9
1
mirror of https://github.com/QuantumPackage/qp2.git synced 2024-06-01 10:15:18 +02:00

dressing multi states

This commit is contained in:
AbdAmmar 2022-09-07 15:03:13 +02:00
parent d919d6ce7d
commit 089b9eb18a
8 changed files with 968 additions and 167 deletions

View File

@ -1 +0,0 @@
davidson_undressed

View File

@ -34,7 +34,7 @@ subroutine davidson_general_ext_rout_nonsym_b1space(u_in, H_jj, energies, sze, N
character*(16384) :: write_buffer
integer :: iter, N_st_diag
integer :: i, j, k, m
integer :: i, j, k, l, m
integer :: iter2, itertot
logical :: disk_based
integer :: shift, shift2, itermax
@ -49,8 +49,8 @@ subroutine davidson_general_ext_rout_nonsym_b1space(u_in, H_jj, energies, sze, N
double precision, allocatable :: y(:,:), h(:,:), lambda(:)
double precision, allocatable :: residual_norm(:)
integer :: i_omax
double precision :: lambda_tmp
integer, allocatable :: i_omax(:)
double precision, allocatable :: U_tmp(:), overlap(:)
double precision, allocatable :: W(:,:)
@ -171,7 +171,8 @@ subroutine davidson_general_ext_rout_nonsym_b1space(u_in, H_jj, energies, sze, N
h(N_st_diag*itermax,N_st_diag*itermax), &
y(N_st_diag*itermax,N_st_diag*itermax), &
lambda(N_st_diag*itermax), &
residual_norm(N_st_diag) &
residual_norm(N_st_diag), &
i_omax(N_st) &
)
U = 0.d0
@ -303,31 +304,43 @@ subroutine davidson_general_ext_rout_nonsym_b1space(u_in, H_jj, energies, sze, N
! end test ------------------------------------------------------------------------
!
! TODO
! state_following is more efficient
do l = 1, N_st
allocate( overlap(N_st_diag) )
allocate( overlap(N_st_diag) )
do k = 1, N_st_diag
overlap(k) = 0.d0
do i = 1, sze
overlap(k) = overlap(k) + U(i,shift2+k) * u_in(i,1)
do k = 1, N_st_diag
overlap(k) = 0.d0
do i = 1, sze
overlap(k) = overlap(k) + U(i,shift2+k) * u_in(i,l)
enddo
overlap(k) = dabs(overlap(k))
!print *, ' overlap =', k, overlap(k)
enddo
overlap(k) = dabs(overlap(k))
!print *, ' overlap =', k, overlap(k)
enddo
lambda_tmp = 0.d0
do k = 1, N_st_diag
if(overlap(k) .gt. lambda_tmp) then
i_omax = k
lambda_tmp = overlap(k)
lambda_tmp = 0.d0
do k = 1, N_st_diag
if(overlap(k) .gt. lambda_tmp) then
i_omax(l) = k
lambda_tmp = overlap(k)
endif
enddo
deallocate(overlap)
if(lambda_tmp .lt. 0.7d0) then
print *, ' very small overlap ...', l, i_omax(l)
print *, ' max overlap = ', lambda_tmp
stop
endif
if(i_omax(l) .ne. l) then
print *, ' !!! WARNONG !!!'
print *, ' index of state', l, i_omax(l)
endif
enddo
deallocate(overlap)
if( lambda_tmp .lt. 0.8d0) then
print *, ' very small overlap..'
print*, ' max overlap = ', lambda_tmp, i_omax
stop
endif
! lambda_tmp = lambda(1)
! lambda(1) = lambda(i_omax)
@ -375,16 +388,17 @@ subroutine davidson_general_ext_rout_nonsym_b1space(u_in, H_jj, energies, sze, N
do i = 1, sze
U(i,shift2+k) = (lambda(k) * U(i,shift2+k) - W(i,shift2+k)) / max(H_jj(i)-lambda(k), 1.d-2)
enddo
!if(k <= N_st) then
! residual_norm(k) = u_dot_u(U(1,shift2+k), sze)
! to_print(1,k) = lambda(k)
! to_print(2,k) = residual_norm(k)
!endif
if(k <= N_st) then
l = k
residual_norm(k) = u_dot_u(U(1,shift2+l), sze)
to_print(1,k) = lambda(l)
to_print(2,k) = residual_norm(l)
endif
enddo
!$OMP END PARALLEL DO
residual_norm(1) = u_dot_u(U(1,shift2+i_omax), sze)
to_print(1,1) = lambda(i_omax)
to_print(2,1) = residual_norm(1)
!residual_norm(1) = u_dot_u(U(1,shift2+1), sze)
