9
1
mirror of https://github.com/QuantumPackage/qp2.git synced 2025-01-08 19:32:58 +01:00

mat to vec index

This commit is contained in:
Yann Damour 2022-11-08 15:34:10 +01:00
parent ebd0cf1d9a
commit 0f6572bde1
2 changed files with 62 additions and 5 deletions

View File

@ -174,9 +174,6 @@ BEGIN_PROVIDER [integer, n_core_inact_act_orb ]
n_core_inact_act_orb = (n_core_orb + n_inact_orb + n_act_orb) n_core_inact_act_orb = (n_core_orb + n_inact_orb + n_act_orb)
END_PROVIDER END_PROVIDER
BEGIN_PROVIDER [ integer(bit_kind), core_bitmask , (N_int,2) ] BEGIN_PROVIDER [ integer(bit_kind), core_bitmask , (N_int,2) ]
implicit none implicit none
BEGIN_DOC BEGIN_DOC
@ -444,4 +441,3 @@ BEGIN_PROVIDER [integer, list_all_but_del_orb, (n_all_but_del_orb)]
enddo enddo
END_PROVIDER END_PROVIDER

View File

@ -0,0 +1,61 @@
! Matrix to vector index
! *Compute the index i of a vector element from the indexes p,q of a
! matrix element*
! Lower diagonal matrix (p,q), p > q -> vector (i)
! If a matrix is antisymmetric it can be reshaped as a vector. And the
! vector can be reshaped as an antisymmetric matrix
! \begin{align*}
! \begin{pmatrix}
! 0 & -1 & -2 & -4 \\
! 1 & 0 & -3 & -5 \\
! 2 & 3 & 0 & -6 \\
! 4 & 5 & 6 & 0
! \end{pmatrix}
! \Leftrightarrow
! \begin{pmatrix}
! 1 & 2 & 3 & 4 & 5 & 6
! \end{pmatrix}
! \end{align*}
! !!! Here the algorithm only work for the lower diagonal !!!
! Input:
! | p,q | integer | indexes of a matrix element in the lower diagonal |
! | | | p > q, q -> column |
! | | | p -> row, |
! | | | q -> column |
! Input:
! | i | integer | corresponding index in the vector |
subroutine mat_to_vec_index(p,q,i)
include 'pi.h'
implicit none
! Variables
! in
integer, intent(in) :: p,q
! out
integer, intent(out) :: i
! internal
integer :: a,b
double precision :: da
! Calculation
a = p-1
b = a*(a-1)/2
i = q+b
end subroutine