diff --git a/src/ao_basis/EZFIO.cfg b/src/ao_basis/EZFIO.cfg index 51d726da..6ad9b998 100644 --- a/src/ao_basis/EZFIO.cfg +++ b/src/ao_basis/EZFIO.cfg @@ -67,3 +67,15 @@ doc: Use normalized primitive functions interface: ezfio, provider default: true +[ao_expoim_cosgtos] +type: double precision +doc: imag part for Exponents for each primitive of each cosGTOs |AO| +size: (ao_basis.ao_num,ao_basis.ao_prim_num_max) +interface: ezfio, provider + +[use_cosgtos] +type: logical +doc: If true, use cosgtos for AO integrals +interface: ezfio +default: False + diff --git a/src/ao_basis/cosgtos.irp.f b/src/ao_basis/cosgtos.irp.f new file mode 100644 index 00000000..721a3e57 --- /dev/null +++ b/src/ao_basis/cosgtos.irp.f @@ -0,0 +1,33 @@ +BEGIN_PROVIDER [ logical, use_cosgtos ] + implicit none + BEGIN_DOC +! If true, use cosgtos for AO integrals + END_DOC + + logical :: has + PROVIDE ezfio_filename + if (mpi_master) then + call ezfio_has_ao_basis_use_cosgtos(has) + if (has) then +! write(6,'(A)') '.. >>>>> [ IO READ: use_cosgtos ] <<<<< ..' + call ezfio_get_ao_basis_use_cosgtos(use_cosgtos) + else + use_cosgtos = .False. + endif + endif + IRP_IF MPI_DEBUG + print *, irp_here, mpi_rank + call MPI_BARRIER(MPI_COMM_WORLD, ierr) + IRP_ENDIF + IRP_IF MPI + include 'mpif.h' + integer :: ierr + call MPI_BCAST( use_cosgtos, 1, MPI_LOGICAL, 0, MPI_COMM_WORLD, ierr) + if (ierr /= MPI_SUCCESS) then + stop 'Unable to read use_cosgtos with MPI' + endif + IRP_ENDIF + +! call write_time(6) + +END_PROVIDER diff --git a/src/ao_one_e_ints/NEED b/src/ao_one_e_ints/NEED index b9caaf5d..61d23b1e 100644 --- a/src/ao_one_e_ints/NEED +++ b/src/ao_one_e_ints/NEED @@ -1,3 +1,2 @@ ao_basis pseudo -cosgtos_ao_int diff --git a/src/cosgtos_ao_int/aos_cosgtos.irp.f b/src/ao_one_e_ints/aos_cosgtos.irp.f similarity index 100% rename from src/cosgtos_ao_int/aos_cosgtos.irp.f rename to src/ao_one_e_ints/aos_cosgtos.irp.f diff --git a/src/cosgtos_ao_int/one_e_Coul_integrals.irp.f b/src/ao_one_e_ints/one_e_Coul_integrals_cosgtos.irp.f similarity index 100% rename from src/cosgtos_ao_int/one_e_Coul_integrals.irp.f rename to src/ao_one_e_ints/one_e_Coul_integrals_cosgtos.irp.f diff --git a/src/cosgtos_ao_int/one_e_kin_integrals.irp.f b/src/ao_one_e_ints/one_e_kin_integrals_cosgtos.irp.f similarity index 100% rename from src/cosgtos_ao_int/one_e_kin_integrals.irp.f rename to src/ao_one_e_ints/one_e_kin_integrals_cosgtos.irp.f diff --git a/src/ao_one_e_ints/pot_ao_ints.irp.f b/src/ao_one_e_ints/pot_ao_ints.irp.f index 928053ad..446bf730 100644 --- a/src/ao_one_e_ints/pot_ao_ints.irp.f +++ b/src/ao_one_e_ints/pot_ao_ints.irp.f @@ -455,10 +455,12 @@ recursive subroutine I_x1_pol_mult_one_e(a,c,R1x,R1xp,R2x,d,nd,n_pt_in) do ix=0,nx X(ix) *= dble(c) enddo - call multiply_poly(X,nx,R2x,2,d,nd) +! call multiply_poly(X,nx,R2x,2,d,nd) + call multiply_poly_c2(X,nx,R2x,d,nd) ny=0 call I_x2_pol_mult_one_e(c,R1x,R1xp,R2x,Y,ny,n_pt_in) - call multiply_poly(Y,ny,R1x,2,d,nd) +! call multiply_poly(Y,ny,R1x,2,d,nd) + call multiply_poly_c2(Y,ny,R1x,d,nd) else do ix=0,n_pt_in X(ix) = 0.d0 @@ -469,7 +471,8 @@ recursive subroutine I_x1_pol_mult_one_e(a,c,R1x,R1xp,R2x,d,nd,n_pt_in) do ix=0,nx X(ix) *= dble(a-1) enddo - call multiply_poly(X,nx,R2x,2,d,nd) +! call multiply_poly(X,nx,R2x,2,d,nd) + call multiply_poly_c2(X,nx,R2x,d,nd) nx = nd do ix=0,n_pt_in @@ -479,10 +482,12 @@ recursive subroutine I_x1_pol_mult_one_e(a,c,R1x,R1xp,R2x,d,nd,n_pt_in) do ix=0,nx X(ix) *= dble(c) enddo - call multiply_poly(X,nx,R2x,2,d,nd) +! call multiply_poly(X,nx,R2x,2,d,nd) + call multiply_poly_c2(X,nx,R2x,d,nd) ny=0 call I_x1_pol_mult_one_e(a-1,c,R1x,R1xp,R2x,Y,ny,n_pt_in) - call multiply_poly(Y,ny,R1x,2,d,nd) +! call multiply_poly(Y,ny,R1x,2,d,nd) + call multiply_poly_c2(Y,ny,R1x,d,nd) endif end @@ -519,7 +524,8 @@ recursive subroutine I_x2_pol_mult_one_e(c,R1x,R1xp,R2x,d,nd,dim) do ix=0,nx X(ix) *= dble(c-1) enddo - call multiply_poly(X,nx,R2x,2,d,nd) +! call multiply_poly(X,nx,R2x,2,d,nd) + call multiply_poly_c2(X,nx,R2x,d,nd) ny = 0 do ix=0,dim Y(ix) = 0.d0 @@ -527,7 +533,8 @@ recursive subroutine I_x2_pol_mult_one_e(c,R1x,R1xp,R2x,d,nd,dim) call I_x1_pol_mult_one_e(0,c-1,R1x,R1xp,R2x,Y,ny,dim) if(ny.ge.0)then - call multiply_poly(Y,ny,R1xp,2,d,nd) +! call multiply_poly(Y,ny,R1xp,2,d,nd) + call multiply_poly_c2(Y,ny,R1xp,d,nd) endif endif end diff --git a/src/cosgtos_ao_int/gauss_legendre.irp.f b/src/ao_two_e_ints/gauss_legendre.irp.f similarity index 100% rename from src/cosgtos_ao_int/gauss_legendre.irp.f rename to src/ao_two_e_ints/gauss_legendre.irp.f diff --git a/src/cosgtos_ao_int/two_e_Coul_integrals.irp.f b/src/ao_two_e_ints/two_e_Coul_integrals_cosgtos.irp.f similarity index 100% rename from src/cosgtos_ao_int/two_e_Coul_integrals.irp.f rename to src/ao_two_e_ints/two_e_Coul_integrals_cosgtos.irp.f diff --git a/src/ao_two_e_ints/two_e_integrals.irp.f b/src/ao_two_e_ints/two_e_integrals.irp.f index 835dc89a..85ff5bcf 100644 --- a/src/ao_two_e_ints/two_e_integrals.irp.f +++ b/src/ao_two_e_ints/two_e_integrals.irp.f @@ -975,18 +975,7 @@ recursive subroutine I_x1_pol_mult_recurs(a,c,B_10,B_01,B_00,C_00,D_00,d,nd,n_pt ! !DIR$ FORCEINLINE ! call multiply_poly(X,nx,B_10,2,d,nd) - if (nx >= 0) then - integer :: ib - do ib=0,nx - d(ib ) = d(ib ) + B_10(0) * X(ib) - d(ib+1) = d(ib+1) + B_10(1) * X(ib) - d(ib+2) = d(ib+2) + B_10(2) * X(ib) - enddo - - do nd = nx+2,0,-1 - if (d(nd) /= 0.d0) exit - enddo - endif + call multiply_poly_c2(X,nx,B_10,d,nd) nx = nd !DIR$ LOOP COUNT(8) @@ -1009,17 +998,7 @@ recursive subroutine I_x1_pol_mult_recurs(a,c,B_10,B_01,B_00,C_00,D_00,d,nd,n_pt endif ! !DIR$ FORCEINLINE ! call multiply_poly(X,nx,B_00,2,d,nd) - if (nx >= 0) then - do ib=0,nx - d(ib ) = d(ib ) + B_00(0) * X(ib) - d(ib+1) = d(ib+1) + B_00(1) * X(ib) - d(ib+2) = d(ib+2) + B_00(2) * X(ib) - enddo - - do nd = nx+2,0,-1 - if (d(nd) /= 0.d0) exit - enddo - endif + call multiply_poly_c2(X,nx,B_00,d,nd) endif ny=0 @@ -1038,17 +1017,7 @@ recursive subroutine I_x1_pol_mult_recurs(a,c,B_10,B_01,B_00,C_00,D_00,d,nd,n_pt ! !DIR$ FORCEINLINE ! call multiply_poly(Y,ny,C_00,2,d,nd) - if (ny >= 0) then - do ib=0,ny - d(ib ) = d(ib ) + C_00(0) * Y(ib) - d(ib+1) = d(ib+1) + C_00(1) * Y(ib) - d(ib+2) = d(ib+2) + C_00(2) * Y(ib) - enddo - - do nd = ny+2,0,-1 - if (d(nd) /= 0.d0) exit - enddo - endif + call multiply_poly_c2(Y,ny,C_00,d,nd) end recursive subroutine I_x1_pol_mult_a1(c,B_10,B_01,B_00,C_00,D_00,d,nd,n_pt_in) @@ -1088,18 +1057,7 @@ recursive subroutine I_x1_pol_mult_a1(c,B_10,B_01,B_00,C_00,D_00,d,nd,n_pt_in) ! !DIR$ FORCEINLINE ! call multiply_poly(X,nx,B_00,2,d,nd) - if (nx >= 0) then - integer :: ib - do ib=0,nx - d(ib ) = d(ib ) + B_00(0) * X(ib) - d(ib+1) = d(ib+1) + B_00(1) * X(ib) - d(ib+2) = d(ib+2) + B_00(2) * X(ib) - enddo - - do nd = nx+2,0,-1 - if (d(nd) /= 0.d0) exit - enddo - endif + call multiply_poly_c2(X,nx,B_00,d,nd) ny=0 @@ -1111,17 +1069,7 @@ recursive subroutine I_x1_pol_mult_a1(c,B_10,B_01,B_00,C_00,D_00,d,nd,n_pt_in) ! !DIR$ FORCEINLINE ! call multiply_poly(Y,ny,C_00,2,d,nd) - if (ny >= 0) then - do ib=0,ny - d(ib ) = d(ib ) + C_00(0) * Y(ib) - d(ib+1) = d(ib+1) + C_00(1) * Y(ib) - d(ib+2) = d(ib+2) + C_00(2) * Y(ib) - enddo - - do nd = ny+2,0,-1 - if (d(nd) /= 0.d0) exit - enddo - endif + call multiply_poly_c2(Y,ny,C_00,d,nd) end @@ -1150,18 +1098,7 @@ recursive subroutine I_x1_pol_mult_a2(c,B_10,B_01,B_00,C_00,D_00,d,nd,n_pt_in) ! !DIR$ FORCEINLINE ! call multiply_poly(X,nx,B_10,2,d,nd) - if (nx >= 0) then - integer :: ib - do ib=0,nx - d(ib ) = d(ib ) + B_10(0) * X(ib) - d(ib+1) = d(ib+1) + B_10(1) * X(ib) - d(ib+2) = d(ib+2) + B_10(2) * X(ib) - enddo - - do nd = nx+2,0,-1 - if (d(nd) /= 0.d0) exit - enddo - endif + call multiply_poly_c2(X,nx,B_10,d,nd) nx = nd !DIR$ LOOP COUNT(8) @@ -1181,17 +1118,7 @@ recursive subroutine I_x1_pol_mult_a2(c,B_10,B_01,B_00,C_00,D_00,d,nd,n_pt_in) ! !DIR$ FORCEINLINE ! call multiply_poly(X,nx,B_00,2,d,nd) - if (nx >= 0) then - do ib=0,nx - d(ib ) = d(ib ) + B_00(0) * X(ib) - d(ib+1) = d(ib+1) + B_00(1) * X(ib) - d(ib+2) = d(ib+2) + B_00(2) * X(ib) - enddo - - do nd = nx+2,0,-1 - if (d(nd) /= 0.d0) exit - enddo - endif + call multiply_poly_c2(X,nx,B_00,d,nd) ny=0 !DIR$ LOOP COUNT(8) @@ -1203,17 +1130,7 @@ recursive subroutine I_x1_pol_mult_a2(c,B_10,B_01,B_00,C_00,D_00,d,nd,n_pt_in) ! !DIR$ FORCEINLINE ! call multiply_poly(Y,ny,C_00,2,d,nd) - if (ny >= 0) then - do ib=0,ny - d(ib ) = d(ib ) + C_00(0) * Y(ib) - d(ib+1) = d(ib+1) + C_00(1) * Y(ib) - d(ib+2) = d(ib+2) + C_00(2) * Y(ib) - enddo - - do nd = ny+2,0,-1 - if (d(nd) /= 0.d0) exit - enddo - endif + call multiply_poly_c2(Y,ny,C_00,d,nd) end recursive subroutine I_x2_pol_mult(c,B_10,B_01,B_00,C_00,D_00,d,nd,dim) @@ -1262,18 +1179,7 @@ recursive subroutine I_x2_pol_mult(c,B_10,B_01,B_00,C_00,D_00,d,nd,dim) ! !DIR$ FORCEINLINE ! call multiply_poly(Y,ny,D_00,2,d,nd) - if (ny >= 0) then - integer :: ib - do ib=0,ny - d(ib ) = d(ib ) + D_00(0) * Y(ib) - d(ib+1) = d(ib+1) + D_00(1) * Y(ib) - d(ib+2) = d(ib+2) + D_00(2) * Y(ib) - enddo - - do nd = ny+2,0,-1 - if (d(nd) /= 0.d0) exit - enddo - endif + call multiply_poly_c2(Y,ny,D_00,d,nd) return @@ -1293,17 +1199,7 @@ recursive subroutine I_x2_pol_mult(c,B_10,B_01,B_00,C_00,D_00,d,nd,dim) ! !DIR$ FORCEINLINE ! call multiply_poly(X,nx,B_01,2,d,nd) - if (nx >= 0) then - do ib=0,nx - d(ib ) = d(ib ) + B_01(0) * X(ib) - d(ib+1) = d(ib+1) + B_01(1) * X(ib) - d(ib+2) = d(ib+2) + B_01(2) * X(ib) - enddo - - do nd = nx+2,0,-1 - if (d(nd) /= 0.d0) exit - enddo - endif + call multiply_poly_c2(X,nx,B_01,d,nd) ny = 0 !DIR$ LOOP COUNT(6) @@ -1314,17 +1210,7 @@ recursive subroutine I_x2_pol_mult(c,B_10,B_01,B_00,C_00,D_00,d,nd,dim) ! !DIR$ FORCEINLINE ! call multiply_poly(Y,ny,D_00,2,d,nd) - if (ny >= 0) then - do ib=0,ny - d(ib ) = d(ib ) + D_00(0) * Y(ib) - d(ib+1) = d(ib+1) + D_00(1) * Y(ib) - d(ib+2) = d(ib+2) + D_00(2) * Y(ib) - enddo - - do nd = ny+2,0,-1 - if (d(nd) /= 0.d0) exit - enddo - endif + call multiply_poly_c2(Y,ny,D_00,d,nd) end select end diff --git a/src/bi_ort_ints/bi_ort_ints.irp.f b/src/bi_ort_ints/bi_ort_ints.irp.f index ca50dd56..f7a42f37 100644 --- a/src/bi_ort_ints/bi_ort_ints.irp.f +++ b/src/bi_ort_ints/bi_ort_ints.irp.f @@ -7,7 +7,13 @@ program bi_ort_ints my_n_pt_r_grid = 10 my_n_pt_a_grid = 14 touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid - call test_3e +! call test_3e + call test_5idx +! call test_5idx2 +end + +subroutine test_5idx2 + PROVIDE three_e_5_idx_cycle_2_bi_ort end subroutine test_3e @@ -16,11 +22,12 @@ subroutine test_3e double precision :: accu, contrib,new,ref i = 1 k = 1 + n = 0 accu = 0.d0 do i = 1, mo_num - do k = 1, mo_num + do k = 1, mo_num do j = 1, mo_num - do l = 1, mo_num + do l = 1, mo_num do m = 1, mo_num do n = 1, mo_num call give_integrals_3_body_bi_ort(n, l, k, m, j, i, new) @@ -31,6 +38,7 @@ subroutine test_3e print*,'pb !!' print*,i,k,j,l,m,n print*,ref,new,contrib + stop endif enddo enddo @@ -42,3 +50,93 @@ subroutine test_3e end + +subroutine test_5idx + implicit none + integer :: i,k,j,l,m,n,ipoint + double precision :: accu, contrib,new,ref + i = 1 + k = 1 + n = 0 + accu = 0.d0 + do i = 1, mo_num + do k = 1, mo_num + do j = 1, mo_num + do l = 1, mo_num + do m = 1, mo_num + + new = three_e_5_idx_direct_bi_ort(m,l,j,k,i) + ref = three_e_5_idx_direct_bi_ort_old(m,l,j,k,i) + contrib = dabs(new - ref) + accu += contrib + if(contrib .gt. 1.d-10)then + print*,'direct' + print*,i,k,j,l,m + print*,ref,new,contrib + stop + endif + + new = three_e_5_idx_exch12_bi_ort(m,l,j,k,i) + ref = three_e_5_idx_exch12_bi_ort_old(m,l,j,k,i) + contrib = dabs(new - ref) + accu += contrib + if(contrib .gt. 1.d-10)then + print*,'exch12' + print*,i,k,j,l,m + print*,ref,new,contrib + stop + endif +! + new = three_e_5_idx_cycle_1_bi_ort(m,l,j,k,i) + ref = three_e_5_idx_cycle_1_bi_ort_old(m,l,j,k,i) + contrib = dabs(new - ref) + accu += contrib + if(contrib .gt. 1.d-10)then + print*,'cycle1' + print*,i,k,j,l,m + print*,ref,new,contrib + stop + endif + + new = three_e_5_idx_cycle_2_bi_ort(m,l,j,k,i) + ref = three_e_5_idx_cycle_2_bi_ort_old(m,l,j,k,i) + contrib = dabs(new - ref) + accu += contrib + if(contrib .gt. 1.d-10)then + print*,'cycle2' + print*,i,k,j,l,m + print*,ref,new,contrib + stop + endif + + new = three_e_5_idx_exch23_bi_ort(m,l,j,k,i) + ref = three_e_5_idx_exch23_bi_ort_old(m,l,j,k,i) + contrib = dabs(new - ref) + accu += contrib + if(contrib .gt. 1.d-10)then + print*,'exch23' + print*,i,k,j,l,m + print*,ref,new,contrib + stop + endif + + new = three_e_5_idx_exch13_bi_ort(m,l,j,k,i) + ref = three_e_5_idx_exch13_bi_ort_old(m,l,j,k,i) + contrib = dabs(new - ref) + accu += contrib + if(contrib .gt. 1.d-10)then + print*,'exch13' + print*,i,k,j,l,m + print*,ref,new,contrib + stop + endif + + enddo + enddo + enddo + enddo + enddo + print*,'accu = ',accu/dble(mo_num)**5 + + +end diff --git a/src/bi_ort_ints/three_body_ijmkl.irp.f b/src/bi_ort_ints/three_body_ijmkl.irp.f index ae4c9bd5..bd669163 100644 --- a/src/bi_ort_ints/three_body_ijmkl.irp.f +++ b/src/bi_ort_ints/three_body_ijmkl.irp.f @@ -1,7 +1,11 @@ - ! --- -BEGIN_PROVIDER [ double precision, three_e_5_idx_direct_bi_ort, (mo_num, mo_num, mo_num, mo_num, mo_num)] + BEGIN_PROVIDER [ double precision, three_e_5_idx_direct_bi_ort , (mo_num, mo_num, mo_num, mo_num, mo_num)] +&BEGIN_PROVIDER [ double precision, three_e_5_idx_exch12_bi_ort , (mo_num, mo_num, mo_num, mo_num, mo_num)] +&BEGIN_PROVIDER [ double precision, three_e_5_idx_exch23_bi_ort , (mo_num, mo_num, mo_num, mo_num, mo_num)] +&BEGIN_PROVIDER [ double precision, three_e_5_idx_exch13_bi_ort , (mo_num, mo_num, mo_num, mo_num, mo_num)] +&BEGIN_PROVIDER [ double precision, three_e_5_idx_cycle_1_bi_ort, (mo_num, mo_num, mo_num, mo_num, mo_num)] +&BEGIN_PROVIDER [ double precision, three_e_5_idx_cycle_2_bi_ort, (mo_num, mo_num, mo_num, mo_num, mo_num)] BEGIN_DOC ! @@ -14,283 +18,213 @@ BEGIN_PROVIDER [ double precision, three_e_5_idx_direct_bi_ort, (mo_num, mo_num, implicit none integer :: i, j, k, m, l - double precision :: integral, wall1, wall0 - - three_e_5_idx_direct_bi_ort = 0.d0 - print *, ' Providing the three_e_5_idx_direct_bi_ort ...' - call wall_time(wall0) + double precision :: wall1, wall0 + integer :: ipoint + double precision, allocatable :: grad_mli(:,:,:), orb_mat(:,:,:) + double precision, allocatable :: lk_grad_mi(:,:,:,:), rk_grad_im(:,:,:,:) + double precision, allocatable :: lm_grad_ik(:,:,:,:), rm_grad_ik(:,:,:,:) + double precision, allocatable :: tmp_mat(:,:,:,:) + allocate(tmp_mat(mo_num,mo_num,mo_num,mo_num)) provide mos_r_in_r_array_transp mos_l_in_r_array_transp + PROVIDE mo_l_coef mo_r_coef int2_grad1_u12_bimo_t + print *, ' Providing the three_e_5_idx_bi_ort ...' + call wall_time(wall0) + + do m = 1, mo_num + + allocate(grad_mli(n_points_final_grid,mo_num,mo_num)) + allocate(orb_mat(n_points_final_grid,mo_num,mo_num)) !