9
1
mirror of https://github.com/QuantumPackage/qp2.git synced 2024-06-17 18:15:17 +02:00

Working on fast integrals

This commit is contained in:
Anthony Scemama 2019-07-05 18:50:22 +02:00
parent 932befb2bb
commit 0336738109
6 changed files with 260 additions and 164 deletions

View File

@ -1,6 +1,6 @@
! -*- F90 -*-
BEGIN_PROVIDER [logical, bavard]
bavard=.true.
! bavard=.false.
! bavard=.true.
bavard=.false.
END_PROVIDER

View File

@ -4,8 +4,10 @@ program casscf
! TODO : Put the documentation of the program here
END_DOC
no_vvvv_integrals = .True.
no_ivvv_integrals = .True.
no_vvv_integrals = .True.
pt2_max = 0.02
SOFT_TOUCH no_vvvv_integrals pt2_max
SOFT_TOUCH no_vvvv_integrals no_vvv_integrals pt2_max
call run
end
@ -32,17 +34,16 @@ subroutine run
converged = dabs(energy_improvement) < thresh_scf
pt2_max = dabs(energy_improvement / pt2_relative_error)
call update_integrals
mo_coef = NewOrbs
call save_mos
call map_deinit(mo_integrals_map)
iteration += 1
N_det = N_det/2
psi_det = psi_det_sorted
psi_coef = psi_coef_sorted
read_wf = .True.
FREE mo_integrals_map mo_two_e_integrals_in_map
SOFT_TOUCH mo_coef N_det pt2_max psi_det psi_coef
call map_deinit(mo_integrals_map)
FREE mo_two_e_integrals_in_map mo_integrals_map
SOFT_TOUCH mo_coef N_det pt2_max psi_det psi_coef
enddo

View File

@ -5,32 +5,12 @@ program print_2rdm
!
! useful to test the active part of the spin trace 2 rdms
END_DOC
no_vvvv_integrals = .True.
read_wf = .True.
touch read_wf
touch read_wf no_vvvv_integrals
call routine
end
subroutine routine
integer :: i,j,k,l
integer :: ii,jj,kk,ll
double precision :: accu(4),twodm,thr,act_twodm2,integral,get_two_e_integral
thr = 1.d-10
accu = 0.d0
do ll = 1, n_act_orb
l = list_act(ll)
do kk = 1, n_act_orb
k = list_act(kk)
do jj = 1, n_act_orb
j = list_act(jj)
do ii = 1, n_act_orb
i = list_act(ii)
integral = get_two_e_integral(i,j,k,l,mo_integrals_map)
accu(1) += act_two_rdm_spin_trace_mo(ii,jj,kk,ll) * integral
enddo
enddo
enddo
enddo
print*,'accu = ',accu(1)
print *, psi_energy_with_nucl_rep
end

View File

@ -196,33 +196,36 @@ BEGIN_PROVIDER [real*8, one_ints_no, (mo_num,mo_num)]
END_PROVIDER
BEGIN_PROVIDER [ double precision, NatOrbsCI_mos, (mo_num, mo_num) ]
implicit none
BEGIN_DOC
! Rotation matrix from current MOs to the CI natural MOs
END_DOC
integer :: p,q
NatOrbsCI_mos(:,:) = 0.d0
do q = 1,mo_num
NatOrbsCI_mos(q,q) = 1.d0
enddo
do q = 1,n_act_orb
do p = 1,n_act_orb
NatOrbsCI_mos(list_act(p),list_act(q)) = natorbsCI(p,q)
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [real*8, NatOrbsFCI, (ao_num,mo_num)]
implicit none
BEGIN_DOC
! FCI natural orbitals
END_DOC
integer :: i,j, p, q
real*8 :: d(n_act_orb)
NatOrbsFCI(:,:)=mo_coef(:,:)
do j=1,ao_num
do p=1,n_act_orb
d(p)=0.D0
end do
do p=1,n_act_orb
do q=1,n_act_orb
d(p)+=NatOrbsFCI(j,list_act(q))*natorbsCI(q,p)
end do
end do
do p=1,n_act_orb
NatOrbsFCI(j,list_act(p))=d(p)
end do
end do
! call dgemm('N','T', ao_num,mo_num,mo_num,1.d0, &
! NatOrbsFCI, size(NatOrbsFCI,1), &
! Umat, size(Umat,1), 0.d0, &
! NewOrbs, size(NewOrbs,1))
call dgemm('N','N', ao_num,mo_num,mo_num,1.d0, &
mo_coef, size(mo_coef,1), &
NatOrbsCI_mos, size(NatOrbsCI_mos,1), 0.d0, &
NatOrbsFCI, size(NatOrbsFCI,1))
END_PROVIDER

