From 04715abc640010ce15e5096b504baa5425bb36ab Mon Sep 17 00:00:00 2001 From: eginer Date: Mon, 10 Apr 2023 16:12:32 +0200 Subject: [PATCH] beginning to work on s2 for TC --- src/tc_bi_ortho/h_tc_s2_u0.irp.f | 739 ++++++++++++++++++ .../{u0_h_u0.irp.f => h_tc_u0.irp.f} | 3 - src/tc_bi_ortho/tc_bi_ortho.irp.f | 1 - src/tc_bi_ortho/tc_h_eigvectors.irp.f | 2 - src/tc_scf/tc_scf.irp.f | 4 +- 5 files changed, 741 insertions(+), 8 deletions(-) create mode 100644 src/tc_bi_ortho/h_tc_s2_u0.irp.f rename src/tc_bi_ortho/{u0_h_u0.irp.f => h_tc_u0.irp.f} (99%) diff --git a/src/tc_bi_ortho/h_tc_s2_u0.irp.f b/src/tc_bi_ortho/h_tc_s2_u0.irp.f new file mode 100644 index 00000000..5a9f5e69 --- /dev/null +++ b/src/tc_bi_ortho/h_tc_s2_u0.irp.f @@ -0,0 +1,739 @@ +subroutine H_tc_s2_u_0_opt(v_0,s_0,u_0,N_st,sze) + use bitmasks + implicit none + BEGIN_DOC + ! Computes $v_0 = H | u_0\rangle$. + ! + ! Assumes that the determinants are in psi_det + ! + ! istart, iend, ishift, istep are used in ZMQ parallelization. + END_DOC + integer, intent(in) :: N_st,sze + double precision, intent(inout) :: v_0(sze,N_st), u_0(sze,N_st), s_0(sze,N_st) + logical :: do_right + do_right = .True. + call H_tc_s2_u_0_nstates_openmp(v_0,s_0,u_0,N_st,sze, do_right) +end + +subroutine H_tc_s2_dagger_u_0_opt(v_0,s_0,u_0,N_st,sze) + use bitmasks + implicit none + BEGIN_DOC + ! Computes $v_0 = H | u_0\rangle$. + ! + ! Assumes that the determinants are in psi_det + ! + ! istart, iend, ishift, istep are used in ZMQ parallelization. + END_DOC + integer, intent(in) :: N_st,sze + double precision, intent(inout) :: v_0(sze,N_st), u_0(sze,N_st), s_0(sze,N_st) + logical :: do_right + do_right = .False. + call H_tc_s2_u_0_nstates_openmp(v_0,s_0,u_0,N_st,sze, do_right) +end + + +subroutine H_tc_s2_u_0_nstates_openmp(v_0,s_0,u_0,N_st,sze, do_right) + use bitmasks + implicit none + BEGIN_DOC + ! Computes $v_0 = H | u_0\rangle$. + ! + ! Assumes that the determinants are in psi_det + ! + ! istart, iend, ishift, istep are used in ZMQ parallelization. + ! + ! if do_right == True then you compute H_TC |Psi>, else H_TC^T |Psi> + END_DOC + integer, intent(in) :: N_st,sze + double precision, intent(inout) :: v_0(sze,N_st), u_0(sze,N_st), s_0(sze,N_st) + logical, intent(in) :: do_right + integer :: k + double precision, allocatable :: u_t(:,:), v_t(:,:), s_t(:,:) + !DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: u_t + allocate(u_t(N_st,N_det),v_t(N_st,N_det),s_t(N_st,N_det)) + do k=1,N_st + call dset_order(u_0(1,k),psi_bilinear_matrix_order,N_det) + enddo + v_t = 0.d0 + s_t = 0.d0 + call dtranspose( & + u_0, & + size(u_0, 1), & + u_t, & + size(u_t, 1), & + N_det, N_st) + + call H_tc_s2_u_0_nstates_openmp_work(v_t,s_t,u_t,N_st,sze,1,N_det,0,1, do_right) + deallocate(u_t) + + call dtranspose( & + v_t, & + size(v_t, 1), & + v_0, & + size(v_0, 1), & + N_st, N_det) + call dtranspose( & + s_t, & + size(s_t, 