9
1
mirror of https://github.com/QuantumPackage/qp2.git synced 2024-12-23 12:03:30 +01:00

working on complex selection

This commit is contained in:
Kevin Gasperich 2020-03-03 18:45:24 -06:00
parent 299243e2ce
commit 10fc3a6fc4
4 changed files with 843 additions and 16 deletions

View File

@ -276,11 +276,11 @@ subroutine select_singles_and_doubles(i_generator,hole_mask,particle_mask,fock_d
integer(bit_kind), allocatable :: minilist(:, :, :), fullminilist(:, :, :) integer(bit_kind), allocatable :: minilist(:, :, :), fullminilist(:, :, :)
logical, allocatable :: banned(:,:,:), bannedOrb(:,:) logical, allocatable :: banned(:,:,:), bannedOrb(:,:)
double precision, allocatable :: coef_fullminilist_rev(:,:) double precision, allocatable :: coef_fullminilist_rev(:,:)
double precision, allocatable :: coef_fullminilist_rev_complex(:,:) complex*16, allocatable :: coef_fullminilist_rev_complex(:,:)
double precision, allocatable :: mat(:,:,:) double precision, allocatable :: mat(:,:,:)
double precision, allocatable :: mat_complex(:,:,:) complex*16, allocatable :: mat_complex(:,:,:)
logical :: monoAdo, monoBdo logical :: monoAdo, monoBdo
integer :: maskInd integer :: maskInd
@ -288,7 +288,12 @@ subroutine select_singles_and_doubles(i_generator,hole_mask,particle_mask,fock_d
PROVIDE psi_bilinear_matrix_columns_loc psi_det_alpha_unique psi_det_beta_unique PROVIDE psi_bilinear_matrix_columns_loc psi_det_alpha_unique psi_det_beta_unique
PROVIDE psi_bilinear_matrix_rows psi_det_sorted_order psi_bilinear_matrix_order PROVIDE psi_bilinear_matrix_rows psi_det_sorted_order psi_bilinear_matrix_order
PROVIDE psi_bilinear_matrix_transp_rows_loc psi_bilinear_matrix_transp_columns PROVIDE psi_bilinear_matrix_transp_rows_loc psi_bilinear_matrix_transp_columns
PROVIDE psi_bilinear_matrix_transp_order psi_selectors_coef_transp PROVIDE psi_bilinear_matrix_transp_order
if (is_complex) then
PROVIDE psi_selectors_coef_transp_complex
else
PROVIDE psi_selectors_coef_transp
endif
monoAdo = .true. monoAdo = .true.
monoBdo = .true. monoBdo = .true.
@ -426,8 +431,17 @@ subroutine select_singles_and_doubles(i_generator,hole_mask,particle_mask,fock_d
! print *, 'Step1: ', i_generator, preinteresting(0) ! print *, 'Step1: ', i_generator, preinteresting(0)
! !$OMP END CRITICAL ! !$OMP END CRITICAL
!------------------------------------------------------------|
! |
! Real |
! |
!------------------------------------------------------------|
allocate(banned(mo_num, mo_num,2), bannedOrb(mo_num, 2)) allocate(banned(mo_num, mo_num,2), bannedOrb(mo_num, 2))
if (is_complex) then
allocate (mat_complex(N_states, mo_num, mo_num))
else
allocate (mat(N_states, mo_num, mo_num)) allocate (mat(N_states, mo_num, mo_num))
endif
maskInd = -1 maskInd = -1
integer :: nb_count, maskInd_save integer :: nb_count, maskInd_save
@ -636,7 +650,17 @@ subroutine select_singles_and_doubles(i_generator,hole_mask,particle_mask,fock_d
! !$OMP CRITICAL ! !$OMP CRITICAL
! print *, 'Step3: ', i_generator, h1, interesting(0) ! print *, 'Step3: ', i_generator, h1, interesting(0)
! !$OMP END CRITICAL ! !$OMP END CRITICAL
if (is_complex) then
call splash_pq_complex(mask, sp, minilist, i_generator, interesting(0), bannedOrb, banned, mat_complex, interesting)
if(.not.pert_2rdm)then
call fill_buffer_double_complex(i_generator, sp, h1, h2, bannedOrb, banned, fock_diag_tmp, E0, pt2, variance, norm, mat_complex, buf)
else
print*,irp_here,' not implemented for complex'
stop -1
!call fill_buffer_double_rdm_complex(i_generator, sp, h1, h2, bannedOrb, banned, fock_diag_tmp, E0, pt2, variance, norm, mat_complex, buf,fullminilist, coef_fullminilist_rev_complex, fullinteresting(0))
endif
else
call splash_pq(mask, sp, minilist, i_generator, interesting(0), bannedOrb, banned, mat, interesting) call splash_pq(mask, sp, minilist, i_generator, interesting(0), bannedOrb, banned, mat, interesting)
if(.not.pert_2rdm)then if(.not.pert_2rdm)then
@ -644,6 +668,7 @@ subroutine select_singles_and_doubles(i_generator,hole_mask,particle_mask,fock_d
else else
call fill_buffer_double_rdm(i_generator, sp, h1, h2, bannedOrb, banned, fock_diag_tmp, E0, pt2, variance, norm, mat, buf,fullminilist, coef_fullminilist_rev, fullinteresting(0)) call fill_buffer_double_rdm(i_generator, sp, h1, h2, bannedOrb, banned, fock_diag_tmp, E0, pt2, variance, norm, mat, buf,fullminilist, coef_fullminilist_rev, fullinteresting(0))
endif endif
endif!complex
end if end if
enddo enddo
if(s1 /= s2) monoBdo = .false. if(s1 /= s2) monoBdo = .false.
