9
1
mirror of https://github.com/QuantumPackage/qp2.git synced 2025-01-08 03:12:59 +01:00

Merge remote-tracking branch 'origin/dev' into cleaning_dft

This commit is contained in:
Emmanuel Giner 2020-03-30 18:34:03 +02:00
commit 063720a6b7
21 changed files with 1574 additions and 171 deletions

15
REPLACE
View File

@ -1,5 +1,4 @@
# This file contains all the renamings that occured between qp1 and qp2. # This file contains all the renamings that occured between qp1 and qp2.
#
qp_name aa_operator_bielec -r aa_operator_two_e qp_name aa_operator_bielec -r aa_operator_two_e
qp_name ac_operator_bielec -r ac_operator_two_e qp_name ac_operator_bielec -r ac_operator_two_e
qp_name ao_bi_elec_integral_alpha -r ao_two_e_integral_alpha qp_name ao_bi_elec_integral_alpha -r ao_two_e_integral_alpha
@ -222,6 +221,11 @@ qp_name potential_sr_xc_beta_ao_lda --rename=potential_xc_beta_ao_sr_lda
qp_name potential_sr_xc_beta_ao_lda --rename=potential_xc_beta_ao_sr_lda qp_name potential_sr_xc_beta_ao_lda --rename=potential_xc_beta_ao_sr_lda
qp_name potential_sr_xc_beta_ao_pbe --rename=potential_xc_beta_ao_sr_pbe qp_name potential_sr_xc_beta_ao_pbe --rename=potential_xc_beta_ao_sr_pbe
qp_name potential_sr_xc_beta_ao_pbe --rename=potential_xc_beta_ao_sr_pbe qp_name potential_sr_xc_beta_ao_pbe --rename=potential_xc_beta_ao_sr_pbe
qp_name disk_access_nuclear_repulsion --rename=io_nuclear_repulsion
qp_name nucl_elec_ref_bitmask_energy -r ref_bitmask_n_e_energy
qp_name ref_bitmask_e_n_energy -r ref_bitmask_n_e_energy
qp_name read_ao_integrals_e_n -r read_ao_integrals_n_e
qp_name write_ao_integrals_e_n -r write_ao_integrals_n_e
qp_name psi_energy_bielec -r psi_energy_two_e qp_name psi_energy_bielec -r psi_energy_two_e
qp_name read_ao_integrals --rename="read_ao_two_e_integrals" qp_name read_ao_integrals --rename="read_ao_two_e_integrals"
qp_name read_ao_integrals --rename=read_ao_two_e_integrals qp_name read_ao_integrals --rename=read_ao_two_e_integrals
@ -240,3 +244,12 @@ qp_name write_ao_integrals --rename=write_ao_two_e_integrals
qp_name write_mo_integrals_erf -r write_mo_two_e_integrals_erf qp_name write_mo_integrals_erf -r write_mo_two_e_integrals_erf
qp_name write_mo_integrals --rename="write_mo_two_e_integrals" qp_name write_mo_integrals --rename="write_mo_two_e_integrals"
qp_name write_mo_integrals --rename=write_mo_two_e_integrals qp_name write_mo_integrals --rename=write_mo_two_e_integrals
qp_name io_mo_integrals_e_n -r io_mo_integrals_n_e
qp_name write_mo_integrals_e_n -r write_mo_integrals_n_e
qp_name read_mo_integrals_e_n -r read_mo_integrals_n_e
qp_name mo_integrals_e_n -r mo_integrals_n_e
qp_name ezfio_get_mo_one_e_ints_mo_integrals_e_n -r ezfio_get_mo_one_e_ints_mo_integrals_n_e
qp_name ezfio_set_mo_one_e_ints_mo_integrals_e_n -r ezfio_set_mo_one_e_ints_mo_integrals_n_e
qp_name ezfio_has_mo_one_e_ints_mo_integrals_e_n -r ezfio_has_mo_one_e_ints_mo_integrals_n_e
qp_name ezfio_has_mo_one_e_ints_io_mo_integrals_e_n -r ezfio_has_mo_one_e_ints_io_mo_integrals_n_e
qp_name ezfio_get_mo_one_e_ints_io_mo_integrals_e_n -r ezfio_get_mo_one_e_ints_io_mo_integrals_n_e

View File

@ -10,6 +10,7 @@ module Mo_basis : sig
mo_class : MO_class.t array; mo_class : MO_class.t array;
mo_occ : MO_occ.t array; mo_occ : MO_occ.t array;
mo_coef : (MO_coef.t array) array; mo_coef : (MO_coef.t array) array;
mo_coef_imag : (MO_coef.t array) array option;
ao_md5 : MD5.t; ao_md5 : MD5.t;
} [@@deriving sexp] } [@@deriving sexp]
val read : unit -> t option val read : unit -> t option
@ -24,6 +25,7 @@ end = struct
mo_class : MO_class.t array; mo_class : MO_class.t array;
mo_occ : MO_occ.t array; mo_occ : MO_occ.t array;
mo_coef : (MO_coef.t array) array; mo_coef : (MO_coef.t array) array;
mo_coef_imag : (MO_coef.t array) array option;
ao_md5 : MD5.t; ao_md5 : MD5.t;
} [@@deriving sexp] } [@@deriving sexp]
let get_default = Qpackage.get_ezfio_default "mo_basis" let get_default = Qpackage.get_ezfio_default "mo_basis"
@ -37,11 +39,18 @@ end = struct
let reorder b ordering = let reorder b ordering =
{ b with mo_coef = { b with
Array.map (fun mo -> mo_coef = Array.map (fun mo ->
Array.init (Array.length mo) Array.init (Array.length mo)
(fun i -> mo.(ordering.(i))) (fun i -> mo.(ordering.(i)))
) b.mo_coef ) b.mo_coef ;
mo_coef_imag =
match b.mo_coef_imag with
| None -> None
| Some x -> Some ( Array.map (fun mo ->
Array.init (Array.length mo)
(fun i -> mo.(ordering.(i)))
) x )
} }
let read_ao_md5 () = let read_ao_md5 () =
@ -121,6 +130,20 @@ end = struct
Array.sub a (j*ao_num) (ao_num) Array.sub a (j*ao_num) (ao_num)
) )
let read_mo_coef_imag () =
if Ezfio.has_mo_basis_mo_coef_imag () then
let a =
Ezfio.get_mo_basis_mo_coef_imag ()
|> Ezfio.flattened_ezfio
|> Array.map MO_coef.of_float
in
let mo_num = read_mo_num () |> MO_number.to_int in
let ao_num = (Array.length a)/mo_num in
Some (Array.init mo_num (fun j ->
Array.sub a (j*ao_num) (ao_num)
) )
else None
let read () = let read () =
if (Ezfio.has_mo_basis_mo_num ()) then if (Ezfio.has_mo_basis_mo_num ()) then
@ -130,6 +153,7 @@ end = struct
mo_class = read_mo_class (); mo_class = read_mo_class ();
mo_occ = read_mo_occ (); mo_occ = read_mo_occ ();
mo_coef = read_mo_coef (); mo_coef = read_mo_coef ();
mo_coef_imag = read_mo_coef_imag ();
ao_md5 = read_ao_md5 (); ao_md5 = read_ao_md5 ();
} }
else else
@ -137,6 +161,7 @@ end = struct
let mo_coef_to_string mo_coef = let mo_coef_to_string mo_coef =
(*TODO : add imaginary part here *)
let ao_num = Array.length mo_coef.(0) let ao_num = Array.length mo_coef.(0)
and mo_num = Array.length mo_coef in and mo_num = Array.length mo_coef in
let rec print_five imin imax = let rec print_five imin imax =
@ -222,6 +247,7 @@ MO coefficients ::
let to_string b = let to_string b =
(*TODO : add imaginary part here *)
Printf.sprintf " Printf.sprintf "
mo_label = \"%s\" mo_label = \"%s\"
mo_num = %s mo_num = %s
@ -244,12 +270,12 @@ mo_coef = %s
let write_mo_num n = let write_mo_num n =
MO_number.to_int n MO_number.to_int n
|> Ezfio.set_mo_basis_mo_num |> Ezfio.set_mo_basis_mo_num
;;
let write_mo_label a = let write_mo_label a =
MO_label.to_string a MO_label.to_string a
|> Ezfio.set_mo_basis_mo_label |> Ezfio.set_mo_basis_mo_label
;;
let write_mo_class a = let write_mo_class a =
let mo_num = Array.length a in let mo_num = Array.length a in
@ -257,7 +283,7 @@ mo_coef = %s
|> Array.to_list |> Array.to_list
in Ezfio.ezfio_array_of_list ~rank:1 ~dim:[| mo_num |] ~data in Ezfio.ezfio_array_of_list ~rank:1 ~dim:[| mo_num |] ~data
|> Ezfio.set_mo_basis_mo_class |> Ezfio.set_mo_basis_mo_class
;;
let write_mo_occ a = let write_mo_occ a =
let mo_num = Array.length a in let mo_num = Array.length a in
@ -265,12 +291,12 @@ mo_coef = %s
|> Array.to_list |> Array.to_list
in Ezfio.ezfio_array_of_list ~rank:1 ~dim:[| mo_num |] ~data in Ezfio.ezfio_array_of_list ~rank:1 ~dim:[| mo_num |] ~data
|> Ezfio.set_mo_basis_mo_occ |> Ezfio.set_mo_basis_mo_occ
;;
let write_md5 a = let write_md5 a =
MD5.to_string a MD5.to_string a
|> Ezfio.set_mo_basis_ao_md5 |> Ezfio.set_mo_basis_ao_md5
;;
let write_mo_coef a = let write_mo_coef a =
let mo_num = Array.length a in let mo_num = Array.length a in
@ -282,7 +308,24 @@ mo_coef = %s
|> List.concat |> List.concat
in Ezfio.ezfio_array_of_list ~rank:2 ~dim:[| ao_num ; mo_num |] ~data in Ezfio.ezfio_array_of_list ~rank:2 ~dim:[| ao_num ; mo_num |] ~data
|> Ezfio.set_mo_basis_mo_coef |> Ezfio.set_mo_basis_mo_coef
;;
let write_mo_coef_imag a =
match a with
| None -> ()
| Some a ->
begin
let mo_num = Array.length a in
let ao_num = Array.length a.(0) in
let data =
Array.map (fun mo -> Array.map MO_coef.to_float mo
|> Array.to_list) a
|> Array.to_list
|> List.concat
in Ezfio.ezfio_array_of_list ~rank:2 ~dim:[| ao_num ; mo_num |] ~data
|> Ezfio.set_mo_basis_mo_coef_imag
end
let write let write
{ mo_num : MO_number.t ; { mo_num : MO_number.t ;
@ -290,6 +333,7 @@ mo_coef = %s
mo_class : MO_class.t array; mo_class : MO_class.t array;
mo_occ : MO_occ.t array; mo_occ : MO_occ.t array;
mo_coef : (MO_coef.t array) array; mo_coef : (MO_coef.t array) array;
mo_coef_imag : (MO_coef.t array) array option;
ao_md5 : MD5.t; ao_md5 : MD5.t;
} = } =
write_mo_num mo_num; write_mo_num mo_num;
@ -297,8 +341,9 @@ mo_coef = %s
write_mo_class mo_class; write_mo_class mo_class;
write_mo_occ mo_occ; write_mo_occ mo_occ;
write_mo_coef mo_coef; write_mo_coef mo_coef;
write_mo_coef_imag mo_coef_imag;
write_md5 ao_md5 write_md5 ao_md5
;;
end end

