mirror of
https://github.com/QuantumPackage/qp2.git
synced 2024-12-22 19:43:32 +01:00
dressing multi states
This commit is contained in:
parent
d919d6ce7d
commit
089b9eb18a
@ -1 +0,0 @@
|
||||
davidson_undressed
|
@ -34,7 +34,7 @@ subroutine davidson_general_ext_rout_nonsym_b1space(u_in, H_jj, energies, sze, N
|
||||
|
||||
character*(16384) :: write_buffer
|
||||
integer :: iter, N_st_diag
|
||||
integer :: i, j, k, m
|
||||
integer :: i, j, k, l, m
|
||||
integer :: iter2, itertot
|
||||
logical :: disk_based
|
||||
integer :: shift, shift2, itermax
|
||||
@ -49,8 +49,8 @@ subroutine davidson_general_ext_rout_nonsym_b1space(u_in, H_jj, energies, sze, N
|
||||
double precision, allocatable :: y(:,:), h(:,:), lambda(:)
|
||||
double precision, allocatable :: residual_norm(:)
|
||||
|
||||
integer :: i_omax
|
||||
double precision :: lambda_tmp
|
||||
integer, allocatable :: i_omax(:)
|
||||
double precision, allocatable :: U_tmp(:), overlap(:)
|
||||
|
||||
double precision, allocatable :: W(:,:)
|
||||
@ -171,7 +171,8 @@ subroutine davidson_general_ext_rout_nonsym_b1space(u_in, H_jj, energies, sze, N
|
||||
h(N_st_diag*itermax,N_st_diag*itermax), &
|
||||
y(N_st_diag*itermax,N_st_diag*itermax), &
|
||||
lambda(N_st_diag*itermax), &
|
||||
residual_norm(N_st_diag) &
|
||||
residual_norm(N_st_diag), &
|
||||
i_omax(N_st) &
|
||||
)
|
||||
|
||||
U = 0.d0
|
||||
@ -303,31 +304,43 @@ subroutine davidson_general_ext_rout_nonsym_b1space(u_in, H_jj, energies, sze, N
|
||||
! end test ------------------------------------------------------------------------
|
||||
!
|
||||
|
||||
|
||||
! TODO
|
||||
! state_following is more efficient
|
||||
do l = 1, N_st
|
||||
|
||||
allocate( overlap(N_st_diag) )
|
||||
allocate( overlap(N_st_diag) )
|
||||
|
||||
do k = 1, N_st_diag
|
||||
overlap(k) = 0.d0
|
||||
do i = 1, sze
|
||||
overlap(k) = overlap(k) + U(i,shift2+k) * u_in(i,1)
|
||||
do k = 1, N_st_diag
|
||||
overlap(k) = 0.d0
|
||||
do i = 1, sze
|
||||
overlap(k) = overlap(k) + U(i,shift2+k) * u_in(i,l)
|
||||
enddo
|
||||
overlap(k) = dabs(overlap(k))
|
||||
!print *, ' overlap =', k, overlap(k)
|
||||
enddo
|
||||
overlap(k) = dabs(overlap(k))
|
||||
!print *, ' overlap =', k, overlap(k)
|
||||
enddo
|
||||
|
||||
lambda_tmp = 0.d0
|
||||
do k = 1, N_st_diag
|
||||
if(overlap(k) .gt. lambda_tmp) then
|
||||
i_omax = k
|
||||
lambda_tmp = overlap(k)
|
||||
lambda_tmp = 0.d0
|
||||
do k = 1, N_st_diag
|
||||
if(overlap(k) .gt. lambda_tmp) then
|
||||
i_omax(l) = k
|
||||
lambda_tmp = overlap(k)
|
||||
endif
|
||||
enddo
|
||||
|
||||
deallocate(overlap)
|
||||
|
||||
if(lambda_tmp .lt. 0.7d0) then
|
||||
print *, ' very small overlap ...', l, i_omax(l)
|
||||
print *, ' max overlap = ', lambda_tmp
|
||||
stop
|
||||
endif
|
||||
|
||||
if(i_omax(l) .ne. l) then
|
||||
print *, ' !!! WARNONG !!!'
|
||||
print *, ' index of state', l, i_omax(l)
|
||||
endif
|
||||
enddo
|
||||
deallocate(overlap)
|
||||
if( lambda_tmp .lt. 0.8d0) then
|
||||
print *, ' very small overlap..'
|
||||
print*, ' max overlap = ', lambda_tmp, i_omax
|
||||
stop
|
||||
endif
|
||||
|
||||
! lambda_tmp = lambda(1)
|
||||
! lambda(1) = lambda(i_omax)
|
||||
@ -375,16 +388,17 @@ subroutine davidson_general_ext_rout_nonsym_b1space(u_in, H_jj, energies, sze, N
|
||||
do i = 1, sze
|
||||
U(i,shift2+k) = (lambda(k) * U(i,shift2+k) - W(i,shift2+k)) / max(H_jj(i)-lambda(k), 1.d-2)
|
||||
enddo
|
||||
!if(k <= N_st) then
|
||||
! residual_norm(k) = u_dot_u(U(1,shift2+k), sze)
|
||||
! to_print(1,k) = lambda(k)
|
||||
! to_print(2,k) = residual_norm(k)
|
||||
!endif
|
||||
if(k <= N_st) then
|
||||
l = k
|
||||
residual_norm(k) = u_dot_u(U(1,shift2+l), sze)
|
||||
to_print(1,k) = lambda(l)
|
||||
to_print(2,k) = residual_norm(l)
|
||||
endif
|
||||
enddo
|
||||
!$OMP END PARALLEL DO
|
||||
residual_norm(1) = u_dot_u(U(1,shift2+i_omax), sze)
|
||||
to_print(1,1) = lambda(i_omax)
|
||||
to_print(2,1) = residual_norm(1)
|
||||
!residual_norm(1) = u_dot_u(U(1,shift2+1), sze)
|
||||
!to_print(1,1) = lambda(1)
|
||||
!to_print(2,1) = residual_norm(1)
|
||||
|
||||
|
||||
if( (itertot > 1) .and. (iter == 1) ) then
|
||||
@ -469,7 +483,7 @@ subroutine davidson_general_ext_rout_nonsym_b1space(u_in, H_jj, energies, sze, N
|
||||
call write_time(6)
|
||||
|
||||
deallocate(W)
|
||||
deallocate(U, h, y, lambda, residual_norm)
|
||||
deallocate(U, h, y, lambda, residual_norm, i_omax)
|
||||
|
||||
FREE nthreads_davidson
|
||||
|
||||
@ -477,132 +491,3 @@ end subroutine davidson_general_ext_rout_nonsym_b1space
|
||||
|
||||
! ---
|
||||
|
||||
subroutine diag_nonsym_right(n, A, A_ldim, V, V_ldim, energy, E_ldim)
|
||||
|
||||
implicit none
|
||||
|
||||
integer, intent(in) :: n, A_ldim, V_ldim, E_ldim
|
||||
double precision, intent(in) :: A(A_ldim,n)
|
||||
double precision, intent(out) :: energy(E_ldim), V(V_ldim,n)