!to_print(1,1) = lambda(1)
!to_print(2,1) = residual_norm(1)
if( (itertot > 1) .and. (iter == 1) ) then
@ -469,7 +483,7 @@ subroutine davidson_general_ext_rout_nonsym_b1space(u_in, H_jj, energies, sze, N
call write_time(6)
deallocate(W)
deallocate(U, h, y, lambda, residual_norm)
deallocate(U, h, y, lambda, residual_norm, i_omax)
FREE nthreads_davidson
@ -477,132 +491,3 @@ end subroutine davidson_general_ext_rout_nonsym_b1space
! ---
subroutine diag_nonsym_right(n, A, A_ldim, V, V_ldim, energy, E_ldim)
implicit none
integer, intent(in) :: n, A_ldim, V_ldim, E_ldim
double precision, intent(in) :: A(A_ldim,n)
double precision, intent(out) :: energy(E_ldim), V(V_ldim,n)
character*1 :: JOBVL, JOBVR, BALANC, SENSE
integer :: i, j
integer :: ILO, IHI, lda, ldvl, ldvr, LWORK, INFO
double precision :: ABNRM
integer, allocatable :: iorder(:), IWORK(:)
double precision, allocatable :: WORK(:), SCALE_array(:), RCONDE(:), RCONDV(:)
double precision, allocatable :: Atmp(:,:), WR(:), WI(:), VL(:,:), VR(:,:), Vtmp(:)
double precision, allocatable :: energy_loc(:), V_loc(:,:)
allocate( Atmp(n,n), WR(n), WI(n), VL(1,1), VR(n,n) )
do i = 1, n
do j = 1, n
Atmp(j,i) = A(j,i)
enddo
enddo
JOBVL = "N" ! computes the left eigenvectors
JOBVR = "V" ! computes the right eigenvectors
BALANC = "B" ! Diagonal scaling and Permutation for optimization
SENSE = "V" ! Determines which reciprocal condition numbers are computed
lda = n
ldvr = n
ldvl = 1
allocate( WORK(1), SCALE_array(n), RCONDE(n), RCONDV(n), IWORK(2*n-2) )
LWORK = -1 ! to ask for the optimal size of WORK
call dgeevx( BALANC, JOBVL, JOBVR, SENSE & ! CHARACTERS
, n, Atmp, lda & ! MATRIX TO DIAGONALIZE
, WR, WI & ! REAL AND IMAGINARY PART OF EIGENVALUES
, VL, ldvl, VR, ldvr & ! LEFT AND RIGHT EIGENVECTORS
, ILO, IHI, SCALE_array, ABNRM, RCONDE, RCONDV & ! OUTPUTS OF OPTIMIZATION
, WORK, LWORK, IWORK, INFO )
if(INFO .ne. 0) then
print*, 'dgeevx failed !!', INFO
stop
endif
LWORK = max(int(work(1)), 1) ! this is the optimal size of WORK
deallocate(WORK)
allocate(WORK(LWORK))
call dgeevx( BALANC, JOBVL, JOBVR, SENSE &
, n, Atmp, lda &
, WR, WI &
, VL, ldvl, VR, ldvr &
, ILO, IHI, SCALE_array, ABNRM, RCONDE, RCONDV &
, WORK, LWORK, IWORK, INFO )
if(INFO .ne. 0) then
print*, 'dgeevx failed !!', INFO
stop
endif
deallocate( WORK, SCALE_array, RCONDE, RCONDV, IWORK )
deallocate( VL, Atmp )
allocate( energy_loc(n), V_loc(n,n) )
energy_loc = 0.d0
V_loc = 0.d0
i = 1
do while(i .le. n)
! print*, i, WR(i), WI(i)
if( dabs(WI(i)) .gt. 1e-7 ) then
print*, ' Found an imaginary component to eigenvalue'
print*, ' Re(i) + Im(i)', i, WR(i), WI(i)
energy_loc(i) = WR(i)
do j = 1, n
V_loc(j,i) = WR(i) * VR(j,i) - WI(i) * VR(j,i+1)
enddo
energy_loc(i+1) = WI(i)
do j = 1, n
V_loc(j,i+1) = WR(i) * VR(j,i+1) + WI(i) * VR(j,i)
enddo
i = i + 2
else
energy_loc(i) = WR(i)
do j = 1, n
V_loc(j,i) = VR(j,i)
enddo
i = i + 1
endif
enddo
deallocate(WR, WI, VR)
! ordering
! do j = 1, n
! write(444, '(100(1X, F16.10))') (V_loc(j,i), i=1,5)
! enddo
allocate( iorder(n) )
do i = 1, n
iorder(i) = i
enddo
call dsort(energy_loc, iorder, n)
do i = 1, n
energy(i) = energy_loc(i)
do j = 1, n
V(j,i) = V_loc(j,iorder(i))
enddo
enddo
deallocate(iorder)
! do j = 1, n
! write(445, '(100(1X, F16.10))') (V_loc(j,i), i=1,5)
! enddo
deallocate(V_loc, energy_loc)
end subroutine diag_nonsym_right
! ---

