:)
double precision :: norm, max_elem, threshold, max_error
integer :: i, nb_error
threshold = 1d-12
list = list_act
list_size = dim_list_act_orb
n = list_size*(list_size-1)/2
allocate(v_grad(n),v_grad2(n))
if (localization_method == 'boys') then
print*,'Foster-Boys'
call gradient_FB(n,list_size,list,v_grad,max_elem,norm)
call gradient_FB_omp(n,list_size,list,v_grad2,max_elem,norm)
elseif (localization_method == 'pipek') then
print*,'Pipek-Mezey'
call gradient_PM(n,list_size,list,v_grad,max_elem,norm)
call gradient_PM(n,list_size,list,v_grad2,max_elem,norm)
else
print*,'Unknown localization_method, please select boys or pipek'
call abort
endif
do i = 1, n
print*,i,v_grad(i)
enddo
v_grad = v_grad - v_grad2
nb_error = 0
max_elem = 0d0
do i = 1, n
if (dabs(v_grad(i)) > threshold) then
print*,v_grad(i)
nb_error = nb_error + 1
if (dabs(v_grad(i)) > max_elem) then
max_elem = v_grad(i)
endif
endif
enddo
print*,'Threshold error', threshold
print*, 'Nb error', nb_error
print*,'Max error', max_elem
deallocate(v_grad,v_grad2)
end

View File

@ -0,0 +1,64 @@
#+BEGIN_SRC f90 :comments org :tangle debug_gradient_loc.irp.f
program debug_gradient_loc
!BEGIN_DOC
! Check if the gradient is correct
!END_DOC
implicit none
integer :: list_size, n
integer, allocatable :: list(:)
double precision, allocatable :: v_grad(:), v_grad2(:)
double precision :: norm, max_elem, threshold, max_error
integer :: i, nb_error
threshold = 1d-12
list = list_act
list_size = dim_list_act_orb
n = list_size*(list_size-1)/2
allocate(v_grad(n),v_grad2(n))
if (localization_method == 'boys') then
print*,'Foster-Boys'
call gradient_FB(n,list_size,list,v_grad,max_elem,norm)
call gradient_FB_omp(n,list_size,list,v_grad2,max_elem,norm)
elseif (localization_method == 'pipek') then
print*,'Pipek-Mezey'
call gradient_PM(n,list_size,list,v_grad,max_elem,norm)
call gradient_PM(n,list_size,list,v_grad2,max_elem,norm)
else
print*,'Unknown localization_method, please select boys or pipek'
call abort
endif
do i = 1, n
print*,i,v_grad(i)
enddo
v_grad = v_grad - v_grad2
nb_error = 0
max_elem = 0d0
do i = 1, n
if (dabs(v_grad(i)) > threshold) then
print*,v_grad(i)
nb_error = nb_error + 1
if (dabs(v_grad(i)) > max_elem) then
max_elem = v_grad(i)
endif
endif
enddo
print*,'Threshold error', threshold
print*, 'Nb error', nb_error
print*,'Max error', max_elem
deallocate(v_grad,v_grad2)
end
#+END_SRC

View File

@ -0,0 +1,62 @@
program debug_hessian_loc
!BEGIN_DOC
! Check if the hessian is correct
!END_DOC
implicit none
integer :: list_size, n
integer, allocatable :: list(:)
double precision, allocatable :: H(:,:), H2(:,:)
double precision :: threshold, max_error, max_elem
integer :: i, nb_error
threshold = 1d-12
list = list_act
list_size = dim_list_act_orb
n = list_size*(list_size-1)/2
allocate(H(n,n),H2(n,n))
if (localization_method == 'boys') then
print*,'Foster-Boys'
call hessian_FB(n,list_size,list,H)
call hessian_FB_omp(n,list_size,list,H2)
elseif(localization_method == 'pipek') then
print*,'Pipek-Mezey'
call hessian_PM(n,list_size,list,H)
call hessian_PM(n,list_size,list,H2)
else
print*,'Unknown localization_method, please select boys or pipek'
call abort
endif
do i = 1, n
print*,i,H(i,i)
enddo
H = H - H2
nb_error = 0
max_elem = 0d0
do i = 1, n
if (dabs(H(i,i)) > threshold) then
print*,H(i,i)
nb_error = nb_error + 1
if (dabs(H(i,i)) > max_elem) then
max_elem = H(i,i)
endif
endif
enddo
print*,'Threshold error', threshold
print*, 'Nb error', nb_error
print*,'Max error', max_elem
deallocate(H,H2)
end

View File

@ -0,0 +1,64 @@
#+BEGIN_SRC f90 :comments org :tangle debug_hessian_loc.irp.f
program debug_hessian_loc
!BEGIN_DOC
! Check if the hessian is correct
!END_DOC
implicit none
integer :: list_size, n
integer, allocatable :: list(:)
double precision, allocatable :: H(:,:), H2(:,:)
double precision :: threshold, max_error, max_elem
integer :: i, nb_error
threshold = 1d-12
list = list_act
list_size = dim_list_act_orb
n = list_size*(list_size-1)/2
allocate(H(n,n),H2(n,n))
if (localization_method == 'boys') then
print*,'Foster-Boys'
call hessian_FB(n,list_size,list,H)
call hessian_FB_omp(n,list_size,list,H2)
elseif(localization_method == 'pipek') then
print*,'Pipek-Mezey'
call hessian_PM(n,list_size,list,H)
call hessian_PM(n,list_size,list,H2)
else
print*,'Unknown localization_method, please select boys or pipek'
call abort
endif
do i = 1, n
print*,i,H(i,i)
enddo
H = H - H2
nb_error = 0
max_elem = 0d0
do i = 1, n
if (dabs(H(i,i)) > threshold) then
print*,H(i,i)
nb_error = nb_error + 1
if (dabs(H(i,i)) > max_elem) then
max_elem = H(i,i)
endif
endif
enddo
print*,'Threshold error', threshold
print*, 'Nb error', nb_error
print*,'Max error', max_elem
deallocate(H,H2)
end
#+END_SRC

View File

@ -0,0 +1,31 @@
program kick_the_mos
!BEGIN_DOC
! To do a small rotation of the MOs
!END_DOC
implicit none
kick_in_mos = .True.
TOUCH kick_in_mos
print*, 'Security mo_class:', security_mo_class
! The default mo_classes are setted only if the MOs to localize are not specified
if (security_mo_class .and. (dim_list_act_orb == mo_num .or. &
dim_list_core_orb + dim_list_act_orb == mo_num)) then
print*, 'WARNING'
print*, 'You must set different mo_class with qp set_mo_class'
print*, 'If you want to kick all the orbital:'
print*, 'qp set Orbital_optimization security_mo_class false'
print*, ''
print*, 'abort'
call abort
endif
call apply_pre_rotation
end

View File

@ -0,0 +1,33 @@
#+BEGIN_SRC f90 :comments org :tangle kick_the_mos.irp.f
program kick_the_mos
!BEGIN_DOC
! To do a small rotation of the MOs
!END_DOC
implicit none
kick_in_mos = .True.
TOUCH kick_in_mos
print*, 'Security mo_class:', security_mo_class
! The default mo_classes are setted only if the MOs to localize are not specified
if (security_mo_class .and. (dim_list_act_orb == mo_num .or. &
dim_list_core_orb + dim_list_act_orb == mo_num)) then
print*, 'WARNING'
print*, 'You must set different mo_class with qp set_mo_class'
print*, 'If you want to kick all the orbital:'
print*, 'qp set Orbital_optimization security_mo_class false'
print*, ''
print*, 'abort'
call abort
endif
call apply_pre_rotation
end
#+END_SRC

View File

@ -0,0 +1,531 @@
program localization
call run_localization
end
! Variables:
! | pre_rot(mo_num, mo_num) | double precision | Matrix for the pre rotation |
! | R(mo_num,mo_num) | double precision | Rotation matrix |
! | tmp_R(:,:) | double precision | Rottation matrix in a subsapce |
! | prev_mos(ao_num, mo_num) | double precision | Previous mo_coef |
! | spatial_extent(mo_num) | double precision | Spatial extent of the orbitals |
! | criterion | double precision | Localization criterion |
! | prev_criterion | double precision | Previous criterion |
! | criterion_model | double precision | Estimated next criterion |
! | rho | double precision | Ratio to measure the agreement between the model |
! | | | and the reality |
! | delta | double precision | Radisu of the trust region |
! | norm_grad | double precision | Norm of the gradient |
! | info | integer | for dsyev from Lapack |
! | max_elem | double precision | maximal element in the gradient |
! | v_grad(:) | double precision | Gradient |
! | H(:,:) | double precision | Hessian (diagonal) |
! | e_val(:) | double precision | Eigenvalues of the hessian |
! | W(:,:) | double precision | Eigenvectors of the hessian |
! | tmp_x(:) | double precision | Step in 1D (in a subaspace) |
! | tmp_m_x(:,:) | double precision | Step in 2D (in a subaspace) |
! | tmp_list(:) | double precision | List of MOs in a mo_class |
! | i,j,k | integer | Indexes in the full MO space |
! | tmp_i, tmp_j, tmp_k | integer | Indexes in a subspace |
! | l | integer | Index for the mo_class |
! | key(:) | integer | Key to sort the eigenvalues of the hessian |
! | nb_iter | integer | Number of iterations |
! | must_exit | logical | To exit the trust region loop |
! | cancel_step | logical | To cancel a step |
! | not_*converged | logical | To localize the different mo classes |
! | t* | double precision | To measure the time |
! | n | integer | mo_num*(mo_num-1)/2, number of orbital parameters |
! | tmp_n | integer | dim_subspace*(dim_subspace-1)/2 |
! | | | Number of dimension in the subspace |
! Variables in qp_edit for the localization:
! | localization_method |
! | localization_max_nb_iter |
! | default_mo_class |
! | thresh_loc_max_elem_grad |
! | kick_in_mos |
! | angle_pre_rot |
! + all the variables for the trust region
! Cf. qp_edit orbital optimization
subroutine run_localization
include 'pi.h'
BEGIN_DOC
! Orbital localization
END_DOC
implicit none
! Variables
double precision, allocatable :: pre_rot(:,:), R(:,:)
double precision, allocatable :: prev_mos(:,:), spatial_extent(:), tmp_R(:,:)
double precision :: criterion, norm_grad
integer :: i,j,k,l,p, tmp_i, tmp_j, tmp_k
integer :: info
integer :: n, tmp_n, tmp_list_size
double precision, allocatable :: v_grad(:), H(:,:), tmp_m_x(:,:), tmp_x(:),W(:,:),e_val(:)
double precision :: max_elem, t1, t2, t3, t4, t5, t6
integer, allocatable :: tmp_list(:), key(:)
double precision :: prev_criterion, rho, delta, criterion_model
integer :: nb_iter, nb_sub_iter
logical :: not_converged, not_core_converged
logical :: not_act_converged, not_inact_converged, not_virt_converged
logical :: use_trust_region, must_exit, cancel_step,enforce_step_cancellation
n = mo_num*(mo_num-1)/2
! Allocation
allocate(spatial_extent(mo_num))
allocate(pre_rot(mo_num, mo_num), R(mo_num, mo_num))
allocate(prev_mos(ao_num, mo_num))
! Locality before the localization
call compute_spatial_extent(spatial_extent)
! Choice of the method (with qp_edit)
print*,''
print*,'Localization method:',localization_method
if (localization_method == 'boys') then
print*,'Foster-Boys localization'
elseif (localization_method == 'pipek') then
print*,'Pipek-Mezey localization'
else
print*,'Unknown localization_method, please select boys or pipek'
call abort
endif
print*,''
! Localization criterion (FB, PM, ...) for each mo_class
print*,'### Before the pre rotation'
! Debug
if (debug_hf) then
print*,'HF energy:', HF_energy
endif
do l = 1, 4
if (l==1) then ! core
tmp_list_size = dim_list_core_orb
elseif (l==2) then ! act
tmp_list_size = dim_list_act_orb
elseif (l==3) then ! inact
tmp_list_size = dim_list_inact_orb
else ! virt
tmp_list_size = dim_list_virt_orb
endif
! Allocation tmp array
allocate(tmp_list(tmp_list_size))
! To give the list of MOs in a mo_class
if (l==1) then ! core
tmp_list = list_core
elseif (l==2) then
tmp_list = list_act
elseif (l==3) then
tmp_list = list_inact
else
tmp_list = list_virt
endif
if (tmp_list_size >= 2) then
call criterion_localization(tmp_list_size, tmp_list,criterion)
print*,'Criterion:', criterion, mo_class(tmp_list(1))
endif
deallocate(tmp_list)
enddo
! Debug
!print*,'HF', HF_energy
print*, 'Security mo_class:', security_mo_class
! The default mo_classes are setted only if the MOs to localize are not specified
if (security_mo_class .and. (n_act_orb == mo_num .or. &
n_core_orb + n_act_orb == mo_num)) then
print*, 'WARNING'
print*, 'You must set different mo_class with qp set_mo_class'
print*, 'If you want to localize all the orbitals:'
print*, 'qp set Orbital_optimization security_mo_class false'
print*, ''
print*, 'abort'
call abort
endif
! Loc
! Pre rotation, to give a little kick in the MOs
call apply_pre_rotation()
! Criterion after the pre rotation
! Localization criterion (FB, PM, ...) for each mo_class
print*,'### After the pre rotation'
! Debug
if (debug_hf) then
touch mo_coef
print*,'HF energy:', HF_energy
endif
do l = 1, 4
if (l==1) then ! core
tmp_list_size = dim_list_core_orb
elseif (l==2) then ! act
tmp_list_size = dim_list_act_orb
elseif (l==3) then ! inact
tmp_list_size = dim_list_inact_orb
else ! virt
tmp_list_size = dim_list_virt_orb
endif
if (tmp_list_size >= 2) then
! Allocation tmp array
allocate(tmp_list(tmp_list_size))
! To give the list of MOs in a mo_class
if (l==1) then ! core
tmp_list = list_core
elseif (l==2) then
tmp_list = list_act
elseif (l==3) then
tmp_list = list_inact
else
tmp_list = list_virt
endif
call criterion_localization(tmp_list_size, tmp_list,criterion)
print*,'Criterion:', criterion, trim(mo_class(tmp_list(1)))
deallocate(tmp_list)
endif
enddo
! Debug
!print*,'HF', HF_energy
print*,''
print*,'========================'
print*,' Orbital localization'
print*,'========================'
print*,''
!Initialization
not_converged = .TRUE.
! To do the localization only if there is at least 2 MOs
if (dim_list_core_orb >= 2) then
not_core_converged = .TRUE.
else
not_core_converged = .FALSE.
endif
if (dim_list_act_orb >= 2) then
not_act_converged = .TRUE.
else
not_act_converged = .FALSE.
endif
if (dim_list_inact_orb >= 2) then
not_inact_converged = .TRUE.
else
not_inact_converged = .FALSE.
endif
if (dim_list_virt_orb >= 2) then
not_virt_converged = .TRUE.
else
not_virt_converged = .FALSE.
endif
! Loop over the mo_classes
do l = 1, 4
if (l==1) then ! core
not_converged = not_core_converged
tmp_list_size = dim_list_core_orb
elseif (l==2) then ! act
not_converged = not_act_converged
tmp_list_size = dim_list_act_orb
elseif (l==3) then ! inact
not_converged = not_inact_converged
tmp_list_size = dim_list_inact_orb
else ! virt
not_converged = not_virt_converged
tmp_list_size = dim_list_virt_orb
endif
! Next iteration if converged = true
if (.not. not_converged) then
cycle
endif
! Allocation tmp array
allocate(tmp_list(tmp_list_size))
! To give the list of MOs in a mo_class
if (l==1) then ! core
tmp_list = list_core
elseif (l==2) then
tmp_list = list_act
elseif (l==3) then
tmp_list = list_inact
else
tmp_list = list_virt
endif
! Display
if (not_converged) then
print*,''
print*,'###', trim(mo_class(tmp_list(1))), 'MOs ###'
print*,''
endif
! Size for the 2D -> 1D transformation
tmp_n = tmp_list_size * (tmp_list_size - 1)/2
! Without hessian + trust region
if (.not. localization_use_hessian) then
! Allocation of temporary arrays
allocate(v_grad(tmp_n), tmp_m_x(tmp_list_size, tmp_list_size))
allocate(tmp_R(tmp_list_size, tmp_list_size), tmp_x(tmp_n))
! Criterion
call criterion_localization(tmp_list_size, tmp_list, prev_criterion)
! Init
nb_iter = 0
delta = 1d0
!Loop
do while (not_converged)
print*,''
print*,'***********************'
print*,'Iteration', nb_iter
print*,'***********************'
print*,''
! Angles of rotation
call theta_localization(tmp_list, tmp_list_size, tmp_m_x, max_elem)
tmp_m_x = - tmp_m_x * delta
! Rotation submatrix
call rotation_matrix(tmp_m_x, tmp_list_size, tmp_R, tmp_list_size, tmp_list_size, &
info, enforce_step_cancellation)
! To ensure that the rotation matrix is unitary
if (enforce_step_cancellation) then
print*, 'Step cancellation, too large error in the rotation matrix'
delta = delta * 0.5d0
cycle
else
delta = min(delta * 2d0, 1d0)
endif
! Full rotation matrix and application of the rotation
call sub_to_full_rotation_matrix(tmp_list_size, tmp_list, tmp_R, R)
call apply_mo_rotation(R, prev_mos)
! Update the needed data
call update_data_localization()
! New criterion
call criterion_localization(tmp_list_size, tmp_list, criterion)
print*,'Criterion:', trim(mo_class(tmp_list(1))), nb_iter, criterion
print*,'Max elem :', max_elem
print*,'Delta :', delta
nb_iter = nb_iter + 1
! Exit
if (nb_iter >= localization_max_nb_iter .or. dabs(max_elem) < thresh_loc_max_elem_grad) then
not_converged = .False.
endif
enddo
! Save the changes
call update_data_localization()
call save_mos()
TOUCH mo_coef
! Deallocate
deallocate(v_grad, tmp_m_x, tmp_list)
deallocate(tmp_R, tmp_x)
! Trust region
else
! Allocation of temporary arrays
allocate(v_grad(tmp_n), H(tmp_n, tmp_n), tmp_m_x(tmp_list_size, tmp_list_size))
allocate(tmp_R(tmp_list_size, tmp_list_size))
allocate(tmp_x(tmp_n), W(tmp_n,tmp_n), e_val(tmp_n), key(tmp_n))
! ### Initialization ###
delta = 0d0 ! can be deleted (normally)
nb_iter = 0 ! Must start at 0 !!!
rho = 0.5d0 ! Must be 0.5
! Compute the criterion before the loop
call criterion_localization(tmp_list_size, tmp_list, prev_criterion)
! Loop until the convergence
do while (not_converged)
print*,''
print*,'***********************'
print*,'Iteration', nb_iter
print*,'***********************'
print*,''
! Gradient
call gradient_localization(tmp_n, tmp_list_size, tmp_list, v_grad, max_elem, norm_grad)
! Diagonal hessian
call hessian_localization(tmp_n, tmp_list_size, tmp_list, H)
! Diagonalization of the diagonal hessian by hands
!call diagonalization_hessian(tmp_n,H,e_val,w)
do i = 1, tmp_n
e_val(i) = H(i,i)
enddo
! Key list for dsort
do i = 1, tmp_n
key(i) = i
enddo
! Sort of the eigenvalues
call dsort(e_val, key, tmp_n)
! Eigenvectors
W = 0d0
do i = 1, tmp_n
j = key(i)
W(j,i) = 1d0
enddo
! To enter in the loop just after
cancel_step = .True.
nb_sub_iter = 0
! Loop to reduce the trust radius until the criterion decreases and rho >= thresh_rho
do while (cancel_step)
print*,'-----------------------------'
print*, mo_class(tmp_list(1))
print*,'Iteration:', nb_iter
print*,'Sub iteration:', nb_sub_iter
print*,'-----------------------------'
! Hessian,gradient,Criterion -> x
call trust_region_step_w_expected_e(tmp_n, H, W, e_val, v_grad, prev_criterion, &
rho, nb_iter, delta, criterion_model, tmp_x, must_exit)
! Internal loop exit condition
if (must_exit) then
print*,'trust_region_step_w_expected_e sent: Exit'
exit
endif
! 1D tmp -> 2D tmp
call vec_to_mat_v2(tmp_n, tmp_list_size, tmp_x, tmp_m_x)
! Rotation submatrix (square matrix tmp_list_size by tmp_list_size)
call rotation_matrix(tmp_m_x, tmp_list_size, tmp_R, tmp_list_size, tmp_list_size, &
info, enforce_step_cancellation)
if (enforce_step_cancellation) then
print*, 'Step cancellation, too large error in the rotation matrix'
rho = 0d0
cycle
endif
! tmp_R to R, subspace to full space
call sub_to_full_rotation_matrix(tmp_list_size, tmp_list, tmp_R, R)
! Rotation of the MOs
call apply_mo_rotation(R, prev_mos)
! Update the things related to mo_coef
call update_data_localization()
! Update the criterion
call criterion_localization(tmp_list_size, tmp_list, criterion)
print*,'Criterion:', trim(mo_class(tmp_list(1))), nb_iter, criterion
! Criterion -> step accepted or rejected
call trust_region_is_step_cancelled(nb_iter, prev_criterion, criterion, &
criterion_model, rho, cancel_step)
! Cancellation of the step, previous MOs
if (cancel_step) then
mo_coef = prev_mos
endif
nb_sub_iter = nb_sub_iter + 1
enddo
!call save_mos() !### depend of the time for 1 iteration
! To exit the external loop if must_exti = .True.
if (must_exit) then
exit
endif
! Step accepted, nb iteration + 1
nb_iter = nb_iter + 1
! External loop exit conditions
if (DABS(max_elem) < thresh_loc_max_elem_grad) then
not_converged = .False.
endif
if (nb_iter > localization_max_nb_iter) then
not_converged = .False.
endif
enddo
! Deallocation of temporary arrays
deallocate(v_grad, H, tmp_m_x, tmp_R, tmp_list, tmp_x, W, e_val, key)
! Save the MOs
call save_mos()
TOUCH mo_coef
! Debug
if (debug_hf) then
touch mo_coef
print*,'HF energy:', HF_energy
endif
endif
enddo
TOUCH mo_coef
! To sort the MOs using the diagonal elements of the Fock matrix
if (sort_mos_by_e) then
call run_sort_by_fock_energies()
endif
! Debug
if (debug_hf) then
touch mo_coef
print*,'HF energy:', HF_energy
endif
! Locality after the localization
call compute_spatial_extent(spatial_extent)
end