@ -655,7 +680,12 @@ subroutine select_singles_and_doubles(i_generator,hole_mask,particle_mask,fock_d
enddo enddo
enddo enddo
deallocate(preinteresting, prefullinteresting, interesting, fullinteresting) deallocate(preinteresting, prefullinteresting, interesting, fullinteresting)
deallocate(banned, bannedOrb,mat) deallocate(banned, bannedOrb)
if (is_complex) then
deallocate(mat_complex)
else
deallocate(mat)
endif
end subroutine end subroutine
@ -1911,3 +1941,796 @@ subroutine get_d2_reference(gen, phasemask, bannedOrb, banned, mat, mask, h, p,
end end
!==============================================================================!
! !
! Complex !
! !
!==============================================================================!
subroutine fill_buffer_double_complex(i_generator, sp, h1, h2, bannedOrb, banned, fock_diag_tmp, E0, pt2, variance, norm, mat, buf)
!todo: check indices for complex?
use bitmasks
use selection_types
implicit none
integer, intent(in) :: i_generator, sp, h1, h2
complex*16, intent(in) :: mat(N_states, mo_num, mo_num)
logical, intent(in) :: bannedOrb(mo_num, 2), banned(mo_num, mo_num)
double precision, intent(in) :: fock_diag_tmp(mo_num)
double precision, intent(in) :: E0(N_states)
double precision, intent(inout) :: pt2(N_states)
double precision, intent(inout) :: variance(N_states)
double precision, intent(inout) :: norm(N_states)
type(selection_buffer), intent(inout) :: buf
logical :: ok
integer :: s1, s2, p1, p2, ib, j, istate
integer(bit_kind) :: mask(N_int, 2), det(N_int, 2)
double precision :: e_pert, delta_E, val, Hii, w, tmp
complex*16 :: alpha_h_psi, coef, val_c
double precision, external :: diag_H_mat_elem_fock
double precision :: E_shift
! logical, external :: detEq
! double precision, allocatable :: values(:)
! integer, allocatable :: keys(:,:)
! integer :: nkeys
if(sp == 3) then
s1 = 1
s2 = 2
else
s1 = sp
s2 = sp
end if
call apply_holes(psi_det_generators(1,1,i_generator), s1, h1, s2, h2, mask, ok, N_int)
E_shift = 0.d0
if (h0_type == 'SOP') then
j = det_to_occ_pattern(i_generator)
E_shift = psi_det_Hii(i_generator) - psi_occ_pattern_Hii(j)
endif
do p1=1,mo_num
if(bannedOrb(p1, s1)) cycle
ib = 1
if(sp /= 3) ib = p1+1
do p2=ib,mo_num
! -----
! /!\ Generating only single excited determinants doesn't work because a
! determinant generated by a single excitation may be doubly excited wrt
! to a determinant of the future. In that case, the determinant will be
! detected as already generated when generating in the future with a
! double excitation.
!
! if (.not.do_singles) then
! if ((h1 == p1) .or. (h2 == p2)) then
! cycle
! endif
! endif
!