View File

@ -66,7 +66,7 @@ subroutine davidson_diag_hs2(dets_in,u_in,s2_out,dim_in,energies,sze,N_st,N_st_d
double precision, allocatable :: H_jj(:)
double precision, external :: diag_H_mat_elem, diag_S_mat_elem
integer :: i,k
integer :: i,k,l
ASSERT (N_st > 0)
ASSERT (sze > 0)
ASSERT (Nint > 0)
@ -86,10 +86,15 @@ subroutine davidson_diag_hs2(dets_in,u_in,s2_out,dim_in,energies,sze,N_st,N_st_d
!$OMP END PARALLEL
if (dressing_state > 0) then
do k=1,N_st
do i=1,sze
H_jj(i) += u_in(i,k) * dressing_column_h(i,k)
enddo
do k = 1, N_st
! do i = 1, sze
! H_jj(i) += u_in(i,k) * dressing_column_h(i,k)
! enddo
l = dressed_column_idx(k)
H_jj(l) += u_in(l,k) * dressing_column_h(l,k)
enddo
endif

View File

@ -0,0 +1,537 @@
! ---
subroutine davidson_diag_nonsym_h(dets_in, u_in, dim_in, energies, sze, N_st, N_st_diag, Nint, dressing_state, converged)
BEGIN_DOC
!
! non-sym Davidson diagonalization.
!
! dets_in : bitmasks corresponding to determinants
!
! u_in : guess coefficients on the various states. Overwritten on exit
!
! dim_in : leftmost dimension of u_in
!
! sze : Number of determinants
!
! N_st : Number of eigenstates
!
! Initial guess vectors are not necessarily orthonormal
!
END_DOC
use bitmasks
implicit none
integer, intent(in) :: dim_in, sze, N_st, N_st_diag, Nint
integer, intent(in) :: dressing_state
integer(bit_kind), intent(in) :: dets_in(Nint,2,sze)
logical, intent(out) :: converged
double precision, intent(out) :: energies(N_st_diag)
double precision, intent(inout) :: u_in(dim_in,N_st_diag)
integer :: i, k, l
double precision :: f
double precision, allocatable :: H_jj(:)
double precision, external :: diag_H_mat_elem
ASSERT (N_st > 0)
ASSERT (sze > 0)
ASSERT (Nint > 0)
ASSERT (Nint == N_int)
PROVIDE mo_two_e_integrals_in_map
allocate(H_jj(sze))
H_jj(1) = diag_H_mat_elem(dets_in(1,1,1), Nint)
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP SHARED(sze, H_jj, dets_in, Nint) &
!$OMP PRIVATE(i)
!$OMP DO SCHEDULE(static)
do i = 2, sze
H_jj(i) = diag_H_mat_elem(dets_in(1,1,i), Nint)
enddo
!$OMP END DO
!$OMP END PARALLEL
if(dressing_state > 0) then
do k = 1, N_st
do l = 1, N_st
f = overlap_states_inv(k,l)
do i = 1, N_det
H_jj(i) += f * dressing_delta(i,k) * psi_coef(i,l)
enddo
enddo
enddo
endif
call davidson_diag_nonsym_hjj(dets_in, u_in, H_jj, energies, dim_in, sze, N_st, N_st_diag, Nint, dressing_state, converged)
deallocate(H_jj)
end subroutine davidson_diag_nonsym_h
! ---
subroutine davidson_diag_nonsym_hjj(dets_in, u_in, H_jj, energies, dim_in, sze, N_st, N_st_diag_in, Nint, dressing_state, converged)
BEGIN_DOC
!
! non-sym Davidson diagonalization with specific diagonal elements of the H matrix
!
! H_jj : specific diagonal H matrix elements to diagonalize de Davidson
!
! dets_in : bitmasks corresponding to determinants
!
! u_in : guess coefficients on the various states. Overwritten on exit
!
! dim_in : leftmost dimension of u_in
!
! sze : Number of determinants
!
! N_st : Number of eigenstates
!
! N_st_diag_in : Number of states in which H is diagonalized. Assumed > sze
!
! Initial guess vectors are not necessarily orthonormal
!
END_DOC
include 'constants.include.F'
use bitmasks
use mmap_module
implicit none
integer, intent(in) :: dim_in, sze, N_st, N_st_diag_in, Nint
integer, intent(in) :: dressing_state
integer(bit_kind), intent(in) :: dets_in(Nint,2,sze)
double precision, intent(in) :: H_jj(sze)
double precision, intent(out) :: energies(N_st_diag_in)
logical, intent(inout) :: converged
double precision, intent(inout) :: u_in(dim_in,N_st_diag_in)
logical :: disk_based
character*(16384) :: write_buffer
integer :: i, j, k, l, m
integer :: iter, N_st_diag, itertot, shift, shift2, itermax, istate
integer :: nproc_target
integer :: order(N_st_diag_in)
integer :: maxab
double precision :: rss
double precision :: cmax
double precision :: to_print(2,N_st)
double precision :: r1, r2
double precision :: f
double precision, allocatable :: y(:,:), h(:,:), lambda(:)
double precision, allocatable :: s_tmp(:,:), u_tmp(:,:)
double precision, allocatable :: residual_norm(:)
double precision, allocatable :: U(:,:), overlap(:,:)
double precision, pointer :: W(:,:)
double precision, external :: u_dot_u