View File

@ -1,10 +1,16 @@
[ao_integrals_e_n] [ao_integrals_n_e]
type: double precision type: double precision
doc: Nucleus-electron integrals in |AO| basis set doc: Nucleus-electron integrals in |AO| basis set
size: (ao_basis.ao_num,ao_basis.ao_num) size: (ao_basis.ao_num,ao_basis.ao_num)
interface: ezfio interface: ezfio
[io_ao_integrals_e_n] [ao_integrals_n_e_imag]
type: double precision
doc: Imaginary part of the nucleus-electron integrals in |AO| basis set
size: (ao_basis.ao_num,ao_basis.ao_num)
interface: ezfio
[io_ao_integrals_n_e]
type: Disk_access type: Disk_access
doc: Read/Write |AO| nucleus-electron attraction integrals from/to disk [ Write | Read | None ] doc: Read/Write |AO| nucleus-electron attraction integrals from/to disk [ Write | Read | None ]
interface: ezfio,provider,ocaml interface: ezfio,provider,ocaml
@ -17,6 +23,12 @@ doc: Kinetic energy integrals in |AO| basis set
size: (ao_basis.ao_num,ao_basis.ao_num) size: (ao_basis.ao_num,ao_basis.ao_num)
interface: ezfio interface: ezfio
[ao_integrals_kinetic_imag]
type: double precision
doc: Imaginary part of the kinetic energy integrals in |AO| basis set
size: (ao_basis.ao_num,ao_basis.ao_num)
interface: ezfio
[io_ao_integrals_kinetic] [io_ao_integrals_kinetic]
type: Disk_access type: Disk_access
doc: Read/Write |AO| kinetic integrals from/to disk [ Write | Read | None ] doc: Read/Write |AO| kinetic integrals from/to disk [ Write | Read | None ]
@ -30,6 +42,12 @@ doc: Pseudopotential integrals in |AO| basis set
size: (ao_basis.ao_num,ao_basis.ao_num) size: (ao_basis.ao_num,ao_basis.ao_num)
interface: ezfio interface: ezfio
[ao_integrals_pseudo_imag]
type: double precision
doc: Imaginary part of the pseudopotential integrals in |AO| basis set
size: (ao_basis.ao_num,ao_basis.ao_num)
interface: ezfio
[io_ao_integrals_pseudo] [io_ao_integrals_pseudo]
type: Disk_access type: Disk_access
doc: Read/Write |AO| pseudopotential integrals from/to disk [ Write | Read | None ] doc: Read/Write |AO| pseudopotential integrals from/to disk [ Write | Read | None ]
@ -43,6 +61,12 @@ doc: Overlap integrals in |AO| basis set
size: (ao_basis.ao_num,ao_basis.ao_num) size: (ao_basis.ao_num,ao_basis.ao_num)
interface: ezfio interface: ezfio
[ao_integrals_overlap_imag]
type: double precision
doc: Imaginary part of the overlap integrals in |AO| basis set
size: (ao_basis.ao_num,ao_basis.ao_num)
interface: ezfio
[io_ao_integrals_overlap] [io_ao_integrals_overlap]
type: Disk_access type: Disk_access
doc: Read/Write |AO| overlap integrals from/to disk [ Write | Read | None ] doc: Read/Write |AO| overlap integrals from/to disk [ Write | Read | None ]
@ -56,6 +80,12 @@ doc: Combined integrals in |AO| basis set
size: (ao_basis.ao_num,ao_basis.ao_num) size: (ao_basis.ao_num,ao_basis.ao_num)
interface: ezfio interface: ezfio
[ao_one_e_integrals_imag]
type: double precision
doc: Imaginary part of the combined integrals in |AO| basis set
size: (ao_basis.ao_num,ao_basis.ao_num)
interface: ezfio
[io_ao_one_e_integrals] [io_ao_one_e_integrals]
type: Disk_access type: Disk_access
doc: Read/Write |AO| one-electron integrals from/to disk [ Write | Read | None ] doc: Read/Write |AO| one-electron integrals from/to disk [ Write | Read | None ]

View File

@ -27,3 +27,24 @@
END_PROVIDER END_PROVIDER
BEGIN_PROVIDER [ double precision, ao_one_e_integrals_imag,(ao_num,ao_num)]
implicit none
integer :: i,j,n,l
BEGIN_DOC
! One-electron Hamiltonian in the |AO| basis.
END_DOC
IF (read_ao_one_e_integrals) THEN
call ezfio_get_ao_one_e_ints_ao_one_e_integrals(ao_one_e_integrals_imag)
ELSE
print *, irp_here, ': Not yet implemented'
stop -1
ENDIF
IF (write_ao_one_e_integrals) THEN
call ezfio_set_ao_one_e_ints_ao_one_e_integrals(ao_one_e_integrals_imag)
print *, 'AO one-e integrals written to disk'
ENDIF
END_PROVIDER

View File

@ -70,6 +70,29 @@
END_PROVIDER END_PROVIDER
BEGIN_PROVIDER [ double precision, ao_overlap_imag, (ao_num, ao_num) ]
implicit none
BEGIN_DOC
! Imaginary part of the overlap
END_DOC
ao_overlap_imag = 0.d0
END_PROVIDER
BEGIN_PROVIDER [ complex*16, ao_overlap_complex, (ao_num, ao_num) ]
implicit none
BEGIN_DOC
! Overlap for complex AOs
END_DOC
integer :: i,j
do j=1,ao_num
do i=1,ao_num
ao_overlap_complex(i,j) = dcmplx( ao_overlap(i,j), ao_overlap_imag(i,j) )
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [ double precision, ao_overlap_abs,(ao_num,ao_num) ] BEGIN_PROVIDER [ double precision, ao_overlap_abs,(ao_num,ao_num) ]
implicit none implicit none
@ -86,44 +109,52 @@ BEGIN_PROVIDER [ double precision, ao_overlap_abs,(ao_num,ao_num) ]
double precision :: A_center(3), B_center(3) double precision :: A_center(3), B_center(3)
integer :: power_A(3), power_B(3) integer :: power_A(3), power_B(3)
double precision :: lower_exp_val, dx double precision :: lower_exp_val, dx
dim1=100 if (is_periodic) then
lower_exp_val = 40.d0 do j=1,ao_num
!$OMP PARALLEL DO SCHEDULE(GUIDED) & do i= 1,ao_num
!$OMP DEFAULT(NONE) & ao_overlap_abs(i,j)= cdabs(ao_overlap_complex(i,j))
!$OMP PRIVATE(A_center,B_center,power_A,power_B,& enddo
!$OMP overlap_x,overlap_y, overlap_z, overlap, &
!$OMP alpha, beta,i,j,dx) &
!$OMP SHARED(nucl_coord,ao_power,ao_prim_num, &
!$OMP ao_overlap_abs,ao_num,ao_coef_normalized_ordered_transp,ao_nucl, &
!$OMP ao_expo_ordered_transp,dim1,lower_exp_val)
do j=1,ao_num
A_center(1) = nucl_coord( ao_nucl(j), 1 )
A_center(2) = nucl_coord( ao_nucl(j), 2 )
A_center(3) = nucl_coord( ao_nucl(j), 3 )
power_A(1) = ao_power( j, 1 )
power_A(2) = ao_power( j, 2 )
power_A(3) = ao_power( j, 3 )
do i= 1,ao_num
ao_overlap_abs(i,j)= 0.d0
B_center(1) = nucl_coord( ao_nucl(i), 1 )
B_center(2) = nucl_coord( ao_nucl(i), 2 )
B_center(3) = nucl_coord( ao_nucl(i), 3 )
power_B(1) = ao_power( i, 1 )
power_B(2) = ao_power( i, 2 )
power_B(3) = ao_power( i, 3 )
do n = 1,ao_prim_num(j)
alpha = ao_expo_ordered_transp(n,j)
do l = 1, ao_prim_num(i)
beta = ao_expo_ordered_transp(l,i)
call overlap_x_abs(A_center(1),B_center(1),alpha,beta,power_A(1),power_B(1),overlap_x,lower_exp_val,dx,dim1)
call overlap_x_abs(A_center(2),B_center(2),alpha,beta,power_A(2),power_B(2),overlap_y,lower_exp_val,dx,dim1)
call overlap_x_abs(A_center(3),B_center(3),alpha,beta,power_A(3),power_B(3),overlap_z,lower_exp_val,dx,dim1)
ao_overlap_abs(i,j) += abs(ao_coef_normalized_ordered_transp(n,j) * ao_coef_normalized_ordered_transp(l,i)) * overlap_x * overlap_y * overlap_z
enddo
enddo enddo
enddo else
enddo dim1=100
!$OMP END PARALLEL DO lower_exp_val = 40.d0
!$OMP PARALLEL DO SCHEDULE(GUIDED) &
!$OMP DEFAULT(NONE) &
!$OMP PRIVATE(A_center,B_center,power_A,power_B, &
!$OMP overlap_x,overlap_y, overlap_z, overlap, &
!$OMP alpha, beta,i,j,dx) &
!$OMP SHARED(nucl_coord,ao_power,ao_prim_num, &
!$OMP ao_overlap_abs,ao_num,ao_coef_normalized_ordered_transp,ao_nucl,&
!$OMP ao_expo_ordered_transp,dim1,lower_exp_val)
do j=1,ao_num
A_center(1) = nucl_coord( ao_nucl(j), 1 )
A_center(2) = nucl_coord( ao_nucl(j), 2 )
A_center(3) = nucl_coord( ao_nucl(j), 3 )
power_A(1) = ao_power( j, 1 )
power_A(2) = ao_power( j, 2 )
power_A(3) = ao_power( j, 3 )
do i= 1,ao_num
ao_overlap_abs(i,j)= 0.d0
B_center(1) = nucl_coord( ao_nucl(i), 1 )
B_center(2) = nucl_coord( ao_nucl(i), 2 )
B_center(3) = nucl_coord( ao_nucl(i), 3 )
power_B(1) = ao_power( i, 1 )
power_B(2) = ao_power( i, 2 )
power_B(3) = ao_power( i, 3 )
do n = 1,ao_prim_num(j)
alpha = ao_expo_ordered_transp(n,j)
do l = 1, ao_prim_num(i)
beta = ao_expo_ordered_transp(l,i)
call overlap_x_abs(A_center(1),B_center(1),alpha,beta,power_A(1),power_B(1),overlap_x,lower_exp_val,dx,dim1)
call overlap_x_abs(A_center(2),B_center(2),alpha,beta,power_A(2),power_B(2),overlap_y,lower_exp_val,dx,dim1)
call overlap_x_abs(A_center(3),B_center(3),alpha,beta,power_A(3),power_B(3),overlap_z,lower_exp_val,dx,dim1)
ao_overlap_abs(i,j) += abs(ao_coef_normalized_ordered_transp(n,j) * ao_coef_normalized_ordered_transp(l,i)) * overlap_x * overlap_y * overlap_z
enddo
enddo
enddo
enddo
!$OMP END PARALLEL DO
endif
END_PROVIDER END_PROVIDER
BEGIN_PROVIDER [ double precision, S_inv,(ao_num,ao_num) ] BEGIN_PROVIDER [ double precision, S_inv,(ao_num,ao_num) ]
@ -134,6 +165,15 @@ BEGIN_PROVIDER [ double precision, S_inv,(ao_num,ao_num) ]
call get_pseudo_inverse(ao_overlap,size(ao_overlap,1),ao_num,ao_num,S_inv,size(S_inv,1)) call get_pseudo_inverse(ao_overlap,size(ao_overlap,1),ao_num,ao_num,S_inv,size(S_inv,1))
END_PROVIDER END_PROVIDER
BEGIN_PROVIDER [ complex*16, S_inv_complex,(ao_num,ao_num) ]
implicit none
BEGIN_DOC
! Inverse of the overlap matrix
END_DOC
call get_pseudo_inverse_complex(ao_overlap_complex, &
size(ao_overlap_complex,1),ao_num,ao_num,S_inv_complex,size(S_inv_complex,1))
END_PROVIDER
BEGIN_PROVIDER [ double precision, S_half_inv, (AO_num,AO_num) ] BEGIN_PROVIDER [ double precision, S_half_inv, (AO_num,AO_num) ]
BEGIN_DOC BEGIN_DOC