$OMP PARALLEL & !$OMP DEFAULT (NONE) & - !$OMP PRIVATE (i,j,k,m,l,integral) & - !$OMP SHARED (mo_num,three_e_5_idx_direct_bi_ort) - !$OMP DO SCHEDULE (dynamic) COLLAPSE(2) + !$OMP PRIVATE (i,l,ipoint) & + !$OMP SHARED (m,mo_num,n_points_final_grid, & + !$OMP mos_l_in_r_array_transp, mos_r_in_r_array_transp, & + !$OMP int2_grad1_u12_bimo_t, final_weight_at_r_vector, & + !$OMP grad_mli, orb_mat) + !$OMP DO COLLAPSE(2) + do i=1,mo_num + do l=1,mo_num + do ipoint=1, n_points_final_grid + + grad_mli(ipoint,l,i) = final_weight_at_r_vector(ipoint) * ( & + int2_grad1_u12_bimo_t(ipoint,1,m,m) * int2_grad1_u12_bimo_t(ipoint,1,l,i) + & + int2_grad1_u12_bimo_t(ipoint,2,m,m) * int2_grad1_u12_bimo_t(ipoint,2,l,i) + & + int2_grad1_u12_bimo_t(ipoint,3,m,m) * int2_grad1_u12_bimo_t(ipoint,3,l,i) ) + + orb_mat(ipoint,l,i) = mos_l_in_r_array_transp(ipoint,l) * mos_r_in_r_array_transp(ipoint,i) + + enddo + enddo + enddo + !$OMP END DO + !$OMP END PARALLEL + + call dgemm('T','N', mo_num*mo_num, mo_num*mo_num, n_points_final_grid, 1.d0, & + orb_mat, n_points_final_grid, & + grad_mli, n_points_final_grid, 0.d0, & + tmp_mat, mo_num*mo_num) + + !$OMP PARALLEL DO PRIVATE(i,j,k,l) do i = 1, mo_num do k = 1, mo_num do j = 1, mo_num do l = 1, mo_num - do m = 1, mo_num - call give_integrals_3_body_bi_ort(m, l, k, m, j, i, integral) - three_e_5_idx_direct_bi_ort(m,l,j,k,i) = -1.d0 * integral - enddo + three_e_5_idx_direct_bi_ort(m,l,j,k,i) = - tmp_mat(l,j,k,i) - tmp_mat(k,i,l,j) + three_e_5_idx_exch12_bi_ort(m,l,j,k,i) = - tmp_mat(l,i,k,j) - tmp_mat(k,j,l,i) enddo enddo enddo enddo - !$OMP END DO - !$OMP END PARALLEL + !$OMP END PARALLEL DO - call wall_time(wall1) - print *, ' wall time for three_e_5_idx_direct_bi_ort', wall1 - wall0 + deallocate(orb_mat,grad_mli) -END_PROVIDER - -! --- - -BEGIN_PROVIDER [ double precision, three_e_5_idx_cycle_1_bi_ort, (mo_num, mo_num, mo_num, mo_num, mo_num)] - - BEGIN_DOC - ! - ! matrix element of the -L three-body operator FOR THE FIRST CYCLIC PERMUTATION TERMS OF DOUBLE EXCITATIONS AND BI ORTHO MOs - ! - ! three_e_5_idx_cycle_1_bi_ort(m,l,j,k,i) = ::: notice that i is the RIGHT MO and k is the LEFT MO - ! - ! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign - ! - END_DOC - - implicit none - integer :: i, j, k, m, l - double precision :: integral, wall1, wall0 - - three_e_5_idx_cycle_1_bi_ort = 0.d0 - print *, ' Providing the three_e_5_idx_cycle_1_bi_ort ...' - call wall_time(wall0) - - provide mos_r_in_r_array_transp mos_l_in_r_array_transp + allocate(lm_grad_ik(n_points_final_grid,3,mo_num,mo_num)) + allocate(rm_grad_ik(n_points_final_grid,3,mo_num,mo_num)) + allocate(rk_grad_im(n_points_final_grid,3,mo_num,mo_num)) !$OMP PARALLEL & !$OMP DEFAULT (NONE) & - !$OMP PRIVATE (i,j,k,m,l,integral) & - !$OMP SHARED (mo_num,three_e_5_idx_cycle_1_bi_ort) - !$OMP DO SCHEDULE (dynamic) COLLAPSE(2) + !$OMP PRIVATE (i,l,ipoint) & + !$OMP SHARED (m,mo_num,n_points_final_grid, & + !$OMP mos_l_in_r_array_transp, mos_r_in_r_array_transp, & + !$OMP int2_grad1_u12_bimo_t, final_weight_at_r_vector, & + !$OMP rm_grad_ik, lm_grad_ik, rk_grad_im, lk_grad_mi) + !$OMP DO COLLAPSE(2) + do i=1,mo_num + do l=1,mo_num + do ipoint=1, n_points_final_grid + + lm_grad_ik(ipoint,1,l,i) = mos_l_in_r_array_transp(ipoint,m) * int2_grad1_u12_bimo_t(ipoint,1,l,i) * final_weight_at_r_vector(ipoint) + lm_grad_ik(ipoint,2,l,i) = mos_l_in_r_array_transp(ipoint,m) * int2_grad1_u12_bimo_t(ipoint,2,l,i) * final_weight_at_r_vector(ipoint) + lm_grad_ik(ipoint,3,l,i) = mos_l_in_r_array_transp(ipoint,m) * int2_grad1_u12_bimo_t(ipoint,3,l,i) * final_weight_at_r_vector(ipoint) + + rm_grad_ik(ipoint,1,l,i) = mos_r_in_r_array_transp(ipoint,m) * int2_grad1_u12_bimo_t(ipoint,1,l,i) + rm_grad_ik(ipoint,2,l,i) = mos_r_in_r_array_transp(ipoint,m) * int2_grad1_u12_bimo_t(ipoint,2,l,i) + rm_grad_ik(ipoint,3,l,i) = mos_r_in_r_array_transp(ipoint,m) * int2_grad1_u12_bimo_t(ipoint,3,l,i) + + rk_grad_im(ipoint,1,l,i) = mos_r_in_r_array_transp(ipoint,l) * int2_grad1_u12_bimo_t(ipoint,1,i,m) + rk_grad_im(ipoint,2,l,i) = mos_r_in_r_array_transp(ipoint,l) * int2_grad1_u12_bimo_t(ipoint,2,i,m) + rk_grad_im(ipoint,3,l,i) = mos_r_in_r_array_transp(ipoint,l) * int2_grad1_u12_bimo_t(ipoint,3,i,m) + + enddo + enddo + enddo + !$OMP END DO + !$OMP END PARALLEL + call dgemm('T','N', mo_num*mo_num, mo_num*mo_num, 3*n_points_final_grid, 1.d0, & + lm_grad_ik, 3*n_points_final_grid, & + rm_grad_ik, 3*n_points_final_grid, 0.d0, & + tmp_mat, mo_num*mo_num) + + !$OMP PARALLEL DO PRIVATE(i,j,k,l) do i = 1, mo_num do k = 1, mo_num do j = 1, mo_num do l = 1, mo_num - do m = 1, mo_num - call give_integrals_3_body_bi_ort(m, l, k, j, i, m, integral) - three_e_5_idx_cycle_1_bi_ort(m,l,j,k,i) = -1.d0 * integral - enddo + three_e_5_idx_direct_bi_ort(m,l,j,k,i) = three_e_5_idx_direct_bi_ort(m,l,j,k,i) - tmp_mat(l,j,k,i) + three_e_5_idx_exch12_bi_ort(m,l,j,k,i) = three_e_5_idx_exch12_bi_ort(m,l,j,k,i) - tmp_mat(l,i,k,j) enddo enddo enddo enddo - !$OMP END DO - !$OMP END PARALLEL + !$OMP END PARALLEL DO - call wall_time(wall1) - print *, ' wall time for three_e_5_idx_cycle_1_bi_ort', wall1 - wall0 + call dgemm('T','N', mo_num*mo_num, mo_num*mo_num, 3*n_points_final_grid, 1.d0, & + lm_grad_ik, 3*n_points_final_grid, & + rk_grad_im, 3*n_points_final_grid, 0.d0, & + tmp_mat, mo_num*mo_num) -END_PROVIDER - -! --- - -BEGIN_PROVIDER [ double precision, three_e_5_idx_cycle_2_bi_ort, (mo_num, mo_num, mo_num, mo_num, mo_num)] - - BEGIN_DOC - ! - ! matrix element of the -L three-body operator FOR THE FIRST CYCLIC PERMUTATION TERMS OF DOUBLE EXCITATIONS AND BI ORTHO MOs - ! - ! three_e_5_idx_cycle_2_bi_ort(m,l,j,k,i) = ::: notice that i is the RIGHT MO and k is the LEFT MO - ! - ! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign - ! - END_DOC - - implicit none - integer :: i, j, k, m, l - double precision :: integral, wall1, wall0 - - three_e_5_idx_cycle_2_bi_ort = 0.d0 - print *, ' Providing the three_e_5_idx_cycle_2_bi_ort ...' - call wall_time(wall0) - - provide mos_r_in_r_array_transp mos_l_in_r_array_transp - - !$OMP PARALLEL & - !$OMP DEFAULT (NONE) & - !$OMP PRIVATE (i,j,k,m,l,integral) & - !$OMP SHARED (mo_num,three_e_5_idx_cycle_2_bi_ort) - !$OMP DO SCHEDULE (dynamic) COLLAPSE(2) - do i = 1, mo_num - do k = 1, mo_num - do j = 1, mo_num - do m = 1, mo_num - do l = 1, mo_num - call give_integrals_3_body_bi_ort(m, l, k, i, m, j, integral) - three_e_5_idx_cycle_2_bi_ort(m,l,j,k,i) = -1.d0 * integral - enddo - enddo - enddo - enddo - enddo - !$OMP END DO - !$OMP END PARALLEL - - call wall_time(wall1) - print *, ' wall time for three_e_5_idx_cycle_2_bi_ort', wall1 - wall0 - -END_PROVIDER - -! --- - -BEGIN_PROVIDER [ double precision, three_e_5_idx_exch23_bi_ort, (mo_num, mo_num, mo_num, mo_num, mo_num)] - - BEGIN_DOC - ! - ! matrix element of the -L three-body operator FOR THE DIRECT TERMS OF DOUBLE EXCITATIONS AND BI ORTHO MOs - ! - ! three_e_5_idx_exch23_bi_ort(m,l,j,k,i) = ::: notice that i is the RIGHT MO and k is the LEFT MO - ! - ! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign - ! - END_DOC - - implicit none - integer :: i, j, k, m, l - double precision :: integral, wall1, wall0 - - three_e_5_idx_exch23_bi_ort = 0.d0 - print *, ' Providing the three_e_5_idx_exch23_bi_ort ...' - call wall_time(wall0) - - provide mos_r_in_r_array_transp mos_l_in_r_array_transp - - !$OMP PARALLEL & - !$OMP DEFAULT (NONE) & - !$OMP PRIVATE (i,j,k,m,l,integral) & - !$OMP SHARED (mo_num,three_e_5_idx_exch23_bi_ort) - !$OMP DO SCHEDULE (dynamic) COLLAPSE(2) + !$OMP PARALLEL DO PRIVATE(i,j,k,l) do i = 1, mo_num do k = 1, mo_num do j = 1, mo_num do l = 1, mo_num - do m = 1, mo_num - call give_integrals_3_body_bi_ort(m, l, k, j, m, i, integral) - three_e_5_idx_exch23_bi_ort(m,l,j,k,i) = -1.d0 * integral - enddo + three_e_5_idx_cycle_1_bi_ort(m,l,j,k,i) = - tmp_mat(l,i,j,k) + three_e_5_idx_cycle_2_bi_ort(m,l,j,k,i) = - tmp_mat(k,j,i,l) + three_e_5_idx_exch23_bi_ort (m,l,j,k,i) = - tmp_mat(k,i,j,l) + three_e_5_idx_exch13_bi_ort (m,l,j,k,i) = - tmp_mat(l,j,i,k) enddo enddo enddo enddo - !$OMP END DO - !$OMP END PARALLEL + !$OMP END PARALLEL DO - call wall_time(wall1) - print *, ' wall time for three_e_5_idx_exch23_bi_ort', wall1 - wall0 + deallocate(lm_grad_ik) -END_PROVIDER - -! --- - -BEGIN_PROVIDER [ double precision, three_e_5_idx_exch13_bi_ort, (mo_num, mo_num, mo_num, mo_num, mo_num)] - - BEGIN_DOC - ! - ! matrix element of the -L three-body operator FOR THE DIRECT TERMS OF DOUBLE EXCITATIONS AND BI ORTHO MOs - ! - ! three_e_5_idx_exch13_bi_ort(m,l,j,k,i) = ::: notice that i is the RIGHT MO and k is the LEFT MO - ! - ! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign - ! - END_DOC - - implicit none - integer :: i, j, k, m, l - double precision :: integral, wall1, wall0 - - three_e_5_idx_exch13_bi_ort = 0.d0 - print *, ' Providing the three_e_5_idx_exch13_bi_ort ...' - call wall_time(wall0) - - provide mos_r_in_r_array_transp mos_l_in_r_array_transp + allocate(lk_grad_mi(n_points_final_grid,3,mo_num,mo_num)) !$OMP PARALLEL & !$OMP DEFAULT (NONE) & - !$OMP PRIVATE (i,j,k,m,l,integral) & - !$OMP SHARED (mo_num,three_e_5_idx_exch13_bi_ort) - !$OMP DO SCHEDULE (dynamic) COLLAPSE(2) + !$OMP PRIVATE (i,l,ipoint) & + !$OMP SHARED (m,mo_num,n_points_final_grid, & + !$OMP mos_l_in_r_array_transp, mos_r_in_r_array_transp, & + !$OMP int2_grad1_u12_bimo_t, final_weight_at_r_vector, & + !$OMP lk_grad_mi) + !$OMP DO COLLAPSE(2) + do i=1,mo_num + do l=1,mo_num + do ipoint=1, n_points_final_grid + + lk_grad_mi(ipoint,1,l,i) = mos_l_in_r_array_transp(ipoint,l) * int2_grad1_u12_bimo_t(ipoint,1,m,i) * final_weight_at_r_vector(ipoint) + lk_grad_mi(ipoint,2,l,i) = mos_l_in_r_array_transp(ipoint,l) * int2_grad1_u12_bimo_t(ipoint,2,m,i) * final_weight_at_r_vector(ipoint) + lk_grad_mi(ipoint,3,l,i) = mos_l_in_r_array_transp(ipoint,l) * int2_grad1_u12_bimo_t(ipoint,3,m,i) * final_weight_at_r_vector(ipoint) + + enddo + enddo + enddo + !$OMP END DO + !$OMP END PARALLEL + + call dgemm('T','N', mo_num*mo_num, mo_num*mo_num, 3*n_points_final_grid, 1.d0, & + lk_grad_mi, 3*n_points_final_grid, & + rm_grad_ik, 3*n_points_final_grid, 0.d0, & + tmp_mat, mo_num*mo_num) + + !$OMP PARALLEL DO PRIVATE(i,j,k,l) do i = 1, mo_num do k = 1, mo_num do j = 1, mo_num do l = 1, mo_num - do m = 1, mo_num - call give_integrals_3_body_bi_ort(m, l, k, i, j, m, integral) - three_e_5_idx_exch13_bi_ort(m,l,j,k,i) = -1.d0 * integral - enddo + three_e_5_idx_cycle_1_bi_ort(m,l,j,k,i) = three_e_5_idx_cycle_1_bi_ort(m,l,j,k,i) - tmp_mat(k,j,l,i) + three_e_5_idx_cycle_2_bi_ort(m,l,j,k,i) = three_e_5_idx_cycle_2_bi_ort(m,l,j,k,i) - tmp_mat(l,i,k,j) + three_e_5_idx_exch23_bi_ort (m,l,j,k,i) = three_e_5_idx_exch23_bi_ort (m,l,j,k,i) - tmp_mat(l,j,k,i) + three_e_5_idx_exch13_bi_ort (m,l,j,k,i) = three_e_5_idx_exch13_bi_ort (m,l,j,k,i) - tmp_mat(k,i,l,j) enddo enddo enddo enddo - !$OMP END DO - !$OMP END PARALLEL + !$OMP END PARALLEL DO - call wall_time(wall1) - print *, ' wall time for three_e_5_idx_exch13_bi_ort', wall1 - wall0 + call dgemm('T','N', mo_num*mo_num, mo_num*mo_num, 3*n_points_final_grid, 1.d0, & + lk_grad_mi, 3*n_points_final_grid, & + rk_grad_im, 3*n_points_final_grid, 0.d0, & + tmp_mat, mo_num*mo_num) -END_PROVIDER - -! --- - -BEGIN_PROVIDER [ double precision, three_e_5_idx_exch12_bi_ort, (mo_num, mo_num, mo_num, mo_num, mo_num)] - - BEGIN_DOC - ! - ! matrix element of the -L three-body operator FOR THE DIRECT TERMS OF DOUBLE EXCITATIONS AND BI ORTHO MOs - ! - ! three_e_5_idx_exch12_bi_ort(m,l,j,k,i) = ::: notice that i is the RIGHT MO and k is the LEFT MO - ! - ! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign - ! - END_DOC - - implicit none - integer :: i, j, k, m, l - double precision :: integral, wall1, wall0 - - three_e_5_idx_exch12_bi_ort = 0.d0 - print *, ' Providing the three_e_5_idx_exch12_bi_ort ...' - call wall_time(wall0) - - provide mos_r_in_r_array_transp mos_l_in_r_array_transp - - !$OMP PARALLEL & - !$OMP DEFAULT (NONE) & - !$OMP PRIVATE (i,j,k,m,l,integral) & - !$OMP SHARED (mo_num,three_e_5_idx_exch12_bi_ort) - !$OMP DO SCHEDULE (dynamic) COLLAPSE(2) + !$OMP PARALLEL DO PRIVATE(i,j,k,l) do i = 1, mo_num do k = 1, mo_num do j = 1, mo_num do l = 1, mo_num - do m = 1, mo_num - call give_integrals_3_body_bi_ort(m, l, k, m, i, j, integral) - three_e_5_idx_exch12_bi_ort(m,l,j,k,i) = -1.d0 * integral - enddo + three_e_5_idx_cycle_1_bi_ort(m,l,j,k,i) = three_e_5_idx_cycle_1_bi_ort(m,l,j,k,i) - tmp_mat(l,j,i,k) + three_e_5_idx_cycle_2_bi_ort(m,l,j,k,i) = three_e_5_idx_cycle_2_bi_ort(m,l,j,k,i) - tmp_mat(k,i,j,l) + three_e_5_idx_exch23_bi_ort (m,l,j,k,i) = three_e_5_idx_exch23_bi_ort (m,l,j,k,i) - tmp_mat(k,j,i,l) + three_e_5_idx_exch13_bi_ort (m,l,j,k,i) = three_e_5_idx_exch13_bi_ort (m,l,j,k,i) - tmp_mat(l,i,j,k) enddo enddo enddo enddo - !$OMP END DO - !$OMP END PARALLEL + !$OMP END PARALLEL DO + + deallocate(lk_grad_mi) + deallocate(rm_grad_ik) + deallocate(rk_grad_im) + enddo call wall_time(wall1) - print *, ' wall time for three_e_5_idx_exch12_bi_ort', wall1 - wall0 + print *, ' wall time for three_e_5_idx_bi_ort', wall1 - wall0 -END_PROVIDER - -! --- +END_PROVIDER diff --git a/src/bi_ort_ints/three_body_ijmkl_old.irp.f b/src/bi_ort_ints/three_body_ijmkl_old.irp.f new file mode 100644 index 00000000..105cd179 --- /dev/null +++ b/src/bi_ort_ints/three_body_ijmkl_old.irp.f @@ -0,0 +1,295 @@ + +! --- + +BEGIN_PROVIDER [ double precision, three_e_5_idx_direct_bi_ort_old, (mo_num, mo_num, mo_num, mo_num, mo_num)] + + BEGIN_DOC + ! + ! matrix element of the -L three-body operator FOR THE DIRECT TERMS OF DOUBLE EXCITATIONS AND BI ORTHO MOs + ! + ! three_e_5_idx_direct_bi_ort_old(m,l,j,k,i) = ::: notice that i is the RIGHT MO and k is the LEFT MO + ! + ! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign + END_DOC + + implicit none + integer :: i, j, k, m, l + double precision :: integral, wall1, wall0 + + three_e_5_idx_direct_bi_ort_old = 0.d0 + print *, ' Providing the three_e_5_idx_direct_bi_ort_old ...' + call wall_time(wall0) + + provide mos_r_in_r_array_transp mos_l_in_r_array_transp + + !