1), & + s_0, & + size(s_0, 1), & + N_st, N_det) + deallocate(v_t,s_t) + + do k=1,N_st + call dset_order(v_0(1,k),psi_bilinear_matrix_order_reverse,N_det) + call dset_order(s_0(1,k),psi_bilinear_matrix_order_reverse,N_det) + call dset_order(u_0(1,k),psi_bilinear_matrix_order_reverse,N_det) + enddo + +end + + +subroutine H_tc_s2_u_0_nstates_openmp_work(v_t,s_t,u_t,N_st,sze,istart,iend,ishift,istep, do_right) + use bitmasks + implicit none + BEGIN_DOC + ! Computes $v_t = H | u_t\rangle$ + ! + ! Default should be 1,N_det,0,1 + ! + ! if do_right == True then you compute H_TC |Psi>, else H_TC^T |Psi> + END_DOC + integer, intent(in) :: N_st,sze,istart,iend,ishift,istep + double precision, intent(in) :: u_t(N_st,N_det) + logical, intent(in) :: do_right + double precision, intent(out) :: v_t(N_st,sze), s_t(N_st,sze) + + + PROVIDE ref_bitmask_energy N_int + + select case (N_int) + case (1) + call H_tc_s2_u_0_nstates_openmp_work_1(v_t,s_t,u_t,N_st,sze,istart,iend,ishift,istep,do_right) + case (2) + call H_tc_s2_u_0_nstates_openmp_work_2(v_t,s_t,u_t,N_st,sze,istart,iend,ishift,istep,do_right) + case (3) + call H_tc_s2_u_0_nstates_openmp_work_3(v_t,s_t,u_t,N_st,sze,istart,iend,ishift,istep,do_right) + case (4) + call H_tc_s2_u_0_nstates_openmp_work_4(v_t,s_t,u_t,N_st,sze,istart,iend,ishift,istep,do_right) + case default + call H_tc_s2_u_0_nstates_openmp_work_N_int(v_t,s_t,u_t,N_st,sze,istart,iend,ishift,istep,do_right) + end select +end +BEGIN_TEMPLATE + +subroutine H_tc_s2_u_0_nstates_openmp_work_$N_int(v_t,s_t,u_t,N_st,sze,istart,iend,ishift,istep,do_right) + use bitmasks + implicit none + BEGIN_DOC + ! Computes $v_t = H | u_t \\rangle$ and $s_t = S^2 | u_t\\rangle$ + ! + ! Default should be 1,N_det,0,1 + ! + ! if do_right == True then you compute H_TC |Psi>, else H_TC^T |Psi> + END_DOC + integer, intent(in) :: N_st,sze,istart,iend,ishift,istep + double precision, intent(in) :: u_t(N_st,N_det) + logical, intent(in) :: do_right + double precision, intent(out) :: v_t(N_st,sze), s_t(N_st,sze) + + double precision :: hij, sij + integer :: i,j,k,l,kk + integer :: k_a, k_b, l_a, l_b, m_a, m_b + integer :: istate + integer :: krow, kcol, krow_b, kcol_b + integer :: lrow, lcol + integer :: mrow, mcol + integer(bit_kind) :: spindet($N_int) + integer(bit_kind) :: tmp_det($N_int,2) + integer(bit_kind) :: tmp_det2($N_int,2) + integer(bit_kind) :: tmp_det3($N_int,2) + integer(bit_kind), allocatable :: buffer(:,:) + integer :: n_doubles + integer, allocatable :: doubles(:) + integer, allocatable :: singles_a(:) + integer, allocatable :: singles_b(:) + integer, allocatable :: idx(:), idx0(:) + integer :: maxab, n_singles_a, n_singles_b, kcol_prev + integer*8 :: k8 + logical :: compute_singles + integer*8 :: last_found, left, right, right_max + double precision :: rss, mem, ratio + double precision, allocatable :: utl(:,:) + integer, parameter :: block_size=128 + logical :: u_is_sparse + +! call resident_memory(rss) +! mem = dble(singles_beta_csc_size) / 1024.d0**3 +! +! compute_singles = (mem+rss > qp_max_mem) +! +! if (.not.compute_singles) then +! provide singles_beta_csc +! endif +compute_singles=.True. + + + maxab = max(N_det_alpha_unique, N_det_beta_unique)+1 + allocate(idx0(maxab)) + + do i=1,maxab + idx0(i) = i + enddo + + ! Prepare the array of all alpha single excitations + ! ------------------------------------------------- + + PROVIDE N_int nthreads_davidson + !$OMP PARALLEL DEFAULT(SHARED) NUM_THREADS(nthreads_davidson) & + !$OMP SHARED(psi_bilinear_matrix_rows, N_det, & + !$OMP psi_bilinear_matrix_columns, & + !$OMP psi_det_alpha_unique, psi_det_beta_unique, & + !$OMP n_det_alpha_unique, n_det_beta_unique, N_int, & + !$OMP psi_bilinear_matrix_transp_rows, & + !$OMP psi_bilinear_matrix_transp_columns, & + !$OMP psi_bilinear_matrix_transp_order, N_st, & + !$OMP psi_bilinear_matrix_order_transp_reverse, & + !$OMP psi_bilinear_matrix_columns_loc, & + !$OMP psi_bilinear_matrix_transp_rows_loc, & + !$OMP istart, iend, istep, irp_here, v_t, s_t, & + !$OMP ishift, idx0, u_t, maxab, compute_singles, & + !$OMP singles_alpha_csc,singles_alpha_csc_idx, & + !$OMP singles_beta_csc,singles_beta_csc_idx) & + !$OMP PRIVATE(krow, kcol, tmp_det, spindet, k_a, k_b, i, & + !$OMP lcol, lrow, l_a, l_b, utl, kk, u_is_sparse, & + !$OMP buffer, doubles, n_doubles, umax, & + !$OMP tmp_det2, hij, sij, idx, l, kcol_prev,hmono, htwoe, hthree, & + !$OMP singles_a, n_singles_a, singles_b, ratio, & + !$OMP n_singles_b, k8, last_found,left,right,right_max) + + ! Alpha/Beta double excitations + ! ============================= + + allocate( buffer($N_int,maxab), & + singles_a(maxab), & + singles_b(maxab), & + doubles(maxab), & + idx(maxab), utl(N_st,block_size)) + + kcol_prev=-1 + + ! Check if u has multiple zeros + kk=1 ! Avoid division by zero + !$OMP DO + do k=1,N_det + umax = 0.d0 + do l=1,N_st + umax = max(umax, dabs(u_t(l,k))) + enddo + if (umax < 1.d-20) then + !$OMP ATOMIC + kk = kk+1 + endif + enddo + !$OMP END DO + u_is_sparse = N_det / kk < 20 ! 5% + + ASSERT (iend <= N_det) + ASSERT (istart > 0) + ASSERT (istep > 0) + + !$OMP DO SCHEDULE(guided,64) + do k_a=istart+ishift,iend,istep ! Loop over all determinants (/!\ not in psidet order) + + krow = psi_bilinear_matrix_rows(k_a) ! Index of alpha part of determinant k_a + ASSERT (krow <= N_det_alpha_unique) + + kcol = psi_bilinear_matrix_columns(k_a) ! Index of beta part of determinant k_a + ASSERT (kcol <= N_det_beta_unique) + + tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow) + + if (kcol /= kcol_prev) then + tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol) + if (compute_singles) then + call get_all_spin_singles_$N_int( & + psi_det_beta_unique, idx0, & + tmp_det(1,2), N_det_beta_unique, & + singles_b, n_singles_b) + else + n_singles_b = 0 + !DIR$ LOOP COUNT avg(1000) + do k8=singles_beta_csc_idx(kcol),singles_beta_csc_idx(kcol+1)-1 + n_singles_b = n_singles_b+1 + singles_b(n_singles_b) = singles_beta_csc(k8) + enddo + endif + endif + kcol_prev = kcol + + ! -> Here, tmp_det is determinant k_a + + ! Loop over singly excited beta columns + ! ------------------------------------- + + !DIR$ LOOP COUNT avg(1000) + do i=1,n_singles_b + lcol = singles_b(i) + + tmp_det2(1:$N_int,2) = psi_det_beta_unique(1:$N_int, lcol) + + ! tmp_det2 is a single excitation of tmp_det in the beta spin + ! the alpha part is not defined yet + +!--- +! if (compute_singles) then + + l_a = psi_bilinear_matrix_columns_loc(lcol) + ASSERT (l_a <= N_det) + ! rows : | 1 2 3 4 | 1 3 4 6 | .... | 1 2 4 5 | + ! cols : | 1 1 1 1 | 2 2 2 2 | .... | 8 8 8 8 | + ! index : | 1 2 3 4 | 5 6 7 8 | .... | 58 59 60 61 | + ! ^ ^ + ! | | + ! l_a N_det + ! l_a is the index in the big vector os size Ndet of the position of the first element of column lcol + + ! Below we identify all the determinants with the same beta part + + !DIR$ UNROLL(8) + !DIR$ LOOP COUNT avg(50000) + do j=1,psi_bilinear_matrix_columns_loc(lcol+1) - psi_bilinear_matrix_columns_loc(lcol) + lrow = psi_bilinear_matrix_rows(l_a) + ASSERT (lrow <= N_det_alpha_unique) + + buffer(1:$N_int,j) = psi_det_alpha_unique(1:$N_int, lrow) ! hot spot + + ASSERT (l_a <= N_det) + idx(j) = l_a + l_a = l_a+1 + enddo + j = j-1 + + ! Get all single excitations from tmp_det(1,1) to buffer(1,?) + + call get_all_spin_singles_$N_int( & + buffer, idx, tmp_det(1,1), j, & + singles_a, n_singles_a ) + + ! Loop over alpha singles + ! ----------------------- + + double precision :: umax + + !DIR$ LOOP COUNT avg(1000) + do k = 1,n_singles_a,block_size + umax = 0.d0 + ! Prefetch u_t(:,l_a) + if (u_is_sparse) then + do kk=0,block_size-1 + if (k+kk > n_singles_a) exit + l_a = singles_a(k+kk) + ASSERT (l_a <= N_det) + + do l=1,N_st + utl(l,kk+1) = u_t(l,l_a) + umax = max(umax, dabs(utl(l,kk+1))) + enddo + enddo + else + do kk=0,block_size-1 + if (k+kk > n_singles_a) exit + l_a = singles_a(k+kk) + ASSERT (l_a <= N_det) + utl(:,kk+1) = u_t(:,l_a) + enddo + umax = 1.d0 + endif + if (umax < 1.d-20) cycle + + do kk=0,block_size-1 + if (k+kk > n_singles_a) exit + l_a = singles_a(k+kk) + lrow = psi_bilinear_matrix_rows(l_a) + ASSERT (lrow <= N_det_alpha_unique) + + tmp_det2(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, lrow) +! call i_H_j( tmp_det, tmp_det2, $N_int, hij) ! double alpha-beta + if(do_right)then + call htilde_mu_mat_opt_bi_ortho_tot(tmp_det,tmp_det2,$N_int,hij) + else + call htilde_mu_mat_opt_bi_ortho_tot(tmp_det2,tmp_det,$N_int,hij) + endif + call get_s2(tmp_det,tmp_det2,$N_int,sij) + !DIR$ LOOP COUNT AVG(4) + do l=1,N_st + v_t(l,k_a) = v_t(l,k_a) + hij * utl(l,kk+1) + s_t(l,k_a) = s_t(l,k_a) + sij * utl(l,kk+1) + enddo + enddo + enddo + + enddo + + enddo + !