! if (.not.do_doubles) then
! if ((h1 /= p1).and.(h2 /= p2)) then
! cycle
! endif
! endif
! -----
if(bannedOrb(p2, s2)) cycle
if(banned(p1,p2)) cycle
val = maxval(cdabs(mat(1:N_states, p1, p2)))
if( val == 0d0) cycle
call apply_particles(mask, s1, p1, s2, p2, det, ok, N_int)
if (do_only_cas) then
integer, external :: number_of_holes, number_of_particles
if (number_of_particles(det)>0) then
cycle
endif
if (number_of_holes(det)>0) then
cycle
endif
endif
if (do_ddci) then
logical, external :: is_a_two_holes_two_particles
if (is_a_two_holes_two_particles(det)) then
cycle
endif
endif
if (do_only_1h1p) then
logical, external :: is_a_1h1p
if (.not.is_a_1h1p(det)) cycle
endif
Hii = diag_h_mat_elem_fock(psi_det_generators(1,1,i_generator),det,fock_diag_tmp,N_int)
w = 0d0
! integer(bit_kind) :: occ(N_int,2), n
! call occ_pattern_of_det(det,occ,N_int)
! call occ_pattern_to_dets_size(occ,n,elec_alpha_num,N_int)
do istate=1,N_states
delta_E = E0(istate) - Hii + E_shift
alpha_h_psi = mat(istate, p1, p2)
val_c = alpha_h_psi + alpha_h_psi
tmp = dsqrt(delta_E * delta_E + cdabs(val_c * val_c))
if (delta_E < 0.d0) then
tmp = -tmp
endif
e_pert = 0.5d0 * (tmp - delta_E)
if (dabs(alpha_h_psi) > 1.d-4) then
coef = e_pert / alpha_h_psi
else
coef = alpha_h_psi / delta_E
endif
pt2(istate) = pt2(istate) + e_pert
variance(istate) = variance(istate) + cdabs(alpha_h_psi * alpha_h_psi)
norm(istate) = norm(istate) + cdabs(coef * coef)
!!!DEBUG
! integer :: k
! double precision :: alpha_h_psi_2,hij
! alpha_h_psi_2 = 0.d0
! do k = 1,N_det_selectors
! call i_H_j(det,psi_selectors(1,1,k),N_int,hij)
! alpha_h_psi_2 = alpha_h_psi_2 + psi_selectors_coef(k,istate) * hij
! enddo
! if(dabs(alpha_h_psi_2 - alpha_h_psi).gt.1.d-12)then
! call debug_det(psi_det_generators(1,1,i_generator),N_int)
! call debug_det(det,N_int)
! print*,'alpha_h_psi,alpha_h_psi_2 = ',alpha_h_psi,alpha_h_psi_2
! stop
! endif
!!!DEBUG
select case (weight_selection)
case(5)
! Variance selection
w = w - cdabs(alpha_h_psi * alpha_h_psi) * selection_weight(istate)
case(6)
w = w - cdabs(coef * coef) * selection_weight(istate)
case default
! Energy selection
w = w + e_pert * selection_weight(istate)
end select
end do
if(pseudo_sym)then
if(cdabs(mat(1, p1, p2)).lt.thresh_sym)then
w = 0.d0
endif
endif
! w = dble(n) * w
if(w <= buf%mini) then
call add_to_selection_buffer(buf, det, w)
end if
end do
end do
end
subroutine splash_pq_complex(mask, sp, det, i_gen, N_sel, bannedOrb, banned, mat, interesting)
!todo: check indices for complex?
use bitmasks
implicit none
BEGIN_DOC
! Computes the contributions A(r,s) by
! comparing the external determinant to all the internal determinants det(i).
! an applying two particles (r,s) to the mask.
END_DOC
integer, intent(in) :: sp, i_gen, N_sel
integer, intent(in) :: interesting(0:N_sel)
integer(bit_kind),intent(in) :: mask(N_int, 2), det(N_int, 2, N_sel)
logical, intent(inout) :: bannedOrb(mo_num, 2), banned(mo_num, mo_num, 2)
complex*16, intent(inout) :: mat(N_states, mo_num, mo_num)
integer :: i, ii, j, k, l, h(0:2,2), p(0:4,2), nt
integer(bit_kind) :: perMask(N_int, 2), mobMask(N_int, 2), negMask(N_int, 2)
integer(bit_kind) :: phasemask(N_int,2)
PROVIDE psi_selectors_coef_transp_complex psi_det_sorted
mat = 0d0
do i=1,N_int
negMask(i,1) = not(mask(i,1))
negMask(i,2) = not(mask(i,2))
end do
do i=1, N_sel
if (interesting(i) < 0) then
stop 'prefetch interesting(i) and det(i)'
endif
mobMask(1,1) = iand(negMask(1,1), det(1,1,i))
mobMask(1,2) = iand(negMask(1,2), det(1,2,i))
nt = popcnt(mobMask(1, 1)) + popcnt(mobMask(1, 2))
if(nt > 4) cycle
do j=2,N_int
mobMask(j,1) = iand(negMask(j,1), det(j,1,i))
mobMask(j,2) = iand(negMask(j,2), det(j,2,i))