N_st_diag = N_st_diag_in
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: U, W, y, h, lambda
if(N_st_diag*3 > sze) then
print *, 'error in Davidson :'
print *, 'Increase n_det_max_full to ', N_st_diag*3
stop -1
endif
itermax = max(2, min(davidson_sze_max, sze/N_st_diag)) + 1
itertot = 0
if(state_following) then
allocate(overlap(N_st_diag*itermax, N_st_diag*itermax))
else
allocate(overlap(1,1)) ! avoid 'if' for deallocate
endif
overlap = 0.d0
PROVIDE nuclear_repulsion expected_s2 psi_bilinear_matrix_order psi_bilinear_matrix_order_reverse threshold_davidson_pt2 threshold_davidson_from_pt2
PROVIDE threshold_nonsym_davidson
call write_time(6)
write(6,'(A)') ''
write(6,'(A)') 'Davidson Diagonalization'
write(6,'(A)') '------------------------'
write(6,'(A)') ''
! Find max number of cores to fit in memory
! -----------------------------------------
nproc_target = nproc
maxab = max(N_det_alpha_unique, N_det_beta_unique) + 1
m=1
disk_based = .False.
call resident_memory(rss)
do
r1 = 8.d0 * &! bytes
( dble(sze)*(N_st_diag*itermax) &! U
+ 1.0d0*dble(sze*m)*(N_st_diag*itermax) &! W
+ 3.0d0*(N_st_diag*itermax)**2 &! h,y,s_tmp
+ 1.d0*(N_st_diag*itermax) &! lambda
+ 1.d0*(N_st_diag) &! residual_norm
! In H_u_0_nstates_zmq
+ 2.d0*(N_st_diag*N_det) &! u_t, v_t, on collector
+ 2.d0*(N_st_diag*N_det) &! u_t, v_t, on slave
+ 0.5d0*maxab &! idx0 in H_u_0_nstates_openmp_work_*
+ nproc_target * &! In OMP section
( 1.d0*(N_int*maxab) &! buffer
+ 3.5d0*(maxab) ) &! singles_a, singles_b, doubles, idx
) / 1024.d0**3
if(nproc_target == 0) then
call check_mem(r1, irp_here)
nproc_target = 1
exit
endif
if(r1+rss < qp_max_mem) then
exit
endif
if(itermax > 4) then
itermax = itermax - 1
else if(m==1 .and. disk_based_davidson) then
m = 0
disk_based = .True.
itermax = 6
else
nproc_target = nproc_target - 1
endif
enddo
nthreads_davidson = nproc_target
TOUCH nthreads_davidson
call write_int(6, N_st, 'Number of states')
call write_int(6, N_st_diag, 'Number of states in diagonalization')
call write_int(6, sze, 'Number of determinants')
call write_int(6, nproc_target, 'Number of threads for diagonalization')
call write_double(6, r1, 'Memory(Gb)')
if(disk_based) then
print *, 'Using swap space to reduce RAM'
endif
!---------------
write(6,'(A)') ''
write_buffer = '====='
do i = 1, N_st
write_buffer = trim(write_buffer)//' ================ ==========='
enddo
write(6, '(A)') write_buffer(1:6+41*N_st)
write_buffer = 'Iter'
do i = 1, N_st
write_buffer = trim(write_buffer)//' Energy Residual '
enddo
write(6,'(A)') write_buffer(1:6+41*N_st)
write_buffer = '====='
do i = 1, N_st
write_buffer = trim(write_buffer)//' ================ ==========='
enddo
write(6,'(A)') write_buffer(1:6+41*N_st)
if(disk_based) then
! Create memory-mapped files for W and S
type(c_ptr) :: ptr_w, ptr_s
integer :: fd_s, fd_w
call mmap(trim(ezfio_work_dir)//'davidson_w', (/int(sze,8),int(N_st_diag*itermax,8)/),&
8, fd_w, .False., ptr_w)
call c_f_pointer(ptr_w, w, (/sze,N_st_diag*itermax/))
else
allocate(W(sze,N_st_diag*itermax))
endif
allocate( &
! Large
U(sze,N_st_diag*itermax), &
! Small
h(N_st_diag*itermax,N_st_diag*itermax), &
y(N_st_diag*itermax,N_st_diag*itermax), &
s_tmp(N_st_diag*itermax,N_st_diag*itermax), &
residual_norm(N_st_diag), &
lambda(N_st_diag*itermax), &
u_tmp(N_st,N_st_diag))
h = 0.d0
U = 0.d0
y = 0.d0
s_tmp = 0.d0
ASSERT (N_st > 0)
ASSERT (N_st_diag >= N_st)
ASSERT (sze > 0)
ASSERT (Nint > 0)
ASSERT (Nint == N_int)
! Davidson iterations
! ===================
converged = .False.
do k = N_st+1, N_st_diag
do i = 1, sze
call random_number(r1)
call random_number(r2)
r1 = dsqrt(-2.d0*dlog(r1))
r2 = dtwo_pi*r2
u_in(i,k) = r1*dcos(r2) * u_in(i,k-N_st)
enddo
u_in(k,k) = u_in(k,k) + 10.d0
enddo
do k = 1, N_st_diag
call normalize(u_in(1,k), sze)
enddo
do k = 1, N_st_diag
do i = 1, sze
U(i,k) = u_in(i,k)
enddo
enddo
do while (.not.converged)
itertot = itertot + 1
if(itertot == 8) then
exit
endif
do iter = 1, itermax-1
shift = N_st_diag*(iter-1)
shift2 = N_st_diag*iter
if( (iter > 1) .or. (itertot == 1) ) then
! Gram-Schmidt to orthogonalize all new guess with the previous vectors
call ortho_qr(U, size(U, 1), sze, shift2)
call ortho_qr(U, size(U, 1), sze, shift2)