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -59,3 +59,45 @@ BEGIN_PROVIDER [ double precision, h_core_ri, (mo_num, mo_num) ]
enddo
END_PROVIDER
BEGIN_PROVIDER [ double precision, h_act_ri, (mo_num, mo_num) ]
implicit none
BEGIN_DOC
! Active Hamiltonian with 3-index exchange integrals:
!
! $\tilde{h}{pq} = h_{pq} - \frac{1}{2}\sum_{k} g(pk,kq)$
END_DOC
integer :: i,j, k
integer :: p,q, r
! core-core contribution
h_act_ri = core_fock_operator
!print *,' Bef----hact(1,14)=',h_act_ri(4,14)
! act-act contribution
do p=1,n_act_orb
j=list_act(p)
do q=1,n_act_orb
i=list_act(q)
h_act_ri(i,j) = mo_one_e_integrals(i,j)
enddo
do r=1,n_act_orb
k=list_act(r)
do q=1,n_act_orb
i=list_act(q)
h_act_ri(i,j) = h_act_ri(i,j) - 0.5 * big_array_exchange_integrals(k,i,j)
enddo
enddo
enddo
! core-act contribution
!do p=1,n_act_orb
! j=list_core(p)
! do k=1,n_core_orb
! do q=1,n_act_orb
! i=list_act(q)
! h_act_ri(i,j) = h_act_ri(i,j) - 0.5 * big_array_exchange_integrals(k,i,j)
! enddo
! enddo
!enddo
!print *,' Aft----hact(1,14)=',h_act_ri(4,14), mo_one_e_integrals(4,14)
END_PROVIDER

View File

@ -1136,6 +1136,104 @@ subroutine ortho_svd(A,LDA,m,n)
end
! QR to orthonormalize CSFs does not work :-(
!subroutine ortho_qr_withB(A,LDA,B,m,n)
! implicit none
! BEGIN_DOC
! ! Orthogonalization using Q.R factorization
! !
! ! A : Overlap Matrix
! !
! ! LDA : leftmost dimension of A
! !
! ! m : Number of rows of A
! !
! ! n : Number of columns of A
! !
! ! B : Output orthogonal basis
! !
! END_DOC
! integer, intent(in) :: m,n, LDA
! double precision, intent(inout) :: A(LDA,n)
! double precision, intent(inout) :: B(LDA,n)
!
! integer :: LWORK, INFO
! integer, allocatable :: jpvt(:)
! double precision, allocatable :: TAU(:), WORK(:)
! double precision, allocatable :: C(:,:)
! double precision :: norm
! integer :: i,j
!
! allocate (TAU(min(m,n)), WORK(1))
! allocate (jpvt(n))
! !print *," In function ortho"
! B = A
!
! jpvt(1:n)=1
!
! LWORK=-1
! call dgeqp3( m, n, A, LDA, jpvt, TAU, WORK, LWORK, INFO )
!
! ! /!\ int(WORK(1)) becomes negative when WORK(1) > 2147483648
! LWORK=max(n,int(WORK(1)))
!
! deallocate(WORK)
! allocate(WORK(LWORK))
! call dgeqp3(m, n, A, LDA, jpvt, TAU, WORK, LWORK, INFO )
! print *,A
! print *,jpvt
! deallocate(WORK,TAU)
! !stop
!
! !LWORK=-1
! !call dgeqrf( m, n, A, LDA, TAU, WORK, LWORK, INFO )
! !! /!\ int(WORK(1)) becomes negative when WORK(1) > 2147483648
! !LWORK=max(n,int(WORK(1)))
!
! !deallocate(WORK)
! !allocate(WORK(LWORK))
! !call dgeqrf(m, n, A, LDA, TAU, WORK, LWORK, INFO )
!
! !LWORK=-1
! !call dorgqr(m, n, n, A, LDA, TAU, WORK, LWORK, INFO)
! !! /!\ int(WORK(1)) becomes negative when WORK(1) > 2147483648
! !LWORK=max(n,int(WORK(1)))
!
! !deallocate(WORK)
! !allocate(WORK(LWORK))
! !call dorgqr(m, n, n, A, LDA, TAU, WORK, LWORK, INFO)
! !
! !allocate(C(LDA,n))
! !call dgemm('N','N',m,n,n,1.0d0,B,LDA,A,LDA,0.0d0,C,LDA)
! !norm = 0.0d0
! !B = 0.0d0
! !!print *,C
! !do i=1,m
! ! norm = 0.0d0
! ! do j=1,n
! ! norm = norm + C(j,i)*C(j,i)
! ! end do
! ! norm = 1.0d0/dsqrt(norm)
! ! do j=1,n
! ! B(j,i) = C(j,i)
! ! end do
! !end do
! !print *,B
!
!
! !deallocate(WORK,TAU)
!end
!subroutine ortho_qr_csf(A, LDA, B, m, n) bind(C, name="ortho_qr_csf")
! use iso_c_binding
! integer(c_int32_t), value :: LDA
! integer(c_int32_t), value :: m
! integer(c_int32_t), value :: n
! integer(c_int16_t) :: A(LDA,n)
! integer(c_int16_t) :: B(LDA,n)
! call ortho_qr_withB(A,LDA,B,m,n)
!end subroutine ortho_qr_csf
subroutine ortho_qr(A,LDA,m,n)
implicit none
BEGIN_DOC

View File

@ -430,3 +430,28 @@ subroutine lowercase(txt,n)
enddo
end
subroutine v2_over_x(v,x,res)
!BEGIN_DOC
! Two by two diagonalization to avoid the divergence in v^2/x when x goes to 0
!END_DOC
implicit none
double precision, intent(in) :: v, x
double precision, intent(out) :: res
double precision :: delta_E, tmp, val
res = 0d0
delta_E = x
if (v == 0.d0) return
val = 2d0 * v
tmp = dsqrt(delta_E * delta_E + val * val)
if (delta_E < 0.d0) then
tmp = -tmp
endif
res = 0.5d0 * (tmp - delta_E)
end

View File

@ -0,0 +1,89 @@
[thresh_delta]
type: double precision
doc: Threshold to stop the optimization if the radius of the trust region delta < thresh_delta
interface: ezfio,provider,ocaml
default: 1.e-10
[thresh_rho]
type: double precision
doc: Threshold for the step acceptance in the trust region algorithm, if (rho .geq. thresh_rho) the step is accepted, else the step is cancelled and a smaller step is tried until (rho .geq. thresh_rho)
interface: ezfio,provider,ocaml
default: 0.1
[thresh_eig]
type: double precision
doc: Threshold to consider when an eigenvalue is 0 in the trust region algorithm
interface: ezfio,provider,ocaml
default: 1.e-12
[thresh_model]
type: double precision
doc: If if ABS(criterion - criterion_model) < thresh_model, the program exit the trust region algorithm
interface: ezfio,provider,ocaml
default: 1.e-12
[absolute_eig]
type: logical
doc: If True, the algorithm replace the eigenvalues of the hessian by their absolute value to compute the step (in the trust region)
interface: ezfio,provider,ocaml
default: false
[thresh_wtg]
type: double precision
doc: Threshold in the trust region algorithm to considere when the dot product of the eigenvector W by the gradient v_grad is equal to 0. Must be smaller than thresh_eig by several order of magnitude to avoid numerical problem. If the research of the optimal lambda cannot reach the condition (||x|| .eq. delta) because (||x|| .lt. delta), the reason might be that thresh_wtg is too big or/and thresh_eig is too small
interface: ezfio,provider,ocaml
default: 1.e-6
[thresh_wtg2]
type: double precision
doc: Threshold in the trust region algorithm to considere when the dot product of the eigenvector W by the gradient v_grad is 0 in the case of avoid_saddle .eq. true. There is no particular reason to put a different value that thresh_wtg, but it can be useful one day
interface: ezfio,provider,ocaml
default: 1.e-6
[avoid_saddle]
type: logical
doc: Test to avoid saddle point, active if true
interface: ezfio,provider,ocaml
default: false
[version_avoid_saddle]
type: integer
doc: cf. trust region, not stable
interface: ezfio,provider,ocaml
default: 3
[thresh_rho_2]
type: double precision
doc: Threshold for the step acceptance for the research of lambda in the trust region algorithm, if (rho_2 .geq. thresh_rho_2) the step is accepted, else the step is rejected
interface: ezfio,provider,ocaml
default: 0.1
[thresh_cc]
type: double precision
doc: Threshold to stop the research of the optimal lambda in the trust region algorithm when (dabs(1d0-||x||^2/delta^2) < thresh_cc)
interface: ezfio,provider,ocaml
default: 1.e-6
[thresh_model_2]
type: double precision
doc: if (ABS(criterion - criterion_model) < thresh_model_2), i.e., the difference between the actual criterion and the predicted next criterion, during the research of the optimal lambda in the trust region algorithm it prints a warning
interface: ezfio,provider,ocaml
default: 1.e-12
[version_lambda_search]
type: integer
doc: Research of the optimal lambda in the trust region algorithm to constrain the norm of the step by solving: 1 -> ||x||^2 - delta^2 .eq. 0, 2 -> 1/||x||^2 - 1/delta^2 .eq. 0
interface: ezfio,provider,ocaml
default: 2
[nb_it_max_lambda]
type: integer
doc: Maximal number of iterations for the research of the optimal lambda in the trust region algorithm
interface: ezfio,provider,ocaml
default: 100
[nb_it_max_pre_search]
type: integer
doc: Maximal number of iterations for the pre-research of the optimal lambda in the trust region algorithm
interface: ezfio,provider,ocaml
default: 40

View File

@ -0,0 +1 @@
hartree_fock

View File

@ -0,0 +1,5 @@
============
trust_region
============
The documentation can be found in the org files.

View File

@ -0,0 +1,7 @@
#!/bin/sh
list='ls *.org'
for element in $list
do
emacs --batch $element -f org-babel-tangle
done

View File

@ -0,0 +1,248 @@
! Algorithm for the trust region
! step_in_trust_region:
! Computes the step in the trust region (delta)
! (automatically sets at the iteration 0 and which evolves during the
! process in function of the evolution of rho). The step is computing by
! constraining its norm with a lagrange multiplier.
! Since the calculation of the step is based on the Newton method, an
! estimation of the gain in energy is given using the Taylors series
! truncated at the second order (criterion_model).
! If (DABS(criterion-criterion_model) < 1d-12) then
! must_exit = .True.
! else
! must_exit = .False.
! This estimation of the gain in energy is used by
! is_step_cancel_trust_region to say if the step is accepted or cancelled.
! If the step must be cancelled, the calculation restart from the same
! hessian and gradient and recomputes the step but in a smaller trust
! region and so on until the step is accepted. If the step is accepted
! the hessian and the gradient are recomputed to produce a new step.
! Example:
! !### Initialization ###
! delta = 0d0
! nb_iter = 0 ! Must start at 0 !!!
! rho = 0.5d0
! not_converged = .True.
!
! ! ### TODO ###
! ! Compute the criterion before the loop
! call #your_criterion(prev_criterion)
!
! do while (not_converged)
! ! ### TODO ##
! ! Call your gradient
! ! Call you hessian
! call #your_gradient(v_grad) (1D array)
! call #your_hessian(H) (2D array)
!
! ! ### TODO ###
! ! Diagonalization of the hessian
! call diagonalization_hessian(n,H,e_val,w)
!
! cancel_step = .True. ! To enter in the loop just after
! ! Loop to Reduce the trust radius until the criterion decreases and rho >= thresh_rho
! do while (cancel_step)
!
! ! Hessian,gradient,Criterion -> x
! call trust_region_step_w_expected_e(tmp_n,W,e_val,v_grad,prev_criterion,rho,nb_iter,delta,criterion_model,tmp_x,must_exit)
!
! if (must_exit) then
! ! ### Message ###
! ! if step_in_trust_region sets must_exit on true for numerical reasons
! print*,'algo_trust1 sends the message : Exit'
! !### exit ###
! endif
!
! !### TODO ###
! ! Compute x -> m_x
! ! Compute m_x -> R
! ! Apply R and keep the previous MOs...
! ! Update/touch
! ! Compute the new criterion/energy -> criterion
!
! call #your_routine_1D_to_2D_antisymmetric_array(x,m_x)
! call #your_routine_2D_antisymmetric_array_to_rotation_matrix(m_x,R)
! call #your_routine_to_apply_the_rotation_matrix(R,prev_mos)
!
! TOUCH #your_variables
!
! call #your_criterion(criterion)
!
! ! Criterion -> step accepted or rejected
! call trust_region_is_step_cancelled(nb_iter,prev_criterion, criterion, criterion_model,rho,cancel_step)
!
! ! ### TODO ###
! !if (cancel_step) then
! ! Cancel the previous step (mo_coef = prev_mos if you keep them...)
! !endif
! #if (cancel_step) then
! #mo_coef = prev_mos
! #endif
!
! enddo
!
! !call save_mos() !### depend of the time for 1 iteration
!
! ! To exit the external loop if must_exit = .True.
! if (must_exit) then
! !### exit ###
! endif
!
! ! Step accepted, nb iteration + 1
! nb_iter = nb_iter + 1
!
! ! ### TODO ###
! !if (###Conditions###) then
! ! no_converged = .False.
! !endif
! #if (#your_conditions) then
! # not_converged = .False.
! #endif
!
! enddo
! Variables:
! Input:
! | n | integer | m*(m-1)/2 |
! | m | integer | number of mo in the mo_class |
! | H(n,n) | double precision | Hessian |
! | v_grad(n) | double precision | Gradient |
! | W(n,n) | double precision | Eigenvectors of the hessian |
! | e_val(n) | double precision | Eigenvalues of the hessian |
! | criterion | double precision | Actual criterion |
! | prev_criterion | double precision | Value of the criterion before the first iteration/after the previous iteration |
! | rho | double precision | Given by is_step_cancel_trus_region |
! | | | Agreement between the real function and the Taylor series (2nd order) |
! | nb_iter | integer | Actual number of iterations |
! Input/output:
! | delta | double precision | Radius of the trust region |
! Output:
! | criterion_model | double precision | Predicted criterion after the rotation |
! | x(n) | double precision | Step |
! | must_exit | logical | If the program must exit the loop |
subroutine trust_region_step_w_expected_e(n,H,W,e_val,v_grad,prev_criterion,rho,nb_iter,delta,criterion_model,x,must_exit)
include 'pi.h'
BEGIN_DOC
! Compute the step and the expected criterion/energy after the step
END_DOC
implicit none
! in
integer, intent(in) :: n, nb_iter
double precision, intent(in) :: H(n,n), W(n,n), v_grad(n)
double precision, intent(in) :: rho, prev_criterion
! inout
double precision, intent(inout) :: delta, e_val(n)
! out
double precision, intent(out) :: criterion_model, x(n)
logical, intent(out) :: must_exit
! internal
integer :: info
must_exit = .False.
call trust_region_step(n,nb_iter,v_grad,rho,e_val,W,x,delta)
call trust_region_expected_e(n,v_grad,H,x,prev_criterion,criterion_model)
! exit if DABS(prev_criterion - criterion_model) < 1d-12
if (DABS(prev_criterion - criterion_model) < thresh_model) then
print*,''
print*,'###############################################################################'
print*,'DABS(prev_criterion - criterion_model) <', thresh_model, 'stop the trust region'
print*,'###############################################################################'
print*,''
must_exit = .True.
endif
if (delta < thresh_delta) then
print*,''
print*,'##############################################'
print*,'Delta <', thresh_delta, 'stop the trust region'
print*,'##############################################'
print*,''
must_exit = .True.
endif
! Add after the call to this subroutine, a statement:
! "if (must_exit) then
! exit
! endif"
! in order to exit the optimization loop
end subroutine
! Variables:
! Input:
! | nb_iter | integer | actual number of iterations |
! | prev_criterion | double precision | criterion before the application of the step x |
! | criterion | double precision | criterion after the application of the step x |
! | criterion_model | double precision | predicted criterion after the application of x |
! Output:
! | rho | double precision | Agreement between the predicted criterion and the real new criterion |
! | cancel_step | logical | If the step must be cancelled |
subroutine trust_region_is_step_cancelled(nb_iter,prev_criterion, criterion, criterion_model,rho,cancel_step)
include 'pi.h'
BEGIN_DOC
! Compute if the step should be cancelled
END_DOC
implicit none
! in
double precision, intent(in) :: prev_criterion, criterion, criterion_model
! inout
integer, intent(inout) :: nb_iter
! out
logical, intent(out) :: cancel_step
double precision, intent(out) :: rho
! Computes rho
call trust_region_rho(prev_criterion,criterion,criterion_model,rho)
if (nb_iter == 0) then
nb_iter = 1 ! in order to enable the change of delta if the first iteration is cancelled
endif
! If rho < thresh_rho -> give something in output to cancel the step
if (rho >= thresh_rho) then !0.1d0) then
! The step is accepted
cancel_step = .False.
else
! The step is rejected
cancel_step = .True.
print*, '***********************'
print*, 'Step cancel : rho <', thresh_rho
print*, '***********************'
endif
end subroutine