View File

@ -149,3 +149,25 @@ BEGIN_PROVIDER [double precision, ao_kinetic_integrals, (ao_num,ao_num)]
endif endif
END_PROVIDER END_PROVIDER
BEGIN_PROVIDER [double precision, ao_kinetic_integrals_imag, (ao_num,ao_num)]
implicit none
BEGIN_DOC
! Kinetic energy integrals in the |AO| basis.
!
! $\langle \chi_i |\hat{T}| \chi_j \rangle$
!
END_DOC
integer :: i,j,k,l
if (read_ao_integrals_kinetic) then
call ezfio_get_ao_one_e_ints_ao_integrals_kinetic(ao_kinetic_integrals_imag)
print *, 'AO kinetic integrals read from disk'
else
print *, irp_here, ': Not yet implemented'
endif
if (write_ao_integrals_kinetic) then
call ezfio_set_ao_one_e_ints_ao_integrals_kinetic(ao_kinetic_integrals_imag)
print *, 'AO kinetic integrals written to disk'
endif
END_PROVIDER

View File

@ -12,8 +12,8 @@ BEGIN_PROVIDER [ double precision, ao_integrals_n_e, (ao_num,ao_num)]
integer :: i,j,k,l,n_pt_in,m integer :: i,j,k,l,n_pt_in,m
double precision :: overlap_x,overlap_y,overlap_z,overlap,dx,NAI_pol_mult double precision :: overlap_x,overlap_y,overlap_z,overlap,dx,NAI_pol_mult
if (read_ao_integrals_e_n) then if (read_ao_integrals_n_e) then
call ezfio_get_ao_one_e_ints_ao_integrals_e_n(ao_integrals_n_e) call ezfio_get_ao_one_e_ints_ao_integrals_n_e(ao_integrals_n_e)
print *, 'AO N-e integrals read from disk' print *, 'AO N-e integrals read from disk'
else else
@ -76,13 +76,36 @@ BEGIN_PROVIDER [ double precision, ao_integrals_n_e, (ao_num,ao_num)]
!$OMP END DO !$OMP END DO
!$OMP END PARALLEL !$OMP END PARALLEL
endif endif
if (write_ao_integrals_e_n) then if (write_ao_integrals_n_e) then
call ezfio_set_ao_one_e_ints_ao_integrals_e_n(ao_integrals_n_e) call ezfio_set_ao_one_e_ints_ao_integrals_n_e(ao_integrals_n_e)
print *, 'AO N-e integrals written to disk' print *, 'AO N-e integrals written to disk'
endif endif
END_PROVIDER END_PROVIDER
BEGIN_PROVIDER [ double precision, ao_integrals_n_e_imag, (ao_num,ao_num)]
BEGIN_DOC
! Nucleus-electron interaction, in the |AO| basis set.
!
! :math:`\langle \chi_i | -\sum_A \frac{1}{|r-R_A|} | \chi_j \rangle`
END_DOC
implicit none
double precision :: alpha, beta, gama, delta
integer :: num_A,num_B
double precision :: A_center(3),B_center(3),C_center(3)
integer :: power_A(3),power_B(3)
integer :: i,j,k,l,n_pt_in,m
double precision :: overlap_x,overlap_y,overlap_z,overlap,dx,NAI_pol_mult
if (read_ao_integrals_n_e) then
call ezfio_get_ao_one_e_ints_ao_integrals_n_e_imag(ao_integrals_n_e_imag)
print *, 'AO N-e integrals read from disk'
else
print *, irp_here, ': Not yet implemented'
endif
END_PROVIDER
BEGIN_PROVIDER [ double precision, ao_integrals_n_e_per_atom, (ao_num,ao_num,nucl_num)] BEGIN_PROVIDER [ double precision, ao_integrals_n_e_per_atom, (ao_num,ao_num,nucl_num)]
BEGIN_DOC BEGIN_DOC
! Nucleus-electron interaction in the |AO| basis set, per atom A. ! Nucleus-electron interaction in the |AO| basis set, per atom A.
@ -166,7 +189,7 @@ double precision function NAI_pol_mult(A_center,B_center,power_A,power_B,alpha,b
double precision :: P_center(3) double precision :: P_center(3)
double precision :: d(0:n_pt_in),pouet,coeff,rho,dist,const,pouet_2,p,p_inv,factor double precision :: d(0:n_pt_in),pouet,coeff,rho,dist,const,pouet_2,p,p_inv,factor
double precision :: I_n_special_exact,integrate_bourrin,I_n_bibi double precision :: I_n_special_exact,integrate_bourrin,I_n_bibi
double precision :: V_e_n,const_factor,dist_integral,tmp double precision :: V_n_e,const_factor,dist_integral,tmp
double precision :: accu,epsilo,rint double precision :: accu,epsilo,rint
integer :: n_pt_out,lmax integer :: n_pt_out,lmax
include 'utils/constants.include.F' include 'utils/constants.include.F'
@ -178,7 +201,7 @@ double precision function NAI_pol_mult(A_center,B_center,power_A,power_B,alpha,b
(A_center(3)/=C_center(3))) then (A_center(3)/=C_center(3))) then
continue continue
else else
NAI_pol_mult = V_e_n(power_A(1),power_A(2),power_A(3), & NAI_pol_mult = V_n_e(power_A(1),power_A(2),power_A(3), &
power_B(1),power_B(2),power_B(3),alpha,beta) power_B(1),power_B(2),power_B(3),alpha,beta)
return return
endif endif
@ -476,7 +499,7 @@ recursive subroutine I_x2_pol_mult_one_e(c,R1x,R1xp,R2x,d,nd,dim)
endif endif
end end
double precision function V_e_n(a_x,a_y,a_z,b_x,b_y,b_z,alpha,beta) double precision function V_n_e(a_x,a_y,a_z,b_x,b_y,b_z,alpha,beta)
implicit none implicit none
BEGIN_DOC BEGIN_DOC
! Primitve nuclear attraction between the two primitves centered on the same atom. ! Primitve nuclear attraction between the two primitves centered on the same atom.
@ -489,9 +512,9 @@ double precision function V_e_n(a_x,a_y,a_z,b_x,b_y,b_z,alpha,beta)
double precision :: alpha,beta double precision :: alpha,beta
double precision :: V_r, V_phi, V_theta double precision :: V_r, V_phi, V_theta
if(iand((a_x+b_x),1)==1.or.iand(a_y+b_y,1)==1.or.iand((a_z+b_z),1)==1)then if(iand((a_x+b_x),1)==1.or.iand(a_y+b_y,1)==1.or.iand((a_z+b_z),1)==1)then
V_e_n = 0.d0 V_n_e = 0.d0
else else
V_e_n = V_r(a_x+b_x+a_y+b_y+a_z+b_z+1,alpha+beta) & V_n_e = V_r(a_x+b_x+a_y+b_y+a_z+b_z+1,alpha+beta) &
* V_phi(a_x+b_x,a_y+b_y) & * V_phi(a_x+b_x,a_y+b_y) &
* V_theta(a_z+b_z,a_x+b_x+a_y+b_y+1) * V_theta(a_z+b_z,a_x+b_x+a_y+b_y+1)
endif endif