$OMP PARALLEL & + !$OMP DEFAULT (NONE) & + !$OMP PRIVATE (i,j,k,m,l,integral) & + !$OMP SHARED (mo_num,three_e_5_idx_direct_bi_ort_old) + !$OMP DO SCHEDULE (dynamic) COLLAPSE(2) + do i = 1, mo_num + do k = 1, mo_num + do j = 1, mo_num + do l = 1, mo_num + do m = 1, mo_num + call give_integrals_3_body_bi_ort(m, l, k, m, j, i, integral) + three_e_5_idx_direct_bi_ort_old(m,l,j,k,i) = -1.d0 * integral + enddo + enddo + enddo + enddo + enddo + !$OMP END DO + !$OMP END PARALLEL + + call wall_time(wall1) + print *, ' wall time for three_e_5_idx_direct_bi_ort_old', wall1 - wall0 + +END_PROVIDER + +! --- + +BEGIN_PROVIDER [ double precision, three_e_5_idx_cycle_1_bi_ort_old, (mo_num, mo_num, mo_num, mo_num, mo_num)] + + BEGIN_DOC + ! + ! matrix element of the -L three-body operator FOR THE FIRST CYCLIC PERMUTATION TERMS OF DOUBLE EXCITATIONS AND BI ORTHO MOs + ! + ! three_e_5_idx_cycle_1_bi_ort_old(m,l,j,k,i) = ::: notice that i is the RIGHT MO and k is the LEFT MO + ! + ! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign + ! + END_DOC + + implicit none + integer :: i, j, k, m, l + double precision :: integral, wall1, wall0 + + three_e_5_idx_cycle_1_bi_ort_old = 0.d0 + print *, ' Providing the three_e_5_idx_cycle_1_bi_ort_old ...' + call wall_time(wall0) + + provide mos_r_in_r_array_transp mos_l_in_r_array_transp + + !$OMP PARALLEL & + !$OMP DEFAULT (NONE) & + !$OMP PRIVATE (i,j,k,m,l,integral) & + !$OMP SHARED (mo_num,three_e_5_idx_cycle_1_bi_ort_old) + !$OMP DO SCHEDULE (dynamic) COLLAPSE(2) + do i = 1, mo_num + do k = 1, mo_num + do j = 1, mo_num + do l = 1, mo_num + do m = 1, mo_num + call give_integrals_3_body_bi_ort(m, l, k, j, i, m, integral) + three_e_5_idx_cycle_1_bi_ort_old(m,l,j,k,i) = -1.d0 * integral + enddo + enddo + enddo + enddo + enddo + !$OMP END DO + !$OMP END PARALLEL + + call wall_time(wall1) + print *, ' wall time for three_e_5_idx_cycle_1_bi_ort_old', wall1 - wall0 + +END_PROVIDER + +! --- + +BEGIN_PROVIDER [ double precision, three_e_5_idx_cycle_2_bi_ort_old, (mo_num, mo_num, mo_num, mo_num, mo_num)] + + BEGIN_DOC + ! + ! matrix element of the -L three-body operator FOR THE FIRST CYCLIC PERMUTATION TERMS OF DOUBLE EXCITATIONS AND BI ORTHO MOs + ! + ! three_e_5_idx_cycle_2_bi_ort_old(m,l,j,k,i) = ::: notice that i is the RIGHT MO and k is the LEFT MO + ! + ! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign + ! + END_DOC + + implicit none + integer :: i, j, k, m, l + double precision :: integral, wall1, wall0 + + three_e_5_idx_cycle_2_bi_ort_old = 0.d0 + print *, ' Providing the three_e_5_idx_cycle_2_bi_ort_old ...' + call wall_time(wall0) + + provide mos_r_in_r_array_transp mos_l_in_r_array_transp + + !$OMP PARALLEL & + !$OMP DEFAULT (NONE) & + !$OMP PRIVATE (i,j,k,m,l,integral) & + !$OMP SHARED (mo_num,three_e_5_idx_cycle_2_bi_ort_old) + !$OMP DO SCHEDULE (dynamic) COLLAPSE(2) + do i = 1, mo_num + do k = 1, mo_num + do j = 1, mo_num + do m = 1, mo_num + do l = 1, mo_num + call give_integrals_3_body_bi_ort(m, l, k, i, m, j, integral) + three_e_5_idx_cycle_2_bi_ort_old(m,l,j,k,i) = -1.d0 * integral + enddo + enddo + enddo + enddo + enddo + !$OMP END DO + !$OMP END PARALLEL + + call wall_time(wall1) + print *, ' wall time for three_e_5_idx_cycle_2_bi_ort_old', wall1 - wall0 + +END_PROVIDER + +! --- + +BEGIN_PROVIDER [ double precision, three_e_5_idx_exch23_bi_ort_old, (mo_num, mo_num, mo_num, mo_num, mo_num)] + + BEGIN_DOC + ! + ! matrix element of the -L three-body operator FOR THE DIRECT TERMS OF DOUBLE EXCITATIONS AND BI ORTHO MOs + ! + ! three_e_5_idx_exch23_bi_ort_old(m,l,j,k,i) = ::: notice that i is the RIGHT MO and k is the LEFT MO + ! + ! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign + ! + END_DOC + + implicit none + integer :: i, j, k, m, l + double precision :: integral, wall1, wall0 + + three_e_5_idx_exch23_bi_ort_old = 0.d0 + print *, ' Providing the three_e_5_idx_exch23_bi_ort_old ...' + call wall_time(wall0) + + provide mos_r_in_r_array_transp mos_l_in_r_array_transp + + !$OMP PARALLEL & + !$OMP DEFAULT (NONE) & + !$OMP PRIVATE (i,j,k,m,l,integral) & + !$OMP SHARED (mo_num,three_e_5_idx_exch23_bi_ort_old) + !$OMP DO SCHEDULE (dynamic) COLLAPSE(2) + do i = 1, mo_num + do k = 1, mo_num + do j = 1, mo_num + do l = 1, mo_num + do m = 1, mo_num + call give_integrals_3_body_bi_ort(m, l, k, j, m, i, integral) + three_e_5_idx_exch23_bi_ort_old(m,l,j,k,i) = -1.d0 * integral + enddo + enddo + enddo + enddo + enddo + !$OMP END DO + !$OMP END PARALLEL + + call wall_time(wall1) + print *, ' wall time for three_e_5_idx_exch23_bi_ort_old', wall1 - wall0 + +END_PROVIDER + +! --- + +BEGIN_PROVIDER [ double precision, three_e_5_idx_exch13_bi_ort_old, (mo_num, mo_num, mo_num, mo_num, mo_num)] + + BEGIN_DOC + ! + ! matrix element of the -L three-body operator FOR THE DIRECT TERMS OF DOUBLE EXCITATIONS AND BI ORTHO MOs + ! + ! three_e_5_idx_exch13_bi_ort_old(m,l,j,k,i) = ::: notice that i is the RIGHT MO and k is the LEFT MO + ! + ! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign + ! + END_DOC + + implicit none + integer :: i, j, k, m, l + double precision :: integral, wall1, wall0 + + three_e_5_idx_exch13_bi_ort_old = 0.d0 + print *, ' Providing the three_e_5_idx_exch13_bi_ort_old ...' + call wall_time(wall0) + + provide mos_r_in_r_array_transp mos_l_in_r_array_transp + + !$OMP PARALLEL & + !$OMP DEFAULT (NONE) & + !$OMP PRIVATE (i,j,k,m,l,integral) & + !$OMP SHARED (mo_num,three_e_5_idx_exch13_bi_ort_old) + !$OMP DO SCHEDULE (dynamic) COLLAPSE(2) + do i = 1, mo_num + do k = 1, mo_num + do j = 1, mo_num + do l = 1, mo_num + do m = 1, mo_num + call give_integrals_3_body_bi_ort(m, l, k, i, j, m, integral) + three_e_5_idx_exch13_bi_ort_old(m,l,j,k,i) = -1.d0 * integral + enddo + enddo + enddo + enddo + enddo + !$OMP END DO + !$OMP END PARALLEL + + call wall_time(wall1) + print *, ' wall time for three_e_5_idx_exch13_bi_ort_old', wall1 - wall0 + +END_PROVIDER + +! --- + +BEGIN_PROVIDER [ double precision, three_e_5_idx_exch12_bi_ort_old, (mo_num, mo_num, mo_num, mo_num, mo_num)] + + BEGIN_DOC + ! + ! matrix element of the -L three-body operator FOR THE DIRECT TERMS OF DOUBLE EXCITATIONS AND BI ORTHO MOs + ! + ! three_e_5_idx_exch12_bi_ort_old(m,l,j,k,i) = ::: notice that i is the RIGHT MO and k is the LEFT MO + ! + ! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign + ! + END_DOC + + implicit none + integer :: i, j, k, m, l + double precision :: integral, wall1, wall0 + + provide mos_r_in_r_array_transp mos_l_in_r_array_transp + PROVIDE mo_l_coef mo_r_coef int2_grad1_u12_bimo_t + + three_e_5_idx_exch12_bi_ort_old = 0.d0 + print *, ' Providing the three_e_5_idx_exch12_bi_ort_old ...' + call wall_time(wall0) + + !$OMP PARALLEL & + !$OMP DEFAULT (NONE) & + !$OMP PRIVATE (i,j,k,m,l,integral) & + !$OMP SHARED (mo_num,three_e_5_idx_exch12_bi_ort_old) + !$OMP DO SCHEDULE (dynamic) COLLAPSE(2) + do i = 1, mo_num + do k = 1, mo_num + do j = 1, mo_num + do l = 1, mo_num + do m = 1, mo_num + call give_integrals_3_body_bi_ort(m, l, k, m, i, j, integral) + three_e_5_idx_exch12_bi_ort_old(m,l,j,k,i) = -1.d0 * integral + enddo + enddo + enddo + enddo + enddo + !