|
||||
|
||||
character*1 :: JOBVL, JOBVR, BALANC, SENSE
|
||||
integer :: i, j
|
||||
integer :: ILO, IHI, lda, ldvl, ldvr, LWORK, INFO
|
||||
double precision :: ABNRM
|
||||
integer, allocatable :: iorder(:), IWORK(:)
|
||||
double precision, allocatable :: WORK(:), SCALE_array(:), RCONDE(:), RCONDV(:)
|
||||
double precision, allocatable :: Atmp(:,:), WR(:), WI(:), VL(:,:), VR(:,:), Vtmp(:)
|
||||
double precision, allocatable :: energy_loc(:), V_loc(:,:)
|
||||
|
||||
allocate( Atmp(n,n), WR(n), WI(n), VL(1,1), VR(n,n) )
|
||||
do i = 1, n
|
||||
do j = 1, n
|
||||
Atmp(j,i) = A(j,i)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
JOBVL = "N" ! computes the left eigenvectors
|
||||
JOBVR = "V" ! computes the right eigenvectors
|
||||
BALANC = "B" ! Diagonal scaling and Permutation for optimization
|
||||
SENSE = "V" ! Determines which reciprocal condition numbers are computed
|
||||
lda = n
|
||||
ldvr = n
|
||||
ldvl = 1
|
||||
|
||||
allocate( WORK(1), SCALE_array(n), RCONDE(n), RCONDV(n), IWORK(2*n-2) )
|
||||
|
||||
LWORK = -1 ! to ask for the optimal size of WORK
|
||||
call dgeevx( BALANC, JOBVL, JOBVR, SENSE & ! CHARACTERS
|
||||
, n, Atmp, lda & ! MATRIX TO DIAGONALIZE
|
||||
, WR, WI & ! REAL AND IMAGINARY PART OF EIGENVALUES
|
||||
, VL, ldvl, VR, ldvr & ! LEFT AND RIGHT EIGENVECTORS
|
||||
, ILO, IHI, SCALE_array, ABNRM, RCONDE, RCONDV & ! OUTPUTS OF OPTIMIZATION
|
||||
, WORK, LWORK, IWORK, INFO )
|
||||
|
||||
if(INFO .ne. 0) then
|
||||
print*, 'dgeevx failed !!', INFO
|
||||
stop
|
||||
endif
|
||||
|
||||
LWORK = max(int(work(1)), 1) ! this is the optimal size of WORK
|
||||
deallocate(WORK)
|
||||
allocate(WORK(LWORK))
|
||||
call dgeevx( BALANC, JOBVL, JOBVR, SENSE &
|
||||
, n, Atmp, lda &
|
||||
, WR, WI &
|
||||
, VL, ldvl, VR, ldvr &
|
||||
, ILO, IHI, SCALE_array, ABNRM, RCONDE, RCONDV &
|
||||
, WORK, LWORK, IWORK, INFO )
|
||||
if(INFO .ne. 0) then
|
||||
print*, 'dgeevx failed !!', INFO
|
||||
stop
|
||||
endif
|
||||
|
||||
deallocate( WORK, SCALE_array, RCONDE, RCONDV, IWORK )
|
||||
deallocate( VL, Atmp )
|
||||
|
||||
|
||||
allocate( energy_loc(n), V_loc(n,n) )
|
||||
energy_loc = 0.d0
|
||||
V_loc = 0.d0
|
||||
|
||||
i = 1
|
||||
do while(i .le. n)
|
||||
|
||||
! print*, i, WR(i), WI(i)
|
||||
|
||||
if( dabs(WI(i)) .gt. 1e-7 ) then
|
||||
|
||||
print*, ' Found an imaginary component to eigenvalue'
|
||||
print*, ' Re(i) + Im(i)', i, WR(i), WI(i)
|
||||
|
||||
energy_loc(i) = WR(i)
|
||||
do j = 1, n
|
||||
V_loc(j,i) = WR(i) * VR(j,i) - WI(i) * VR(j,i+1)
|
||||
enddo
|
||||
energy_loc(i+1) = WI(i)
|
||||
do j = 1, n
|
||||
V_loc(j,i+1) = WR(i) * VR(j,i+1) + WI(i) * VR(j,i)
|
||||
enddo
|
||||
i = i + 2
|
||||
|
||||
else
|
||||
|
||||
energy_loc(i) = WR(i)
|
||||
do j = 1, n
|
||||
V_loc(j,i) = VR(j,i)
|
||||
enddo
|
||||
i = i + 1
|
||||
|
||||
endif
|
||||
|
||||
enddo
|
||||
|
||||
deallocate(WR, WI, VR)
|
||||
|
||||
|
||||
! ordering
|
||||
! do j = 1, n
|
||||
! write(444, '(100(1X, F16.10))') (V_loc(j,i), i=1,5)
|
||||
! enddo
|
||||
allocate( iorder(n) )
|
||||
do i = 1, n
|
||||
iorder(i) = i
|
||||
enddo
|
||||
call dsort(energy_loc, iorder, n)
|
||||
do i = 1, n
|
||||
energy(i) = energy_loc(i)
|
||||
do j = 1, n
|
||||
V(j,i) = V_loc(j,iorder(i))
|
||||
enddo
|
||||
enddo
|
||||
deallocate(iorder)
|
||||
! do j = 1, n
|
||||
! write(445, '(100(1X, F16.10))') (V_loc(j,i), i=1,5)
|
||||
! enddo
|
||||
deallocate(V_loc, energy_loc)
|
||||
|
||||
end subroutine diag_nonsym_right
|
||||
|
||||
! ---
|
||||
|
||||
|
@ -66,7 +66,7 @@ subroutine davidson_diag_hs2(dets_in,u_in,s2_out,dim_in,energies,sze,N_st,N_st_d
|
||||
double precision, allocatable :: H_jj(:)
|
||||
|
||||
double precision, external :: diag_H_mat_elem, diag_S_mat_elem
|
||||
integer :: i,k
|
||||
integer :: i,k,l
|
||||
ASSERT (N_st > 0)
|
||||
ASSERT (sze > 0)
|
||||
ASSERT (Nint > 0)
|
||||
@ -86,10 +86,15 @@ subroutine davidson_diag_hs2(dets_in,u_in,s2_out,dim_in,energies,sze,N_st,N_st_d
|
||||
!$OMP END PARALLEL
|
||||
|
||||
if (dressing_state > 0) then
|
||||
do k=1,N_st
|
||||
do i=1,sze
|
||||
H_jj(i) += u_in(i,k) * dressing_column_h(i,k)
|
||||
enddo
|
||||
do k = 1, N_st
|
||||
|
||||
! do i = 1, sze
|
||||
! H_jj(i) += u_in(i,k) * dressing_column_h(i,k)
|
||||
! enddo
|
||||
|
||||
l = dressed_column_idx(k)
|
||||
H_jj(l) += u_in(l,k) * dressing_column_h(l,k)
|
||||
|
||||
enddo
|
||||
endif
|
||||
|
||||
|
537
src/davidson/diagonalization_nonsym_h_dressed.irp.f
Normal file
537
src/davidson/diagonalization_nonsym_h_dressed.irp.f
Normal file
@ -0,0 +1,537 @@
|
||||
|
||||
! ---
|
||||
|
||||
subroutine davidson_diag_nonsym_h(dets_in, u_in, dim_in, energies, sze, N_st, N_st_diag, Nint, dressing_state, converged)
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
! non-sym Davidson diagonalization.