View File

@ -21,7 +21,7 @@ subroutine two_e_integrals_index(i,j,k,l,i1)
implicit none implicit none
BEGIN_DOC BEGIN_DOC
! Gives a unique index for i,j,k,l using permtuation symmetry. ! Gives a unique index for i,j,k,l using permtuation symmetry.
! i <-> k, j <-> l, and (i,k) <-> (j,l) ! i <-> k, j <-> l, and (i,k) <-> (j,l) for non-periodic systems
END_DOC END_DOC
integer, intent(in) :: i,j,k,l integer, intent(in) :: i,j,k,l
integer(key_kind), intent(out) :: i1 integer(key_kind), intent(out) :: i1
@ -37,6 +37,8 @@ subroutine two_e_integrals_index(i,j,k,l,i1)
i1 = i1+shiftr(i2*i2-i2,1) i1 = i1+shiftr(i2*i2-i2,1)
end end
subroutine two_e_integrals_index_reverse(i,j,k,l,i1) subroutine two_e_integrals_index_reverse(i,j,k,l,i1)
use map_module use map_module
implicit none implicit none
@ -126,6 +128,155 @@ subroutine two_e_integrals_index_reverse(i,j,k,l,i1)
end end
subroutine ao_idx2_sq(i,j,ij)
implicit none
integer, intent(in) :: i,j
integer, intent(out) :: ij
if (i<j) then
ij=(j-1)*(j-1)+2*i-mod(j+1,2)
else if (i>j) then
ij=(i-1)*(i-1)+2*j-mod(i,2)
else
ij=i*i
endif
end
subroutine idx2_tri_int(i,j,ij)
implicit none
integer, intent(in) :: i,j
integer, intent(out) :: ij
integer :: p,q
p = max(i,j)
q = min(i,j)
ij = q+ishft(p*p-p,-1)
end
subroutine ao_idx2_tri_key(i,j,ij)
use map_module
implicit none
integer, intent(in) :: i,j
integer(key_kind), intent(out) :: ij
integer(key_kind) :: p,q
p = max(i,j)
q = min(i,j)
ij = q+ishft(p*p-p,-1)
end
subroutine two_e_integrals_index_2fold(i,j,k,l,i1)
use map_module
implicit none
integer, intent(in) :: i,j,k,l
integer(key_kind), intent(out) :: i1
integer :: ik,jl
call ao_idx2_sq(i,k,ik)
call ao_idx2_sq(j,l,jl)
call ao_idx2_tri_key(ik,jl,i1)
end
subroutine ao_idx2_sq_rev(i,k,ik)
BEGIN_DOC
! reverse square compound index
END_DOC
! p = ceiling(dsqrt(dble(ik)))
! q = ceiling(0.5d0*(dble(ik)-dble((p-1)*(p-1))))
! if (mod(ik,2)==0) then
! k=p
! i=q
! else
! i=p
! k=q
! endif
integer, intent(in) :: ik
integer, intent(out) :: i,k
integer :: pq(0:1),i1,i2
pq(0) = ceiling(dsqrt(dble(ik)))
pq(1) = ceiling(0.5d0*(dble(ik)-dble((pq(0)-1)*(pq(0)-1))))
i1=mod(ik,2)
i2=mod(ik+1,2)
k=pq(i1)
i=pq(i2)
end
subroutine ao_idx2_tri_rev_key(i,k,ik)
use map_module
BEGIN_DOC
!return i<=k
END_DOC
integer(key_kind), intent(in) :: ik
integer, intent(out) :: i,k
integer(key_kind) :: tmp_k
k = ceiling(0.5d0*(dsqrt(8.d0*dble(ik)+1.d0)-1.d0))
tmp_k = k
i = int(ik - ishft(tmp_k*tmp_k-tmp_k,-1))
end
subroutine idx2_tri_rev_int(i,k,ik)
BEGIN_DOC
!return i<=k
END_DOC
integer, intent(in) :: ik
integer, intent(out) :: i,k
k = ceiling(0.5d0*(dsqrt(8.d0*dble(ik)+1.d0)-1.d0))
i = int(ik - ishft(k*k-k,-1))
end
subroutine two_e_integrals_index_reverse_2fold(i,j,k,l,i1)
use map_module
implicit none
integer, intent(out) :: i(2),j(2),k(2),l(2)
integer(key_kind), intent(in) :: i1
integer(key_kind) :: i0
integer :: i2,i3
i = 0
call ao_idx2_tri_rev_key(i3,i2,i1)
call ao_idx2_sq_rev(j(1),l(1),i2)
call ao_idx2_sq_rev(i(1),k(1),i3)
!ijkl
i(2) = j(1) !jilk
j(2) = i(1)
k(2) = l(1)
l(2) = k(1)
! i(3) = k(1) !klij complex conjugate
! j(3) = l(1)
! k(3) = i(1)
! l(3) = j(1)
!
! i(4) = l(1) !lkji complex conjugate
! j(4) = k(1)
! k(4) = j(1)
! l(4) = i(1)
integer :: ii
if ( (i(1)==i(2)).and. &
(j(1)==j(2)).and. &
(k(1)==k(2)).and. &
(l(1)==l(2)) ) then
i(2) = 0
endif
! This has been tested with up to 1000 AOs, and all the reverse indices are
! correct ! We can remove the test
! do ii=1,2
! if (i(ii) /= 0) then
! call two_e_integrals_index_2fold(i(ii),j(ii),k(ii),l(ii),i0)
! if (i1 /= i0) then
! print *, i1, i0
! print *, i(ii), j(ii), k(ii), l(ii)
! stop 'two_e_integrals_index_reverse_2fold failed'
! endif
! endif
! enddo
end
BEGIN_PROVIDER [ integer, ao_integrals_cache_min ] BEGIN_PROVIDER [ integer, ao_integrals_cache_min ]
&BEGIN_PROVIDER [ integer, ao_integrals_cache_max ] &BEGIN_PROVIDER [ integer, ao_integrals_cache_max ]
implicit none implicit none
@ -144,28 +295,30 @@ BEGIN_PROVIDER [ double precision, ao_integrals_cache, (0:64*64*64*64) ]
END_DOC END_DOC
PROVIDE ao_two_e_integrals_in_map PROVIDE ao_two_e_integrals_in_map
integer :: i,j,k,l,ii integer :: i,j,k,l,ii
integer(key_kind) :: idx integer(key_kind) :: idx, idx2
real(integral_kind) :: integral real(integral_kind) :: integral
!$OMP PARALLEL DO PRIVATE (i,j,k,l,idx,ii,integral) real(integral_kind) :: tmp_re, tmp_im
do l=ao_integrals_cache_min,ao_integrals_cache_max integer(key_kind) :: idx_re,idx_im
do k=ao_integrals_cache_min,ao_integrals_cache_max
do j=ao_integrals_cache_min,ao_integrals_cache_max
do i=ao_integrals_cache_min,ao_integrals_cache_max
!DIR$ FORCEINLINE
call two_e_integrals_index(i,j,k,l,idx)
!DIR$ FORCEINLINE
call map_get(ao_integrals_map,idx,integral)
ii = l-ao_integrals_cache_min
ii = ior( shiftl(ii,6), k-ao_integrals_cache_min)
ii = ior( shiftl(ii,6), j-ao_integrals_cache_min)
ii = ior( shiftl(ii,6), i-ao_integrals_cache_min)
ao_integrals_cache(ii) = integral
enddo
enddo
enddo
enddo
!$OMP END PARALLEL DO
!$OMP PARALLEL DO PRIVATE (i,j,k,l,idx,ii,integral)
do l=ao_integrals_cache_min,ao_integrals_cache_max
do k=ao_integrals_cache_min,ao_integrals_cache_max
do j=ao_integrals_cache_min,ao_integrals_cache_max
do i=ao_integrals_cache_min,ao_integrals_cache_max
!DIR$ FORCEINLINE
call two_e_integrals_index(i,j,k,l,idx)
!DIR$ FORCEINLINE
call map_get(ao_integrals_map,idx,integral)
ii = l-ao_integrals_cache_min
ii = ior( shiftl(ii,6), k-ao_integrals_cache_min)
ii = ior( shiftl(ii,6), j-ao_integrals_cache_min)
ii = ior( shiftl(ii,6), i-ao_integrals_cache_min)
ao_integrals_cache(ii) = integral
enddo
enddo
enddo
enddo
!$OMP END PARALLEL DO
END_PROVIDER END_PROVIDER
@ -207,6 +360,113 @@ double precision function get_ao_two_e_integral(i,j,k,l,map) result(result)
result = tmp result = tmp
end end
BEGIN_PROVIDER [ complex*16, ao_integrals_cache_periodic, (0:64*64*64*64) ]
implicit none
BEGIN_DOC
! Cache of AO integrals for fast access
END_DOC
PROVIDE ao_two_e_integrals_in_map
integer :: i,j,k,l,ii
integer(key_kind) :: idx1, idx2
real(integral_kind) :: tmp_re, tmp_im
integer(key_kind) :: idx_re,idx_im
complex(integral_kind) :: integral
!$OMP PARALLEL DO PRIVATE (i,j,k,l,idx1,idx2,tmp_re,tmp_im,idx_re,idx_im,ii,integral)
do l=ao_integrals_cache_min,ao_integrals_cache_max
do k=ao_integrals_cache_min,ao_integrals_cache_max
do j=ao_integrals_cache_min,ao_integrals_cache_max
do i=ao_integrals_cache_min,ao_integrals_cache_max
!DIR$ FORCEINLINE
call two_e_integrals_index_2fold(i,j,k,l,idx1)
!DIR$ FORCEINLINE
call two_e_integrals_index_2fold(k,l,i,j,idx2)
idx_re = min(idx1,idx2)
idx_im = max(idx1,idx2)
!DIR$ FORCEINLINE
call map_get(ao_integrals_map,idx_re,tmp_re)
if (idx_re /= idx_im) then
call map_get(ao_integrals_map,idx_im,tmp_im)
if (idx1 < idx2) then
integral = dcmplx(tmp_re,tmp_im)
else
integral = dcmplx(tmp_re,-tmp_im)
endif
else
tmp_im = 0.d0
integral = dcmplx(tmp_re,tmp_im)
endif
ii = l-ao_integrals_cache_min
ii = ior( shiftl(ii,6), k-ao_integrals_cache_min)
ii = ior( shiftl(ii,6), j-ao_integrals_cache_min)
ii = ior( shiftl(ii,6), i-ao_integrals_cache_min)
ao_integrals_cache_periodic(ii) = integral
enddo
enddo
enddo
enddo
!$OMP END PARALLEL DO
END_PROVIDER
complex*16 function get_ao_two_e_integral_periodic(i,j,k,l,map) result(result)
use map_module
implicit none
BEGIN_DOC
! Gets one AO bi-electronic integral from the AO map
END_DOC
integer, intent(in) :: i,j,k,l
integer(key_kind) :: idx1,idx2
real(integral_kind) :: tmp_re, tmp_im
integer(key_kind) :: idx_re,idx_im
type(map_type), intent(inout) :: map
integer :: ii
complex(integral_kind) :: tmp
PROVIDE ao_two_e_integrals_in_map ao_integrals_cache_periodic ao_integrals_cache_min
!DIR$ FORCEINLINE
if (ao_overlap_abs(i,k)*ao_overlap_abs(j,l) < ao_integrals_threshold ) then
tmp = (0.d0,0.d0)
else if (ao_two_e_integral_schwartz(i,k)*ao_two_e_integral_schwartz(j,l) < ao_integrals_threshold) then
tmp = (0.d0,0.d0)
else
ii = l-ao_integrals_cache_min
ii = ior(ii, k-ao_integrals_cache_min)
ii = ior(ii, j-ao_integrals_cache_min)
ii = ior(ii, i-ao_integrals_cache_min)
if (iand(ii, -64) /= 0) then
!DIR$ FORCEINLINE
call two_e_integrals_index_2fold(i,j,k,l,idx1)
!DIR$ FORCEINLINE
call two_e_integrals_index_2fold(k,l,i,j,idx2)
idx_re = min(idx1,idx2)
idx_im = max(idx1,idx2)
!DIR$ FORCEINLINE
call map_get(ao_integrals_map,idx_re,tmp_re)
if (idx_re /= idx_im) then
call map_get(ao_integrals_map,idx_im,tmp_im)
if (idx1 < idx2) then
tmp = dcmplx(tmp_re,tmp_im)
else
tmp = dcmplx(tmp_re,-tmp_im)
endif
else
tmp_im = 0.d0
tmp = dcmplx(tmp_re,tmp_im)
endif
else
ii = l-ao_integrals_cache_min
ii = ior( shiftl(ii,6), k-ao_integrals_cache_min)
ii = ior( shiftl(ii,6), j-ao_integrals_cache_min)
ii = ior( shiftl(ii,6), i-ao_integrals_cache_min)
tmp = ao_integrals_cache_periodic(ii)
endif
result = tmp
endif
end
subroutine get_ao_two_e_integrals(j,k,l,sze,out_val) subroutine get_ao_two_e_integrals(j,k,l,sze,out_val)
use map_module use map_module
@ -237,6 +497,36 @@ subroutine get_ao_two_e_integrals(j,k,l,sze,out_val)
end end
subroutine get_ao_two_e_integrals_periodic(j,k,l,sze,out_val)
use map_module
BEGIN_DOC
! Gets multiple AO bi-electronic integral from the AO map .
! All i are retrieved for j,k,l fixed.
! physicist convention : <ij|kl>
END_DOC
implicit none
integer, intent(in) :: j,k,l, sze
complex(integral_kind), intent(out) :: out_val(sze)
integer :: i
integer(key_kind) :: hash
double precision :: thresh
PROVIDE ao_two_e_integrals_in_map ao_integrals_map
thresh = ao_integrals_threshold
if (ao_overlap_abs(j,l) < thresh) then
out_val = 0.d0
return
endif
double precision :: get_ao_two_e_integral
do i=1,sze
out_val(i) = get_ao_two_e_integral(i,j,k,l,ao_integrals_map)
enddo
end
subroutine get_ao_two_e_integrals_non_zero(j,k,l,sze,out_val,out_val_index,non_zero_int) subroutine get_ao_two_e_integrals_non_zero(j,k,l,sze,out_val,out_val_index,non_zero_int)
use map_module use map_module
implicit none implicit none
@ -407,81 +697,81 @@ subroutine insert_into_ao_integrals_map(n_integrals,buffer_i, buffer_values)
end end
subroutine dump_ao_integrals(filename) !subroutine dump_ao_integrals(filename)
use map_module ! use map_module
implicit none ! implicit none
BEGIN_DOC ! BEGIN_DOC
! Save to disk the |AO| integrals ! ! Save to disk the |AO| integrals
END_DOC ! END_DOC
character*(*), intent(in) :: filename ! character*(*), intent(in) :: filename
integer(cache_key_kind), pointer :: key(:) ! integer(cache_key_kind), pointer :: key(:)
real(integral_kind), pointer :: val(:) ! real(integral_kind), pointer :: val(:)
integer*8 :: i,j, n ! integer*8 :: i,j, n
if (.not.mpi_master) then ! if (.not.mpi_master) then
return ! return
endif ! endif
call ezfio_set_work_empty(.False.) ! call ezfio_set_work_empty(.False.)
open(unit=66,file=filename,FORM='unformatted') ! open(unit=66,file=filename,FORM='unformatted')
write(66) integral_kind, key_kind ! write(66) integral_kind, key_kind
write(66) ao_integrals_map%sorted, ao_integrals_map%map_size, & ! write(66) ao_integrals_map%sorted, ao_integrals_map%map_size, &
ao_integrals_map%n_elements ! ao_integrals_map%n_elements
do i=0_8,ao_integrals_map%map_size ! do i=0_8,ao_integrals_map%map_size
write(66) ao_integrals_map%map(i)%sorted, ao_integrals_map%map(i)%map_size,& ! write(66) ao_integrals_map%map(i)%sorted, ao_integrals_map%map(i)%map_size,&
ao_integrals_map%map(i)%n_elements ! ao_integrals_map%map(i)%n_elements
enddo ! enddo
do i=0_8,ao_integrals_map%map_size ! do i=0_8,ao_integrals_map%map_size
key => ao_integrals_map%map(i)%key ! key => ao_integrals_map%map(i)%key
val => ao_integrals_map%map(i)%value ! val => ao_integrals_map%map(i)%value
n = ao_integrals_map%map(i)%n_elements ! n = ao_integrals_map%map(i)%n_elements
write(66) (key(j), j=1,n), (val(j), j=1,n) ! write(66) (key(j), j=1,n), (val(j), j=1,n)
enddo ! enddo
close(66) ! close(66)
!
end !end
integer function load_ao_integrals(filename) !integer function load_ao_integrals(filename)
implicit none ! implicit none
BEGIN_DOC ! BEGIN_DOC
! Read from disk the |AO| integrals ! ! Read from disk the |AO| integrals
END_DOC ! END_DOC
character*(*), intent(in) :: filename ! character*(*), intent(in) :: filename
integer*8 :: i ! integer*8 :: i
integer(cache_key_kind), pointer :: key(:) ! integer(cache_key_kind), pointer :: key(:)
real(integral_kind), pointer :: val(:) ! real(integral_kind), pointer :: val(:)
integer :: iknd, kknd ! integer :: iknd, kknd
integer*8 :: n, j ! integer*8 :: n, j
load_ao_integrals = 1 ! load_ao_integrals = 1
open(unit=66,file=filename,FORM='unformatted',STATUS='UNKNOWN') ! open(unit=66,file=filename,FORM='unformatted',STATUS='UNKNOWN')
read(66,err=98,end=98) iknd, kknd ! read(66,err=98,end=98) iknd, kknd
if (iknd /= integral_kind) then ! if (iknd /= integral_kind) then
print *, 'Wrong integrals kind in file :', iknd ! print *, 'Wrong integrals kind in file :', iknd
stop 1 ! stop 1
endif ! endif
if (kknd /= key_kind) then ! if (kknd /= key_kind) then
print *, 'Wrong key kind in file :', kknd ! print *, 'Wrong key kind in file :', kknd
stop 1 ! stop 1
endif ! endif
read(66,err=98,end=98) ao_integrals_map%sorted, ao_integrals_map%map_size,& ! read(66,err=98,end=98) ao_integrals_map%sorted, ao_integrals_map%map_size,&
ao_integrals_map%n_elements ! ao_integrals_map%n_elements
do i=0_8, ao_integrals_map%map_size ! do i=0_8, ao_integrals_map%map_size
read(66,err=99,end=99) ao_integrals_map%map(i)%sorted, & ! read(66,err=99,end=99) ao_integrals_map%map(i)%sorted, &
ao_integrals_map%map(i)%map_size, ao_integrals_map%map(i)%n_elements ! ao_integrals_map%map(i)%map_size, ao_integrals_map%map(i)%n_elements
call cache_map_reallocate(ao_integrals_map%map(i),ao_integrals_map%map(i)%map_size) ! call cache_map_reallocate(ao_integrals_map%map(i),ao_integrals_map%map(i)%map_size)
enddo ! enddo
do i=0_8, ao_integrals_map%map_size ! do i=0_8, ao_integrals_map%map_size
key => ao_integrals_map%map(i)%key ! key => ao_integrals_map%map(i)%key
val => ao_integrals_map%map(i)%value ! val => ao_integrals_map%map(i)%value
n = ao_integrals_map%map(i)%n_elements ! n = ao_integrals_map%map(i)%n_elements
read(66,err=99,end=99) (key(j), j=1,n), (val(j), j=1,n) ! read(66,err=99,end=99) (key(j), j=1,n), (val(j), j=1,n)
enddo ! enddo
call map_sort(ao_integrals_map) ! call map_sort(ao_integrals_map)
load_ao_integrals = 0 ! load_ao_integrals = 0
return ! return
99 continue ! 99 continue
call map_deinit(ao_integrals_map) ! call map_deinit(ao_integrals_map)
98 continue ! 98 continue
stop 'Problem reading ao_integrals_map file in work/' ! stop 'Problem reading ao_integrals_map file in work/'
!
end !end
!