View File

@ -0,0 +1,593 @@
* Algorithm for the trust region
step_in_trust_region:
Computes the step in the trust region (delta)
(automatically sets at the iteration 0 and which evolves during the
process in function of the evolution of rho). The step is computing by
constraining its norm with a lagrange multiplier.
Since the calculation of the step is based on the Newton method, an
estimation of the gain in energy is given using the Taylors series
truncated at the second order (criterion_model).
If (DABS(criterion-criterion_model) < 1d-12) then
must_exit = .True.
else
must_exit = .False.
This estimation of the gain in energy is used by
is_step_cancel_trust_region to say if the step is accepted or cancelled.
If the step must be cancelled, the calculation restart from the same
hessian and gradient and recomputes the step but in a smaller trust
region and so on until the step is accepted. If the step is accepted
the hessian and the gradient are recomputed to produce a new step.
Example:
#+BEGIN_SRC f90 :comments org :tangle algo_trust.irp.f
! !### Initialization ###
! delta = 0d0
! nb_iter = 0 ! Must start at 0 !!!
! rho = 0.5d0
! not_converged = .True.
!
! ! ### TODO ###
! ! Compute the criterion before the loop
! call #your_criterion(prev_criterion)
!
! do while (not_converged)
! ! ### TODO ##
! ! Call your gradient
! ! Call you hessian
! call #your_gradient(v_grad) (1D array)
! call #your_hessian(H) (2D array)
!
! ! ### TODO ###
! ! Diagonalization of the hessian
! call diagonalization_hessian(n,H,e_val,w)
!
! cancel_step = .True. ! To enter in the loop just after
! ! Loop to Reduce the trust radius until the criterion decreases and rho >= thresh_rho
! do while (cancel_step)
!
! ! Hessian,gradient,Criterion -> x
! call trust_region_step_w_expected_e(tmp_n,W,e_val,v_grad,prev_criterion,rho,nb_iter,delta,criterion_model,tmp_x,must_exit)
!
! if (must_exit) then
! ! ### Message ###
! ! if step_in_trust_region sets must_exit on true for numerical reasons
! print*,'algo_trust1 sends the message : Exit'
! !### exit ###
! endif
!
! !### TODO ###
! ! Compute x -> m_x
! ! Compute m_x -> R
! ! Apply R and keep the previous MOs...
! ! Update/touch
! ! Compute the new criterion/energy -> criterion
!
! call #your_routine_1D_to_2D_antisymmetric_array(x,m_x)
! call #your_routine_2D_antisymmetric_array_to_rotation_matrix(m_x,R)
! call #your_routine_to_apply_the_rotation_matrix(R,prev_mos)
!
! TOUCH #your_variables
!
! call #your_criterion(criterion)
!
! ! Criterion -> step accepted or rejected
! call trust_region_is_step_cancelled(nb_iter,prev_criterion, criterion, criterion_model,rho,cancel_step)
!
! ! ### TODO ###
! !if (cancel_step) then
! ! Cancel the previous step (mo_coef = prev_mos if you keep them...)
! !endif
! #if (cancel_step) then
! #mo_coef = prev_mos
! #endif
!
! enddo
!
! !call save_mos() !### depend of the time for 1 iteration
!
! ! To exit the external loop if must_exit = .True.
! if (must_exit) then
! !### exit ###
! endif
!
! ! Step accepted, nb iteration + 1
! nb_iter = nb_iter + 1
!
! ! ### TODO ###
! !if (###Conditions###) then
! ! no_converged = .False.
! !endif
! #if (#your_conditions) then
! # not_converged = .False.
! #endif
!
! enddo
#+END_SRC
Variables:
Input:
| n | integer | m*(m-1)/2 |
| m | integer | number of mo in the mo_class |
| H(n,n) | double precision | Hessian |
| v_grad(n) | double precision | Gradient |
| W(n,n) | double precision | Eigenvectors of the hessian |
| e_val(n) | double precision | Eigenvalues of the hessian |
| criterion | double precision | Actual criterion |
| prev_criterion | double precision | Value of the criterion before the first iteration/after the previous iteration |
| rho | double precision | Given by is_step_cancel_trus_region |
| | | Agreement between the real function and the Taylor series (2nd order) |
| nb_iter | integer | Actual number of iterations |
Input/output:
| delta | double precision | Radius of the trust region |
Output:
| criterion_model | double precision | Predicted criterion after the rotation |
| x(n) | double precision | Step |
| must_exit | logical | If the program must exit the loop |
#+BEGIN_SRC f90 :comments org :tangle algo_trust.irp.f
subroutine trust_region_step_w_expected_e(n,H,W,e_val,v_grad,prev_criterion,rho,nb_iter,delta,criterion_model,x,must_exit)
include 'pi.h'
BEGIN_DOC
! Compute the step and the expected criterion/energy after the step
END_DOC
implicit none
! in
integer, intent(in) :: n, nb_iter
double precision, intent(in) :: H(n,n), W(n,n), v_grad(n)
double precision, intent(in) :: rho, prev_criterion
! inout
double precision, intent(inout) :: delta, e_val(n)
! out
double precision, intent(out) :: criterion_model, x(n)
logical, intent(out) :: must_exit
! internal
integer :: info
must_exit = .False.
call trust_region_step(n,nb_iter,v_grad,rho,e_val,W,x,delta)
call trust_region_expected_e(n,v_grad,H,x,prev_criterion,criterion_model)
! exit if DABS(prev_criterion - criterion_model) < 1d-12
if (DABS(prev_criterion - criterion_model) < thresh_model) then
print*,''
print*,'###############################################################################'
print*,'DABS(prev_criterion - criterion_model) <', thresh_model, 'stop the trust region'
print*,'###############################################################################'
print*,''
must_exit = .True.
endif
if (delta < thresh_delta) then
print*,''
print*,'##############################################'
print*,'Delta <', thresh_delta, 'stop the trust region'
print*,'##############################################'
print*,''
must_exit = .True.
endif
! Add after the call to this subroutine, a statement:
! "if (must_exit) then
! exit
! endif"
! in order to exit the optimization loop
end subroutine
#+END_SRC
Variables:
Input:
| nb_iter | integer | actual number of iterations |
| prev_criterion | double precision | criterion before the application of the step x |
| criterion | double precision | criterion after the application of the step x |
| criterion_model | double precision | predicted criterion after the application of x |
Output:
| rho | double precision | Agreement between the predicted criterion and the real new criterion |
| cancel_step | logical | If the step must be cancelled |
#+BEGIN_SRC f90 :comments org :tangle algo_trust.irp.f
subroutine trust_region_is_step_cancelled(nb_iter,prev_criterion, criterion, criterion_model,rho,cancel_step)
include 'pi.h'
BEGIN_DOC
! Compute if the step should be cancelled
END_DOC
implicit none
! in
double precision, intent(in) :: prev_criterion, criterion, criterion_model
! inout
integer, intent(inout) :: nb_iter
! out
logical, intent(out) :: cancel_step
double precision, intent(out) :: rho
! Computes rho
call trust_region_rho(prev_criterion,criterion,criterion_model,rho)
if (nb_iter == 0) then
nb_iter = 1 ! in order to enable the change of delta if the first iteration is cancelled
endif
! If rho < thresh_rho -> give something in output to cancel the step
if (rho >= thresh_rho) then !0.1d0) then
! The step is accepted
cancel_step = .False.
else
! The step is rejected
cancel_step = .True.
print*, '***********************'
print*, 'Step cancel : rho <', thresh_rho
print*, '***********************'
endif
end subroutine
#+END_SRC
** Template for MOs
#+BEGIN_SRC f90 :comments org :tangle trust_region_template_mos.txt
subroutine algo_trust_template(tmp_n, tmp_list_size, tmp_list)
implicit none
! Variables
! In
integer, intent(in) :: tmp_n, tmp_list_size, tmp_list(tmp_list_size)
! Out
! Rien ou un truc pour savoir si ça c'est bien passé
! Internal
double precision, allocatable :: e_val(:), W(:,:), tmp_R(:,:), R(:,:), tmp_x(:), tmp_m_x(:,:)
double precision, allocatable :: prev_mos(:,:)
double precision :: criterion, prev_criterion, criterion_model
double precision :: delta, rho
logical :: not_converged, cancel_step, must_exit, enforce_step_cancellation
integer :: nb_iter, info, nb_sub_iter
integer :: i,j,tmp_i,tmp_j
allocate(W(tmp_n, tmp_n),e_val(tmp_n),tmp_x(tmp_n),tmp_m_x(tmp_list_size, tmp_list_size))
allocate(tmp_R(tmp_list_size, tmp_list_size), R(mo_num, mo_num))
allocate(prev_mos(ao_num, mo_num))
! Provide the criterion, but unnecessary because it's done
! automatically
PROVIDE C_PROVIDER H_PROVIDER g_PROVIDER cc_PROVIDER
! Initialization
delta = 0d0
nb_iter = 0 ! Must start at 0 !!!
rho = 0.5d0 ! Must start at 0.5
not_converged = .True. ! Must be true
! Compute the criterion before the loop
prev_criterion = C_PROVIDER
do while (not_converged)
print*,''
print*,'******************'
print*,'Iteration', nb_iter
print*,'******************'
print*,''
! The new hessian and gradient are computed at the end of the previous iteration
! Diagonalization of the hessian
call diagonalization_hessian(tmp_n, H_PROVIDER, e_val, W)
cancel_step = .True. ! To enter in the loop just after
nb_sub_iter = 0
! Loop to Reduce the trust radius until the criterion decreases and rho >= thresh_rho
do while (cancel_step)
print*,'-----------------------------'
print*,'Iteration:', nb_iter
print*,'Sub iteration:', nb_sub_iter
print*,'-----------------------------'
! Hessian,gradient,Criterion -> x
call trust_region_step_w_expected_e(tmp_n, H_PROVIDER, W, e_val, g_PROVIDER, &
prev_criterion, rho, nb_iter, delta, criterion_model, tmp_x, must_exit)
if (must_exit) then
! if step_in_trust_region sets must_exit on true for numerical reasons
print*,'trust_region_step_w_expected_e sent the message : Exit'
exit
endif
! 1D tmp -> 2D tmp
call vec_to_mat_v2(tmp_n, tmp_list_size, tmp_x, tmp_m_x)
! Rotation submatrix (square matrix tmp_list_size by tmp_list_size)
call rotation_matrix(tmp_m_x, tmp_list_size, tmp_R, tmp_list_size, tmp_list_size, info, enforce_step_cancellation)
if (enforce_step_cancellation) then
print*, 'Forces the step cancellation, too large error in the rotation matrix'
rho = 0d0
cycle
endif
! tmp_R to R, subspace to full space
call sub_to_full_rotation_matrix(tmp_list_size, tmp_list, tmp_R, R)
! Rotation of the MOs
call apply_mo_rotation(R, prev_mos)
! touch mo_coef
call clear_mo_map ! Only if you are using the bi-electronic integrals
! mo_coef becomes valid
! And avoid the recomputation of the providers which depend of mo_coef
TOUCH mo_coef C_PROVIDER H_PROVIDER g_PROVIDER cc_PROVIDER
! To update the other parameters if needed
call #update_parameters()
! To enforce the program to provide new criterion after the update
! of the parameters
FREE C_PROVIDER
PROVIDE C_PROVIDER
criterion = C_PROVIDER
! Criterion -> step accepted or rejected
call trust_region_is_step_cancelled(nb_iter, prev_criterion, criterion, criterion_model, rho, cancel_step)
! Cancellation of the step ?
if (cancel_step) then
! Replacement by the previous MOs
mo_coef = prev_mos
! call save_mos() ! depends of the time for 1 iteration
! No need to clear_mo_map since we don't recompute the gradient and the hessian
! mo_coef becomes valid
! Avoid the recomputation of the providers which depend of mo_coef
TOUCH mo_coef H_PROVIDER g_PROVIDER C_PROVIDER cc_PROVIDER
else
! The step is accepted:
! criterion -> prev criterion
! The replacement "criterion -> prev criterion" is already done
! in trust_region_rho, so if the criterion does not have a reason
! to change, it will change nothing for the criterion and will
! force the program to provide the new hessian, gradient and
! convergence criterion for the next iteration.
! But in the case of orbital optimization we diagonalize the CI
! matrix after the "FREE" statement, so the criterion will change
FREE C_PROVIDER H_PROVIDER g_PROVIDER cc_PROVIDER
PROVIDE C_PROVIDER H_PROVIDER g_PROVIDER cc_PROVIDER
prev_criterion = C_PROVIDER
endif
nb_sub_iter = nb_sub_iter + 1
enddo
! call save_mos() ! depends of the time for 1 iteration
! To exit the external loop if must_exit = .True.
if (must_exit) then
exit
endif
! Step accepted, nb iteration + 1
nb_iter = nb_iter + 1
! Provide the convergence criterion
! Provide the gradient and the hessian for the next iteration
PROVIDE cc_PROVIDER
! To exit
if (dabs(cc_PROVIDER) < thresh_opt_max_elem_grad) then
not_converged = .False.
endif
if (nb_iter > optimization_max_nb_iter) then
not_converged = .False.
endif
if (delta < thresh_delta) then
not_converged = .False.
endif
enddo
! Save the final MOs
call save_mos()
! Diagonalization of the hessian
! (To see the eigenvalues at the end of the optimization)
call diagonalization_hessian(tmp_n, H_PROVIDER, e_val, W)
deallocate(e_val, W, tmp_R, R, tmp_x, prev_mos)
end
#+END_SRC
** Cartesian version
#+BEGIN_SRC f90 :comments org :tangle trust_region_template_xyz.txt
subroutine algo_trust_cartesian_template(tmp_n)
implicit none
! Variables
! In
integer, intent(in) :: tmp_n
! Out
! Rien ou un truc pour savoir si ça c'est bien passé
! Internal
double precision, allocatable :: e_val(:), W(:,:), tmp_x(:)
double precision :: criterion, prev_criterion, criterion_model
double precision :: delta, rho
logical :: not_converged, cancel_step, must_exit
integer :: nb_iter, nb_sub_iter
integer :: i,j
allocate(W(tmp_n, tmp_n),e_val(tmp_n),tmp_x(tmp_n))
PROVIDE C_PROVIDER X_PROVIDER H_PROVIDER g_PROVIDER
! Initialization
delta = 0d0
nb_iter = 0 ! Must start at 0 !!!
rho = 0.5d0 ! Must start at 0.5
not_converged = .True. ! Must be true
! Compute the criterion before the loop
prev_criterion = C_PROVIDER
do while (not_converged)
print*,''
print*,'******************'
print*,'Iteration', nb_iter
print*,'******************'
print*,''
if (nb_iter > 0) then
PROVIDE H_PROVIDER g_PROVIDER
endif
! Diagonalization of the hessian
call diagonalization_hessian(tmp_n, H_PROVIDER, e_val, W)
cancel_step = .True. ! To enter in the loop just after
nb_sub_iter = 0
! Loop to Reduce the trust radius until the criterion decreases and rho >= thresh_rho
do while (cancel_step)
print*,'-----------------------------'
print*,'Iteration:', nb_iter
print*,'Sub iteration:', nb_sub_iter
print*,'-----------------------------'
! Hessian,gradient,Criterion -> x
call trust_region_step_w_expected_e(tmp_n, H_PROVIDER, W, e_val, g_PROVIDER, &
prev_criterion, rho, nb_iter, delta, criterion_model, tmp_x, must_exit)
if (must_exit) then
! if step_in_trust_region sets must_exit on true for numerical reasons
print*,'trust_region_step_w_expected_e sent the message : Exit'
exit
endif
! New coordinates, check the sign
X_PROVIDER = X_PROVIDER - tmp_x
! touch X_PROVIDER
TOUCH X_PROVIDER H_PROVIDER g_PROVIDER cc_PROVIDER
! To update the other parameters if needed
call #update_parameters()
! New criterion
PROVIDE C_PROVIDER ! Unnecessary
criterion = C_PROVIDER
! Criterion -> step accepted or rejected
call trust_region_is_step_cancelled(nb_iter, prev_criterion, criterion, criterion_model, rho, cancel_step)
! Cancel the previous step
if (cancel_step) then
! Replacement by the previous coordinates, check the sign
X_PROVIDER = X_PROVIDER + tmp_x
! Avoid the recomputation of the hessian and the gradient
TOUCH X_PROVIDER H_PROVIDER g_PROVIDER C_PROVIDER cc_PROVIDER
endif
nb_sub_iter = nb_sub_iter + 1
enddo
! To exit the external loop if must_exit = .True.
if (must_exit) then
exit
endif
! Step accepted, nb iteration + 1
nb_iter = nb_iter + 1
PROVIDE cc_PROVIDER
! To exit
if (dabs(cc_PROVIDER) < thresh_opt_max_elem_grad) then
not_converged = .False.
endif
if (nb_iter > optimization_max_nb_iter) then
not_converged = .False.
endif
if (delta < thresh_delta) then
not_converged = .False.
endif
enddo
deallocate(e_val, W, tmp_x)
end
#+END_SRC
** Script template
#+BEGIN_SRC bash :tangle script_template_mos.sh
#!/bin/bash
your_file=
your_C_PROVIDER=
your_H_PROVIDER=
your_g_PROVIDER=
your_cc_PROVIDER=
sed "s/C_PROVIDER/$your_C_PROVIDER/g" trust_region_template_mos.txt > $your_file
sed -i "s/H_PROVIDER/$your_H_PROVIDER/g" $your_file
sed -i "s/g_PROVIDER/$your_g_PROVIDER/g" $your_file
sed -i "s/cc_PROVIDER/$your_cc_PROVIDER/g" $your_file
#+END_SRC
#+BEGIN_SRC bash :tangle script_template_xyz.sh
#!/bin/bash
your_file=
your_C_PROVIDER=
your_X_PROVIDER=
your_H_PROVIDER=
your_g_PROVIDER=
your_cc_PROVIDER=
sed "s/C_PROVIDER/$your_C_PROVIDER/g" trust_region_template_xyz.txt > $your_file
sed -i "s/X_PROVIDER/$your_X_PROVIDER/g" $your_file
sed -i "s/H_PROVIDER/$your_H_PROVIDER/g" $your_file
sed -i "s/g_PROVIDER/$your_g_PROVIDER/g" $your_file
sed -i "s/cc_PROVIDER/$your_cc_PROVIDER/g" $your_file
#+END_SRC

View File

@ -0,0 +1,85 @@
! Apply MO rotation
! Subroutine to apply the rotation matrix to the coefficients of the
! MOs.
! New MOs = Old MOs . Rotation matrix
! *Compute the new MOs with the previous MOs and a rotation matrix*
! Provided:
! | mo_num | integer | number of MOs |
! | ao_num | integer | number of AOs |
! | mo_coef(ao_num,mo_num) | double precision | coefficients of the MOs |
! Intent in:
! | R(mo_num,mo_num) | double precision | rotation matrix |
! Intent out:
! | prev_mos(ao_num,mo_num) | double precision | MOs before the rotation |
! Internal:
! | new_mos(ao_num,mo_num) | double precision | MOs after the rotation |
! | i,j | integer | indexes |
subroutine apply_mo_rotation(R,prev_mos)
include 'pi.h'
BEGIN_DOC
! Compute the new MOs knowing the rotation matrix
END_DOC
implicit none
! Variables
! in
double precision, intent(in) :: R(mo_num,mo_num)
! out
double precision, intent(out) :: prev_mos(ao_num,mo_num)
! internal
double precision, allocatable :: new_mos(:,:)
integer :: i,j
double precision :: t1,t2,t3
print*,''
print*,'---apply_mo_rotation---'
call wall_time(t1)
! Allocation
allocate(new_mos(ao_num,mo_num))
! Calculation
! Product of old MOs (mo_coef) by Rotation matrix (R)
call dgemm('N','N',ao_num,mo_num,mo_num,1d0,mo_coef,size(mo_coef,1),R,size(R,1),0d0,new_mos,size(new_mos,1))
prev_mos = mo_coef
mo_coef = new_mos
!if (debug) then
! print*,'New mo_coef : '
! do i = 1, mo_num
! write(*,'(100(F10.5))') mo_coef(i,:)
! enddo
!endif
! Save the new MOs and change the label
mo_label = 'MCSCF'
!call save_mos
call ezfio_set_determinants_mo_label(mo_label)
!print*,'Done, MOs saved'
! Deallocation, end
deallocate(new_mos)
call wall_time(t2)
t3 = t2 - t1
print*,'Time in apply mo rotation:', t3
print*,'---End apply_mo_rotation---'
end subroutine

View File

@ -0,0 +1,86 @@
* Apply MO rotation
Subroutine to apply the rotation matrix to the coefficients of the
MOs.
New MOs = Old MOs . Rotation matrix
*Compute the new MOs with the previous MOs and a rotation matrix*
Provided:
| mo_num | integer | number of MOs |
| ao_num | integer | number of AOs |
| mo_coef(ao_num,mo_num) | double precision | coefficients of the MOs |
Intent in:
| R(mo_num,mo_num) | double precision | rotation matrix |
Intent out:
| prev_mos(ao_num,mo_num) | double precision | MOs before the rotation |
Internal:
| new_mos(ao_num,mo_num) | double precision | MOs after the rotation |
| i,j | integer | indexes |
#+BEGIN_SRC f90 :comments org :tangle apply_mo_rotation.irp.f
subroutine apply_mo_rotation(R,prev_mos)
include 'pi.h'
BEGIN_DOC
! Compute the new MOs knowing the rotation matrix
END_DOC
implicit none
! Variables
! in
double precision, intent(in) :: R(mo_num,mo_num)
! out
double precision, intent(out) :: prev_mos(ao_num,mo_num)
! internal
double precision, allocatable :: new_mos(:,:)
integer :: i,j
double precision :: t1,t2,t3
print*,''
print*,'---apply_mo_rotation---'
call wall_time(t1)
! Allocation
allocate(new_mos(ao_num,mo_num))
! Calculation
! Product of old MOs (mo_coef) by Rotation matrix (R)
call dgemm('N','N',ao_num,mo_num,mo_num,1d0,mo_coef,size(mo_coef,1),R,size(R,1),0d0,new_mos,size(new_mos,1))
prev_mos = mo_coef
mo_coef = new_mos
!if (debug) then
! print*,'New mo_coef : '
! do i = 1, mo_num
! write(*,'(100(F10.5))') mo_coef(i,:)
! enddo
!endif
! Save the new MOs and change the label
mo_label = 'MCSCF'
!call save_mos
call ezfio_set_determinants_mo_label(mo_label)
!print*,'Done, MOs saved'
! Deallocation, end
deallocate(new_mos)
call wall_time(t2)
t3 = t2 - t1
print*,'Time in apply mo rotation:', t3
print*,'---End apply_mo_rotation---'
end subroutine
#+END_SRC

View File

@ -0,0 +1,61 @@
! Matrix to vector index
! *Compute the index i of a vector element from the indexes p,q of a
! matrix element*
! Lower diagonal matrix (p,q), p > q -> vector (i)
! If a matrix is antisymmetric it can be reshaped as a vector. And the
! vector can be reshaped as an antisymmetric matrix
! \begin{align*}
! \begin{pmatrix}
! 0 & -1 & -2 & -4 \\
! 1 & 0 & -3 & -5 \\
! 2 & 3 & 0 & -6 \\
! 4 & 5 & 6 & 0
! \end{pmatrix}
! \Leftrightarrow
! \begin{pmatrix}
! 1 & 2 & 3 & 4 & 5 & 6
! \end{pmatrix}
! \end{align*}
! !!! Here the algorithm only work for the lower diagonal !!!
! Input:
! | p,q | integer | indexes of a matrix element in the lower diagonal |
! | | | p > q, q -> column |
! | | | p -> row, |
! | | | q -> column |
! Input:
! | i | integer | corresponding index in the vector |
subroutine mat_to_vec_index(p,q,i)
include 'pi.h'
implicit none
! Variables
! in
integer, intent(in) :: p,q
! out
integer, intent(out) :: i
! internal
integer :: a,b
double precision :: da
! Calculation
a = p-1
b = a*(a-1)/2
i = q+b
end subroutine

View File

@ -0,0 +1,63 @@
* Matrix to vector index
*Compute the index i of a vector element from the indexes p,q of a
matrix element*
Lower diagonal matrix (p,q), p > q -> vector (i)
If a matrix is antisymmetric it can be reshaped as a vector. And the
vector can be reshaped as an antisymmetric matrix
\begin{align*}
\begin{pmatrix}
0 & -1 & -2 & -4 \\
1 & 0 & -3 & -5 \\
2 & 3 & 0 & -6 \\
4 & 5 & 6 & 0
\end{pmatrix}
\Leftrightarrow
\begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6
\end{pmatrix}
\end{align*}
!!! Here the algorithm only work for the lower diagonal !!!
Input:
| p,q | integer | indexes of a matrix element in the lower diagonal |
| | | p > q, q -> column |
| | | p -> row, |
| | | q -> column |
Input:
| i | integer | corresponding index in the vector |
#+BEGIN_SRC f90 :comments org :tangle mat_to_vec_index.irp.f
subroutine mat_to_vec_index(p,q,i)
include 'pi.h'
implicit none
! Variables
! in
integer, intent(in) :: p,q
! out
integer, intent(out) :: i
! internal
integer :: a,b
double precision :: da
! Calculation
a = p-1
b = a*(a-1)/2
i = q+b
end subroutine
#+END_SRC

View File

@ -0,0 +1,2 @@
!logical, parameter :: debug=.False.
double precision, parameter :: pi = 3.1415926535897932d0