|
||||
!
|
||||
! dets_in : bitmasks corresponding to determinants
|
||||
!
|
||||
! u_in : guess coefficients on the various states. Overwritten on exit
|
||||
!
|
||||
! dim_in : leftmost dimension of u_in
|
||||
!
|
||||
! sze : Number of determinants
|
||||
!
|
||||
! N_st : Number of eigenstates
|
||||
!
|
||||
! Initial guess vectors are not necessarily orthonormal
|
||||
!
|
||||
END_DOC
|
||||
|
||||
use bitmasks
|
||||
|
||||
implicit none
|
||||
|
||||
integer, intent(in) :: dim_in, sze, N_st, N_st_diag, Nint
|
||||
integer, intent(in) :: dressing_state
|
||||
integer(bit_kind), intent(in) :: dets_in(Nint,2,sze)
|
||||
logical, intent(out) :: converged
|
||||
double precision, intent(out) :: energies(N_st_diag)
|
||||
double precision, intent(inout) :: u_in(dim_in,N_st_diag)
|
||||
|
||||
integer :: i, k, l
|
||||
double precision :: f
|
||||
double precision, allocatable :: H_jj(:)
|
||||
|
||||
double precision, external :: diag_H_mat_elem
|
||||
|
||||
ASSERT (N_st > 0)
|
||||
ASSERT (sze > 0)
|
||||
ASSERT (Nint > 0)
|
||||
ASSERT (Nint == N_int)
|
||||
PROVIDE mo_two_e_integrals_in_map
|
||||
|
||||
allocate(H_jj(sze))
|
||||
|
||||
H_jj(1) = diag_H_mat_elem(dets_in(1,1,1), Nint)
|
||||
!$OMP PARALLEL DEFAULT(NONE) &
|
||||
!$OMP SHARED(sze, H_jj, dets_in, Nint) &
|
||||
!$OMP PRIVATE(i)
|
||||
!$OMP DO SCHEDULE(static)
|
||||
do i = 2, sze
|
||||
H_jj(i) = diag_H_mat_elem(dets_in(1,1,i), Nint)
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
if(dressing_state > 0) then
|
||||
do k = 1, N_st
|
||||
do l = 1, N_st
|
||||
f = overlap_states_inv(k,l)
|
||||
do i = 1, N_det
|
||||
H_jj(i) += f * dressing_delta(i,k) * psi_coef(i,l)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
endif
|
||||
|
||||
call davidson_diag_nonsym_hjj(dets_in, u_in, H_jj, energies, dim_in, sze, N_st, N_st_diag, Nint, dressing_state, converged)
|
||||
|
||||
deallocate(H_jj)
|
||||
|
||||
end subroutine davidson_diag_nonsym_h
|
||||
|
||||
! ---
|
||||
|
||||
subroutine davidson_diag_nonsym_hjj(dets_in, u_in, H_jj, energies, dim_in, sze, N_st, N_st_diag_in, Nint, dressing_state, converged)
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
! non-sym Davidson diagonalization with specific diagonal elements of the H matrix
|
||||
!
|
||||
! H_jj : specific diagonal H matrix elements to diagonalize de Davidson
|
||||
!
|
||||
! dets_in : bitmasks corresponding to determinants
|
||||
!
|
||||
! u_in : guess coefficients on the various states. Overwritten on exit
|
||||
!
|
||||
! dim_in : leftmost dimension of u_in
|
||||
!
|
||||
! sze : Number of determinants
|
||||
!
|
||||
! N_st : Number of eigenstates
|
||||
!
|
||||
! N_st_diag_in : Number of states in which H is diagonalized. Assumed > sze
|
||||
!
|
||||
! Initial guess vectors are not necessarily orthonormal
|
||||
!