nt = nt + popcnt(mobMask(j, 1)) + popcnt(mobMask(j, 2))
end do
if(nt > 4) cycle
if (interesting(i) == i_gen) then
if(sp == 3) then
do k=1,mo_num
do j=1,mo_num
banned(j,k,2) = banned(k,j,1)
enddo
enddo
else
do k=1,mo_num
do l=k+1,mo_num
banned(l,k,1) = banned(k,l,1)
end do
end do
end if
end if
if (interesting(i) >= i_gen) then
call bitstring_to_list_in_selection(mobMask(1,1), p(1,1), p(0,1), N_int)
call bitstring_to_list_in_selection(mobMask(1,2), p(1,2), p(0,2), N_int)
perMask(1,1) = iand(mask(1,1), not(det(1,1,i)))
perMask(1,2) = iand(mask(1,2), not(det(1,2,i)))
do j=2,N_int
perMask(j,1) = iand(mask(j,1), not(det(j,1,i)))
perMask(j,2) = iand(mask(j,2), not(det(j,2,i)))
end do
call bitstring_to_list_in_selection(perMask(1,1), h(1,1), h(0,1), N_int)
call bitstring_to_list_in_selection(perMask(1,2), h(1,2), h(0,2), N_int)
call get_mask_phase(psi_det_sorted(1,1,interesting(i)), phasemask,N_int)
if(nt == 4) then
! call get_d2_reference(det(1,1,i), phasemask, bannedOrb, banned, mat, mask, h, p, sp, psi_selectors_coef_transp(1, interesting(i)))
call get_d2_complex(det(1,1,i), phasemask, bannedOrb, banned, mat, mask, h, p, sp, psi_selectors_coef_transp(1, interesting(i)))
else if(nt == 3) then
! call get_d1_reference(det(1,1,i), phasemask, bannedOrb, banned, mat, mask, h, p, sp, psi_selectors_coef_transp(1, interesting(i)))
call get_d1_complex(det(1,1,i), phasemask, bannedOrb, banned, mat, mask, h, p, sp, psi_selectors_coef_transp(1, interesting(i)))
else
! call get_d0_reference(det(1,1,i), phasemask, bannedOrb, banned, mat, mask, h, p, sp, psi_selectors_coef_transp(1, interesting(i)))
call get_d0_complex(det(1,1,i), phasemask, bannedOrb, banned, mat, mask, h, p, sp, psi_selectors_coef_transp(1, interesting(i)))
end if
else if(nt == 4) then
call bitstring_to_list_in_selection(mobMask(1,1), p(1,1), p(0,1), N_int)
call bitstring_to_list_in_selection(mobMask(1,2), p(1,2), p(0,2), N_int)
call past_d2(banned, p, sp)
else if(nt == 3) then
call bitstring_to_list_in_selection(mobMask(1,1), p(1,1), p(0,1), N_int)
call bitstring_to_list_in_selection(mobMask(1,2), p(1,2), p(0,2), N_int)
call past_d1(bannedOrb, p)
end if
end do
end
subroutine get_d2_complex(gen, phasemask, bannedOrb, banned, mat, mask, h, p, sp, coefs)
!todo: check all indices for complex; check coef conjg for complex
use bitmasks
implicit none
integer(bit_kind), intent(in) :: mask(N_int, 2), gen(N_int, 2)
integer(bit_kind), intent(in) :: phasemask(N_int,2)
logical, intent(in) :: bannedOrb(mo_num, 2), banned(mo_num, mo_num,2)
complex*16, intent(in) :: coefs(N_states)
complex*16, intent(inout) :: mat(N_states, mo_num, mo_num)
integer, intent(in) :: h(0:2,2), p(0:4,2), sp
double precision, external :: get_phase_bi
complex*16, external :: mo_two_e_integral_complex
integer :: i, j, k, tip, ma, mi, puti, putj
integer :: h1, h2, p1, p2, i1, i2
double precision :: phase
complex*16 :: hij
integer, parameter:: turn2d(2,3,4) = reshape((/0,0, 0,0, 0,0, 3,4, 0,0, 0,0, 2,4, 1,4, 0,0, 2,3, 1,3, 1,2 /), (/2,3,4/))
integer, parameter :: turn2(2) = (/2, 1/)
integer, parameter :: turn3(2,3) = reshape((/2,3, 1,3, 1,2/), (/2,3/))
integer :: bant
bant = 1
tip = p(0,1) * p(0,2)
ma = sp
if(p(0,1) > p(0,2)) ma = 1
if(p(0,1) < p(0,2)) ma = 2
mi = mod(ma, 2) + 1
if(sp == 3) then
if(ma == 2) bant = 2
if(tip == 3) then
puti = p(1, mi)
if(bannedOrb(puti, mi)) return
h1 = h(1, ma)
h2 = h(2, ma)
do i = 1, 3
putj = p(i, ma)
if(banned(putj,puti,bant)) cycle
i1 = turn3(1,i)
i2 = turn3(2,i)
p1 = p(i1, ma)
p2 = p(i2, ma)
hij = mo_two_e_integral_complex(p1, p2, h1, h2) - mo_two_e_integral_complex(p2, p1, h1, h2)
if (hij == (0.d0,0.d0)) cycle