View File

@ -0,0 +1,443 @@
! Rotation matrix
! *Build a rotation matrix from an antisymmetric matrix*
! Compute a rotation matrix $\textbf{R}$ from an antisymmetric matrix $$\textbf{A}$$ such as :
! $$
! \textbf{R}=\exp(\textbf{A})
! $$
! So :
! \begin{align*}
! \textbf{R}=& \exp(\textbf{A}) \\
! =& \sum_k^{\infty} \frac{1}{k!}\textbf{A}^k \\
! =& \textbf{W} \cdot \cos(\tau) \cdot \textbf{W}^{\dagger} + \textbf{W} \cdot \tau^{-1} \cdot \sin(\tau) \cdot \textbf{W}^{\dagger} \cdot \textbf{A}
! \end{align*}
! With :
! $\textbf{W}$ : eigenvectors of $\textbf{A}^2$
! $\tau$ : $\sqrt{-x}$
! $x$ : eigenvalues of $\textbf{A}^2$
! Input:
! | A(n,n) | double precision | antisymmetric matrix |
! | n | integer | number of columns of the A matrix |
! | LDA | integer | specifies the leading dimension of A, must be at least max(1,n) |
! | LDR | integer | specifies the leading dimension of R, must be at least max(1,n) |
! Output:
! | R(n,n) | double precision | Rotation matrix |
! | info | integer | if info = 0, the execution is successful |
! | | | if info = k, the k-th parameter has an illegal value |
! | | | if info = -k, the algorithm failed |
! Internal:
! | B(n,n) | double precision | B = A.A |
! | work(lwork,n) | double precision | work matrix for dysev, dimension max(1,lwork) |
! | lwork | integer | dimension of the syev work array >= max(1, 3n-1) |
! | W(n,n) | double precision | eigenvectors of B |
! | e_val(n) | double precision | eigenvalues of B |
! | m_diag(n,n) | double precision | diagonal matrix with the eigenvalues of B |
! | cos_tau(n,n) | double precision | diagonal matrix with cos(tau) values |
! | sin_tau(n,n) | double precision | diagonal matrix with sin cos(tau) values |
! | tau_m1(n,n) | double precision | diagonal matrix with (tau)^-1 values |
! | part_1(n,n) | double precision | matrix W.cos_tau.W^t |
! | part_1a(n,n) | double precision | matrix cos_tau.W^t |
! | part_2(n,n) | double precision | matrix W.tau_m1.sin_tau.W^t.A |
! | part_2a(n,n) | double precision | matrix W^t.A |
! | part_2b(n,n) | double precision | matrix sin_tau.W^t.A |
! | part_2c(n,n) | double precision | matrix tau_m1.sin_tau.W^t.A |
! | RR_t(n,n) | double precision | R.R^t must be equal to the identity<=> R.R^t-1=0 <=> norm = 0 |
! | norm | integer | norm of R.R^t-1, must be equal to 0 |
! | i,j | integer | indexes |
! Functions:
! | dnrm2 | double precision | Lapack function, compute the norm of a matrix |
! | disnan | logical | Lapack function, check if an element is NaN |
subroutine rotation_matrix(A,LDA,R,LDR,n,info,enforce_step_cancellation)
implicit none
BEGIN_DOC
! Rotation matrix to rotate the molecular orbitals.
! If the rotation is too large the transformation is not unitary and must be cancelled.
END_DOC
include 'pi.h'
! Variables
! in
integer, intent(in) :: n,LDA,LDR
double precision, intent(inout) :: A(LDA,n)
! out
double precision, intent(out) :: R(LDR,n)
integer, intent(out) :: info
logical, intent(out) :: enforce_step_cancellation
! internal
double precision, allocatable :: B(:,:)
double precision, allocatable :: work(:,:)
double precision, allocatable :: W(:,:), e_val(:)
double precision, allocatable :: m_diag(:,:),cos_tau(:,:),sin_tau(:,:),tau_m1(:,:)
double precision, allocatable :: part_1(:,:),part_1a(:,:)
double precision, allocatable :: part_2(:,:),part_2a(:,:),part_2b(:,:),part_2c(:,:)
double precision, allocatable :: RR_t(:,:)
integer :: i,j
integer :: info2, lwork ! for dsyev
double precision :: norm, max_elem, max_elem_A, t1,t2,t3
! function
double precision :: dnrm2
logical :: disnan
print*,''
print*,'---rotation_matrix---'
call wall_time(t1)
! Allocation
allocate(B(n,n))
allocate(m_diag(n,n),cos_tau(n,n),sin_tau(n,n),tau_m1(n,n))
allocate(W(n,n),e_val(n))
allocate(part_1(n,n),part_1a(n,n))
allocate(part_2(n,n),part_2a(n,n),part_2b(n,n),part_2c(n,n))
allocate(RR_t(n,n))
! Pre-conditions
! Initialization
info=0
enforce_step_cancellation = .False.
! Size of matrix A must be at least 1 by 1
if (n<1) then
info = 3
print*, 'WARNING: invalid parameter 5'
print*, 'n<1'
return
endif
! Leading dimension of A must be >= n
if (LDA < n) then
info = 25
print*, 'WARNING: invalid parameter 2 or 5'
print*, 'LDA < n'
return
endif
! Leading dimension of A must be >= n
if (LDR < n) then
info = 4
print*, 'WARNING: invalid parameter 4'
print*, 'LDR < n'
return
endif
! Matrix elements of A must by non-NaN
do j = 1, n
do i = 1, n
if (disnan(A(i,j))) then
info=1
print*, 'WARNING: invalid parameter 1'
print*, 'NaN element in A matrix'
return
endif
enddo
enddo
do i = 1, n
if (A(i,i) /= 0d0) then
print*, 'WARNING: matrix A is not antisymmetric'
print*, 'Non 0 element on the diagonal', i, A(i,i)
call ABORT
endif
enddo
do j = 1, n
do i = 1, n
if (A(i,j)+A(j,i)>1d-16) then
print*, 'WANRING: matrix A is not antisymmetric'
print*, 'A(i,j) /= - A(j,i):', i,j,A(i,j), A(j,i)
print*, 'diff:', A(i,j)+A(j,i)
call ABORT
endif
enddo
enddo
! Fix for too big elements ! bad idea better to cancel if the error is too big
!do j = 1, n
! do i = 1, n
! A(i,j) = mod(A(i,j),2d0*pi)
! if (dabs(A(i,j)) > pi) then
! A(i,j) = 0d0
! endif
! enddo
!enddo
max_elem_A = 0d0
do j = 1, n
do i = 1, n
if (ABS(A(i,j)) > ABS(max_elem_A)) then
max_elem_A = A(i,j)
endif
enddo
enddo
print*,'max element in A', max_elem_A
if (ABS(max_elem_A) > 2 * pi) then
print*,''
print*,'WARNING: ABS(max_elem_A) > 2 pi '
print*,''
endif
! B=A.A
! - Calculation of the matrix $\textbf{B} = \textbf{A}^2$
! - Diagonalization of $\textbf{B}$
! W, the eigenvectors
! e_val, the eigenvalues
! Compute B=A.A
call dgemm('N','N',n,n,n,1d0,A,size(A,1),A,size(A,1),0d0,B,size(B,1))
! Copy B in W, diagonalization will put the eigenvectors in W
W=B
! Diagonalization of B
! Eigenvalues -> e_val
! Eigenvectors -> W
lwork = 3*n-1
allocate(work(lwork,n))
print*,'Starting diagonalization ...'
call dsyev('V','U',n,W,size(W,1),e_val,work,lwork,info2)
deallocate(work)
if (info2 == 0) then
print*, 'Diagonalization : Done'
elseif (info2 < 0) then
print*, 'WARNING: error in the diagonalization'
print*, 'Illegal value of the ', info2,'-th parameter'
else
print*, "WARNING: Diagonalization failed to converge"
endif
! Tau^-1, cos(tau), sin(tau)
! $$\tau = \sqrt{-x}$$
! - Calculation of $\cos(\tau)$ $\Leftrightarrow$ $\cos(\sqrt{-x})$
! - Calculation of $\sin(\tau)$ $\Leftrightarrow$ $\sin(\sqrt{-x})$
! - Calculation of $\tau^{-1}$ $\Leftrightarrow$ $(\sqrt{-x})^{-1}$
! These matrices are diagonals
! Diagonal matrix m_diag
do j = 1, n
if (e_val(j) >= -1d-12) then !0.d0) then !!! e_avl(i) must be < -1d-12 to avoid numerical problems
e_val(j) = 0.d0
else
e_val(j) = - e_val(j)
endif
enddo
m_diag = 0.d0
do i = 1, n
m_diag(i,i) = e_val(i)
enddo
! cos_tau
do j = 1, n
do i = 1, n
if (i==j) then
cos_tau(i,j) = dcos(dsqrt(e_val(i)))
else
cos_tau(i,j) = 0d0
endif
enddo
enddo
! sin_tau
do j = 1, n
do i = 1, n
if (i==j) then
sin_tau(i,j) = dsin(dsqrt(e_val(i)))
else
sin_tau(i,j) = 0d0
endif
enddo
enddo
! Debug, display the cos_tau and sin_tau matrix
!if (debug) then
! print*, 'cos_tau'
! do i = 1, n
! print*, cos_tau(i,:)
! enddo
! print*, 'sin_tau'
! do i = 1, n
! print*, sin_tau(i,:)
! enddo
!endif
! tau^-1
do j = 1, n
do i = 1, n
if ((i==j) .and. (e_val(i) > 1d-16)) then!0d0)) then !!! Convergence problem can come from here if the threshold is too big/small
tau_m1(i,j) = 1d0/(dsqrt(e_val(i)))
else
tau_m1(i,j) = 0d0
endif
enddo
enddo
max_elem = 0d0
do i = 1, n
if (ABS(tau_m1(i,i)) > ABS(max_elem)) then
max_elem = tau_m1(i,i)
endif
enddo
print*,'max elem tau^-1:', max_elem
! Debug
!print*,'eigenvalues:'
!do i = 1, n
! print*, e_val(i)
!enddo
!Debug, display tau^-1
!if (debug) then
! print*, 'tau^-1'
! do i = 1, n
! print*,tau_m1(i,:)
! enddo
!endif
! Rotation matrix
! \begin{align*}
! \textbf{R} = \textbf{W} \cos(\tau) \textbf{W}^{\dagger} + \textbf{W} \tau^{-1} \sin(\tau) \textbf{W}^{\dagger} \textbf{A}
! \end{align*}
! \begin{align*}
! \textbf{Part1} = \textbf{W} \cos(\tau) \textbf{W}^{\dagger}
! \end{align*}
! \begin{align*}
! \textbf{Part2} = \textbf{W} \tau^{-1} \sin(\tau) \textbf{W}^{\dagger} \textbf{A}
! \end{align*}
! First:
! part_1 = dgemm(W, dgemm(cos_tau, W^t))
! part_1a = dgemm(cos_tau, W^t)
! part_1 = dgemm(W, part_1a)
! And:
! part_2= dgemm(W, dgemm(tau_m1, dgemm(sin_tau, dgemm(W^t, A))))
! part_2a = dgemm(W^t, A)
! part_2b = dgemm(sin_tau, part_2a)
! part_2c = dgemm(tau_m1, part_2b)
! part_2 = dgemm(W, part_2c)
! Finally:
! Rotation matrix, R = part_1+part_2
! If $R$ is a rotation matrix:
! $R.R^T=R^T.R=\textbf{1}$
! part_1
call dgemm('N','T',n,n,n,1d0,cos_tau,size(cos_tau,1),W,size(W,1),0d0,part_1a,size(part_1a,1))
call dgemm('N','N',n,n,n,1d0,W,size(W,1),part_1a,size(part_1a,1),0d0,part_1,size(part_1,1))
! part_2
call dgemm('T','N',n,n,n,1d0,W,size(W,1),A,size(A,1),0d0,part_2a,size(part_2a,1))
call dgemm('N','N',n,n,n,1d0,sin_tau,size(sin_tau,1),part_2a,size(part_2a,1),0d0,part_2b,size(part_2b,1))
call dgemm('N','N',n,n,n,1d0,tau_m1,size(tau_m1,1),part_2b,size(part_2b,1),0d0,part_2c,size(part_2c,1))
call dgemm('N','N',n,n,n,1d0,W,size(W,1),part_2c,size(part_2c,1),0d0,part_2,size(part_2,1))
! Rotation matrix R
R = part_1 + part_2
! Matrix check
! R.R^t and R^t.R must be equal to identity matrix
do j = 1, n
do i=1,n
if (i==j) then
RR_t(i,j) = 1d0
else
RR_t(i,j) = 0d0
endif
enddo
enddo
call dgemm('N','T',n,n,n,1d0,R,size(R,1),R,size(R,1),-1d0,RR_t,size(RR_t,1))
norm = dnrm2(n*n,RR_t,1)
print*, 'Rotation matrix check, norm R.R^T = ', norm
! Debug
!if (debug) then
! print*, 'RR_t'
! do i = 1, n
! print*, RR_t(i,:)
! enddo
!endif
! Post conditions
! Check if R.R^T=1
max_elem = 0d0
do j = 1, n
do i = 1, n
if (ABS(RR_t(i,j)) > ABS(max_elem)) then
max_elem = RR_t(i,j)
endif
enddo
enddo
print*, 'Max error in R.R^T:', max_elem
print*, 'e_val(1):', e_val(1)
print*, 'e_val(n):', e_val(n)
print*, 'max elem in A:', max_elem_A
if (ABS(max_elem) > 1d-12) then
print*, 'WARNING: max error in R.R^T > 1d-12'
print*, 'Enforce the step cancellation'
enforce_step_cancellation = .True.
endif
! Matrix elements of R must by non-NaN
do j = 1,n
do i = 1,LDR
if (disnan(R(i,j))) then
info = 666
print*, 'NaN in rotation matrix'
call ABORT
endif
enddo
enddo
! Display
!if (debug) then
! print*,'Rotation matrix :'
! do i = 1, n
! write(*,'(100(F10.5))') R(i,:)
! enddo
!endif
! Deallocation, end
deallocate(B)
deallocate(m_diag,cos_tau,sin_tau,tau_m1)
deallocate(W,e_val)
deallocate(part_1,part_1a)
deallocate(part_2,part_2a,part_2b,part_2c)
deallocate(RR_t)
call wall_time(t2)
t3 = t2-t1
print*,'Time in rotation matrix:', t3
print*,'---End rotation_matrix---'
end subroutine

View File

@ -0,0 +1,454 @@
* Rotation matrix
*Build a rotation matrix from an antisymmetric matrix*
Compute a rotation matrix $\textbf{R}$ from an antisymmetric matrix $$\textbf{A}$$ such as :
$$
\textbf{R}=\exp(\textbf{A})
$$
So :
\begin{align*}
\textbf{R}=& \exp(\textbf{A}) \\
=& \sum_k^{\infty} \frac{1}{k!}\textbf{A}^k \\
=& \textbf{W} \cdot \cos(\tau) \cdot \textbf{W}^{\dagger} + \textbf{W} \cdot \tau^{-1} \cdot \sin(\tau) \cdot \textbf{W}^{\dagger} \cdot \textbf{A}
\end{align*}
With :
$\textbf{W}$ : eigenvectors of $\textbf{A}^2$
$\tau$ : $\sqrt{-x}$
$x$ : eigenvalues of $\textbf{A}^2$
Input:
| A(n,n) | double precision | antisymmetric matrix |
| n | integer | number of columns of the A matrix |
| LDA | integer | specifies the leading dimension of A, must be at least max(1,n) |
| LDR | integer | specifies the leading dimension of R, must be at least max(1,n) |
Output:
| R(n,n) | double precision | Rotation matrix |
| info | integer | if info = 0, the execution is successful |
| | | if info = k, the k-th parameter has an illegal value |
| | | if info = -k, the algorithm failed |
Internal:
| B(n,n) | double precision | B = A.A |
| work(lwork,n) | double precision | work matrix for dysev, dimension max(1,lwork) |
| lwork | integer | dimension of the syev work array >= max(1, 3n-1) |
| W(n,n) | double precision | eigenvectors of B |
| e_val(n) | double precision | eigenvalues of B |
| m_diag(n,n) | double precision | diagonal matrix with the eigenvalues of B |
| cos_tau(n,n) | double precision | diagonal matrix with cos(tau) values |
| sin_tau(n,n) | double precision | diagonal matrix with sin cos(tau) values |
| tau_m1(n,n) | double precision | diagonal matrix with (tau)^-1 values |
| part_1(n,n) | double precision | matrix W.cos_tau.W^t |
| part_1a(n,n) | double precision | matrix cos_tau.W^t |
| part_2(n,n) | double precision | matrix W.tau_m1.sin_tau.W^t.A |
| part_2a(n,n) | double precision | matrix W^t.A |
| part_2b(n,n) | double precision | matrix sin_tau.W^t.A |
| part_2c(n,n) | double precision | matrix tau_m1.sin_tau.W^t.A |
| RR_t(n,n) | double precision | R.R^t must be equal to the identity<=> R.R^t-1=0 <=> norm = 0 |
| norm | integer | norm of R.R^t-1, must be equal to 0 |
| i,j | integer | indexes |
Functions:
| dnrm2 | double precision | Lapack function, compute the norm of a matrix |
| disnan | logical | Lapack function, check if an element is NaN |
#+BEGIN_SRC f90 :comments org :tangle rotation_matrix.irp.f
subroutine rotation_matrix(A,LDA,R,LDR,n,info,enforce_step_cancellation)
implicit none
BEGIN_DOC
! Rotation matrix to rotate the molecular orbitals.
! If the rotation is too large the transformation is not unitary and must be cancelled.
END_DOC
include 'pi.h'
! Variables
! in
integer, intent(in) :: n,LDA,LDR
double precision, intent(inout) :: A(LDA,n)
! out
double precision, intent(out) :: R(LDR,n)
integer, intent(out) :: info
logical, intent(out) :: enforce_step_cancellation
! internal
double precision, allocatable :: B(:,:)
double precision, allocatable :: work(:,:)
double precision, allocatable :: W(:,:), e_val(:)
double precision, allocatable :: m_diag(:,:),cos_tau(:,:),sin_tau(:,:),tau_m1(:,:)
double precision, allocatable :: part_1(:,:),part_1a(:,:)
double precision, allocatable :: part_2(:,:),part_2a(:,:),part_2b(:,:),part_2c(:,:)
double precision, allocatable :: RR_t(:,:)
integer :: i,j
integer :: info2, lwork ! for dsyev
double precision :: norm, max_elem, max_elem_A, t1,t2,t3
! function
double precision :: dnrm2
logical :: disnan
print*,''
print*,'---rotation_matrix---'
call wall_time(t1)
! Allocation
allocate(B(n,n))
allocate(m_diag(n,n),cos_tau(n,n),sin_tau(n,n),tau_m1(n,n))
allocate(W(n,n),e_val(n))
allocate(part_1(n,n),part_1a(n,n))
allocate(part_2(n,n),part_2a(n,n),part_2b(n,n),part_2c(n,n))
allocate(RR_t(n,n))
#+END_SRC
** Pre-conditions
#+BEGIN_SRC f90 :comments org :tangle rotation_matrix.irp.f
! Initialization
info=0
enforce_step_cancellation = .False.
! Size of matrix A must be at least 1 by 1
if (n<1) then
info = 3
print*, 'WARNING: invalid parameter 5'
print*, 'n<1'
return
endif
! Leading dimension of A must be >= n
if (LDA < n) then
info = 25
print*, 'WARNING: invalid parameter 2 or 5'
print*, 'LDA < n'
return
endif
! Leading dimension of A must be >= n
if (LDR < n) then
info = 4
print*, 'WARNING: invalid parameter 4'
print*, 'LDR < n'
return
endif
! Matrix elements of A must by non-NaN
do j = 1, n
do i = 1, n
if (disnan(A(i,j))) then
info=1
print*, 'WARNING: invalid parameter 1'
print*, 'NaN element in A matrix'
return
endif
enddo
enddo
do i = 1, n
if (A(i,i) /= 0d0) then
print*, 'WARNING: matrix A is not antisymmetric'
print*, 'Non 0 element on the diagonal', i, A(i,i)
call ABORT
endif
enddo
do j = 1, n
do i = 1, n
if (A(i,j)+A(j,i)>1d-16) then
print*, 'WANRING: matrix A is not antisymmetric'
print*, 'A(i,j) /= - A(j,i):', i,j,A(i,j), A(j,i)
print*, 'diff:', A(i,j)+A(j,i)
call ABORT
endif
enddo
enddo
! Fix for too big elements ! bad idea better to cancel if the error is too big
!do j = 1, n
! do i = 1, n
! A(i,j) = mod(A(i,j),2d0*pi)
! if (dabs(A(i,j)) > pi) then
! A(i,j) = 0d0
! endif
! enddo
!enddo
max_elem_A = 0d0
do j = 1, n
do i = 1, n
if (ABS(A(i,j)) > ABS(max_elem_A)) then
max_elem_A = A(i,j)
endif
enddo
enddo
print*,'max element in A', max_elem_A
if (ABS(max_elem_A) > 2 * pi) then
print*,''
print*,'WARNING: ABS(max_elem_A) > 2 pi '
print*,''
endif
#+END_SRC
** Calculations
*** B=A.A
- Calculation of the matrix $\textbf{B} = \textbf{A}^2$
- Diagonalization of $\textbf{B}$
W, the eigenvectors
e_val, the eigenvalues
#+BEGIN_SRC f90 :comments org :tangle rotation_matrix.irp.f
! Compute B=A.A
call dgemm('N','N',n,n,n,1d0,A,size(A,1),A,size(A,1),0d0,B,size(B,1))
! Copy B in W, diagonalization will put the eigenvectors in W
W=B
! Diagonalization of B
! Eigenvalues -> e_val
! Eigenvectors -> W
lwork = 3*n-1
allocate(work(lwork,n))
print*,'Starting diagonalization ...'
call dsyev('V','U',n,W,size(W,1),e_val,work,lwork,info2)
deallocate(work)
if (info2 == 0) then
print*, 'Diagonalization : Done'
elseif (info2 < 0) then
print*, 'WARNING: error in the diagonalization'
print*, 'Illegal value of the ', info2,'-th parameter'
else
print*, "WARNING: Diagonalization failed to converge"
endif
#+END_SRC
*** Tau^-1, cos(tau), sin(tau)
$$\tau = \sqrt{-x}$$
- Calculation of $\cos(\tau)$ $\Leftrightarrow$ $\cos(\sqrt{-x})$
- Calculation of $\sin(\tau)$ $\Leftrightarrow$ $\sin(\sqrt{-x})$
- Calculation of $\tau^{-1}$ $\Leftrightarrow$ $(\sqrt{-x})^{-1}$
These matrices are diagonals
#+BEGIN_SRC f90 :comments org :tangle rotation_matrix.irp.f
! Diagonal matrix m_diag
do j = 1, n
if (e_val(j) >= -1d-12) then !0.d0) then !!! e_avl(i) must be < -1d-12 to avoid numerical problems
e_val(j) = 0.d0
else
e_val(j) = - e_val(j)
endif
enddo
m_diag = 0.d0
do i = 1, n
m_diag(i,i) = e_val(i)
enddo
! cos_tau
do j = 1, n
do i = 1, n
if (i==j) then
cos_tau(i,j) = dcos(dsqrt(e_val(i)))
else
cos_tau(i,j) = 0d0
endif
enddo
enddo
! sin_tau
do j = 1, n
do i = 1, n
if (i==j) then
sin_tau(i,j) = dsin(dsqrt(e_val(i)))
else
sin_tau(i,j) = 0d0
endif
enddo
enddo
! Debug, display the cos_tau and sin_tau matrix
!if (debug) then
! print*, 'cos_tau'
! do i = 1, n
! print*, cos_tau(i,:)
! enddo
! print*, 'sin_tau'
! do i = 1, n
! print*, sin_tau(i,:)
! enddo
!endif
! tau^-1
do j = 1, n
do i = 1, n
if ((i==j) .and. (e_val(i) > 1d-16)) then!0d0)) then !!! Convergence problem can come from here if the threshold is too big/small
tau_m1(i,j) = 1d0/(dsqrt(e_val(i)))
else
tau_m1(i,j) = 0d0
endif
enddo
enddo
max_elem = 0d0
do i = 1, n
if (ABS(tau_m1(i,i)) > ABS(max_elem)) then
max_elem = tau_m1(i,i)
endif
enddo
print*,'max elem tau^-1:', max_elem
! Debug
!print*,'eigenvalues:'
!do i = 1, n
! print*, e_val(i)
!enddo
!Debug, display tau^-1
!if (debug) then
! print*, 'tau^-1'
! do i = 1, n
! print*,tau_m1(i,:)
! enddo
!endif
#+END_SRC
*** Rotation matrix
\begin{align*}
\textbf{R} = \textbf{W} \cos(\tau) \textbf{W}^{\dagger} + \textbf{W} \tau^{-1} \sin(\tau) \textbf{W}^{\dagger} \textbf{A}
\end{align*}
\begin{align*}
\textbf{Part1} = \textbf{W} \cos(\tau) \textbf{W}^{\dagger}
\end{align*}
\begin{align*}
\textbf{Part2} = \textbf{W} \tau^{-1} \sin(\tau) \textbf{W}^{\dagger} \textbf{A}
\end{align*}
First:
part_1 = dgemm(W, dgemm(cos_tau, W^t))
part_1a = dgemm(cos_tau, W^t)
part_1 = dgemm(W, part_1a)
And:
part_2= dgemm(W, dgemm(tau_m1, dgemm(sin_tau, dgemm(W^t, A))))
part_2a = dgemm(W^t, A)
part_2b = dgemm(sin_tau, part_2a)
part_2c = dgemm(tau_m1, part_2b)
part_2 = dgemm(W, part_2c)
Finally:
Rotation matrix, R = part_1+part_2
If $R$ is a rotation matrix:
$R.R^T=R^T.R=\textbf{1}$
#+BEGIN_SRC f90 :comments org :tangle rotation_matrix.irp.f
! part_1
call dgemm('N','T',n,n,n,1d0,cos_tau,size(cos_tau,1),W,size(W,1),0d0,part_1a,size(part_1a,1))
call dgemm('N','N',n,n,n,1d0,W,size(W,1),part_1a,size(part_1a,1),0d0,part_1,size(part_1,1))
! part_2
call dgemm('T','N',n,n,n,1d0,W,size(W,1),A,size(A,1),0d0,part_2a,size(part_2a,1))
call dgemm('N','N',n,n,n,1d0,sin_tau,size(sin_tau,1),part_2a,size(part_2a,1),0d0,part_2b,size(part_2b,1))
call dgemm('N','N',n,n,n,1d0,tau_m1,size(tau_m1,1),part_2b,size(part_2b,1),0d0,part_2c,size(part_2c,1))
call dgemm('N','N',n,n,n,1d0,W,size(W,1),part_2c,size(part_2c,1),0d0,part_2,size(part_2,1))
! Rotation matrix R
R = part_1 + part_2
! Matrix check
! R.R^t and R^t.R must be equal to identity matrix
do j = 1, n
do i=1,n
if (i==j) then
RR_t(i,j) = 1d0
else
RR_t(i,j) = 0d0
endif
enddo
enddo
call dgemm('N','T',n,n,n,1d0,R,size(R,1),R,size(R,1),-1d0,RR_t,size(RR_t,1))
norm = dnrm2(n*n,RR_t,1)
print*, 'Rotation matrix check, norm R.R^T = ', norm
! Debug
!if (debug) then
! print*, 'RR_t'
! do i = 1, n
! print*, RR_t(i,:)
! enddo
!endif
#+END_SRC
*** Post conditions
#+BEGIN_SRC f90 :comments org :tangle rotation_matrix.irp.f
! Check if R.R^T=1
max_elem = 0d0
do j = 1, n
do i = 1, n
if (ABS(RR_t(i,j)) > ABS(max_elem)) then
max_elem = RR_t(i,j)
endif
enddo
enddo
print*, 'Max error in R.R^T:', max_elem
print*, 'e_val(1):', e_val(1)
print*, 'e_val(n):', e_val(n)
print*, 'max elem in A:', max_elem_A
if (ABS(max_elem) > 1d-12) then
print*, 'WARNING: max error in R.R^T > 1d-12'
print*, 'Enforce the step cancellation'
enforce_step_cancellation = .True.
endif
! Matrix elements of R must by non-NaN
do j = 1,n
do i = 1,LDR
if (disnan(R(i,j))) then
info = 666
print*, 'NaN in rotation matrix'
call ABORT
endif
enddo
enddo
! Display
!if (debug) then
! print*,'Rotation matrix :'
! do i = 1, n
! write(*,'(100(F10.5))') R(i,:)
! enddo
!endif
#+END_SRC
** Deallocation, end
#+BEGIN_SRC f90 :comments org :tangle rotation_matrix.irp.f
deallocate(B)
deallocate(m_diag,cos_tau,sin_tau,tau_m1)
deallocate(W,e_val)
deallocate(part_1,part_1a)
deallocate(part_2,part_2a,part_2b,part_2c)
deallocate(RR_t)
call wall_time(t2)
t3 = t2-t1
print*,'Time in rotation matrix:', t3
print*,'---End rotation_matrix---'
end subroutine
#+END_SRC