! Compute |W_k> = \sum_i |i><i|H|u_k>
! -----------------------------------
if( (sze > 100000) .and. distributed_davidson ) then
call H_u_0_nstates_zmq (W(1,shift+1), U(1,shift+1), N_st_diag, sze)
else
call H_u_0_nstates_openmp(W(1,shift+1), U(1,shift+1), N_st_diag, sze)
endif
else
! Already computed in update below
continue
endif
if(dressing_state > 0) then
call dgemm( 'T', 'N', N_st, N_st_diag, sze, 1.d0 &
, psi_coef, size(psi_coef, 1), U(1, shift+1), size(U, 1) &
, 0.d0, u_tmp, size(u_tmp, 1))
do istate = 1, N_st_diag
do k = 1, N_st
do l = 1, N_st
f = overlap_states_inv(k,l)
do i = 1, sze
W(i,shift+istate) += f * dressing_delta(i,k) * u_tmp(l,istate)
enddo
enddo
enddo
enddo
endif
! Compute h_kl = <u_k | W_l> = <u_k| H |u_l>
! -------------------------------------------
call dgemm( 'T', 'N', shift2, shift2, sze, 1.d0 &
, U, size(U, 1), W, size(W, 1) &
, 0.d0, h, size(h, 1))
! Diagonalize h
! ---------------
call diag_nonsym_right(shift2, h(1,1), size(h, 1), y(1,1), size(y, 1), lambda(1), size(lambda, 1))
if (state_following) then
overlap = -1.d0
do k = 1, shift2
do i = 1, shift2
overlap(k,i) = dabs(y(k,i))
enddo
enddo
do k = 1, N_st
cmax = -1.d0
do i = 1, N_st
if(overlap(i,k) > cmax) then
cmax = overlap(i,k)
order(k) = i
endif
enddo
do i = 1, N_st_diag
overlap(order(k),i) = -1.d0
enddo
enddo
overlap = y
do k = 1, N_st
l = order(k)
if (k /= l) then
y(1:shift2,k) = overlap(1:shift2,l)
endif
enddo
do k = 1, N_st
overlap(k,1) = lambda(k)
enddo
endif
! Express eigenvectors of h in the determinant basis
! --------------------------------------------------
call dgemm( 'N', 'N', sze, N_st_diag, shift2, 1.d0 &
, U, size(U, 1), y, size(y, 1) &
, 0.d0, U(1,shift2+1), size(U, 1))
do k = 1, N_st_diag
call normalize(U(1,shift2+k), sze)
enddo
call dgemm( 'N', 'N', sze, N_st_diag, shift2, 1.d0 &
, W, size(W, 1), y, size(y, 1) &
, 0.d0, W(1,shift2+1), size(W,1))
! Compute residual vector and davidson step
! -----------------------------------------
!$OMP PARALLEL DO DEFAULT(SHARED) PRIVATE(i,k)
do k = 1, N_st_diag
do i = 1, sze
U(i,shift2+k) = (lambda(k) * U(i,shift2+k) - W(i,shift2+k) ) / max(H_jj(i)-lambda(k), 1.d-2)
enddo
if(k <= N_st) then
residual_norm(k) = u_dot_u(U(1,shift2+k), sze)
to_print(1,k) = lambda(k) + nuclear_repulsion
to_print(2,k) = residual_norm(k)
endif
enddo
!$OMP END PARALLEL DO
if ((itertot>1).and.(iter == 1)) then
!don't print
continue
else
write(*, '(1X, I3, 1X, 100(1X, F16.10, 1X, E11.3))') iter-1, to_print(1:2,1:N_st)
endif
! Check convergence
if(iter > 1) then
if(threshold_davidson_from_pt2) then
converged = dabs(maxval(residual_norm(1:N_st))) < threshold_davidson_pt2
else
converged = dabs(maxval(residual_norm(1:N_st))) < threshold_nonsym_davidson
endif
endif
do k = 1, N_st
if(residual_norm(k) > 1.d8) then
print *, 'Davidson failed'
stop -1
endif
enddo
if(converged) then
exit
endif
logical, external :: qp_stop
if(qp_stop()) then
converged = .True.
exit
endif
enddo
! Re-contract U and update W
! --------------------------------
call dgemm( 'N', 'N', sze, N_st_diag, shift2, 1.d0 &
, W, size(W, 1), y, size(y, 1) &
, 0.d0, u_in, size(u_in, 1))
do k = 1, N_st_diag
do i = 1, sze
W(i,k) = u_in(i,k)
enddo
enddo
call dgemm( 'N', 'N', sze, N_st_diag, shift2, 1.d0 &
, U, size(U, 1), y, size(y, 1), 0.d0 &
, u_in, size(u_in, 1))
do k = 1, N_st_diag
do i = 1, sze
U(i,k) = u_in(i,k)
enddo
enddo
enddo
call nullify_small_elements(sze, N_st_diag, U, size(U, 1), threshold_davidson_pt2)
do k = 1, N_st_diag
do i = 1, sze
u_in(i,k) = U(i,k)
enddo
enddo
do k = 1, N_st_diag
energies(k) = lambda(k)
enddo
write_buffer = '======'
do i = 1, N_st
write_buffer = trim(write_buffer)//' ================ ==========='
enddo
write(6,'(A)') trim(write_buffer)
write(6,'(A)') ''
call write_time(6)
if(disk_based) then
! Remove temp files
integer, external :: getUnitAndOpen
call munmap( (/int(sze,8),int(N_st_diag*itermax,8)/), 8, fd_w, ptr_w )
fd_w = getUnitAndOpen(trim(ezfio_work_dir)//'davidson_w','r')
close(fd_w,status='delete')
else
deallocate(W)
endif
deallocate ( &
residual_norm, &
U, overlap, &
h, y, s_tmp, &
lambda, &
u_tmp &
)
FREE nthreads_davidson
end subroutine davidson_diag_nonsym_hjj
! ---