View File

@ -0,0 +1,202 @@
BEGIN_PROVIDER [ double precision, mo_coef_novirt, (ao_num,n_core_inact_act_orb) ]
implicit none
BEGIN_DOC
! MO coefficients without virtual MOs
END_DOC
integer :: j,jj
do j=1,n_core_inact_act_orb
jj = list_core_inact_act(j)
mo_coef_novirt(:,j) = mo_coef(:,jj)
enddo
END_PROVIDER
subroutine ao_to_mo_novirt(A_ao,LDA_ao,A_mo,LDA_mo)
implicit none
BEGIN_DOC
! Transform A from the |AO| basis to the |MO| basis excluding virtuals
!
! $C^\dagger.A_{ao}.C$
END_DOC
integer, intent(in) :: LDA_ao,LDA_mo
double precision, intent(in) :: A_ao(LDA_ao,ao_num)
double precision, intent(out) :: A_mo(LDA_mo,n_core_inact_act_orb)
double precision, allocatable :: T(:,:)
allocate ( T(ao_num,n_core_inact_act_orb) )
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: T
call dgemm('N','N', ao_num, n_core_inact_act_orb, ao_num, &
1.d0, A_ao,LDA_ao, &
mo_coef_novirt, size(mo_coef_novirt,1), &
0.d0, T, size(T,1))
call dgemm('T','N', n_core_inact_act_orb, n_core_inact_act_orb, ao_num,&
1.d0, mo_coef_novirt,size(mo_coef_novirt,1), &
T, ao_num, &
0.d0, A_mo, size(A_mo,1))
deallocate(T)
end
subroutine four_idx_novvvv
use map_module
implicit none
BEGIN_DOC
! Retransform MO integrals for next CAS-SCF step
END_DOC
integer :: i,j,k,l,n_integrals
double precision, allocatable :: f(:,:,:), d(:,:), T(:,:,:,:)
double precision, external :: get_ao_two_e_integral
integer(key_kind), allocatable :: idx(:)
real(integral_kind), allocatable :: values(:)
integer :: p,q,r,s
double precision, allocatable :: ijij(:), ijji(:), jqjs(:,:,:), jqrj(:,:,:)
double precision :: c
allocate (jqjs(mo_num,ao_num,ao_num), jqrj(mo_num,ao_num,ao_num))
allocate( T(n_core_inact_act_orb,n_core_inact_act_orb,ao_num,ao_num) )
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP SHARED(mo_num,ao_num,T,n_core_inact_act_orb, mo_coef_transp, &
!$OMP mo_integrals_threshold,mo_coef,mo_integrals_map, &
!$OMP list_core_inact_act,jqjs,jqrj,ao_integrals_map) &
!$OMP PRIVATE(i,j,k,l,p,q,r,s,idx,values,n_integrals, &
!$OMP f,d,c,ijij,ijji)
allocate(f(ao_num,ao_num,ao_num), d(mo_num,mo_num), &
idx(mo_num*mo_num), values(mo_num*mo_num) )
allocate(ijij(mo_num), ijji(mo_num))
! <aa|vv>
!$OMP DO
do s=1,ao_num
T(:,:,:,s) = 0.d0