|
||||
END_DOC
|
||||
|
||||
include 'constants.include.F'
|
||||
|
||||
use bitmasks
|
||||
use mmap_module
|
||||
|
||||
implicit none
|
||||
|
||||
integer, intent(in) :: dim_in, sze, N_st, N_st_diag_in, Nint
|
||||
integer, intent(in) :: dressing_state
|
||||
integer(bit_kind), intent(in) :: dets_in(Nint,2,sze)
|
||||
double precision, intent(in) :: H_jj(sze)
|
||||
double precision, intent(out) :: energies(N_st_diag_in)
|
||||
logical, intent(inout) :: converged
|
||||
double precision, intent(inout) :: u_in(dim_in,N_st_diag_in)
|
||||
|
||||
logical :: disk_based
|
||||
character*(16384) :: write_buffer
|
||||
integer :: i, j, k, l, m
|
||||
integer :: iter, N_st_diag, itertot, shift, shift2, itermax, istate
|
||||
integer :: nproc_target
|
||||
integer :: order(N_st_diag_in)
|
||||
integer :: maxab
|
||||
double precision :: rss
|
||||
double precision :: cmax
|
||||
double precision :: to_print(2,N_st)
|
||||
double precision :: r1, r2
|
||||
double precision :: f
|
||||
double precision, allocatable :: y(:,:), h(:,:), lambda(:)
|
||||
double precision, allocatable :: s_tmp(:,:), u_tmp(:,:)
|
||||
double precision, allocatable :: residual_norm(:)
|
||||
double precision, allocatable :: U(:,:), overlap(:,:)
|
||||
double precision, pointer :: W(:,:)
|
||||
|
||||
double precision, external :: u_dot_u
|
||||
|
||||
|
||||
N_st_diag = N_st_diag_in
|
||||
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: U, W, y, h, lambda
|
||||
if(N_st_diag*3 > sze) then
|
||||
print *, 'error in Davidson :'
|
||||
print *, 'Increase n_det_max_full to ', N_st_diag*3
|
||||
stop -1
|
||||
endif
|
||||
|
||||
itermax = max(2, min(davidson_sze_max, sze/N_st_diag)) + 1
|
||||
itertot = 0
|
||||
|
||||
if(state_following) then
|
||||
allocate(overlap(N_st_diag*itermax, N_st_diag*itermax))
|
||||
else
|
||||
allocate(overlap(1,1)) ! avoid 'if' for deallocate
|
||||
endif
|
||||
overlap = 0.d0
|
||||
|
||||
PROVIDE nuclear_repulsion expected_s2 psi_bilinear_matrix_order psi_bilinear_matrix_order_reverse threshold_davidson_pt2 threshold_davidson_from_pt2
|
||||
PROVIDE threshold_nonsym_davidson
|
||||
|
||||
call write_time(6)
|
||||
write(6,'(A)') ''
|
||||
write(6,'(A)') 'Davidson Diagonalization'
|
||||
write(6,'(A)') '------------------------'
|
||||
write(6,'(A)') ''
|
||||
|
||||
! Find max number of cores to fit in memory
|
||||
! -----------------------------------------
|
||||
|
||||
nproc_target = nproc
|
||||
maxab = max(N_det_alpha_unique, N_det_beta_unique) + 1
|
||||
|
||||
m=1
|
||||
disk_based = .False.
|
||||
call resident_memory(rss)
|
||||
do
|
||||
r1 = 8.d0 * &! bytes
|
||||
( dble(sze)*(N_st_diag*itermax) &! U
|
||||
+ 1.0d0*dble(sze*m)*(N_st_diag*itermax) &! W
|
||||
+ 3.0d0*(N_st_diag*itermax)**2 &! h,y,s_tmp
|
||||
+ 1.d0*(N_st_diag*itermax) &! lambda
|
||||
+ 1.d0*(N_st_diag) &! residual_norm
|
||||
! In H_u_0_nstates_zmq
|
||||
+ 2.d0*(N_st_diag*N_det) &! u_t, v_t, on collector
|
||||
+ 2.d0*(N_st_diag*N_det) &! u_t, v_t, on slave
|
||||
+ 0.5d0*maxab &! idx0 in H_u_0_nstates_openmp_work_*
|
||||
+ nproc_target * &! In OMP section
|
||||
( 1.d0*(N_int*maxab) &! buffer
|
||||
+ 3.5d0*(maxab) ) &! singles_a, singles_b, doubles, idx
|
||||
) / 1024.d0**3
|
||||
|
||||
if(nproc_target == 0) then
|
||||
call check_mem(r1, irp_here)
|
||||
nproc_target = 1
|
||||
exit
|
||||
endif
|
||||
|
||||
if(r1+rss < qp_max_mem) then
|
||||
exit
|
||||
endif
|
||||
|
||||
if(itermax > 4) then
|
||||
itermax = itermax - 1
|
||||
else if(m==1 .and. disk_based_davidson) then
|
||||
m = 0
|
||||
disk_based = .True.
|
||||
itermax = 6
|
||||
else
|
||||
nproc_target = nproc_target - 1
|
||||
endif
|
||||
|
||||
enddo
|
||||
|
||||
nthreads_davidson = nproc_target
|
||||
TOUCH nthreads_davidson
|
||||
|
||||
call write_int(6, N_st, 'Number of states')
|
||||
call write_int(6, N_st_diag, 'Number of states in diagonalization')
|
||||
call write_int(6, sze, 'Number of determinants')
|
||||
call write_int(6, nproc_target, 'Number of threads for diagonalization')
|
||||
call write_double(6, r1, 'Memory(Gb)')
|
||||
if(disk_based) then
|
||||
print *, 'Using swap space to reduce RAM'
|
||||
endif
|
||||
|
||||
!---------------
|
||||
|
||||
write(6,'(A)') ''
|
||||
write_buffer = '====='
|
||||
do i = 1, N_st
|
||||
write_buffer = trim(write_buffer)//' ================ ==========='
|
||||
enddo
|
||||
write(6, '(A)') write_buffer(1:6+41*N_st)
|
||||
write_buffer = 'Iter'
|
||||
do i = 1, N_st
|
||||
write_buffer = trim(write_buffer)//' Energy Residual '
|
||||
enddo
|
||||
write(6,'(A)') write_buffer(1:6+41*N_st)
|
||||
write_buffer = '====='
|
||||
do i = 1, N_st
|
||||
write_buffer = trim(write_buffer)//' ================ ==========='
|
||||
enddo
|
||||
write(6,'(A)') write_buffer(1:6+41*N_st)
|
||||
|
||||
|
||||
if(disk_based) then
|
||||
! Create memory-mapped files for W and S
|
||||
type(c_ptr) :: ptr_w, ptr_s
|
||||
integer :: fd_s, fd_w
|
||||
call mmap(trim(ezfio_work_dir)//'davidson_w', (/int(sze,8),int(N_st_diag*itermax,8)/),&
|
||||
8, fd_w, .False., ptr_w)
|
||||
call c_f_pointer(ptr_w, w, (/sze,N_st_diag*itermax/))
|
||||
else
|
||||
allocate(W(sze,N_st_diag*itermax))
|
||||
endif
|
||||
|
||||
allocate( &
|
||||
! Large
|
||||
U(sze,N_st_diag*itermax), &
|
||||
! Small
|
||||
h(N_st_diag*itermax,N_st_diag*itermax), &
|
||||
y(N_st_diag*itermax,N_st_diag*itermax), &
|
||||
s_tmp(N_st_diag*itermax,N_st_diag*itermax), &
|
||||
residual_norm(N_st_diag), &
|
||||
lambda(N_st_diag*itermax), &
|
||||
u_tmp(N_st,N_st_diag))
|
||||
|
||||
h = 0.d0
|
||||
U = 0.d0
|
||||
y = 0.d0
|
||||
s_tmp = 0.d0
|
||||
|
||||
|
||||
ASSERT (N_st > 0)
|
||||
ASSERT (N_st_diag >= N_st)
|
||||
ASSERT (sze > 0)
|
||||
ASSERT (Nint > 0)
|
||||
ASSERT (Nint == N_int)
|
||||
|
||||
! Davidson iterations
|
||||
! ===================
|
||||
|
||||
converged = .False.