View File

@ -0,0 +1,40 @@
! ---
BEGIN_PROVIDER [ double precision, overlap_states, (N_states,N_states) ]
&BEGIN_PROVIDER [ double precision, overlap_states_inv, (N_states,N_states) ]
BEGIN_DOC
!
! S_kl = ck.T x cl
! = psi_coef(:,k).T x psi_coef(:,l)
!
END_DOC
implicit none
integer :: i
double precision :: o_tmp
if(N_states == 1) then
o_tmp = 0.d0
do i = 1, N_det
o_tmp = o_tmp + psi_coef(i,1) * psi_coef(i,1)
enddo
overlap_states (1,1) = o_tmp
overlap_states_inv(1,1) = 1.d0 / o_tmp
else
call dgemm( 'T', 'N', N_states, N_states, N_det, 1.d0 &
, psi_coef, size(psi_coef, 1), psi_coef, size(psi_coef, 1) &
, 0.d0, overlap_states, size(overlap_states, 1) )
call get_inverse(overlap_states, N_states, N_states, overlap_states_inv, N_states)
endif
END_PROVIDER
! ---

View File

@ -0,0 +1,186 @@
! ---
BEGIN_PROVIDER [ double precision, CI_energy_nonsym_dressed, (N_states_diag) ]
BEGIN_DOC
! N_states lowest eigenvalues of the CI matrix
END_DOC
implicit none
integer :: j
character*(8) :: st
call write_time(6)
do j = 1, min(N_det, N_states_diag)
CI_energy_nonsym_dressed(j) = CI_electronic_energy_nonsym_dressed(j) + nuclear_repulsion
enddo
do j = 1, min(N_det, N_states)
write(st, '(I4)') j
call write_double(6, CI_energy_nonsym_dressed(j), 'Energy of state '//trim(st))
enddo
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, CI_electronic_energy_nonsym_dressed, (N_states_diag) ]
&BEGIN_PROVIDER [ double precision, CI_eigenvectors_nonsym_dressed, (N_det,N_states_diag) ]
BEGIN_DOC
! Eigenvectors/values of the CI matrix
END_DOC
implicit none
logical :: converged
integer :: i, j, k
integer :: i_other_state
integer :: i_state
logical, allocatable :: good_state_array(:)
integer, allocatable :: index_good_state_array(:)
double precision, allocatable :: eigenvectors(:,:), eigenvalues(:)
PROVIDE threshold_nonsym_davidson nthreads_davidson
! Guess values for the "N_states" states of the CI_eigenvectors_nonsym_dressed
do j = 1, min(N_states, N_det)
do i = 1, N_det
CI_eigenvectors_nonsym_dressed(i,j) = psi_coef(i,j)
enddo
enddo
do j = min(N_states, N_det)+1, N_states_diag
do i = 1, N_det
CI_eigenvectors_nonsym_dressed(i,j) = 0.d0
enddo
enddo
! ---
if(diag_algorithm == "Davidson") then
do j = 1, min(N_states, N_det)
do i = 1, N_det
CI_eigenvectors_nonsym_dressed(i,j) = psi_coef(i,j)
enddo
enddo
converged = .False.
call davidson_diag_nonsym_h( psi_det, CI_eigenvectors_nonsym_dressed &
, size(CI_eigenvectors_nonsym_dressed, 1) &
, CI_electronic_energy_nonsym_dressed &
, N_det, min(N_det, N_states), min(N_det, N_states_diag), N_int, 1, converged )
else if(diag_algorithm == "Lapack") then
allocate(eigenvectors(size(H_matrix_nonsym_dressed, 1),N_det))
allocate(eigenvalues(N_det))