hij = hij * get_phase_bi(phasemask, ma, ma, h1, p1, h2, p2, N_int)
if(ma == 1) then
!DIR$ LOOP COUNT AVG(4)
do k=1,N_states
mat(k, putj, puti) = mat(k, putj, puti) + coefs(k) * hij
enddo
else
!DIR$ LOOP COUNT AVG(4)
do k=1,N_states
mat(k, puti, putj) = mat(k, puti, putj) + coefs(k) * hij
enddo
end if
end do
else
h1 = h(1,1)
h2 = h(1,2)
do j = 1,2
putj = p(j, 2)
if(bannedOrb(putj, 2)) cycle
p2 = p(turn2(j), 2)
do i = 1,2
puti = p(i, 1)
if(banned(puti,putj,bant) .or. bannedOrb(puti,1)) cycle
p1 = p(turn2(i), 1)
hij = mo_two_e_integral_complex(p1, p2, h1, h2)
if (hij /= (0.d0,0.d0)) then
hij = hij * get_phase_bi(phasemask, 1, 2, h1, p1, h2, p2, N_int)
!DIR$ LOOP COUNT AVG(4)
do k=1,N_states
mat(k, puti, putj) = mat(k, puti, putj) + coefs(k) * hij
enddo
endif
end do
end do
end if
else
if(tip == 0) then
h1 = h(1, ma)
h2 = h(2, ma)
do i=1,3
puti = p(i, ma)
if(bannedOrb(puti,ma)) cycle
do j=i+1,4
putj = p(j, ma)
if(bannedOrb(putj,ma)) cycle
if(banned(puti,putj,1)) cycle
i1 = turn2d(1, i, j)
i2 = turn2d(2, i, j)
p1 = p(i1, ma)
p2 = p(i2, ma)
hij = mo_two_e_integral_complex(p1, p2, h1, h2) - mo_two_e_integral_complex(p2,p1, h1, h2)
if (hij == (0.d0,0.d0)) cycle
hij = hij * get_phase_bi(phasemask, ma, ma, h1, p1, h2, p2, N_int)
!DIR$ LOOP COUNT AVG(4)
do k=1,N_states
mat(k, puti, putj) = mat(k, puti, putj) +coefs(k) * hij
enddo
end do
end do
else if(tip == 3) then
h1 = h(1, mi)
h2 = h(1, ma)
p1 = p(1, mi)
do i=1,3
puti = p(turn3(1,i), ma)
if(bannedOrb(puti,ma)) cycle
putj = p(turn3(2,i), ma)
if(bannedOrb(putj,ma)) cycle
if(banned(puti,putj,1)) cycle
p2 = p(i, ma)
hij = mo_two_e_integral_complex(p1, p2, h1, h2)
if (hij == (0.d0,0.d0)) cycle
hij = hij * get_phase_bi(phasemask, mi, ma, h1, p1, h2, p2, N_int)
if (puti < putj) then
!DIR$ LOOP COUNT AVG(4)
do k=1,N_states
mat(k, puti, putj) = mat(k, puti, putj) + coefs(k) * hij
enddo
else
!DIR$ LOOP COUNT AVG(4)
do k=1,N_states
mat(k, putj, puti) = mat(k, putj, puti) + coefs(k) * hij
enddo
endif
end do
else ! tip == 4
puti = p(1, sp)
putj = p(2, sp)
if(.not. banned(puti,putj,1)) then
p1 = p(1, mi)
p2 = p(2, mi)
h1 = h(1, mi)
h2 = h(2, mi)
hij = (mo_two_e_integral_complex(p1, p2, h1, h2) - mo_two_e_integral_complex(p2,p1, h1, h2))
if (hij /= (0.d0,0.d0)) then
hij = hij * get_phase_bi(phasemask, mi, mi, h1, p1, h2, p2, N_int)
!DIR$ LOOP COUNT AVG(4)
do k=1,N_states
mat(k, puti, putj) = mat(k, puti, putj) + coefs(k) * hij
enddo
end if
end if
end if
end if
end
subroutine get_d1_complex(gen, phasemask, bannedOrb, banned, mat, mask, h, p, sp, coefs)
!todo: check all indices for complex; check coef conjg for complex
use bitmasks
implicit none
integer(bit_kind), intent(in) :: mask(N_int, 2), gen(N_int, 2)
integer(bit_kind), intent(in) :: phasemask(N_int,2)
logical, intent(in) :: bannedOrb(mo_num, 2), banned(mo_num, mo_num,2)
integer(bit_kind) :: det(N_int, 2)
complex*16, intent(in) :: coefs(N_states)
complex*16, intent(inout) :: mat(N_states, mo_num, mo_num)
integer, intent(in) :: h(0:2,2), p(0:4,2), sp
double precision, external :: get_phase_bi
complex*16, external :: mo_two_e_integral_complex
logical :: ok
logical, allocatable :: lbanned(:,:)
integer :: puti, putj, ma, mi, s1, s2, i, i1, i2, j
integer :: hfix, pfix, h1, h2, p1, p2, ib, k, l
integer, parameter :: turn2(2) = (/2,1/)
integer, parameter :: turn3(2,3) = reshape((/2,3, 1,3, 1,2/), (/2,3/))
integer :: bant
complex*16, allocatable :: hij_cache(:,:)
complex*16 :: hij, tmp_row(N_states, mo_num), tmp_row2(N_states, mo_num)
PROVIDE mo_integrals_map N_int
allocate (lbanned(mo_num, 2))
allocate (hij_cache(mo_num,2))
lbanned = bannedOrb
do i=1, p(0,1)
lbanned(p(i,1), 1) = .true.
end do
do i=1, p(0,2)
lbanned(p(i,2), 2) = .true.