jqjs(:,:,s) = 0.d0
jqrj(:,:,s) = 0.d0
enddo
!$OMP END DO
!$OMP DO
do s=1,ao_num
do r=1,ao_num
do q=1,ao_num
do p=1,r
f(p,q,r) = get_ao_two_e_integral(p,q,r,s,ao_integrals_map)
f(r,q,p) = f(p,q,r)
enddo
enddo
enddo
! f(p,q,r) = <pq|rs>
do r=1,ao_num
call ao_to_mo_novirt(f(1,1,r),size(f,1),T(1,1,r,s),size(T,1))
enddo
! T(i,j,p,q) = <ij|rs>
! Diagonal
do r=1,ao_num
do q=1,ao_num
do p=1,ao_num
if (dabs(f(p,q,r)) >= mo_integrals_threshold) then
do i=1,mo_num
jqjs(i,q,s) = jqjs(i,q,s) + mo_coef_transp(i,p) * f(p,q,r) * mo_coef_transp(i,r)
enddo
endif
enddo
enddo
enddo
enddo
!$OMP END DO NOWAIT
!$OMP DO
do s=1,ao_num
do r=1,ao_num
do q=1,r
do p=1,ao_num
f(p,q,r) = get_ao_two_e_integral(p,q,s,r,ao_integrals_map)
f(p,r,q) = f(p,q,r)
enddo
enddo
enddo
! f(p,q,r) = <pq|sr>
! Diagonal
do r=1,ao_num
do q=1,ao_num
do p=1,ao_num
if (dabs(f(p,q,r)) >= mo_integrals_threshold) then
do i=1,mo_num
jqrj(i,q,s) = jqrj(i,q,s) + mo_coef_transp(i,p) * f(p,q,r) * mo_coef_transp(i,r)
enddo
endif
enddo
enddo
enddo
enddo
!$OMP END DO NOWAIT
!$OMP BARRIER
!$OMP DO
do i=1,mo_num
ijij(:) = 0.d0
ijji(:) = 0.d0
do s=1,ao_num
do q=1,ao_num
do j=1,mo_num
c = mo_coef_transp(j,q) * mo_coef_transp(j,s)
ijij(j) = ijij(j) + jqjs(i,q,s) * c
ijji(j) = ijji(j) + jqrj(i,q,s) * c
enddo
enddo
enddo
do j=1,mo_num
call two_e_integrals_index(i,j,i,j,idx(j))
values(j) = ijij(j)
enddo
do j=1,mo_num
call two_e_integrals_index(i,j,j,i,idx(mo_num+j))
values(mo_num+j) = ijji(j)
enddo
call map_append(mo_integrals_map, idx, values, 2*mo_num)
enddo
!$OMP END DO
!$OMP DO
do j=1,n_core_inact_act_orb
do i=1,n_core_inact_act_orb
do s=1,ao_num
do r=1,ao_num
f(r,s,1) = T(i,j,r,s)
enddo
enddo
call ao_to_mo(f,size(f,1),d,size(d,1))
n_integrals = 0
do l=1,mo_num
do k=1,mo_num
n_integrals+=1
call two_e_integrals_index(list_core_inact_act(i),list_core_inact_act(j),k,l,idx(n_integrals))
values(n_integrals) = d(k,l)
enddo
enddo
call map_append(mo_integrals_map, idx, values, n_integrals)
enddo
enddo
!$OMP END DO
deallocate(f,d,ijij,ijji,idx,values)
!$OMP END PARALLEL
deallocate(T,jqrj,jqjs)
call map_sort(mo_integrals_map)
call map_unique(mo_integrals_map)
call map_shrink(mo_integrals_map,real(mo_integrals_threshold,integral_kind))
end