call diag_nonsym_right( N_det, H_matrix_nonsym_dressed, size(H_matrix_nonsym_dressed, 1) &
, eigenvectors, size(eigenvectors, 1), eigenvalues, size(eigenvalues, 1) )
CI_electronic_energy_nonsym_dressed(:) = 0.d0
! Select the "N_states_diag" states of lowest energy
do j = 1, min(N_det, N_states_diag)
do i = 1, N_det
CI_eigenvectors_nonsym_dressed(i,j) = eigenvectors(i,j)
enddo
CI_electronic_energy_nonsym_dressed(j) = eigenvalues(j)
enddo
deallocate(eigenvectors, eigenvalues)
! --- ---
endif
! ---
END_PROVIDER
! ---
subroutine diagonalize_CI_nonsym_dressed()
BEGIN_DOC
! Replace the coefficients of the CI states by the coefficients of the
! eigenstates of the CI matrix
END_DOC
implicit none
integer :: i, j
PROVIDE dressing_delta
do j = 1, N_states
do i = 1, N_det
psi_coef(i,j) = CI_eigenvectors_nonsym_dressed(i,j)
enddo
enddo
SOFT_TOUCH psi_coef
end subroutine diagonalize_CI_nonsym_dressed
! ---
BEGIN_PROVIDER [ double precision, H_matrix_nonsym_dressed, (N_det,N_det) ]
BEGIN_DOC
! Dressed H with Delta_ij
END_DOC
implicit none
integer :: i, j, l, k
double precision :: f
H_matrix_nonsym_dressed(1:N_det,1:N_det) = h_matrix_all_dets(1:N_det,1:N_det)
if(N_states == 1) then
! !symmetric formula
! l = dressed_column_idx(1)
! f = 1.0d0/psi_coef(l,1)
! do i=1,N_det
! h_matrix_nonsym_dressed(i,l) += dressing_column_h(i,1) *f
! h_matrix_nonsym_dressed(l,i) += dressing_column_h(i,1) *f
! enddo
! l = dressed_column_idx(1)
! f = 1.0d0 / psi_coef(l,1)
! do j = 1, N_det
! H_matrix_nonsym_dressed(j,l) += f * dressing_delta(j,1)
! enddo
k = 1
l = 1
f = overlap_states_inv(k,l)
do j = 1, N_det
do i = 1, N_det
H_matrix_nonsym_dressed(i,j) = H_matrix_nonsym_dressed(i,j) + f * dressing_delta(i,k) * psi_coef(j,l)
enddo
enddo
else
do k = 1, N_states
do l = 1, N_states
f = overlap_states_inv(k,l)
do j = 1, N_det
do i = 1, N_det
H_matrix_nonsym_dressed(i,j) = H_matrix_nonsym_dressed(i,j) + f * dressing_delta(i,k) * psi_coef(j,l)
enddo
enddo
enddo
enddo
endif
END_PROVIDER
! ---

View File

@ -73,6 +73,11 @@ BEGIN_PROVIDER [ double precision, eigenvectors_Fock_matrix_mo, (ao_num,mo_num)
liwork = -1
F_save = F
!print *, ' Fock matrix'
!do i = 1, mo_num
! write(*, '(1000(F16.10,X))') F_save(:,i)
!enddo
call dsyevd( 'V', 'U', mo_num, F, &
size(F,1), diag, work, lwork, iwork, liwork, info)
@ -103,6 +108,16 @@ BEGIN_PROVIDER [ double precision, eigenvectors_Fock_matrix_mo, (ao_num,mo_num)
endif
endif
!print *, ' eigenvalues'
!do i = 1, mo_num
! write(*, '(1000(F16.10,X))') diag(i)
!enddo
!print *, ' eigenvectors'
!do i = 1, mo_num
! write(*, '(1000(F16.10,X))') F(:,i)
!enddo
call dgemm('N','N',ao_num,mo_num,mo_num, 1.d0, &
mo_coef, size(mo_coef,1), F, size(F,1), &
0.d0, eigenvectors_Fock_matrix_mo, size(eigenvectors_Fock_matrix_mo,1))