View File

@ -354,10 +354,10 @@ BEGIN_PROVIDER [ logical, ao_two_e_integrals_in_map ]
PROVIDE read_ao_two_e_integrals io_ao_two_e_integrals PROVIDE read_ao_two_e_integrals io_ao_two_e_integrals
if (read_ao_two_e_integrals) then if (read_ao_two_e_integrals) then
print*,'Reading the AO integrals' print*,'Reading the AO integrals'
call map_load_from_disk(trim(ezfio_filename)//'/work/ao_ints',ao_integrals_map) call map_load_from_disk(trim(ezfio_filename)//'/work/ao_ints',ao_integrals_map)
print*, 'AO integrals provided' print*, 'AO integrals provided'
ao_two_e_integrals_in_map = .True. ao_two_e_integrals_in_map = .True.
return return
endif endif
print*, 'Providing the AO integrals' print*, 'Providing the AO integrals'

View File

@ -3,7 +3,7 @@ BEGIN_PROVIDER [ double precision, mo_coef_begin_iteration, (ao_num,mo_num) ]
BEGIN_DOC BEGIN_DOC
! Void provider to store the coefficients of the |MO| basis at the beginning of the SCF iteration ! Void provider to store the coefficients of the |MO| basis at the beginning of the SCF iteration
! !
! Usefull to track some orbitals ! Useful to track some orbitals
END_DOC END_DOC
END_PROVIDER END_PROVIDER

View File

@ -9,6 +9,12 @@ doc: Coefficient of the i-th |AO| on the j-th |MO|
interface: ezfio interface: ezfio
size: (ao_basis.ao_num,mo_basis.mo_num) size: (ao_basis.ao_num,mo_basis.mo_num)
[mo_coef_imag]
type: double precision
doc: Imaginary part of the MO coefficient of the i-th |AO| on the j-th |MO|
interface: ezfio
size: (ao_basis.ao_num,mo_basis.mo_num)
[mo_label] [mo_label]
type: character*(64) type: character*(64)
doc: Label characterizing the MOS (Local, Canonical, Natural, *etc*) doc: Label characterizing the MOS (Local, Canonical, Natural, *etc*)