end do
ma = 1
if(p(0,2) >= 2) ma = 2
mi = turn2(ma)
bant = 1
if(sp == 3) then
!move MA
if(ma == 2) bant = 2
puti = p(1,mi)
hfix = h(1,ma)
p1 = p(1,ma)
p2 = p(2,ma)
if(.not. bannedOrb(puti, mi)) then
call get_mo_two_e_integrals_complex(hfix,p1,p2,mo_num,hij_cache(1,1),mo_integrals_map)
call get_mo_two_e_integrals_complex(hfix,p2,p1,mo_num,hij_cache(1,2),mo_integrals_map)
tmp_row = (0.d0,0.d0)
do putj=1, hfix-1
if(lbanned(putj, ma)) cycle
if(banned(putj, puti,bant)) cycle
hij = hij_cache(putj,1) - hij_cache(putj,2)
if (hij /= (0.d0,0.d0)) then
hij = hij * get_phase_bi(phasemask, ma, ma, putj, p1, hfix, p2, N_int)
!DIR$ LOOP COUNT AVG(4)
do k=1,N_states
tmp_row(k,putj) = tmp_row(k,putj) + hij * coefs(k)
enddo
endif
end do
do putj=hfix+1, mo_num
if(lbanned(putj, ma)) cycle
if(banned(putj, puti,bant)) cycle
hij = hij_cache(putj,2) - hij_cache(putj,1)
if (hij /= (0.d0,0.d0)) then
hij = hij * get_phase_bi(phasemask, ma, ma, hfix, p1, putj, p2, N_int)
!DIR$ LOOP COUNT AVG(4)
do k=1,N_states
tmp_row(k,putj) = tmp_row(k,putj) + hij * coefs(k)
enddo
endif
end do
if(ma == 1) then
mat(1:N_states,1:mo_num,puti) = mat(1:N_states,1:mo_num,puti) + tmp_row(1:N_states,1:mo_num)
else
do l=1,mo_num
!DIR$ LOOP COUNT AVG(4)
do k=1,N_states
mat(k,puti,l) = mat(k,puti,l) + tmp_row(k,l)
enddo
enddo
end if
end if
!MOVE MI
pfix = p(1,mi)
tmp_row = (0.d0,0.d0)
tmp_row2 = (0.d0,0.d0)
call get_mo_two_e_integrals_complex(hfix,pfix,p1,mo_num,hij_cache(1,1),mo_integrals_map)
call get_mo_two_e_integrals_complex(hfix,pfix,p2,mo_num,hij_cache(1,2),mo_integrals_map)
putj = p1
do puti=1,mo_num !HOT
if(lbanned(puti,mi)) cycle
!p1 fixed
putj = p1
if(.not. banned(putj,puti,bant)) then
hij = hij_cache(puti,2)
if (hij /= (0.d0,0.d0)) then
hij = hij * get_phase_bi(phasemask, ma, mi, hfix, p2, puti, pfix, N_int)
!DIR$ LOOP COUNT AVG(4)
do k=1,N_states
tmp_row(k,puti) = tmp_row(k,puti) + hij * coefs(k)
enddo
endif
end if
! enddo
!
putj = p2
! do puti=1,mo_num !HOT
if(.not. banned(putj,puti,bant)) then
hij = hij_cache(puti,1)
if (hij /= (0.d0,0.d0)) then
hij = hij * get_phase_bi(phasemask, ma, mi, hfix, p1, puti, pfix, N_int)
do k=1,N_states
tmp_row2(k,puti) = tmp_row2(k,puti) + hij * coefs(k)
enddo
endif
end if
end do
if(mi == 1) then
mat(:,:,p1) = mat(:,:,p1) + tmp_row(:,:)
mat(:,:,p2) = mat(:,:,p2) + tmp_row2(:,:)
else
do l=1,mo_num
!DIR$ LOOP COUNT AVG(4)
do k=1,N_states
mat(k,p1,l) = mat(k,p1,l) + tmp_row(k,l)
mat(k,p2,l) = mat(k,p2,l) + tmp_row2(k,l)
enddo
enddo
end if
else ! sp /= 3
if(p(0,ma) == 3) then
do i=1,3
hfix = h(1,ma)
puti = p(i, ma)
p1 = p(turn3(1,i), ma)
p2 = p(turn3(2,i), ma)
call get_mo_two_e_integrals_complex(hfix,p1,p2,mo_num,hij_cache(1,1),mo_integrals_map)
call get_mo_two_e_integrals_complex(hfix,p2,p1,mo_num,hij_cache(1,2),mo_integrals_map)
tmp_row = (0.d0,0.d0)
do putj=1,hfix-1
if(banned(putj,puti,1)) cycle
if(lbanned(putj,ma)) cycle
hij = hij_cache(putj,1) - hij_cache(putj,2)
if (hij /= (0.d0,0.d0)) then
hij = hij * get_phase_bi(phasemask, ma, ma, putj, p1, hfix, p2, N_int)
tmp_row(:,putj) = tmp_row(:,putj) + hij * coefs(:)
endif
end do
do putj=hfix+1,mo_num
if(banned(putj,puti,1)) cycle
if(lbanned(putj,ma)) cycle
hij = hij_cache(putj,2) - hij_cache(putj,1)