|
||||
|
||||
do k = N_st+1, N_st_diag
|
||||
do i = 1, sze
|
||||
call random_number(r1)
|
||||
call random_number(r2)
|
||||
r1 = dsqrt(-2.d0*dlog(r1))
|
||||
r2 = dtwo_pi*r2
|
||||
u_in(i,k) = r1*dcos(r2) * u_in(i,k-N_st)
|
||||
enddo
|
||||
u_in(k,k) = u_in(k,k) + 10.d0
|
||||
enddo
|
||||
do k = 1, N_st_diag
|
||||
call normalize(u_in(1,k), sze)
|
||||
enddo
|
||||
|
||||
do k = 1, N_st_diag
|
||||
do i = 1, sze
|
||||
U(i,k) = u_in(i,k)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
|
||||
do while (.not.converged)
|
||||
itertot = itertot + 1
|
||||
if(itertot == 8) then
|
||||
exit
|
||||
endif
|
||||
|
||||
do iter = 1, itermax-1
|
||||
|
||||
shift = N_st_diag*(iter-1)
|
||||
shift2 = N_st_diag*iter
|
||||
|
||||
if( (iter > 1) .or. (itertot == 1) ) then
|
||||
|
||||
! Gram-Schmidt to orthogonalize all new guess with the previous vectors
|
||||
call ortho_qr(U, size(U, 1), sze, shift2)
|
||||
call ortho_qr(U, size(U, 1), sze, shift2)
|
||||
|
||||
! Compute |W_k> = \sum_i |i><i|H|u_k>
|
||||
! -----------------------------------
|
||||
|
||||
if( (sze > 100000) .and. distributed_davidson ) then
|
||||
call H_u_0_nstates_zmq (W(1,shift+1), U(1,shift+1), N_st_diag, sze)
|
||||
else
|
||||
call H_u_0_nstates_openmp(W(1,shift+1), U(1,shift+1), N_st_diag, sze)
|
||||
endif
|
||||
else
|
||||
! Already computed in update below
|
||||
continue
|
||||
endif
|
||||
|
||||
if(dressing_state > 0) then
|
||||
|
||||
call dgemm( 'T', 'N', N_st, N_st_diag, sze, 1.d0 &
|
||||
, psi_coef, size(psi_coef, 1), U(1, shift+1), size(U, 1) &
|
||||
, 0.d0, u_tmp, size(u_tmp, 1))
|
||||
|
||||
do istate = 1, N_st_diag
|
||||
do k = 1, N_st
|
||||
do l = 1, N_st
|
||||
f = overlap_states_inv(k,l)
|
||||
do i = 1, sze
|
||||
W(i,shift+istate) += f * dressing_delta(i,k) * u_tmp(l,istate)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
endif
|
||||
|
||||
! Compute h_kl = <u_k | W_l> = <u_k| H |u_l>
|
||||
! -------------------------------------------
|
||||
|
||||
call dgemm( 'T', 'N', shift2, shift2, sze, 1.d0 &
|
||||
, U, size(U, 1), W, size(W, 1) &
|
||||
, 0.d0, h, size(h, 1))
|
||||
|
||||
! Diagonalize h
|
||||
! ---------------
|
||||
call diag_nonsym_right(shift2, h(1,1), size(h, 1), y(1,1), size(y, 1), lambda(1), size(lambda, 1))
|
||||
|
||||
|
||||
if (state_following) then
|
||||
|
||||
overlap = -1.d0
|
||||
do k = 1, shift2
|
||||
do i = 1, shift2
|
||||
overlap(k,i) = dabs(y(k,i))
|
||||
enddo
|
||||
enddo
|
||||
do k = 1, N_st
|
||||
cmax = -1.d0
|
||||
do i = 1, N_st
|
||||
if(overlap(i,k) > cmax) then
|
||||
cmax = overlap(i,k)
|
||||
order(k) = i
|
||||
endif
|
||||
enddo
|
||||
do i = 1, N_st_diag
|
||||
overlap(order(k),i) = -1.d0
|
||||
enddo
|
||||
enddo
|
||||
overlap = y
|
||||
do k = 1, N_st
|
||||
l = order(k)
|
||||
if (k /= l) then
|
||||
y(1:shift2,k) = overlap(1:shift2,l)
|
||||
endif
|
||||
enddo
|
||||
do k = 1, N_st
|
||||
overlap(k,1) = lambda(k)
|
||||
enddo
|
||||
|
||||
endif
|
||||
|
||||
! Express eigenvectors of h in the determinant basis
|
||||
! --------------------------------------------------
|
||||
|
||||
call dgemm( 'N', 'N', sze, N_st_diag, shift2, 1.d0 &
|
||||
, U, size(U, 1), y, size(y, 1) &
|
||||
, 0.d0, U(1,shift2+1), size(U, 1))
|
||||
|
||||
do k = 1, N_st_diag
|
||||
call normalize(U(1,shift2+k), sze)
|
||||
enddo
|
||||
|
||||
call dgemm( 'N', 'N', sze, N_st_diag, shift2, 1.d0 &
|
||||
, W, size(W, 1), y, size(y, 1) &
|
||||
, 0.d0, W(1,shift2+1), size(W,1))
|
||||
|
||||
! Compute residual vector and davidson step
|
||||
! -----------------------------------------
|
||||
|
||||
!$OMP PARALLEL DO DEFAULT(SHARED) PRIVATE(i,k)
|
||||
do k = 1, N_st_diag
|
||||
do i = 1, sze
|
||||
U(i,shift2+k) = (lambda(k) * U(i,shift2+k) - W(i,shift2+k) ) / max(H_jj(i)-lambda(k), 1.d-2)
|
||||
enddo
|
||||
|
||||
if(k <= N_st) then
|
||||
residual_norm(k) = u_dot_u(U(1,shift2+k), sze)
|
||||
to_print(1,k) = lambda(k) + nuclear_repulsion
|
||||
to_print(2,k) = residual_norm(k)
|
||||
endif
|
||||
enddo
|
||||
!$OMP END PARALLEL DO
|
||||
|
||||
if ((itertot>1).and.(iter == 1)) then
|
||||
!don't print
|
||||
continue
|
||||
else
|
||||
write(*, '(1X, I3, 1X, 100(1X, F16.10, 1X, E11.3))') iter-1, to_print(1:2,1:N_st)
|
||||
endif
|
||||
|
||||
! Check convergence
|
||||
if(iter > 1) then
|
||||
if(threshold_davidson_from_pt2) then
|
||||
converged = dabs(maxval(residual_norm(1:N_st))) < threshold_davidson_pt2
|
||||
else
|
||||
converged = dabs(maxval(residual_norm(1:N_st))) < threshold_nonsym_davidson
|
||||
endif
|
||||
endif
|
||||
|
||||
do k = 1, N_st
|
||||
if(residual_norm(k) > 1.d8) then
|
||||
print *, 'Davidson failed'
|
||||
stop -1
|
||||
endif
|
||||
enddo
|
||||
if(converged) then
|
||||
exit
|
||||
endif
|
||||
|
||||
logical, external :: qp_stop
|
||||
if(qp_stop()) then
|
||||
converged = .True.