$OMP END DO + !$OMP END PARALLEL + + call wall_time(wall1) + print *, ' wall time for three_e_5_idx_exch12_bi_ort_old', wall1 - wall0 + +END_PROVIDER + diff --git a/src/bi_ort_ints/three_body_ints_bi_ort.irp.f b/src/bi_ort_ints/three_body_ints_bi_ort.irp.f index e8b56307..1962c8d6 100644 --- a/src/bi_ort_ints/three_body_ints_bi_ort.irp.f +++ b/src/bi_ort_ints/three_body_ints_bi_ort.irp.f @@ -4,7 +4,7 @@ BEGIN_PROVIDER [ double precision, three_body_ints_bi_ort, (mo_num, mo_num, mo_num, mo_num, mo_num, mo_num)] BEGIN_DOC -! matrix element of the -L three-body operator +! matrix element of the -L three-body operator ! ! notice the -1 sign: in this way three_body_ints_bi_ort can be directly used to compute Slater rules :) END_DOC @@ -12,7 +12,7 @@ BEGIN_PROVIDER [ double precision, three_body_ints_bi_ort, (mo_num, mo_num, mo_n implicit none integer :: i, j, k, l, m, n double precision :: integral, wall1, wall0 - character*(128) :: name_file + character*(128) :: name_file three_body_ints_bi_ort = 0.d0 print *, ' Providing the three_body_ints_bi_ort ...' @@ -27,12 +27,12 @@ BEGIN_PROVIDER [ double precision, three_body_ints_bi_ort, (mo_num, mo_num, mo_n ! call read_array_6_index_tensor(mo_num,three_body_ints_bi_ort,name_file) ! else - !provide x_W_ki_bi_ortho_erf_rk + !provide x_W_ki_bi_ortho_erf_rk provide mos_r_in_r_array_transp mos_l_in_r_array_transp !$OMP PARALLEL & !$OMP DEFAULT (NONE) & - !$OMP PRIVATE (i,j,k,l,m,n,integral) & + !$OMP PRIVATE (i,j,k,l,m,n,integral) & !$OMP SHARED (mo_num,three_body_ints_bi_ort) !$OMP DO SCHEDULE (dynamic) do i = 1, mo_num @@ -43,7 +43,7 @@ BEGIN_PROVIDER [ double precision, three_body_ints_bi_ort, (mo_num, mo_num, mo_n do n = 1, mo_num call give_integrals_3_body_bi_ort(n, l, k, m, j, i, integral) - three_body_ints_bi_ort(n,l,k,m,j,i) = -1.d0 * integral + three_body_ints_bi_ort(n,l,k,m,j,i) = -1.d0 * integral enddo enddo enddo @@ -63,7 +63,7 @@ BEGIN_PROVIDER [ double precision, three_body_ints_bi_ort, (mo_num, mo_num, mo_n ! call ezfio_set_three_body_ints_bi_ort_io_three_body_ints_bi_ort("Read") ! endif -END_PROVIDER +END_PROVIDER ! --- @@ -71,7 +71,7 @@ subroutine give_integrals_3_body_bi_ort(n, l, k, m, j, i, integral) BEGIN_DOC ! - ! < n l k | -L | m j i > with a BI-ORTHONORMAL MOLECULAR ORBITALS + ! < n l k | -L | m j i > with a BI-ORTHONORMAL MOLECULAR ORBITALS ! END_DOC @@ -79,28 +79,31 @@ subroutine give_integrals_3_body_bi_ort(n, l, k, m, j, i, integral) integer, intent(in) :: n, l, k, m, j, i double precision, intent(out) :: integral integer :: ipoint - double precision :: weight + double precision :: weight, tmp PROVIDE mo_l_coef mo_r_coef PROVIDE int2_grad1_u12_bimo_t integral = 0.d0 + ! (n, l, k, m, j, i) do ipoint = 1, n_points_final_grid - weight = final_weight_at_r_vector(ipoint) - integral += weight * mos_l_in_r_array_transp(ipoint,k) * mos_r_in_r_array_transp(ipoint,i) & + tmp = mos_l_in_r_array_transp(ipoint,k) * mos_r_in_r_array_transp(ipoint,i) & * ( int2_grad1_u12_bimo_t(ipoint,1,n,m) * int2_grad1_u12_bimo_t(ipoint,1,l,j) & + int2_grad1_u12_bimo_t(ipoint,2,n,m) * int2_grad1_u12_bimo_t(ipoint,2,l,j) & + int2_grad1_u12_bimo_t(ipoint,3,n,m) * int2_grad1_u12_bimo_t(ipoint,3,l,j) ) - integral += weight * mos_l_in_r_array_transp(ipoint,l) * mos_r_in_r_array_transp(ipoint,j) & + + tmp = tmp + mos_l_in_r_array_transp(ipoint,l) * mos_r_in_r_array_transp(ipoint,j) & * ( int2_grad1_u12_bimo_t(ipoint,1,n,m) * int2_grad1_u12_bimo_t(ipoint,1,k,i) & + int2_grad1_u12_bimo_t(ipoint,2,n,m) * int2_grad1_u12_bimo_t(ipoint,2,k,i) & + int2_grad1_u12_bimo_t(ipoint,3,n,m) * int2_grad1_u12_bimo_t(ipoint,3,k,i) ) - integral += weight * mos_l_in_r_array_transp(ipoint,n) * mos_r_in_r_array_transp(ipoint,m) & + + tmp = tmp + mos_l_in_r_array_transp(ipoint,n) * mos_r_in_r_array_transp(ipoint,m) & * ( int2_grad1_u12_bimo_t(ipoint,1,l,j) * int2_grad1_u12_bimo_t(ipoint,1,k,i) & + int2_grad1_u12_bimo_t(ipoint,2,l,j) * int2_grad1_u12_bimo_t(ipoint,2,k,i) & + int2_grad1_u12_bimo_t(ipoint,3,l,j) * int2_grad1_u12_bimo_t(ipoint,3,k,i) ) + integral = integral + tmp * final_weight_at_r_vector(ipoint) enddo end subroutine give_integrals_3_body_bi_ort @@ -111,7 +114,7 @@ subroutine give_integrals_3_body_bi_ort_old(n, l, k, m, j, i, integral) BEGIN_DOC ! - ! < n l k | -L | m j i > with a BI-ORTHONORMAL MOLECULAR ORBITALS + ! < n l k | -L | m j i > with a BI-ORTHONORMAL MOLECULAR ORBITALS ! END_DOC @@ -123,13 +126,13 @@ subroutine give_integrals_3_body_bi_ort_old(n, l, k, m, j, i, integral) integral = 0.d0 do ipoint = 1, n_points_final_grid - weight = final_weight_at_r_vector(ipoint) + weight = final_weight_at_r_vector(ipoint) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! -! integral += weight * mos_l_in_r_array_transp(ipoint,k) * mos_r_in_r_array_transp(ipoint,i) & +! integral += weight * mos_l_in_r_array_transp(ipoint,k) * mos_r_in_r_array_transp(ipoint,i) & ! * ( x_W_ki_bi_ortho_erf_rk(ipoint,1,n,m) * x_W_ki_bi_ortho_erf_rk(ipoint,1,l,j) & ! + x_W_ki_bi_ortho_erf_rk(ipoint,2,n,m) * x_W_ki_bi_ortho_erf_rk(ipoint,2,l,j) & ! + x_W_ki_bi_ortho_erf_rk(ipoint,3,n,m) * x_W_ki_bi_ortho_erf_rk(ipoint,3,l,j) ) -! integral += weight * mos_l_in_r_array_transp(ipoint,l) * mos_r_in_r_array_transp(ipoint,j) & +! integral += weight * mos_l_in_r_array_transp(ipoint,l) * mos_r_in_r_array_transp(ipoint,j) & ! * ( x_W_ki_bi_ortho_erf_rk(ipoint,1,n,m) * x_W_ki_bi_ortho_erf_rk(ipoint,1,k,i) & ! + x_W_ki_bi_ortho_erf_rk(ipoint,2,n,m) * x_W_ki_bi_ortho_erf_rk(ipoint,2,k,i) & ! + x_W_ki_bi_ortho_erf_rk(ipoint,3,n,m) * x_W_ki_bi_ortho_erf_rk(ipoint,3,k,i) ) @@ -138,11 +141,11 @@ subroutine give_integrals_3_body_bi_ort_old(n, l, k, m, j, i, integral) ! + x_W_ki_bi_ortho_erf_rk(ipoint,2,l,j) * x_W_ki_bi_ortho_erf_rk(ipoint,2,k,i) & ! + x_W_ki_bi_ortho_erf_rk(ipoint,3,l,j) * x_W_ki_bi_ortho_erf_rk(ipoint,3,k,i) ) -! integral += weight * mos_l_in_r_array_transp(ipoint,k) * mos_r_in_r_array_transp(ipoint,i) & +! integral += weight * mos_l_in_r_array_transp(ipoint,k) * mos_r_in_r_array_transp(ipoint,i) & ! * ( int2_grad1_u12_bimo(1,n,m,ipoint) * int2_grad1_u12_bimo(1,l,j,ipoint) & ! + int2_grad1_u12_bimo(2,n,m,ipoint) * int2_grad1_u12_bimo(2,l,j,ipoint) & ! + int2_grad1_u12_bimo(3,n,m,ipoint) * int2_grad1_u12_bimo(3,l,j,ipoint) ) -! integral += weight * mos_l_in_r_array_transp(ipoint,l) * mos_r_in_r_array_transp(ipoint,j) & +! integral += weight * mos_l_in_r_array_transp(ipoint,l) * mos_r_in_r_array_transp(ipoint,j) & ! * ( int2_grad1_u12_bimo(1,n,m,ipoint) * int2_grad1_u12_bimo(1,k,i,ipoint) & ! + int2_grad1_u12_bimo(2,n,m,ipoint) * int2_grad1_u12_bimo(2,k,i,ipoint) & ! + int2_grad1_u12_bimo(3,n,m,ipoint) * int2_grad1_u12_bimo(3,k,i,ipoint) ) @@ -151,13 +154,13 @@ subroutine give_integrals_3_body_bi_ort_old(n, l, k, m, j, i, integral) ! + int2_grad1_u12_bimo(2,l,j,ipoint) * int2_grad1_u12_bimo(2,k,i,ipoint) & ! + int2_grad1_u12_bimo(3,l,j,ipoint) * int2_grad1_u12_bimo(3,k,i,ipoint) ) -!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! +!