View File

@ -1,3 +1,3 @@
ao_basis ao_basis
ao_one_e_ints
electrons electrons
ao_one_e_ints

View File

@ -93,6 +93,59 @@ BEGIN_PROVIDER [ double precision, mo_coef, (ao_num,mo_num) ]
endif endif
END_PROVIDER END_PROVIDER
BEGIN_PROVIDER [ double precision, mo_coef_imag, (ao_num,mo_num) ]
implicit none
BEGIN_DOC
! Molecular orbital coefficients on |AO| basis set
!
! mo_coef_imag(i,j) = coefficient of the i-th |AO| on the jth |MO|
!
! mo_label : Label characterizing the |MOs| (local, canonical, natural, etc)
END_DOC
integer :: i, j
double precision, allocatable :: buffer(:,:)
logical :: exists
PROVIDE ezfio_filename
if (mpi_master) then
! Coefs
call ezfio_has_mo_basis_mo_coef_imag(exists)
endif
IRP_IF MPI_DEBUG
print *, irp_here, mpi_rank
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
IRP_ENDIF
IRP_IF MPI
include 'mpif.h'
integer :: ierr
call MPI_BCAST(exists, 1, MPI_LOGICAL, 0, MPI_COMM_WORLD, ierr)
if (ierr /= MPI_SUCCESS) then
stop 'Unable to read mo_coef_imag with MPI'
endif
IRP_ENDIF
if (exists) then
if (mpi_master) then
call ezfio_get_mo_basis_mo_coef_imag(mo_coef_imag)
write(*,*) 'Read mo_coef_imag'
endif
IRP_IF MPI
call MPI_BCAST( mo_coef_imag, mo_num*ao_num, MPI_DOUBLE_PRECISION, 0, MPI_COMM_WORLD, ierr)
if (ierr /= MPI_SUCCESS) then
stop 'Unable to read mo_coef_imag with MPI'
endif
IRP_ENDIF
else
! Orthonormalized AO basis
do i=1,mo_num
do j=1,ao_num
mo_coef_imag(j,i) = 0.d0
enddo
enddo
endif
END_PROVIDER
BEGIN_PROVIDER [ double precision, mo_coef_in_ao_ortho_basis, (ao_num, mo_num) ] BEGIN_PROVIDER [ double precision, mo_coef_in_ao_ortho_basis, (ao_num, mo_num) ]
implicit none implicit none
BEGIN_DOC BEGIN_DOC

View File

@ -1,10 +1,10 @@
[mo_integrals_e_n] [mo_integrals_n_e]
type: double precision type: double precision
doc: Nucleus-electron integrals in |MO| basis set doc: Nucleus-electron integrals in |MO| basis set
size: (mo_basis.mo_num,mo_basis.mo_num) size: (mo_basis.mo_num,mo_basis.mo_num)
interface: ezfio interface: ezfio
[io_mo_integrals_e_n] [io_mo_integrals_n_e]
type: Disk_access type: Disk_access
doc: Read/Write |MO| electron-nucleus attraction integrals from/to disk [ Write | Read | None ] doc: Read/Write |MO| electron-nucleus attraction integrals from/to disk [ Write | Read | None ]
interface: ezfio,provider,ocaml interface: ezfio,provider,ocaml

View File

@ -4,8 +4,8 @@ BEGIN_PROVIDER [double precision, mo_integrals_n_e, (mo_num,mo_num)]
! Nucleus-electron interaction on the |MO| basis ! Nucleus-electron interaction on the |MO| basis
END_DOC END_DOC
if (read_mo_integrals_e_n) then if (read_mo_integrals_n_e) then
call ezfio_get_mo_one_e_ints_mo_integrals_e_n(mo_integrals_n_e) call ezfio_get_mo_one_e_ints_mo_integrals_n_e(mo_integrals_n_e)
print *, 'MO N-e integrals read from disk' print *, 'MO N-e integrals read from disk'
else else
call ao_to_mo( & call ao_to_mo( &
@ -15,8 +15,8 @@ BEGIN_PROVIDER [double precision, mo_integrals_n_e, (mo_num,mo_num)]
size(mo_integrals_n_e,1) & size(mo_integrals_n_e,1) &
) )
endif endif
if (write_mo_integrals_e_n) then if (write_mo_integrals_n_e) then
call ezfio_set_mo_one_e_ints_mo_integrals_e_n(mo_integrals_n_e) call ezfio_set_mo_one_e_ints_mo_integrals_n_e(mo_integrals_n_e)
print *, 'MO N-e integrals written to disk' print *, 'MO N-e integrals written to disk'
endif endif

View File

@ -31,3 +31,9 @@ default: None
doc: Nuclear repulsion (Computed automaticaly or Read in the |EZFIO|) doc: Nuclear repulsion (Computed automaticaly or Read in the |EZFIO|)
type:double precision type:double precision
interface: ezfio interface: ezfio
[is_periodic]
type: logical
doc: If true, the calculation uses periodic boundary conditions
interface: ezfio, provider, ocaml
default: false

View File

@ -19,7 +19,7 @@ program save_natorb
call ezfio_set_mo_two_e_ints_io_mo_two_e_integrals('None') call ezfio_set_mo_two_e_ints_io_mo_two_e_integrals('None')
call ezfio_set_mo_one_e_ints_io_mo_one_e_integrals('None') call ezfio_set_mo_one_e_ints_io_mo_one_e_integrals('None')
call ezfio_set_mo_one_e_ints_io_mo_integrals_kinetic('None') call ezfio_set_mo_one_e_ints_io_mo_integrals_kinetic('None')
call ezfio_set_mo_one_e_ints_io_mo_integrals_e_n('None') call ezfio_set_mo_one_e_ints_io_mo_integrals_n_e('None')
call ezfio_set_mo_one_e_ints_io_mo_integrals_pseudo('None') call ezfio_set_mo_one_e_ints_io_mo_integrals_pseudo('None')
end end