|
||||
exit
|
||||
endif
|
||||
|
||||
|
||||
enddo
|
||||
|
||||
! Re-contract U and update W
|
||||
! --------------------------------
|
||||
|
||||
call dgemm( 'N', 'N', sze, N_st_diag, shift2, 1.d0 &
|
||||
, W, size(W, 1), y, size(y, 1) &
|
||||
, 0.d0, u_in, size(u_in, 1))
|
||||
do k = 1, N_st_diag
|
||||
do i = 1, sze
|
||||
W(i,k) = u_in(i,k)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
call dgemm( 'N', 'N', sze, N_st_diag, shift2, 1.d0 &
|
||||
, U, size(U, 1), y, size(y, 1), 0.d0 &
|
||||
, u_in, size(u_in, 1))
|
||||
|
||||
do k = 1, N_st_diag
|
||||
do i = 1, sze
|
||||
U(i,k) = u_in(i,k)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
enddo
|
||||
|
||||
|
||||
call nullify_small_elements(sze, N_st_diag, U, size(U, 1), threshold_davidson_pt2)
|
||||
do k = 1, N_st_diag
|
||||
do i = 1, sze
|
||||
u_in(i,k) = U(i,k)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
do k = 1, N_st_diag
|
||||
energies(k) = lambda(k)
|
||||
enddo
|
||||
write_buffer = '======'
|
||||
do i = 1, N_st
|
||||
write_buffer = trim(write_buffer)//' ================ ==========='
|
||||
enddo
|
||||
write(6,'(A)') trim(write_buffer)
|
||||
write(6,'(A)') ''
|
||||
call write_time(6)
|
||||
|
||||
if(disk_based) then
|
||||
! Remove temp files
|
||||
integer, external :: getUnitAndOpen
|
||||
call munmap( (/int(sze,8),int(N_st_diag*itermax,8)/), 8, fd_w, ptr_w )
|
||||
fd_w = getUnitAndOpen(trim(ezfio_work_dir)//'davidson_w','r')
|
||||
close(fd_w,status='delete')
|
||||
else
|
||||
deallocate(W)
|
||||
endif
|
||||
|
||||
deallocate ( &
|
||||
residual_norm, &
|
||||
U, overlap, &
|
||||
h, y, s_tmp, &
|
||||
lambda, &
|
||||
u_tmp &
|
||||
)
|
||||
FREE nthreads_davidson
|
||||
|
||||
end subroutine davidson_diag_nonsym_hjj
|
||||
|
||||
! ---
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
40
src/davidson/overlap_states.irp.f
Normal file
40
src/davidson/overlap_states.irp.f
Normal file
@ -0,0 +1,40 @@
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [ double precision, overlap_states, (N_states,N_states) ]
|
||||
&BEGIN_PROVIDER [ double precision, overlap_states_inv, (N_states,N_states) ]
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
! S_kl = ck.T x cl
|
||||
! = psi_coef(:,k).T x psi_coef(:,l)
|
||||
!
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
integer :: i
|
||||
double precision :: o_tmp
|
||||
|
||||
if(N_states == 1) then
|
||||
|
||||
o_tmp = 0.d0
|
||||
do i = 1, N_det
|
||||
o_tmp = o_tmp + psi_coef(i,1) * psi_coef(i,1)
|
||||
enddo
|
||||
overlap_states (1,1) = o_tmp
|
||||
overlap_states_inv(1,1) = 1.d0 / o_tmp
|
||||
|
||||
else
|
||||
|
||||
call dgemm( 'T', 'N', N_states, N_states, N_det, 1.d0 &
|
||||
, psi_coef, size(psi_coef, 1), psi_coef, size(psi_coef, 1) &
|
||||
, 0.d0, overlap_states, size(overlap_states, 1) )
|
||||
|
||||
call get_inverse(overlap_states, N_states, N_states, overlap_states_inv, N_states)
|
||||
|
||||
endif
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
186
src/davidson_dressed/nonsym_diagonalize_ci.irp.f
Normal file
186
src/davidson_dressed/nonsym_diagonalize_ci.irp.f
Normal file
@ -0,0 +1,186 @@
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [ double precision, CI_energy_nonsym_dressed, (N_states_diag) ]
|
||||
|
||||
BEGIN_DOC
|
||||
! N_states lowest eigenvalues of the CI matrix
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
integer :: j
|
||||
character*(8) :: st
|
||||
|
||||
call write_time(6)
|
||||
do j = 1, min(N_det, N_states_diag)
|
||||
CI_energy_nonsym_dressed(j) = CI_electronic_energy_nonsym_dressed(j) + nuclear_repulsion
|
||||
enddo
|
||||
|
||||
do j = 1, min(N_det, N_states)
|
||||
write(st, '(I4)') j
|
||||
call write_double(6, CI_energy_nonsym_dressed(j), 'Energy of state '//trim(st))
|
||||
enddo
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [ double precision, CI_electronic_energy_nonsym_dressed, (N_states_diag) ]
|
||||
&BEGIN_PROVIDER [ double precision, CI_eigenvectors_nonsym_dressed, (N_det,N_states_diag) ]
|
||||
|
||||
BEGIN_DOC
|
||||
! Eigenvectors/values of the CI matrix
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
logical :: converged
|
||||
integer :: i, j, k
|
||||
integer :: i_other_state
|
||||
integer :: i_state
|
||||
logical, allocatable :: good_state_array(:)
|
||||
integer, allocatable :: index_good_state_array(:)
|
||||
double precision, allocatable :: eigenvectors(:,:), eigenvalues(:)
|
||||
|
||||
PROVIDE threshold_nonsym_davidson nthreads_davidson
|
||||
|
||||
! Guess values for the "N_states" states of the CI_eigenvectors_nonsym_dressed
|
||||
do j = 1, min(N_states, N_det)
|
||||
do i = 1, N_det
|
||||
CI_eigenvectors_nonsym_dressed(i,j) = psi_coef(i,j)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
do j = min(N_states, N_det)+1, N_states_diag
|
||||
do i = 1, N_det
|
||||
CI_eigenvectors_nonsym_dressed(i,j) = 0.d0
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! ---
|
||||
|
||||
if(diag_algorithm == "Davidson") then
|
||||
|
||||
do j = 1, min(N_states, N_det)
|
||||
do i = 1, N_det
|
||||
CI_eigenvectors_nonsym_dressed(i,j) = psi_coef(i,j)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
converged = .False.