if (hij /= (0.d0,0.d0)) then
hij = hij * get_phase_bi(phasemask, ma, ma, hfix, p1, putj, p2, N_int)
tmp_row(:,putj) = tmp_row(:,putj) + hij * coefs(:)
endif
end do
mat(:, :puti-1, puti) = mat(:, :puti-1, puti) + tmp_row(:,:puti-1)
do l=puti,mo_num
!DIR$ LOOP COUNT AVG(4)
do k=1,N_states
mat(k, puti, l) = mat(k, puti,l) + tmp_row(k,l)
enddo
enddo
end do
else
hfix = h(1,mi)
pfix = p(1,mi)
p1 = p(1,ma)
p2 = p(2,ma)
tmp_row = (0.d0,0.d0)
tmp_row2 = (0.d0,0.d0)
call get_mo_two_e_integrals_complex(hfix,p1,pfix,mo_num,hij_cache(1,1),mo_integrals_map)
call get_mo_two_e_integrals_complex(hfix,p2,pfix,mo_num,hij_cache(1,2),mo_integrals_map)
putj = p2
do puti=1,mo_num
if(lbanned(puti,ma)) cycle
putj = p2
if(.not. banned(puti,putj,1)) then
hij = hij_cache(puti,1)
if (hij /= (0.d0,0.d0)) then
hij = hij * get_phase_bi(phasemask, mi, ma, hfix, pfix, puti, p1, N_int)
!DIR$ LOOP COUNT AVG(4)
do k=1,N_states
tmp_row(k,puti) = tmp_row(k,puti) + hij * coefs(k)
enddo
endif
end if
putj = p1
if(.not. banned(puti,putj,1)) then
hij = hij_cache(puti,2)
if (hij /= (0.d0,0.d0)) then
hij = hij * get_phase_bi(phasemask, mi, ma, hfix, pfix, puti, p2, N_int)
do k=1,N_states
tmp_row2(k,puti) = tmp_row2(k,puti) + hij * coefs(k)
enddo
endif
end if
end do
mat(:,:p2-1,p2) = mat(:,:p2-1,p2) + tmp_row(:,:p2-1)
do l=p2,mo_num
!DIR$ LOOP COUNT AVG(4)
do k=1,N_states
mat(k,p2,l) = mat(k,p2,l) + tmp_row(k,l)
enddo
enddo
mat(:,:p1-1,p1) = mat(:,:p1-1,p1) + tmp_row2(:,:p1-1)
do l=p1,mo_num
!DIR$ LOOP COUNT AVG(4)
do k=1,N_states
mat(k,p1,l) = mat(k,p1,l) + tmp_row2(k,l)
enddo
enddo
end if
end if
deallocate(lbanned,hij_cache)
!! MONO
if(sp == 3) then
s1 = 1
s2 = 2
else
s1 = sp
s2 = sp
end if
do i1=1,p(0,s1)
ib = 1
if(s1 == s2) ib = i1+1
do i2=ib,p(0,s2)
p1 = p(i1,s1)
p2 = p(i2,s2)
if(bannedOrb(p1, s1) .or. bannedOrb(p2, s2) .or. banned(p1, p2, 1)) cycle
call apply_particles(mask, s1, p1, s2, p2, det, ok, N_int)
call i_h_j_complex(gen, det, N_int, hij)
!DIR$ LOOP COUNT AVG(4)
do k=1,N_states
mat(k, p1, p2) = mat(k, p1, p2) + coefs(k) * hij
enddo
end do
end do
end
subroutine get_d0_complex(gen, phasemask, bannedOrb, banned, mat, mask, h, p, sp, coefs)
!todo: check all indices for complex; check coef conjg for complex
use bitmasks
implicit none
integer(bit_kind), intent(in) :: gen(N_int, 2), mask(N_int, 2)
integer(bit_kind), intent(in) :: phasemask(N_int,2)
logical, intent(in) :: bannedOrb(mo_num, 2), banned(mo_num, mo_num,2)
integer(bit_kind) :: det(N_int, 2)
complex*16, intent(in) :: coefs(N_states)
complex*16, intent(inout) :: mat(N_states, mo_num, mo_num)
integer, intent(in) :: h(0:2,2), p(0:4,2), sp
integer :: i, j, k, s, h1, h2, p1, p2, puti, putj
double precision :: phase
complex*16 :: hij
double precision, external :: get_phase_bi
double precision, external :: mo_two_e_integral_complex
logical :: ok
integer, parameter :: bant=1
complex*16, allocatable :: hij_cache1(:), hij_cache2(:)
allocate (hij_cache1(mo_num),hij_cache2(mo_num))
if(sp == 3) then ! AB
h1 = p(1,1)
h2 = p(1,2)
do p1=1, mo_num
if(bannedOrb(p1, 1)) cycle
call get_mo_two_e_integrals_complex(p1,h2,h1,mo_num,hij_cache1,mo_integrals_map)
do p2=1, mo_num
if(bannedOrb(p2,2)) cycle
if(banned(p1, p2, bant)) cycle ! rentable?