View File

@ -0,0 +1,64 @@
! Rotation matrix in a subspace to rotation matrix in the full space
! Usually, we are using a list of MOs, for exemple the active ones. When
! we compute a rotation matrix to rotate the MOs, we just compute a
! rotation matrix for these MOs in order to reduce the size of the
! matrix which has to be computed. Since the computation of a rotation
! matrix scale in $O(N^3)$ with $N$ the number of MOs, it's better to
! reuce the number of MOs involved.
! After that we replace the rotation matrix in the full space by
! building the elements of the rotation matrix in the full space from
! the elements of the rotation matrix in the subspace and adding some 0
! on the extradiagonal elements and some 1 on the diagonal elements,
! for the MOs that are not involved in the rotation.
! Provided:
! | mo_num | integer | Number of MOs |
! Input:
! | m | integer | Size of tmp_list, m <= mo_num |
! | tmp_list(m) | integer | List of MOs |
! | tmp_R(m,m) | double precision | Rotation matrix in the space of |
! | | | the MOs containing by tmp_list |
! Output:
! | R(mo_num,mo_num | double precision | Rotation matrix in the space |
! | | | of all the MOs |
! Internal:
! | i,j | integer | indexes in the full space |
! | tmp_i,tmp_j | integer | indexes in the subspace |
subroutine sub_to_full_rotation_matrix(m,tmp_list,tmp_R,R)
BEGIN_DOC
! Compute the full rotation matrix from a smaller one
END_DOC
implicit none
! in
integer, intent(in) :: m, tmp_list(m)
double precision, intent(in) :: tmp_R(m,m)
! out
double precision, intent(out) :: R(mo_num,mo_num)
! internal
integer :: i,j,tmp_i,tmp_j
! tmp_R to R, subspace to full space
R = 0d0
do i = 1, mo_num
R(i,i) = 1d0 ! 1 on the diagonal because it is a rotation matrix, 1 = nothing change for the corresponding orbital
enddo
do tmp_j = 1, m
j = tmp_list(tmp_j)
do tmp_i = 1, m
i = tmp_list(tmp_i)
R(i,j) = tmp_R(tmp_i,tmp_j)
enddo
enddo
end

View File

@ -0,0 +1,65 @@
* Rotation matrix in a subspace to rotation matrix in the full space
Usually, we are using a list of MOs, for exemple the active ones. When
we compute a rotation matrix to rotate the MOs, we just compute a
rotation matrix for these MOs in order to reduce the size of the
matrix which has to be computed. Since the computation of a rotation
matrix scale in $O(N^3)$ with $N$ the number of MOs, it's better to
reuce the number of MOs involved.
After that we replace the rotation matrix in the full space by
building the elements of the rotation matrix in the full space from
the elements of the rotation matrix in the subspace and adding some 0
on the extradiagonal elements and some 1 on the diagonal elements,
for the MOs that are not involved in the rotation.
Provided:
| mo_num | integer | Number of MOs |
Input:
| m | integer | Size of tmp_list, m <= mo_num |
| tmp_list(m) | integer | List of MOs |
| tmp_R(m,m) | double precision | Rotation matrix in the space of |
| | | the MOs containing by tmp_list |
Output:
| R(mo_num,mo_num | double precision | Rotation matrix in the space |
| | | of all the MOs |
Internal:
| i,j | integer | indexes in the full space |
| tmp_i,tmp_j | integer | indexes in the subspace |
#+BEGIN_SRC f90 :comments org :tangle sub_to_full_rotation_matrix.irp.f
subroutine sub_to_full_rotation_matrix(m,tmp_list,tmp_R,R)
BEGIN_DOC
! Compute the full rotation matrix from a smaller one
END_DOC
implicit none
! in
integer, intent(in) :: m, tmp_list(m)
double precision, intent(in) :: tmp_R(m,m)
! out
double precision, intent(out) :: R(mo_num,mo_num)
! internal
integer :: i,j,tmp_i,tmp_j
! tmp_R to R, subspace to full space
R = 0d0
do i = 1, mo_num
R(i,i) = 1d0 ! 1 on the diagonal because it is a rotation matrix, 1 = nothing change for the corresponding orbital
enddo
do tmp_j = 1, m
j = tmp_list(tmp_j)
do tmp_i = 1, m
i = tmp_list(tmp_i)
R(i,j) = tmp_R(tmp_i,tmp_j)
enddo
enddo
end
#+END_SRC

View File

@ -0,0 +1,119 @@
! Predicted energy : e_model
! *Compute the energy predicted by the Taylor series*
! The energy is predicted using a Taylor expansion truncated at te 2nd
! order :
! \begin{align*}
! E_{k+1} = E_{k} + \textbf{g}_k^{T} \cdot \textbf{x}_{k+1} + \frac{1}{2} \cdot \textbf{x}_{k+1}^T \cdot \textbf{H}_{k} \cdot \textbf{x}_{k+1} + \mathcal{O}(\textbf{x}_{k+1}^2)
! \end{align*}
! Input:
! | n | integer | m*(m-1)/2 |
! | v_grad(n) | double precision | gradient |
! | H(n,n) | double precision | hessian |
! | x(n) | double precision | Step in the trust region |
! | prev_energy | double precision | previous energy |
! Output:
! | e_model | double precision | predicted energy after the rotation of the MOs |
! Internal:
! | part_1 | double precision | v_grad^T.x |
! | part_2 | double precision | 1/2 . x^T.H.x |
! | part_2a | double precision | H.x |
! | i,j | integer | indexes |
! Function:
! | ddot | double precision | dot product (Lapack) |
subroutine trust_region_expected_e(n,v_grad,H,x,prev_energy,e_model)
include 'pi.h'
BEGIN_DOC
! Compute the expected criterion/energy after the application of the step x
END_DOC
implicit none
! Variables
! in
integer, intent(in) :: n
double precision, intent(in) :: v_grad(n),H(n,n),x(n)
double precision, intent(in) :: prev_energy
! out
double precision, intent(out) :: e_model
! internal
double precision :: part_1, part_2, t1,t2,t3
double precision, allocatable :: part_2a(:)
integer :: i,j
!Function
double precision :: ddot
print*,''
print*,'---Trust_e_model---'
call wall_time(t1)
! Allocation
allocate(part_2a(n))
! Calculations
! part_1 corresponds to the product g.x
! part_2a corresponds to the product H.x
! part_2 corresponds to the product 0.5*(x^T.H.x)
! TODO: remove the dot products
! Product v_grad.x
part_1 = ddot(n,v_grad,1,x,1)
!if (debug) then
print*,'g.x : ', part_1
!endif
! Product H.x
call dgemv('N',n,n,1d0,H,size(H,1),x,1,0d0,part_2a,1)
! Product 1/2 . x^T.H.x
part_2 = 0.5d0 * ddot(n,x,1,part_2a,1)
!if (debug) then
print*,'1/2*x^T.H.x : ', part_2
!endif
print*,'prev_energy', prev_energy
! Sum
e_model = prev_energy + part_1 + part_2
! Writing the predicted energy
print*, 'Predicted energy after the rotation : ', e_model
print*, 'Previous energy - predicted energy:', prev_energy - e_model
! Can be deleted, already in another subroutine
if (DABS(prev_energy - e_model) < 1d-12 ) then
print*,'WARNING: ABS(prev_energy - e_model) < 1d-12'
endif
! Deallocation
deallocate(part_2a)
call wall_time(t2)
t3 = t2 - t1
print*,'Time in trust e model:', t3
print*,'---End trust_e_model---'
print*,''
end subroutine

View File

@ -0,0 +1,121 @@
* Predicted energy : e_model
*Compute the energy predicted by the Taylor series*
The energy is predicted using a Taylor expansion truncated at te 2nd
order :
\begin{align*}
E_{k+1} = E_{k} + \textbf{g}_k^{T} \cdot \textbf{x}_{k+1} + \frac{1}{2} \cdot \textbf{x}_{k+1}^T \cdot \textbf{H}_{k} \cdot \textbf{x}_{k+1} + \mathcal{O}(\textbf{x}_{k+1}^2)
\end{align*}
Input:
| n | integer | m*(m-1)/2 |
| v_grad(n) | double precision | gradient |
| H(n,n) | double precision | hessian |
| x(n) | double precision | Step in the trust region |
| prev_energy | double precision | previous energy |
Output:
| e_model | double precision | predicted energy after the rotation of the MOs |
Internal:
| part_1 | double precision | v_grad^T.x |
| part_2 | double precision | 1/2 . x^T.H.x |
| part_2a | double precision | H.x |
| i,j | integer | indexes |
Function:
| ddot | double precision | dot product (Lapack) |
#+BEGIN_SRC f90 :comments org :tangle trust_region_expected_e.irp.f
subroutine trust_region_expected_e(n,v_grad,H,x,prev_energy,e_model)
include 'pi.h'
BEGIN_DOC
! Compute the expected criterion/energy after the application of the step x
END_DOC
implicit none
! Variables
! in
integer, intent(in) :: n
double precision, intent(in) :: v_grad(n),H(n,n),x(n)
double precision, intent(in) :: prev_energy
! out
double precision, intent(out) :: e_model
! internal
double precision :: part_1, part_2, t1,t2,t3
double precision, allocatable :: part_2a(:)
integer :: i,j
!Function
double precision :: ddot
print*,''
print*,'---Trust_e_model---'
call wall_time(t1)
! Allocation
allocate(part_2a(n))
#+END_SRC
** Calculations
part_1 corresponds to the product g.x
part_2a corresponds to the product H.x
part_2 corresponds to the product 0.5*(x^T.H.x)
TODO: remove the dot products
#+BEGIN_SRC f90 :comments org :tangle trust_region_expected_e.irp.f
! Product v_grad.x
part_1 = ddot(n,v_grad,1,x,1)
!if (debug) then
print*,'g.x : ', part_1
!endif
! Product H.x
call dgemv('N',n,n,1d0,H,size(H,1),x,1,0d0,part_2a,1)
! Product 1/2 . x^T.H.x
part_2 = 0.5d0 * ddot(n,x,1,part_2a,1)
!if (debug) then
print*,'1/2*x^T.H.x : ', part_2
!endif
print*,'prev_energy', prev_energy
! Sum
e_model = prev_energy + part_1 + part_2
! Writing the predicted energy
print*, 'Predicted energy after the rotation : ', e_model
print*, 'Previous energy - predicted energy:', prev_energy - e_model
! Can be deleted, already in another subroutine
if (DABS(prev_energy - e_model) < 1d-12 ) then
print*,'WARNING: ABS(prev_energy - e_model) < 1d-12'
endif
! Deallocation
deallocate(part_2a)
call wall_time(t2)
t3 = t2 - t1
print*,'Time in trust e model:', t3
print*,'---End trust_e_model---'
print*,''
end subroutine
#+END_SRC

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,121 @@
! Agreement with the model: Rho
! *Compute the ratio : rho = (prev_energy - energy) / (prev_energy - e_model)*
! Rho represents the agreement between the model (the predicted energy
! by the Taylor expansion truncated at the 2nd order) and the real
! energy :
! \begin{equation}
! \rho^{k+1} = \frac{E^{k} - E^{k+1}}{E^{k} - m^{k+1}}
! \end{equation}
! With :
! $E^{k}$ the energy at the previous iteration
! $E^{k+1}$ the energy at the actual iteration
! $m^{k+1}$ the predicted energy for the actual iteration
! (cf. trust_e_model)
! If $\rho \approx 1$, the agreement is good, contrary to $\rho \approx 0$.
! If $\rho \leq 0$ the previous energy is lower than the actual
! energy. We have to cancel the last step and use a smaller trust
! region.
! Here we cancel the last step if $\rho < 0.1$, because even if
! the energy decreases, the agreement is bad, i.e., the Taylor expansion
! truncated at the second order doesn't represent correctly the energy
! landscape. So it's better to cancel the step and restart with a
! smaller trust region.
! Provided in qp_edit:
! | thresh_rho |
! Input:
! | prev_energy | double precision | previous energy (energy before the rotation) |
! | e_model | double precision | predicted energy after the rotation |
! Output:
! | rho | double precision | the agreement between the model (predicted) and the real energy |
! | prev_energy | double precision | if rho >= 0.1 the actual energy becomes the previous energy |
! | | | else the previous energy doesn't change |
! Internal:
! | energy | double precision | energy (real) after the rotation |
! | i | integer | index |
! | t* | double precision | time |
subroutine trust_region_rho(prev_energy, energy,e_model,rho)
include 'pi.h'
BEGIN_DOC
! Compute rho, the agreement between the predicted criterion/energy and the real one
END_DOC
implicit none
! Variables
! In
double precision, intent(inout) :: prev_energy
double precision, intent(in) :: e_model, energy
! Out
double precision, intent(out) :: rho
! Internal
double precision :: t1, t2, t3
integer :: i
print*,''
print*,'---Rho_model---'
call wall_time(t1)
! Rho
! \begin{equation}
! \rho^{k+1} = \frac{E^{k} - E^{k+1}}{E^{k} - m^{k+1}}
! \end{equation}
! In function of $\rho$ th step can be accepted or cancelled.
! If we cancel the last step (k+1), the previous energy (k) doesn't
! change!
! If the step (k+1) is accepted, then the "previous energy" becomes E(k+1)
! Already done in an other subroutine
!if (ABS(prev_energy - e_model) < 1d-12) then
! print*,'WARNING: prev_energy - e_model < 1d-12'
! print*,'=> rho will tend toward infinity'
! print*,'Check you convergence criterion !'
!endif
rho = (prev_energy - energy) / (prev_energy - e_model)
print*, 'previous energy, prev_energy :', prev_energy
print*, 'predicted energy, e_model :', e_model
print*, 'real energy, energy :', energy
print*, 'prev_energy - energy :', prev_energy - energy
print*, 'prev_energy - e_model :', prev_energy - e_model
print*, 'Rho :', rho
print*, 'Threshold for rho:', thresh_rho
! Modification of prev_energy in function of rho
if (rho < thresh_rho) then !0.1) then
! the step is cancelled
print*, 'Rho <', thresh_rho,', the previous energy does not changed'
print*, 'prev_energy :', prev_energy
else
! the step is accepted
prev_energy = energy
print*, 'Rho >=', thresh_rho,', energy -> prev_energy :', energy
endif
call wall_time(t2)
t3 = t2 - t1
print*,'Time in rho model:', t3
print*,'---End rho_model---'
print*,''
end subroutine