$OMP END DO + + !$OMP DO SCHEDULE(guided,64) + do k_a=istart+ishift,iend,istep + + + ! Single and double alpha excitations + ! =================================== + + + ! Initial determinant is at k_a in alpha-major representation + ! ----------------------------------------------------------------------- + + krow = psi_bilinear_matrix_rows(k_a) + ASSERT (krow <= N_det_alpha_unique) + + kcol = psi_bilinear_matrix_columns(k_a) + ASSERT (kcol <= N_det_beta_unique) + + tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow) + tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol) + + ! Initial determinant is at k_b in beta-major representation + ! ---------------------------------------------------------------------- + + k_b = psi_bilinear_matrix_order_transp_reverse(k_a) + ASSERT (k_b <= N_det) + + spindet(1:$N_int) = tmp_det(1:$N_int,1) + + ! Loop inside the beta column to gather all the connected alphas + lcol = psi_bilinear_matrix_columns(k_a) + l_a = psi_bilinear_matrix_columns_loc(lcol) + + !DIR$ LOOP COUNT avg(200000) + do i=1,N_det_alpha_unique + if (l_a > N_det) exit + lcol = psi_bilinear_matrix_columns(l_a) + if (lcol /= kcol) exit + lrow = psi_bilinear_matrix_rows(l_a) + ASSERT (lrow <= N_det_alpha_unique) + + buffer(1:$N_int,i) = psi_det_alpha_unique(1:$N_int, lrow) ! Hot spot + idx(i) = l_a + l_a = l_a+1 + enddo + i = i-1 + + call get_all_spin_singles_and_doubles_$N_int( & + buffer, idx, spindet, i, & + singles_a, doubles, n_singles_a, n_doubles ) + + ! Compute Hij for all alpha singles + ! ---------------------------------- + + tmp_det2(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol) + !DIR$ LOOP COUNT avg(1000) + do i=1,n_singles_a,block_size + umax = 0.d0 + ! Prefetch u_t(:,l_a) + if (u_is_sparse) then + do kk=0,block_size-1 + if (i+kk > n_singles_a) exit + l_a = singles_a(i+kk) + ASSERT (l_a <= N_det) + + do l=1,N_st + utl(l,kk+1) = u_t(l,l_a) + umax = max(umax, dabs(utl(l,kk+1))) + enddo + enddo + else + do kk=0,block_size-1 + if (i+kk > n_singles_a) exit + l_a = singles_a(i+kk) + ASSERT (l_a <= N_det) + utl(:,kk+1) = u_t(:,l_a) + enddo + umax = 1.d0 + endif + if (umax < 1.d-20) cycle + + do kk=0,block_size-1 + if (i+kk > n_singles_a) exit + l_a = singles_a(i+kk) + lrow = psi_bilinear_matrix_rows(l_a) + ASSERT (lrow <= N_det_alpha_unique) + + tmp_det2(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, lrow) +! call i_h_j_single_spin( tmp_det, tmp_det2, $N_int, 1, hij) + if(do_right)then + call htilde_mu_mat_opt_bi_ortho_tot(tmp_det,tmp_det2,$N_int,hij) + else + call htilde_mu_mat_opt_bi_ortho_tot(tmp_det2,tmp_det,$N_int,hij) + endif + + !DIR$ LOOP COUNT AVG(4) + do l=1,N_st + v_t(l,k_a) = v_t(l,k_a) + hij * utl(l,kk+1) + enddo + enddo + enddo + + + ! Compute Hij for all alpha doubles + ! ---------------------------------- + + !DIR$ LOOP COUNT avg(50000) + do i=1,n_doubles,block_size + umax = 0.d0 + ! Prefetch u_t(:,l_a) + if (u_is_sparse) then + do kk=0,block_size-1 + if (i+kk > n_doubles) exit + l_a = doubles(i+kk) + ASSERT (l_a <= N_det) + + do l=1,N_st + utl(l,kk+1) = u_t(l,l_a) + umax = max(umax, dabs(utl(l,kk+1))) + enddo + enddo + else + do kk=0,block_size-1 + if (i+kk > n_doubles) exit + l_a = doubles(i+kk) + ASSERT (l_a <= N_det) + utl(:,kk+1) = u_t(:,l_a) + enddo + umax = 1.d0 + endif + if (umax < 1.d-20) cycle + + do kk=0,block_size-1 + if (i+kk > n_doubles) exit + l_a = doubles(i+kk) + lrow = psi_bilinear_matrix_rows(l_a) + ASSERT (lrow <= N_det_alpha_unique) + + tmp_det2(1:N_int,1) = psi_det_alpha_unique(1:N_int, lrow) +! call i_H_j( tmp_det, tmp_det2, $N_int, hij) +! call i_H_j_double_spin( tmp_det(1,1), psi_det_alpha_unique(1, lrow), $N_int, hij) + if(do_right)then + call htilde_mu_mat_opt_bi_ortho_tot(tmp_det,tmp_det2,$N_int,hij) + else + call htilde_mu_mat_opt_bi_ortho_tot(tmp_det2,tmp_det,$N_int,hij) + endif + + !DIR$ LOOP COUNT AVG(4) + do l=1,N_st + v_t(l,k_a) = v_t(l,k_a) + hij * utl(l,kk+1) + enddo + enddo + enddo + + + ! Single and double beta excitations + ! ================================== + + + ! Initial determinant is at k_a in alpha-major representation + ! ----------------------------------------------------------------------- + + krow = psi_bilinear_matrix_rows(k_a) + kcol = psi_bilinear_matrix_columns(k_a) + + tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow) + tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol) + + spindet(1:$N_int) = tmp_det(1:$N_int,2) + + ! Initial determinant is at k_b in beta-major representation + ! ----------------------------------------------------------------------- + + k_b = psi_bilinear_matrix_order_transp_reverse(k_a) + ASSERT (k_b <= N_det) + + ! Loop inside the alpha row to gather all the connected betas + lrow = psi_bilinear_matrix_transp_rows(k_b) + l_b = psi_bilinear_matrix_transp_rows_loc(lrow) + !DIR$ LOOP COUNT avg(200000) + do i=1,N_det_beta_unique + if (l_b > N_det) exit + lrow = psi_bilinear_matrix_transp_rows(l_b) + if (lrow /= krow) exit + lcol = psi_bilinear_matrix_transp_columns(l_b) + ASSERT (lcol <= N_det_beta_unique) + + buffer(1:$N_int,i) = psi_det_beta_unique(1:$N_int, lcol) + idx(i) = l_b + l_b = l_b+1 + enddo + i = i-1 + + call get_all_spin_singles_and_doubles_$N_int( & + buffer, idx, spindet, i, & + singles_b, doubles, n_singles_b, n_doubles ) + + ! Compute Hij for all beta singles + ! ---------------------------------- + + tmp_det2(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow) + !DIR$ LOOP COUNT avg(1000) + do i=1,n_singles_b,block_size + umax = 0.d0 + if (u_is_sparse) then + do kk=0,block_size-1 + if (i+kk > n_singles_b) exit + l_b = singles_b(i+kk) + l_a = psi_bilinear_matrix_transp_order(l_b) + ASSERT (l_b <= N_det) + ASSERT (l_a <= N_det) + + do l=1,N_st + utl(l,kk+1) = u_t(l,l_a) + umax = max(umax, dabs(utl(l,kk+1))) + enddo + enddo + else + do kk=0,block_size-1 + if (i+kk > n_singles_b) exit + l_b = singles_b(i+kk) + l_a = psi_bilinear_matrix_transp_order(l_b) + ASSERT (l_b <= N_det) + ASSERT (l_a <= N_det) + utl(:,kk+1) = u_t(:,l_a) + enddo + umax = 1.d0 + endif + if (umax < 1.d-20) cycle + + do kk=0,block_size-1 + if (i+kk > n_singles_b) exit + l_b = singles_b(i+kk) + l_a = psi_bilinear_matrix_transp_order(l_b) + lcol = psi_bilinear_matrix_transp_columns(l_b) + ASSERT (lcol <= N_det_beta_unique) + + tmp_det2(1:$N_int,2) = psi_det_beta_unique (1:$N_int, lcol) +! call i_H_j_single_spin( tmp_det, tmp_det2, $N_int, 2, hij) + if(do_right)then + call htilde_mu_mat_opt_bi_ortho_tot(tmp_det,tmp_det2,$N_int,hij) + else + call htilde_mu_mat_opt_bi_ortho_tot(tmp_det2,tmp_det,$N_int,hij) + endif + !DIR$ LOOP COUNT AVG(4) + do l=1,N_st + v_t(l,k_a) = v_t(l,k_a) + hij * utl(l,kk+1) + enddo + enddo + enddo + + ! Compute Hij for all beta doubles + ! ---------------------------------- + + !DIR$ LOOP COUNT avg(50000) + do i=1,n_doubles,block_size + umax = 0.d0 + if (u_is_sparse) then + do kk=0,block_size-1 + if (i+kk > n_doubles) exit + l_b = doubles(i+kk) + l_a = psi_bilinear_matrix_transp_order(l_b) + ASSERT (l_b <= N_det) + ASSERT (l_a <= N_det) + do l=1,N_st + utl(l,kk+1) = u_t(l,l_a) + umax = max(umax, dabs(utl(l,kk+1))) + enddo + enddo + else + do kk=0,block_size-1 + if (i+kk > n_doubles) exit + l_b = doubles(i+kk) + l_a = psi_bilinear_matrix_transp_order(l_b) + ASSERT (l_b <= N_det) + ASSERT (l_a <= N_det) + utl(:,kk+1) = u_t(:,l_a) + enddo + umax = 1.d0 + endif + if (umax < 1.d-20) cycle + + do kk=0,block_size-1 + if (i+kk > n_doubles) exit + l_b = doubles(i+kk) + l_a = psi_bilinear_matrix_transp_order(l_b) + lcol = psi_bilinear_matrix_transp_columns(l_b) + ASSERT (lcol <= N_det_beta_unique) + + tmp_det2(1:N_int,2) = psi_det_beta_unique(1:N_int, lcol) +! call i_H_j( tmp_det, tmp_det2, $N_int, hij) +! call i_H_j_double_spin( tmp_det(1,2), psi_det_beta_unique(1, lcol), $N_int, hij) + if(do_right)then + call htilde_mu_mat_opt_bi_ortho_tot(tmp_det,tmp_det2,$N_int,hij) + else + call htilde_mu_mat_opt_bi_ortho_tot(tmp_det2,tmp_det,$N_int,hij) + endif + + !DIR$ LOOP COUNT AVG(4) + do l=1,N_st + v_t(l,k_a) = v_t(l,k_a) + hij * utl(l,kk+1) + enddo + enddo + enddo + + + ! Diagonal contribution + ! ===================== + + + ! Initial determinant is at k_a in alpha-major representation + ! ----------------------------------------------------------------------- + + if (u_is_sparse) then + umax = 0.d0 + do l=1,N_st + umax = max(umax, dabs(u_t(l,k_a))) + enddo + else + umax = 1.d0 + endif + if (umax < 1.d-20) cycle + + krow = psi_bilinear_matrix_rows(k_a) + ASSERT (krow <= N_det_alpha_unique) + + kcol = psi_bilinear_matrix_columns(k_a) + ASSERT (kcol <= N_det_beta_unique) + + tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow) + tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol) + + double