View File

@ -22,16 +22,13 @@ end
BEGIN_PROVIDER [ logical, mo_two_e_integrals_in_map ]
use map_module
implicit none
integer(bit_kind) :: mask_ijkl(N_int,4)
integer(bit_kind) :: mask_ijk(N_int,3)
BEGIN_DOC
! If True, the map of MO two-electron integrals is provided
END_DOC
integer(bit_kind) :: mask_ijkl(N_int,4)
integer(bit_kind) :: mask_ijk(N_int,3)
double precision :: cpu_1, cpu_2, wall_1, wall_2
! The following line avoids a subsequent crash when the memory used is more
! than half of the virtual memory, due to a fork in zcat when reading arrays
! with EZFIO
PROVIDE mo_class
mo_two_e_integrals_in_map = .True.
@ -49,106 +46,28 @@ BEGIN_PROVIDER [ logical, mo_two_e_integrals_in_map ]
print *, '---------------------------------'
print *, ''
call wall_time(wall_1)
call cpu_time(cpu_1)
if(no_vvvv_integrals)then
integer :: i,j,k,l
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! I I I I !!!!!!!!!!!!!!!!!!!!
! (core+inact+act) ^ 4
! <ii|ii>
print*, ''
print*, '<ii|ii>'
do i = 1,N_int
mask_ijkl(i,1) = core_inact_act_bitmask_4(i,1)
mask_ijkl(i,2) = core_inact_act_bitmask_4(i,1)
mask_ijkl(i,3) = core_inact_act_bitmask_4(i,1)
mask_ijkl(i,4) = core_inact_act_bitmask_4(i,1)
enddo
call add_integrals_to_map(mask_ijkl)
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! I I V V !!!!!!!!!!!!!!!!!!!!
! (core+inact+act) ^ 2 (virt) ^2
! <iv|iv> = J_iv
print*, ''
print*, '<iv|iv>'
do i = 1,N_int
mask_ijkl(i,1) = core_inact_act_bitmask_4(i,1)
mask_ijkl(i,2) = virt_bitmask(i,1)
mask_ijkl(i,3) = core_inact_act_bitmask_4(i,1)
mask_ijkl(i,4) = virt_bitmask(i,1)
enddo
call add_integrals_to_map(mask_ijkl)
! (core+inact+act) ^ 2 (virt) ^2
! <ii|vv> = (iv|iv)
print*, ''
print*, '<ii|vv>'
do i = 1,N_int
mask_ijkl(i,1) = core_inact_act_bitmask_4(i,1)
mask_ijkl(i,2) = core_inact_act_bitmask_4(i,1)
mask_ijkl(i,3) = virt_bitmask(i,1)
mask_ijkl(i,4) = virt_bitmask(i,1)
enddo
call add_integrals_to_map(mask_ijkl)
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! V V V !!!!!!!!!!!!!!!!!!!!!!!
if(.not.no_vvv_integrals)then
print*, ''
print*, '<rv|sv> and <rv|vs>'
do i = 1,N_int
mask_ijk(i,1) = virt_bitmask(i,1)
mask_ijk(i,2) = virt_bitmask(i,1)
mask_ijk(i,3) = virt_bitmask(i,1)
enddo
call add_integrals_to_map_three_indices(mask_ijk)
endif
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! I I I V !!!!!!!!!!!!!!!!!!!!
! (core+inact+act) ^ 3 (virt) ^1
! <iv|ii>
print*, ''
print*, '<iv|ii>'
do i = 1,N_int
mask_ijkl(i,1) = core_inact_act_bitmask_4(i,1)
mask_ijkl(i,2) = core_inact_act_bitmask_4(i,1)
mask_ijkl(i,3) = core_inact_act_bitmask_4(i,1)
mask_ijkl(i,4) = virt_bitmask(i,1)
enddo
call add_integrals_to_map(mask_ijkl)
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! I V V V !!!!!!!!!!!!!!!!!!!!