if(p1 == h1 .or. p2 == h2) then
call apply_particles(mask, 1,p1,2,p2, det, ok, N_int)
call i_h_j_complex(gen, det, N_int, hij)
else
phase = get_phase_bi(phasemask, 1, 2, h1, p1, h2, p2, N_int)
hij = hij_cache1(p2) * phase
end if
if (hij == 0.d0) cycle
!DIR$ LOOP COUNT AVG(4)
do k=1,N_states
mat(k, p1, p2) = mat(k, p1, p2) + coefs(k) * hij ! HOTSPOT
enddo
end do
end do
else ! AA BB
p1 = p(1,sp)
p2 = p(2,sp)
do puti=1, mo_num
if(bannedOrb(puti, sp)) cycle
call get_mo_two_e_integrals_complex(puti,p2,p1,mo_num,hij_cache1,mo_integrals_map)
call get_mo_two_e_integrals_complex(puti,p1,p2,mo_num,hij_cache2,mo_integrals_map)
do putj=puti+1, mo_num
if(bannedOrb(putj, sp)) cycle
if(banned(puti, putj, bant)) cycle ! rentable?
if(puti == p1 .or. putj == p2 .or. puti == p2 .or. putj == p1) then
call apply_particles(mask, sp,puti,sp,putj, det, ok, N_int)
call i_h_j_complex(gen, det, N_int, hij)
if (hij == 0.d0) cycle
else
hij = (mo_two_e_integral_complex(p1, p2, puti, putj) - mo_two_e_integral_complex(p2, p1, puti, putj))
if (hij == 0.d0) cycle
hij = hij * get_phase_bi(phasemask, sp, sp, puti, p1 , putj, p2, N_int)
end if
!DIR$ LOOP COUNT AVG(4)
do k=1,N_states
mat(k, puti, putj) = mat(k, puti, putj) + coefs(k) * hij
enddo
end do
end do
end if
deallocate(hij_cache1,hij_cache2)
end

View File

@ -267,6 +267,7 @@ subroutine run_slave_main
nproc_target = nthreads_pt2 nproc_target = nthreads_pt2
ii = min(N_det, (elec_alpha_num*(mo_num-elec_alpha_num))**2) ii = min(N_det, (elec_alpha_num*(mo_num-elec_alpha_num))**2)
!todo: change memory estimate for complex
do do
mem = rss + & ! mem = rss + & !
nproc_target * 8.d0 * & ! bytes nproc_target * 8.d0 * & ! bytes

View File

@ -92,13 +92,13 @@ subroutine run_stochastic_cipsi
pt2 = 0.d0 pt2 = 0.d0
variance = 0.d0 variance = 0.d0
norm = 0.d0 norm = 0.d0
if (is_complex) then ! if (is_complex) then
call zmq_pt2_complex(psi_energy_with_nucl_rep,pt2,relative_error,error, variance, & ! call zmq_pt2_complex(psi_energy_with_nucl_rep,pt2,relative_error,error, variance, &
norm, to_select) ! Stochastic PT2 and selection ! norm, to_select) ! Stochastic PT2 and selection
else ! else
call zmq_pt2(psi_energy_with_nucl_rep,pt2,relative_error,error, variance, & call zmq_pt2(psi_energy_with_nucl_rep,pt2,relative_error,error, variance, &
norm, to_select) ! Stochastic PT2 and selection norm, to_select) ! Stochastic PT2 and selection
endif ! endif
do k=1,N_states do k=1,N_states
rpt2(k) = pt2(k)/(1.d0 + norm(k)) rpt2(k) = pt2(k)/(1.d0 + norm(k))
@ -155,13 +155,13 @@ subroutine run_stochastic_cipsi
pt2(:) = 0.d0 pt2(:) = 0.d0
variance(:) = 0.d0 variance(:) = 0.d0
norm(:) = 0.d0 norm(:) = 0.d0
if (is_complex) then ! if (is_complex) then
call zmq_pt2_complex(psi_energy_with_nucl_rep, pt2,relative_error,error,variance, & ! call zmq_pt2_complex(psi_energy_with_nucl_rep, pt2,relative_error,error,variance, &
norm,0) ! Stochastic PT2 ! norm,0) ! Stochastic PT2
else ! else
call ZMQ_pt2(psi_energy_with_nucl_rep, pt2,relative_error,error,variance, & call ZMQ_pt2(psi_energy_with_nucl_rep, pt2,relative_error,error,variance, &
norm,0) ! Stochastic PT2 norm,0) ! Stochastic PT2
endif ! endif
do k=1,N_states do k=1,N_states
rpt2(k) = pt2(k)/(1.d0 + norm(k)) rpt2(k) = pt2(k)/(1.d0 + norm(k))

View File

@ -7,6 +7,9 @@ current:
splash_pq (separate real/complex) splash_pq (separate real/complex)
get_d{0,1,2} (separate real/complex) get_d{0,1,2} (separate real/complex)
fill_buffer_double (separate real/complex) fill_buffer_double (separate real/complex)
started splash_pq, get_d{0,1,2}, fill_buffer_double for complex
need to check hole particle index ordering (also in select_singles_and_doubles)
need to check for coef dconjg
fci fci
run_{,stochastic_}cipsi run_{,stochastic_}cipsi