View File

@ -43,6 +43,690 @@ subroutine svd(A,LDA,U,LDU,D,Vt,LDVt,m,n)
end end
subroutine svd_complex(A,LDA,U,LDU,D,Vt,LDVt,m,n)
implicit none
BEGIN_DOC
! Compute A = U.D.Vt
!
! LDx : leftmost dimension of x
!
! Dimension of A is m x n
! A,U,Vt are complex*16
! D is double precision
END_DOC
integer, intent(in) :: LDA, LDU, LDVt, m, n
complex*16, intent(in) :: A(LDA,n)
complex*16, intent(out) :: U(LDU,m)
complex*16, intent(out) :: Vt(LDVt,n)
double precision,intent(out) :: D(min(m,n))
complex*16,allocatable :: work(:)
double precision,allocatable :: rwork(:)
integer :: info, lwork, i, j, k, lrwork
complex*16,allocatable :: A_tmp(:,:)
allocate (A_tmp(LDA,n))
A_tmp = A
lrwork = 5*min(m,n)
! Find optimal size for temp arrays
allocate(work(1),rwork(lrwork))
lwork = -1
call zgesvd('A','A', m, n, A_tmp, LDA, &
D, U, LDU, Vt, LDVt, work, lwork, rwork, info)
lwork = int(work(1))
deallocate(work)
allocate(work(lwork))
call zgesvd('A','A', m, n, A_tmp, LDA, &
D, U, LDU, Vt, LDVt, work, lwork, rwork, info)
deallocate(work,rwork,A_tmp)
if (info /= 0) then
print *, info, ': SVD failed'
stop
endif
end
subroutine ortho_canonical_complex(overlap,LDA,N,C,LDC,m)
implicit none
BEGIN_DOC
! Compute C_new=C_old.U.s^-1/2 canonical orthogonalization.
!
! overlap : overlap matrix
!
! LDA : leftmost dimension of overlap array
!
! N : Overlap matrix is NxN (array is (LDA,N) )
!
! C : Coefficients of the vectors to orthogonalize. On exit,
! orthogonal vectors
!
! LDC : leftmost dimension of C
!
! m : Coefficients matrix is MxN, ( array is (LDC,N) )
!
END_DOC
integer, intent(in) :: lda, ldc, n
integer, intent(out) :: m
complex*16, intent(in) :: overlap(lda,n)
complex*16, intent(inout) :: C(ldc,n)
complex*16, allocatable :: U(:,:)
complex*16, allocatable :: Vt(:,:)
double precision, allocatable :: D(:)
complex*16, allocatable :: S(:,:)
!DIR$ ATTRIBUTES ALIGN : 64 :: U, Vt, D
integer :: info, i, j
if (n < 2) then
return
endif
allocate (U(ldc,n), Vt(lda,n), D(n), S(lda,n))
call svd_complex(overlap,lda,U,ldc,D,Vt,lda,n,n)
D(:) = dsqrt(D(:))
m=n
do i=1,n
if ( D(i) >= 1.d-6 ) then
D(i) = 1.d0/D(i)
else
m = i-1
print *, 'Removed Linear dependencies below:', 1.d0/D(m)
exit
endif
enddo
do i=m+1,n
D(i) = 0.d0
enddo
do i=1,m
if ( D(i) >= 1.d5 ) then
print *, 'Warning: Basis set may have linear dependence problems'
endif
enddo
do j=1,n
do i=1,n
S(i,j) = U(i,j)*D(j)
enddo
enddo
do j=1,n
do i=1,n
U(i,j) = C(i,j)
enddo
enddo
call zgemm('N','N',n,n,n,(1.d0,0.d0),U,size(U,1),S,size(S,1),(0.d0,0.d0),C,size(C,1))
deallocate (U, Vt, D, S)
end
subroutine ortho_qr_complex(A,LDA,m,n)
implicit none
BEGIN_DOC
! Orthogonalization using Q.R factorization
!
! A : matrix to orthogonalize
!
! LDA : leftmost dimension of A
!
! n : Number of rows of A
!
! m : Number of columns of A
!
END_DOC
integer, intent(in) :: m,n, LDA
complex*16, intent(inout) :: A(LDA,n)
integer :: lwork, info
integer, allocatable :: jpvt(:)
complex*16, allocatable :: tau(:), work(:)
allocate (jpvt(n), tau(n), work(1))
LWORK=-1
call zgeqrf( m, n, A, LDA, TAU, WORK, LWORK, INFO )
LWORK=2*int(WORK(1))
deallocate(WORK)
allocate(WORK(LWORK))
call zgeqrf(m, n, A, LDA, TAU, WORK, LWORK, INFO )
call zungqr(m, n, n, A, LDA, tau, WORK, LWORK, INFO)
deallocate(WORK,jpvt,tau)
end
subroutine ortho_qr_unblocked_complex(A,LDA,m,n)
implicit none
BEGIN_DOC
! Orthogonalization using Q.R factorization
!
! A : matrix to orthogonalize
!
! LDA : leftmost dimension of A
!
! n : Number of rows of A
!
! m : Number of columns of A
!
END_DOC
integer, intent(in) :: m,n, LDA
double precision, intent(inout) :: A(LDA,n)
integer :: info
integer, allocatable :: jpvt(:)
double precision, allocatable :: tau(:), work(:)
print *, irp_here, ': TO DO'
stop -1
! allocate (jpvt(n), tau(n), work(n))
! call dgeqr2( m, n, A, LDA, TAU, WORK, INFO )
! call dorg2r(m, n, n, A, LDA, tau, WORK, INFO)
! deallocate(WORK,jpvt,tau)
end
subroutine ortho_lowdin_complex(overlap,LDA,N,C,LDC,m)
implicit none
BEGIN_DOC
! Compute C_new=C_old.S^-1/2 orthogonalization.
!
! overlap : overlap matrix
!
! LDA : leftmost dimension of overlap array
!
! N : Overlap matrix is NxN (array is (LDA,N) )
!
! C : Coefficients of the vectors to orthogonalize. On exit,
! orthogonal vectors
!
! LDC : leftmost dimension of C
!
! M : Coefficients matrix is MxN, ( array is (LDC,N) )
!
END_DOC
integer, intent(in) :: LDA, ldc, n, m
complex*16, intent(in) :: overlap(lda,n)
complex*16, intent(inout) :: C(ldc,n)
complex*16, allocatable :: U(:,:)
complex*16, allocatable :: Vt(:,:)
double precision, allocatable :: D(:)
complex*16, allocatable :: S(:,:)
integer :: info, i, j, k
if (n < 2) then
return
endif
allocate(U(ldc,n),Vt(lda,n),S(lda,n),D(n))
call svd_complex(overlap,lda,U,ldc,D,Vt,lda,n,n)
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP SHARED(S,U,D,Vt,n,C,m) &
!$OMP PRIVATE(i,j,k)
!$OMP DO
do i=1,n
if ( D(i) < 1.d-6 ) then
D(i) = 0.d0
else
D(i) = 1.d0/dsqrt(D(i))
endif
do j=1,n
S(j,i) = (0.d0,0.d0)
enddo
enddo
!$OMP END DO
do k=1,n
if (D(k) /= 0.d0) then
!$OMP DO
do j=1,n
do i=1,n
S(i,j) = S(i,j) + U(i,k)*D(k)*Vt(k,j)
enddo
enddo
!$OMP END DO NOWAIT
endif
enddo
!$OMP BARRIER
!$OMP DO
do j=1,n
do i=1,m
U(i,j) = C(i,j)
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call zgemm('N','N',m,n,n,(1.d0,0.d0),U,size(U,1),S,size(S,1),(0.d0,0.d0),C,size(C,1))
deallocate(U,Vt,S,D)
end
subroutine get_inverse_complex(A,LDA,m,C,LDC)
implicit none
BEGIN_DOC
! Returns the inverse of the square matrix A
END_DOC
integer, intent(in) :: m, LDA, LDC
complex*16, intent(in) :: A(LDA,m)
complex*16, intent(out) :: C(LDC,m)
integer :: info,lwork
integer, allocatable :: ipiv(:)
complex*16,allocatable :: work(:)
allocate (ipiv(m), work(m*m))
lwork = size(work)
C(1:m,1:m) = A(1:m,1:m)
call zgetrf(m,m,C,size(C,1),ipiv,info)
if (info /= 0) then
print *, info
stop 'error in inverse (zgetrf)'
endif
call zgetri(m,C,size(C,1),ipiv,work,lwork,info)
if (info /= 0) then
print *, info
stop 'error in inverse (zgetri)'
endif
deallocate(ipiv,work)
end
subroutine get_pseudo_inverse_complex(A,LDA,m,n,C,LDC)
implicit none
BEGIN_DOC
! Find C = A^-1
END_DOC
integer, intent(in) :: m,n, LDA, LDC
complex*16, intent(in) :: A(LDA,n)
complex*16, intent(out) :: C(LDC,m)
double precision, allocatable :: D(:), rwork(:)
complex*16, allocatable :: U(:,:), Vt(:,:), work(:), A_tmp(:,:)
integer :: info, lwork
integer :: i,j,k
allocate (D(n),U(m,n),Vt(n,n),work(1),A_tmp(m,n),rwork(5*n))
do j=1,n
do i=1,m
A_tmp(i,j) = A(i,j)
enddo
enddo
lwork = -1
call zgesvd('S','A', m, n, A_tmp, m,D,U,m,Vt,n,work,lwork,rwork,info)
if (info /= 0) then
print *, info, ': SVD failed'
stop
endif
lwork = int(real(work(1)))
deallocate(work)
allocate(work(lwork))
call zgesvd('S','A', m, n, A_tmp, m,D,U,m,Vt,n,work,lwork,rwork,info)
if (info /= 0) then
print *, info, ':: SVD failed'
stop 1
endif
do i=1,n
if (D(i)/D(1) > 1.d-10) then
D(i) = 1.d0/D(i)
else
D(i) = 0.d0
endif
enddo
C = (0.d0,0.d0)
do i=1,m
do j=1,n
do k=1,n
C(j,i) = C(j,i) + U(i,k) * D(k) * Vt(k,j)
enddo
enddo
enddo
deallocate(U,D,Vt,work,A_tmp,rwork)
end
subroutine lapack_diagd_diag_in_place_complex(eigvalues,eigvectors,nmax,n)
implicit none
BEGIN_DOC
! Diagonalize matrix H(complex)
!
! H is untouched between input and ouptut
!
! eigevalues(i) = ith lowest eigenvalue of the H matrix
!
! eigvectors(i,j) = <i|psi_j> where i is the basis function and psi_j is the j th eigenvector
!
END_DOC
integer, intent(in) :: n,nmax
! double precision, intent(out) :: eigvectors(nmax,n)
complex*16, intent(inout) :: eigvectors(nmax,n)
double precision, intent(out) :: eigvalues(n)
! double precision, intent(in) :: H(nmax,n)
complex*16,allocatable :: work(:)
integer ,allocatable :: iwork(:)
! complex*16,allocatable :: A(:,:)
double precision, allocatable :: rwork(:)
integer :: lrwork, lwork, info, i,j,l,k, liwork
! print*,'Diagonalization by jacobi'
! print*,'n = ',n
lwork = 2*n*n + 2*n
lrwork = 2*n*n + 5*n+ 1
liwork = 5*n + 3
allocate (work(lwork),iwork(liwork),rwork(lrwork))
lwork = -1
liwork = -1
lrwork = -1
! get optimal work size
call ZHEEVD( 'V', 'U', n, eigvectors, nmax, eigvalues, work, lwork, &
rwork, lrwork, iwork, liwork, info )
if (info < 0) then
print *, irp_here, ': ZHEEVD: the ',-info,'-th argument had an illegal value'
stop 2
endif
lwork = int( real(work(1)))
liwork = iwork(1)
lrwork = int(rwork(1))
deallocate (work,iwork,rwork)
allocate (work(lwork),iwork(liwork),rwork(lrwork))
call ZHEEVD( 'V', 'U', n, eigvectors, nmax, eigvalues, work, lwork, &
rwork, lrwork, iwork, liwork, info )
deallocate(work,iwork,rwork)
if (info < 0) then
print *, irp_here, ': ZHEEVD: the ',-info,'-th argument had an illegal value'
stop 2
else if( info > 0 ) then
write(*,*)'ZHEEVD Failed; calling ZHEEV'
lwork = 2*n - 1
lrwork = 3*n - 2
allocate(work(lwork),rwork(lrwork))
lwork = -1
call ZHEEV('V','L',n,eigvectors,nmax,eigvalues,work,lwork,rwork,info)
if (info < 0) then
print *, irp_here, ': ZHEEV: the ',-info,'-th argument had an illegal value'
stop 2
endif
lwork = int(work(1))
deallocate(work)
allocate(work(lwork))
call ZHEEV('V','L',n,eigvectors,nmax,eigvalues,work,lwork,rwork,info)
if (info /= 0 ) then
write(*,*)'ZHEEV Failed'
stop 1
endif
deallocate(work,rwork)
end if
end
subroutine lapack_diagd_diag_complex(eigvalues,eigvectors,H,nmax,n)
implicit none
BEGIN_DOC
! Diagonalize matrix H(complex)
!
! H is untouched between input and ouptut
!
! eigevalues(i) = ith lowest eigenvalue of the H matrix
!
! eigvectors(i,j) = <i|psi_j> where i is the basis function and psi_j is the j th eigenvector
!
END_DOC
integer, intent(in) :: n,nmax
! double precision, intent(out) :: eigvectors(nmax,n)
complex*16, intent(out) :: eigvectors(nmax,n)
double precision, intent(out) :: eigvalues(n)
! double precision, intent(in) :: H(nmax,n)
complex*16, intent(in) :: H(nmax,n)
double precision, allocatable :: eigenvalues(:)
complex*16,allocatable :: work(:)
integer ,allocatable :: iwork(:)
complex*16,allocatable :: A(:,:)
double precision, allocatable :: rwork(:)
integer :: lrwork, lwork, info, i,j,l,k, liwork
allocate(A(nmax,n),eigenvalues(n))
! print*,'Diagonalization by jacobi'
! print*,'n = ',n
A=H
lwork = 2*n*n + 2*n
lrwork = 2*n*n + 5*n+ 1
liwork = 5*n + 3
allocate (work(lwork),iwork(liwork),rwork(lrwork))
lwork = -1
liwork = -1
lrwork = -1
! get optimal work size
call ZHEEVD( 'V', 'U', n, A, nmax, eigenvalues, work, lwork, &
rwork, lrwork, iwork, liwork, info )
if (info < 0) then
print *, irp_here, ': ZHEEVD: the ',-info,'-th argument had an illegal value'
stop 2
endif
lwork = int( real(work(1)))
liwork = iwork(1)
lrwork = int(rwork(1))
deallocate (work,iwork,rwork)
allocate (work(lwork),iwork(liwork),rwork(lrwork))
call ZHEEVD( 'V', 'U', n, A, nmax, eigenvalues, work, lwork, &
rwork, lrwork, iwork, liwork, info )
deallocate(work,iwork,rwork)
if (info < 0) then
print *, irp_here, ': ZHEEVD: the ',-info,'-th argument had an illegal value'
stop 2
else if( info > 0 ) then
write(*,*)'ZHEEVD Failed; calling ZHEEV'
lwork = 2*n - 1
lrwork = 3*n - 2
allocate(work(lwork),rwork(lrwork))
lwork = -1
call ZHEEV('V','L',n,A,nmax,eigenvalues,work,lwork,rwork,info)
if (info < 0) then
print *, irp_here, ': ZHEEV: the ',-info,'-th argument had an illegal value'
stop 2
endif
lwork = int(work(1))
deallocate(work)
allocate(work(lwork))
call ZHEEV('V','L',n,A,nmax,eigenvalues,work,lwork,rwork,info)
if (info /= 0 ) then
write(*,*)'ZHEEV Failed'
stop 1
endif
deallocate(work,rwork)
end if
eigvectors = (0.d0,0.d0)
eigvalues = 0.d0
do j = 1, n
eigvalues(j) = eigenvalues(j)
do i = 1, n
eigvectors(i,j) = A(i,j)
enddo
enddo
deallocate(A,eigenvalues)
end
subroutine lapack_diagd_complex(eigvalues,eigvectors,H,nmax,n)
implicit none
BEGIN_DOC
! Diagonalize matrix H(complex)
!
! H is untouched between input and ouptut
!
! eigevalues(i) = ith lowest eigenvalue of the H matrix
!
! eigvectors(i,j) = <i|psi_j> where i is the basis function and psi_j is the j th eigenvector
!
END_DOC
integer, intent(in) :: n,nmax
! double precision, intent(out) :: eigvectors(nmax,n)
complex*16, intent(out) :: eigvectors(nmax,n)
double precision, intent(out) :: eigvalues(n)
! double precision, intent(in) :: H(nmax,n)
complex*16, intent(in) :: H(nmax,n)
double precision, allocatable :: eigenvalues(:)
complex*16,allocatable :: work(:)
integer ,allocatable :: iwork(:)
complex*16,allocatable :: A(:,:)
double precision, allocatable :: rwork(:)
integer :: lrwork, lwork, info, i,j,l,k, liwork
allocate(A(nmax,n),eigenvalues(n))
! print*,'Diagonalization by jacobi'
! print*,'n = ',n
A=H
lwork = 2*n*n + 2*n
lrwork = 2*n*n + 5*n+ 1
liwork = 5*n + 3
allocate (work(lwork),iwork(liwork),rwork(lrwork))
lwork = -1
liwork = -1
lrwork = -1
call ZHEEVD( 'V', 'U', n, A, nmax, eigenvalues, work, lwork, &
rwork, lrwork, iwork, liwork, info )
if (info < 0) then
print *, irp_here, ': ZHEEVD: the ',-info,'-th argument had an illegal value'
stop 2
endif
lwork = max(int( work( 1 ) ),lwork)
liwork = iwork(1)
lrwork = max(int(rwork(1),4),lrwork)
deallocate (work,iwork,rwork)
allocate (work(lwork),iwork(liwork),rwork(lrwork))
call ZHEEVD( 'V', 'U', n, A, nmax, eigenvalues, work, lwork, &
rwork, lrwork, iwork, liwork, info )
deallocate(work,iwork,rwork)
if (info < 0) then
print *, irp_here, ': ZHEEVD: the ',-info,'-th argument had an illegal value'
stop 2
else if( info > 0 ) then
write(*,*)'ZHEEVD Failed'
stop 1
end if
eigvectors = (0.d0,0.d0)
eigvalues = 0.d0
do j = 1, n
eigvalues(j) = eigenvalues(j)
do i = 1, n
eigvectors(i,j) = A(i,j)
enddo
enddo
deallocate(A,eigenvalues)
end
subroutine lapack_diag_complex(eigvalues,eigvectors,H,nmax,n)
implicit none
BEGIN_DOC
! Diagonalize matrix H (complex)
!
! H is untouched between input and ouptut
!
! eigevalues(i) = ith lowest eigenvalue of the H matrix
!
! eigvectors(i,j) = <i|psi_j> where i is the basis function and psi_j is the j th eigenvector
!
END_DOC
integer, intent(in) :: n,nmax
complex*16, intent(out) :: eigvectors(nmax,n)
double precision, intent(out) :: eigvalues(n)
complex*16, intent(in) :: H(nmax,n)
double precision,allocatable :: eigenvalues(:)
complex*16,allocatable :: work(:)
complex*16,allocatable :: A(:,:)
double precision,allocatable :: rwork(:)
integer :: lwork, info, i,j,l,k,lrwork
allocate(A(nmax,n),eigenvalues(n))
! print*,'Diagonalization by jacobi'
! print*,'n = ',n
A=H
!lwork = 2*n*n + 6*n+ 1
lwork = 2*n - 1
lrwork = 3*n - 2
allocate (work(lwork),rwork(lrwork))
lwork = -1
call ZHEEV( 'V', 'U', n, A, nmax, eigenvalues, work, lwork, &
rwork, info )
if (info < 0) then
print *, irp_here, ': ZHEEV: the ',-info,'-th argument had an illegal value'
stop 2
endif
lwork = int( work( 1 ) )
deallocate (work)
allocate (work(lwork))
call ZHEEV( 'V', 'U', n, A, nmax, eigenvalues, work, lwork, &
rwork, info )
deallocate(work,rwork)
if (info < 0) then
print *, irp_here, ': ZHEEV: the ',-info,'-th argument had an illegal value'
stop 2
else if( info > 0 ) then
write(*,*)'ZHEEV Failed : ', info
do i=1,n
do j=1,n
print *, H(i,j)
enddo
enddo
stop 1
end if
eigvectors = (0.d0,0.d0)
eigvalues = 0.d0
do j = 1, n
eigvalues(j) = eigenvalues(j)
do i = 1, n
eigvectors(i,j) = A(i,j)
enddo
enddo
deallocate(A,eigenvalues)
end
subroutine matrix_vector_product_complex(u0,u1,matrix,sze,lda)
implicit none
BEGIN_DOC
! performs u1 += u0 * matrix
END_DOC
integer, intent(in) :: sze,lda
complex*16, intent(in) :: u0(sze)
complex*16, intent(inout) :: u1(sze)
complex*16, intent(in) :: matrix(lda,sze)
integer :: i,j
integer :: incx,incy
incx = 1
incy = 1
!call dsymv('U', sze, 1.d0, matrix, lda, u0, incx, 1.d0, u1, incy)
call zhemv('U', sze, (1.d0,0.d0), matrix, lda, u0, incx, (1.d0,0.d0), u1, incy)
end
subroutine ortho_canonical(overlap,LDA,N,C,LDC,m) subroutine ortho_canonical(overlap,LDA,N,C,LDC,m)
implicit none implicit none
BEGIN_DOC BEGIN_DOC
@ -356,6 +1040,8 @@ subroutine get_pseudo_inverse(A,LDA,m,n,C,LDC)
end end
subroutine find_rotation(A,LDA,B,m,C,n) subroutine find_rotation(A,LDA,B,m,C,n)
implicit none implicit none
BEGIN_DOC BEGIN_DOC