! (core+inact+act) ^ 1 (virt) ^3
! <iv|vv>
if(.not.no_ivvv_integrals)then
print*, ''
print*, '<iv|vv>'
do i = 1,N_int
mask_ijkl(i,1) = core_inact_act_bitmask_4(i,1)
mask_ijkl(i,2) = virt_bitmask(i,1)
mask_ijkl(i,3) = virt_bitmask(i,1)
mask_ijkl(i,4) = virt_bitmask(i,1)
enddo
call add_integrals_to_map_no_exit_34(mask_ijkl)
endif
call four_idx_novvvv
else
call add_integrals_to_map(full_ijkl_bitmask_4)
! call four_index_transform_zmq(ao_integrals_map,mo_integrals_map, &
! mo_coef, size(mo_coef,1), &
! 1, 1, 1, 1, ao_num, ao_num, ao_num, ao_num, &
! 1, 1, 1, 1, mo_num, mo_num, mo_num, mo_num)
!
! call four_index_transform_block(ao_integrals_map,mo_integrals_map, &
! mo_coef, size(mo_coef,1), &
! 1, 1, 1, 1, ao_num, ao_num, ao_num, ao_num, &
! 1, 1, 1, 1, mo_num, mo_num, mo_num, mo_num)
!
! call four_index_transform(ao_integrals_map,mo_integrals_map, &
! mo_coef, size(mo_coef,1), &
! 1, 1, 1, 1, ao_num, ao_num, ao_num, ao_num, &
! 1, 1, 1, 1, mo_num, mo_num, mo_num, mo_num)
integer*8 :: get_mo_map_size, mo_map_size
mo_map_size = get_mo_map_size()
print*,'Molecular integrals provided'
endif
call wall_time(wall_2)
call cpu_time(cpu_2)
integer*8 :: get_mo_map_size, mo_map_size
mo_map_size = get_mo_map_size()
double precision, external :: map_mb
print*,'Molecular integrals provided:'
print*,' Size of MO map ', map_mb(mo_integrals_map) ,'MB'
print*,' Number of MO integrals: ', mo_map_size
print*,' cpu time :',cpu_2 - cpu_1, 's'
print*,' wall time :',wall_2 - wall_1, 's ( x ', (cpu_2-cpu_1)/(wall_2-wall_1), ')'
if (write_mo_two_e_integrals.and.mpi_master) then
call ezfio_set_work_empty(.False.)
call map_save_to_disk(trim(ezfio_filename)//'/work/mo_ints',mo_integrals_map)
@ -185,7 +104,7 @@ subroutine add_integrals_to_map(mask_ijkl)
integer :: size_buffer
integer(key_kind),allocatable :: buffer_i(:)
real(integral_kind),allocatable :: buffer_value(:)
double precision :: map_mb
double precision, external :: map_mb
integer :: i1,j1,k1,l1, ii1, kmax, thread_num
integer :: i2,i3,i4
@ -247,12 +166,9 @@ subroutine add_integrals_to_map(mask_ijkl)
endif
size_buffer = min(ao_num*ao_num*ao_num,16000000)
print*, 'Providing the molecular integrals '
print*, 'Buffers : ', 8.*(mo_num*(n_j)*(n_k+1) + mo_num+&
ao_num+ao_num*ao_num+ size_buffer*3)/(1024*1024), 'MB / core'
call wall_time(wall_1)
call cpu_time(cpu_1)
double precision :: accu_bis
accu_bis = 0.d0
@ -452,12 +368,6 @@ subroutine add_integrals_to_map(mask_ijkl)
deallocate(list_ijkl)
print*,'Molecular integrals provided:'
print*,' Size of MO map ', map_mb(mo_integrals_map) ,'MB'
print*,' Number of MO integrals: ', mo_map_size
print*,' cpu time :',cpu_2 - cpu_1, 's'
print*,' wall time :',wall_2 - wall_1, 's ( x ', (cpu_2-cpu_1)/(wall_2-wall_1), ')'
end