View File

@ -0,0 +1,123 @@
* Agreement with the model: Rho
*Compute the ratio : rho = (prev_energy - energy) / (prev_energy - e_model)*
Rho represents the agreement between the model (the predicted energy
by the Taylor expansion truncated at the 2nd order) and the real
energy :
\begin{equation}
\rho^{k+1} = \frac{E^{k} - E^{k+1}}{E^{k} - m^{k+1}}
\end{equation}
With :
$E^{k}$ the energy at the previous iteration
$E^{k+1}$ the energy at the actual iteration
$m^{k+1}$ the predicted energy for the actual iteration
(cf. trust_e_model)
If $\rho \approx 1$, the agreement is good, contrary to $\rho \approx 0$.
If $\rho \leq 0$ the previous energy is lower than the actual
energy. We have to cancel the last step and use a smaller trust
region.
Here we cancel the last step if $\rho < 0.1$, because even if
the energy decreases, the agreement is bad, i.e., the Taylor expansion
truncated at the second order doesn't represent correctly the energy
landscape. So it's better to cancel the step and restart with a
smaller trust region.
Provided in qp_edit:
| thresh_rho |
Input:
| prev_energy | double precision | previous energy (energy before the rotation) |
| e_model | double precision | predicted energy after the rotation |
Output:
| rho | double precision | the agreement between the model (predicted) and the real energy |
| prev_energy | double precision | if rho >= 0.1 the actual energy becomes the previous energy |
| | | else the previous energy doesn't change |
Internal:
| energy | double precision | energy (real) after the rotation |
| i | integer | index |
| t* | double precision | time |
#+BEGIN_SRC f90 :comments org :tangle trust_region_rho.irp.f
subroutine trust_region_rho(prev_energy, energy,e_model,rho)
include 'pi.h'
BEGIN_DOC
! Compute rho, the agreement between the predicted criterion/energy and the real one
END_DOC
implicit none
! Variables
! In
double precision, intent(inout) :: prev_energy
double precision, intent(in) :: e_model, energy
! Out
double precision, intent(out) :: rho
! Internal
double precision :: t1, t2, t3
integer :: i
print*,''
print*,'---Rho_model---'
call wall_time(t1)
#+END_SRC
** Rho
\begin{equation}
\rho^{k+1} = \frac{E^{k} - E^{k+1}}{E^{k} - m^{k+1}}
\end{equation}
In function of $\rho$ th step can be accepted or cancelled.
If we cancel the last step (k+1), the previous energy (k) doesn't
change!
If the step (k+1) is accepted, then the "previous energy" becomes E(k+1)
#+BEGIN_SRC f90 :comments org :tangle trust_region_rho.irp.f
! Already done in an other subroutine
!if (ABS(prev_energy - e_model) < 1d-12) then
! print*,'WARNING: prev_energy - e_model < 1d-12'
! print*,'=> rho will tend toward infinity'
! print*,'Check you convergence criterion !'
!endif
rho = (prev_energy - energy) / (prev_energy - e_model)
print*, 'previous energy, prev_energy :', prev_energy
print*, 'predicted energy, e_model :', e_model
print*, 'real energy, energy :', energy
print*, 'prev_energy - energy :', prev_energy - energy
print*, 'prev_energy - e_model :', prev_energy - e_model
print*, 'Rho :', rho
print*, 'Threshold for rho:', thresh_rho
! Modification of prev_energy in function of rho
if (rho < thresh_rho) then !0.1) then
! the step is cancelled
print*, 'Rho <', thresh_rho,', the previous energy does not changed'
print*, 'prev_energy :', prev_energy
else
! the step is accepted
prev_energy = energy
print*, 'Rho >=', thresh_rho,', energy -> prev_energy :', energy
endif
call wall_time(t2)
t3 = t2 - t1
print*,'Time in rho model:', t3
print*,'---End rho_model---'
print*,''
end subroutine
#+END_SRC

View File

@ -0,0 +1,716 @@
! Trust region
! *Compute the next step with the trust region algorithm*
! The Newton method is an iterative method to find a minimum of a given
! function. It uses a Taylor series truncated at the second order of the
! targeted function and gives its minimizer. The minimizer is taken as
! the new position and the same thing is done. And by doing so
! iteratively the method find a minimum, a local or global one depending
! of the starting point and the convexity/nonconvexity of the targeted
! function.
! The goal of the trust region is to constrain the step size of the
! Newton method in a certain area around the actual position, where the
! Taylor series is a good approximation of the targeted function. This
! area is called the "trust region".
! In addition, in function of the agreement between the Taylor
! development of the energy and the real energy, the size of the trust
! region will be updated at each iteration. By doing so, the step sizes
! are not too larges. In addition, since we add a criterion to cancel the
! step if the energy increases (more precisely if rho < 0.1), so it's
! impossible to diverge. \newline
! References: \newline
! Nocedal & Wright, Numerical Optimization, chapter 4 (1999), \newline
! https://link.springer.com/book/10.1007/978-0-387-40065-5, \newline
! ISBN: 978-0-387-40065-5 \newline
! By using the first and the second derivatives, the Newton method gives
! a step:
! \begin{align*}
! \textbf{x}_{(k+1)}^{\text{Newton}} = - \textbf{H}_{(k)}^{-1} \cdot
! \textbf{g}_{(k)}
! \end{align*}
! which leads to the minimizer of the Taylor series.
! !!! Warning: the Newton method gives the minimizer if and only if
! $\textbf{H}$ is positive definite, else it leads to a saddle point !!!
! But we want a step $\textbf{x}_{(k+1)}$ with a constraint on its (euclidian) norm:
! \begin{align*}
! ||\textbf{x}_{(k+1)}|| \leq \Delta_{(k+1)}
! \end{align*}
! which is equivalent to
! \begin{align*}
! \textbf{x}_{(k+1)}^T \cdot \textbf{x}_{(k+1)} \leq \Delta_{(k+1)}^2
! \end{align*}
! with: \newline
! $\textbf{x}_{(k+1)}$ is the step for the k+1-th iteration (vector of
! size n) \newline
! $\textbf{H}_{(k)}$ is the hessian at the k-th iteration (n by n
! matrix) \newline
! $\textbf{g}_{(k)}$ is the gradient at the k-th iteration (vector of
! size n) \newline
! $\Delta_{(k+1)}$ is the trust radius for the (k+1)-th iteration
! \newline
! Thus we want to constrain the step size $\textbf{x}_{(k+1)}$ into a
! hypersphere of radius $\Delta_{(k+1)}$.\newline
! So, if $||\textbf{x}_{(k+1)}^{\text{Newton}}|| \leq \Delta_{(k)}$ and
! $\textbf{H}$ is positive definite, the
! solution is the step given by the Newton method
! $\textbf{x}_{(k+1)} = \textbf{x}_{(k+1)}^{\text{Newton}}$.
! Else we have to constrain the step size. For simplicity we will remove
! the index $_{(k)}$ and $_{(k+1)}$. To restict the step size, we have
! to put a constraint on $\textbf{x}$ with a Lagrange multiplier.
! Starting from the Taylor series of a function E (here, the energy)
! truncated at the 2nd order, we have:
! \begin{align*}
! E(\textbf{x}) = E +\textbf{g}^T \cdot \textbf{x} + \frac{1}{2}
! \cdot \textbf{x}^T \cdot \textbf{H} \cdot \textbf{x} +
! \mathcal{O}(\textbf{x}^2)
! \end{align*}
! With the constraint on the norm of $\textbf{x}$ we can write the
! Lagrangian
! \begin{align*}
! \mathcal{L}(\textbf{x},\lambda) = E + \textbf{g}^T \cdot \textbf{x}
! + \frac{1}{2} \cdot \textbf{x}^T \cdot \textbf{H} \cdot \textbf{x}
! + \frac{1}{2} \lambda (\textbf{x}^T \cdot \textbf{x} - \Delta^2)
! \end{align*}
! Where: \newline
! $\lambda$ is the Lagrange multiplier \newline
! $E$ is the energy at the k-th iteration $\Leftrightarrow
! E(\textbf{x} = \textbf{0})$ \newline
! To solve this equation, we search a stationary point where the first
! derivative of $\mathcal{L}$ with respect to $\textbf{x}$ becomes 0, i.e.
! \begin{align*}
! \frac{\partial \mathcal{L}(\textbf{x},\lambda)}{\partial \textbf{x}}=0
! \end{align*}
! The derivative is:
! \begin{align*}
! \frac{\partial \mathcal{L}(\textbf{x},\lambda)}{\partial \textbf{x}}
! = \textbf{g} + \textbf{H} \cdot \textbf{x} + \lambda \cdot \textbf{x}
! \end{align*}
! So, we search $\textbf{x}$ such as:
! \begin{align*}
! \frac{\partial \mathcal{L}(\textbf{x},\lambda)}{\partial \textbf{x}}
! = \textbf{g} + \textbf{H} \cdot \textbf{x} + \lambda \cdot \textbf{x} = 0
! \end{align*}
! We can rewrite that as:
! \begin{align*}
! \textbf{g} + \textbf{H} \cdot \textbf{x} + \lambda \cdot \textbf{x}
! = \textbf{g} + (\textbf{H} +\textbf{I} \lambda) \cdot \textbf{x} = 0
! \end{align*}
! with $\textbf{I}$ is the identity matrix.
! By doing so, the solution is:
! \begin{align*}
! (\textbf{H} +\textbf{I} \lambda) \cdot \textbf{x}= -\textbf{g}
! \end{align*}
! \begin{align*}
! \textbf{x}= - (\textbf{H} + \textbf{I} \lambda)^{-1} \cdot \textbf{g}
! \end{align*}
! with $\textbf{x}^T \textbf{x} = \Delta^2$.
! We have to solve this previous equation to find this $\textbf{x}$ in the
! trust region, i.e. $||\textbf{x}|| = \Delta$. Now, this problem is
! just a one dimension problem because we can express $\textbf{x}$ as a
! function of $\lambda$:
! \begin{align*}
! \textbf{x}(\lambda) = - (\textbf{H} + \textbf{I} \lambda)^{-1} \cdot \textbf{g}
! \end{align*}
! We start from the fact that the hessian is diagonalizable. So we have:
! \begin{align*}
! \textbf{H} = \textbf{W} \cdot \textbf{h} \cdot \textbf{W}^T
! \end{align*}
! with: \newline
! $\textbf{H}$, the hessian matrix \newline
! $\textbf{W}$, the matrix containing the eigenvectors \newline
! $\textbf{w}_i$, the i-th eigenvector, i.e. i-th column of $\textbf{W}$ \newline
! $\textbf{h}$, the matrix containing the eigenvalues in ascending order \newline
! $h_i$, the i-th eigenvalue in ascending order \newline
! Now we use the fact that adding a constant on the diagonal just shifts
! the eigenvalues:
! \begin{align*}
! \textbf{H} + \textbf{I} \lambda = \textbf{W} \cdot (\textbf{h}
! +\textbf{I} \lambda) \cdot \textbf{W}^T
! \end{align*}
! By doing so we can express $\textbf{x}$ as a function of $\lambda$
! \begin{align*}
! \textbf{x}(\lambda) = - \sum_{i=1}^n \frac{\textbf{w}_i^T \cdot
! \textbf{g}}{h_i + \lambda} \cdot \textbf{w}_i
! \end{align*}
! with $\lambda \neq - h_i$.
! An interesting thing in our case is the norm of $\textbf{x}$,
! because we want $||\textbf{x}|| = \Delta$. Due to the orthogonality of
! the eigenvectors $\left\{\textbf{w} \right\} _{i=1}^n$ we have:
! \begin{align*}
! ||\textbf{x}(\lambda)||^2 = \sum_{i=1}^n \frac{(\textbf{w}_i^T \cdot
! \textbf{g})^2}{(h_i + \lambda)^2}
! \end{align*}
! So the $||\textbf{x}(\lambda)||^2$ is just a function of $\lambda$.
! And if we study the properties of this function we see that:
! \begin{align*}
! \lim_{\lambda\to\infty} ||\textbf{x}(\lambda)|| = 0
! \end{align*}
! and if $\textbf{w}_i^T \cdot \textbf{g} \neq 0$:
! \begin{align*}
! \lim_{\lambda\to -h_i} ||\textbf{x}(\lambda)|| = + \infty
! \end{align*}
! From these limits and knowing that $h_1$ is the lowest eigenvalue, we
! can conclude that $||\textbf{x}(\lambda)||$ is a continuous and
! strictly decreasing function on the interval $\lambda \in
! (-h_1;\infty)$. Thus, there is one $\lambda$ in this interval which
! gives $||\textbf{x}(\lambda)|| = \Delta$, consequently there is one
! solution.
! Since $\textbf{x} = - (\textbf{H} + \lambda \textbf{I})^{-1} \cdot
! \textbf{g}$ and we want to reduce the norm of $\textbf{x}$, clearly,
! $\lambda > 0$ ($\lambda = 0$ is the unconstraint solution). But the
! Newton method is only defined for a positive definite hessian matrix,
! so $(\textbf{H} + \textbf{I} \lambda)$ must be positive
! definite. Consequently, in the case where $\textbf{H}$ is not positive
! definite, to ensure the positive definiteness, $\lambda$ must be
! greater than $- h_1$.
! \begin{align*}
! \lambda > 0 \quad \text{and} \quad \lambda \geq - h_1
! \end{align*}
! From that there are five cases:
! - if $\textbf{H}$ is positive definite, $-h_1 < 0$, $\lambda \in (0,\infty)$
! - if $\textbf{H}$ is not positive definite and $\textbf{w}_1^T \cdot
! \textbf{g} \neq 0$, $(\textbf{H} + \textbf{I}
! \lambda)$
! must be positve definite, $-h_1 > 0$, $\lambda \in (-h_1, \infty)$
! - if $\textbf{H}$ is not positive definite , $\textbf{w}_1^T \cdot
! \textbf{g} = 0$ and $||\textbf{x}(-h_1)|| > \Delta$ by removing
! $j=1$ in the sum, $(\textbf{H} + \textbf{I} \lambda)$ must be
! positive definite, $-h_1 > 0$, $\lambda \in (-h_1, \infty$)
! - if $\textbf{H}$ is not positive definite , $\textbf{w}_1^T \cdot
! \textbf{g} = 0$ and $||\textbf{x}(-h_1)|| \leq \Delta$ by removing
! $j=1$ in the sum, $(\textbf{H} + \textbf{I} \lambda)$ must be
! positive definite, $-h_1 > 0$, $\lambda = -h_1$). This case is
! similar to the case where $\textbf{H}$ and $||\textbf{x}(\lambda =
! 0)|| \leq \Delta$
! but we can also add to $\textbf{x}$, the first eigenvector $\textbf{W}_1$
! time a constant to ensure the condition $||\textbf{x}(\lambda =
! -h_1)|| = \Delta$ and escape from the saddle point
! Thus to find the solution, we can write:
! \begin{align*}
! ||\textbf{x}(\lambda)|| = \Delta
! \end{align*}
! \begin{align*}
! ||\textbf{x}(\lambda)|| - \Delta = 0
! \end{align*}
! Taking the square of this equation
! \begin{align*}
! (||\textbf{x}(\lambda)|| - \Delta)^2 = 0
! \end{align*}
! we have a function with one minimum for the optimal $\lambda$.
! Since we have the formula of $||\textbf{x}(\lambda)||^2$, we solve
! \begin{align*}
! (||\textbf{x}(\lambda)||^2 - \Delta^2)^2 = 0
! \end{align*}
! But in practice, it is more effective to solve:
! \begin{align*}
! (\frac{1}{||\textbf{x}(\lambda)||^2} - \frac{1}{\Delta^2})^2 = 0
! \end{align*}
! To do that, we just use the Newton method with "trust_newton" using
! first and second derivative of $(||\textbf{x}(\lambda)||^2 -
! \Delta^2)^2$ with respect to $\textbf{x}$.
! This will give the optimal $\lambda$ to compute the
! solution $\textbf{x}$ with the formula seen previously:
! \begin{align*}
! \textbf{x}(\lambda) = - \sum_{i=1}^n \frac{\textbf{w}_i^T \cdot
! \textbf{g}}{h_i + \lambda} \cdot \textbf{w}_i
! \end{align*}
! The solution $\textbf{x}(\lambda)$ with the optimal $\lambda$ is our
! step to go from the (k)-th to the (k+1)-th iteration, is noted $\textbf{x}^*$.
! Evolution of the trust region
! We initialize the trust region at the first iteration using a radius
! \begin{align*}
! \Delta = ||\textbf{x}(\lambda=0)||
! \end{align*}
! And for the next iteration the trust region will evolves depending of
! the agreement of the energy prediction based on the Taylor series
! truncated at the 2nd order and the real energy. If the Taylor series
! truncated at the 2nd order represents correctly the energy landscape
! the trust region will be extent else it will be reduced. In order to
! mesure this agreement we use the ratio rho cf. "rho_model" and
! "trust_e_model". From that we use the following values:
! - if $\rho \geq 0.75$, then $\Delta = 2 \Delta$,
! - if $0.5 \geq \rho < 0.75$, then $\Delta = \Delta$,
! - if $0.25 \geq \rho < 0.5$, then $\Delta = 0.5 \Delta$,
! - if $\rho < 0.25$, then $\Delta = 0.25 \Delta$.
! In addition, if $\rho < 0.1$ the iteration is cancelled, so it
! restarts with a smaller trust region until the energy decreases.
! Summary
! To summarize, knowing the hessian (eigenvectors and eigenvalues), the
! gradient and the radius of the trust region we can compute the norm of
! the Newton step
! \begin{align*}
! ||\textbf{x}(\lambda = 0)||^2 = ||- \textbf{H}^{-1} \cdot \textbf{g}||^2 = \sum_{i=1}^n
! \frac{(\textbf{w}_i^T \cdot \textbf{g})^2}{(h_i + \lambda)^2}, \quad h_i \neq 0
! \end{align*}
! - if $h_1 \geq 0$, $||\textbf{x}(\lambda = 0)|| \leq \Delta$ and
! $\textbf{x}(\lambda=0)$ is in the trust region and it is not
! necessary to put a constraint on $\textbf{x}$, the solution is the
! unconstrained one, $\textbf{x}^* = \textbf{x}(\lambda = 0)$.
! - else if $h_1 < 0$, $\textbf{w}_1^T \cdot \textbf{g} = 0$ and
! $||\textbf{x}(\lambda = -h_1)|| \leq \Delta$ (by removing $j=1$ in
! the sum), the solution is $\textbf{x}^* = \textbf{x}(\lambda =
! -h_1)$, similarly to the previous case.
! But we can add to $\textbf{x}$, the first eigenvector $\textbf{W}_1$
! time a constant to ensure the condition $||\textbf{x}(\lambda =
! -h_1)|| = \Delta$ and escape from the saddle point
! - else if $h_1 < 0$ and $\textbf{w}_1^T \cdot \textbf{g} \neq 0$ we
! have to search $\lambda \in (-h_1, \infty)$ such as
! $\textbf{x}(\lambda) = \Delta$ by solving with the Newton method
! \begin{align*}
! (||\textbf{x}(\lambda)||^2 - \Delta^2)^2 = 0
! \end{align*}
! or
! \begin{align*}
! (\frac{1}{||\textbf{x}(\lambda)||^2} - \frac{1}{\Delta^2})^2 = 0
! \end{align*}
! which is numerically more stable. And finally compute
! \begin{align*}
! \textbf{x}^* = \textbf{x}(\lambda) = - \sum_{i=1}^n \frac{\textbf{w}_i^T \cdot
! \textbf{g}}{h_i + \lambda} \cdot \textbf{w}_i
! \end{align*}
! - else if $h_1 \geq 0$ and $||\textbf{x}(\lambda = 0)|| > \Delta$ we
! do exactly the same thing that the previous case but we search
! $\lambda \in (0, \infty)$
! - else if $h_1 < 0$ and $\textbf{w}_1^T \cdot \textbf{g} = 0$ and
! $||\textbf{x}(\lambda = -h_1)|| > \Delta$ (by removing $j=1$ in the
! sum), again we do exactly the same thing that the previous case
! searching $\lambda \in (-h_1, \infty)$.
! For the cases where $\textbf{w}_1^T \cdot \textbf{g} = 0$ it is not
! necessary in fact to remove the $j = 1$ in the sum since the term
! where $h_i - \lambda < 10^{-6}$ are not computed.
! After that, we take this vector $\textbf{x}^*$, called "x", and we do
! the transformation to an antisymmetric matrix $\textbf{X}$, called
! m_x. This matrix $\textbf{X}$ will be used to compute a rotation
! matrix $\textbf{R}= \exp(\textbf{X})$ in "rotation_matrix".
! NB:
! An improvement can be done using a elleptical trust region.
! Code
! Provided:
! | mo_num | integer | number of MOs |
! Cf. qp_edit in orbital optimization section, for some constants/thresholds
! Input:
! | m | integer | number of MOs |
! | n | integer | m*(m-1)/2 |
! | H(n, n) | double precision | hessian |
! | v_grad(n) | double precision | gradient |
! | e_val(n) | double precision | eigenvalues of the hessian |
! | W(n, n) | double precision | eigenvectors of the hessian |
! | rho | double precision | agreement between the model and the reality, |
! | | | represents the quality of the energy prediction |
! | nb_iter | integer | number of iteration |
! Input/Ouput:
! | delta | double precision | radius of the trust region |
! Output:
! | x(n) | double precision | vector containing the step |
! Internal:
! | accu | double precision | temporary variable to compute the step |
! | lambda | double precision | lagrange multiplier |
! | trust_radius2 | double precision | square of the radius of the trust region |
! | norm2_x | double precision | norm^2 of the vector x |
! | norm2_g | double precision | norm^2 of the vector containing the gradient |
! | tmp_wtg(n) | double precision | tmp_wtg(i) = w_i^T . g |
! | i, j, k | integer | indexes |
! Function:
! | dnrm2 | double precision | Blas function computing the norm |
! | f_norm_trust_region_omp | double precision | compute the value of norm(x(lambda)^2) |
subroutine trust_region_step(n,nb_iter,v_grad,rho,e_val,w,x,delta)
include 'pi.h'
BEGIN_DOC
! Compuet the step in the trust region
END_DOC
implicit none
! Variables
! in
integer, intent(in) :: n
double precision, intent(in) :: v_grad(n), rho
integer, intent(inout) :: nb_iter
double precision, intent(in) :: e_val(n), w(n,n)
! inout
double precision, intent(inout) :: delta
! out
double precision, intent(out) :: x(n)
! Internal
double precision :: accu, lambda, trust_radius2
double precision :: norm2_x, norm2_g
double precision, allocatable :: tmp_wtg(:)
integer :: i,j,k
double precision :: t1,t2,t3
integer :: n_neg_eval
! Functions
double precision :: ddot, dnrm2
double precision :: f_norm_trust_region_omp
print*,''
print*,'=================='
print*,'---Trust_region---'
print*,'=================='
call wall_time(t1)
! Allocation
allocate(tmp_wtg(n))
! Initialization and norm
! The norm of the step size will be useful for the trust region
! algorithm. We start from a first guess and the radius of the trust
! region will evolve during the optimization.
! avoid_saddle is actually a test to avoid saddle points
! Initialization of the Lagrange multiplier
lambda = 0d0
! List of w^T.g, to avoid the recomputation
tmp_wtg = 0d0
do j = 1, n
do i = 1, n
tmp_wtg(j) = tmp_wtg(j) + w(i,j) * v_grad(i)
enddo
enddo
! Replacement of the small tmp_wtg corresponding to a negative eigenvalue
! in the case of avoid_saddle
if (avoid_saddle .and. e_val(1) < - thresh_eig) then
i = 2
! Number of negative eigenvalues
do while (e_val(i) < - thresh_eig)
if (tmp_wtg(i) < thresh_wtg2) then
if (version_avoid_saddle == 1) then
tmp_wtg(i) = 1d0
elseif (version_avoid_saddle == 2) then
tmp_wtg(i) = DABS(e_val(i))
elseif (version_avoid_saddle == 3) then
tmp_wtg(i) = dsqrt(DABS(e_val(i)))
else
tmp_wtg(i) = thresh_wtg2
endif
endif
i = i + 1
enddo
! For the fist one it's a little bit different
if (tmp_wtg(1) < thresh_wtg2) then
tmp_wtg(1) = 0d0
endif
endif
! Norm^2 of x, ||x||^2
norm2_x = f_norm_trust_region_omp(n,e_val,tmp_wtg,0d0)
! We just use this norm for the nb_iter = 0 in order to initialize the trust radius delta
! We don't care about the sign of the eigenvalue we just want the size of the step in a normal Newton-Raphson algorithm
! Anyway if the step is too big it will be reduced
print*,'||x||^2 :', norm2_x
! Norm^2 of the gradient, ||v_grad||^2
norm2_g = (dnrm2(n,v_grad,1))**2
print*,'||grad||^2 :', norm2_g
! Trust radius initialization
! At the first iteration (nb_iter = 0) we initialize the trust region
! with the norm of the step generate by the Newton's method ($\textbf{x}_1 =
! (\textbf{H}_0)^{-1} \cdot \textbf{g}_0$,
! we compute this norm using f_norm_trust_region_omp as explain just
! below)
! trust radius
if (nb_iter == 0) then
trust_radius2 = norm2_x
! To avoid infinite loop of cancellation of this first step
! without changing delta
nb_iter = 1
! Compute delta, delta = sqrt(trust_radius)
delta = dsqrt(trust_radius2)
endif
! Modification of the trust radius
! In function of rho (which represents the agreement between the model
! and the reality, cf. rho_model) the trust region evolves. We update
! delta (the radius of the trust region).
! To avoid too big trust region we put a maximum size.
! Modification of the trust radius in function of rho
if (rho >= 0.75d0) then
delta = 2d0 * delta
elseif (rho >= 0.5d0) then
delta = delta
elseif (rho >= 0.25d0) then
delta = 0.5d0 * delta
else
delta = 0.25d0 * delta
endif
! Maximum size of the trust region
!if (delta > 0.5d0 * n * pi) then
! delta = 0.5d0 * n * pi
! print*,'Delta > delta_max, delta = 0.5d0 * n * pi'
!endif
if (delta > 1d10) then
delta = 1d10
endif
print*, 'Delta :', delta
! Calculation of the optimal lambda
! We search the solution of $(||x||^2 - \Delta^2)^2 = 0$
! - If $||\textbf{x}|| > \Delta$ or $h_1 < 0$ we have to add a constant
! $\lambda > 0 \quad \text{and} \quad \lambda > -h_1$
! - If $||\textbf{x}|| \leq \Delta$ and $h_1 \geq 0$ the solution is the
! unconstrained one, $\lambda = 0$
! You will find more details at the beginning
! By giving delta, we search (||x||^2 - delta^2)^2 = 0
! and not (||x||^2 - delta)^2 = 0
! Research of lambda to solve ||x(lambda)|| = Delta
! Display
print*, 'e_val(1) = ', e_val(1)
print*, 'w_1^T.g =', tmp_wtg(1)
! H positive definite
if (e_val(1) > - thresh_eig) then
norm2_x = f_norm_trust_region_omp(n,e_val,tmp_wtg,0d0)
print*, '||x(0)||=', dsqrt(norm2_x)
print*, 'Delta=', delta
! H positive definite, ||x(lambda = 0)|| <= Delta
if (dsqrt(norm2_x) <= delta) then
print*, 'H positive definite, ||x(lambda = 0)|| <= Delta'
print*, 'lambda = 0, no lambda optimization'
lambda = 0d0
! H positive definite, ||x(lambda = 0)|| > Delta
else
! Constraint solution
print*, 'H positive definite, ||x(lambda = 0)|| > Delta'
print*,'Computation of the optimal lambda...'
call trust_region_optimal_lambda(n,e_val,tmp_wtg,delta,lambda)
endif
! H indefinite
else
if (DABS(tmp_wtg(1)) < thresh_wtg) then
norm2_x = f_norm_trust_region_omp(n,e_val,tmp_wtg, - e_val(1))
print*, 'w_1^T.g <', thresh_wtg,', ||x(lambda = -e_val(1))|| =', dsqrt(norm2_x)
endif
! H indefinite, w_1^T.g = 0, ||x(lambda = -e_val(1))|| <= Delta
if (dsqrt(norm2_x) <= delta .and. DABS(tmp_wtg(1)) < thresh_wtg) then
! Add e_val(1) in order to have (H - e_val(1) I) positive definite
print*, 'H indefinite, w_1^T.g = 0, ||x(lambda = -e_val(1))|| <= Delta'
print*, 'lambda = -e_val(1), no lambda optimization'
lambda = - e_val(1)
! H indefinite, w_1^T.g = 0, ||x(lambda = -e_val(1))|| > Delta
! and
! H indefinite, w_1^T.g =/= 0
else
! Constraint solution/ add lambda
if (DABS(tmp_wtg(1)) < thresh_wtg) then
print*, 'H indefinite, w_1^T.g = 0, ||x(lambda = -e_val(1))|| > Delta'
else
print*, 'H indefinite, w_1^T.g =/= 0'
endif
print*, 'Computation of the optimal lambda...'
call trust_region_optimal_lambda(n,e_val,tmp_wtg,delta,lambda)
endif
endif
! Recomputation of the norm^2 of the step x
norm2_x = f_norm_trust_region_omp(n,e_val,tmp_wtg,lambda)
print*,''
print*,'Summary after the trust region:'
print*,'lambda:', lambda
print*,'||x||:', dsqrt(norm2_x)
print*,'delta:', delta
! Calculation of the step x
! x refers to $\textbf{x}^*$
! We compute x in function of lambda using its formula :
! \begin{align*}
! \textbf{x}^* = \textbf{x}(\lambda) = - \sum_{i=1}^n \frac{\textbf{w}_i^T \cdot \textbf{g}}{h_i
! + \lambda} \cdot \textbf{w}_i
! \end{align*}
! Initialisation
x = 0d0
! Calculation of the step x
! Normal version
if (.not. absolute_eig) then
do i = 1, n
if (DABS(e_val(i)) > thresh_eig .and. DABS(e_val(i)+lambda) > thresh_eig) then
do j = 1, n
x(j) = x(j) - tmp_wtg(i) * W(j,i) / (e_val(i) + lambda)
enddo
endif
enddo
! Version to use the absolute value of the eigenvalues
else
do i = 1, n
if (DABS(e_val(i)) > thresh_eig) then
do j = 1, n
x(j) = x(j) - tmp_wtg(i) * W(j,i) / (DABS(e_val(i)) + lambda)
enddo
endif
enddo
endif
double precision :: beta, norm_x
! Test
! If w_1^T.g = 0, the lim of ||x(lambda)|| when lambda tend to -e_val(1)
! is not + infinity. So ||x(lambda=-e_val(1))|| < delta, we add the first
! eigenvectors multiply by a constant to ensure the condition
! ||x(lambda=-e_val(1))|| = delta and escape the saddle point
if (avoid_saddle .and. e_val(1) < - thresh_eig) then
if (tmp_wtg(1) < 1d-15 .and. (1d0 - dsqrt(norm2_x)/delta) > 1d-3 ) then
! norm of x
norm_x = dnrm2(n,x,1)
! Computes the coefficient for the w_1
beta = delta**2 - norm_x**2
! Updates the step x
x = x + W(:,1) * dsqrt(beta)
! Recomputes the norm to check
norm_x = dnrm2(n,x,1)
print*, 'Add w_1 * dsqrt(delta^2 - ||x||^2):'
print*, '||x||', norm_x
endif
endif
! Transformation of x
! x is a vector of size n, so it can be write as a m by m
! antisymmetric matrix m_x cf. "mat_to_vec_index" and "vec_to_mat_index".
! ! Step transformation vector -> matrix
! ! Vector with n element -> mo_num by mo_num matrix
! do j = 1, m
! do i = 1, m
! if (i>j) then
! call mat_to_vec_index(i,j,k)
! m_x(i,j) = x(k)
! else
! m_x(i,j) = 0d0
! endif
! enddo
! enddo
!
! ! Antisymmetrization of the previous matrix
! do j = 1, m
! do i = 1, m
! if (i<j) then
! m_x(i,j) = - m_x(j,i)
! endif
! enddo
! enddo
! Deallocation, end
deallocate(tmp_wtg)
call wall_time(t2)
t3 = t2 - t1
print*,'Time in trust_region:', t3
print*,'======================'
print*,'---End trust_region---'
print*,'======================'
print*,''
end