4
src/utils_periodic/NEED Normal file
View File

@ -0,0 +1,4 @@
ao_two_e_ints
ao_one_e_ints
mo_two_e_ints

View File

@ -0,0 +1,137 @@
program print_integrals
print *, 'Number of AOs?'
read(*,*) ao_num
TOUCH ao_num
call run
end
subroutine run
use map_module
implicit none
integer :: iunit
integer :: getunitandopen
integer ::i,j,k,l
double precision :: integral
double precision, allocatable :: A(:,:), B(:,:)
double precision :: tmp_re, tmp_im
integer :: n_integrals
integer(key_kind), allocatable :: buffer_i(:)
real(integral_kind), allocatable :: buffer_values(:)
call ezfio_set_ao_basis_ao_num(ao_num)
allocate (A(ao_num,ao_num), B(ao_num,ao_num) )
A(1,1) = huge(1.d0)
iunit = getunitandopen('E.qp','r')
read (iunit,*,end=9) A(1,1)
9 continue
close(iunit)
if (A(1,1) /= huge(1.d0)) then
call ezfio_set_nuclei_nuclear_repulsion(A(1,1))
call ezfio_set_nuclei_io_nuclear_repulsion("Read")
endif
A = 0.d0
B = 0.d0
iunit = getunitandopen('T.qp','r')
do
read (iunit,*,end=10) i,j, tmp_re, tmp_im
A(i,j) = tmp_re
B(i,j) = tmp_im
if (i.ne.j) then
A(j,i) = tmp_re
B(j,i) = -tmp_im
endif
enddo
10 continue
close(iunit)
call ezfio_set_ao_one_e_ints_ao_integrals_kinetic(A(1:ao_num, 1:ao_num))
call ezfio_set_ao_one_e_ints_ao_integrals_kinetic_imag(B(1:ao_num, 1:ao_num))
call ezfio_set_ao_one_e_ints_io_ao_integrals_kinetic("Read")
A = 0.d0
B = 0.d0
iunit = getunitandopen('S.qp','r')
do
read (iunit,*,end=11) i,j, tmp_re, tmp_im
A(i,j) = tmp_re
B(i,j) = tmp_im
if (i.ne.j) then
A(j,i) = tmp_re
B(j,i) = -tmp_im
endif
enddo
11 continue
close(iunit)
call ezfio_set_ao_one_e_ints_ao_integrals_overlap(A(1:ao_num, 1:ao_num))
call ezfio_set_ao_one_e_ints_ao_integrals_overlap_imag(B(1:ao_num, 1:ao_num))
call ezfio_set_ao_one_e_ints_io_ao_integrals_overlap("Read")
A = 0.d0
B = 0.d0
iunit = getunitandopen('P.qp','r')
do
read (iunit,*,end=14) i,j, tmp_re, tmp_im
A(i,j) = tmp_re
B(i,j) = tmp_im
if (i.ne.j) then
A(j,i) = tmp_re
B(j,i) = -tmp_im
endif
enddo
14 continue
close(iunit)
call ezfio_set_ao_one_e_ints_ao_integrals_pseudo(A(1:ao_num,1:ao_num))
call ezfio_set_ao_one_e_ints_ao_integrals_pseudo_imag(B(1:ao_num,1:ao_num))
call ezfio_set_ao_one_e_ints_io_ao_integrals_pseudo("Read")
A = 0.d0
B = 0.d0
iunit = getunitandopen('V.qp','r')
do
read (iunit,*,end=12) i,j, tmp_re, tmp_im
A(i,j) = tmp_re
B(i,j) = tmp_im
if (i.ne.j) then
A(j,i) = tmp_re
B(j,i) = -tmp_im
endif
enddo
12 continue
close(iunit)
call ezfio_set_ao_one_e_ints_ao_integrals_n_e(A(1:ao_num, 1:ao_num))
call ezfio_set_ao_one_e_ints_ao_integrals_n_e_imag(B(1:ao_num, 1:ao_num))
call ezfio_set_ao_one_e_ints_io_ao_integrals_n_e("Read")
! allocate(buffer_i(ao_num**3), buffer_values(ao_num**3))
! iunit = getunitandopen('W.qp','r')
! n_integrals=0
! buffer_values = 0.d0
! do
! read (iunit,*,end=13) i,j,k,l, integral
! n_integrals += 1
! call two_e_integrals_index(i, j, k, l, buffer_i(n_integrals) )
! buffer_values(n_integrals) = integral
! if (n_integrals == size(buffer_i)) then
! call insert_into_ao_integrals_map(n_integrals,buffer_i,buffer_values)
! n_integrals = 0
! endif
! enddo
! 13 continue
! close(iunit)
!
! if (n_integrals > 0) then
! call insert_into_ao_integrals_map(n_integrals,buffer_i,buffer_values)
! endif
!
! call map_sort(ao_integrals_map)
! call map_unique(ao_integrals_map)
!
! call map_save_to_disk(trim(ezfio_filename)//'/work/ao_ints',ao_integrals_map)
! call ezfio_set_ao_two_e_ints_io_ao_two_e_integrals('Read')
end

View File

@ -0,0 +1,27 @@
program import_mo_coef_periodic
PROVIDE ezfio_filename
call run
end
subroutine run
use map_module
implicit none
integer :: iunit
integer :: getunitandopen
integer ::i,j
double precision :: int_re, int_im
iunit = getunitandopen('C.qp','r')
do
read (iunit,*,end=10) i,j, mo_coef(i,j), mo_coef_imag(i,j)
enddo
10 continue
close(iunit)
mo_label = "None"
call save_mos
end