|
||||
call davidson_diag_nonsym_h( psi_det, CI_eigenvectors_nonsym_dressed &
|
||||
, size(CI_eigenvectors_nonsym_dressed, 1) &
|
||||
, CI_electronic_energy_nonsym_dressed &
|
||||
, N_det, min(N_det, N_states), min(N_det, N_states_diag), N_int, 1, converged )
|
||||
|
||||
else if(diag_algorithm == "Lapack") then
|
||||
|
||||
allocate(eigenvectors(size(H_matrix_nonsym_dressed, 1),N_det))
|
||||
allocate(eigenvalues(N_det))
|
||||
|
||||
call diag_nonsym_right( N_det, H_matrix_nonsym_dressed, size(H_matrix_nonsym_dressed, 1) &
|
||||
, eigenvectors, size(eigenvectors, 1), eigenvalues, size(eigenvalues, 1) )
|
||||
|
||||
CI_electronic_energy_nonsym_dressed(:) = 0.d0
|
||||
|
||||
! Select the "N_states_diag" states of lowest energy
|
||||
do j = 1, min(N_det, N_states_diag)
|
||||
do i = 1, N_det
|
||||
CI_eigenvectors_nonsym_dressed(i,j) = eigenvectors(i,j)
|
||||
enddo
|
||||
CI_electronic_energy_nonsym_dressed(j) = eigenvalues(j)
|
||||
enddo
|
||||
|
||||
deallocate(eigenvectors, eigenvalues)
|
||||
|
||||
! --- ---
|
||||
|
||||
endif
|
||||
|
||||
! ---
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
||||
subroutine diagonalize_CI_nonsym_dressed()
|
||||
|
||||
BEGIN_DOC
|
||||
! Replace the coefficients of the CI states by the coefficients of the
|
||||
! eigenstates of the CI matrix
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
integer :: i, j
|
||||
|
||||
PROVIDE dressing_delta
|
||||
|
||||
do j = 1, N_states
|
||||
do i = 1, N_det
|
||||
psi_coef(i,j) = CI_eigenvectors_nonsym_dressed(i,j)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
SOFT_TOUCH psi_coef
|
||||
|
||||
end subroutine diagonalize_CI_nonsym_dressed
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [ double precision, H_matrix_nonsym_dressed, (N_det,N_det) ]
|
||||
|
||||
BEGIN_DOC
|
||||
! Dressed H with Delta_ij
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
integer :: i, j, l, k
|
||||
double precision :: f
|
||||
|
||||
H_matrix_nonsym_dressed(1:N_det,1:N_det) = h_matrix_all_dets(1:N_det,1:N_det)
|
||||
|
||||
if(N_states == 1) then
|
||||
|
||||
! !symmetric formula
|
||||
! l = dressed_column_idx(1)
|
||||
! f = 1.0d0/psi_coef(l,1)
|
||||
! do i=1,N_det
|
||||
! h_matrix_nonsym_dressed(i,l) += dressing_column_h(i,1) *f
|
||||
! h_matrix_nonsym_dressed(l,i) += dressing_column_h(i,1) *f
|
||||
! enddo
|
||||
|
||||
! l = dressed_column_idx(1)
|
||||
! f = 1.0d0 / psi_coef(l,1)
|
||||
! do j = 1, N_det
|
||||
! H_matrix_nonsym_dressed(j,l) += f * dressing_delta(j,1)
|
||||
! enddo
|
||||
|
||||
k = 1
|
||||
l = 1
|
||||
f = overlap_states_inv(k,l)
|
||||
do j = 1, N_det
|
||||
do i = 1, N_det
|
||||
H_matrix_nonsym_dressed(i,j) = H_matrix_nonsym_dressed(i,j) + f * dressing_delta(i,k) * psi_coef(j,l)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
else
|
||||
|
||||
do k = 1, N_states
|
||||
do l = 1, N_states
|
||||
f = overlap_states_inv(k,l)
|
||||
|
||||
do j = 1, N_det
|
||||
do i = 1, N_det
|
||||
H_matrix_nonsym_dressed(i,j) = H_matrix_nonsym_dressed(i,j) + f * dressing_delta(i,k) * psi_coef(j,l)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
enddo
|
||||
enddo
|
||||
|
||||
endif
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
@ -73,6 +73,11 @@ BEGIN_PROVIDER [ double precision, eigenvectors_Fock_matrix_mo, (ao_num,mo_num)
|
||||
liwork = -1
|
||||
|
||||
F_save = F
|
||||
!print *, ' Fock matrix'
|
||||
!do i = 1, mo_num
|
||||
! write(*, '(1000(F16.10,X))') F_save(:,i)
|
||||
!enddo
|
||||
|
||||
call dsyevd( 'V', 'U', mo_num, F, &
|
||||
size(F,1), diag, work, lwork, iwork, liwork, info)
|
||||
|
||||
@ -103,6 +108,16 @@ BEGIN_PROVIDER [ double precision, eigenvectors_Fock_matrix_mo, (ao_num,mo_num)
|
||||
endif
|
||||
endif
|
||||
|
||||
!print *, ' eigenvalues'
|
||||
!do i = 1, mo_num
|
||||
! write(*, '(1000(F16.10,X))') diag(i)
|
||||
!enddo
|
||||
!print *, ' eigenvectors'
|
||||
!do i = 1, mo_num
|
||||
! write(*, '(1000(F16.10,X))') F(:,i)
|
||||
!enddo
|
||||
|
||||
|
||||
call dgemm('N','N',ao_num,mo_num,mo_num, 1.d0, &
|
||||
mo_coef, size(mo_coef,1), F, size(F,1), &
|
||||
0.d0, eigenvectors_Fock_matrix_mo, size(eigenvectors_Fock_matrix_mo,1))
|
||||
|
@ -1,4 +1,7 @@
|
||||
subroutine svd(A,LDA,U,LDU,D,Vt,LDVt,m,n)
|
||||
|
||||
! ---
|
||||
|
||||
subroutine svd(A, LDA, U, LDU, D, Vt, LDVt, m, n)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Compute A = U.D.Vt
|
||||
@ -1749,3 +1752,134 @@ end
|
||||
!