View File

@ -0,0 +1,726 @@
* Trust region
*Compute the next step with the trust region algorithm*
The Newton method is an iterative method to find a minimum of a given
function. It uses a Taylor series truncated at the second order of the
targeted function and gives its minimizer. The minimizer is taken as
the new position and the same thing is done. And by doing so
iteratively the method find a minimum, a local or global one depending
of the starting point and the convexity/nonconvexity of the targeted
function.
The goal of the trust region is to constrain the step size of the
Newton method in a certain area around the actual position, where the
Taylor series is a good approximation of the targeted function. This
area is called the "trust region".
In addition, in function of the agreement between the Taylor
development of the energy and the real energy, the size of the trust
region will be updated at each iteration. By doing so, the step sizes
are not too larges. In addition, since we add a criterion to cancel the
step if the energy increases (more precisely if rho < 0.1), so it's
impossible to diverge. \newline
References: \newline
Nocedal & Wright, Numerical Optimization, chapter 4 (1999), \newline
https://link.springer.com/book/10.1007/978-0-387-40065-5, \newline
ISBN: 978-0-387-40065-5 \newline
By using the first and the second derivatives, the Newton method gives
a step:
\begin{align*}
\textbf{x}_{(k+1)}^{\text{Newton}} = - \textbf{H}_{(k)}^{-1} \cdot
\textbf{g}_{(k)}
\end{align*}
which leads to the minimizer of the Taylor series.
!!! Warning: the Newton method gives the minimizer if and only if
$\textbf{H}$ is positive definite, else it leads to a saddle point !!!
But we want a step $\textbf{x}_{(k+1)}$ with a constraint on its (euclidian) norm:
\begin{align*}
||\textbf{x}_{(k+1)}|| \leq \Delta_{(k+1)}
\end{align*}
which is equivalent to
\begin{align*}
\textbf{x}_{(k+1)}^T \cdot \textbf{x}_{(k+1)} \leq \Delta_{(k+1)}^2
\end{align*}
with: \newline
$\textbf{x}_{(k+1)}$ is the step for the k+1-th iteration (vector of
size n) \newline
$\textbf{H}_{(k)}$ is the hessian at the k-th iteration (n by n
matrix) \newline
$\textbf{g}_{(k)}$ is the gradient at the k-th iteration (vector of
size n) \newline
$\Delta_{(k+1)}$ is the trust radius for the (k+1)-th iteration
\newline
Thus we want to constrain the step size $\textbf{x}_{(k+1)}$ into a
hypersphere of radius $\Delta_{(k+1)}$.\newline
So, if $||\textbf{x}_{(k+1)}^{\text{Newton}}|| \leq \Delta_{(k)}$ and
$\textbf{H}$ is positive definite, the
solution is the step given by the Newton method
$\textbf{x}_{(k+1)} = \textbf{x}_{(k+1)}^{\text{Newton}}$.
Else we have to constrain the step size. For simplicity we will remove
the index $_{(k)}$ and $_{(k+1)}$. To restict the step size, we have
to put a constraint on $\textbf{x}$ with a Lagrange multiplier.
Starting from the Taylor series of a function E (here, the energy)
truncated at the 2nd order, we have:
\begin{align*}
E(\textbf{x}) = E +\textbf{g}^T \cdot \textbf{x} + \frac{1}{2}
\cdot \textbf{x}^T \cdot \textbf{H} \cdot \textbf{x} +
\mathcal{O}(\textbf{x}^2)
\end{align*}
With the constraint on the norm of $\textbf{x}$ we can write the
Lagrangian
\begin{align*}
\mathcal{L}(\textbf{x},\lambda) = E + \textbf{g}^T \cdot \textbf{x}
+ \frac{1}{2} \cdot \textbf{x}^T \cdot \textbf{H} \cdot \textbf{x}
+ \frac{1}{2} \lambda (\textbf{x}^T \cdot \textbf{x} - \Delta^2)
\end{align*}
Where: \newline
$\lambda$ is the Lagrange multiplier \newline
$E$ is the energy at the k-th iteration $\Leftrightarrow
E(\textbf{x} = \textbf{0})$ \newline
To solve this equation, we search a stationary point where the first
derivative of $\mathcal{L}$ with respect to $\textbf{x}$ becomes 0, i.e.
\begin{align*}
\frac{\partial \mathcal{L}(\textbf{x},\lambda)}{\partial \textbf{x}}=0
\end{align*}
The derivative is:
\begin{align*}
\frac{\partial \mathcal{L}(\textbf{x},\lambda)}{\partial \textbf{x}}
= \textbf{g} + \textbf{H} \cdot \textbf{x} + \lambda \cdot \textbf{x}
\end{align*}
So, we search $\textbf{x}$ such as:
\begin{align*}
\frac{\partial \mathcal{L}(\textbf{x},\lambda)}{\partial \textbf{x}}
= \textbf{g} + \textbf{H} \cdot \textbf{x} + \lambda \cdot \textbf{x} = 0
\end{align*}
We can rewrite that as:
\begin{align*}
\textbf{g} + \textbf{H} \cdot \textbf{x} + \lambda \cdot \textbf{x}
= \textbf{g} + (\textbf{H} +\textbf{I} \lambda) \cdot \textbf{x} = 0
\end{align*}
with $\textbf{I}$ is the identity matrix.
By doing so, the solution is:
\begin{align*}
(\textbf{H} +\textbf{I} \lambda) \cdot \textbf{x}= -\textbf{g}
\end{align*}
\begin{align*}
\textbf{x}= - (\textbf{H} + \textbf{I} \lambda)^{-1} \cdot \textbf{g}
\end{align*}
with $\textbf{x}^T \textbf{x} = \Delta^2$.
We have to solve this previous equation to find this $\textbf{x}$ in the
trust region, i.e. $||\textbf{x}|| = \Delta$. Now, this problem is
just a one dimension problem because we can express $\textbf{x}$ as a
function of $\lambda$:
\begin{align*}
\textbf{x}(\lambda) = - (\textbf{H} + \textbf{I} \lambda)^{-1} \cdot \textbf{g}
\end{align*}
We start from the fact that the hessian is diagonalizable. So we have:
\begin{align*}
\textbf{H} = \textbf{W} \cdot \textbf{h} \cdot \textbf{W}^T
\end{align*}
with: \newline
$\textbf{H}$, the hessian matrix \newline
$\textbf{W}$, the matrix containing the eigenvectors \newline
$\textbf{w}_i$, the i-th eigenvector, i.e. i-th column of $\textbf{W}$ \newline
$\textbf{h}$, the matrix containing the eigenvalues in ascending order \newline
$h_i$, the i-th eigenvalue in ascending order \newline
Now we use the fact that adding a constant on the diagonal just shifts
the eigenvalues:
\begin{align*}
\textbf{H} + \textbf{I} \lambda = \textbf{W} \cdot (\textbf{h}
+\textbf{I} \lambda) \cdot \textbf{W}^T
\end{align*}
By doing so we can express $\textbf{x}$ as a function of $\lambda$
\begin{align*}
\textbf{x}(\lambda) = - \sum_{i=1}^n \frac{\textbf{w}_i^T \cdot
\textbf{g}}{h_i + \lambda} \cdot \textbf{w}_i
\end{align*}
with $\lambda \neq - h_i$.
An interesting thing in our case is the norm of $\textbf{x}$,
because we want $||\textbf{x}|| = \Delta$. Due to the orthogonality of
the eigenvectors $\left\{\textbf{w} \right\} _{i=1}^n$ we have:
\begin{align*}
||\textbf{x}(\lambda)||^2 = \sum_{i=1}^n \frac{(\textbf{w}_i^T \cdot
\textbf{g})^2}{(h_i + \lambda)^2}
\end{align*}
So the $||\textbf{x}(\lambda)||^2$ is just a function of $\lambda$.
And if we study the properties of this function we see that:
\begin{align*}
\lim_{\lambda\to\infty} ||\textbf{x}(\lambda)|| = 0
\end{align*}
and if $\textbf{w}_i^T \cdot \textbf{g} \neq 0$:
\begin{align*}
\lim_{\lambda\to -h_i} ||\textbf{x}(\lambda)|| = + \infty
\end{align*}
From these limits and knowing that $h_1$ is the lowest eigenvalue, we
can conclude that $||\textbf{x}(\lambda)||$ is a continuous and
strictly decreasing function on the interval $\lambda \in
(-h_1;\infty)$. Thus, there is one $\lambda$ in this interval which
gives $||\textbf{x}(\lambda)|| = \Delta$, consequently there is one
solution.
Since $\textbf{x} = - (\textbf{H} + \lambda \textbf{I})^{-1} \cdot
\textbf{g}$ and we want to reduce the norm of $\textbf{x}$, clearly,
$\lambda > 0$ ($\lambda = 0$ is the unconstraint solution). But the
Newton method is only defined for a positive definite hessian matrix,
so $(\textbf{H} + \textbf{I} \lambda)$ must be positive
definite. Consequently, in the case where $\textbf{H}$ is not positive
definite, to ensure the positive definiteness, $\lambda$ must be
greater than $- h_1$.
\begin{align*}
\lambda > 0 \quad \text{and} \quad \lambda \geq - h_1
\end{align*}
From that there are five cases:
- if $\textbf{H}$ is positive definite, $-h_1 < 0$, $\lambda \in (0,\infty)$
- if $\textbf{H}$ is not positive definite and $\textbf{w}_1^T \cdot
\textbf{g} \neq 0$, $(\textbf{H} + \textbf{I}
\lambda)$
must be positve definite, $-h_1 > 0$, $\lambda \in (-h_1, \infty)$
- if $\textbf{H}$ is not positive definite , $\textbf{w}_1^T \cdot
\textbf{g} = 0$ and $||\textbf{x}(-h_1)|| > \Delta$ by removing
$j=1$ in the sum, $(\textbf{H} + \textbf{I} \lambda)$ must be
positive definite, $-h_1 > 0$, $\lambda \in (-h_1, \infty$)
- if $\textbf{H}$ is not positive definite , $\textbf{w}_1^T \cdot
\textbf{g} = 0$ and $||\textbf{x}(-h_1)|| \leq \Delta$ by removing
$j=1$ in the sum, $(\textbf{H} + \textbf{I} \lambda)$ must be
positive definite, $-h_1 > 0$, $\lambda = -h_1$). This case is
similar to the case where $\textbf{H}$ and $||\textbf{x}(\lambda =
0)|| \leq \Delta$
but we can also add to $\textbf{x}$, the first eigenvector $\textbf{W}_1$
time a constant to ensure the condition $||\textbf{x}(\lambda =
-h_1)|| = \Delta$ and escape from the saddle point
Thus to find the solution, we can write:
\begin{align*}
||\textbf{x}(\lambda)|| = \Delta
\end{align*}
\begin{align*}
||\textbf{x}(\lambda)|| - \Delta = 0
\end{align*}
Taking the square of this equation
\begin{align*}
(||\textbf{x}(\lambda)|| - \Delta)^2 = 0
\end{align*}
we have a function with one minimum for the optimal $\lambda$.
Since we have the formula of $||\textbf{x}(\lambda)||^2$, we solve
\begin{align*}
(||\textbf{x}(\lambda)||^2 - \Delta^2)^2 = 0
\end{align*}
But in practice, it is more effective to solve:
\begin{align*}
(\frac{1}{||\textbf{x}(\lambda)||^2} - \frac{1}{\Delta^2})^2 = 0
\end{align*}
To do that, we just use the Newton method with "trust_newton" using
first and second derivative of $(||\textbf{x}(\lambda)||^2 -
\Delta^2)^2$ with respect to $\textbf{x}$.
This will give the optimal $\lambda$ to compute the
solution $\textbf{x}$ with the formula seen previously:
\begin{align*}
\textbf{x}(\lambda) = - \sum_{i=1}^n \frac{\textbf{w}_i^T \cdot
\textbf{g}}{h_i + \lambda} \cdot \textbf{w}_i
\end{align*}
The solution $\textbf{x}(\lambda)$ with the optimal $\lambda$ is our
step to go from the (k)-th to the (k+1)-th iteration, is noted $\textbf{x}^*$.
#+BEGIN_SRC f90 :comments org :tangle trust_region_step.irp.f
#+END_SRC
** Evolution of the trust region
We initialize the trust region at the first iteration using a radius
\begin{align*}
\Delta = ||\textbf{x}(\lambda=0)||
\end{align*}
And for the next iteration the trust region will evolves depending of
the agreement of the energy prediction based on the Taylor series
truncated at the 2nd order and the real energy. If the Taylor series
truncated at the 2nd order represents correctly the energy landscape
the trust region will be extent else it will be reduced. In order to
mesure this agreement we use the ratio rho cf. "rho_model" and
"trust_e_model". From that we use the following values:
- if $\rho \geq 0.75$, then $\Delta = 2 \Delta$,
- if $0.5 \geq \rho < 0.75$, then $\Delta = \Delta$,
- if $0.25 \geq \rho < 0.5$, then $\Delta = 0.5 \Delta$,
- if $\rho < 0.25$, then $\Delta = 0.25 \Delta$.
In addition, if $\rho < 0.1$ the iteration is cancelled, so it
restarts with a smaller trust region until the energy decreases.
#+BEGIN_SRC f90 :comments org :tangle trust_region_step.irp.f
#+END_SRC
** Summary
To summarize, knowing the hessian (eigenvectors and eigenvalues), the
gradient and the radius of the trust region we can compute the norm of
the Newton step
\begin{align*}
||\textbf{x}(\lambda = 0)||^2 = ||- \textbf{H}^{-1} \cdot \textbf{g}||^2 = \sum_{i=1}^n
\frac{(\textbf{w}_i^T \cdot \textbf{g})^2}{(h_i + \lambda)^2}, \quad h_i \neq 0
\end{align*}
- if $h_1 \geq 0$, $||\textbf{x}(\lambda = 0)|| \leq \Delta$ and
$\textbf{x}(\lambda=0)$ is in the trust region and it is not
necessary to put a constraint on $\textbf{x}$, the solution is the
unconstrained one, $\textbf{x}^* = \textbf{x}(\lambda = 0)$.
- else if $h_1 < 0$, $\textbf{w}_1^T \cdot \textbf{g} = 0$ and
$||\textbf{x}(\lambda = -h_1)|| \leq \Delta$ (by removing $j=1$ in
the sum), the solution is $\textbf{x}^* = \textbf{x}(\lambda =
-h_1)$, similarly to the previous case.
But we can add to $\textbf{x}$, the first eigenvector $\textbf{W}_1$
time a constant to ensure the condition $||\textbf{x}(\lambda =
-h_1)|| = \Delta$ and escape from the saddle point
- else if $h_1 < 0$ and $\textbf{w}_1^T \cdot \textbf{g} \neq 0$ we
have to search $\lambda \in (-h_1, \infty)$ such as
$\textbf{x}(\lambda) = \Delta$ by solving with the Newton method
\begin{align*}
(||\textbf{x}(\lambda)||^2 - \Delta^2)^2 = 0
\end{align*}
or
\begin{align*}
(\frac{1}{||\textbf{x}(\lambda)||^2} - \frac{1}{\Delta^2})^2 = 0
\end{align*}
which is numerically more stable. And finally compute
\begin{align*}
\textbf{x}^* = \textbf{x}(\lambda) = - \sum_{i=1}^n \frac{\textbf{w}_i^T \cdot
\textbf{g}}{h_i + \lambda} \cdot \textbf{w}_i
\end{align*}
- else if $h_1 \geq 0$ and $||\textbf{x}(\lambda = 0)|| > \Delta$ we
do exactly the same thing that the previous case but we search
$\lambda \in (0, \infty)$
- else if $h_1 < 0$ and $\textbf{w}_1^T \cdot \textbf{g} = 0$ and
$||\textbf{x}(\lambda = -h_1)|| > \Delta$ (by removing $j=1$ in the
sum), again we do exactly the same thing that the previous case
searching $\lambda \in (-h_1, \infty)$.
For the cases where $\textbf{w}_1^T \cdot \textbf{g} = 0$ it is not
necessary in fact to remove the $j = 1$ in the sum since the term
where $h_i - \lambda < 10^{-6}$ are not computed.
After that, we take this vector $\textbf{x}^*$, called "x", and we do
the transformation to an antisymmetric matrix $\textbf{X}$, called
m_x. This matrix $\textbf{X}$ will be used to compute a rotation
matrix $\textbf{R}= \exp(\textbf{X})$ in "rotation_matrix".
NB:
An improvement can be done using a elleptical trust region.
#+BEGIN_SRC f90 :comments org :tangle trust_region_step.irp.f
#+END_SRC
** Code
Provided:
| mo_num | integer | number of MOs |
Cf. qp_edit in orbital optimization section, for some constants/thresholds
Input:
| m | integer | number of MOs |
| n | integer | m*(m-1)/2 |
| H(n, n) | double precision | hessian |
| v_grad(n) | double precision | gradient |
| e_val(n) | double precision | eigenvalues of the hessian |
| W(n, n) | double precision | eigenvectors of the hessian |
| rho | double precision | agreement between the model and the reality, |
| | | represents the quality of the energy prediction |
| nb_iter | integer | number of iteration |
Input/Ouput:
| delta | double precision | radius of the trust region |
Output:
| x(n) | double precision | vector containing the step |
Internal:
| accu | double precision | temporary variable to compute the step |
| lambda | double precision | lagrange multiplier |
| trust_radius2 | double precision | square of the radius of the trust region |
| norm2_x | double precision | norm^2 of the vector x |
| norm2_g | double precision | norm^2 of the vector containing the gradient |
| tmp_wtg(n) | double precision | tmp_wtg(i) = w_i^T . g |
| i, j, k | integer | indexes |
Function:
| dnrm2 | double precision | Blas function computing the norm |
| f_norm_trust_region_omp | double precision | compute the value of norm(x(lambda)^2) |
#+BEGIN_SRC f90 :comments org :tangle trust_region_step.irp.f
subroutine trust_region_step(n,nb_iter,v_grad,rho,e_val,w,x,delta)
include 'pi.h'
BEGIN_DOC
! Compuet the step in the trust region
END_DOC
implicit none
! Variables
! in
integer, intent(in) :: n
double precision, intent(in) :: v_grad(n), rho
integer, intent(inout) :: nb_iter
double precision, intent(in) :: e_val(n), w(n,n)
! inout
double precision, intent(inout) :: delta
! out
double precision, intent(out) :: x(n)
! Internal
double precision :: accu, lambda, trust_radius2
double precision :: norm2_x, norm2_g
double precision, allocatable :: tmp_wtg(:)
integer :: i,j,k
double precision :: t1,t2,t3
integer :: n_neg_eval
! Functions
double precision :: ddot, dnrm2
double precision :: f_norm_trust_region_omp
print*,''
print*,'=================='
print*,'---Trust_region---'
print*,'=================='
call wall_time(t1)
! Allocation
allocate(tmp_wtg(n))
#+END_SRC
*** Initialization and norm
The norm of the step size will be useful for the trust region
algorithm. We start from a first guess and the radius of the trust
region will evolve during the optimization.
avoid_saddle is actually a test to avoid saddle points
#+BEGIN_SRC f90 :comments org :tangle trust_region_step.irp.f
! Initialization of the Lagrange multiplier
lambda = 0d0
! List of w^T.g, to avoid the recomputation
tmp_wtg = 0d0
do j = 1, n
do i = 1, n
tmp_wtg(j) = tmp_wtg(j) + w(i,j) * v_grad(i)
enddo
enddo
! Replacement of the small tmp_wtg corresponding to a negative eigenvalue
! in the case of avoid_saddle
if (avoid_saddle .and. e_val(1) < - thresh_eig) then
i = 2
! Number of negative eigenvalues
do while (e_val(i) < - thresh_eig)
if (tmp_wtg(i) < thresh_wtg2) then
if (version_avoid_saddle == 1) then
tmp_wtg(i) = 1d0
elseif (version_avoid_saddle == 2) then
tmp_wtg(i) = DABS(e_val(i))
elseif (version_avoid_saddle == 3) then
tmp_wtg(i) = dsqrt(DABS(e_val(i)))
else
tmp_wtg(i) = thresh_wtg2
endif
endif
i = i + 1
enddo
! For the fist one it's a little bit different
if (tmp_wtg(1) < thresh_wtg2) then
tmp_wtg(1) = 0d0
endif
endif
! Norm^2 of x, ||x||^2
norm2_x = f_norm_trust_region_omp(n,e_val,tmp_wtg,0d0)
! We just use this norm for the nb_iter = 0 in order to initialize the trust radius delta
! We don't care about the sign of the eigenvalue we just want the size of the step in a normal Newton-Raphson algorithm
! Anyway if the step is too big it will be reduced
print*,'||x||^2 :', norm2_x
! Norm^2 of the gradient, ||v_grad||^2
norm2_g = (dnrm2(n,v_grad,1))**2
print*,'||grad||^2 :', norm2_g
#+END_SRC
*** Trust radius initialization
At the first iteration (nb_iter = 0) we initialize the trust region
with the norm of the step generate by the Newton's method ($\textbf{x}_1 =
(\textbf{H}_0)^{-1} \cdot \textbf{g}_0$,
we compute this norm using f_norm_trust_region_omp as explain just
below)
#+BEGIN_SRC f90 :comments org :tangle trust_region_step.irp.f
! trust radius
if (nb_iter == 0) then
trust_radius2 = norm2_x
! To avoid infinite loop of cancellation of this first step
! without changing delta
nb_iter = 1
! Compute delta, delta = sqrt(trust_radius)
delta = dsqrt(trust_radius2)
endif
#+END_SRC
*** Modification of the trust radius
In function of rho (which represents the agreement between the model
and the reality, cf. rho_model) the trust region evolves. We update
delta (the radius of the trust region).
To avoid too big trust region we put a maximum size.
#+BEGIN_SRC f90 :comments org :tangle trust_region_step.irp.f
! Modification of the trust radius in function of rho
if (rho >= 0.75d0) then
delta = 2d0 * delta
elseif (rho >= 0.5d0) then
delta = delta
elseif (rho >= 0.25d0) then
delta = 0.5d0 * delta
else
delta = 0.25d0 * delta
endif
! Maximum size of the trust region
!if (delta > 0.5d0 * n * pi) then
! delta = 0.5d0 * n * pi
! print*,'Delta > delta_max, delta = 0.5d0 * n * pi'
!endif
if (delta > 1d10) then
delta = 1d10
endif
print*, 'Delta :', delta
#+END_SRC
*** Calculation of the optimal lambda
We search the solution of $(||x||^2 - \Delta^2)^2 = 0$
- If $||\textbf{x}|| > \Delta$ or $h_1 < 0$ we have to add a constant
$\lambda > 0 \quad \text{and} \quad \lambda > -h_1$
- If $||\textbf{x}|| \leq \Delta$ and $h_1 \geq 0$ the solution is the
unconstrained one, $\lambda = 0$
You will find more details at the beginning
#+BEGIN_SRC f90 :comments org :tangle trust_region_step.irp.f
! By giving delta, we search (||x||^2 - delta^2)^2 = 0
! and not (||x||^2 - delta)^2 = 0
! Research of lambda to solve ||x(lambda)|| = Delta
! Display
print*, 'e_val(1) = ', e_val(1)
print*, 'w_1^T.g =', tmp_wtg(1)
! H positive definite
if (e_val(1) > - thresh_eig) then
norm2_x = f_norm_trust_region_omp(n,e_val,tmp_wtg,0d0)
print*, '||x(0)||=', dsqrt(norm2_x)
print*, 'Delta=', delta
! H positive definite, ||x(lambda = 0)|| <= Delta
if (dsqrt(norm2_x) <= delta) then
print*, 'H positive definite, ||x(lambda = 0)|| <= Delta'
print*, 'lambda = 0, no lambda optimization'
lambda = 0d0
! H positive definite, ||x(lambda = 0)|| > Delta
else
! Constraint solution
print*, 'H positive definite, ||x(lambda = 0)|| > Delta'
print*,'Computation of the optimal lambda...'
call trust_region_optimal_lambda(n,e_val,tmp_wtg,delta,lambda)
endif
! H indefinite
else
if (DABS(tmp_wtg(1)) < thresh_wtg) then
norm2_x = f_norm_trust_region_omp(n,e_val,tmp_wtg, - e_val(1))
print*, 'w_1^T.g <', thresh_wtg,', ||x(lambda = -e_val(1))|| =', dsqrt(norm2_x)
endif
! H indefinite, w_1^T.g = 0, ||x(lambda = -e_val(1))|| <= Delta
if (dsqrt(norm2_x) <= delta .and. DABS(tmp_wtg(1)) < thresh_wtg) then
! Add e_val(1) in order to have (H - e_val(1) I) positive definite
print*, 'H indefinite, w_1^T.g = 0, ||x(lambda = -e_val(1))|| <= Delta'
print*, 'lambda = -e_val(1), no lambda optimization'
lambda = - e_val(1)
! H indefinite, w_1^T.g = 0, ||x(lambda = -e_val(1))|| > Delta
! and
! H indefinite, w_1^T.g =/= 0
else
! Constraint solution/ add lambda
if (DABS(tmp_wtg(1)) < thresh_wtg) then
print*, 'H indefinite, w_1^T.g = 0, ||x(lambda = -e_val(1))|| > Delta'
else
print*, 'H indefinite, w_1^T.g =/= 0'
endif
print*, 'Computation of the optimal lambda...'
call trust_region_optimal_lambda(n,e_val,tmp_wtg,delta,lambda)
endif
endif
! Recomputation of the norm^2 of the step x
norm2_x = f_norm_trust_region_omp(n,e_val,tmp_wtg,lambda)
print*,''
print*,'Summary after the trust region:'
print*,'lambda:', lambda
print*,'||x||:', dsqrt(norm2_x)
print*,'delta:', delta
#+END_SRC
*** Calculation of the step x
x refers to $\textbf{x}^*$
We compute x in function of lambda using its formula :
\begin{align*}
\textbf{x}^* = \textbf{x}(\lambda) = - \sum_{i=1}^n \frac{\textbf{w}_i^T \cdot \textbf{g}}{h_i
+ \lambda} \cdot \textbf{w}_i
\end{align*}
#+BEGIN_SRC f90 :comments org :tangle trust_region_step.irp.f
! Initialisation
x = 0d0
! Calculation of the step x
! Normal version
if (.not. absolute_eig) then
do i = 1, n
if (DABS(e_val(i)) > thresh_eig .and. DABS(e_val(i)+lambda) > thresh_eig) then
do j = 1, n
x(j) = x(j) - tmp_wtg(i) * W(j,i) / (e_val(i) + lambda)
enddo
endif
enddo
! Version to use the absolute value of the eigenvalues
else
do i = 1, n
if (DABS(e_val(i)) > thresh_eig) then
do j = 1, n
x(j) = x(j) - tmp_wtg(i) * W(j,i) / (DABS(e_val(i)) + lambda)
enddo
endif
enddo
endif
double precision :: beta, norm_x
! Test
! If w_1^T.g = 0, the lim of ||x(lambda)|| when lambda tend to -e_val(1)
! is not + infinity. So ||x(lambda=-e_val(1))|| < delta, we add the first
! eigenvectors multiply by a constant to ensure the condition
! ||x(lambda=-e_val(1))|| = delta and escape the saddle point
if (avoid_saddle .and. e_val(1) < - thresh_eig) then
if (tmp_wtg(1) < 1d-15 .and. (1d0 - dsqrt(norm2_x)/delta) > 1d-3 ) then
! norm of x
norm_x = dnrm2(n,x,1)
! Computes the coefficient for the w_1
beta = delta**2 - norm_x**2
! Updates the step x
x = x + W(:,1) * dsqrt(beta)
! Recomputes the norm to check
norm_x = dnrm2(n,x,1)
print*, 'Add w_1 * dsqrt(delta^2 - ||x||^2):'
print*, '||x||', norm_x
endif
endif
#+END_SRC
*** Transformation of x
x is a vector of size n, so it can be write as a m by m
antisymmetric matrix m_x cf. "mat_to_vec_index" and "vec_to_mat_index".
#+BEGIN_SRC f90 :comments org :tangle trust_region_step.irp.f
! ! Step transformation vector -> matrix
! ! Vector with n element -> mo_num by mo_num matrix
! do j = 1, m
! do i = 1, m
! if (i>j) then
! call mat_to_vec_index(i,j,k)
! m_x(i,j) = x(k)
! else
! m_x(i,j) = 0d0
! endif
! enddo
! enddo
!
! ! Antisymmetrization of the previous matrix
! do j = 1, m
! do i = 1, m
! if (i<j) then
! m_x(i,j) = - m_x(j,i)
! endif
! enddo
! enddo
#+END_SRC
*** Deallocation, end
#+BEGIN_SRC f90 :comments org :tangle trust_region_step.irp.f
deallocate(tmp_wtg)
call wall_time(t2)
t3 = t2 - t1
print*,'Time in trust_region:', t3
print*,'======================'
print*,'---End trust_region---'
print*,'======================'
print*,''
end
#+END_SRC

View File

@ -0,0 +1,71 @@
! Vector to matrix indexes
! *Compute the indexes p,q of a matrix element with the vector index i*
! Vector (i) -> lower diagonal matrix (p,q), p > q
! If a matrix is antisymmetric it can be reshaped as a vector. And the
! vector can be reshaped as an antisymmetric matrix
! \begin{align*}
! \begin{pmatrix}
! 0 & -1 & -2 & -4 \\
! 1 & 0 & -3 & -5 \\
! 2 & 3 & 0 & -6 \\
! 4 & 5 & 6 & 0
! \end{pmatrix}
! \Leftrightarrow
! \begin{pmatrix}
! 1 & 2 & 3 & 4 & 5 & 6
! \end{pmatrix}
! \end{align*}
! !!! Here the algorithm only work for the lower diagonal !!!
! Input:
! | i | integer | index in the vector |
! Ouput:
! | p,q | integer | corresponding indexes in the lower diagonal of a matrix |
! | | | p > q, |
! | | | p -> row, |
! | | | q -> column |
subroutine vec_to_mat_index(i,p,q)
include 'pi.h'
BEGIN_DOC
! Compute the indexes (p,q) of the element in the lower diagonal matrix knowing
! its index i a vector
END_DOC
implicit none
! Variables
! in
integer,intent(in) :: i
! out
integer, intent(out) :: p,q
! internal
integer :: a,b
double precision :: da
da = 0.5d0*(1+ sqrt(1d0+8d0*DBLE(i)))
a = INT(da)
if ((a*(a-1))/2==i) then
p = a-1
else
p = a
endif
b = p*(p-1)/2
! Matrix element indexes
p = p + 1
q = i - b
end subroutine

View File

@ -0,0 +1,72 @@
* Vector to matrix indexes
*Compute the indexes p,q of a matrix element with the vector index i*
Vector (i) -> lower diagonal matrix (p,q), p > q
If a matrix is antisymmetric it can be reshaped as a vector. And the
vector can be reshaped as an antisymmetric matrix
\begin{align*}
\begin{pmatrix}
0 & -1 & -2 & -4 \\
1 & 0 & -3 & -5 \\
2 & 3 & 0 & -6 \\
4 & 5 & 6 & 0
\end{pmatrix}
\Leftrightarrow
\begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6
\end{pmatrix}
\end{align*}
!!! Here the algorithm only work for the lower diagonal !!!
Input:
| i | integer | index in the vector |
Ouput:
| p,q | integer | corresponding indexes in the lower diagonal of a matrix |
| | | p > q, |
| | | p -> row, |
| | | q -> column |
#+BEGIN_SRC f90 :comments org :tangle vec_to_mat_index.irp.f
subroutine vec_to_mat_index(i,p,q)
include 'pi.h'
BEGIN_DOC
! Compute the indexes (p,q) of the element in the lower diagonal matrix knowing
! its index i a vector
END_DOC
implicit none
! Variables
! in
integer,intent(in) :: i
! out
integer, intent(out) :: p,q
! internal
integer :: a,b
double precision :: da
da = 0.5d0*(1+ sqrt(1d0+8d0*DBLE(i)))
a = INT(da)
if ((a*(a-1))/2==i) then
p = a-1
else
p = a
endif
b = p*(p-1)/2
! Matrix element indexes
p = p + 1
q = i - b
end subroutine
#+END_SRC

View File

@ -0,0 +1,39 @@
! Vect to antisymmetric matrix using mat_to_vec_index
! Vector to antisymmetric matrix transformation using mat_to_vec_index
! subroutine.
! Can be done in OMP (for the first part and with omp critical for the second)
subroutine vec_to_mat_v2(n,m,v_x,m_x)
BEGIN_DOC
! Vector to antisymmetric matrix
END_DOC
implicit none
integer, intent(in) :: n,m
double precision, intent(in) :: v_x(n)
double precision, intent(out) :: m_x(m,m)
integer :: i,j,k
! 1D -> 2D lower diagonal
m_x = 0d0
do j = 1, m - 1
do i = j + 1, m
call mat_to_vec_index(i,j,k)
m_x(i,j) = v_x(k)
enddo
enddo
! Antisym
do i = 1, m - 1
do j = i + 1, m
m_x(i,j) = - m_x(j,i)
enddo
enddo
end

View File

@ -0,0 +1,40 @@
* Vect to antisymmetric matrix using mat_to_vec_index
Vector to antisymmetric matrix transformation using mat_to_vec_index
subroutine.
Can be done in OMP (for the first part and with omp critical for the second)
#+BEGIN_SRC f90 :comments org :tangle vec_to_mat_v2.irp.f
subroutine vec_to_mat_v2(n,m,v_x,m_x)
BEGIN_DOC
! Vector to antisymmetric matrix
END_DOC
implicit none
integer, intent(in) :: n,m
double precision, intent(in) :: v_x(n)
double precision, intent(out) :: m_x(m,m)
integer :: i,j,k
! 1D -> 2D lower diagonal
m_x = 0d0
do j = 1, m - 1
do i = j + 1, m
call mat_to_vec_index(i,j,k)
m_x(i,j) = v_x(k)
enddo
enddo
! Antisym
do i = 1, m - 1
do j = i + 1, m
m_x(i,j) = - m_x(j,i)
enddo
enddo
end
#+END_SRC