diff --git a/src/dft_utils_in_r/dm_in_r.irp.f b/src/dft_utils_in_r/dm_in_r.irp.f index c7ede35d..7b0b1e0f 100644 --- a/src/dft_utils_in_r/dm_in_r.irp.f +++ b/src/dft_utils_in_r/dm_in_r.irp.f @@ -1,60 +1,3 @@ - BEGIN_PROVIDER [double precision, one_e_dm_alpha_in_r, (n_points_integration_angular,n_points_radial_grid,nucl_num,N_states) ] -&BEGIN_PROVIDER [double precision, one_e_dm_beta_in_r, (n_points_integration_angular,n_points_radial_grid,nucl_num,N_states) ] - implicit none - integer :: i,j,k,l,m,istate - double precision :: contrib - double precision :: r(3) - double precision :: aos_array(ao_num),mos_array(mo_num) - do j = 1, nucl_num - do k = 1, n_points_radial_grid -1 - do l = 1, n_points_integration_angular - do istate = 1, N_States - one_e_dm_alpha_in_r(l,k,j,istate) = 0.d0 - one_e_dm_beta_in_r(l,k,j,istate) = 0.d0 - enddo - r(1) = grid_points_per_atom(1,l,k,j) - r(2) = grid_points_per_atom(2,l,k,j) - r(3) = grid_points_per_atom(3,l,k,j) - - double precision :: dm_a(N_states),dm_b(N_states) - call dm_dft_alpha_beta_at_r(r,dm_a,dm_b) - do istate=1,N_states - one_e_dm_alpha_in_r(l,k,j,istate) = dm_a(istate) - one_e_dm_beta_in_r(l,k,j,istate) = dm_b(istate) - enddo - - enddo - enddo - enddo - -END_PROVIDER - - - BEGIN_PROVIDER [double precision, elec_beta_num_grid_becke , (N_states) ] -&BEGIN_PROVIDER [double precision, elec_alpha_num_grid_becke , (N_states) ] - implicit none - BEGIN_DOC -! one_e_dm_alpha_at_r(i,istate) = n_alpha(r_i,istate) -! one_e_dm_beta_at_r(i,istate) = n_beta(r_i,istate) -! where r_i is the ith point of the grid and istate is the state number - END_DOC - integer :: i,istate - double precision :: r(3),weight - do istate = 1, N_states - do i = 1, n_points_final_grid - r(1) = final_grid_points(1,i) - r(2) = final_grid_points(2,i) - r(3) = final_grid_points(3,i) - weight = final_weight_at_r_vector(i) - - elec_alpha_num_grid_becke(istate) += one_e_dm_and_grad_alpha_in_r(4,i,istate) * weight - elec_beta_num_grid_becke(istate) += one_e_dm_and_grad_beta_in_r(4,i,istate) * weight - enddo - enddo - -END_PROVIDER - - BEGIN_PROVIDER [double precision, one_e_dm_and_grad_alpha_in_r, (4,n_points_final_grid,N_states) ] &BEGIN_PROVIDER [double precision, one_e_dm_and_grad_beta_in_r, (4,n_points_final_grid,N_states) ] &BEGIN_PROVIDER [double precision, one_e_grad_2_dm_alpha_at_r, (n_points_final_grid,N_states) ] @@ -62,19 +5,21 @@ END_PROVIDER &BEGIN_PROVIDER [double precision, scal_prod_grad_one_e_dm_ab, (n_points_final_grid,N_states) ] &BEGIN_PROVIDER [double precision, one_e_stuff_for_pbe, (3,n_points_final_grid,N_states) ] BEGIN_DOC -! one_e_dm_and_grad_alpha_in_r(1,i,i_state) = d\dx n_alpha(r_i,istate) -! -! one_e_dm_and_grad_alpha_in_r(2,i,i_state) = d\dy n_alpha(r_i,istate) -! -! one_e_dm_and_grad_alpha_in_r(3,i,i_state) = d\dz n_alpha(r_i,istate) -! -! one_e_dm_and_grad_alpha_in_r(4,i,i_state) = n_alpha(r_i,istate) -! -! one_e_grad_2_dm_alpha_at_r(i,istate) = (d\dx n_alpha(r_i,istate))^2 + (d\dy n_alpha(r_i,istate))^2 + (d\dz n_alpha(r_i,istate))^2 -! -! scal_prod_grad_one_e_dm_ab(i,istate) = grad n_alpha(r_i) . grad n_beta(r_i) -! -! where r_i is the ith point of the grid and istate is the state number + ! one_e_dm_and_grad_alpha_in_r(1,i,i_state) = d\dx n_alpha(r_i,istate) + ! + ! one_e_dm_and_grad_alpha_in_r(2,i,i_state) = d\dy n_alpha(r_i,istate) + ! + ! one_e_dm_and_grad_alpha_in_r(3,i,i_state) = d\dz n_alpha(r_i,istate) + ! + ! one_e_dm_and_grad_alpha_in_r(4,i,i_state) = n_alpha(r_i,istate) + ! + ! one_e_grad_2_dm_alpha_at_r(i,istate) = (d\dx n_alpha(r_i,istate))^2 + (d\dy n_alpha(r_i,istate))^2 + (d\dz n_alpha(r_i,istate))^2 + ! + ! scal_prod_grad_one_e_dm_ab(i,istate) = grad n_alpha(r_i) . grad n_beta(r_i) + ! + ! where r_i is the ith point of the grid and istate is the state number + ! + ! !!!!! WARNING !!!! if no_core_density = .True. then all core electrons are removed END_DOC implicit none integer :: i,j,k,l,m,istate @@ -130,3 +75,31 @@ END_PROVIDER END_PROVIDER + + BEGIN_PROVIDER [double precision, elec_beta_num_grid_becke , (N_states) ] +&BEGIN_PROVIDER [double precision, elec_alpha_num_grid_becke , (N_states) ] +&BEGIN_PROVIDER [double precision, elec_num_grid_becke , (N_states) ] + implicit none + BEGIN_DOC + ! number of electrons when the one-e alpha/beta densities are numerically integrated on the DFT grid + ! + ! !!!!! WARNING !!!! if no_core_density = .True. then all core electrons are removed + END_DOC + integer :: i,istate + double precision :: r(3),weight + do istate = 1, N_states + do i = 1, n_points_final_grid + r(1) = final_grid_points(1,i) + r(2) = final_grid_points(2,i) + r(3) = final_grid_points(3,i) + weight = final_weight_at_r_vector(i) + + elec_alpha_num_grid_becke(istate) += one_e_dm_and_grad_alpha_in_r(4,i,istate) * weight + elec_beta_num_grid_becke(istate) += one_e_dm_and_grad_beta_in_r(4,i,istate) * weight + enddo + elec_num_grid_becke(istate) = elec_alpha_num_grid_becke(istate) + elec_beta_num_grid_becke(istate) + enddo + +END_PROVIDER + +