|
||||
!end
|
||||
!
|
||||
|
||||
! ---
|
||||
|
||||
subroutine diag_nonsym_right(n, A, A_ldim, V, V_ldim, energy, E_ldim)
|
||||
|
||||
implicit none
|
||||
|
||||
integer, intent(in) :: n, A_ldim, V_ldim, E_ldim
|
||||
double precision, intent(in) :: A(A_ldim,n)
|
||||
double precision, intent(out) :: energy(E_ldim), V(V_ldim,n)
|
||||
|
||||
character*1 :: JOBVL, JOBVR, BALANC, SENSE
|
||||
integer :: i, j
|
||||
integer :: ILO, IHI, lda, ldvl, ldvr, LWORK, INFO
|
||||
double precision :: ABNRM
|
||||
integer, allocatable :: iorder(:), IWORK(:)
|
||||
double precision, allocatable :: WORK(:), SCALE_array(:), RCONDE(:), RCONDV(:)
|
||||
double precision, allocatable :: Atmp(:,:), WR(:), WI(:), VL(:,:), VR(:,:), Vtmp(:)
|
||||
double precision, allocatable :: energy_loc(:), V_loc(:,:)
|
||||
|
||||
allocate( Atmp(n,n), WR(n), WI(n), VL(1,1), VR(n,n) )
|
||||
do i = 1, n
|
||||
do j = 1, n
|
||||
Atmp(j,i) = A(j,i)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
JOBVL = "N" ! computes the left eigenvectors
|
||||
JOBVR = "V" ! computes the right eigenvectors
|
||||
BALANC = "B" ! Diagonal scaling and Permutation for optimization
|
||||
SENSE = "V" ! Determines which reciprocal condition numbers are computed
|
||||
lda = n
|
||||
ldvr = n
|
||||
ldvl = 1
|
||||
|
||||
allocate( WORK(1), SCALE_array(n), RCONDE(n), RCONDV(n), IWORK(2*n-2) )
|
||||
|
||||
LWORK = -1 ! to ask for the optimal size of WORK
|
||||
call dgeevx( BALANC, JOBVL, JOBVR, SENSE & ! CHARACTERS
|
||||
, n, Atmp, lda & ! MATRIX TO DIAGONALIZE
|
||||
, WR, WI & ! REAL AND IMAGINARY PART OF EIGENVALUES
|
||||
, VL, ldvl, VR, ldvr & ! LEFT AND RIGHT EIGENVECTORS
|
||||
, ILO, IHI, SCALE_array, ABNRM, RCONDE, RCONDV & ! OUTPUTS OF OPTIMIZATION
|
||||
, WORK, LWORK, IWORK, INFO )
|
||||
|
||||
if(INFO .ne. 0) then
|
||||
print*, 'dgeevx failed !!', INFO
|
||||
stop
|
||||
endif
|
||||
|
||||
LWORK = max(int(work(1)), 1) ! this is the optimal size of WORK
|
||||
deallocate(WORK)
|
||||
allocate(WORK(LWORK))
|
||||
call dgeevx( BALANC, JOBVL, JOBVR, SENSE &
|
||||
, n, Atmp, lda &
|
||||
, WR, WI &
|
||||
, VL, ldvl, VR, ldvr &
|
||||
, ILO, IHI, SCALE_array, ABNRM, RCONDE, RCONDV &
|
||||
, WORK, LWORK, IWORK, INFO )
|
||||
if(INFO .ne. 0) then
|
||||
print*, 'dgeevx failed !!', INFO
|
||||
stop
|
||||
endif
|
||||
|
||||
deallocate( WORK, SCALE_array, RCONDE, RCONDV, IWORK )
|
||||
deallocate( VL, Atmp )
|
||||
|
||||
|
||||
allocate( energy_loc(n), V_loc(n,n) )
|
||||
energy_loc = 0.d0
|
||||
V_loc = 0.d0
|
||||
|
||||
i = 1
|
||||
do while(i .le. n)
|
||||
|
||||
! print*, i, WR(i), WI(i)
|
||||
|
||||
if( dabs(WI(i)) .gt. 1e-7 ) then
|
||||
|
||||
print*, ' Found an imaginary component to eigenvalue'
|
||||
print*, ' Re(i) + Im(i)', i, WR(i), WI(i)
|
||||
|
||||
energy_loc(i) = WR(i)
|
||||
do j = 1, n
|
||||
V_loc(j,i) = WR(i) * VR(j,i) - WI(i) * VR(j,i+1)
|
||||
enddo
|
||||
energy_loc(i+1) = WI(i)
|
||||
do j = 1, n
|
||||
V_loc(j,i+1) = WR(i) * VR(j,i+1) + WI(i) * VR(j,i)
|
||||
enddo
|
||||
i = i + 2
|
||||
|
||||
else
|
||||
|
||||
energy_loc(i) = WR(i)
|
||||
do j = 1, n
|
||||
V_loc(j,i) = VR(j,i)
|
||||
enddo
|
||||
i = i + 1
|
||||
|
||||
endif
|
||||
|
||||
enddo
|
||||
|
||||
deallocate(WR, WI, VR)
|
||||
|
||||
|
||||
! ordering
|
||||
! do j = 1, n
|
||||
! write(444, '(100(1X, F16.10))') (V_loc(j,i), i=1,5)
|
||||
! enddo
|
||||
allocate( iorder(n) )
|
||||
do i = 1, n
|
||||
iorder(i) = i
|
||||
enddo
|
||||
call dsort(energy_loc, iorder, n)
|
||||
do i = 1, n
|
||||
energy(i) = energy_loc(i)
|
||||
do j = 1, n
|
||||
V(j,i) = V_loc(j,iorder(i))
|
||||
enddo
|
||||
enddo
|
||||
deallocate(iorder)
|
||||
! do j = 1, n
|
||||
! write(445, '(100(1X, F16.10))') (V_loc(j,i), i=1,5)
|
||||
! enddo
|
||||
deallocate(V_loc, energy_loc)
|
||||
|
||||
end subroutine diag_nonsym_right
|
||||
|
||||
! ---
|
||||
|
Loading…
Reference in New Issue
Block a user