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! - integral += weight * mos_l_in_r_array_transp(ipoint,k) * mos_r_in_r_array_transp(ipoint,i) & + integral += weight * mos_l_in_r_array_transp(ipoint,k) * mos_r_in_r_array_transp(ipoint,i) & * ( int2_grad1_u12_bimo_transp(n,m,1,ipoint) * int2_grad1_u12_bimo_transp(l,j,1,ipoint) & + int2_grad1_u12_bimo_transp(n,m,2,ipoint) * int2_grad1_u12_bimo_transp(l,j,2,ipoint) & + int2_grad1_u12_bimo_transp(n,m,3,ipoint) * int2_grad1_u12_bimo_transp(l,j,3,ipoint) ) - integral += weight * mos_l_in_r_array_transp(ipoint,l) * mos_r_in_r_array_transp(ipoint,j) & + integral += weight * mos_l_in_r_array_transp(ipoint,l) * mos_r_in_r_array_transp(ipoint,j) & * ( int2_grad1_u12_bimo_transp(n,m,1,ipoint) * int2_grad1_u12_bimo_transp(k,i,1,ipoint) & + int2_grad1_u12_bimo_transp(n,m,2,ipoint) * int2_grad1_u12_bimo_transp(k,i,2,ipoint) & + int2_grad1_u12_bimo_transp(n,m,3,ipoint) * int2_grad1_u12_bimo_transp(k,i,3,ipoint) ) @@ -176,7 +179,7 @@ subroutine give_integrals_3_body_bi_ort_ao(n, l, k, m, j, i, integral) BEGIN_DOC ! - ! < n l k | -L | m j i > with a BI-ORTHONORMAL ATOMIC ORBITALS + ! < n l k | -L | m j i > with a BI-ORTHONORMAL ATOMIC ORBITALS ! END_DOC @@ -188,13 +191,13 @@ subroutine give_integrals_3_body_bi_ort_ao(n, l, k, m, j, i, integral) integral = 0.d0 do ipoint = 1, n_points_final_grid - weight = final_weight_at_r_vector(ipoint) + weight = final_weight_at_r_vector(ipoint) - integral += weight * aos_in_r_array_transp(ipoint,k) * aos_in_r_array_transp(ipoint,i) & + integral += weight * aos_in_r_array_transp(ipoint,k) * aos_in_r_array_transp(ipoint,i) & * ( int2_grad1_u12_ao_t(ipoint,1,n,m) * int2_grad1_u12_ao_t(ipoint,1,l,j) & + int2_grad1_u12_ao_t(ipoint,2,n,m) * int2_grad1_u12_ao_t(ipoint,2,l,j) & + int2_grad1_u12_ao_t(ipoint,3,n,m) * int2_grad1_u12_ao_t(ipoint,3,l,j) ) - integral += weight * aos_in_r_array_transp(ipoint,l) * aos_in_r_array_transp(ipoint,j) & + integral += weight * aos_in_r_array_transp(ipoint,l) * aos_in_r_array_transp(ipoint,j) & * ( int2_grad1_u12_ao_t(ipoint,1,n,m) * int2_grad1_u12_ao_t(ipoint,1,k,i) & + int2_grad1_u12_ao_t(ipoint,2,n,m) * int2_grad1_u12_ao_t(ipoint,2,k,i) & + int2_grad1_u12_ao_t(ipoint,3,n,m) * int2_grad1_u12_ao_t(ipoint,3,k,i) ) diff --git a/src/ccsd/ccsd_t_space_orb_stoch.irp.f b/src/ccsd/ccsd_t_space_orb_stoch.irp.f index 1f3bebc2..b669025e 100644 --- a/src/ccsd/ccsd_t_space_orb_stoch.irp.f +++ b/src/ccsd/ccsd_t_space_orb_stoch.irp.f @@ -198,7 +198,7 @@ subroutine ccsd_par_t_space_stoch(nO,nV,t1,t2,f_o,f_v,v_vvvo,v_vvoo,v_vooo,energ allocate (bounds(2,nbuckets)) do isample=1,nbuckets eta = 1.d0/dble(nbuckets) * dble(isample) - ieta = binary_search(waccu,eta,Nabc,ileft,iright) + ieta = binary_search(waccu,eta,Nabc) bounds(1,isample) = ileft bounds(2,isample) = ieta ileft = ieta+1 diff --git a/src/cipsi/selection.irp.f b/src/cipsi/selection.irp.f index 6f40a809..0705d103 100644 --- a/src/cipsi/selection.irp.f +++ b/src/cipsi/selection.irp.f @@ -76,6 +76,8 @@ subroutine select_connected(i_generator,E0,pt2_data,b,subset,csubset) double precision, allocatable :: fock_diag_tmp(:,:) + if (csubset == 0) return + allocate(fock_diag_tmp(2,mo_num+1)) call build_fock_tmp(fock_diag_tmp,psi_det_generators(1,1,i_generator),N_int) @@ -177,6 +179,7 @@ subroutine select_singles_and_doubles(i_generator,hole_mask,particle_mask,fock_d monoAdo = .true. monoBdo = .true. + if (csubset == 0) return do k=1,N_int hole (k,1) = iand(psi_det_generators(k,1,i_generator), hole_mask(k,1)) diff --git a/src/cosgtos_ao_int/EZFIO.cfg b/src/cosgtos_ao_int/EZFIO.cfg deleted file mode 100644 index 8edeecd0..00000000 --- a/src/cosgtos_ao_int/EZFIO.cfg +++ /dev/null @@ -1,19 +0,0 @@ -[ao_expoim_cosgtos] -type: double precision -doc: imag part for Exponents for each primitive of each cosGTOs |AO| -size: (ao_basis.ao_num,ao_basis.ao_prim_num_max) -interface: ezfio, provider - -[use_cosgtos] -type: logical -doc: If true, use cosgtos for AO integrals -interface: ezfio,provider,ocaml -default: False - -[ao_integrals_threshold] -type: Threshold -doc: If | (pq|rs) | < `ao_integrals_threshold` then (pq|rs) is zero -interface: ezfio,provider,ocaml -default: 1.e-15 -ezfio_name: threshold_ao - diff --git a/src/cosgtos_ao_int/NEED b/src/cosgtos_ao_int/NEED deleted file mode 100644 index 932f88a3..00000000 --- a/src/cosgtos_ao_int/NEED +++ /dev/null @@ -1,2 +0,0 @@ -ezfio_files -ao_basis diff --git a/src/cosgtos_ao_int/README.rst b/src/cosgtos_ao_int/README.rst deleted file mode 100644 index 01f25d6d..00000000 --- a/src/cosgtos_ao_int/README.rst +++ /dev/null @@ -1,4 +0,0 @@ -============== -cosgtos_ao_int -============== - diff --git a/src/cosgtos_ao_int/cosgtos_ao_int.irp.f b/src/cosgtos_ao_int/cosgtos_ao_int.irp.f deleted file mode 100644 index d65dfba5..00000000 --- a/src/cosgtos_ao_int/cosgtos_ao_int.irp.f +++ /dev/null @@ -1,7 +0,0 @@ -program cosgtos_ao_int - implicit none - BEGIN_DOC -! TODO : Put the documentation of the program here - END_DOC - print *, 'Hello world' -end diff --git a/src/mo_two_e_ints/cholesky.irp.f b/src/mo_two_e_ints/cholesky.irp.f index b5b39b3b..8b1e6e1c 100644 --- a/src/mo_two_e_ints/cholesky.irp.f +++ b/src/mo_two_e_ints/cholesky.irp.f @@ -6,6 +6,7 @@ BEGIN_PROVIDER [ double precision, cholesky_mo, (mo_num, mo_num, cholesky_ao_num integer :: k + call set_multiple_levels_omp(.False.) print *, 'AO->MO Transformation of Cholesky vectors' !$OMP PARALLEL DO PRIVATE(k) do k=1,cholesky_ao_num diff --git a/src/utils/integration.irp.f b/src/utils/integration.irp.f index b60e3bc1..b548b18a 100644 --- a/src/utils/integration.irp.f +++ b/src/utils/integration.irp.f @@ -56,7 +56,7 @@ subroutine give_explicit_poly_and_gaussian(P_new,P_center,p,fact_k,iorder,alpha, ! * [ sum (l_y = 0,i_order(2)) P_new(l_y,2) * (y-P_center(2))^l_y ] exp (- p (y-P_center(2))^2 ) ! * [ sum (l_z = 0,i_order(3)) P_new(l_z,3) * (z-P_center(3))^l_z ] exp (- p (z-P_center(3))^2 ) ! - ! WARNING ::: IF fact_k is too smal then: + ! WARNING ::: IF fact_k is too smal then: ! returns a "s" function centered in zero ! with an inifinite exponent and a zero polynom coef END_DOC @@ -86,7 +86,7 @@ subroutine give_explicit_poly_and_gaussian(P_new,P_center,p,fact_k,iorder,alpha, !DIR$ FORCEINLINE call gaussian_product(alpha,A_center,beta,B_center,fact_k,p,P_center) if (fact_k < thresh) then - ! IF fact_k is too smal then: + ! IF fact_k is too smal then: ! returns a "s" function centered in zero ! with an inifinite exponent and a zero polynom coef P_center = 0.d0 @@ -468,114 +468,6 @@ end subroutine -subroutine multiply_poly_0c(b,c,nc,d,nd) - implicit none - BEGIN_DOC - ! Multiply two polynomials - ! D(t) += B(t)*C(t) - END_DOC - - integer, intent(in) :: nc - integer, intent(out) :: nd - double precision, intent(in) :: b(0:0), c(0:nc) - double precision, intent(inout) :: d(0:0+nc) - - integer :: ic - - do ic = 0,nc - d(ic) = d(ic) + c(ic) * b(0) - enddo - - do nd = nc,0,-1 - if (d(nd) /= 0.d0) exit - enddo - -end - -subroutine multiply_poly_1c(b,c,nc,d,nd) - implicit none - BEGIN_DOC - ! Multiply two polynomials - ! D(t) += B(t)*C(t) - END_DOC - - integer, intent(in) :: nc - integer, intent(out) :: nd - double precision, intent(in) :: b(0:1), c(0:nc) - double precision, intent(inout) :: d(0:1+nc) - - integer :: ic, id - if(nc < 0) return - - do ic = 0,nc - d( ic) = d( ic) + c(ic) * b(0) - d(1+ic) = d(1+ic) + c(ic) * b(1) - enddo - - do nd = nc+1,0,-1 - if (d(nd) /= 0.d0) exit - enddo - -end - - -subroutine multiply_poly_2c(b,c,nc,d,nd) - implicit none - BEGIN_DOC - ! Multiply two polynomials - ! D(t) += B(t)*C(t) - END_DOC - - integer, intent(in) :: nc - integer, intent(out) :: nd - double precision, intent(in) :: b(0:2), c(0:nc) - double precision, intent(inout) :: d(0:2+nc) - - integer :: ic, id, k - if (nc <0) return - - do ic = 0,nc - d( ic) = d( ic) + c(ic) * b(0) - d(1+ic) = d(1+ic) + c(ic) * b(1) - d(2+ic) = d(2+ic) + c(ic) * b(2) - enddo - - do nd = nc+2,0,-1 - if (d(nd) /= 0.d0) exit - enddo - -end - -subroutine multiply_poly_3c(b,c,nc,d,nd) - implicit none - BEGIN_DOC - ! Multiply two polynomials - ! D(t) += B(t)*C(t) - END_DOC - - integer, intent(in) :: nc - integer, intent(out) :: nd - double precision, intent(in) :: b(0:3), c(0:nc) - double precision, intent(inout) :: d(0:3+nc) - - integer :: ic, id - if (nc <0) return - - do ic = 1,nc - d( ic) = d(1+ic) + c(ic) * b(0) - d(1+ic) = d(1+ic) + c(ic) * b(1) - d(2+ic) = d(1+ic) + c(ic) * b(2) - d(3+ic) = d(1+ic) + c(ic) * b(3) - enddo - - do nd = nc+3,0,-1 - if (d(nd) /= 0.d0) exit - enddo - -end - - - subroutine multiply_poly(b,nb,c,nc,d,nd) implicit none BEGIN_DOC @@ -592,6 +484,30 @@ subroutine multiply_poly(b,nb,c,nc,d,nd) integer :: ib, ic, id, k if(ior(nc,nb) < 0) return !False if nc>=0 and nb>=0 + select case (nb) + case (0) + call multiply_poly_b0(b,c,nc,d,nd) + return + case (1) + call multiply_poly_b1(b,c,nc,d,nd) + return + case (2) + call multiply_poly_b2(b,c,nc,d,nd) + return + end select + + select case (nc) + case (0) + call multiply_poly_c0(b,nb,c,d,nd) + return + case (1) + call multiply_poly_c1(b,nb,c,d,nd) + return + case (2) + call multiply_poly_c2(b,nb,c,d,nd) + return + end select + do ib=0,nb do ic = 0,nc d(ib+ic) = d(ib+ic) + c(ic) * b(ib) @@ -604,6 +520,254 @@ subroutine multiply_poly(b,nb,c,nc,d,nd) end + +subroutine multiply_poly_b0(b,c,nc,d,nd) + implicit none + BEGIN_DOC + ! Multiply two polynomials + ! D(t) += B(t)*C(t) + END_DOC + + integer, intent(in) :: nc + integer, intent(out) :: nd + double precision, intent(in) :: b(0:0), c(0:nc) + double precision, intent(inout) :: d(0:nc) + + integer :: ndtmp + integer :: ic, id, k + if(nc < 0) return !False if nc>=0 + + do ic = 0,nc + d(ic) = d(ic) + c(ic) * b(0) + enddo + + do nd = nc,0,-1 + if (d(nd) /= 0.d0) exit + enddo + +end + +subroutine multiply_poly_b1(b,c,nc,d,nd) + implicit none + BEGIN_DOC + ! Multiply two polynomials + ! D(t) += B(t)*C(t) + END_DOC + + integer, intent(in) :: nc + integer, intent(out) :: nd + double precision, intent(in) :: b(0:1), c(0:nc) + double precision, intent(inout) :: d(0:1+nc) + + integer :: ndtmp + integer :: ib, ic, id, k + if(nc < 0) return !False if nc>=0 + + + select case (nc) + case (0) + d(0) = d(0) + c(0) * b(0) + d(1) = d(1) + c(0) * b(1) + + case (1) + d(0) = d(0) + c(0) * b(0) + d(1) = d(1) + c(0) * b(1) + c(1) * b(0) + d(2) = d(2) + c(1) * b(1) + + case default + d(0) = d(0) + c(0) * b(0) + do ic = 1,nc + d(ic) = d(ic) + c(ic) * b(0) + c(ic-1) * b(1) + enddo + d(nc+1) = d(nc+1) + c(nc) * b(1) + + end select + + do nd = 1+nc,0,-1 + if (d(nd) /= 0.d0) exit + enddo + +end + + +subroutine multiply_poly_b2(b,c,nc,d,nd) + implicit none + BEGIN_DOC + ! Multiply two polynomials + ! D(t) += B(t)*C(t) + END_DOC + + integer, intent(in) :: nc + integer, intent(out) :: nd + double precision, intent(in) :: b(0:2), c(0:nc) + double precision, intent(inout) :: d(0:2+nc) + + integer :: ndtmp + integer :: ib, ic, id, k + if(nc < 0) return !False if nc>=0 + + select case (nc) + case (0) + d(0) = d(0) + c(0) * b(0) + d(1) = d(1) + c(0) * b(1) + d(2) = d(2) + c(0) * b(2) + + case (1) + d(0) = d(0) + c(0) * b(0) + d(1) = d(1) + c(0) * b(1) + c(1) * b(0) + d(2) = d(2) + c(0) * b(2) + c(1) * b(1) + d(3) = d(3) + c(1) * b(2) + + case (2) + d(0) = d(0) + c(0) * b(0) + d(1) = d(1) + c(0) * b(1) + c(1) * b(0) + d(2) = d(2) + c(0) * b(2) + c(1) * b(1) + c(2) * b(0) + d(3) = d(3) + c(2) * b(1) + c(1) * b(2) + d(4) = d(4) + c(2) * b(2) + + case default + + d(0) = d(0) + c(0) * b(0) + d(1) = d(1) + c(0) * b(1) + c(1) * b(0) + do ic = 2,nc + d(ic) = d(ic) + c(ic) * b(0) + c(ic-1) * b(1) + c(ic-2) * b(2) + enddo + d(nc+1) = d(nc+1) + c(nc) * b(1) + c(nc-1) * b(2) + d(nc+2) = d(nc+2) + c(nc) * b(2) + + end select + + do nd = 2+nc,0,-1 + if (d(nd) /= 0.d0) exit + enddo + +end + + +subroutine multiply_poly_c0(b,nb,c,d,nd) + implicit none + BEGIN_DOC + ! Multiply two polynomials + ! D(t) += B(t)*C(t) + END_DOC + + integer, intent(in) :: nb + integer, intent(out) :: nd + double precision, intent(in) :: b(0:nb), c(0:0) + double precision, intent(inout) :: d(0:nb) + + integer :: ndtmp + integer :: ib, ic, id, k + if(nb < 0) return !False if nb>=0 + + do ib=0,nb + d(ib) = d(ib) + c(0) * b(ib) + enddo + + do nd = nb,0,-1 + if (d(nd) /= 0.d0) exit + enddo + +end + + +subroutine multiply_poly_c1(b,nb,c,d,nd) + implicit none + BEGIN_DOC + ! Multiply two polynomials + ! D(t) += B(t)*C(t) + END_DOC + + integer, intent(in) :: nb + integer, intent(out) :: nd + double precision, intent(in) :: b(0:nb), c(0:1) + double precision, intent(inout) :: d(0:nb+1) + + integer :: ndtmp + integer :: ib, ic, id, k + if(nb < 0) return !False if nb>=0 + + select case (nb) + case (0) + d(0) = d(0) + c(0) * b(0) + d(1) = d(1) + c(1) * b(0) + + case (1) + d(0) = d(0) + c(0) * b(0) + d(1) = d(1) + c(0) * b(1) + c(1) * b(0) + d(2) = d(2) + c(1) * b(1) + + case default + d(0) = d(0) + c(0) * b(0) + do ib=1,nb + d(ib) = d(ib) + c(0) * b(ib) + c(1) * b(ib-1) + enddo + d(nb+1) = d(nb+1) + c(1) * b(nb) + + end select + + do nd = nb+1,0,-1 + if (d(nd) /= 0.d0) exit + enddo + +end + + +subroutine multiply_poly_c2(b,nb,c,d,nd) + implicit none + BEGIN_DOC + ! Multiply two polynomials + ! D(t) += B(t)*C(t) + END_DOC + + integer, intent(in) :: nb + integer, intent(out) :: nd + double precision, intent(in) :: b(0:nb), c(0:2) + double precision, intent(inout) :: d(0:nb+2) + + integer :: ndtmp + integer :: ib, ic, id, k + if(nb < 0) return !False if nb>=0 + + select case (nb) + case (0) + d(0) = d(0) + c(0) * b(0) + d(1) = d(1) + c(1) * b(0) + d(2) = d(2) + c(2) * b(0) + + case (1) + d(0) = d(0) + c(0) * b(0) + d(1) = d(1) + c(0) * b(1) + c(1) * b(0) + d(2) = d(2) + c(1) * b(1) + c(2) * b(0) + d(3) = d(3) + c(2) * b(1) + + case (2) + d(0) = d(0) + c(0) * b(0) + d(1) = d(1) + c(0) * b(1) + c(1) * b(0) + d(2) = d(2) + c(0) * b(2) + c(1) * b(1) + c(2) * b(0) + d(3) = d(3) + c(1) * b(2) + c(2) * b(1) + d(4) = d(4) + c(2) * b(2) + + case default + d(0) = d(0) + c(0) * b(0) + d(1) = d(1) + c(0) * b(1) + c(1) * b(0) + do ib=2,nb + d(ib) = d(ib) + c(0) * b(ib) + c(1) * b(ib-1) + c(2) * b(ib-2) + enddo + d(nb+1) = d(nb+1) + c(1) * b(nb) + c(2) * b(nb-1) + d(nb+2) = d(nb+2) + c(2) * b(nb) + + end select + + do nd = nb+2,0,-1 + if (d(nd) /= 0.d0) exit + enddo + +end + + + + subroutine multiply_poly_v(b,nb,c,nc,d,nd,n_points) implicit none BEGIN_DOC @@ -778,11 +942,11 @@ end subroutine recentered_poly2_v subroutine recentered_poly2_v0(P_new, lda, x_A, LD_xA, x_P, a, n_points) BEGIN_DOC - ! + ! ! Recenter two polynomials. Special case for b=(0,0,0) - ! + ! ! (x - A)^a (x - B)^0 = (x - P + P - A)^a (x - Q + Q - B)^0 - ! = (x - P + P - A)^a + ! = (x - P + P - A)^a ! END_DOC