View File

@ -1,4 +1,7 @@
subroutine svd(A,LDA,U,LDU,D,Vt,LDVt,m,n)
! ---
subroutine svd(A, LDA, U, LDU, D, Vt, LDVt, m, n)
implicit none
BEGIN_DOC
! Compute A = U.D.Vt
@ -1749,3 +1752,134 @@ end
!
!end
!
! ---
subroutine diag_nonsym_right(n, A, A_ldim, V, V_ldim, energy, E_ldim)
implicit none
integer, intent(in) :: n, A_ldim, V_ldim, E_ldim
double precision, intent(in) :: A(A_ldim,n)
double precision, intent(out) :: energy(E_ldim), V(V_ldim,n)
character*1 :: JOBVL, JOBVR, BALANC, SENSE
integer :: i, j
integer :: ILO, IHI, lda, ldvl, ldvr, LWORK, INFO
double precision :: ABNRM
integer, allocatable :: iorder(:), IWORK(:)
double precision, allocatable :: WORK(:), SCALE_array(:), RCONDE(:), RCONDV(:)
double precision, allocatable :: Atmp(:,:), WR(:), WI(:), VL(:,:), VR(:,:), Vtmp(:)
double precision, allocatable :: energy_loc(:), V_loc(:,:)
allocate( Atmp(n,n), WR(n), WI(n), VL(1,1), VR(n,n) )
do i = 1, n
do j = 1, n
Atmp(j,i) = A(j,i)
enddo
enddo
JOBVL = "N" ! computes the left eigenvectors
JOBVR = "V" ! computes the right eigenvectors
BALANC = "B" ! Diagonal scaling and Permutation for optimization
SENSE = "V" ! Determines which reciprocal condition numbers are computed
lda = n
ldvr = n
ldvl = 1
allocate( WORK(1), SCALE_array(n), RCONDE(n), RCONDV(n), IWORK(2*n-2) )
LWORK = -1 ! to ask for the optimal size of WORK
call dgeevx( BALANC, JOBVL, JOBVR, SENSE & ! CHARACTERS
, n, Atmp, lda & ! MATRIX TO DIAGONALIZE
, WR, WI & ! REAL AND IMAGINARY PART OF EIGENVALUES
, VL, ldvl, VR, ldvr & ! LEFT AND RIGHT EIGENVECTORS
, ILO, IHI, SCALE_array, ABNRM, RCONDE, RCONDV & ! OUTPUTS OF OPTIMIZATION
, WORK, LWORK, IWORK, INFO )
if(INFO .ne. 0) then
print*, 'dgeevx failed !!', INFO
stop
endif
LWORK = max(int(work(1)), 1) ! this is the optimal size of WORK
deallocate(WORK)
allocate(WORK(LWORK))
call dgeevx( BALANC, JOBVL, JOBVR, SENSE &
, n, Atmp, lda &
, WR, WI &
, VL, ldvl, VR, ldvr &
, ILO, IHI, SCALE_array, ABNRM, RCONDE, RCONDV &
, WORK, LWORK, IWORK, INFO )
if(INFO .ne. 0) then
print*, 'dgeevx failed !!', INFO
stop
endif
deallocate( WORK, SCALE_array, RCONDE, RCONDV, IWORK )
deallocate( VL, Atmp )
allocate( energy_loc(n), V_loc(n,n) )
energy_loc = 0.d0
V_loc = 0.d0
i = 1
do while(i .le. n)
! print*, i, WR(i), WI(i)
if( dabs(WI(i)) .gt. 1e-7 ) then
print*, ' Found an imaginary component to eigenvalue'
print*, ' Re(i) + Im(i)', i, WR(i), WI(i)
energy_loc(i) = WR(i)
do j = 1, n
V_loc(j,i) = WR(i) * VR(j,i) - WI(i) * VR(j,i+1)
enddo
energy_loc(i+1) = WI(i)
do j = 1, n
V_loc(j,i+1) = WR(i) * VR(j,i+1) + WI(i) * VR(j,i)
enddo
i = i + 2
else
energy_loc(i) = WR(i)
do j = 1, n
V_loc(j,i) = VR(j,i)
enddo
i = i + 1
endif
enddo
deallocate(WR, WI, VR)
! ordering
! do j = 1, n
! write(444, '(100(1X, F16.10))') (V_loc(j,i), i=1,5)
! enddo
allocate( iorder(n) )
do i = 1, n
iorder(i) = i
enddo
call dsort(energy_loc, iorder, n)
do i = 1, n
energy(i) = energy_loc(i)
do j = 1, n
V(j,i) = V_loc(j,iorder(i))
enddo
enddo
deallocate(iorder)
! do j = 1, n
! write(445, '(100(1X, F16.10))') (V_loc(j,i), i=1,5)
! enddo
deallocate(V_loc, energy_loc)
end subroutine diag_nonsym_right
! ---