precision, external :: diag_H_mat_elem + double precision :: hmono, htwoe, hthree + +! hij = diag_H_mat_elem(tmp_det,$N_int) + call diag_htilde_mu_mat_fock_bi_ortho ($N_int, tmp_det, hmono, htwoe, hthree, hij) + call get_s2(tmp_det,tmp_det,$N_int,sij) + + !DIR$ LOOP COUNT AVG(4) + do l=1,N_st + v_t(l,k_a) = v_t(l,k_a) + hij * u_t(l,k_a) + s_t(l,k_a) = s_t(l,k_a) + sij * u_t(l,k_a) + enddo + + end do + !$OMP END DO + deallocate(buffer, singles_a, singles_b, doubles, idx, utl) + !$OMP END PARALLEL + +end + +SUBST [ N_int ] + +1;; +2;; +3;; +4;; +N_int;; + +END_TEMPLATE + + diff --git a/src/tc_bi_ortho/u0_h_u0.irp.f b/src/tc_bi_ortho/h_tc_u0.irp.f similarity index 99% rename from src/tc_bi_ortho/u0_h_u0.irp.f rename to src/tc_bi_ortho/h_tc_u0.irp.f index e107ad88..5e6150ea 100644 --- a/src/tc_bi_ortho/u0_h_u0.irp.f +++ b/src/tc_bi_ortho/h_tc_u0.irp.f @@ -93,9 +93,6 @@ subroutine H_tc_u_0_nstates_openmp(v_0,u_0,N_st,sze, do_right) double precision, allocatable :: u_t(:,:), v_t(:,:) !DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: u_t allocate(u_t(N_st,N_det),v_t(N_st,N_det)) -! provide mo_bi_ortho_tc_one_e mo_bi_ortho_tc_two_e -! provide ref_tc_energy_tot fock_op_2_e_tc_closed_shell -! provide eff_2_e_from_3_e_ab eff_2_e_from_3_e_aa eff_2_e_from_3_e_bb do k=1,N_st call dset_order(u_0(1,k),psi_bilinear_matrix_order,N_det) enddo diff --git a/src/tc_bi_ortho/tc_bi_ortho.irp.f b/src/tc_bi_ortho/tc_bi_ortho.irp.f index 2d51f6f0..bd0b1ef5 100644 --- a/src/tc_bi_ortho/tc_bi_ortho.irp.f +++ b/src/tc_bi_ortho/tc_bi_ortho.irp.f @@ -3,7 +3,6 @@ program tc_bi_ortho BEGIN_DOC ! TODO : Reads psi_det in the EZFIO folder and prints out the left- and right-eigenvectors together with the energy. Saves the left-right wave functions at the end. END_DOC - print *, 'Hello world' my_grid_becke = .True. my_n_pt_r_grid = 30 my_n_pt_a_grid = 50 diff --git a/src/tc_bi_ortho/tc_h_eigvectors.irp.f b/src/tc_bi_ortho/tc_h_eigvectors.irp.f index f2cbb637..11a14b41 100644 --- a/src/tc_bi_ortho/tc_h_eigvectors.irp.f +++ b/src/tc_bi_ortho/tc_h_eigvectors.irp.f @@ -25,8 +25,6 @@ subroutine diagonalize_CI_tc psi_r_coef_bi_ortho(i,j) = reigvec_tc_bi_orth(i,j) enddo enddo -! psi_energy(1:N_states) = CI_electronic_energy(1:N_states) -! psi_s2(1:N_states) = CI_s2(1:N_states) SOFT_TOUCH psi_l_coef_bi_ortho psi_r_coef_bi_ortho end diff --git a/src/tc_scf/tc_scf.irp.f b/src/tc_scf/tc_scf.irp.f index ae3b609b..85389f30 100644 --- a/src/tc_scf/tc_scf.irp.f +++ b/src/tc_scf/tc_scf.irp.f @@ -11,8 +11,8 @@ program tc_scf print *, ' starting ...' my_grid_becke = .True. - my_n_pt_r_grid = 60 - my_n_pt_a_grid = 110 + my_n_pt_r_grid = 30 + my_n_pt_a_grid = 50 ! my_n_pt_r_grid = 10 ! small grid for quick debug ! my_n_pt_a_grid = 26 ! small grid for quick debug touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid