9
1
mirror of https://github.com/QuantumPackage/qp2.git synced 2024-12-21 11:03:29 +01:00

Merge branch 'dev-stable' of github.com:QuantumPackage/qp2 into dev-stable

This commit is contained in:
Anthony Scemama 2023-05-10 10:12:18 +02:00
commit 0272c6489a
104 changed files with 25262 additions and 412 deletions

View File

@ -46,7 +46,7 @@ def main(arguments):
append_bats(dirname, filenames) append_bats(dirname, filenames)
else: else:
for (dirname, _, filenames) in os.walk(os.getcwd(), followlinks=False): for (dirname, _, filenames) in os.walk(os.getcwd(), followlinks=False):
if "IRPF90_temp" not in dirname: if "IRPF90_temp" not in dirname and "external" not in dirname:
append_bats(dirname, filenames) append_bats(dirname, filenames)
l_bats = [y for _, y in sorted(l_bats)] l_bats = [y for _, y in sorted(l_bats)]
@ -67,6 +67,7 @@ def main(arguments):
os.system(test+" python3 bats_to_sh.py "+bats_file+ os.system(test+" python3 bats_to_sh.py "+bats_file+
"| bash") "| bash")
else: else:
# print(" ".join(["bats", "--verbose-run", "--trace", bats_file]))
subprocess.check_call(["bats", "--verbose-run", "--trace", bats_file], env=os.environ) subprocess.check_call(["bats", "--verbose-run", "--trace", bats_file], env=os.environ)

View File

@ -110,6 +110,11 @@ function qp()
unset COMMAND unset COMMAND
;; ;;
"test")
shift
qp_test $@
;;
*) *)
which "qp_$1" &> /dev/null which "qp_$1" &> /dev/null
if [[ $? -eq 0 ]] ; then if [[ $? -eq 0 ]] ; then
@ -183,7 +188,7 @@ _qp_Complete()
;; ;;
esac;; esac;;
set_file) set_file)
COMPREPLY=( $(compgen -W "$(for i in * ; do [[ -f ${i}/ezfio/.version ]] && echo $i ; done)" -- ${cur} ) ) COMPREPLY=( $(compgen -W "$(for i in $(find . -name ezfio | sed 's/ezfio$/.version/') ; do [[ -f $i ]] && echo ${i%/.version} ; done)" -- ${cur} ) )
return 0 return 0
;; ;;
plugins) plugins)
@ -215,10 +220,15 @@ _qp_Complete()
return 0 return 0
;; ;;
esac;; esac;;
test)
COMPREPLY=( $(compgen -W "-v -a " -- $cur ) )
return 0
;;
*) *)
COMPREPLY=( $(compgen -W 'plugins set_file \ COMPREPLY=( $(compgen -W 'plugins set_file \
unset_file man \ unset_file man \
create_ezfio \ create_ezfio \
test \
convert_output_to_ezfio \ convert_output_to_ezfio \
-h update' -- $cur ) ) -h update' -- $cur ) )

View File

@ -0,0 +1,97 @@
#!/usr/bin/env bats
source $QP_ROOT/tests/bats/common.bats.sh
source $QP_ROOT/quantum_package.rc
zero () {
if [ -z "$1" ]; then echo 0.0; else echo $1; fi
}
function run() {
thresh1=1e-10
thresh2=1e-12
thresh3=1e-4
test_exe scf || skip
qp set_file $1
qp edit --check
qp reset -d
qp set_frozen_core
qp set localization localization_method boys
file="$(echo $1 | sed 's/.ezfio//g')"
energy="$(cat $1/hartree_fock/energy)"
fb_err1="$(qp run debug_gradient_loc | grep 'Max error' | tail -n 1 | awk '{print $3}')"
fb_err2="$(qp run debug_hessian_loc | grep 'Max error' | tail -n 1 | awk '{print $3}')"
qp run localization > $file.loc.out
fb_energy="$(qp run print_energy | grep -A 1 'Nuclear repulsion energy' | tail -n 1 )"
fb_c="$(cat $file.loc.out | grep 'Criterion:Core' | tail -n 1 | awk '{print $3}')i"
fb_i="$(cat $file.loc.out | grep 'Criterion:Inactive' | tail -n 1 | awk '{print $3}')"
fb_a="$(cat $file.loc.out | grep 'Criterion:Active' | tail -n 1 | awk '{print $3}')"
fb_v="$(cat $file.loc.out | grep 'Criterion:Virtual' | tail -n 1 | awk '{print $3}')"
qp reset -a
qp run scf
qp set_frozen_core
qp set localization localization_method pipek
pm_err1="$(qp run debug_gradient_loc | grep 'Max error' | tail -n 1 | awk '{print $3}')"
pm_err2="$(qp run debug_hessian_loc | grep 'Max error' | tail -n 1 | awk '{print $3}')"
qp run localization > $file.loc.out
pm_c="$(cat $file.loc.out | grep 'Criterion:Core' | tail -n 1 | awk '{print $3}')i"
pm_i="$(cat $file.loc.out | grep 'Criterion:Inactive' | tail -n 1 | awk '{print $3}')"
pm_a="$(cat $file.loc.out | grep 'Criterion:Active' | tail -n 1 | awk '{print $3}')"
pm_v="$(cat $file.loc.out | grep 'Criterion:Virtual' | tail -n 1 | awk '{print $3}')"
pm_energy="$(qp run print_energy | grep -A 1 'Nuclear repulsion energy' | tail -n 1 )"
qp set localization localization_method boys
qp reset -a
qp run scf
qp set_frozen_core
eq $energy $fb_energy $thresh1
eq $fb_err1 0.0 $thresh2
eq $fb_err2 0.0 $thresh2
eq $energy $pm_energy $thresh1
eq $pm_err1 0.0 $thresh2
eq $pm_err2 0.0 $thresh2
fb_c=$(zero $fb_c)
fb_i=$(zero $fb_i)
fb_a=$(zero $fb_a)
fb_v=$(zero $fb_v)
pm_c=$(zero $pm_c)
pm_i=$(zero $pm_i)
pm_a=$(zero $pm_a)
pm_v=$(zero $pm_v)
eq $fb_c $2 $thresh3
eq $fb_i $3 $thresh3
eq $fb_a $4 $thresh3
eq $fb_v $5 $thresh3
eq $pm_c $6 $thresh3
eq $pm_i $7 $thresh3
eq $pm_a $8 $thresh3
eq $pm_v $9 $thresh3
}
@test "b2_stretched" {
run b2_stretched.ezfio -32.1357551678876 -47.0041982094667 0.0 -223.470015856259 -1.99990778964451 -2.51376723927071 0.0 -12.8490602539275
}
@test "clo" {
run clo.ezfio -44.1624001765291 -32.4386660941387 0.0 -103.666309287187 -5.99985418946811 -5.46871580225222 0.0 -20.2480064922275
}
@test "clf" {
run clf.ezfio -47.5143398826967 -35.7206886315104 0.0 -107.043029033468 -5.99994222062230 -6.63916513458470 0.0 -19.7035159913484
}
@test "h2o2" {
run h2o2.ezfio -7.76848143170524 -30.9694344369829 0.0 -175.898343829453 -1.99990497554575 -5.62980322957485 0.0 -33.5699813186666
}
@test "h2o" {
run h2o.ezfio 0.0 -2.52317434969591 0.0 -45.3136377925359 0.0 -3.01248365356981 0.0 -22.4470831240924
}
@test "h3coh" {
run h3coh.ezfio -3.66763692804590 -24.0463089480870 0.0 -111.485948435075 -1.99714061342078 -4.89242181322988 0.0 -23.6405412057679
}
@test "n2h4" {
run n2h4.ezfio -7.46608163002070 -35.7632174051822 0.0 -305.913449004632 -1.99989326143356 -4.62496615892268 0.0 -51.5171904685553
}

View File

@ -0,0 +1,54 @@
[localization_method]
type: character*(32)
doc: Method for the orbital localization. boys: Foster-Boys, pipek: Pipek-Mezey.
interface: ezfio,provider,ocaml
default: boys
[localization_max_nb_iter]
type: integer
doc: Maximal number of iterations for the orbital localization.
interface: ezfio,provider,ocaml
default: 1000
[localization_use_hessian]
type: logical
doc: If true, it uses the trust region algorithm with the gradient and the diagonal of the hessian. Else it computes the rotation between each pair of MOs that should be applied to maximize/minimize the localization criterion. The last option is not easy to converge.
interface: ezfio,provider,ocaml
default: true
[auto_mo_class]
type: logical
doc: If true, set automatically the classes.
interface: ezfio,provider,ocaml
default: true
[thresh_loc_max_elem_grad]
type: double precision
doc: Threshold for the convergence, the localization exits when the largest element in the gradient is smaller than thresh_localization_max_elem_grad.
interface: ezfio,provider,ocaml
default: 1.e-6
[kick_in_mos]
type: logical
doc: If True, it applies a rotation of an angle angle_pre_rot between the MOs of a same mo_class before the localization.
interface: ezfio,provider,ocaml
default: true
[angle_pre_rot]
type: double precision
doc: To define the angle for the rotation of the MOs before the localization (in rad).
interface: ezfio,provider,ocaml
default: 0.1
[sort_mos_by_e]
type: logical
doc: If True, the MOs are sorted using the diagonal elements of the Fock matrix.
interface: ezfio,provider,ocaml
default: false
[debug_hf]
type: logical
doc: If True, prints the HF energy before/after the different steps of the localization. Only for debugging.
interface: ezfio,provider,ocaml
default: false

3
src/mo_localization/NEED Normal file
View File

@ -0,0 +1,3 @@
hartree_fock
utils_trust_region
determinants

View File

@ -0,0 +1,113 @@
# Orbital localisation
To localize the MOs:
```
qp run localization
```
By default, the different otbital classes are automatically set by splitting
the orbitales in the following classes:
- Core -> Core
- Active, doubly occupied -> Inactive
- Active, singly occupied -> Active
- Active, empty -> Virtual
- Deleted -> Deleted
The orbitals will be localized among each class, excpect the deleted ones.
If you want to choose another splitting, you can set
```
qp set mo_localization auto_mo_class false
```
and define the classes with
```
qp set_mo_class -c [] -a [] -v [] -i [] -d []
```
for more information
```
qp set_mo_class -q
```
We don't care about the name of the
mo classes. The algorithm just localizes all the MOs of
a given class between them, for all the classes, except the deleted MOs.
If you are using the last option don't forget to reset the initial mo classes
after the localization.
Before the localization, a kick is done for each mo class
(except the deleted ones) to break the MOs. This is done by
doing a given rotation between the MOs.
This feature can be removed by setting:
```
qp set localization kick_in_mos false
```
and the default angle for the rotation can be changed with:
```
qp set localization angle_pre_rot 1e-3 # or something else
```
After the localization, the MOs of each class (except the deleted ones)
can be sorted between them using the diagonal elements of
the fock matrix with:
```
qp set localization sort_mos_by_e true
```
You can check the Hartree-Fock energy before/during/after the localization
by putting (only for debugging):
```
qp set localization debug_hf true
```
## Foster-Boys & Pipek-Mezey
Foster-Boys:
```
qp set localization localization_method boys
```
Pipek-Mezey:
```
qp set localization localization_method pipek
```
# Break the spatial symmetry of the MOs
This program work exactly as the localization.
To break the spatial symmetry of the MOs:
```
qp run break_spatial_sym
```
The default angle for the rotations is too big for this kind of
application, a value between 1e-3 and 1e-6 should break the spatial
symmetry with just a small change in the energy:
```
qp set localization angle_pre_rot 1e-3
```
# With or without hessian + trust region
With hessian + trust region
```
qp set localization localisation_use_hessian true
```
It uses the trust region algorithm with the diagonal of the hessian of the
localization criterion with respect to the MO rotations.
Without the hessian and the trust region
```
qp set localization localisation_use_hessian false
```
By doing so it does not require to store the hessian but the
convergence is not easy, in particular for virtual MOs.
It seems that it not possible to converge with Pipek-Mezey
localization with this approach.
# Parameters
Some other parameters are available for the localization (qp edit for more details).
# Tests
```
qp test
```
# Org files
The org files are stored in the directory org in order to avoid overwriting on user changes.
The org files can be modified, to export the change to the source code, run
```
./TANGLE_org_mode.sh
mv *.irp.f ../.
```

View File

@ -0,0 +1,27 @@
! ! A small program to break the spatial symmetry of the MOs.
! ! You have to defined your MO classes or set security_mo_class to false
! ! with:
! ! qp set orbital_optimization security_mo_class false
! ! The default angle for the rotations is too big for this kind of
! ! application, a value between 1e-3 and 1e-6 should break the spatial
! ! symmetry with just a small change in the energy.
program break_spatial_sym
!BEGIN_DOC
! Break the symmetry of the MOs with a rotation
!END_DOC
implicit none
kick_in_mos = .True.
TOUCH kick_in_mos
call set_classes_loc
call apply_pre_rotation
call unset_classes_loc
end

View File

@ -0,0 +1,65 @@
program debug_gradient_loc
!BEGIN_DOC
! Check if the gradient is correct
!END_DOC
implicit none
integer :: list_size, n
integer, allocatable :: list(:)
double precision, allocatable :: v_grad(:), v_grad2(:)
double precision :: norm, max_elem, threshold, max_error
integer :: i, nb_error
threshold = 1d-12
list_size = dim_list_act_orb
allocate(list(list_size))
list = list_act
n = list_size*(list_size-1)/2
allocate(v_grad(n),v_grad2(n))
if (localization_method == 'boys') then
print*,'Foster-Boys'
call gradient_FB(n,list_size,list,v_grad,max_elem,norm)
call gradient_FB_omp(n,list_size,list,v_grad2,max_elem,norm)
elseif (localization_method == 'pipek') then
print*,'Pipek-Mezey'
call gradient_PM(n,list_size,list,v_grad,max_elem,norm)
call gradient_PM(n,list_size,list,v_grad2,max_elem,norm)
else
print*,'Unknown localization_method, please select boys or pipek'
call abort
endif
do i = 1, n
print*,i,v_grad(i)
enddo
v_grad = v_grad - v_grad2
nb_error = 0
max_elem = 0d0
do i = 1, n
if (dabs(v_grad(i)) > threshold) then
print*,v_grad(i)
nb_error = nb_error + 1
if (dabs(v_grad(i)) > max_elem) then
max_elem = v_grad(i)
endif
endif
enddo
print*,'Threshold error', threshold
print*, 'Nb error', nb_error
print*,'Max error', max_elem
deallocate(v_grad,v_grad2)
end

View File

@ -0,0 +1,65 @@
program debug_hessian_loc
!BEGIN_DOC
! Check if the hessian is correct
!END_DOC
implicit none
integer :: list_size, n
integer, allocatable :: list(:)
double precision, allocatable :: H(:), H2(:)
double precision :: threshold, max_error, max_elem
integer :: i, nb_error
threshold = 1d-12
list_size = dim_list_act_orb
allocate(list(list_size))
list = list_act
n = list_size*(list_size-1)/2
allocate(H(n),H2(n))
if (localization_method == 'boys') then
print*,'Foster-Boys'
call hessian_FB(n,list_size,list,H)
call hessian_FB_omp(n,list_size,list,H2)
elseif(localization_method == 'pipek') then
print*,'Pipek-Mezey'
call hessian_PM(n,list_size,list,H)
call hessian_PM(n,list_size,list,H2)
else
print*,'Unknown localization_method, please select boys or pipek'
call abort
endif
do i = 1, n
print*,i,H(i)
enddo
H = H - H2
nb_error = 0
max_elem = 0d0
do i = 1, n
if (dabs(H(i)) > threshold) then
print*,H(i)
nb_error = nb_error + 1
if (dabs(H(i)) > max_elem) then
max_elem = H(i)
endif
endif
enddo
print*,'Threshold error', threshold
print*, 'Nb error', nb_error
print*,'Max error', max_elem
deallocate(H,H2)
end

View File

@ -0,0 +1,16 @@
program kick_the_mos
!BEGIN_DOC
! To do a small rotation of the MOs
!END_DOC
implicit none
kick_in_mos = .True.
TOUCH kick_in_mos
call set_classes_loc
call apply_pre_rotation
call unset_classes_loc
end

View File

@ -0,0 +1,520 @@
program localization
implicit none
call set_classes_loc
call run_localization
call unset_classes_loc
end
! Variables:
! | pre_rot(mo_num, mo_num) | double precision | Matrix for the pre rotation |
! | R(mo_num,mo_num) | double precision | Rotation matrix |
! | tmp_R(:,:) | double precision | Rottation matrix in a subsapce |
! | prev_mos(ao_num, mo_num) | double precision | Previous mo_coef |
! | spatial_extent(mo_num) | double precision | Spatial extent of the orbitals |
! | criterion | double precision | Localization criterion |
! | prev_criterion | double precision | Previous criterion |
! | criterion_model | double precision | Estimated next criterion |
! | rho | double precision | Ratio to measure the agreement between the model |
! | | | and the reality |
! | delta | double precision | Radisu of the trust region |
! | norm_grad | double precision | Norm of the gradient |
! | info | integer | for dsyev from Lapack |
! | max_elem | double precision | maximal element in the gradient |
! | v_grad(:) | double precision | Gradient |
! | H(:,:) | double precision | Hessian (diagonal) |
! | e_val(:) | double precision | Eigenvalues of the hessian |
! | W(:,:) | double precision | Eigenvectors of the hessian |
! | tmp_x(:) | double precision | Step in 1D (in a subaspace) |
! | tmp_m_x(:,:) | double precision | Step in 2D (in a subaspace) |
! | tmp_list(:) | double precision | List of MOs in a mo_class |
! | i,j,k | integer | Indexes in the full MO space |
! | tmp_i, tmp_j, tmp_k | integer | Indexes in a subspace |
! | l | integer | Index for the mo_class |
! | key(:) | integer | Key to sort the eigenvalues of the hessian |
! | nb_iter | integer | Number of iterations |
! | must_exit | logical | To exit the trust region loop |
! | cancel_step | logical | To cancel a step |
! | not_*converged | logical | To localize the different mo classes |
! | t* | double precision | To measure the time |
! | n | integer | mo_num*(mo_num-1)/2, number of orbital parameters |
! | tmp_n | integer | dim_subspace*(dim_subspace-1)/2 |
! | | | Number of dimension in the subspace |
! Variables in qp_edit for the localization:
! | localization_method |
! | localization_max_nb_iter |
! | default_mo_class |
! | thresh_loc_max_elem_grad |
! | kick_in_mos |
! | angle_pre_rot |
! + all the variables for the trust region
! Cf. qp_edit orbital optimization
subroutine run_localization
include 'pi.h'
BEGIN_DOC
! Orbital localization
END_DOC
implicit none
! Variables
double precision, allocatable :: pre_rot(:,:), R(:,:)
double precision, allocatable :: prev_mos(:,:), spatial_extent(:), tmp_R(:,:)
double precision :: criterion, norm_grad
integer :: i,j,k,l,p, tmp_i, tmp_j, tmp_k
integer :: info
integer :: n, tmp_n, tmp_list_size
double precision, allocatable :: v_grad(:), H(:), tmp_m_x(:,:), tmp_x(:),W(:),e_val(:)
double precision :: max_elem, t1, t2, t3, t4, t5, t6
integer, allocatable :: tmp_list(:), key(:)
double precision :: prev_criterion, rho, delta, criterion_model
integer :: nb_iter, nb_sub_iter
logical :: not_converged, not_core_converged
logical :: not_act_converged, not_inact_converged, not_virt_converged
logical :: use_trust_region, must_exit, cancel_step,enforce_step_cancellation
n = mo_num*(mo_num-1)/2
! Allocation
allocate(spatial_extent(mo_num))
allocate(pre_rot(mo_num, mo_num), R(mo_num, mo_num))
allocate(prev_mos(ao_num, mo_num))
! Locality before the localization
call compute_spatial_extent(spatial_extent)
! Choice of the method
print*,''
print*,'Localization method:',localization_method
if (localization_method == 'boys') then
print*,'Foster-Boys localization'
elseif (localization_method == 'pipek') then
print*,'Pipek-Mezey localization'
else
print*,'Unknown localization_method, please select boys or pipek'
call abort
endif
print*,''
! Localization criterion (FB, PM, ...) for each mo_class
print*,'### Before the pre rotation'
! Debug
if (debug_hf) then
print*,'HF energy:', HF_energy
endif
do l = 1, 4
if (l==1) then ! core
tmp_list_size = dim_list_core_orb
elseif (l==2) then ! act
tmp_list_size = dim_list_act_orb
elseif (l==3) then ! inact
tmp_list_size = dim_list_inact_orb
else ! virt
tmp_list_size = dim_list_virt_orb
endif
! Allocation tmp array
allocate(tmp_list(tmp_list_size))
! To give the list of MOs in a mo_class
if (l==1) then ! core
tmp_list = list_core
elseif (l==2) then
tmp_list = list_act
elseif (l==3) then
tmp_list = list_inact
else
tmp_list = list_virt
endif
if (tmp_list_size >= 2) then
call criterion_localization(tmp_list_size, tmp_list,criterion)
print*,'Criterion:', criterion, mo_class(tmp_list(1))
endif
deallocate(tmp_list)
enddo
! Debug
!print*,'HF', HF_energy
! Loc
! Pre rotation, to give a little kick in the MOs
call apply_pre_rotation()
! Criterion after the pre rotation
! Localization criterion (FB, PM, ...) for each mo_class
print*,'### After the pre rotation'
! Debug
if (debug_hf) then
touch mo_coef
print*,'HF energy:', HF_energy
endif
do l = 1, 4
if (l==1) then ! core
tmp_list_size = dim_list_core_orb
elseif (l==2) then ! act
tmp_list_size = dim_list_act_orb
elseif (l==3) then ! inact
tmp_list_size = dim_list_inact_orb
else ! virt
tmp_list_size = dim_list_virt_orb
endif
if (tmp_list_size >= 2) then
! Allocation tmp array
allocate(tmp_list(tmp_list_size))
! To give the list of MOs in a mo_class
if (l==1) then ! core
tmp_list = list_core
elseif (l==2) then
tmp_list = list_act
elseif (l==3) then
tmp_list = list_inact
else
tmp_list = list_virt
endif
call criterion_localization(tmp_list_size, tmp_list,criterion)
print*,'Criterion:', criterion, trim(mo_class(tmp_list(1)))
deallocate(tmp_list)
endif
enddo
! Debug
!print*,'HF', HF_energy
print*,''
print*,'========================'
print*,' Orbital localization'
print*,'========================'
print*,''
!Initialization
not_converged = .TRUE.
! To do the localization only if there is at least 2 MOs
if (dim_list_core_orb >= 2) then
not_core_converged = .TRUE.
else
not_core_converged = .FALSE.
endif
if (dim_list_act_orb >= 2) then
not_act_converged = .TRUE.
else
not_act_converged = .FALSE.
endif
if (dim_list_inact_orb >= 2) then
not_inact_converged = .TRUE.
else
not_inact_converged = .FALSE.
endif
if (dim_list_virt_orb >= 2) then
not_virt_converged = .TRUE.
else
not_virt_converged = .FALSE.
endif
! Loop over the mo_classes
do l = 1, 4
if (l==1) then ! core
not_converged = not_core_converged
tmp_list_size = dim_list_core_orb
elseif (l==2) then ! act
not_converged = not_act_converged
tmp_list_size = dim_list_act_orb
elseif (l==3) then ! inact
not_converged = not_inact_converged
tmp_list_size = dim_list_inact_orb
else ! virt
not_converged = not_virt_converged
tmp_list_size = dim_list_virt_orb
endif
! Next iteration if converged = true
if (.not. not_converged) then
cycle
endif
! Allocation tmp array
allocate(tmp_list(tmp_list_size))
! To give the list of MOs in a mo_class
if (l==1) then ! core
tmp_list = list_core
elseif (l==2) then
tmp_list = list_act
elseif (l==3) then
tmp_list = list_inact
else
tmp_list = list_virt
endif
! Display
if (not_converged) then
print*,''
print*,'###', trim(mo_class(tmp_list(1))), 'MOs ###'
print*,''
endif
! Size for the 2D -> 1D transformation
tmp_n = tmp_list_size * (tmp_list_size - 1)/2
! Without hessian + trust region
if (.not. localization_use_hessian) then
! Allocation of temporary arrays
allocate(v_grad(tmp_n), tmp_m_x(tmp_list_size, tmp_list_size))
allocate(tmp_R(tmp_list_size, tmp_list_size), tmp_x(tmp_n))
! Criterion
call criterion_localization(tmp_list_size, tmp_list, prev_criterion)
! Init
nb_iter = 0
delta = 1d0
!Loop
do while (not_converged)
print*,''
print*,'***********************'
print*,'Iteration', nb_iter
print*,'***********************'
print*,''
! Angles of rotation
call theta_localization(tmp_list, tmp_list_size, tmp_m_x, max_elem)
tmp_m_x = - tmp_m_x * delta
! Rotation submatrix
call rotation_matrix(tmp_m_x, tmp_list_size, tmp_R, tmp_list_size, tmp_list_size, &
info, enforce_step_cancellation)
! To ensure that the rotation matrix is unitary
if (enforce_step_cancellation) then
print*, 'Step cancellation, too large error in the rotation matrix'
delta = delta * 0.5d0
cycle
else
delta = min(delta * 2d0, 1d0)
endif
! Full rotation matrix and application of the rotation
call sub_to_full_rotation_matrix(tmp_list_size, tmp_list, tmp_R, R)
call apply_mo_rotation(R, prev_mos)
! Update the needed data
call update_data_localization()
! New criterion
call criterion_localization(tmp_list_size, tmp_list, criterion)
print*,'Criterion:', trim(mo_class(tmp_list(1))), nb_iter, criterion
print*,'Max elem :', max_elem
print*,'Delta :', delta
nb_iter = nb_iter + 1
! Exit
if (nb_iter >= localization_max_nb_iter .or. dabs(max_elem) < thresh_loc_max_elem_grad) then
not_converged = .False.
endif
enddo
! Save the changes
call update_data_localization()
call save_mos()
TOUCH mo_coef
! Deallocate
deallocate(v_grad, tmp_m_x, tmp_list)
deallocate(tmp_R, tmp_x)
! Trust region
else
! Allocation of temporary arrays
allocate(v_grad(tmp_n), H(tmp_n), tmp_m_x(tmp_list_size, tmp_list_size))
allocate(tmp_R(tmp_list_size, tmp_list_size))
allocate(tmp_x(tmp_n), W(tmp_n), e_val(tmp_n), key(tmp_n))
! ### Initialization ###
delta = 0d0 ! can be deleted (normally)
nb_iter = 0 ! Must start at 0 !!!
rho = 0.5d0 ! Must be 0.5
! Compute the criterion before the loop
call criterion_localization(tmp_list_size, tmp_list, prev_criterion)
! Loop until the convergence
do while (not_converged)
print*,''
print*,'***********************'
print*,'Iteration', nb_iter
print*,'***********************'
print*,''
! Gradient
call gradient_localization(tmp_n, tmp_list_size, tmp_list, v_grad, max_elem, norm_grad)
! Diagonal hessian
call hessian_localization(tmp_n, tmp_list_size, tmp_list, H)
! Diagonalization of the diagonal hessian by hands
!call diagonalization_hessian(tmp_n,H,e_val,w)
do i = 1, tmp_n
e_val(i) = H(i)
enddo
! Key list for dsort
do i = 1, tmp_n
key(i) = i
enddo
! Sort of the eigenvalues
call dsort(e_val, key, tmp_n)
! Eigenvectors
W = 0d0
do i = 1, tmp_n
W(i) = dble(key(i))
enddo
! To enter in the loop just after
cancel_step = .True.
nb_sub_iter = 0
! Loop to reduce the trust radius until the criterion decreases and rho >= thresh_rho
do while (cancel_step)
print*,'-----------------------------'
print*, mo_class(tmp_list(1))
print*,'Iteration:', nb_iter
print*,'Sub iteration:', nb_sub_iter
print*,'Max elem grad:', max_elem
print*,'-----------------------------'
! Hessian,gradient,Criterion -> x
call trust_region_step_w_expected_e(tmp_n,1, H, W, e_val, v_grad, prev_criterion, &
rho, nb_iter, delta, criterion_model, tmp_x, must_exit)
! Internal loop exit condition
if (must_exit) then
print*,'trust_region_step_w_expected_e sent: Exit'
exit
endif
! 1D tmp -> 2D tmp
call vec_to_mat_v2(tmp_n, tmp_list_size, tmp_x, tmp_m_x)
! Rotation submatrix (square matrix tmp_list_size by tmp_list_size)
call rotation_matrix(tmp_m_x, tmp_list_size, tmp_R, tmp_list_size, tmp_list_size, &
info, enforce_step_cancellation)
if (enforce_step_cancellation) then
print*, 'Step cancellation, too large error in the rotation matrix'
rho = 0d0
cycle
endif
! tmp_R to R, subspace to full space
call sub_to_full_rotation_matrix(tmp_list_size, tmp_list, tmp_R, R)
! Rotation of the MOs
call apply_mo_rotation(R, prev_mos)
! Update the things related to mo_coef
call update_data_localization()
! Update the criterion
call criterion_localization(tmp_list_size, tmp_list, criterion)
print*,'Criterion:', trim(mo_class(tmp_list(1))), nb_iter, criterion
! Criterion -> step accepted or rejected
call trust_region_is_step_cancelled(nb_iter, prev_criterion, criterion, &
criterion_model, rho, cancel_step)
! Cancellation of the step, previous MOs
if (cancel_step) then
mo_coef = prev_mos
endif
nb_sub_iter = nb_sub_iter + 1
enddo
!call save_mos() !### depend of the time for 1 iteration
! To exit the external loop if must_exti = .True.
if (must_exit) then
exit
endif
! Step accepted, nb iteration + 1
nb_iter = nb_iter + 1
! External loop exit conditions
if (DABS(max_elem) < thresh_loc_max_elem_grad) then
not_converged = .False.
endif
if (nb_iter > localization_max_nb_iter) then
not_converged = .False.
endif
enddo
! Deallocation of temporary arrays
deallocate(v_grad, H, tmp_m_x, tmp_R, tmp_list, tmp_x, W, e_val, key)
! Save the MOs
call save_mos()
TOUCH mo_coef
! Debug
if (debug_hf) then
touch mo_coef
print*,'HF energy:', HF_energy
endif
endif
enddo
! Seems unecessary
TOUCH mo_coef
! To sort the MOs using the diagonal elements of the Fock matrix
if (sort_mos_by_e) then
call run_sort_by_fock_energies()
endif
! Debug
if (debug_hf) then
touch mo_coef
print*,'HF energy:', HF_energy
endif
! Locality after the localization
call compute_spatial_extent(spatial_extent)
end

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,7 @@
#!/bin/sh
list='ls *.org'
for element in $list
do
emacs --batch $element -f org-babel-tangle
done

View File

@ -0,0 +1,28 @@
! A small program to break the spatial symmetry of the MOs.
! You have to defined your MO classes or set security_mo_class to false
! with:
! qp set orbital_optimization security_mo_class false
! The default angle for the rotations is too big for this kind of
! application, a value between 1e-3 and 1e-6 should break the spatial
! symmetry with just a small change in the energy.
#+BEGIN_SRC f90 :comments org :tangle break_spatial_sym.irp.f
program break_spatial_sym
!BEGIN_DOC
! Break the symmetry of the MOs with a rotation
!END_DOC
implicit none
kick_in_mos = .True.
TOUCH kick_in_mos
call set_classes_loc
call apply_pre_rotation
call unset_classes_loc
end
#+END_SRC

View File

@ -0,0 +1,67 @@
#+BEGIN_SRC f90 :comments org :tangle debug_gradient_loc.irp.f
program debug_gradient_loc
!BEGIN_DOC
! Check if the gradient is correct
!END_DOC
implicit none
integer :: list_size, n
integer, allocatable :: list(:)
double precision, allocatable :: v_grad(:), v_grad2(:)
double precision :: norm, max_elem, threshold, max_error
integer :: i, nb_error
threshold = 1d-12
list_size = dim_list_act_orb
allocate(list(list_size))
list = list_act
n = list_size*(list_size-1)/2
allocate(v_grad(n),v_grad2(n))
if (localization_method == 'boys') then
print*,'Foster-Boys'
call gradient_FB(n,list_size,list,v_grad,max_elem,norm)
call gradient_FB_omp(n,list_size,list,v_grad2,max_elem,norm)
elseif (localization_method == 'pipek') then
print*,'Pipek-Mezey'
call gradient_PM(n,list_size,list,v_grad,max_elem,norm)
call gradient_PM(n,list_size,list,v_grad2,max_elem,norm)
else
print*,'Unknown localization_method, please select boys or pipek'
call abort
endif
do i = 1, n
print*,i,v_grad(i)
enddo
v_grad = v_grad - v_grad2
nb_error = 0
max_elem = 0d0
do i = 1, n
if (dabs(v_grad(i)) > threshold) then
print*,v_grad(i)
nb_error = nb_error + 1
if (dabs(v_grad(i)) > max_elem) then
max_elem = v_grad(i)
endif
endif
enddo
print*,'Threshold error', threshold
print*, 'Nb error', nb_error
print*,'Max error', max_elem
deallocate(v_grad,v_grad2)
end
#+END_SRC

View File

@ -0,0 +1,67 @@
#+BEGIN_SRC f90 :comments org :tangle debug_hessian_loc.irp.f
program debug_hessian_loc
!BEGIN_DOC
! Check if the hessian is correct
!END_DOC
implicit none
integer :: list_size, n
integer, allocatable :: list(:)
double precision, allocatable :: H(:), H2(:)
double precision :: threshold, max_error, max_elem
integer :: i, nb_error
threshold = 1d-12
list_size = dim_list_act_orb
allocate(list(list_size))
list = list_act
n = list_size*(list_size-1)/2
allocate(H(n),H2(n))
if (localization_method == 'boys') then
print*,'Foster-Boys'
call hessian_FB(n,list_size,list,H)
call hessian_FB_omp(n,list_size,list,H2)
elseif(localization_method == 'pipek') then
print*,'Pipek-Mezey'
call hessian_PM(n,list_size,list,H)
call hessian_PM(n,list_size,list,H2)
else
print*,'Unknown localization_method, please select boys or pipek'
call abort
endif
do i = 1, n
print*,i,H(i)
enddo
H = H - H2
nb_error = 0
max_elem = 0d0
do i = 1, n
if (dabs(H(i)) > threshold) then
print*,H(i)
nb_error = nb_error + 1
if (dabs(H(i)) > max_elem) then
max_elem = H(i)
endif
endif
enddo
print*,'Threshold error', threshold
print*, 'Nb error', nb_error
print*,'Max error', max_elem
deallocate(H,H2)
end
#+END_SRC

View File

@ -0,0 +1,18 @@
#+BEGIN_SRC f90 :comments org :tangle kick_the_mos.irp.f
program kick_the_mos
!BEGIN_DOC
! To do a small rotation of the MOs
!END_DOC
implicit none
kick_in_mos = .True.
TOUCH kick_in_mos
call set_classes_loc
call apply_pre_rotation
call unset_classes_loc
end
#+END_SRC

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,62 @@
#!/usr/bin/env bats
source $QP_ROOT/tests/bats/common.bats.sh
source $QP_ROOT/quantum_package.rc
function run() {
thresh=2e-3
test_exe scf || skip
qp set_file $1
qp edit --check
qp reset -a
qp run scf
qp set_frozen_core
qp set determinants n_states 2
qp set determinants read_wf true
qp set mo_two_e_ints io_mo_two_e_integrals None
file="$(echo $1 | sed 's/.ezfio//g')"
qp run cis
qp run debug_gradient_list_opt > $file.debug_g.out
err3="$(grep 'Max error:' $file.debug_g.out | awk '{print $3}')"
qp run debug_hessian_list_opt > $file.debug_h1.out
err1="$(grep 'Max error:' $file.debug_h1.out | awk '{print $3}')"
qp run orb_opt > $file.opt1.out
energy1="$(grep 'State average energy:' $file.opt1.out | tail -n 1 | awk '{print $4}')"
qp set orbital_optimization optimization_method diag
qp reset -d
qp run scf
qp run cis
qp run debug_hessian_list_opt > $file.debug_h2.out
err2="$(grep 'Max error_H:' $file.debug_h2.out | awk '{print $3}')"
qp run orb_opt > $file.opt2.out
energy2="$(grep 'State average energy:' $file.opt2.out | tail -n 1 | awk '{print $4}')"
qp set orbital_optimization optimization_method full
qp reset -d
qp run scf
eq $energy1 $2 $thresh
eq $energy2 $3 $thresh
eq $err1 0.0 1e-12
eq $err2 0.0 1e-12
eq $err3 0.0 1e-12
}
@test "b2_stretched" {
run b2_stretched.ezfio -48.9852901484277 -48.9852937541510
}
@test "h2o" {
run h2o.ezfio -75.9025622449206 -75.8691844585879
}
@test "h2s" {
run h2s.ezfio -398.576255809878 -398.574145943928
}
@test "hbo" {
run hbo.ezfio -99.9234823022109 -99.9234763597840
}
@test "hco" {
run hco.ezfio -113.204915552241 -113.204905207050
}

View File

@ -0,0 +1,23 @@
[optimization_method]
type: character*(32)
doc: Define the kind of hessian for the orbital optimization full : full hessian, diag : diagonal hessian, none : no hessian
interface: ezfio,provider,ocaml
default: full
[n_det_max_opt]
type: integer
doc: Maximal number of the determinants in the wf for the orbital optimization (to stop the optimization if n_det > n_det_max_opt)
interface: ezfio,provider,ocaml
default: 200000
[optimization_max_nb_iter]
type: integer
doc: Maximal number of iterations for the orbital optimization
interface: ezfio,provider,ocaml
default: 20
[thresh_opt_max_elem_grad]
type: double precision
doc: Threshold for the convergence, the optimization exits when the biggest element in the gradient is smaller than thresh_optimization_max_elem_grad
interface: ezfio,provider,ocaml
default: 1.e-5

7
src/mo_optimization/NEED Normal file
View File

@ -0,0 +1,7 @@
two_body_rdm
hartree_fock
cipsi
davidson_undressed
selectors_full
generators_full
utils_trust_region

View File

@ -0,0 +1,74 @@
# Orbital optimization
## Methods
Different methods are available:
- full hessian
```
qp set orbital_optimization optimization_method full
```
- diagonal hessian
```
qp set orbital_optimization optimization_method diag
```
- identity matrix
```
qp set orbital_optimization optimization_method none
```
After the optimization the ezfio contains the optimized orbitals
## For a fixed number of determinants
To optimize the MOs for the actual determinants:
```
qp run orb_opt
```
## For a complete optimization, i.e, with a larger and larger wave function
To optimize the MOs with a larger and larger wave function:
```
qp run optimization
```
The results are stored in the EZFIO in "mo_optimization/result_opt",
with the following format:
(1) (2) (3) (4)
1: Number of determinants in the wf,
2: Cispi energy before the optimization,
3: Cipsi energy after the optimization,
4: Energy difference between (2) and (3).
The optimization process if the following:
- we do a first cipsi step to obtain a small number of determinants in the wf
- we run an orbital optimization for this wf
- we do a new cipsi step to double the number of determinants in the wf
- we run an orbital optimization for this wf
- ...
- we do that until the energy difference between (2) and (3) is
smaller than the targeted accuracy for the cispi (targeted_accuracy_cipsi in qp edit)
or the wf is larger than a given size (n_det_max_opt in qp_edit)
- after that you can reset your determinants (qp reset -d) and run a clean Cispi calculation
### End of the optimization
You can choos the number of determinants after what the
optimization will stop:
```
qp set orbital_optimization n_det_max_opt 1e5 # or any number
```
## Weight of the states
You can change the weights of the differents states directly in qp edit.
It will affect ths weights used in the orbital optimization.
# Tests
To run the tests:
```
qp test
```
# Org files
The org files are stored in the directory org in order to avoid overwriting on user changes.
The org files can be modified, to export the change to the source code, run
```
./TANGLE_org_mode.sh
mv *.irp.f ../.
```

View File

@ -0,0 +1,12 @@
BEGIN_PROVIDER [ logical, do_only_1h1p ]
&BEGIN_PROVIDER [ logical, do_only_cas ]
&BEGIN_PROVIDER [ logical, do_ddci ]
implicit none
BEGIN_DOC
! In the FCI case, all those are always false
END_DOC
do_only_1h1p = .False.
do_only_cas = .False.
do_ddci = .False.
END_PROVIDER

View File

@ -0,0 +1 @@
logical, parameter :: debug=.False.

View File

@ -0,0 +1,78 @@
! Debug the gradient
! *Program to check the gradient*
! The program compares the result of the first and last code for the
! gradient.
! Provided:
! | mo_num | integer | number of MOs |
! Internal:
! | n | integer | number of orbitals pairs (p,q) p<q |
! | v_grad(n) | double precision | Original gradient |
! | v_grad2(n) | double precision | Gradient |
! | i | integer | index |
! | threshold | double precision | threshold for the errors |
! | max_error | double precision | maximal error in the gradient |
! | nb_error | integer | number of error in the gradient |
program debug_gradient_list
implicit none
! Variables
double precision, allocatable :: v_grad(:), v_grad2(:)
integer :: n,m
integer :: i
double precision :: threshold
double precision :: max_error, max_elem, norm
integer :: nb_error
m = dim_list_act_orb
! Definition of n
n = m*(m-1)/2
PROVIDE mo_two_e_integrals_in_map ! Vérifier pour suppression
! Allocation
allocate(v_grad(n), v_grad2(n))
! Calculation
call diagonalize_ci ! Vérifier pour suppression
! Gradient
call gradient_list_opt(n,m,list_act,v_grad,max_elem,norm)
call first_gradient_list_opt(n,m,list_act,v_grad2)
v_grad = v_grad - v_grad2
nb_error = 0
max_error = 0d0
threshold = 1d-12
do i = 1, n
if (ABS(v_grad(i)) > threshold) then
print*,i,v_grad(i)
nb_error = nb_error + 1
if (ABS(v_grad(i)) > max_error) then
max_error = v_grad(i)
endif
endif
enddo
print*,''
print*,'Check the gradient'
print*,'Threshold:', threshold
print*,'Nb error:', nb_error
print*,'Max error:', max_error
! Deallocation
deallocate(v_grad,v_grad2)
end program

View File

@ -0,0 +1,76 @@
! Debug the gradient
! *Program to check the gradient*
! The program compares the result of the first and last code for the
! gradient.
! Provided:
! | mo_num | integer | number of MOs |
! Internal:
! | n | integer | number of orbitals pairs (p,q) p<q |
! | v_grad(n) | double precision | Original gradient |
! | v_grad2(n) | double precision | Gradient |
! | i | integer | index |
! | threshold | double precision | threshold for the errors |
! | max_error | double precision | maximal error in the gradient |
! | nb_error | integer | number of error in the gradient |
program debug_gradient
implicit none
! Variables
double precision, allocatable :: v_grad(:), v_grad2(:)
integer :: n
integer :: i
double precision :: threshold
double precision :: max_error, max_elem
integer :: nb_error
! Definition of n
n = mo_num*(mo_num-1)/2
PROVIDE mo_two_e_integrals_in_map ! Vérifier pour suppression
! Allocation
allocate(v_grad(n), v_grad2(n))
! Calculation
call diagonalize_ci ! Vérifier pour suppression
! Gradient
call first_gradient_opt(n,v_grad)
call gradient_opt(n,v_grad2,max_elem)
v_grad = v_grad - v_grad2
nb_error = 0
max_error = 0d0
threshold = 1d-12
do i = 1, n
if (ABS(v_grad(i)) > threshold) then
print*,v_grad(i)
nb_error = nb_error + 1
if (ABS(v_grad(i)) > max_error) then
max_error = v_grad(i)
endif
endif
enddo
print*,''
print*,'Check the gradient'
print*,'Threshold :', threshold
print*,'Nb error :', nb_error
print*,'Max error :', max_error
! Deallocation
deallocate(v_grad,v_grad2)
end program

View File

@ -0,0 +1,147 @@
! Debug the hessian
! *Program to check the hessian matrix*
! The program compares the result of the first and last code for the
! hessian. First of all the 4D hessian and after the 2D hessian.
! Provided:
! | mo_num | integer | number of MOs |
! | optimization_method | string | Method for the orbital optimization: |
! | | | - 'full' -> full hessian |
! | | | - 'diag' -> diagonal hessian |
! | dim_list_act_orb | integer | number of active MOs |
! | list_act(dim_list_act_orb) | integer | list of the actives MOs |
! | | | |
! Internal:
! | m | integer | number of MOs in the list |
! | | | (active MOs) |
! | n | integer | number of orbitals pairs (p,q) p<q |
! | | | n = m*(m-1)/2 |
! | H(n,n) | double precision | Original hessian matrix (2D) |
! | H2(n,n) | double precision | Hessian matrix (2D) |
! | h_f(mo_num,mo_num,mo_num,mo_num) | double precision | Original hessian matrix (4D) |
! | h_f2(mo_num,mo_num,mo_num,mo_num) | double precision | Hessian matrix (4D) |
! | i,j,p,q,k | integer | indexes |
! | threshold | double precision | threshold for the errors |
! | max_error | double precision | maximal error in the 4D hessian |
! | max_error_H | double precision | maximal error in the 2D hessian |
! | nb_error | integer | number of errors in the 4D hessian |
! | nb_error_H | integer | number of errors in the 2D hessian |
program debug_hessian_list_opt
implicit none
! Variables
double precision, allocatable :: H(:,:),H2(:,:), h_f(:,:,:,:), h_f2(:,:,:,:)
integer :: n,m
integer :: i,j,k,l
double precision :: max_error, max_error_H
integer :: nb_error, nb_error_H
double precision :: threshold
m = dim_list_act_orb !mo_num
! Definition of n
n = m*(m-1)/2
PROVIDE mo_two_e_integrals_in_map ! Vérifier pour suppression
! Hessian
if (optimization_method == 'full') then
print*,'Use the full hessian matrix'
allocate(H(n,n),H2(n,n))
allocate(h_f(m,m,m,m),h_f2(m,m,m,m))
call hessian_list_opt(n,m,list_act,H,h_f)
call first_hessian_list_opt(n,m,list_act,H2,h_f2)
!call hessian_opt(n,H2,h_f2)
! Difference
h_f = h_f - h_f2
H = H - H2
max_error = 0d0
nb_error = 0
threshold = 1d-12
do l = 1, m
do k= 1, m
do j = 1, m
do i = 1, m
if (ABS(h_f(i,j,k,l)) > threshold) then
print*,h_f(i,j,k,l)
nb_error = nb_error + 1
if (ABS(h_f(i,j,k,l)) > ABS(max_error)) then
max_error = h_f(i,j,k,l)
endif
endif
enddo
enddo
enddo
enddo
max_error_H = 0d0
nb_error_H = 0
do j = 1, n
do i = 1, n
if (ABS(H(i,j)) > threshold) then
print*, H(i,j)
nb_error_H = nb_error_H + 1
if (ABS(H(i,j)) > ABS(max_error_H)) then
max_error_H = H(i,j)
endif
endif
enddo
enddo
! Deallocation
deallocate(H, H2, h_f, h_f2)
else
print*, 'Use the diagonal hessian matrix'
allocate(H(n,1),H2(n,1))
call diag_hessian_list_opt(n,m,list_act,H)
call first_diag_hessian_list_opt(n,m,list_act,H2)
H = H - H2
max_error_H = 0d0
nb_error_H = 0
do i = 1, n
if (ABS(H(i,1)) > threshold) then
print*, H(i,1)
nb_error_H = nb_error_H + 1
if (ABS(H(i,1)) > ABS(max_error_H)) then
max_error_H = H(i,1)
endif
endif
enddo
endif
print*,''
if (optimization_method == 'full') then
print*,'Check of the full hessian'
print*,'Threshold:', threshold
print*,'Nb error:', nb_error
print*,'Max error:', max_error
print*,''
else
print*,'Check of the diagonal hessian'
endif
print*,'Nb error_H:', nb_error_H
print*,'Max error_H:', max_error_H
end program

View File

@ -0,0 +1,171 @@
! Debug the hessian
! *Program to check the hessian matrix*
! The program compares the result of the first and last code for the
! hessian. First of all the 4D hessian and after the 2D hessian.
! Provided:
! | mo_num | integer | number of MOs |
! Internal:
! | n | integer | number of orbitals pairs (p,q) p<q |
! | H(n,n) | double precision | Original hessian matrix (2D) |
! | H2(n,n) | double precision | Hessian matrix (2D) |
! | h_f(mo_num,mo_num,mo_num,mo_num) | double precision | Original hessian matrix (4D) |
! | h_f2(mo_num,mo_num,mo_num,mo_num) | double precision | Hessian matrix (4D) |
! | method | integer | - 1: full hessian |
! | | | - 2: diagonal hessian |
! | i,j,p,q,k | integer | indexes |
! | threshold | double precision | threshold for the errors |
! | max_error | double precision | maximal error in the 4D hessian |
! | max_error_H | double precision | maximal error in the 2D hessian |
! | nb_error | integer | number of errors in the 4D hessian |
! | nb_error_H | integer | number of errors in the 2D hessian |
program debug_hessian
implicit none
! Variables
double precision, allocatable :: H(:,:),H2(:,:), h_f(:,:,:,:), h_f2(:,:,:,:)
integer :: n
integer :: i,j,k,l
double precision :: max_error, max_error_H
integer :: nb_error, nb_error_H
double precision :: threshold
! Definition of n
n = mo_num*(mo_num-1)/2
PROVIDE mo_two_e_integrals_in_map ! Vérifier pour suppression
! Allocation
allocate(H(n,n),H2(n,n))
allocate(h_f(mo_num,mo_num,mo_num,mo_num),h_f2(mo_num,mo_num,mo_num,mo_num))
! Calculation
! Hessian
if (optimization_method == 'full') then
print*,'Use the full hessian matrix'
call hessian_opt(n,H,h_f)
call first_hessian_opt(n,H2,h_f2)
! Difference
h_f = h_f - h_f2
H = H - H2
max_error = 0d0
nb_error = 0
threshold = 1d-12
do l = 1, mo_num
do k= 1, mo_num
do j = 1, mo_num
do i = 1, mo_num
if (ABS(h_f(i,j,k,l)) > threshold) then
print*,h_f(i,j,k,l)
nb_error = nb_error + 1
if (ABS(h_f(i,j,k,l)) > ABS(max_error)) then
max_error = h_f(i,j,k,l)
endif
endif
enddo
enddo
enddo
enddo
max_error_H = 0d0
nb_error_H = 0
do j = 1, n
do i = 1, n
if (ABS(H(i,j)) > threshold) then
print*, H(i,j)
nb_error_H = nb_error_H + 1
if (ABS(H(i,j)) > ABS(max_error_H)) then
max_error_H = H(i,j)
endif
endif
enddo
enddo
elseif (optimization_method == 'diag') then
print*, 'Use the diagonal hessian matrix'
call diag_hessian_opt(n,H,h_f)
call first_diag_hessian_opt(n,H2,h_f2)
h_f = h_f - h_f2
max_error = 0d0
nb_error = 0
threshold = 1d-12
do l = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do i = 1, mo_num
if (ABS(h_f(i,j,k,l)) > threshold) then
print*,h_f(i,j,k,l)
nb_error = nb_error + 1
if (ABS(h_f(i,j,k,l)) > ABS(max_error)) then
max_error = h_f(i,j,k,l)
endif
endif
enddo
enddo
enddo
enddo
h=H-H2
max_error_H = 0d0
nb_error_H = 0
do j = 1, n
do i = 1, n
if (ABS(H(i,j)) > threshold) then
print*, H(i,j)
nb_error_H = nb_error_H + 1
if (ABS(H(i,j)) > ABS(max_error_H)) then
max_error_H = H(i,j)
endif
endif
enddo
enddo
else
print*,'Unknown optimization_method, please select full, diag'
call abort
endif
print*,''
if (optimization_method == 'full') then
print*,'Check the full hessian'
else
print*,'Check the diagonal hessian'
endif
print*,'Threshold :', threshold
print*,'Nb error :', nb_error
print*,'Max error :', max_error
print*,''
print*,'Nb error_H :', nb_error_H
print*,'Max error_H :', max_error_H
! Deallocation
deallocate(H,H2,h_f,h_f2)
end program

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,136 @@
! Diagonalization of the hessian
! Just a matrix diagonalization using Lapack
! Input:
! | n | integer | mo_num*(mo_num-1)/2 |
! | H(n,n) | double precision | hessian |
! Output:
! | e_val(n) | double precision | eigenvalues of the hessian |
! | w(n,n) | double precision | eigenvectors of the hessian |
! Internal:
! | nb_negative_nv | integer | number of negative eigenvalues |
! | lwork | integer | for Lapack |
! | work(lwork,n) | double precision | temporary array for Lapack |
! | info | integer | if 0 -> ok, else problem in the diagonalization |
! | i,j | integer | dummy indexes |
subroutine diagonalization_hessian(n,H,e_val,w)
include 'constants.h'
implicit none
! Variables
! in
integer, intent(in) :: n
double precision, intent(in) :: H(n,n)
! out
double precision, intent(out) :: e_val(n), w(n,n)
! internal
double precision, allocatable :: work(:,:)
integer, allocatable :: key(:)
integer :: info,lwork
integer :: i,j
integer :: nb_negative_vp
double precision :: t1,t2,t3,max_elem
print*,''
print*,'---Diagonalization_hessian---'
call wall_time(t1)
if (optimization_method == 'full') then
! Allocation
! For Lapack
lwork=3*n-1
allocate(work(lwork,n))
! Calculation
! Copy the hessian matrix, the eigenvectors will be store in W
W=H
! Diagonalization of the hessian
call dsyev('V','U',n,W,size(W,1),e_val,work,lwork,info)
if (info /= 0) then
print*, 'Error diagonalization : diagonalization_hessian'
print*, 'info = ', info
call ABORT
endif
if (debug) then
print *, 'vp Hess:'
write(*,'(100(F10.5))') real(e_val(:))
endif
! Number of negative eigenvalues
max_elem = 0d0
nb_negative_vp = 0
do i = 1, n
if (e_val(i) < 0d0) then
nb_negative_vp = nb_negative_vp + 1
if (e_val(i) < max_elem) then
max_elem = e_val(i)
endif
!print*,'e_val < 0 :', e_val(i)
endif
enddo
print*,'Number of negative eigenvalues:', nb_negative_vp
print*,'Lowest eigenvalue:',max_elem
!nb_negative_vp = 0
!do i = 1, n
! if (e_val(i) < -thresh_eig) then
! nb_negative_vp = nb_negative_vp + 1
! endif
!enddo
!print*,'Number of negative eigenvalues <', -thresh_eig,':', nb_negative_vp
! Deallocation
deallocate(work)
elseif (optimization_method == 'diag') then
! Diagonalization of the diagonal hessian by hands
allocate(key(n))
do i = 1, n
e_val(i) = H(i,i)
enddo
! Key list for dsort
do i = 1, n
key(i) = i
enddo
! Sort of the eigenvalues
call dsort(e_val, key, n)
! Eigenvectors
W = 0d0
do i = 1, n
j = key(i)
W(j,i) = 1d0
enddo
deallocate(key)
else
print*,'Diagonalization_hessian, abort'
call abort
endif
call wall_time(t2)
t3 = t2 - t1
print*,'Time in diagonalization_hessian:', t3
print*,'---End diagonalization_hessian---'
end subroutine

View File

@ -0,0 +1,372 @@
subroutine first_diag_hessian_list_opt(tmp_n,m,list,H)!, h_tmpr)
include 'constants.h'
implicit none
!===========================================================================
! Compute the diagonal hessian of energy with respects to orbital rotations
!===========================================================================
!===========
! Variables
!===========
! in
integer, intent(in) :: tmp_n, m, list(m)
! tmp_n : integer, tmp_n = m*(m-1)/2
! out
double precision, intent(out) :: H(tmp_n)!, h_tmpr(m,m,m,m)
! H : n by n double precision matrix containing the 2D hessian
! internal
double precision, allocatable :: hessian(:,:,:,:), tmp(:,:),h_tmpr(:,:,:,:)
integer :: p,q, tmp_p,tmp_q
integer :: r,s,t,u,v,tmp_r,tmp_s,tmp_t,tmp_u,tmp_v
integer :: pq,rs,tmp_pq,tmp_rs
double precision :: t1,t2,t3
! hessian : mo_num 4D double precision matrix containing the hessian before the permutations
! h_tmpr : mo_num 4D double precision matrix containing the hessian after the permutations
! p,q,r,s : integer, indexes of the 4D hessian matrix
! t,u,v : integer, indexes to compute hessian elements
! pq,rs : integer, indexes for the conversion from 4D to 2D hessian matrix
! t1,t2,t3 : double precision, t3 = t2 - t1, time to compute the hessian
! Function
double precision :: get_two_e_integral
! get_two_e_integral : double precision function, two e integrals
! Provided :
! mo_one_e_integrals : mono e- integrals
! get_two_e_integral : two e- integrals
! one_e_dm_mo_alpha, one_e_dm_mo_beta : one body density matrix
! two_e_dm_mo : two body density matrix
print*,'---first_diag_hess_list---'
!============
! Allocation
!============
allocate(hessian(m,m,m,m),tmp(tmp_n,tmp_n),h_tmpr(mo_num,mo_num,mo_num,mo_num))
!=============
! Calculation
!=============
! From Anderson et. al. (2014)
! The Journal of Chemical Physics 141, 244104 (2014); doi: 10.1063/1.4904384
! LaTeX formula :
!\begin{align*}
!H_{pq,rs} &= \dfrac{\partial^2 E(x)}{\partial x_{pq}^2} \\
!&= \mathcal{P}_{pq} \mathcal{P}_{rs} [ \frac{1}{2} \sum_u [\delta_{qr}(h_p^u \gamma_u^s + h_u^s \gamma_p^u)
!+ \delta_{ps}(h_r^u \gamma_u^q + h_u^q \gamma_u^r)]
!-(h_p^s \gamma_r^q + h_r^q \gamma_p^s) \\
!&+ \frac{1}{2} \sum_{tuv} [\delta_{qr}(v_{pt}^{uv} \Gamma_{uv}^{st} +v_{uv}^{st} \Gamma_{pt}^{uv})
!+ \delta_{ps}(v_{uv}^{qt} \Gamma_{rt}^{uv} + v_{rt}^{uv}\Gamma_{uv}^{qt})] \\
!&+ \sum_{uv} (v_{pr}^{uv} \Gamma_{uv}^{qs} + v_{uv}^{qs} \Gamma_{ps}^{uv}) \\
!&- \sum_{tu} (v_{pu}^{st} \Gamma_{rt}^{qu}+v_{pu}^{tr} \Gamma_{tr}^{qu}+v_{rt}^{qu}\Gamma_{pu}^{st} + v_{tr}^{qu}\Gamma_{pu}^{ts})
!\end{align*}
!================
! Initialization
!================
hessian = 0d0
CALL wall_time(t1)
!========================
! First line, first term
!========================
do tmp_p = 1, m
p = list(tmp_p)
do tmp_q = 1, m
q = list(tmp_q)
do tmp_r = 1, m
r = list(tmp_r)
do tmp_s = 1, m
s = list(tmp_s)
! Permutations
if (((p==r) .and. (q==s)) .or. ((q==r) .and. (p==s)) &
.or. ((p==s) .and. (q==r))) then
if (q==r) then
do u = 1, mo_num
hessian(tmp_p,tmp_q,tmp_r,tmp_s) = hessian(tmp_p,tmp_q,tmp_r,tmp_s) + 0.5d0 * ( &
mo_one_e_integrals(u,p) * one_e_dm_mo(u,s) &
+ mo_one_e_integrals(s,u) * one_e_dm_mo(p,u))
enddo
endif
endif
enddo
enddo
enddo
enddo
!=========================
! First line, second term
!=========================
do tmp_p = 1, m
p = list(tmp_p)
do tmp_q = 1, m
q = list(tmp_q)
do tmp_r = 1, m
r = list(tmp_r)
do tmp_s = 1, m
s = list(tmp_s)
! Permutations
if (((p==r) .and. (q==s)) .or. ((q==r) .and. (p==s)) &
.or. ((p==s) .and. (q==r))) then
if (p==s) then
do u = 1, mo_num
hessian(tmp_p,tmp_q,tmp_r,tmp_s) = hessian(tmp_p,tmp_q,tmp_r,tmp_s) + 0.5d0 * ( &
mo_one_e_integrals(u,r) * one_e_dm_mo(u,q) &
+ mo_one_e_integrals(q,u) * one_e_dm_mo(r,u))
enddo
endif
endif
enddo
enddo
enddo
enddo
!========================
! First line, third term
!========================
do tmp_p = 1, m
p = list(tmp_p)
do tmp_q = 1, m
q = list(tmp_q)
do tmp_r = 1, m
r = list(tmp_r)
do tmp_s = 1, m
s = list(tmp_s)
! Permutations
if (((p==r) .and. (q==s)) .or. ((q==r) .and. (p==s)) &
.or. ((p==s) .and. (q==r))) then
hessian(tmp_p,tmp_q,tmp_r,tmp_s) = hessian(tmp_p,tmp_q,tmp_r,tmp_s) &
- mo_one_e_integrals(s,p) * one_e_dm_mo(r,q) &
- mo_one_e_integrals(q,r) * one_e_dm_mo(p,s)
endif
enddo
enddo
enddo
enddo
!=========================
! Second line, first term
!=========================
do tmp_p = 1, m
p = list(tmp_p)
do tmp_q = 1, m
q = list(tmp_q)
do tmp_r = 1, m
r = list(tmp_r)
do tmp_s = 1, m
s = list(tmp_s)
! Permutations
if (((p==r) .and. (q==s)) .or. ((q==r) .and. (p==s)) &
.or. ((p==s) .and. (q==r))) then
if (q==r) then
do t = 1, mo_num
do u = 1, mo_num
do v = 1, mo_num
hessian(tmp_p,tmp_q,tmp_r,tmp_s) = hessian(tmp_p,tmp_q,tmp_r,tmp_s) + 0.5d0 * ( &
get_two_e_integral(u,v,p,t,mo_integrals_map) * two_e_dm_mo(u,v,s,t) &
+ get_two_e_integral(s,t,u,v,mo_integrals_map) * two_e_dm_mo(p,t,u,v))
enddo
enddo
enddo
endif
endif
enddo
enddo
enddo
enddo
!==========================
! Second line, second term
!==========================
do tmp_p = 1, m
p = list(tmp_p)
do tmp_q = 1, m
q = list(tmp_q)
do tmp_r = 1, m
r = list(tmp_r)
do tmp_s = 1, m
s = list(tmp_s)
! Permutations
if (((p==r) .and. (q==s)) .or. ((q==r) .and. (p==s)) &
.or. ((p==s) .and. (q==r))) then
if (p==s) then
do t = 1, mo_num
do u = 1, mo_num
do v = 1, mo_num
hessian(tmp_p,tmp_q,tmp_r,tmp_s) = hessian(tmp_p,tmp_q,tmp_r,tmp_s) + 0.5d0 * ( &
get_two_e_integral(q,t,u,v,mo_integrals_map) * two_e_dm_mo(r,t,u,v) &
+ get_two_e_integral(u,v,r,t,mo_integrals_map) * two_e_dm_mo(u,v,q,t))
enddo
enddo
enddo
endif
endif
enddo
enddo
enddo
enddo
!========================
! Third line, first term
!========================
do tmp_p = 1, m
p = list(tmp_p)
do tmp_q = 1, m
q = list(tmp_q)
do tmp_r = 1, m
r = list(tmp_r)
do tmp_s = 1, m
s = list(tmp_s)
! Permutations
if (((p==r) .and. (q==s)) .or. ((q==r) .and. (p==s)) &
.or. ((p==s) .and. (q==r))) then
do u = 1, mo_num
do v = 1, mo_num
hessian(tmp_p,tmp_q,tmp_r,tmp_s) = hessian(tmp_p,tmp_q,tmp_r,tmp_s) &
+ get_two_e_integral(u,v,p,r,mo_integrals_map) * two_e_dm_mo(u,v,q,s) &
+ get_two_e_integral(q,s,u,v,mo_integrals_map) * two_e_dm_mo(p,r,u,v)
enddo
enddo
endif
enddo
enddo
enddo
enddo
!=========================
! Third line, second term
!=========================
do tmp_p = 1, m
p = list(tmp_p)
do tmp_q = 1, m
q = list(tmp_q)
do tmp_r = 1, m
r = list(tmp_r)
do tmp_s = 1, m
s = list(tmp_s)
! Permutations
if (((p==r) .and. (q==s)) .or. ((q==r) .and. (p==s)) &
.or. ((p==s) .and. (q==r))) then
do t = 1, mo_num
do u = 1, mo_num
hessian(tmp_p,tmp_q,tmp_r,tmp_s) = hessian(tmp_p,tmp_q,tmp_r,tmp_s) &
- get_two_e_integral(s,t,p,u,mo_integrals_map) * two_e_dm_mo(r,t,q,u) &
- get_two_e_integral(t,s,p,u,mo_integrals_map) * two_e_dm_mo(t,r,q,u) &
- get_two_e_integral(q,u,r,t,mo_integrals_map) * two_e_dm_mo(p,u,s,t) &
- get_two_e_integral(q,u,t,r,mo_integrals_map) * two_e_dm_mo(p,u,t,s)
enddo
enddo
endif
enddo
enddo
enddo
enddo
CALL wall_time(t2)
t2 = t2 - t1
print*, 'Time to compute the hessian :', t2
!==============
! Permutations
!==============
! Convert the hessian mo_num * mo_num * mo_num * mo_num matrix in a
! 2D n * n matrix (n = mo_num*(mo_num-1)/2)
! H(pq,rs) : p<q and r<s
do tmp_r = 1, m
do tmp_s = 1, m
do tmp_q = 1, m
do tmp_p = 1, m
h_tmpr(tmp_p,tmp_q,tmp_r,tmp_s) = hessian(tmp_p,tmp_q,tmp_r,tmp_s) - hessian(tmp_q,tmp_p,tmp_r,tmp_s) &
- hessian(tmp_p,tmp_q,tmp_s,tmp_r) + hessian(tmp_q,tmp_p,tmp_s,tmp_r)
enddo
enddo
enddo
enddo
!========================
! 4D matrix -> 2D matrix
!========================
! Convert the hessian mo_num * mo_num * mo_num * mo_num matrix in a
! 2D n * n matrix (n = mo_num*(mo_num-1)/2)
! H(pq,rs) : p<q and r<s
! 4D mo_num matrix to 2D n matrix
do tmp_rs = 1, tmp_n
call vec_to_mat_index(tmp_rs,tmp_r,tmp_s)
do tmp_pq = 1, tmp_n
call vec_to_mat_index(tmp_pq,tmp_p,tmp_q)
tmp(tmp_pq,tmp_rs) = h_tmpr(tmp_p,tmp_q,tmp_r,tmp_s)
enddo
enddo
do p = 1, tmp_n
H(p) = tmp(p,p)
enddo
! Display
if (debug) then
print*,'2D diag Hessian matrix'
do tmp_pq = 1, tmp_n
write(*,'(100(F10.5))') tmp(tmp_pq,:)
enddo
endif
!==============
! Deallocation
!==============
deallocate(hessian,h_tmpr,tmp)
print*,'---End first_diag_hess_list---'
end subroutine

View File

@ -0,0 +1,344 @@
subroutine first_diag_hessian_opt(n,H, h_tmpr)
include 'constants.h'
implicit none
!===========================================================================
! Compute the diagonal hessian of energy with respects to orbital rotations
!===========================================================================
!===========
! Variables
!===========
! in
integer, intent(in) :: n
! n : integer, n = mo_num*(mo_num-1)/2
! out
double precision, intent(out) :: H(n,n), h_tmpr(mo_num,mo_num,mo_num,mo_num)
! H : n by n double precision matrix containing the 2D hessian
! internal
double precision, allocatable :: hessian(:,:,:,:)
integer :: p,q
integer :: r,s,t,u,v
integer :: pq,rs
double precision :: t1,t2,t3
! hessian : mo_num 4D double precision matrix containing the hessian before the permutations
! h_tmpr : mo_num 4D double precision matrix containing the hessian after the permutations
! p,q,r,s : integer, indexes of the 4D hessian matrix
! t,u,v : integer, indexes to compute hessian elements
! pq,rs : integer, indexes for the conversion from 4D to 2D hessian matrix
! t1,t2,t3 : double precision, t3 = t2 - t1, time to compute the hessian
! Function
double precision :: get_two_e_integral
! get_two_e_integral : double precision function, two e integrals
! Provided :
! mo_one_e_integrals : mono e- integrals
! get_two_e_integral : two e- integrals
! one_e_dm_mo_alpha, one_e_dm_mo_beta : one body density matrix
! two_e_dm_mo : two body density matrix
!============
! Allocation
!============
allocate(hessian(mo_num,mo_num,mo_num,mo_num))!,h_tmpr(mo_num,mo_num,mo_num,mo_num))
!=============
! Calculation
!=============
if (debug) then
print*,'Enter in first_diag_hessien'
endif
! From Anderson et. al. (2014)
! The Journal of Chemical Physics 141, 244104 (2014); doi: 10.1063/1.4904384
! LaTeX formula :
!\begin{align*}
!H_{pq,rs} &= \dfrac{\partial^2 E(x)}{\partial x_{pq}^2} \\
!&= \mathcal{P}_{pq} \mathcal{P}_{rs} [ \frac{1}{2} \sum_u [\delta_{qr}(h_p^u \gamma_u^s + h_u^s \gamma_p^u)
!+ \delta_{ps}(h_r^u \gamma_u^q + h_u^q \gamma_u^r)]
!-(h_p^s \gamma_r^q + h_r^q \gamma_p^s) \\
!&+ \frac{1}{2} \sum_{tuv} [\delta_{qr}(v_{pt}^{uv} \Gamma_{uv}^{st} +v_{uv}^{st} \Gamma_{pt}^{uv})
!+ \delta_{ps}(v_{uv}^{qt} \Gamma_{rt}^{uv} + v_{rt}^{uv}\Gamma_{uv}^{qt})] \\
!&+ \sum_{uv} (v_{pr}^{uv} \Gamma_{uv}^{qs} + v_{uv}^{qs} \Gamma_{ps}^{uv}) \\
!&- \sum_{tu} (v_{pu}^{st} \Gamma_{rt}^{qu}+v_{pu}^{tr} \Gamma_{tr}^{qu}+v_{rt}^{qu}\Gamma_{pu}^{st} + v_{tr}^{qu}\Gamma_{pu}^{ts})
!\end{align*}
!================
! Initialization
!================
hessian = 0d0
CALL wall_time(t1)
!========================
! First line, first term
!========================
do p = 1, mo_num
do q = 1, mo_num
do r = 1, mo_num
do s = 1, mo_num
! Permutations
if (((p==r) .and. (q==s)) .or. ((q==r) .and. (p==s)) &
.or. ((p==s) .and. (q==r))) then
if (q==r) then
do u = 1, mo_num
hessian(p,q,r,s) = hessian(p,q,r,s) + 0.5d0 * ( &
mo_one_e_integrals(u,p) * one_e_dm_mo(u,s) &
+ mo_one_e_integrals(s,u) * one_e_dm_mo(p,u))
enddo
endif
endif
enddo
enddo
enddo
enddo
!=========================
! First line, second term
!=========================
do p = 1, mo_num
do q = 1, mo_num
do r = 1, mo_num
do s = 1, mo_num
! Permutations
if (((p==r) .and. (q==s)) .or. ((q==r) .and. (p==s)) &
.or. ((p==s) .and. (q==r))) then
if (p==s) then
do u = 1, mo_num
hessian(p,q,r,s) = hessian(p,q,r,s) + 0.5d0 * ( &
mo_one_e_integrals(u,r) * one_e_dm_mo(u,q) &
+ mo_one_e_integrals(q,u) * one_e_dm_mo(r,u))
enddo
endif
endif
enddo
enddo
enddo
enddo
!========================
! First line, third term
!========================
do p = 1, mo_num
do q = 1, mo_num
do r = 1, mo_num
do s = 1, mo_num
! Permutations
if (((p==r) .and. (q==s)) .or. ((q==r) .and. (p==s)) &
.or. ((p==s) .and. (q==r))) then
hessian(p,q,r,s) = hessian(p,q,r,s) &
- mo_one_e_integrals(s,p) * one_e_dm_mo(r,q) &
- mo_one_e_integrals(q,r) * one_e_dm_mo(p,s)
endif
enddo
enddo
enddo
enddo
!=========================
! Second line, first term
!=========================
do p = 1, mo_num
do q = 1, mo_num
do r = 1, mo_num
do s = 1, mo_num
! Permutations
if (((p==r) .and. (q==s)) .or. ((q==r) .and. (p==s)) &
.or. ((p==s) .and. (q==r))) then
if (q==r) then
do t = 1, mo_num
do u = 1, mo_num
do v = 1, mo_num
hessian(p,q,r,s) = hessian(p,q,r,s) + 0.5d0 * ( &
get_two_e_integral(u,v,p,t,mo_integrals_map) * two_e_dm_mo(u,v,s,t) &
+ get_two_e_integral(s,t,u,v,mo_integrals_map) * two_e_dm_mo(p,t,u,v))
enddo
enddo
enddo
endif
endif
enddo
enddo
enddo
enddo
!==========================
! Second line, second term
!==========================
do p = 1, mo_num
do q = 1, mo_num
do r = 1, mo_num
do s = 1, mo_num
! Permutations
if (((p==r) .and. (q==s)) .or. ((q==r) .and. (p==s)) &
.or. ((p==s) .and. (q==r))) then
if (p==s) then
do t = 1, mo_num
do u = 1, mo_num
do v = 1, mo_num
hessian(p,q,r,s) = hessian(p,q,r,s) + 0.5d0 * ( &
get_two_e_integral(q,t,u,v,mo_integrals_map) * two_e_dm_mo(r,t,u,v) &
+ get_two_e_integral(u,v,r,t,mo_integrals_map) * two_e_dm_mo(u,v,q,t))
enddo
enddo
enddo
endif
endif
enddo
enddo
enddo
enddo
!========================
! Third line, first term
!========================
do p = 1, mo_num
do q = 1, mo_num
do r = 1, mo_num
do s = 1, mo_num
! Permutations
if (((p==r) .and. (q==s)) .or. ((q==r) .and. (p==s)) &
.or. ((p==s) .and. (q==r))) then
do u = 1, mo_num
do v = 1, mo_num
hessian(p,q,r,s) = hessian(p,q,r,s) &
+ get_two_e_integral(u,v,p,r,mo_integrals_map) * two_e_dm_mo(u,v,q,s) &
+ get_two_e_integral(q,s,u,v,mo_integrals_map) * two_e_dm_mo(p,r,u,v)
enddo
enddo
endif
enddo
enddo
enddo
enddo
!=========================
! Third line, second term
!=========================
do p = 1, mo_num
do q = 1, mo_num
do r = 1, mo_num
do s = 1, mo_num
! Permutations
if (((p==r) .and. (q==s)) .or. ((q==r) .and. (p==s)) &
.or. ((p==s) .and. (q==r))) then
do t = 1, mo_num
do u = 1, mo_num
hessian(p,q,r,s) = hessian(p,q,r,s) &
- get_two_e_integral(s,t,p,u,mo_integrals_map) * two_e_dm_mo(r,t,q,u) &
- get_two_e_integral(t,s,p,u,mo_integrals_map) * two_e_dm_mo(t,r,q,u) &
- get_two_e_integral(q,u,r,t,mo_integrals_map) * two_e_dm_mo(p,u,s,t) &
- get_two_e_integral(q,u,t,r,mo_integrals_map) * two_e_dm_mo(p,u,t,s)
enddo
enddo
endif
enddo
enddo
enddo
enddo
CALL wall_time(t2)
t2 = t2 - t1
print*, 'Time to compute the hessian :', t2
!==============
! Permutations
!==============
! Convert the hessian mo_num * mo_num * mo_num * mo_num matrix in a
! 2D n * n matrix (n = mo_num*(mo_num-1)/2)
! H(pq,rs) : p<q and r<s
do r = 1, mo_num
do s = 1, mo_num
do q = 1, mo_num
do p = 1, mo_num
h_tmpr(p,q,r,s) = (hessian(p,q,r,s) - hessian(q,p,r,s) - hessian(p,q,s,r) + hessian(q,p,s,r))
enddo
enddo
enddo
enddo
!========================
! 4D matrix -> 2D matrix
!========================
! Convert the hessian mo_num * mo_num * mo_num * mo_num matrix in a
! 2D n * n matrix (n = mo_num*(mo_num-1)/2)
! H(pq,rs) : p<q and r<s
! 4D mo_num matrix to 2D n matrix
do rs = 1, n
call vec_to_mat_index(rs,r,s)
do pq = 1, n
call vec_to_mat_index(pq,p,q)
H(pq,rs) = h_tmpr(p,q,r,s)
enddo
enddo
! Display
if (debug) then
print*,'2D diag Hessian matrix'
do pq = 1, n
write(*,'(100(F10.5))') H(pq,:)
enddo
endif
!==============
! Deallocation
!==============
deallocate(hessian)
if (debug) then
print*,'Leave first_diag_hessien'
endif
end subroutine

View File

@ -0,0 +1,125 @@
! First gradient
subroutine first_gradient_list_opt(tmp_n,m,list,v_grad)
include 'constants.h'
implicit none
!===================================================================
! Compute the gradient of energy with respects to orbital rotations
!===================================================================
! Check if read_wf = true, else :
! qp set determinant read_wf true
! in
integer, intent(in) :: tmp_n,m,list(m)
! n : integer, n = m*(m-1)/2
! m = list_size
! out
double precision, intent(out) :: v_grad(tmp_n)
! v_grad : double precision vector of length n containeing the gradient
! internal
double precision, allocatable :: grad(:,:),A(:,:)
double precision :: norm
integer :: i,p,q,r,s,t,tmp_i,tmp_p,tmp_q,tmp_r,tmp_s,tmp_t
! grad : double precision matrix containing the gradient before the permutation
! A : double precision matrix containing the gradient after the permutation
! norm : double precision number, the norm of the vector gradient
! i,p,q,r,s,t : integer, indexes
! istate : integer, the electronic state
! Function
double precision :: get_two_e_integral, norm2
! get_two_e_integral : double precision function that gives the two e integrals
! norm2 : double precision function that gives the norm of a vector
! Provided :
! mo_one_e_integrals : mono e- integrals
! get_two_e_integral : two e- integrals
! one_e_dm_mo : one body density matrix (state average)
! two_e_dm_mo : two body density matrix (state average)
print*,'---first_gradient_list---'
!============
! Allocation
!============
allocate(grad(m,m),A(m,m))
!=============
! Calculation
!=============
v_grad = 0d0
grad = 0d0
do tmp_p = 1, m
p = list(tmp_p)
do tmp_q = 1, m
q = list(tmp_q)
!grad(tmp_p,tmp_q) = 0d0
do r = 1, mo_num
grad(tmp_p,tmp_q) = grad(tmp_p,tmp_q) + mo_one_e_integrals(p,r) * one_e_dm_mo(r,q) &
- mo_one_e_integrals(r,q) * one_e_dm_mo(p,r)
enddo
do r = 1, mo_num
do s = 1, mo_num
do t = 1, mo_num
grad(tmp_p,tmp_q) = grad(tmp_p,tmp_q) &
+ get_two_e_integral(p,t,r,s,mo_integrals_map) * two_e_dm_mo(r,s,q,t) &
- get_two_e_integral(r,s,q,t,mo_integrals_map) * two_e_dm_mo(p,t,r,s)
enddo
enddo
enddo
enddo
enddo
! Conversion mo_num*mo_num matrix to mo_num(mo_num-1)/2 vector
do tmp_i = 1, tmp_n
call vec_to_mat_index(tmp_i,tmp_p,tmp_q)
v_grad(tmp_i)=(grad(tmp_p,tmp_q) - grad(tmp_q,tmp_p))
enddo
! Display, vector containing the gradient elements
if (debug) then
print*,'Vector containing the gradient :'
write(*,'(100(F10.5))') v_grad(1:tmp_n)
endif
! Norm of the vector
norm = norm2(v_grad)
print*, 'Norm : ', norm
! Matrix gradient
A = 0d0
do tmp_q = 1, m
do tmp_p = 1, m
A(tmp_p,tmp_q) = grad(tmp_p,tmp_q) - grad(tmp_q,tmp_p)
enddo
enddo
! Display, matrix containting the gradient elements
if (debug) then
print*,'Matrix containing the gradient :'
do tmp_i = 1, m
write(*,'(100(E12.5))') A(tmp_i,1:m)
enddo
endif
!==============
! Deallocation
!==============
deallocate(grad,A)
print*,'---End first_gradient_list---'
end subroutine

View File

@ -0,0 +1,128 @@
! First gradient
subroutine first_gradient_opt(n,v_grad)
include 'constants.h'
implicit none
!===================================================================
! Compute the gradient of energy with respects to orbital rotations
!===================================================================
! Check if read_wf = true, else :
! qp set determinant read_wf true
END_DOC
! in
integer, intent(in) :: n
! n : integer, n = mo_num*(mo_num-1)/2
! out
double precision, intent(out) :: v_grad(n)
! v_grad : double precision vector of length n containeing the gradient
! internal
double precision, allocatable :: grad(:,:),A(:,:)
double precision :: norm
integer :: i,p,q,r,s,t
integer :: istate
! grad : double precision matrix containing the gradient before the permutation
! A : double precision matrix containing the gradient after the permutation
! norm : double precision number, the norm of the vector gradient
! i,p,q,r,s,t : integer, indexes
! istate : integer, the electronic state
! Function
double precision :: get_two_e_integral, norm2
! get_two_e_integral : double precision function that gives the two e integrals
! norm2 : double precision function that gives the norm of a vector
! Provided :
! mo_one_e_integrals : mono e- integrals
! get_two_e_integral : two e- integrals
! one_e_dm_mo : one body density matrix (state average)
! two_e_dm_mo : two body density matrix (state average)
!============
! Allocation
!============
allocate(grad(mo_num,mo_num),A(mo_num,mo_num))
!=============
! Calculation
!=============
if (debug) then
print*,'---first_gradient---'
endif
v_grad = 0d0
do p = 1, mo_num
do q = 1, mo_num
grad(p,q) = 0d0
do r = 1, mo_num
grad(p,q) = grad(p,q) + mo_one_e_integrals(p,r) * one_e_dm_mo(r,q) &
- mo_one_e_integrals(r,q) * one_e_dm_mo(p,r)
enddo
do r = 1, mo_num
do s = 1, mo_num
do t= 1, mo_num
grad(p,q) = grad(p,q) &
+ get_two_e_integral(p,t,r,s,mo_integrals_map) * two_e_dm_mo(r,s,q,t) &
- get_two_e_integral(r,s,q,t,mo_integrals_map) * two_e_dm_mo(p,t,r,s)
enddo
enddo
enddo
enddo
enddo
! Conversion mo_num*mo_num matrix to mo_num(mo_num-1)/2 vector
do i=1,n
call vec_to_mat_index(i,p,q)
v_grad(i)=(grad(p,q) - grad(q,p))
enddo
! Display, vector containing the gradient elements
if (debug) then
print*,'Vector containing the gradient :'
write(*,'(100(F10.5))') v_grad(1:n)
endif
! Norm of the vector
norm = norm2(v_grad)
print*, 'Norm : ', norm
! Matrix gradient
A = 0d0
do q=1,mo_num
do p=1,mo_num
A(p,q) = grad(p,q) - grad(q,p)
enddo
enddo
! Display, matrix containting the gradient elements
if (debug) then
print*,'Matrix containing the gradient :'
do i = 1, mo_num
write(*,'(100(E12.5))') A(i,1:mo_num)
enddo
endif
!==============
! Deallocation
!==============
deallocate(grad,A)
if (debug) then
print*,'---End first_gradient---'
endif
end subroutine

View File

@ -0,0 +1,365 @@
subroutine first_hessian_list_opt(tmp_n,m,list,H,h_tmpr)
include 'constants.h'
implicit none
!==================================================================
! Compute the hessian of energy with respects to orbital rotations
!==================================================================
!===========
! Variables
!===========
! in
integer, intent(in) :: tmp_n, m, list(m)
!tmp_n : integer, tmp_n = m*(m-1)/2
! out
double precision, intent(out) :: H(tmp_n,tmp_n),h_tmpr(m,m,m,m)
! H : n by n double precision matrix containing the 2D hessian
! internal
double precision, allocatable :: hessian(:,:,:,:)
integer :: p,q, tmp_p,tmp_q
integer :: r,s,t,u,v,tmp_r,tmp_s,tmp_t,tmp_u,tmp_v
integer :: pq,rs,tmp_pq,tmp_rs
double precision :: t1,t2,t3,t4,t5,t6
! hessian : mo_num 4D double precision matrix containing the hessian before the permutations
! h_tmpr : mo_num 4D double precision matrix containing the hessian after the permutations
! p,q,r,s : integer, indexes of the 4D hessian matrix
! t,u,v : integer, indexes to compute hessian elements
! pq,rs : integer, indexes for the conversion from 4D to 2D hessian matrix
! t1,t2,t3 : double precision, t3 = t2 - t1, time to compute the hessian
! Funtion
double precision :: get_two_e_integral
! get_two_e_integral : double precision function, two e integrals
! Provided :
! mo_one_e_integrals : mono e- integrals
! get_two_e_integral : two e- integrals
! one_e_dm_mo_alpha, one_e_dm_mo_beta : one body density matrix
! two_e_dm_mo : two body density matrix
!============
! Allocation
!============
allocate(hessian(m,m,m,m))
!=============
! Calculation
!=============
print*,'---first_hess_list---'
! From Anderson et. al. (2014)
! The Journal of Chemical Physics 141, 244104 (2014); doi: 10.1063/1.4904384
CALL wall_time(t1)
! Initialization
hessian = 0d0
!========================
! First line, first term
!========================
CALL wall_time(t4)
do tmp_p = 1, m
p = list(tmp_p)
do tmp_q = 1, m
q = list(tmp_q)
do tmp_r = 1, m
r = list(tmp_r)
do tmp_s = 1, m
s = list(tmp_s)
if (q==r) then
do u = 1, mo_num
hessian(tmp_p,tmp_q,tmp_r,tmp_s) = hessian(tmp_p,tmp_q,tmp_r,tmp_s) + 0.5d0 * ( &
mo_one_e_integrals(u,p) * one_e_dm_mo(u,s) &
+ mo_one_e_integrals(s,u) * one_e_dm_mo(p,u))
enddo
endif
enddo
enddo
enddo
enddo
CALL wall_time(t5)
t6 = t5-t4
print*,'l1 1 :', t6
!=========================
! First line, second term
!=========================
CALL wall_time(t4)
do tmp_p = 1, m
p = list(tmp_p)
do tmp_q = 1, m
q = list(tmp_q)
do tmp_r = 1, m
r = list(tmp_r)
do tmp_s = 1, m
s = list(tmp_s)
if (p==s) then
do u = 1, mo_num
hessian(tmp_p,tmp_q,tmp_r,tmp_s) = hessian(tmp_p,tmp_q,tmp_r,tmp_s) + 0.5d0 * ( &
mo_one_e_integrals(u,r) * one_e_dm_mo(u,q) &
+ mo_one_e_integrals(q,u) * one_e_dm_mo(r,u))
enddo
endif
enddo
enddo
enddo
enddo
CALL wall_time(t5)
t6 = t5-t4
print*,'l1 2 :', t6
!========================
! First line, third term
!========================
CALL wall_time(t4)
do tmp_p = 1, m
p = list(tmp_p)
do tmp_q = 1, m
q = list(tmp_q)
do tmp_r = 1, m
r = list(tmp_r)
do tmp_s = 1, m
s = list(tmp_s)
hessian(tmp_p,tmp_q,tmp_r,tmp_s) = hessian(tmp_p,tmp_q,tmp_r,tmp_s) &
- mo_one_e_integrals(s,p) * one_e_dm_mo(r,q)&
- mo_one_e_integrals(q,r) * one_e_dm_mo(p,s)
enddo
enddo
enddo
enddo
CALL wall_time(t5)
t6 = t5-t4
print*,'l1 3 :', t6
!=========================
! Second line, first term
!=========================
CALL wall_time(t4)
do tmp_p = 1, m
p = list(tmp_p)
do tmp_q = 1, m
q = list(tmp_q)
do tmp_r = 1, m
r = list(tmp_r)
do tmp_s = 1, m
s = list(tmp_s)
if (q==r) then
do t = 1, mo_num
do u = 1, mo_num
do v = 1, mo_num
hessian(tmp_p,tmp_q,tmp_r,tmp_s) = hessian(tmp_p,tmp_q,tmp_r,tmp_s) + 0.5d0 * ( &
get_two_e_integral(u,v,p,t,mo_integrals_map) * two_e_dm_mo(u,v,s,t) &
+ get_two_e_integral(s,t,u,v,mo_integrals_map) * two_e_dm_mo(p,t,u,v))
enddo
enddo
enddo
endif
enddo
enddo
enddo
enddo
CALL wall_time(t5)
t6 = t5-t4
print*,'l2 1 :', t6
!==========================
! Second line, second term
!==========================
CALL wall_time(t4)
do tmp_p = 1, m
p = list(tmp_p)
do tmp_q = 1, m
q = list(tmp_q)
do tmp_r = 1, m
r = list(tmp_r)
do tmp_s = 1, m
s = list(tmp_s)
if (p==s) then
do t = 1, mo_num
do u = 1, mo_num
do v = 1, mo_num
hessian(tmp_p,tmp_q,tmp_r,tmp_s) = hessian(tmp_p,tmp_q,tmp_r,tmp_s) + 0.5d0 * ( &
get_two_e_integral(q,t,u,v,mo_integrals_map) * two_e_dm_mo(r,t,u,v) &
+ get_two_e_integral(u,v,r,t,mo_integrals_map) * two_e_dm_mo(u,v,q,t))
enddo
enddo
enddo
endif
enddo
enddo
enddo
enddo
CALL wall_time(t5)
t6 = t5-t4
print*,'l2 2 :', t6
!========================
! Third line, first term
!========================
CALL wall_time(t4)
do tmp_p = 1, m
p = list(tmp_p)
do tmp_q = 1, m
q = list(tmp_q)
do tmp_r = 1, m
r = list(tmp_r)
do tmp_s = 1, m
s = list(tmp_s)
do u = 1, mo_num
do v = 1, mo_num
hessian(tmp_p,tmp_q,tmp_r,tmp_s) = hessian(tmp_p,tmp_q,tmp_r,tmp_s) &
+ get_two_e_integral(u,v,p,r,mo_integrals_map) * two_e_dm_mo(u,v,q,s) &
+ get_two_e_integral(q,s,u,v,mo_integrals_map) * two_e_dm_mo(p,r,u,v)
enddo
enddo
enddo
enddo
enddo
enddo
CALL wall_time(t5)
t6 = t5-t4
print*,'l3 1 :', t6
!=========================
! Third line, second term
!=========================
CALL wall_time(t4)
do tmp_p = 1, m
p = list(tmp_p)
do tmp_q = 1, m
q = list(tmp_q)
do tmp_r = 1, m
r = list(tmp_r)
do tmp_s = 1, m
s = list(tmp_s)
do t = 1, mo_num
do u = 1, mo_num
hessian(tmp_p,tmp_q,tmp_r,tmp_s) = hessian(tmp_p,tmp_q,tmp_r,tmp_s) &
- get_two_e_integral(s,t,p,u,mo_integrals_map) * two_e_dm_mo(r,t,q,u) &
- get_two_e_integral(t,s,p,u,mo_integrals_map) * two_e_dm_mo(t,r,q,u) &
- get_two_e_integral(q,u,r,t,mo_integrals_map) * two_e_dm_mo(p,u,s,t) &
- get_two_e_integral(q,u,t,r,mo_integrals_map) * two_e_dm_mo(p,u,t,s)
enddo
enddo
enddo
enddo
enddo
enddo
CALL wall_time(t5)
t6 = t5-t4
print*,'l3 2 :', t6
CALL wall_time(t2)
t3 = t2 -t1
print*,'Time to compute the hessian : ', t3
!==============
! Permutations
!==============
! Hessian(p,q,r,s) = P_pq P_rs [ ...]
! => Hessian(p,q,r,s) = (p,q,r,s) - (q,p,r,s) - (p,q,s,r) + (q,p,s,r)
do tmp_s = 1, m
do tmp_r = 1, m
do tmp_q = 1, m
do tmp_p = 1, m
h_tmpr(tmp_p,tmp_q,tmp_r,tmp_s) = (hessian(tmp_p,tmp_q,tmp_r,tmp_s) - hessian(tmp_q,tmp_p,tmp_r,tmp_s) &
- hessian(tmp_p,tmp_q,tmp_s,tmp_r) + hessian(tmp_q,tmp_p,tmp_s,tmp_r))
enddo
enddo
enddo
enddo
!========================
! 4D matrix to 2D matrix
!========================
! Convert the hessian mo_num * mo_num * mo_num * mo_num matrix in a
! 2D n * n matrix (n = mo_num*(mo_num-1)/2)
! H(pq,rs) : p<q and r<s
! 4D mo_num matrix to 2D n matrix
do tmp_pq = 1, tmp_n
call vec_to_mat_index(tmp_pq,tmp_p,tmp_q)
do tmp_rs = 1, tmp_n
call vec_to_mat_index(tmp_rs,tmp_r,tmp_s)
H(tmp_pq,tmp_rs) = h_tmpr(tmp_p,tmp_q,tmp_r,tmp_s)
enddo
enddo
! Display
if (debug) then
print*,'2D Hessian matrix'
do tmp_pq = 1, tmp_n
write(*,'(100(F10.5))') H(tmp_pq,:)
enddo
endif
!==============
! Deallocation
!==============
deallocate(hessian)
print*,'---End first_hess_list---'
end subroutine

View File

@ -0,0 +1,360 @@
subroutine first_hessian_opt(n,H,h_tmpr)
include 'constants.h'
implicit none
!==================================================================
! Compute the hessian of energy with respects to orbital rotations
!==================================================================
!===========
! Variables
!===========
! in
integer, intent(in) :: n
!n : integer, n = mo_num*(mo_num-1)/2
! out
double precision, intent(out) :: H(n,n),h_tmpr(mo_num,mo_num,mo_num,mo_num)
! H : n by n double precision matrix containing the 2D hessian
! internal
double precision, allocatable :: hessian(:,:,:,:)
integer :: p,q
integer :: r,s,t,u,v
integer :: pq,rs
double precision :: t1,t2,t3,t4,t5,t6
! hessian : mo_num 4D double precision matrix containing the hessian before the permutations
! h_tmpr : mo_num 4D double precision matrix containing the hessian after the permutations
! p,q,r,s : integer, indexes of the 4D hessian matrix
! t,u,v : integer, indexes to compute hessian elements
! pq,rs : integer, indexes for the conversion from 4D to 2D hessian matrix
! t1,t2,t3 : double precision, t3 = t2 - t1, time to compute the hessian
! Funtion
double precision :: get_two_e_integral
! get_two_e_integral : double precision function, two e integrals
! Provided :
! mo_one_e_integrals : mono e- integrals
! get_two_e_integral : two e- integrals
! one_e_dm_mo_alpha, one_e_dm_mo_beta : one body density matrix
! two_e_dm_mo : two body density matrix
!============
! Allocation
!============
allocate(hessian(mo_num,mo_num,mo_num,mo_num))
!=============
! Calculation
!=============
if (debug) then
print*,'Enter in first_hess'
endif
! From Anderson et. al. (2014)
! The Journal of Chemical Physics 141, 244104 (2014); doi: 10.1063/1.4904384
CALL wall_time(t1)
! Initialization
hessian = 0d0
!========================
! First line, first term
!========================
CALL wall_time(t4)
do p = 1, mo_num
do q = 1, mo_num
do r = 1, mo_num
do s = 1, mo_num
if (q==r) then
do u = 1, mo_num
hessian(p,q,r,s) = hessian(p,q,r,s) + 0.5d0 * ( &
mo_one_e_integrals(u,p) * one_e_dm_mo(u,s) &
+ mo_one_e_integrals(s,u) * one_e_dm_mo(p,u))
enddo
endif
enddo
enddo
enddo
enddo
CALL wall_time(t5)
t6 = t5-t4
print*,'l1 1 :', t6
!=========================
! First line, second term
!=========================
CALL wall_time(t4)
do p = 1, mo_num
do q = 1, mo_num
do r = 1, mo_num
do s = 1, mo_num
if (p==s) then
do u = 1, mo_num
hessian(p,q,r,s) = hessian(p,q,r,s) + 0.5d0 * ( &
mo_one_e_integrals(u,r) * one_e_dm_mo(u,q) &
+ mo_one_e_integrals(q,u) * one_e_dm_mo(r,u))
enddo
endif
enddo
enddo
enddo
enddo
CALL wall_time(t5)
t6 = t5-t4
print*,'l1 2 :', t6
!========================
! First line, third term
!========================
CALL wall_time(t4)
do p = 1, mo_num
do q = 1, mo_num
do r = 1, mo_num
do s = 1, mo_num
hessian(p,q,r,s) = hessian(p,q,r,s) &
- mo_one_e_integrals(s,p) * one_e_dm_mo(r,q)&
- mo_one_e_integrals(q,r) * one_e_dm_mo(p,s)
enddo
enddo
enddo
enddo
CALL wall_time(t5)
t6 = t5-t4
print*,'l1 3 :', t6
!=========================
! Second line, first term
!=========================
CALL wall_time(t4)
do s = 1, mo_num
do r = 1, mo_num
do q = 1, mo_num
do p = 1, mo_num
! do p = 1, mo_num
! do q = 1, mo_num
! do r = 1, mo_num
! do s = 1, mo_num
if (q==r) then
do t = 1, mo_num
do u = 1, mo_num
do v = 1, mo_num
hessian(p,q,r,s) = hessian(p,q,r,s) + 0.5d0 * ( &
get_two_e_integral(u,v,p,t,mo_integrals_map) * two_e_dm_mo(u,v,s,t) &
+ get_two_e_integral(s,t,u,v,mo_integrals_map) * two_e_dm_mo(p,t,u,v))
enddo
enddo
enddo
endif
enddo
enddo
enddo
enddo
CALL wall_time(t5)
t6 = t5-t4
print*,'l2 1 :', t6
!==========================
! Second line, second term
!==========================
CALL wall_time(t4)
do s = 1, mo_num
do r = 1, mo_num
do q = 1, mo_num
do p = 1, mo_num
! do p = 1, mo_num
! do q = 1, mo_num
! do r = 1, mo_num
! do s = 1, mo_num
if (p==s) then
do t = 1, mo_num
do u = 1, mo_num
do v = 1, mo_num
hessian(p,q,r,s) = hessian(p,q,r,s) + 0.5d0 * ( &
get_two_e_integral(q,t,u,v,mo_integrals_map) * two_e_dm_mo(r,t,u,v) &
+ get_two_e_integral(u,v,r,t,mo_integrals_map) * two_e_dm_mo(u,v,q,t))
enddo
enddo
enddo
endif
enddo
enddo
enddo
enddo
CALL wall_time(t5)
t6 = t5-t4
print*,'l2 2 :', t6
!========================
! Third line, first term
!========================
CALL wall_time(t4)
do s = 1, mo_num
do r = 1, mo_num
do q = 1, mo_num
do p = 1, mo_num
! do p = 1, mo_num
! do q = 1, mo_num
! do r = 1, mo_num
! do s = 1, mo_num
do u = 1, mo_num
do v = 1, mo_num
hessian(p,q,r,s) = hessian(p,q,r,s) &
+ get_two_e_integral(u,v,p,r,mo_integrals_map) * two_e_dm_mo(u,v,q,s) &
+ get_two_e_integral(q,s,u,v,mo_integrals_map) * two_e_dm_mo(p,r,u,v)
enddo
enddo
enddo
enddo
enddo
enddo
CALL wall_time(t5)
t6 = t5-t4
print*,'l3 1 :', t6
!=========================
! Third line, second term
!=========================
CALL wall_time(t4)
do s = 1, mo_num
do r = 1, mo_num
do q = 1, mo_num
do p = 1, mo_num
! do p = 1, mo_num
! do q = 1, mo_num
! do r = 1, mo_num
! do s = 1, mo_num
do t = 1, mo_num
do u = 1, mo_num
hessian(p,q,r,s) = hessian(p,q,r,s) &
- get_two_e_integral(s,t,p,u,mo_integrals_map) * two_e_dm_mo(r,t,q,u) &
- get_two_e_integral(t,s,p,u,mo_integrals_map) * two_e_dm_mo(t,r,q,u) &
- get_two_e_integral(q,u,r,t,mo_integrals_map) * two_e_dm_mo(p,u,s,t) &
- get_two_e_integral(q,u,t,r,mo_integrals_map) * two_e_dm_mo(p,u,t,s)
enddo
enddo
enddo
enddo
enddo
enddo
CALL wall_time(t5)
t6 = t5-t4
print*,'l3 2 :', t6
CALL wall_time(t2)
t3 = t2 -t1
print*,'Time to compute the hessian : ', t3
!==============
! Permutations
!==============
! Hessian(p,q,r,s) = P_pq P_rs [ ...]
! => Hessian(p,q,r,s) = (p,q,r,s) - (q,p,r,s) - (p,q,s,r) + (q,p,s,r)
do s = 1, mo_num
do r = 1, mo_num
do q = 1, mo_num
do p = 1, mo_num
h_tmpr(p,q,r,s) = (hessian(p,q,r,s) - hessian(q,p,r,s) - hessian(p,q,s,r) + hessian(q,p,s,r))
enddo
enddo
enddo
enddo
!========================
! 4D matrix to 2D matrix
!========================
! Convert the hessian mo_num * mo_num * mo_num * mo_num matrix in a
! 2D n * n matrix (n = mo_num*(mo_num-1)/2)
! H(pq,rs) : p<q and r<s
! 4D mo_num matrix to 2D n matrix
do pq = 1, n
call vec_to_mat_index(pq,p,q)
do rs = 1, n
call vec_to_mat_index(rs,r,s)
H(pq,rs) = h_tmpr(p,q,r,s)
enddo
enddo
! Display
if (debug) then
print*,'2D Hessian matrix'
do pq = 1, n
write(*,'(100(F10.5))') H(pq,:)
enddo
endif
!==============
! Deallocation
!==============
deallocate(hessian)
if (debug) then
print*,'Leave first_hess'
endif
end subroutine

View File

@ -0,0 +1,381 @@
! Gradient
! The gradient of the CI energy with respects to the orbital rotation
! is:
! (C-c C-x C-l)
! $$
! G(p,q) = \mathcal{P}_{pq} \left[ \sum_r (h_p^r \gamma_r^q - h_r^q \gamma_p^r) +
! \sum_{rst}(v_{pt}^{rs} \Gamma_{rs}^{qt} - v_{rs}^{qt} \Gamma_{pt}^{rs})
! \right]
! $$
! $$
! \mathcal{P}_{pq}= 1 - (p \leftrightarrow q)
! $$
! $$
! G(p,q) = \left[
! \sum_r (h_p^r \gamma_r^q - h_r^q \gamma_p^r) +
! \sum_{rst}(v_{pt}^{rs} \Gamma_{rs}^{qt} - v_{rs}^{qt} \Gamma_{pt}^{rs})
! \right] -
! \left[
! \sum_r (h_q^r \gamma_r^p - h_r^p \gamma_q^r) +
! \sum_{rst}(v_{qt}^{rs} \Gamma_{rs}^{pt} - v_{rs}^{pt}
! \Gamma_{qt}^{rs})
! \right]
! $$
! Where p,q,r,s,t are general spatial orbitals
! mo_num : the number of molecular orbitals
! $$h$$ : One electron integrals
! $$\gamma$$ : One body density matrix (state average in our case)
! $$v$$ : Two electron integrals
! $$\Gamma$$ : Two body density matrice (state average in our case)
! The gradient is a mo_num by mo_num matrix, p,q,r,s,t take all the
! values between 1 and mo_num (1 and mo_num include).
! To do that we compute $$G(p,q)$$ for all the pairs (p,q).
! Source :
! Seniority-based coupled cluster theory
! J. Chem. Phys. 141, 244104 (2014); https://doi.org/10.1063/1.4904384
! Thomas M. Henderson, Ireneusz W. Bulik, Tamar Stein, and Gustavo
! E. Scuseria
! *Compute the gradient of energy with respects to orbital rotations*
! Provided:
! | mo_num | integer | number of MOs |
! | mo_one_e_integrals(mo_num,mo_num) | double precision | mono_electronic integrals |
! | one_e_dm_mo(mo_num,mo_num) | double precision | one e- density matrix |
! | two_e_dm_mo(mo_num,mo_num,mo_num,mo_num) | double precision | two e- density matrix |
! Input:
! | n | integer | mo_num*(mo_num-1)/2 |
! Output:
! | v_grad(n) | double precision | the gradient |
! | max_elem | double precision | maximum element of the gradient |
! Internal:
! | grad(mo_num,mo_num) | double precison | gradient before the tranformation in a vector |
! | A((mo_num,mo_num) | doubre precision | gradient after the permutations |
! | norm | double precision | norm of the gradient |
! | p, q | integer | indexes of the element in the matrix grad |
! | i | integer | index for the tranformation in a vector |
! | r, s, t | integer | indexes dor the sums |
! | t1, t2, t3 | double precision | t3 = t2 - t1, time to compute the gradient |
! | t4, t5, t6 | double precission | t6 = t5 - t4, time to compute each element |
! | tmp_bi_int_3(mo_num,mo_num,mo_num) | double precision | 3 indexes temporary array for the bi-electronic integrals |
! | tmp_2rdm_3(mo_num,mo_num,mo_num) | double precision | 3 indexes temporary array for the two e- density matrix |
! | tmp_accu(mo_num,mo_num) | double precision | temporary array |
! Function:
! | get_two_e_integral | double precision | bi-electronic integrals |
! | dnrm2 | double precision | (Lapack) norm |
subroutine gradient_list_opt(n,m,list,v_grad,max_elem,norm)
use omp_lib
include 'constants.h'
implicit none
! Variables
! in
integer, intent(in) :: n,m,list(m)
! out
double precision, intent(out) :: v_grad(n), max_elem, norm
! internal
double precision, allocatable :: grad(:,:),A(:,:)
integer :: i,p,q,r,s,t, tmp_p, tmp_q, tmp_i
double precision :: t1,t2,t3,t4,t5,t6
double precision, allocatable :: tmp_accu(:,:), tmp_mo_one_e_integrals(:,:),tmp_one_e_dm_mo(:,:)
double precision, allocatable :: tmp_bi_int_3(:,:,:), tmp_2rdm_3(:,:,:)
! Functions
double precision :: get_two_e_integral, dnrm2
print*,''
print*,'---gradient---'
! Allocation of shared arrays
allocate(grad(m,m),A(m,m))
allocate(tmp_mo_one_e_integrals(m,mo_num),tmp_one_e_dm_mo(mo_num,m))
! Initialization omp
call omp_set_max_active_levels(1)
!$OMP PARALLEL &
!$OMP PRIVATE( &
!$OMP p,q,r,s,t,tmp_p,tmp_q, &
!$OMP tmp_accu,tmp_bi_int_3, tmp_2rdm_3) &
!$OMP SHARED(grad, one_e_dm_mo,m,list,mo_num,mo_one_e_integrals, &
!$OMP mo_integrals_map,tmp_one_e_dm_mo, tmp_mo_one_e_integrals,t4,t5,t6) &
!$OMP DEFAULT(SHARED)
! Allocation of private arrays
allocate(tmp_accu(m,m))
allocate(tmp_bi_int_3(mo_num,mo_num,m))
allocate(tmp_2rdm_3(mo_num,mo_num,m))
! Initialization
!$OMP DO
do tmp_q = 1, m
do tmp_p = 1, m
grad(tmp_p,tmp_q) = 0d0
enddo
enddo
!$OMP END DO
! Term 1
! Without optimization the term 1 is :
! do p = 1, mo_num
! do q = 1, mo_num
! do r = 1, mo_num
! grad(p,q) = grad(p,q) &
! + mo_one_e_integrals(p,r) * one_e_dm_mo(r,q) &
! - mo_one_e_integrals(r,q) * one_e_dm_mo(p,r)
! enddo
! enddo
! enddo
! Since the matrix multiplication A.B is defined like :
! \begin{equation}
! c_{ij} = \sum_k a_{ik}.b_{kj}
! \end{equation}
! The previous equation can be rewritten as a matrix multplication
!****************
! Opt first term
!****************
!$OMP DO
do r = 1, mo_num
do tmp_p = 1, m
p = list(tmp_p)
tmp_mo_one_e_integrals(tmp_p,r) = mo_one_e_integrals(p,r)
enddo
enddo
!$OMP END DO
!$OMP DO
do tmp_q = 1, m
q = list(tmp_q)
do r = 1, mo_num
tmp_one_e_dm_mo(r,tmp_q) = one_e_dm_mo(r,q)
enddo
enddo
!$OMP END DO
call dgemm('N','N',m,m,mo_num,1d0,&
tmp_mo_one_e_integrals, size(tmp_mo_one_e_integrals,1),&
tmp_one_e_dm_mo,size(tmp_one_e_dm_mo,1),0d0,tmp_accu,size(tmp_accu,1))
!$OMP DO
do tmp_q = 1, m
do tmp_p = 1, m
grad(tmp_p,tmp_q) = grad(tmp_p,tmp_q) + (tmp_accu(tmp_p,tmp_q) - tmp_accu(tmp_q,tmp_p))
enddo
enddo
!$OMP END DO
!$OMP MASTER
CALL wall_TIME(t4)
!$OMP END MASTER
! call dgemm('N','N',mo_num,mo_num,mo_num,1d0,mo_one_e_integrals,&
! mo_num,one_e_dm_mo,mo_num,0d0,tmp_accu,mo_num)
!
! !$OMP DO
! do q = 1, mo_num
! do p = 1, mo_num
!
! grad(p,q) = grad(p,q) + (tmp_accu(p,q) - tmp_accu(q,p))
!
! enddo
! enddo
! !$OMP END DO
!$OMP MASTER
CALL wall_TIME(t5)
t6 = t5-t4
print*,'Gradient, first term (s) :', t6
!$OMP END MASTER
! Term 2
! Without optimization the second term is :
! do p = 1, mo_num
! do q = 1, mo_num
! do r = 1, mo_num
! do s = 1, mo_num
! do t= 1, mo_num
! grad(p,q) = grad(p,q) &
! + get_two_e_integral(p,t,r,s,mo_integrals_map) * two_e_dm_mo(r,s,q,t) &
! - get_two_e_integral(r,s,q,t,mo_integrals_map) * two_e_dm_mo(p,t,r,s)
! enddo
! enddo
! enddo
! enddo
! enddo
! Using the bielectronic integral properties :
! get_two_e_integral(p,t,r,s,mo_integrals_map) = get_two_e_integral(r,s,p,t,mo_integrals_map)
! Using the two body matrix properties :
! two_e_dm_mo(p,t,r,s) = two_e_dm_mo(r,s,p,t)
! t is one the right, we can put it on the external loop and create 3
! indexes temporary array
! r,s can be seen as one index
! By doing so, a matrix multiplication appears
!*****************
! Opt second term
!*****************
!$OMP MASTER
CALL wall_TIME(t4)
!$OMP END MASTER
!$OMP DO
do t = 1, mo_num
do tmp_p = 1, m
p = list(tmp_p)
do s = 1, mo_num
do r = 1, mo_num
tmp_bi_int_3(r,s,tmp_p) = get_two_e_integral(r,s,p,t,mo_integrals_map)
enddo
enddo
enddo
do tmp_q = 1, m
q = list(tmp_q)
do s = 1, mo_num
do r = 1, mo_num
tmp_2rdm_3(r,s,tmp_q) = two_e_dm_mo(r,s,q,t)
enddo
enddo
enddo
call dgemm('T','N',m,m,mo_num*mo_num,1d0,tmp_bi_int_3,&
mo_num*mo_num,tmp_2rdm_3,mo_num*mo_num,0d0,tmp_accu,size(tmp_accu,1))
!$OMP CRITICAL
do tmp_q = 1, m
do tmp_p = 1, m
grad(tmp_p,tmp_q) = grad(tmp_p,tmp_q) + tmp_accu(tmp_p,tmp_q) - tmp_accu(tmp_q,tmp_p)
enddo
enddo
!$OMP END CRITICAL
enddo
!$OMP END DO
!$OMP MASTER
CALL wall_TIME(t5)
t6 = t5-t4
print*,'Gradient second term (s) : ', t6
!$OMP END MASTER
! Deallocation of private arrays
deallocate(tmp_bi_int_3,tmp_2rdm_3,tmp_accu)
!$OMP END PARALLEL
call omp_set_max_active_levels(4)
! Permutation, 2D matrix -> vector, transformation
! In addition there is a permutation in the gradient formula :
! \begin{equation}
! P_{pq} = 1 - (p <-> q)
! \end{equation}
! We need a vector to use the gradient. Here the gradient is a
! antisymetric matrix so we can transform it in a vector of length
! mo_num*(mo_num-1)/2.
! Here we do these two things at the same time.
do i=1,n
call vec_to_mat_index(i,p,q)
v_grad(i)=(grad(p,q) - grad(q,p))
enddo
! Debug, diplay the vector containing the gradient elements
if (debug) then
print*,'Vector containing the gradient :'
write(*,'(100(F10.5))') v_grad(1:n)
endif
! Norm of the gradient
! The norm can be useful.
norm = dnrm2(n,v_grad,1)
print*, 'Gradient norm : ', norm
! Maximum element in the gradient
! The maximum element in the gradient is very important for the
! convergence criterion of the Newton method.
! Max element of the gradient
max_elem = 0d0
do i = 1, n
if (DABS(v_grad(i)) > DABS(max_elem)) then
max_elem = v_grad(i)
endif
enddo
print*,'Max element in the gradient :', max_elem
! Debug, display the matrix containting the gradient elements
if (debug) then
! Matrix gradient
A = 0d0
do q=1,m
do p=1,m
A(p,q) = grad(p,q) - grad(q,p)
enddo
enddo
print*,'Matrix containing the gradient :'
do i = 1, m
write(*,'(100(F10.5))') A(i,1:m)
enddo
endif
! Deallocation of shared arrays and end
deallocate(grad,A, tmp_mo_one_e_integrals,tmp_one_e_dm_mo)
print*,'---End gradient---'
end subroutine

View File

@ -0,0 +1,346 @@
! Gradient
! The gradient of the CI energy with respects to the orbital rotation
! is:
! (C-c C-x C-l)
! $$
! G(p,q) = \mathcal{P}_{pq} \left[ \sum_r (h_p^r \gamma_r^q - h_r^q \gamma_p^r) +
! \sum_{rst}(v_{pt}^{rs} \Gamma_{rs}^{qt} - v_{rs}^{qt} \Gamma_{pt}^{rs})
! \right]
! $$
! $$
! \mathcal{P}_{pq}= 1 - (p \leftrightarrow q)
! $$
! $$
! G(p,q) = \left[
! \sum_r (h_p^r \gamma_r^q - h_r^q \gamma_p^r) +
! \sum_{rst}(v_{pt}^{rs} \Gamma_{rs}^{qt} - v_{rs}^{qt} \Gamma_{pt}^{rs})
! \right] -
! \left[
! \sum_r (h_q^r \gamma_r^p - h_r^p \gamma_q^r) +
! \sum_{rst}(v_{qt}^{rs} \Gamma_{rs}^{pt} - v_{rs}^{pt}
! \Gamma_{qt}^{rs})
! \right]
! $$
! Where p,q,r,s,t are general spatial orbitals
! mo_num : the number of molecular orbitals
! $$h$$ : One electron integrals
! $$\gamma$$ : One body density matrix (state average in our case)
! $$v$$ : Two electron integrals
! $$\Gamma$$ : Two body density matrice (state average in our case)
! The gradient is a mo_num by mo_num matrix, p,q,r,s,t take all the
! values between 1 and mo_num (1 and mo_num include).
! To do that we compute $$G(p,q)$$ for all the pairs (p,q).
! Source :
! Seniority-based coupled cluster theory
! J. Chem. Phys. 141, 244104 (2014); https://doi.org/10.1063/1.4904384
! Thomas M. Henderson, Ireneusz W. Bulik, Tamar Stein, and Gustavo
! E. Scuseria
! *Compute the gradient of energy with respects to orbital rotations*
! Provided:
! | mo_num | integer | number of MOs |
! | mo_one_e_integrals(mo_num,mo_num) | double precision | mono_electronic integrals |
! | one_e_dm_mo(mo_num,mo_num) | double precision | one e- density matrix |
! | two_e_dm_mo(mo_num,mo_num,mo_num,mo_num) | double precision | two e- density matrix |
! Input:
! | n | integer | mo_num*(mo_num-1)/2 |
! Output:
! | v_grad(n) | double precision | the gradient |
! | max_elem | double precision | maximum element of the gradient |
! Internal:
! | grad(mo_num,mo_num) | double precison | gradient before the tranformation in a vector |
! | A((mo_num,mo_num) | doubre precision | gradient after the permutations |
! | norm | double precision | norm of the gradient |
! | p, q | integer | indexes of the element in the matrix grad |
! | i | integer | index for the tranformation in a vector |
! | r, s, t | integer | indexes dor the sums |
! | t1, t2, t3 | double precision | t3 = t2 - t1, time to compute the gradient |
! | t4, t5, t6 | double precission | t6 = t5 - t4, time to compute each element |
! | tmp_bi_int_3(mo_num,mo_num,mo_num) | double precision | 3 indexes temporary array for the bi-electronic integrals |
! | tmp_2rdm_3(mo_num,mo_num,mo_num) | double precision | 3 indexes temporary array for the two e- density matrix |
! | tmp_accu(mo_num,mo_num) | double precision | temporary array |
! Function:
! | get_two_e_integral | double precision | bi-electronic integrals |
! | dnrm2 | double precision | (Lapack) norm |
subroutine gradient_opt(n,v_grad,max_elem)
use omp_lib
include 'constants.h'
implicit none
! Variables
! in
integer, intent(in) :: n
! out
double precision, intent(out) :: v_grad(n), max_elem
! internal
double precision, allocatable :: grad(:,:),A(:,:)
double precision :: norm
integer :: i,p,q,r,s,t
double precision :: t1,t2,t3,t4,t5,t6
double precision, allocatable :: tmp_accu(:,:)
double precision, allocatable :: tmp_bi_int_3(:,:,:), tmp_2rdm_3(:,:,:)
! Functions
double precision :: get_two_e_integral, dnrm2
print*,''
print*,'---gradient---'
! Allocation of shared arrays
allocate(grad(mo_num,mo_num),A(mo_num,mo_num))
! Initialization omp
call omp_set_max_active_levels(1)
!$OMP PARALLEL &
!$OMP PRIVATE( &
!$OMP p,q,r,s,t, &
!$OMP tmp_accu, tmp_bi_int_3, tmp_2rdm_3) &
!$OMP SHARED(grad, one_e_dm_mo, mo_num,mo_one_e_integrals, &
!$OMP mo_integrals_map,t4,t5,t6) &
!$OMP DEFAULT(SHARED)
! Allocation of private arrays
allocate(tmp_accu(mo_num,mo_num))
allocate(tmp_bi_int_3(mo_num,mo_num,mo_num))
allocate(tmp_2rdm_3(mo_num,mo_num,mo_num))
! Initialization
!$OMP DO
do q = 1, mo_num
do p = 1,mo_num
grad(p,q) = 0d0
enddo
enddo
!$OMP END DO
! Term 1
! Without optimization the term 1 is :
! do p = 1, mo_num
! do q = 1, mo_num
! do r = 1, mo_num
! grad(p,q) = grad(p,q) &
! + mo_one_e_integrals(p,r) * one_e_dm_mo(r,q) &
! - mo_one_e_integrals(r,q) * one_e_dm_mo(p,r)
! enddo
! enddo
! enddo
! Since the matrix multiplication A.B is defined like :
! \begin{equation}
! c_{ij} = \sum_k a_{ik}.b_{kj}
! \end{equation}
! The previous equation can be rewritten as a matrix multplication
!****************
! Opt first term
!****************
!$OMP MASTER
CALL wall_TIME(t4)
!$OMP END MASTER
call dgemm('N','N',mo_num,mo_num,mo_num,1d0,mo_one_e_integrals,&
mo_num,one_e_dm_mo,mo_num,0d0,tmp_accu,mo_num)
!$OMP DO
do q = 1, mo_num
do p = 1, mo_num
grad(p,q) = grad(p,q) + (tmp_accu(p,q) - tmp_accu(q,p))
enddo
enddo
!$OMP END DO
!$OMP MASTER
CALL wall_TIME(t5)
t6 = t5-t4
print*,'Gradient, first term (s) :', t6
!$OMP END MASTER
! Term 2
! Without optimization the second term is :
! do p = 1, mo_num
! do q = 1, mo_num
! do r = 1, mo_num
! do s = 1, mo_num
! do t= 1, mo_num
! grad(p,q) = grad(p,q) &
! + get_two_e_integral(p,t,r,s,mo_integrals_map) * two_e_dm_mo(r,s,q,t) &
! - get_two_e_integral(r,s,q,t,mo_integrals_map) * two_e_dm_mo(p,t,r,s)
! enddo
! enddo
! enddo
! enddo
! enddo
! Using the bielectronic integral properties :
! get_two_e_integral(p,t,r,s,mo_integrals_map) = get_two_e_integral(r,s,p,t,mo_integrals_map)
! Using the two body matrix properties :
! two_e_dm_mo(p,t,r,s) = two_e_dm_mo(r,s,p,t)
! t is one the right, we can put it on the external loop and create 3
! indexes temporary array
! r,s can be seen as one index
! By doing so, a matrix multiplication appears
!*****************
! Opt second term
!*****************
!$OMP MASTER
CALL wall_TIME(t4)
!$OMP END MASTER
!$OMP DO
do t = 1, mo_num
do p = 1, mo_num
do s = 1, mo_num
do r = 1, mo_num
tmp_bi_int_3(r,s,p) = get_two_e_integral(r,s,p,t,mo_integrals_map)
enddo
enddo
enddo
do q = 1, mo_num
do s = 1, mo_num
do r = 1, mo_num
tmp_2rdm_3(r,s,q) = two_e_dm_mo(r,s,q,t)
enddo
enddo
enddo
call dgemm('T','N',mo_num,mo_num,mo_num*mo_num,1d0,tmp_bi_int_3,&
mo_num*mo_num,tmp_2rdm_3,mo_num*mo_num,0d0,tmp_accu,mo_num)
!$OMP CRITICAL
do q = 1, mo_num
do p = 1, mo_num
grad(p,q) = grad(p,q) + tmp_accu(p,q) - tmp_accu(q,p)
enddo
enddo
!$OMP END CRITICAL
enddo
!$OMP END DO
!$OMP MASTER
CALL wall_TIME(t5)
t6 = t5-t4
print*,'Gradient second term (s) : ', t6
!$OMP END MASTER
! Deallocation of private arrays
deallocate(tmp_bi_int_3,tmp_2rdm_3,tmp_accu)
!$OMP END PARALLEL
call omp_set_max_active_levels(4)
! Permutation, 2D matrix -> vector, transformation
! In addition there is a permutation in the gradient formula :
! \begin{equation}
! P_{pq} = 1 - (p <-> q)
! \end{equation}
! We need a vector to use the gradient. Here the gradient is a
! antisymetric matrix so we can transform it in a vector of length
! mo_num*(mo_num-1)/2.
! Here we do these two things at the same time.
do i=1,n
call vec_to_mat_index(i,p,q)
v_grad(i)=(grad(p,q) - grad(q,p))
enddo
! Debug, diplay the vector containing the gradient elements
if (debug) then
print*,'Vector containing the gradient :'
write(*,'(100(F10.5))') v_grad(1:n)
endif
! Norm of the gradient
! The norm can be useful.
norm = dnrm2(n,v_grad,1)
print*, 'Gradient norm : ', norm
! Maximum element in the gradient
! The maximum element in the gradient is very important for the
! convergence criterion of the Newton method.
! Max element of the gradient
max_elem = 0d0
do i = 1, n
if (ABS(v_grad(i)) > ABS(max_elem)) then
max_elem = v_grad(i)
endif
enddo
print*,'Max element in the gradient :', max_elem
! Debug, display the matrix containting the gradient elements
if (debug) then
! Matrix gradient
A = 0d0
do q=1,mo_num
do p=1,mo_num
A(p,q) = grad(p,q) - grad(q,p)
enddo
enddo
print*,'Matrix containing the gradient :'
do i = 1, mo_num
write(*,'(100(F10.5))') A(i,1:mo_num)
enddo
endif
! Deallocation of shared arrays and end
deallocate(grad,A)
print*,'---End gradient---'
end subroutine

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,141 @@
! Dimensions of MOs
BEGIN_PROVIDER [ integer, n_mo_dim ]
implicit none
BEGIN_DOC
! Number of different pairs (i,j) of MOs we can build,
! with i>j
END_DOC
n_mo_dim = mo_num*(mo_num-1)/2
END_PROVIDER
BEGIN_PROVIDER [ integer, n_mo_dim_core ]
implicit none
BEGIN_DOC
! Number of different pairs (i,j) of core MOs we can build,
! with i>j
END_DOC
n_mo_dim_core = dim_list_core_orb*(dim_list_core_orb-1)/2
END_PROVIDER
BEGIN_PROVIDER [ integer, n_mo_dim_act ]
implicit none
BEGIN_DOC
! Number of different pairs (i,j) of active MOs we can build,
! with i>j
END_DOC
n_mo_dim_act = dim_list_act_orb*(dim_list_act_orb-1)/2
END_PROVIDER
BEGIN_PROVIDER [ integer, n_mo_dim_inact ]
implicit none
BEGIN_DOC
! Number of different pairs (i,j) of inactive MOs we can build,
! with i>j
END_DOC
n_mo_dim_inact = dim_list_inact_orb*(dim_list_inact_orb-1)/2
END_PROVIDER
BEGIN_PROVIDER [ integer, n_mo_dim_virt ]
implicit none
BEGIN_DOC
! Number of different pairs (i,j) of virtual MOs we can build,
! with i>j
END_DOC
n_mo_dim_virt = dim_list_virt_orb*(dim_list_virt_orb-1)/2
END_PROVIDER
! Energies/criterions
BEGIN_PROVIDER [ double precision, my_st_av_energy ]
implicit none
BEGIN_DOC
! State average CI energy
END_DOC
!call update_st_av_ci_energy(my_st_av_energy)
call state_average_energy(my_st_av_energy)
END_PROVIDER
! With all the MOs
BEGIN_PROVIDER [ double precision, my_gradient_opt, (n_mo_dim) ]
&BEGIN_PROVIDER [ double precision, my_CC1_opt ]
implicit none
BEGIN_DOC
! - Gradient of the energy with respect to the MO rotations, for all the MOs.
! - Maximal element of the gradient in absolute value
END_DOC
double precision :: norm_grad
PROVIDE mo_two_e_integrals_in_map
call gradient_opt(n_mo_dim, my_gradient_opt, my_CC1_opt, norm_grad)
END_PROVIDER
BEGIN_PROVIDER [ double precision, my_hessian_opt, (n_mo_dim, n_mo_dim) ]
implicit none
BEGIN_DOC
! - Gradient of the energy with respect to the MO rotations, for all the MOs.
! - Maximal element of the gradient in absolute value
END_DOC
double precision, allocatable :: h_f(:,:,:,:)
PROVIDE mo_two_e_integrals_in_map
allocate(h_f(mo_num, mo_num, mo_num, mo_num))
call hessian_list_opt(n_mo_dim, my_hessian_opt, h_f)
END_PROVIDER
! With the list of active MOs
! Can be generalized to any mo_class by changing the list/dimension
BEGIN_PROVIDER [ double precision, my_gradient_list_opt, (n_mo_dim_act) ]
&BEGIN_PROVIDER [ double precision, my_CC2_opt ]
implicit none
BEGIN_DOC
! - Gradient of the energy with respect to the MO rotations, only for the active MOs !
! - Maximal element of the gradient in absolute value
END_DOC
double precision :: norm_grad
PROVIDE mo_two_e_integrals_in_map !one_e_dm_mo two_e_dm_mo mo_one_e_integrals
call gradient_list_opt(n_mo_dim_act, dim_list_act_orb, list_act, my_gradient_list_opt, my_CC2_opt, norm_grad)
END_PROVIDER
BEGIN_PROVIDER [ double precision, my_hessian_list_opt, (n_mo_dim_act, n_mo_dim_act) ]
implicit none
BEGIN_DOC
! - Gradient of the energy with respect to the MO rotations, only for the active MOs !
! - Maximal element of the gradient in absolute value
END_DOC
double precision, allocatable :: h_f(:,:,:,:)
PROVIDE mo_two_e_integrals_in_map
allocate(h_f(dim_list_act_orb, dim_list_act_orb, dim_list_act_orb, dim_list_act_orb))
call hessian_list_opt(n_mo_dim_act, dim_list_act_orb, list_act, my_hessian_list_opt, h_f)
END_PROVIDER

View File

@ -0,0 +1,86 @@
program optimization
read_wf = .true. ! must be True for the orbital optimization !!!
TOUCH read_wf
call run_optimization
end
subroutine run_optimization
implicit none
double precision :: e_cipsi, e_opt, delta_e
integer :: nb_iter,i
logical :: not_converged
character (len=100) :: filename
PROVIDE psi_det psi_coef mo_two_e_integrals_in_map
not_converged = .True.
nb_iter = 0
! To start from the wf
N_det_max = max(n_det,5)
TOUCH N_det_max
open(unit=10, file=trim(ezfio_filename)//'/mo_optimization/result_opt')
write(10,*) " Ndet E_cipsi E_opt Delta_e"
call state_average_energy(e_cipsi)
write(10,'(I10, 3F15.7)') n_det, e_cipsi, e_cipsi, 0d0
close(10)
do while (not_converged)
print*,''
print*,'======================'
print*,' Cipsi step:', nb_iter
print*,'======================'
print*,''
print*,'********** cipsi step **********'
! cispi calculation
call run_stochastic_cipsi
! State average energy after the cipsi step
call state_average_energy(e_cipsi)
print*,''
print*,'********** optimization step **********'
! orbital optimization
call run_orb_opt_trust_v2
! State average energy after the orbital optimization
call state_average_energy(e_opt)
print*,''
print*,'********** diff step **********'
! Gain in energy
delta_e = e_opt - e_cipsi
print*, 'Gain in energy during the orbital optimization:', delta_e
open(unit=10, file=trim(ezfio_filename)//'/mo_optimization/result_opt', position='append')
write(10,'(I10, 3F15.7)') n_det, e_cipsi, e_opt, delta_e
close(10)
! Exit
if (delta_e > 1d-12) then
print*, 'WARNING, something wrong happened'
print*, 'The gain (delta_e) in energy during the optimization process'
print*, 'is > 0, but it must be < 0'
print*, 'The program will exit'
exit
endif
if (n_det > n_det_max_opt) then
print*, 'The number of determinants in the wf > n_det_max_opt'
print*, 'The program will exit'
exit
endif
! To double the number of determinants in the wf
N_det_max = int(dble(n_det * 2)*0.9)
TOUCH N_det_max
nb_iter = nb_iter + 1
enddo
end

View File

@ -0,0 +1,22 @@
! Orbital optimization program
! This is an optimization program for molecular orbitals. It produces
! orbital rotations in order to lower the energy of a truncated wave
! function.
! This program just optimize the orbitals for a fixed number of
! determinants. This optimization process must be repeated for different
! number of determinants.
! Main program : orb_opt_trust
program orb_opt
read_wf = .true. ! must be True for the orbital optimization !!!
TOUCH read_wf
io_mo_two_e_integrals = 'None'
TOUCH io_mo_two_e_integrals
call run_orb_opt_trust_v2
end

View File

@ -0,0 +1,7 @@
#!/bin/sh
list='ls *.org'
for element in $list
do
emacs --batch $element -f org-babel-tangle
done

View File

@ -0,0 +1,17 @@
TODO:
** TODO Keep under surveillance the performance of rotation matrix
- is the fix ok ?
** DONE Provider state_average_weight
** DONE Diagonal hessian for orbital optimization with a list of MOs
** DONE Something to force the step cancellation if R.R^T > treshold
** TODO Iterative method to compute the rotation matrix
- doesn't work actually
** DONE Test trust region with polynomial functions
** DONE Optimization/Localization program using the template
** DONE Correction OMP hessian shared/private arrays
** DONE State average energy
** DONE Correction of Rho
** TODO Check the PROVIDE/FREE/TOUCH
** TODO research of lambda without the power 2
** DONE Clean the OMP sections

View File

@ -0,0 +1,79 @@
* Debug the gradient
*Program to check the gradient*
The program compares the result of the first and last code for the
gradient.
Provided:
| mo_num | integer | number of MOs |
Internal:
| n | integer | number of orbitals pairs (p,q) p<q |
| v_grad(n) | double precision | Original gradient |
| v_grad2(n) | double precision | Gradient |
| i | integer | index |
| threshold | double precision | threshold for the errors |
| max_error | double precision | maximal error in the gradient |
| nb_error | integer | number of error in the gradient |
#+BEGIN_SRC f90 :comments org :tangle debug_gradient_list_opt.irp.f
program debug_gradient_list
implicit none
! Variables
double precision, allocatable :: v_grad(:), v_grad2(:)
integer :: n,m
integer :: i
double precision :: threshold
double precision :: max_error, max_elem, norm
integer :: nb_error
m = dim_list_act_orb
! Definition of n
n = m*(m-1)/2
PROVIDE mo_two_e_integrals_in_map ! Vérifier pour suppression
! Allocation
allocate(v_grad(n), v_grad2(n))
! Calculation
call diagonalize_ci ! Vérifier pour suppression
! Gradient
call gradient_list_opt(n,m,list_act,v_grad,max_elem,norm)
call first_gradient_list_opt(n,m,list_act,v_grad2)
v_grad = v_grad - v_grad2
nb_error = 0
max_error = 0d0
threshold = 1d-12
do i = 1, n
if (ABS(v_grad(i)) > threshold) then
print*,i,v_grad(i)
nb_error = nb_error + 1
if (ABS(v_grad(i)) > max_error) then
max_error = v_grad(i)
endif
endif
enddo
print*,''
print*,'Check the gradient'
print*,'Threshold:', threshold
print*,'Nb error:', nb_error
print*,'Max error:', max_error
! Deallocation
deallocate(v_grad,v_grad2)
end program
#+END_SRC

View File

@ -0,0 +1,77 @@
* Debug the gradient
*Program to check the gradient*
The program compares the result of the first and last code for the
gradient.
Provided:
| mo_num | integer | number of MOs |
Internal:
| n | integer | number of orbitals pairs (p,q) p<q |
| v_grad(n) | double precision | Original gradient |
| v_grad2(n) | double precision | Gradient |
| i | integer | index |
| threshold | double precision | threshold for the errors |
| max_error | double precision | maximal error in the gradient |
| nb_error | integer | number of error in the gradient |
#+BEGIN_SRC f90 :comments org :tangle debug_gradient_opt.irp.f
program debug_gradient
implicit none
! Variables
double precision, allocatable :: v_grad(:), v_grad2(:)
integer :: n
integer :: i
double precision :: threshold
double precision :: max_error, max_elem
integer :: nb_error
! Definition of n
n = mo_num*(mo_num-1)/2
PROVIDE mo_two_e_integrals_in_map ! Vérifier pour suppression
! Allocation
allocate(v_grad(n), v_grad2(n))
! Calculation
call diagonalize_ci ! Vérifier pour suppression
! Gradient
call first_gradient_opt(n,v_grad)
call gradient_opt(n,v_grad2,max_elem)
v_grad = v_grad - v_grad2
nb_error = 0
max_error = 0d0
threshold = 1d-12
do i = 1, n
if (ABS(v_grad(i)) > threshold) then
print*,v_grad(i)
nb_error = nb_error + 1
if (ABS(v_grad(i)) > max_error) then
max_error = v_grad(i)
endif
endif
enddo
print*,''
print*,'Check the gradient'
print*,'Threshold :', threshold
print*,'Nb error :', nb_error
print*,'Max error :', max_error
! Deallocation
deallocate(v_grad,v_grad2)
end program
#+END_SRC

View File

@ -0,0 +1,148 @@
* Debug the hessian
*Program to check the hessian matrix*
The program compares the result of the first and last code for the
hessian. First of all the 4D hessian and after the 2D hessian.
Provided:
| mo_num | integer | number of MOs |
| optimization_method | string | Method for the orbital optimization: |
| | | - 'full' -> full hessian |
| | | - 'diag' -> diagonal hessian |
| dim_list_act_orb | integer | number of active MOs |
| list_act(dim_list_act_orb) | integer | list of the actives MOs |
| | | |
Internal:
| m | integer | number of MOs in the list |
| | | (active MOs) |
| n | integer | number of orbitals pairs (p,q) p<q |
| | | n = m*(m-1)/2 |
| H(n,n) | double precision | Original hessian matrix (2D) |
| H2(n,n) | double precision | Hessian matrix (2D) |
| h_f(mo_num,mo_num,mo_num,mo_num) | double precision | Original hessian matrix (4D) |
| h_f2(mo_num,mo_num,mo_num,mo_num) | double precision | Hessian matrix (4D) |
| i,j,p,q,k | integer | indexes |
| threshold | double precision | threshold for the errors |
| max_error | double precision | maximal error in the 4D hessian |
| max_error_H | double precision | maximal error in the 2D hessian |
| nb_error | integer | number of errors in the 4D hessian |
| nb_error_H | integer | number of errors in the 2D hessian |
#+BEGIN_SRC f90 :comments org :tangle debug_hessian_list_opt.irp.f
program debug_hessian_list_opt
implicit none
! Variables
double precision, allocatable :: H(:,:),H2(:,:), h_f(:,:,:,:), h_f2(:,:,:,:)
integer :: n,m
integer :: i,j,k,l
double precision :: max_error, max_error_H
integer :: nb_error, nb_error_H
double precision :: threshold
m = dim_list_act_orb !mo_num
! Definition of n
n = m*(m-1)/2
PROVIDE mo_two_e_integrals_in_map ! Vérifier pour suppression
! Hessian
if (optimization_method == 'full') then
print*,'Use the full hessian matrix'
allocate(H(n,n),H2(n,n))
allocate(h_f(m,m,m,m),h_f2(m,m,m,m))
call hessian_list_opt(n,m,list_act,H,h_f)
call first_hessian_list_opt(n,m,list_act,H2,h_f2)
!call hessian_opt(n,H2,h_f2)
! Difference
h_f = h_f - h_f2
H = H - H2
max_error = 0d0
nb_error = 0
threshold = 1d-12
do l = 1, m
do k= 1, m
do j = 1, m
do i = 1, m
if (ABS(h_f(i,j,k,l)) > threshold) then
print*,h_f(i,j,k,l)
nb_error = nb_error + 1
if (ABS(h_f(i,j,k,l)) > ABS(max_error)) then
max_error = h_f(i,j,k,l)
endif
endif
enddo
enddo
enddo
enddo
max_error_H = 0d0
nb_error_H = 0
do j = 1, n
do i = 1, n
if (ABS(H(i,j)) > threshold) then
print*, H(i,j)
nb_error_H = nb_error_H + 1
if (ABS(H(i,j)) > ABS(max_error_H)) then
max_error_H = H(i,j)
endif
endif
enddo
enddo
! Deallocation
deallocate(H, H2, h_f, h_f2)
else
print*, 'Use the diagonal hessian matrix'
allocate(H(n,1),H2(n,1))
call diag_hessian_list_opt(n,m,list_act,H)
call first_diag_hessian_list_opt(n,m,list_act,H2)
H = H - H2
max_error_H = 0d0
nb_error_H = 0
do i = 1, n
if (ABS(H(i,1)) > threshold) then
print*, H(i,1)
nb_error_H = nb_error_H + 1
if (ABS(H(i,1)) > ABS(max_error_H)) then
max_error_H = H(i,1)
endif
endif
enddo
endif
print*,''
if (optimization_method == 'full') then
print*,'Check of the full hessian'
print*,'Threshold:', threshold
print*,'Nb error:', nb_error
print*,'Max error:', max_error
print*,''
else
print*,'Check of the diagonal hessian'
endif
print*,'Nb error_H:', nb_error_H
print*,'Max error_H:', max_error_H
end program
#+END_SRC

View File

@ -0,0 +1,172 @@
* Debug the hessian
*Program to check the hessian matrix*
The program compares the result of the first and last code for the
hessian. First of all the 4D hessian and after the 2D hessian.
Provided:
| mo_num | integer | number of MOs |
Internal:
| n | integer | number of orbitals pairs (p,q) p<q |
| H(n,n) | double precision | Original hessian matrix (2D) |
| H2(n,n) | double precision | Hessian matrix (2D) |
| h_f(mo_num,mo_num,mo_num,mo_num) | double precision | Original hessian matrix (4D) |
| h_f2(mo_num,mo_num,mo_num,mo_num) | double precision | Hessian matrix (4D) |
| method | integer | - 1: full hessian |
| | | - 2: diagonal hessian |
| i,j,p,q,k | integer | indexes |
| threshold | double precision | threshold for the errors |
| max_error | double precision | maximal error in the 4D hessian |
| max_error_H | double precision | maximal error in the 2D hessian |
| nb_error | integer | number of errors in the 4D hessian |
| nb_error_H | integer | number of errors in the 2D hessian |
#+BEGIN_SRC f90 :comments org :tangle debug_hessian_opt.irp.f
program debug_hessian
implicit none
! Variables
double precision, allocatable :: H(:,:),H2(:,:), h_f(:,:,:,:), h_f2(:,:,:,:)
integer :: n
integer :: i,j,k,l
double precision :: max_error, max_error_H
integer :: nb_error, nb_error_H
double precision :: threshold
! Definition of n
n = mo_num*(mo_num-1)/2
PROVIDE mo_two_e_integrals_in_map ! Vérifier pour suppression
! Allocation
allocate(H(n,n),H2(n,n))
allocate(h_f(mo_num,mo_num,mo_num,mo_num),h_f2(mo_num,mo_num,mo_num,mo_num))
! Calculation
! Hessian
if (optimization_method == 'full') then
print*,'Use the full hessian matrix'
call hessian_opt(n,H,h_f)
call first_hessian_opt(n,H2,h_f2)
! Difference
h_f = h_f - h_f2
H = H - H2
max_error = 0d0
nb_error = 0
threshold = 1d-12
do l = 1, mo_num
do k= 1, mo_num
do j = 1, mo_num
do i = 1, mo_num
if (ABS(h_f(i,j,k,l)) > threshold) then
print*,h_f(i,j,k,l)
nb_error = nb_error + 1
if (ABS(h_f(i,j,k,l)) > ABS(max_error)) then
max_error = h_f(i,j,k,l)
endif
endif
enddo
enddo
enddo
enddo
max_error_H = 0d0
nb_error_H = 0
do j = 1, n
do i = 1, n
if (ABS(H(i,j)) > threshold) then
print*, H(i,j)
nb_error_H = nb_error_H + 1
if (ABS(H(i,j)) > ABS(max_error_H)) then
max_error_H = H(i,j)
endif
endif
enddo
enddo
elseif (optimization_method == 'diag') then
print*, 'Use the diagonal hessian matrix'
call diag_hessian_opt(n,H,h_f)
call first_diag_hessian_opt(n,H2,h_f2)
h_f = h_f - h_f2
max_error = 0d0
nb_error = 0
threshold = 1d-12
do l = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do i = 1, mo_num
if (ABS(h_f(i,j,k,l)) > threshold) then
print*,h_f(i,j,k,l)
nb_error = nb_error + 1
if (ABS(h_f(i,j,k,l)) > ABS(max_error)) then
max_error = h_f(i,j,k,l)
endif
endif
enddo
enddo
enddo
enddo
h=H-H2
max_error_H = 0d0
nb_error_H = 0
do j = 1, n
do i = 1, n
if (ABS(H(i,j)) > threshold) then
print*, H(i,j)
nb_error_H = nb_error_H + 1
if (ABS(H(i,j)) > ABS(max_error_H)) then
max_error_H = H(i,j)
endif
endif
enddo
enddo
else
print*,'Unknown optimization_method, please select full, diag'
call abort
endif
print*,''
if (optimization_method == 'full') then
print*,'Check the full hessian'
else
print*,'Check the diagonal hessian'
endif
print*,'Threshold :', threshold
print*,'Nb error :', nb_error
print*,'Max error :', max_error
print*,''
print*,'Nb error_H :', nb_error_H
print*,'Max error_H :', max_error_H
! Deallocation
deallocate(H,H2,h_f,h_f2)
end program
#+END_SRC

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,138 @@
* Diagonalization of the hessian
Just a matrix diagonalization using Lapack
Input:
| n | integer | mo_num*(mo_num-1)/2 |
| H(n,n) | double precision | hessian |
Output:
| e_val(n) | double precision | eigenvalues of the hessian |
| w(n,n) | double precision | eigenvectors of the hessian |
Internal:
| nb_negative_nv | integer | number of negative eigenvalues |
| lwork | integer | for Lapack |
| work(lwork,n) | double precision | temporary array for Lapack |
| info | integer | if 0 -> ok, else problem in the diagonalization |
| i,j | integer | dummy indexes |
#+BEGIN_SRC f90 :comments org :tangle diagonalization_hessian.irp.f
subroutine diagonalization_hessian(n,H,e_val,w)
include 'constants.h'
implicit none
! Variables
! in
integer, intent(in) :: n
double precision, intent(in) :: H(n,n)
! out
double precision, intent(out) :: e_val(n), w(n,n)
! internal
double precision, allocatable :: work(:,:)
integer, allocatable :: key(:)
integer :: info,lwork
integer :: i,j
integer :: nb_negative_vp
double precision :: t1,t2,t3,max_elem
print*,''
print*,'---Diagonalization_hessian---'
call wall_time(t1)
if (optimization_method == 'full') then
! Allocation
! For Lapack
lwork=3*n-1
allocate(work(lwork,n))
! Calculation
! Copy the hessian matrix, the eigenvectors will be store in W
W=H
! Diagonalization of the hessian
call dsyev('V','U',n,W,size(W,1),e_val,work,lwork,info)
if (info /= 0) then
print*, 'Error diagonalization : diagonalization_hessian'
print*, 'info = ', info
call ABORT
endif
if (debug) then
print *, 'vp Hess:'
write(*,'(100(F10.5))') real(e_val(:))
endif
! Number of negative eigenvalues
max_elem = 0d0
nb_negative_vp = 0
do i = 1, n
if (e_val(i) < 0d0) then
nb_negative_vp = nb_negative_vp + 1
if (e_val(i) < max_elem) then
max_elem = e_val(i)
endif
!print*,'e_val < 0 :', e_val(i)
endif
enddo
print*,'Number of negative eigenvalues:', nb_negative_vp
print*,'Lowest eigenvalue:',max_elem
!nb_negative_vp = 0
!do i = 1, n
! if (e_val(i) < -thresh_eig) then
! nb_negative_vp = nb_negative_vp + 1
! endif
!enddo
!print*,'Number of negative eigenvalues <', -thresh_eig,':', nb_negative_vp
! Deallocation
deallocate(work)
elseif (optimization_method == 'diag') then
! Diagonalization of the diagonal hessian by hands
allocate(key(n))
do i = 1, n
e_val(i) = H(i,i)
enddo
! Key list for dsort
do i = 1, n
key(i) = i
enddo
! Sort of the eigenvalues
call dsort(e_val, key, n)
! Eigenvectors
W = 0d0
do i = 1, n
j = key(i)
W(j,i) = 1d0
enddo
deallocate(key)
else
print*,'Diagonalization_hessian, abort'
call abort
endif
call wall_time(t2)
t3 = t2 - t1
print*,'Time in diagonalization_hessian:', t3
print*,'---End diagonalization_hessian---'
end subroutine
#+END_SRC

View File

@ -0,0 +1,376 @@
* First diagonal hessian
#+BEGIN_SRC f90 :comments :tangle first_diagonal_hessian_list_opt.irp.f
subroutine first_diag_hessian_list_opt(tmp_n,m,list,H)!, h_tmpr)
include 'constants.h'
implicit none
!===========================================================================
! Compute the diagonal hessian of energy with respects to orbital rotations
!===========================================================================
!===========
! Variables
!===========
! in
integer, intent(in) :: tmp_n, m, list(m)
! tmp_n : integer, tmp_n = m*(m-1)/2
! out
double precision, intent(out) :: H(tmp_n)!, h_tmpr(m,m,m,m)
! H : n by n double precision matrix containing the 2D hessian
! internal
double precision, allocatable :: hessian(:,:,:,:), tmp(:,:),h_tmpr(:,:,:,:)
integer :: p,q, tmp_p,tmp_q
integer :: r,s,t,u,v,tmp_r,tmp_s,tmp_t,tmp_u,tmp_v
integer :: pq,rs,tmp_pq,tmp_rs
double precision :: t1,t2,t3
! hessian : mo_num 4D double precision matrix containing the hessian before the permutations
! h_tmpr : mo_num 4D double precision matrix containing the hessian after the permutations
! p,q,r,s : integer, indexes of the 4D hessian matrix
! t,u,v : integer, indexes to compute hessian elements
! pq,rs : integer, indexes for the conversion from 4D to 2D hessian matrix
! t1,t2,t3 : double precision, t3 = t2 - t1, time to compute the hessian
! Function
double precision :: get_two_e_integral
! get_two_e_integral : double precision function, two e integrals
! Provided :
! mo_one_e_integrals : mono e- integrals
! get_two_e_integral : two e- integrals
! one_e_dm_mo_alpha, one_e_dm_mo_beta : one body density matrix
! two_e_dm_mo : two body density matrix
print*,'---first_diag_hess_list---'
!============
! Allocation
!============
allocate(hessian(m,m,m,m),tmp(tmp_n,tmp_n),h_tmpr(mo_num,mo_num,mo_num,mo_num))
!=============
! Calculation
!=============
! From Anderson et. al. (2014)
! The Journal of Chemical Physics 141, 244104 (2014); doi: 10.1063/1.4904384
! LaTeX formula :
!\begin{align*}
!H_{pq,rs} &= \dfrac{\partial^2 E(x)}{\partial x_{pq}^2} \\
!&= \mathcal{P}_{pq} \mathcal{P}_{rs} [ \frac{1}{2} \sum_u [\delta_{qr}(h_p^u \gamma_u^s + h_u^s \gamma_p^u)
!+ \delta_{ps}(h_r^u \gamma_u^q + h_u^q \gamma_u^r)]
!-(h_p^s \gamma_r^q + h_r^q \gamma_p^s) \\
!&+ \frac{1}{2} \sum_{tuv} [\delta_{qr}(v_{pt}^{uv} \Gamma_{uv}^{st} +v_{uv}^{st} \Gamma_{pt}^{uv})
!+ \delta_{ps}(v_{uv}^{qt} \Gamma_{rt}^{uv} + v_{rt}^{uv}\Gamma_{uv}^{qt})] \\
!&+ \sum_{uv} (v_{pr}^{uv} \Gamma_{uv}^{qs} + v_{uv}^{qs} \Gamma_{ps}^{uv}) \\
!&- \sum_{tu} (v_{pu}^{st} \Gamma_{rt}^{qu}+v_{pu}^{tr} \Gamma_{tr}^{qu}+v_{rt}^{qu}\Gamma_{pu}^{st} + v_{tr}^{qu}\Gamma_{pu}^{ts})
!\end{align*}
!================
! Initialization
!================
hessian = 0d0
CALL wall_time(t1)
!========================
! First line, first term
!========================
do tmp_p = 1, m
p = list(tmp_p)
do tmp_q = 1, m
q = list(tmp_q)
do tmp_r = 1, m
r = list(tmp_r)
do tmp_s = 1, m
s = list(tmp_s)
! Permutations
if (((p==r) .and. (q==s)) .or. ((q==r) .and. (p==s)) &
.or. ((p==s) .and. (q==r))) then
if (q==r) then
do u = 1, mo_num
hessian(tmp_p,tmp_q,tmp_r,tmp_s) = hessian(tmp_p,tmp_q,tmp_r,tmp_s) + 0.5d0 * ( &
mo_one_e_integrals(u,p) * one_e_dm_mo(u,s) &
+ mo_one_e_integrals(s,u) * one_e_dm_mo(p,u))
enddo
endif
endif
enddo
enddo
enddo
enddo
!=========================
! First line, second term
!=========================
do tmp_p = 1, m
p = list(tmp_p)
do tmp_q = 1, m
q = list(tmp_q)
do tmp_r = 1, m
r = list(tmp_r)
do tmp_s = 1, m
s = list(tmp_s)
! Permutations
if (((p==r) .and. (q==s)) .or. ((q==r) .and. (p==s)) &
.or. ((p==s) .and. (q==r))) then
if (p==s) then
do u = 1, mo_num
hessian(tmp_p,tmp_q,tmp_r,tmp_s) = hessian(tmp_p,tmp_q,tmp_r,tmp_s) + 0.5d0 * ( &
mo_one_e_integrals(u,r) * one_e_dm_mo(u,q) &
+ mo_one_e_integrals(q,u) * one_e_dm_mo(r,u))
enddo
endif
endif
enddo
enddo
enddo
enddo
!========================
! First line, third term
!========================
do tmp_p = 1, m
p = list(tmp_p)
do tmp_q = 1, m
q = list(tmp_q)
do tmp_r = 1, m
r = list(tmp_r)
do tmp_s = 1, m
s = list(tmp_s)
! Permutations
if (((p==r) .and. (q==s)) .or. ((q==r) .and. (p==s)) &
.or. ((p==s) .and. (q==r))) then
hessian(tmp_p,tmp_q,tmp_r,tmp_s) = hessian(tmp_p,tmp_q,tmp_r,tmp_s) &
- mo_one_e_integrals(s,p) * one_e_dm_mo(r,q) &
- mo_one_e_integrals(q,r) * one_e_dm_mo(p,s)
endif
enddo
enddo
enddo
enddo
!=========================
! Second line, first term
!=========================
do tmp_p = 1, m
p = list(tmp_p)
do tmp_q = 1, m
q = list(tmp_q)
do tmp_r = 1, m
r = list(tmp_r)
do tmp_s = 1, m
s = list(tmp_s)
! Permutations
if (((p==r) .and. (q==s)) .or. ((q==r) .and. (p==s)) &
.or. ((p==s) .and. (q==r))) then
if (q==r) then
do t = 1, mo_num
do u = 1, mo_num
do v = 1, mo_num
hessian(tmp_p,tmp_q,tmp_r,tmp_s) = hessian(tmp_p,tmp_q,tmp_r,tmp_s) + 0.5d0 * ( &
get_two_e_integral(u,v,p,t,mo_integrals_map) * two_e_dm_mo(u,v,s,t) &
+ get_two_e_integral(s,t,u,v,mo_integrals_map) * two_e_dm_mo(p,t,u,v))
enddo
enddo
enddo
endif
endif
enddo
enddo
enddo
enddo
!==========================
! Second line, second term
!==========================
do tmp_p = 1, m
p = list(tmp_p)
do tmp_q = 1, m
q = list(tmp_q)
do tmp_r = 1, m
r = list(tmp_r)
do tmp_s = 1, m
s = list(tmp_s)
! Permutations
if (((p==r) .and. (q==s)) .or. ((q==r) .and. (p==s)) &
.or. ((p==s) .and. (q==r))) then
if (p==s) then
do t = 1, mo_num
do u = 1, mo_num
do v = 1, mo_num
hessian(tmp_p,tmp_q,tmp_r,tmp_s) = hessian(tmp_p,tmp_q,tmp_r,tmp_s) + 0.5d0 * ( &
get_two_e_integral(q,t,u,v,mo_integrals_map) * two_e_dm_mo(r,t,u,v) &
+ get_two_e_integral(u,v,r,t,mo_integrals_map) * two_e_dm_mo(u,v,q,t))
enddo
enddo
enddo
endif
endif
enddo
enddo
enddo
enddo
!========================
! Third line, first term
!========================
do tmp_p = 1, m
p = list(tmp_p)
do tmp_q = 1, m
q = list(tmp_q)
do tmp_r = 1, m
r = list(tmp_r)
do tmp_s = 1, m
s = list(tmp_s)
! Permutations
if (((p==r) .and. (q==s)) .or. ((q==r) .and. (p==s)) &
.or. ((p==s) .and. (q==r))) then
do u = 1, mo_num
do v = 1, mo_num
hessian(tmp_p,tmp_q,tmp_r,tmp_s) = hessian(tmp_p,tmp_q,tmp_r,tmp_s) &
+ get_two_e_integral(u,v,p,r,mo_integrals_map) * two_e_dm_mo(u,v,q,s) &
+ get_two_e_integral(q,s,u,v,mo_integrals_map) * two_e_dm_mo(p,r,u,v)
enddo
enddo
endif
enddo
enddo
enddo
enddo
!=========================
! Third line, second term
!=========================
do tmp_p = 1, m
p = list(tmp_p)
do tmp_q = 1, m
q = list(tmp_q)
do tmp_r = 1, m
r = list(tmp_r)
do tmp_s = 1, m
s = list(tmp_s)
! Permutations
if (((p==r) .and. (q==s)) .or. ((q==r) .and. (p==s)) &
.or. ((p==s) .and. (q==r))) then
do t = 1, mo_num
do u = 1, mo_num
hessian(tmp_p,tmp_q,tmp_r,tmp_s) = hessian(tmp_p,tmp_q,tmp_r,tmp_s) &
- get_two_e_integral(s,t,p,u,mo_integrals_map) * two_e_dm_mo(r,t,q,u) &
- get_two_e_integral(t,s,p,u,mo_integrals_map) * two_e_dm_mo(t,r,q,u) &
- get_two_e_integral(q,u,r,t,mo_integrals_map) * two_e_dm_mo(p,u,s,t) &
- get_two_e_integral(q,u,t,r,mo_integrals_map) * two_e_dm_mo(p,u,t,s)
enddo
enddo
endif
enddo
enddo
enddo
enddo
CALL wall_time(t2)
t2 = t2 - t1
print*, 'Time to compute the hessian :', t2
!==============
! Permutations
!==============
! Convert the hessian mo_num * mo_num * mo_num * mo_num matrix in a
! 2D n * n matrix (n = mo_num*(mo_num-1)/2)
! H(pq,rs) : p<q and r<s
do tmp_r = 1, m
do tmp_s = 1, m
do tmp_q = 1, m
do tmp_p = 1, m
h_tmpr(tmp_p,tmp_q,tmp_r,tmp_s) = hessian(tmp_p,tmp_q,tmp_r,tmp_s) - hessian(tmp_q,tmp_p,tmp_r,tmp_s) &
- hessian(tmp_p,tmp_q,tmp_s,tmp_r) + hessian(tmp_q,tmp_p,tmp_s,tmp_r)
enddo
enddo
enddo
enddo
!========================
! 4D matrix -> 2D matrix
!========================
! Convert the hessian mo_num * mo_num * mo_num * mo_num matrix in a
! 2D n * n matrix (n = mo_num*(mo_num-1)/2)
! H(pq,rs) : p<q and r<s
! 4D mo_num matrix to 2D n matrix
do tmp_rs = 1, tmp_n
call vec_to_mat_index(tmp_rs,tmp_r,tmp_s)
do tmp_pq = 1, tmp_n
call vec_to_mat_index(tmp_pq,tmp_p,tmp_q)
tmp(tmp_pq,tmp_rs) = h_tmpr(tmp_p,tmp_q,tmp_r,tmp_s)
enddo
enddo
do p = 1, tmp_n
H(p) = tmp(p,p)
enddo
! Display
if (debug) then
print*,'2D diag Hessian matrix'
do tmp_pq = 1, tmp_n
write(*,'(100(F10.5))') tmp(tmp_pq,:)
enddo
endif
!==============
! Deallocation
!==============
deallocate(hessian,h_tmpr,tmp)
print*,'---End first_diag_hess_list---'
end subroutine
#+END_SRC

View File

@ -0,0 +1,348 @@
* First diagonal hessian
#+BEGIN_SRC f90 :comments :tangle first_diagonal_hessian_opt.irp.f
subroutine first_diag_hessian_opt(n,H, h_tmpr)
include 'constants.h'
implicit none
!===========================================================================
! Compute the diagonal hessian of energy with respects to orbital rotations
!===========================================================================
!===========
! Variables
!===========
! in
integer, intent(in) :: n
! n : integer, n = mo_num*(mo_num-1)/2
! out
double precision, intent(out) :: H(n,n), h_tmpr(mo_num,mo_num,mo_num,mo_num)
! H : n by n double precision matrix containing the 2D hessian
! internal
double precision, allocatable :: hessian(:,:,:,:)
integer :: p,q
integer :: r,s,t,u,v
integer :: pq,rs
double precision :: t1,t2,t3
! hessian : mo_num 4D double precision matrix containing the hessian before the permutations
! h_tmpr : mo_num 4D double precision matrix containing the hessian after the permutations
! p,q,r,s : integer, indexes of the 4D hessian matrix
! t,u,v : integer, indexes to compute hessian elements
! pq,rs : integer, indexes for the conversion from 4D to 2D hessian matrix
! t1,t2,t3 : double precision, t3 = t2 - t1, time to compute the hessian
! Function
double precision :: get_two_e_integral
! get_two_e_integral : double precision function, two e integrals
! Provided :
! mo_one_e_integrals : mono e- integrals
! get_two_e_integral : two e- integrals
! one_e_dm_mo_alpha, one_e_dm_mo_beta : one body density matrix
! two_e_dm_mo : two body density matrix
!============
! Allocation
!============
allocate(hessian(mo_num,mo_num,mo_num,mo_num))!,h_tmpr(mo_num,mo_num,mo_num,mo_num))
!=============
! Calculation
!=============
if (debug) then
print*,'Enter in first_diag_hessien'
endif
! From Anderson et. al. (2014)
! The Journal of Chemical Physics 141, 244104 (2014); doi: 10.1063/1.4904384
! LaTeX formula :
!\begin{align*}
!H_{pq,rs} &= \dfrac{\partial^2 E(x)}{\partial x_{pq}^2} \\
!&= \mathcal{P}_{pq} \mathcal{P}_{rs} [ \frac{1}{2} \sum_u [\delta_{qr}(h_p^u \gamma_u^s + h_u^s \gamma_p^u)
!+ \delta_{ps}(h_r^u \gamma_u^q + h_u^q \gamma_u^r)]
!-(h_p^s \gamma_r^q + h_r^q \gamma_p^s) \\
!&+ \frac{1}{2} \sum_{tuv} [\delta_{qr}(v_{pt}^{uv} \Gamma_{uv}^{st} +v_{uv}^{st} \Gamma_{pt}^{uv})
!+ \delta_{ps}(v_{uv}^{qt} \Gamma_{rt}^{uv} + v_{rt}^{uv}\Gamma_{uv}^{qt})] \\
!&+ \sum_{uv} (v_{pr}^{uv} \Gamma_{uv}^{qs} + v_{uv}^{qs} \Gamma_{ps}^{uv}) \\
!&- \sum_{tu} (v_{pu}^{st} \Gamma_{rt}^{qu}+v_{pu}^{tr} \Gamma_{tr}^{qu}+v_{rt}^{qu}\Gamma_{pu}^{st} + v_{tr}^{qu}\Gamma_{pu}^{ts})
!\end{align*}
!================
! Initialization
!================
hessian = 0d0
CALL wall_time(t1)
!========================
! First line, first term
!========================
do p = 1, mo_num
do q = 1, mo_num
do r = 1, mo_num
do s = 1, mo_num
! Permutations
if (((p==r) .and. (q==s)) .or. ((q==r) .and. (p==s)) &
.or. ((p==s) .and. (q==r))) then
if (q==r) then
do u = 1, mo_num
hessian(p,q,r,s) = hessian(p,q,r,s) + 0.5d0 * ( &
mo_one_e_integrals(u,p) * one_e_dm_mo(u,s) &
+ mo_one_e_integrals(s,u) * one_e_dm_mo(p,u))
enddo
endif
endif
enddo
enddo
enddo
enddo
!=========================
! First line, second term
!=========================
do p = 1, mo_num
do q = 1, mo_num
do r = 1, mo_num
do s = 1, mo_num
! Permutations
if (((p==r) .and. (q==s)) .or. ((q==r) .and. (p==s)) &
.or. ((p==s) .and. (q==r))) then
if (p==s) then
do u = 1, mo_num
hessian(p,q,r,s) = hessian(p,q,r,s) + 0.5d0 * ( &
mo_one_e_integrals(u,r) * one_e_dm_mo(u,q) &
+ mo_one_e_integrals(q,u) * one_e_dm_mo(r,u))
enddo
endif
endif
enddo
enddo
enddo
enddo
!========================
! First line, third term
!========================
do p = 1, mo_num
do q = 1, mo_num
do r = 1, mo_num
do s = 1, mo_num
! Permutations
if (((p==r) .and. (q==s)) .or. ((q==r) .and. (p==s)) &
.or. ((p==s) .and. (q==r))) then
hessian(p,q,r,s) = hessian(p,q,r,s) &
- mo_one_e_integrals(s,p) * one_e_dm_mo(r,q) &
- mo_one_e_integrals(q,r) * one_e_dm_mo(p,s)
endif
enddo
enddo
enddo
enddo
!=========================
! Second line, first term
!=========================
do p = 1, mo_num
do q = 1, mo_num
do r = 1, mo_num
do s = 1, mo_num
! Permutations
if (((p==r) .and. (q==s)) .or. ((q==r) .and. (p==s)) &
.or. ((p==s) .and. (q==r))) then
if (q==r) then
do t = 1, mo_num
do u = 1, mo_num
do v = 1, mo_num
hessian(p,q,r,s) = hessian(p,q,r,s) + 0.5d0 * ( &
get_two_e_integral(u,v,p,t,mo_integrals_map) * two_e_dm_mo(u,v,s,t) &
+ get_two_e_integral(s,t,u,v,mo_integrals_map) * two_e_dm_mo(p,t,u,v))
enddo
enddo
enddo
endif
endif
enddo
enddo
enddo
enddo
!==========================
! Second line, second term
!==========================
do p = 1, mo_num
do q = 1, mo_num
do r = 1, mo_num
do s = 1, mo_num
! Permutations
if (((p==r) .and. (q==s)) .or. ((q==r) .and. (p==s)) &
.or. ((p==s) .and. (q==r))) then
if (p==s) then
do t = 1, mo_num
do u = 1, mo_num
do v = 1, mo_num
hessian(p,q,r,s) = hessian(p,q,r,s) + 0.5d0 * ( &
get_two_e_integral(q,t,u,v,mo_integrals_map) * two_e_dm_mo(r,t,u,v) &
+ get_two_e_integral(u,v,r,t,mo_integrals_map) * two_e_dm_mo(u,v,q,t))
enddo
enddo
enddo
endif
endif
enddo
enddo
enddo
enddo
!========================
! Third line, first term
!========================
do p = 1, mo_num
do q = 1, mo_num
do r = 1, mo_num
do s = 1, mo_num
! Permutations
if (((p==r) .and. (q==s)) .or. ((q==r) .and. (p==s)) &
.or. ((p==s) .and. (q==r))) then
do u = 1, mo_num
do v = 1, mo_num
hessian(p,q,r,s) = hessian(p,q,r,s) &
+ get_two_e_integral(u,v,p,r,mo_integrals_map) * two_e_dm_mo(u,v,q,s) &
+ get_two_e_integral(q,s,u,v,mo_integrals_map) * two_e_dm_mo(p,r,u,v)
enddo
enddo
endif
enddo
enddo
enddo
enddo
!=========================
! Third line, second term
!=========================
do p = 1, mo_num
do q = 1, mo_num
do r = 1, mo_num
do s = 1, mo_num
! Permutations
if (((p==r) .and. (q==s)) .or. ((q==r) .and. (p==s)) &
.or. ((p==s) .and. (q==r))) then
do t = 1, mo_num
do u = 1, mo_num
hessian(p,q,r,s) = hessian(p,q,r,s) &
- get_two_e_integral(s,t,p,u,mo_integrals_map) * two_e_dm_mo(r,t,q,u) &
- get_two_e_integral(t,s,p,u,mo_integrals_map) * two_e_dm_mo(t,r,q,u) &
- get_two_e_integral(q,u,r,t,mo_integrals_map) * two_e_dm_mo(p,u,s,t) &
- get_two_e_integral(q,u,t,r,mo_integrals_map) * two_e_dm_mo(p,u,t,s)
enddo
enddo
endif
enddo
enddo
enddo
enddo
CALL wall_time(t2)
t2 = t2 - t1
print*, 'Time to compute the hessian :', t2
!==============
! Permutations
!==============
! Convert the hessian mo_num * mo_num * mo_num * mo_num matrix in a
! 2D n * n matrix (n = mo_num*(mo_num-1)/2)
! H(pq,rs) : p<q and r<s
do r = 1, mo_num
do s = 1, mo_num
do q = 1, mo_num
do p = 1, mo_num
h_tmpr(p,q,r,s) = (hessian(p,q,r,s) - hessian(q,p,r,s) - hessian(p,q,s,r) + hessian(q,p,s,r))
enddo
enddo
enddo
enddo
!========================
! 4D matrix -> 2D matrix
!========================
! Convert the hessian mo_num * mo_num * mo_num * mo_num matrix in a
! 2D n * n matrix (n = mo_num*(mo_num-1)/2)
! H(pq,rs) : p<q and r<s
! 4D mo_num matrix to 2D n matrix
do rs = 1, n
call vec_to_mat_index(rs,r,s)
do pq = 1, n
call vec_to_mat_index(pq,p,q)
H(pq,rs) = h_tmpr(p,q,r,s)
enddo
enddo
! Display
if (debug) then
print*,'2D diag Hessian matrix'
do pq = 1, n
write(*,'(100(F10.5))') H(pq,:)
enddo
endif
!==============
! Deallocation
!==============
deallocate(hessian)
if (debug) then
print*,'Leave first_diag_hessien'
endif
end subroutine
#+END_SRC

View File

@ -0,0 +1,127 @@
* First gradient
#+BEGIN_SRC f90 :comments org :tangle first_gradient_list_opt.irp.f
subroutine first_gradient_list_opt(tmp_n,m,list,v_grad)
include 'constants.h'
implicit none
!===================================================================
! Compute the gradient of energy with respects to orbital rotations
!===================================================================
! Check if read_wf = true, else :
! qp set determinant read_wf true
! in
integer, intent(in) :: tmp_n,m,list(m)
! n : integer, n = m*(m-1)/2
! m = list_size
! out
double precision, intent(out) :: v_grad(tmp_n)
! v_grad : double precision vector of length n containeing the gradient
! internal
double precision, allocatable :: grad(:,:),A(:,:)
double precision :: norm
integer :: i,p,q,r,s,t,tmp_i,tmp_p,tmp_q,tmp_r,tmp_s,tmp_t
! grad : double precision matrix containing the gradient before the permutation
! A : double precision matrix containing the gradient after the permutation
! norm : double precision number, the norm of the vector gradient
! i,p,q,r,s,t : integer, indexes
! istate : integer, the electronic state
! Function
double precision :: get_two_e_integral, norm2
! get_two_e_integral : double precision function that gives the two e integrals
! norm2 : double precision function that gives the norm of a vector
! Provided :
! mo_one_e_integrals : mono e- integrals
! get_two_e_integral : two e- integrals
! one_e_dm_mo : one body density matrix (state average)
! two_e_dm_mo : two body density matrix (state average)
print*,'---first_gradient_list---'
!============
! Allocation
!============
allocate(grad(m,m),A(m,m))
!=============
! Calculation
!=============
v_grad = 0d0
grad = 0d0
do tmp_p = 1, m
p = list(tmp_p)
do tmp_q = 1, m
q = list(tmp_q)
!grad(tmp_p,tmp_q) = 0d0
do r = 1, mo_num
grad(tmp_p,tmp_q) = grad(tmp_p,tmp_q) + mo_one_e_integrals(p,r) * one_e_dm_mo(r,q) &
- mo_one_e_integrals(r,q) * one_e_dm_mo(p,r)
enddo
do r = 1, mo_num
do s = 1, mo_num
do t = 1, mo_num
grad(tmp_p,tmp_q) = grad(tmp_p,tmp_q) &
+ get_two_e_integral(p,t,r,s,mo_integrals_map) * two_e_dm_mo(r,s,q,t) &
- get_two_e_integral(r,s,q,t,mo_integrals_map) * two_e_dm_mo(p,t,r,s)
enddo
enddo
enddo
enddo
enddo
! Conversion mo_num*mo_num matrix to mo_num(mo_num-1)/2 vector
do tmp_i = 1, tmp_n
call vec_to_mat_index(tmp_i,tmp_p,tmp_q)
v_grad(tmp_i)=(grad(tmp_p,tmp_q) - grad(tmp_q,tmp_p))
enddo
! Display, vector containing the gradient elements
if (debug) then
print*,'Vector containing the gradient :'
write(*,'(100(F10.5))') v_grad(1:tmp_n)
endif
! Norm of the vector
norm = norm2(v_grad)
print*, 'Norm : ', norm
! Matrix gradient
A = 0d0
do tmp_q = 1, m
do tmp_p = 1, m
A(tmp_p,tmp_q) = grad(tmp_p,tmp_q) - grad(tmp_q,tmp_p)
enddo
enddo
! Display, matrix containting the gradient elements
if (debug) then
print*,'Matrix containing the gradient :'
do tmp_i = 1, m
write(*,'(100(E12.5))') A(tmp_i,1:m)
enddo
endif
!==============
! Deallocation
!==============
deallocate(grad,A)
print*,'---End first_gradient_list---'
end subroutine
#+END_SRC

View File

@ -0,0 +1,130 @@
* First gradient
#+BEGIN_SRC f90 :comments org :tangle first_gradient_opt.irp.f
subroutine first_gradient_opt(n,v_grad)
include 'constants.h'
implicit none
!===================================================================
! Compute the gradient of energy with respects to orbital rotations
!===================================================================
! Check if read_wf = true, else :
! qp set determinant read_wf true
END_DOC
! in
integer, intent(in) :: n
! n : integer, n = mo_num*(mo_num-1)/2
! out
double precision, intent(out) :: v_grad(n)
! v_grad : double precision vector of length n containeing the gradient
! internal
double precision, allocatable :: grad(:,:),A(:,:)
double precision :: norm
integer :: i,p,q,r,s,t
integer :: istate
! grad : double precision matrix containing the gradient before the permutation
! A : double precision matrix containing the gradient after the permutation
! norm : double precision number, the norm of the vector gradient
! i,p,q,r,s,t : integer, indexes
! istate : integer, the electronic state
! Function
double precision :: get_two_e_integral, norm2
! get_two_e_integral : double precision function that gives the two e integrals
! norm2 : double precision function that gives the norm of a vector
! Provided :
! mo_one_e_integrals : mono e- integrals
! get_two_e_integral : two e- integrals
! one_e_dm_mo : one body density matrix (state average)
! two_e_dm_mo : two body density matrix (state average)
!============
! Allocation
!============
allocate(grad(mo_num,mo_num),A(mo_num,mo_num))
!=============
! Calculation
!=============
if (debug) then
print*,'---first_gradient---'
endif
v_grad = 0d0
do p = 1, mo_num
do q = 1, mo_num
grad(p,q) = 0d0
do r = 1, mo_num
grad(p,q) = grad(p,q) + mo_one_e_integrals(p,r) * one_e_dm_mo(r,q) &
- mo_one_e_integrals(r,q) * one_e_dm_mo(p,r)
enddo
do r = 1, mo_num
do s = 1, mo_num
do t= 1, mo_num
grad(p,q) = grad(p,q) &
+ get_two_e_integral(p,t,r,s,mo_integrals_map) * two_e_dm_mo(r,s,q,t) &
- get_two_e_integral(r,s,q,t,mo_integrals_map) * two_e_dm_mo(p,t,r,s)
enddo
enddo
enddo
enddo
enddo
! Conversion mo_num*mo_num matrix to mo_num(mo_num-1)/2 vector
do i=1,n
call vec_to_mat_index(i,p,q)
v_grad(i)=(grad(p,q) - grad(q,p))
enddo
! Display, vector containing the gradient elements
if (debug) then
print*,'Vector containing the gradient :'
write(*,'(100(F10.5))') v_grad(1:n)
endif
! Norm of the vector
norm = norm2(v_grad)
print*, 'Norm : ', norm
! Matrix gradient
A = 0d0
do q=1,mo_num
do p=1,mo_num
A(p,q) = grad(p,q) - grad(q,p)
enddo
enddo
! Display, matrix containting the gradient elements
if (debug) then
print*,'Matrix containing the gradient :'
do i = 1, mo_num
write(*,'(100(E12.5))') A(i,1:mo_num)
enddo
endif
!==============
! Deallocation
!==============
deallocate(grad,A)
if (debug) then
print*,'---End first_gradient---'
endif
end subroutine
#+END_SRC

View File

@ -0,0 +1,370 @@
* First hessian
#+BEGIN_SRC f90 :comments :tangle first_hessian_list_opt.irp.f
subroutine first_hessian_list_opt(tmp_n,m,list,H,h_tmpr)
include 'constants.h'
implicit none
!==================================================================
! Compute the hessian of energy with respects to orbital rotations
!==================================================================
!===========
! Variables
!===========
! in
integer, intent(in) :: tmp_n, m, list(m)
!tmp_n : integer, tmp_n = m*(m-1)/2
! out
double precision, intent(out) :: H(tmp_n,tmp_n),h_tmpr(m,m,m,m)
! H : n by n double precision matrix containing the 2D hessian
! internal
double precision, allocatable :: hessian(:,:,:,:)
integer :: p,q, tmp_p,tmp_q
integer :: r,s,t,u,v,tmp_r,tmp_s,tmp_t,tmp_u,tmp_v
integer :: pq,rs,tmp_pq,tmp_rs
double precision :: t1,t2,t3,t4,t5,t6
! hessian : mo_num 4D double precision matrix containing the hessian before the permutations
! h_tmpr : mo_num 4D double precision matrix containing the hessian after the permutations
! p,q,r,s : integer, indexes of the 4D hessian matrix
! t,u,v : integer, indexes to compute hessian elements
! pq,rs : integer, indexes for the conversion from 4D to 2D hessian matrix
! t1,t2,t3 : double precision, t3 = t2 - t1, time to compute the hessian
! Funtion
double precision :: get_two_e_integral
! get_two_e_integral : double precision function, two e integrals
! Provided :
! mo_one_e_integrals : mono e- integrals
! get_two_e_integral : two e- integrals
! one_e_dm_mo_alpha, one_e_dm_mo_beta : one body density matrix
! two_e_dm_mo : two body density matrix
!============
! Allocation
!============
allocate(hessian(m,m,m,m))
!=============
! Calculation
!=============
print*,'---first_hess_list---'
! From Anderson et. al. (2014)
! The Journal of Chemical Physics 141, 244104 (2014); doi: 10.1063/1.4904384
CALL wall_time(t1)
! Initialization
hessian = 0d0
!========================
! First line, first term
!========================
CALL wall_time(t4)
do tmp_p = 1, m
p = list(tmp_p)
do tmp_q = 1, m
q = list(tmp_q)
do tmp_r = 1, m
r = list(tmp_r)
do tmp_s = 1, m
s = list(tmp_s)
if (q==r) then
do u = 1, mo_num
hessian(tmp_p,tmp_q,tmp_r,tmp_s) = hessian(tmp_p,tmp_q,tmp_r,tmp_s) + 0.5d0 * ( &
mo_one_e_integrals(u,p) * one_e_dm_mo(u,s) &
+ mo_one_e_integrals(s,u) * one_e_dm_mo(p,u))
enddo
endif
enddo
enddo
enddo
enddo
CALL wall_time(t5)
t6 = t5-t4
print*,'l1 1 :', t6
!=========================
! First line, second term
!=========================
CALL wall_time(t4)
do tmp_p = 1, m
p = list(tmp_p)
do tmp_q = 1, m
q = list(tmp_q)
do tmp_r = 1, m
r = list(tmp_r)
do tmp_s = 1, m
s = list(tmp_s)
if (p==s) then
do u = 1, mo_num
hessian(tmp_p,tmp_q,tmp_r,tmp_s) = hessian(tmp_p,tmp_q,tmp_r,tmp_s) + 0.5d0 * ( &
mo_one_e_integrals(u,r) * one_e_dm_mo(u,q) &
+ mo_one_e_integrals(q,u) * one_e_dm_mo(r,u))
enddo
endif
enddo
enddo
enddo
enddo
CALL wall_time(t5)
t6 = t5-t4
print*,'l1 2 :', t6
!========================
! First line, third term
!========================
CALL wall_time(t4)
do tmp_p = 1, m
p = list(tmp_p)
do tmp_q = 1, m
q = list(tmp_q)
do tmp_r = 1, m
r = list(tmp_r)
do tmp_s = 1, m
s = list(tmp_s)
hessian(tmp_p,tmp_q,tmp_r,tmp_s) = hessian(tmp_p,tmp_q,tmp_r,tmp_s) &
- mo_one_e_integrals(s,p) * one_e_dm_mo(r,q)&
- mo_one_e_integrals(q,r) * one_e_dm_mo(p,s)
enddo
enddo
enddo
enddo
CALL wall_time(t5)
t6 = t5-t4
print*,'l1 3 :', t6
!=========================
! Second line, first term
!=========================
CALL wall_time(t4)
do tmp_p = 1, m
p = list(tmp_p)
do tmp_q = 1, m
q = list(tmp_q)
do tmp_r = 1, m
r = list(tmp_r)
do tmp_s = 1, m
s = list(tmp_s)
if (q==r) then
do t = 1, mo_num
do u = 1, mo_num
do v = 1, mo_num
hessian(tmp_p,tmp_q,tmp_r,tmp_s) = hessian(tmp_p,tmp_q,tmp_r,tmp_s) + 0.5d0 * ( &
get_two_e_integral(u,v,p,t,mo_integrals_map) * two_e_dm_mo(u,v,s,t) &
+ get_two_e_integral(s,t,u,v,mo_integrals_map) * two_e_dm_mo(p,t,u,v))
enddo
enddo
enddo
endif
enddo
enddo
enddo
enddo
CALL wall_time(t5)
t6 = t5-t4
print*,'l2 1 :', t6
!==========================
! Second line, second term
!==========================
CALL wall_time(t4)
do tmp_p = 1, m
p = list(tmp_p)
do tmp_q = 1, m
q = list(tmp_q)
do tmp_r = 1, m
r = list(tmp_r)
do tmp_s = 1, m
s = list(tmp_s)
if (p==s) then
do t = 1, mo_num
do u = 1, mo_num
do v = 1, mo_num
hessian(tmp_p,tmp_q,tmp_r,tmp_s) = hessian(tmp_p,tmp_q,tmp_r,tmp_s) + 0.5d0 * ( &
get_two_e_integral(q,t,u,v,mo_integrals_map) * two_e_dm_mo(r,t,u,v) &
+ get_two_e_integral(u,v,r,t,mo_integrals_map) * two_e_dm_mo(u,v,q,t))
enddo
enddo
enddo
endif
enddo
enddo
enddo
enddo
CALL wall_time(t5)
t6 = t5-t4
print*,'l2 2 :', t6
!========================
! Third line, first term
!========================
CALL wall_time(t4)
do tmp_p = 1, m
p = list(tmp_p)
do tmp_q = 1, m
q = list(tmp_q)
do tmp_r = 1, m
r = list(tmp_r)
do tmp_s = 1, m
s = list(tmp_s)
do u = 1, mo_num
do v = 1, mo_num
hessian(tmp_p,tmp_q,tmp_r,tmp_s) = hessian(tmp_p,tmp_q,tmp_r,tmp_s) &
+ get_two_e_integral(u,v,p,r,mo_integrals_map) * two_e_dm_mo(u,v,q,s) &
+ get_two_e_integral(q,s,u,v,mo_integrals_map) * two_e_dm_mo(p,r,u,v)
enddo
enddo
enddo
enddo
enddo
enddo
CALL wall_time(t5)
t6 = t5-t4
print*,'l3 1 :', t6
!=========================
! Third line, second term
!=========================
CALL wall_time(t4)
do tmp_p = 1, m
p = list(tmp_p)
do tmp_q = 1, m
q = list(tmp_q)
do tmp_r = 1, m
r = list(tmp_r)
do tmp_s = 1, m
s = list(tmp_s)
do t = 1, mo_num
do u = 1, mo_num
hessian(tmp_p,tmp_q,tmp_r,tmp_s) = hessian(tmp_p,tmp_q,tmp_r,tmp_s) &
- get_two_e_integral(s,t,p,u,mo_integrals_map) * two_e_dm_mo(r,t,q,u) &
- get_two_e_integral(t,s,p,u,mo_integrals_map) * two_e_dm_mo(t,r,q,u) &
- get_two_e_integral(q,u,r,t,mo_integrals_map) * two_e_dm_mo(p,u,s,t) &
- get_two_e_integral(q,u,t,r,mo_integrals_map) * two_e_dm_mo(p,u,t,s)
enddo
enddo
enddo
enddo
enddo
enddo
CALL wall_time(t5)
t6 = t5-t4
print*,'l3 2 :', t6
CALL wall_time(t2)
t3 = t2 -t1
print*,'Time to compute the hessian : ', t3
!==============
! Permutations
!==============
! Hessian(p,q,r,s) = P_pq P_rs [ ...]
! => Hessian(p,q,r,s) = (p,q,r,s) - (q,p,r,s) - (p,q,s,r) + (q,p,s,r)
do tmp_s = 1, m
do tmp_r = 1, m
do tmp_q = 1, m
do tmp_p = 1, m
h_tmpr(tmp_p,tmp_q,tmp_r,tmp_s) = (hessian(tmp_p,tmp_q,tmp_r,tmp_s) - hessian(tmp_q,tmp_p,tmp_r,tmp_s) &
- hessian(tmp_p,tmp_q,tmp_s,tmp_r) + hessian(tmp_q,tmp_p,tmp_s,tmp_r))
enddo
enddo
enddo
enddo
!========================
! 4D matrix to 2D matrix
!========================
! Convert the hessian mo_num * mo_num * mo_num * mo_num matrix in a
! 2D n * n matrix (n = mo_num*(mo_num-1)/2)
! H(pq,rs) : p<q and r<s
! 4D mo_num matrix to 2D n matrix
do tmp_pq = 1, tmp_n
call vec_to_mat_index(tmp_pq,tmp_p,tmp_q)
do tmp_rs = 1, tmp_n
call vec_to_mat_index(tmp_rs,tmp_r,tmp_s)
H(tmp_pq,tmp_rs) = h_tmpr(tmp_p,tmp_q,tmp_r,tmp_s)
enddo
enddo
! Display
if (debug) then
print*,'2D Hessian matrix'
do tmp_pq = 1, tmp_n
write(*,'(100(F10.5))') H(tmp_pq,:)
enddo
endif
!==============
! Deallocation
!==============
deallocate(hessian)
print*,'---End first_hess_list---'
end subroutine
#+END_SRC

View File

@ -0,0 +1,365 @@
* First hessian
#+BEGIN_SRC f90 :comments :tangle first_hessian_opt.irp.f
subroutine first_hessian_opt(n,H,h_tmpr)
include 'constants.h'
implicit none
!==================================================================
! Compute the hessian of energy with respects to orbital rotations
!==================================================================
!===========
! Variables
!===========
! in
integer, intent(in) :: n
!n : integer, n = mo_num*(mo_num-1)/2
! out
double precision, intent(out) :: H(n,n),h_tmpr(mo_num,mo_num,mo_num,mo_num)
! H : n by n double precision matrix containing the 2D hessian
! internal
double precision, allocatable :: hessian(:,:,:,:)
integer :: p,q
integer :: r,s,t,u,v
integer :: pq,rs
double precision :: t1,t2,t3,t4,t5,t6
! hessian : mo_num 4D double precision matrix containing the hessian before the permutations
! h_tmpr : mo_num 4D double precision matrix containing the hessian after the permutations
! p,q,r,s : integer, indexes of the 4D hessian matrix
! t,u,v : integer, indexes to compute hessian elements
! pq,rs : integer, indexes for the conversion from 4D to 2D hessian matrix
! t1,t2,t3 : double precision, t3 = t2 - t1, time to compute the hessian
! Funtion
double precision :: get_two_e_integral
! get_two_e_integral : double precision function, two e integrals
! Provided :
! mo_one_e_integrals : mono e- integrals
! get_two_e_integral : two e- integrals
! one_e_dm_mo_alpha, one_e_dm_mo_beta : one body density matrix
! two_e_dm_mo : two body density matrix
!============
! Allocation
!============
allocate(hessian(mo_num,mo_num,mo_num,mo_num))
!=============
! Calculation
!=============
if (debug) then
print*,'Enter in first_hess'
endif
! From Anderson et. al. (2014)
! The Journal of Chemical Physics 141, 244104 (2014); doi: 10.1063/1.4904384
CALL wall_time(t1)
! Initialization
hessian = 0d0
!========================
! First line, first term
!========================
CALL wall_time(t4)
do p = 1, mo_num
do q = 1, mo_num
do r = 1, mo_num
do s = 1, mo_num
if (q==r) then
do u = 1, mo_num
hessian(p,q,r,s) = hessian(p,q,r,s) + 0.5d0 * ( &
mo_one_e_integrals(u,p) * one_e_dm_mo(u,s) &
+ mo_one_e_integrals(s,u) * one_e_dm_mo(p,u))
enddo
endif
enddo
enddo
enddo
enddo
CALL wall_time(t5)
t6 = t5-t4
print*,'l1 1 :', t6
!=========================
! First line, second term
!=========================
CALL wall_time(t4)
do p = 1, mo_num
do q = 1, mo_num
do r = 1, mo_num
do s = 1, mo_num
if (p==s) then
do u = 1, mo_num
hessian(p,q,r,s) = hessian(p,q,r,s) + 0.5d0 * ( &
mo_one_e_integrals(u,r) * one_e_dm_mo(u,q) &
+ mo_one_e_integrals(q,u) * one_e_dm_mo(r,u))
enddo
endif
enddo
enddo
enddo
enddo
CALL wall_time(t5)
t6 = t5-t4
print*,'l1 2 :', t6
!========================
! First line, third term
!========================
CALL wall_time(t4)
do p = 1, mo_num
do q = 1, mo_num
do r = 1, mo_num
do s = 1, mo_num
hessian(p,q,r,s) = hessian(p,q,r,s) &
- mo_one_e_integrals(s,p) * one_e_dm_mo(r,q)&
- mo_one_e_integrals(q,r) * one_e_dm_mo(p,s)
enddo
enddo
enddo
enddo
CALL wall_time(t5)
t6 = t5-t4
print*,'l1 3 :', t6
!=========================
! Second line, first term
!=========================
CALL wall_time(t4)
do s = 1, mo_num
do r = 1, mo_num
do q = 1, mo_num
do p = 1, mo_num
! do p = 1, mo_num
! do q = 1, mo_num
! do r = 1, mo_num
! do s = 1, mo_num
if (q==r) then
do t = 1, mo_num
do u = 1, mo_num
do v = 1, mo_num
hessian(p,q,r,s) = hessian(p,q,r,s) + 0.5d0 * ( &
get_two_e_integral(u,v,p,t,mo_integrals_map) * two_e_dm_mo(u,v,s,t) &
+ get_two_e_integral(s,t,u,v,mo_integrals_map) * two_e_dm_mo(p,t,u,v))
enddo
enddo
enddo
endif
enddo
enddo
enddo
enddo
CALL wall_time(t5)
t6 = t5-t4
print*,'l2 1 :', t6
!==========================
! Second line, second term
!==========================
CALL wall_time(t4)
do s = 1, mo_num
do r = 1, mo_num
do q = 1, mo_num
do p = 1, mo_num
! do p = 1, mo_num
! do q = 1, mo_num
! do r = 1, mo_num
! do s = 1, mo_num
if (p==s) then
do t = 1, mo_num
do u = 1, mo_num
do v = 1, mo_num
hessian(p,q,r,s) = hessian(p,q,r,s) + 0.5d0 * ( &
get_two_e_integral(q,t,u,v,mo_integrals_map) * two_e_dm_mo(r,t,u,v) &
+ get_two_e_integral(u,v,r,t,mo_integrals_map) * two_e_dm_mo(u,v,q,t))
enddo
enddo
enddo
endif
enddo
enddo
enddo
enddo
CALL wall_time(t5)
t6 = t5-t4
print*,'l2 2 :', t6
!========================
! Third line, first term
!========================
CALL wall_time(t4)
do s = 1, mo_num
do r = 1, mo_num
do q = 1, mo_num
do p = 1, mo_num
! do p = 1, mo_num
! do q = 1, mo_num
! do r = 1, mo_num
! do s = 1, mo_num
do u = 1, mo_num
do v = 1, mo_num
hessian(p,q,r,s) = hessian(p,q,r,s) &
+ get_two_e_integral(u,v,p,r,mo_integrals_map) * two_e_dm_mo(u,v,q,s) &
+ get_two_e_integral(q,s,u,v,mo_integrals_map) * two_e_dm_mo(p,r,u,v)
enddo
enddo
enddo
enddo
enddo
enddo
CALL wall_time(t5)
t6 = t5-t4
print*,'l3 1 :', t6
!=========================
! Third line, second term
!=========================
CALL wall_time(t4)
do s = 1, mo_num
do r = 1, mo_num
do q = 1, mo_num
do p = 1, mo_num
! do p = 1, mo_num
! do q = 1, mo_num
! do r = 1, mo_num
! do s = 1, mo_num
do t = 1, mo_num
do u = 1, mo_num
hessian(p,q,r,s) = hessian(p,q,r,s) &
- get_two_e_integral(s,t,p,u,mo_integrals_map) * two_e_dm_mo(r,t,q,u) &
- get_two_e_integral(t,s,p,u,mo_integrals_map) * two_e_dm_mo(t,r,q,u) &
- get_two_e_integral(q,u,r,t,mo_integrals_map) * two_e_dm_mo(p,u,s,t) &
- get_two_e_integral(q,u,t,r,mo_integrals_map) * two_e_dm_mo(p,u,t,s)
enddo
enddo
enddo
enddo
enddo
enddo
CALL wall_time(t5)
t6 = t5-t4
print*,'l3 2 :', t6
CALL wall_time(t2)
t3 = t2 -t1
print*,'Time to compute the hessian : ', t3
!==============
! Permutations
!==============
! Hessian(p,q,r,s) = P_pq P_rs [ ...]
! => Hessian(p,q,r,s) = (p,q,r,s) - (q,p,r,s) - (p,q,s,r) + (q,p,s,r)
do s = 1, mo_num
do r = 1, mo_num
do q = 1, mo_num
do p = 1, mo_num
h_tmpr(p,q,r,s) = (hessian(p,q,r,s) - hessian(q,p,r,s) - hessian(p,q,s,r) + hessian(q,p,s,r))
enddo
enddo
enddo
enddo
!========================
! 4D matrix to 2D matrix
!========================
! Convert the hessian mo_num * mo_num * mo_num * mo_num matrix in a
! 2D n * n matrix (n = mo_num*(mo_num-1)/2)
! H(pq,rs) : p<q and r<s
! 4D mo_num matrix to 2D n matrix
do pq = 1, n
call vec_to_mat_index(pq,p,q)
do rs = 1, n
call vec_to_mat_index(rs,r,s)
H(pq,rs) = h_tmpr(p,q,r,s)
enddo
enddo
! Display
if (debug) then
print*,'2D Hessian matrix'
do pq = 1, n
write(*,'(100(F10.5))') H(pq,:)
enddo
endif
!==============
! Deallocation
!==============
deallocate(hessian)
if (debug) then
print*,'Leave first_hess'
endif
end subroutine
#+END_SRC

View File

@ -0,0 +1,393 @@
* Gradient
The gradient of the CI energy with respects to the orbital rotation
is:
(C-c C-x C-l)
$$
G(p,q) = \mathcal{P}_{pq} \left[ \sum_r (h_p^r \gamma_r^q - h_r^q \gamma_p^r) +
\sum_{rst}(v_{pt}^{rs} \Gamma_{rs}^{qt} - v_{rs}^{qt} \Gamma_{pt}^{rs})
\right]
$$
$$
\mathcal{P}_{pq}= 1 - (p \leftrightarrow q)
$$
$$
G(p,q) = \left[
\sum_r (h_p^r \gamma_r^q - h_r^q \gamma_p^r) +
\sum_{rst}(v_{pt}^{rs} \Gamma_{rs}^{qt} - v_{rs}^{qt} \Gamma_{pt}^{rs})
\right] -
\left[
\sum_r (h_q^r \gamma_r^p - h_r^p \gamma_q^r) +
\sum_{rst}(v_{qt}^{rs} \Gamma_{rs}^{pt} - v_{rs}^{pt}
\Gamma_{qt}^{rs})
\right]
$$
Where p,q,r,s,t are general spatial orbitals
mo_num : the number of molecular orbitals
$$h$$ : One electron integrals
$$\gamma$$ : One body density matrix (state average in our case)
$$v$$ : Two electron integrals
$$\Gamma$$ : Two body density matrice (state average in our case)
The gradient is a mo_num by mo_num matrix, p,q,r,s,t take all the
values between 1 and mo_num (1 and mo_num include).
To do that we compute $$G(p,q)$$ for all the pairs (p,q).
Source :
Seniority-based coupled cluster theory
J. Chem. Phys. 141, 244104 (2014); https://doi.org/10.1063/1.4904384
Thomas M. Henderson, Ireneusz W. Bulik, Tamar Stein, and Gustavo
E. Scuseria
*Compute the gradient of energy with respects to orbital rotations*
Provided:
| mo_num | integer | number of MOs |
| mo_one_e_integrals(mo_num,mo_num) | double precision | mono_electronic integrals |
| one_e_dm_mo(mo_num,mo_num) | double precision | one e- density matrix |
| two_e_dm_mo(mo_num,mo_num,mo_num,mo_num) | double precision | two e- density matrix |
Input:
| n | integer | mo_num*(mo_num-1)/2 |
Output:
| v_grad(n) | double precision | the gradient |
| max_elem | double precision | maximum element of the gradient |
Internal:
| grad(mo_num,mo_num) | double precison | gradient before the tranformation in a vector |
| A((mo_num,mo_num) | doubre precision | gradient after the permutations |
| norm | double precision | norm of the gradient |
| p, q | integer | indexes of the element in the matrix grad |
| i | integer | index for the tranformation in a vector |
| r, s, t | integer | indexes dor the sums |
| t1, t2, t3 | double precision | t3 = t2 - t1, time to compute the gradient |
| t4, t5, t6 | double precission | t6 = t5 - t4, time to compute each element |
| tmp_bi_int_3(mo_num,mo_num,mo_num) | double precision | 3 indexes temporary array for the bi-electronic integrals |
| tmp_2rdm_3(mo_num,mo_num,mo_num) | double precision | 3 indexes temporary array for the two e- density matrix |
| tmp_accu(mo_num,mo_num) | double precision | temporary array |
Function:
| get_two_e_integral | double precision | bi-electronic integrals |
| dnrm2 | double precision | (Lapack) norm |
#+BEGIN_SRC f90 :comments org :tangle gradient_list_opt.irp.f
subroutine gradient_list_opt(n,m,list,v_grad,max_elem,norm)
use omp_lib
include 'constants.h'
implicit none
! Variables
! in
integer, intent(in) :: n,m,list(m)
! out
double precision, intent(out) :: v_grad(n), max_elem, norm
! internal
double precision, allocatable :: grad(:,:),A(:,:)
integer :: i,p,q,r,s,t, tmp_p, tmp_q, tmp_i
double precision :: t1,t2,t3,t4,t5,t6
double precision, allocatable :: tmp_accu(:,:), tmp_mo_one_e_integrals(:,:),tmp_one_e_dm_mo(:,:)
double precision, allocatable :: tmp_bi_int_3(:,:,:), tmp_2rdm_3(:,:,:)
! Functions
double precision :: get_two_e_integral, dnrm2
print*,''
print*,'---gradient---'
! Allocation of shared arrays
allocate(grad(m,m),A(m,m))
allocate(tmp_mo_one_e_integrals(m,mo_num),tmp_one_e_dm_mo(mo_num,m))
! Initialization omp
call omp_set_max_active_levels(1)
!$OMP PARALLEL &
!$OMP PRIVATE( &
!$OMP p,q,r,s,t,tmp_p,tmp_q, &
!$OMP tmp_accu,tmp_bi_int_3, tmp_2rdm_3) &
!$OMP SHARED(grad, one_e_dm_mo,m,list,mo_num,mo_one_e_integrals, &
!$OMP mo_integrals_map,tmp_one_e_dm_mo, tmp_mo_one_e_integrals,t4,t5,t6) &
!$OMP DEFAULT(SHARED)
! Allocation of private arrays
allocate(tmp_accu(m,m))
allocate(tmp_bi_int_3(mo_num,mo_num,m))
allocate(tmp_2rdm_3(mo_num,mo_num,m))
#+END_SRC
** Calculation
*** Initialization
#+BEGIN_SRC f90 :comments org :tangle gradient_list_opt.irp.f
!$OMP DO
do tmp_q = 1, m
do tmp_p = 1, m
grad(tmp_p,tmp_q) = 0d0
enddo
enddo
!$OMP END DO
#+END_SRC
*** Term 1
Without optimization the term 1 is :
do p = 1, mo_num
do q = 1, mo_num
do r = 1, mo_num
grad(p,q) = grad(p,q) &
+ mo_one_e_integrals(p,r) * one_e_dm_mo(r,q) &
- mo_one_e_integrals(r,q) * one_e_dm_mo(p,r)
enddo
enddo
enddo
Since the matrix multiplication A.B is defined like :
\begin{equation}
c_{ij} = \sum_k a_{ik}.b_{kj}
\end{equation}
The previous equation can be rewritten as a matrix multplication
#+BEGIN_SRC f90 :comments org :tangle gradient_list_opt.irp.f
!****************
! Opt first term
!****************
!$OMP DO
do r = 1, mo_num
do tmp_p = 1, m
p = list(tmp_p)
tmp_mo_one_e_integrals(tmp_p,r) = mo_one_e_integrals(p,r)
enddo
enddo
!$OMP END DO
!$OMP DO
do tmp_q = 1, m
q = list(tmp_q)
do r = 1, mo_num
tmp_one_e_dm_mo(r,tmp_q) = one_e_dm_mo(r,q)
enddo
enddo
!$OMP END DO
call dgemm('N','N',m,m,mo_num,1d0,&
tmp_mo_one_e_integrals, size(tmp_mo_one_e_integrals,1),&
tmp_one_e_dm_mo,size(tmp_one_e_dm_mo,1),0d0,tmp_accu,size(tmp_accu,1))
!$OMP DO
do tmp_q = 1, m
do tmp_p = 1, m
grad(tmp_p,tmp_q) = grad(tmp_p,tmp_q) + (tmp_accu(tmp_p,tmp_q) - tmp_accu(tmp_q,tmp_p))
enddo
enddo
!$OMP END DO
!$OMP MASTER
CALL wall_TIME(t4)
!$OMP END MASTER
! call dgemm('N','N',mo_num,mo_num,mo_num,1d0,mo_one_e_integrals,&
! mo_num,one_e_dm_mo,mo_num,0d0,tmp_accu,mo_num)
!
! !$OMP DO
! do q = 1, mo_num
! do p = 1, mo_num
!
! grad(p,q) = grad(p,q) + (tmp_accu(p,q) - tmp_accu(q,p))
!
! enddo
! enddo
! !$OMP END DO
!$OMP MASTER
CALL wall_TIME(t5)
t6 = t5-t4
print*,'Gradient, first term (s) :', t6
!$OMP END MASTER
#+END_SRC
*** Term 2
Without optimization the second term is :
do p = 1, mo_num
do q = 1, mo_num
do r = 1, mo_num
do s = 1, mo_num
do t= 1, mo_num
grad(p,q) = grad(p,q) &
+ get_two_e_integral(p,t,r,s,mo_integrals_map) * two_e_dm_mo(r,s,q,t) &
- get_two_e_integral(r,s,q,t,mo_integrals_map) * two_e_dm_mo(p,t,r,s)
enddo
enddo
enddo
enddo
enddo
Using the bielectronic integral properties :
get_two_e_integral(p,t,r,s,mo_integrals_map) = get_two_e_integral(r,s,p,t,mo_integrals_map)
Using the two body matrix properties :
two_e_dm_mo(p,t,r,s) = two_e_dm_mo(r,s,p,t)
t is one the right, we can put it on the external loop and create 3
indexes temporary array
r,s can be seen as one index
By doing so, a matrix multiplication appears
#+BEGIN_SRC f90 :comments org :tangle gradient_list_opt.irp.f
!*****************
! Opt second term
!*****************
!$OMP MASTER
CALL wall_TIME(t4)
!$OMP END MASTER
!$OMP DO
do t = 1, mo_num
do tmp_p = 1, m
p = list(tmp_p)
do s = 1, mo_num
do r = 1, mo_num
tmp_bi_int_3(r,s,tmp_p) = get_two_e_integral(r,s,p,t,mo_integrals_map)
enddo
enddo
enddo
do tmp_q = 1, m
q = list(tmp_q)
do s = 1, mo_num
do r = 1, mo_num
tmp_2rdm_3(r,s,tmp_q) = two_e_dm_mo(r,s,q,t)
enddo
enddo
enddo
call dgemm('T','N',m,m,mo_num*mo_num,1d0,tmp_bi_int_3,&
mo_num*mo_num,tmp_2rdm_3,mo_num*mo_num,0d0,tmp_accu,size(tmp_accu,1))
!$OMP CRITICAL
do tmp_q = 1, m
do tmp_p = 1, m
grad(tmp_p,tmp_q) = grad(tmp_p,tmp_q) + tmp_accu(tmp_p,tmp_q) - tmp_accu(tmp_q,tmp_p)
enddo
enddo
!$OMP END CRITICAL
enddo
!$OMP END DO
!$OMP MASTER
CALL wall_TIME(t5)
t6 = t5-t4
print*,'Gradient second term (s) : ', t6
!$OMP END MASTER
#+END_SRC
*** Deallocation of private arrays
#+BEGIN_SRC f90 :comments org :tangle gradient_list_opt.irp.f
deallocate(tmp_bi_int_3,tmp_2rdm_3,tmp_accu)
!$OMP END PARALLEL
call omp_set_max_active_levels(4)
#+END_SRC
*** Permutation, 2D matrix -> vector, transformation
In addition there is a permutation in the gradient formula :
\begin{equation}
P_{pq} = 1 - (p <-> q)
\end{equation}
We need a vector to use the gradient. Here the gradient is a
antisymetric matrix so we can transform it in a vector of length
mo_num*(mo_num-1)/2.
Here we do these two things at the same time.
#+BEGIN_SRC f90 :comments org :tangle gradient_list_opt.irp.f
do i=1,n
call vec_to_mat_index(i,p,q)
v_grad(i)=(grad(p,q) - grad(q,p))
enddo
! Debug, diplay the vector containing the gradient elements
if (debug) then
print*,'Vector containing the gradient :'
write(*,'(100(F10.5))') v_grad(1:n)
endif
#+END_SRC
*** Norm of the gradient
The norm can be useful.
#+BEGIN_SRC f90 :comments org :tangle gradient_list_opt.irp.f
norm = dnrm2(n,v_grad,1)
print*, 'Gradient norm : ', norm
#+END_SRC
*** Maximum element in the gradient
The maximum element in the gradient is very important for the
convergence criterion of the Newton method.
#+BEGIN_SRC f90 :comments org :tangle gradient_list_opt.irp.f
! Max element of the gradient
max_elem = 0d0
do i = 1, n
if (DABS(v_grad(i)) > DABS(max_elem)) then
max_elem = v_grad(i)
endif
enddo
print*,'Max element in the gradient :', max_elem
! Debug, display the matrix containting the gradient elements
if (debug) then
! Matrix gradient
A = 0d0
do q=1,m
do p=1,m
A(p,q) = grad(p,q) - grad(q,p)
enddo
enddo
print*,'Matrix containing the gradient :'
do i = 1, m
write(*,'(100(F10.5))') A(i,1:m)
enddo
endif
#+END_SRC
*** Deallocation of shared arrays and end
#+BEGIN_SRC f90 :comments org :tangle gradient_list_opt.irp.f
deallocate(grad,A, tmp_mo_one_e_integrals,tmp_one_e_dm_mo)
print*,'---End gradient---'
end subroutine
#+END_SRC

View File

@ -0,0 +1,358 @@
* Gradient
The gradient of the CI energy with respects to the orbital rotation
is:
(C-c C-x C-l)
$$
G(p,q) = \mathcal{P}_{pq} \left[ \sum_r (h_p^r \gamma_r^q - h_r^q \gamma_p^r) +
\sum_{rst}(v_{pt}^{rs} \Gamma_{rs}^{qt} - v_{rs}^{qt} \Gamma_{pt}^{rs})
\right]
$$
$$
\mathcal{P}_{pq}= 1 - (p \leftrightarrow q)
$$
$$
G(p,q) = \left[
\sum_r (h_p^r \gamma_r^q - h_r^q \gamma_p^r) +
\sum_{rst}(v_{pt}^{rs} \Gamma_{rs}^{qt} - v_{rs}^{qt} \Gamma_{pt}^{rs})
\right] -
\left[
\sum_r (h_q^r \gamma_r^p - h_r^p \gamma_q^r) +
\sum_{rst}(v_{qt}^{rs} \Gamma_{rs}^{pt} - v_{rs}^{pt}
\Gamma_{qt}^{rs})
\right]
$$
Where p,q,r,s,t are general spatial orbitals
mo_num : the number of molecular orbitals
$$h$$ : One electron integrals
$$\gamma$$ : One body density matrix (state average in our case)
$$v$$ : Two electron integrals
$$\Gamma$$ : Two body density matrice (state average in our case)
The gradient is a mo_num by mo_num matrix, p,q,r,s,t take all the
values between 1 and mo_num (1 and mo_num include).
To do that we compute $$G(p,q)$$ for all the pairs (p,q).
Source :
Seniority-based coupled cluster theory
J. Chem. Phys. 141, 244104 (2014); https://doi.org/10.1063/1.4904384
Thomas M. Henderson, Ireneusz W. Bulik, Tamar Stein, and Gustavo
E. Scuseria
*Compute the gradient of energy with respects to orbital rotations*
Provided:
| mo_num | integer | number of MOs |
| mo_one_e_integrals(mo_num,mo_num) | double precision | mono_electronic integrals |
| one_e_dm_mo(mo_num,mo_num) | double precision | one e- density matrix |
| two_e_dm_mo(mo_num,mo_num,mo_num,mo_num) | double precision | two e- density matrix |
Input:
| n | integer | mo_num*(mo_num-1)/2 |
Output:
| v_grad(n) | double precision | the gradient |
| max_elem | double precision | maximum element of the gradient |
Internal:
| grad(mo_num,mo_num) | double precison | gradient before the tranformation in a vector |
| A((mo_num,mo_num) | doubre precision | gradient after the permutations |
| norm | double precision | norm of the gradient |
| p, q | integer | indexes of the element in the matrix grad |
| i | integer | index for the tranformation in a vector |
| r, s, t | integer | indexes dor the sums |
| t1, t2, t3 | double precision | t3 = t2 - t1, time to compute the gradient |
| t4, t5, t6 | double precission | t6 = t5 - t4, time to compute each element |
| tmp_bi_int_3(mo_num,mo_num,mo_num) | double precision | 3 indexes temporary array for the bi-electronic integrals |
| tmp_2rdm_3(mo_num,mo_num,mo_num) | double precision | 3 indexes temporary array for the two e- density matrix |
| tmp_accu(mo_num,mo_num) | double precision | temporary array |
Function:
| get_two_e_integral | double precision | bi-electronic integrals |
| dnrm2 | double precision | (Lapack) norm |
#+BEGIN_SRC f90 :comments org :tangle gradient_opt.irp.f
subroutine gradient_opt(n,v_grad,max_elem)
use omp_lib
include 'constants.h'
implicit none
! Variables
! in
integer, intent(in) :: n
! out
double precision, intent(out) :: v_grad(n), max_elem
! internal
double precision, allocatable :: grad(:,:),A(:,:)
double precision :: norm
integer :: i,p,q,r,s,t
double precision :: t1,t2,t3,t4,t5,t6
double precision, allocatable :: tmp_accu(:,:)
double precision, allocatable :: tmp_bi_int_3(:,:,:), tmp_2rdm_3(:,:,:)
! Functions
double precision :: get_two_e_integral, dnrm2
print*,''
print*,'---gradient---'
! Allocation of shared arrays
allocate(grad(mo_num,mo_num),A(mo_num,mo_num))
! Initialization omp
call omp_set_max_active_levels(1)
!$OMP PARALLEL &
!$OMP PRIVATE( &
!$OMP p,q,r,s,t, &
!$OMP tmp_accu, tmp_bi_int_3, tmp_2rdm_3) &
!$OMP SHARED(grad, one_e_dm_mo, mo_num,mo_one_e_integrals, &
!$OMP mo_integrals_map,t4,t5,t6) &
!$OMP DEFAULT(SHARED)
! Allocation of private arrays
allocate(tmp_accu(mo_num,mo_num))
allocate(tmp_bi_int_3(mo_num,mo_num,mo_num))
allocate(tmp_2rdm_3(mo_num,mo_num,mo_num))
#+END_SRC
** Calculation
*** Initialization
#+BEGIN_SRC f90 :comments org :tangle gradient_opt.irp.f
!$OMP DO
do q = 1, mo_num
do p = 1,mo_num
grad(p,q) = 0d0
enddo
enddo
!$OMP END DO
#+END_SRC
*** Term 1
Without optimization the term 1 is :
do p = 1, mo_num
do q = 1, mo_num
do r = 1, mo_num
grad(p,q) = grad(p,q) &
+ mo_one_e_integrals(p,r) * one_e_dm_mo(r,q) &
- mo_one_e_integrals(r,q) * one_e_dm_mo(p,r)
enddo
enddo
enddo
Since the matrix multiplication A.B is defined like :
\begin{equation}
c_{ij} = \sum_k a_{ik}.b_{kj}
\end{equation}
The previous equation can be rewritten as a matrix multplication
#+BEGIN_SRC f90 :comments org :tangle gradient_opt.irp.f
!****************
! Opt first term
!****************
!$OMP MASTER
CALL wall_TIME(t4)
!$OMP END MASTER
call dgemm('N','N',mo_num,mo_num,mo_num,1d0,mo_one_e_integrals,&
mo_num,one_e_dm_mo,mo_num,0d0,tmp_accu,mo_num)
!$OMP DO
do q = 1, mo_num
do p = 1, mo_num
grad(p,q) = grad(p,q) + (tmp_accu(p,q) - tmp_accu(q,p))
enddo
enddo
!$OMP END DO
!$OMP MASTER
CALL wall_TIME(t5)
t6 = t5-t4
print*,'Gradient, first term (s) :', t6
!$OMP END MASTER
#+END_SRC
*** Term 2
Without optimization the second term is :
do p = 1, mo_num
do q = 1, mo_num
do r = 1, mo_num
do s = 1, mo_num
do t= 1, mo_num
grad(p,q) = grad(p,q) &
+ get_two_e_integral(p,t,r,s,mo_integrals_map) * two_e_dm_mo(r,s,q,t) &
- get_two_e_integral(r,s,q,t,mo_integrals_map) * two_e_dm_mo(p,t,r,s)
enddo
enddo
enddo
enddo
enddo
Using the bielectronic integral properties :
get_two_e_integral(p,t,r,s,mo_integrals_map) = get_two_e_integral(r,s,p,t,mo_integrals_map)
Using the two body matrix properties :
two_e_dm_mo(p,t,r,s) = two_e_dm_mo(r,s,p,t)
t is one the right, we can put it on the external loop and create 3
indexes temporary array
r,s can be seen as one index
By doing so, a matrix multiplication appears
#+BEGIN_SRC f90 :comments org :tangle gradient_opt.irp.f
!*****************
! Opt second term
!*****************
!$OMP MASTER
CALL wall_TIME(t4)
!$OMP END MASTER
!$OMP DO
do t = 1, mo_num
do p = 1, mo_num
do s = 1, mo_num
do r = 1, mo_num
tmp_bi_int_3(r,s,p) = get_two_e_integral(r,s,p,t,mo_integrals_map)
enddo
enddo
enddo
do q = 1, mo_num
do s = 1, mo_num
do r = 1, mo_num
tmp_2rdm_3(r,s,q) = two_e_dm_mo(r,s,q,t)
enddo
enddo
enddo
call dgemm('T','N',mo_num,mo_num,mo_num*mo_num,1d0,tmp_bi_int_3,&
mo_num*mo_num,tmp_2rdm_3,mo_num*mo_num,0d0,tmp_accu,mo_num)
!$OMP CRITICAL
do q = 1, mo_num
do p = 1, mo_num
grad(p,q) = grad(p,q) + tmp_accu(p,q) - tmp_accu(q,p)
enddo
enddo
!$OMP END CRITICAL
enddo
!$OMP END DO
!$OMP MASTER
CALL wall_TIME(t5)
t6 = t5-t4
print*,'Gradient second term (s) : ', t6
!$OMP END MASTER
#+END_SRC
*** Deallocation of private arrays
#+BEGIN_SRC f90 :comments org :tangle gradient_opt.irp.f
deallocate(tmp_bi_int_3,tmp_2rdm_3,tmp_accu)
!$OMP END PARALLEL
call omp_set_max_active_levels(4)
#+END_SRC
*** Permutation, 2D matrix -> vector, transformation
In addition there is a permutation in the gradient formula :
\begin{equation}
P_{pq} = 1 - (p <-> q)
\end{equation}
We need a vector to use the gradient. Here the gradient is a
antisymetric matrix so we can transform it in a vector of length
mo_num*(mo_num-1)/2.
Here we do these two things at the same time.
#+BEGIN_SRC f90 :comments org :tangle gradient_opt.irp.f
do i=1,n
call vec_to_mat_index(i,p,q)
v_grad(i)=(grad(p,q) - grad(q,p))
enddo
! Debug, diplay the vector containing the gradient elements
if (debug) then
print*,'Vector containing the gradient :'
write(*,'(100(F10.5))') v_grad(1:n)
endif
#+END_SRC
*** Norm of the gradient
The norm can be useful.
#+BEGIN_SRC f90 :comments org :tangle gradient_opt.irp.f
norm = dnrm2(n,v_grad,1)
print*, 'Gradient norm : ', norm
#+END_SRC
*** Maximum element in the gradient
The maximum element in the gradient is very important for the
convergence criterion of the Newton method.
#+BEGIN_SRC f90 :comments org :tangle gradient_opt.irp.f
! Max element of the gradient
max_elem = 0d0
do i = 1, n
if (ABS(v_grad(i)) > ABS(max_elem)) then
max_elem = v_grad(i)
endif
enddo
print*,'Max element in the gradient :', max_elem
! Debug, display the matrix containting the gradient elements
if (debug) then
! Matrix gradient
A = 0d0
do q=1,mo_num
do p=1,mo_num
A(p,q) = grad(p,q) - grad(q,p)
enddo
enddo
print*,'Matrix containing the gradient :'
do i = 1, mo_num
write(*,'(100(F10.5))') A(i,1:mo_num)
enddo
endif
#+END_SRC
*** Deallocation of shared arrays and end
#+BEGIN_SRC f90 :comments org :tangle gradient_opt.irp.f
deallocate(grad,A)
print*,'---End gradient---'
end subroutine
#+END_SRC

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,308 @@
* Providers
** Dimensions of MOs
#+BEGIN_SRC f90 :comments org :tangle my_providers.irp.f
BEGIN_PROVIDER [ integer, n_mo_dim ]
implicit none
BEGIN_DOC
! Number of different pairs (i,j) of MOs we can build,
! with i>j
END_DOC
n_mo_dim = mo_num*(mo_num-1)/2
END_PROVIDER
#+END_SRC
#+BEGIN_SRC f90 :comments org :tangle my_providers.irp.f
BEGIN_PROVIDER [ integer, n_mo_dim_core ]
implicit none
BEGIN_DOC
! Number of different pairs (i,j) of core MOs we can build,
! with i>j
END_DOC
n_mo_dim_core = dim_list_core_orb*(dim_list_core_orb-1)/2
END_PROVIDER
#+END_SRC
#+BEGIN_SRC f90 :comments org :tangle my_providers.irp.f
BEGIN_PROVIDER [ integer, n_mo_dim_act ]
implicit none
BEGIN_DOC
! Number of different pairs (i,j) of active MOs we can build,
! with i>j
END_DOC
n_mo_dim_act = dim_list_act_orb*(dim_list_act_orb-1)/2
END_PROVIDER
#+END_SRC
#+BEGIN_SRC f90 :comments org :tangle my_providers.irp.f
BEGIN_PROVIDER [ integer, n_mo_dim_inact ]
implicit none
BEGIN_DOC
! Number of different pairs (i,j) of inactive MOs we can build,
! with i>j
END_DOC
n_mo_dim_inact = dim_list_inact_orb*(dim_list_inact_orb-1)/2
END_PROVIDER
#+END_SRC
#+BEGIN_SRC f90 :comments org :tangle my_providers.irp.f
BEGIN_PROVIDER [ integer, n_mo_dim_virt ]
implicit none
BEGIN_DOC
! Number of different pairs (i,j) of virtual MOs we can build,
! with i>j
END_DOC
n_mo_dim_virt = dim_list_virt_orb*(dim_list_virt_orb-1)/2
END_PROVIDER
#+END_SRC
** Energies/criterions
#+BEGIN_SRC f90 :comments org :tangle my_providers.irp.f
BEGIN_PROVIDER [ double precision, my_st_av_energy ]
implicit none
BEGIN_DOC
! State average CI energy
END_DOC
!call update_st_av_ci_energy(my_st_av_energy)
call state_average_energy(my_st_av_energy)
END_PROVIDER
#+END_SRC
** Gradient/hessian
*** Orbital optimization
**** With all the MOs
#+BEGIN_SRC f90 :comments org :tangle my_providers.irp.f
BEGIN_PROVIDER [ double precision, my_gradient_opt, (n_mo_dim) ]
&BEGIN_PROVIDER [ double precision, my_CC1_opt ]
implicit none
BEGIN_DOC
! - Gradient of the energy with respect to the MO rotations, for all the MOs.
! - Maximal element of the gradient in absolute value
END_DOC
double precision :: norm_grad
PROVIDE mo_two_e_integrals_in_map
call gradient_opt(n_mo_dim, my_gradient_opt, my_CC1_opt, norm_grad)
END_PROVIDER
#+END_SRC
#+BEGIN_SRC f90 :comments org :tangle my_providers.irp.f
BEGIN_PROVIDER [ double precision, my_hessian_opt, (n_mo_dim, n_mo_dim) ]
implicit none
BEGIN_DOC
! - Gradient of the energy with respect to the MO rotations, for all the MOs.
! - Maximal element of the gradient in absolute value
END_DOC
double precision, allocatable :: h_f(:,:,:,:)
PROVIDE mo_two_e_integrals_in_map
allocate(h_f(mo_num, mo_num, mo_num, mo_num))
call hessian_list_opt(n_mo_dim, my_hessian_opt, h_f)
END_PROVIDER
#+END_SRC
**** With the list of active MOs
Can be generalized to any mo_class by changing the list/dimension
#+BEGIN_SRC f90 :comments org :tangle my_providers.irp.f
BEGIN_PROVIDER [ double precision, my_gradient_list_opt, (n_mo_dim_act) ]
&BEGIN_PROVIDER [ double precision, my_CC2_opt ]
implicit none
BEGIN_DOC
! - Gradient of the energy with respect to the MO rotations, only for the active MOs !
! - Maximal element of the gradient in absolute value
END_DOC
double precision :: norm_grad
PROVIDE mo_two_e_integrals_in_map !one_e_dm_mo two_e_dm_mo mo_one_e_integrals
call gradient_list_opt(n_mo_dim_act, dim_list_act_orb, list_act, my_gradient_list_opt, my_CC2_opt, norm_grad)
END_PROVIDER
#+END_SRC
#+BEGIN_SRC f90 :comments org :tangle my_providers.irp.f
BEGIN_PROVIDER [ double precision, my_hessian_list_opt, (n_mo_dim_act, n_mo_dim_act) ]
implicit none
BEGIN_DOC
! - Gradient of the energy with respect to the MO rotations, only for the active MOs !
! - Maximal element of the gradient in absolute value
END_DOC
double precision, allocatable :: h_f(:,:,:,:)
PROVIDE mo_two_e_integrals_in_map
allocate(h_f(dim_list_act_orb, dim_list_act_orb, dim_list_act_orb, dim_list_act_orb))
call hessian_list_opt(n_mo_dim_act, dim_list_act_orb, list_act, my_hessian_list_opt, h_f)
END_PROVIDER
#+END_SRC
*** Orbital localization
**** Gradient
***** Core MOs
#+BEGIN_SRC f90 :comments org
!:tangle my_providers.irp.f
BEGIN_PROVIDER [ double precision, my_gradient_loc_core, (n_mo_dim_core) ]
&BEGIN_PROVIDER [ double precision, my_CC_loc_core ]
implicit none
BEGIN_DOC
! - Gradient of the MO localization with respect to the MO rotations for the core MOs
! - Maximal element of the gradient in absolute value
END_DOC
double precision :: norm_grad
!PROVIDE something ?
call gradient_localization(n_mo_dim_core, dim_list_core_orb, list_core, my_gradient_loc_core, my_CC_loc_core , norm_grad)
END_PROVIDER
#+END_SRC
***** Active MOs
#+BEGIN_SRC f90 :comments org
!:tangle my_providers.irp.f
BEGIN_PROVIDER [ double precision, my_gradient_loc_act, (n_mo_dim_act) ]
&BEGIN_PROVIDER [ double precision, my_CC_loc_act ]
implicit none
BEGIN_DOC
! - Gradient of the MO localization with respect to the MO rotations for the active MOs
! - Maximal element of the gradient in absolute value
END_DOC
double precision :: norm_grad
!PROVIDE something ?
call gradient_localization(n_mo_dim_act, dim_list_act_orb, list_act, my_gradient_loc_act, my_CC_loc_act , norm_grad)
END_PROVIDER
#+END_SRC
***** Inactive MOs
#+BEGIN_SRC f90 :comments org !
:tangle my_providers.irp.f
BEGIN_PROVIDER [ double precision, my_gradient_loc_inact, (n_mo_dim_inact) ]
&BEGIN_PROVIDER [ double precision, my_CC_loc_inact ]
implicit none
BEGIN_DOC
! - Gradient of the MO localization with respect to the MO rotations for the inactive MOs
! - Maximal element of the gradient in absolute value
END_DOC
double precision :: norm_grad
!PROVIDE something ?
call gradient_localization(n_mo_dim_inact, dim_list_inact_orb, list_inact, my_gradient_loc_inact, my_CC_loc_inact , norm_grad)
END_PROVIDER
#+END_SRC
***** Virtual MOs
#+BEGIN_SRC f90 :comments org
!:tangle my_providers.irp.f
BEGIN_PROVIDER [ double precision, my_gradient_loc_virt, (n_mo_dim_virt) ]
&BEGIN_PROVIDER [ double precision, my_CC_loc_virt ]
implicit none
BEGIN_DOC
! - Gradient of the MO localization with respect to the MO rotations for the virtual MOs
! - Maximal element of the gradient in absolute value
END_DOC
double precision :: norm_grad
!PROVIDE something ?
call gradient_localization(n_mo_dim_virt, dim_list_virt_orb, list_virt, my_gradient_loc_virt, my_CC_loc_virt , norm_grad)
END_PROVIDER
#+END_SRC
**** Hessian
***** Core MOs
#+BEGIN_SRC f90 :comments org
!:tangle my_providers.irp.f
BEGIN_PROVIDER [ double precision, my_hessian_loc_core, (n_mo_dim_core) ]
implicit none
BEGIN_DOC
! - Hessian of the MO localization with respect to the MO rotations for the core MOs
END_DOC
!PROVIDE something ?
call hessian_localization(n_mo_dim_core, dim_list_core_orb, list_core, my_hessian_loc_core)
END_PROVIDER
#+END_SRC
***** Active MOs
#+BEGIN_SRC f90 :comments org
!:tangle my_providers.irp.f
BEGIN_PROVIDER [ double precision, my_hessian_loc_act, (n_mo_dim_act) ]
implicit none
BEGIN_DOC
! - Hessian of the MO localization with respect to the MO rotations for the active MOs
END_DOC
!PROVIDE something ?
call hessian_localization(n_mo_dim_act, dim_list_act_orb, list_act, my_hessian_loc_act)
END_PROVIDER
#+END_SRC
***** Inactive MOs
#+BEGIN_SRC f90 :comments org
!:tangle my_providers.irp.f
BEGIN_PROVIDER [ double precision, my_hessian_loc_inact, (n_mo_dim_inact) ]
implicit none
BEGIN_DOC
! - Hessian of the MO localization with respect to the MO rotations for the inactive MOs
END_DOC
!PROVIDE something ?
call hessian_localization(n_mo_dim_inact, dim_list_inact_orb, list_inact, my_hessian_loc_inact)
END_PROVIDER
#+END_SRC
***** Virtual MOs
#+BEGIN_SRC f90 :comments org
!:tangle my_providers.irp.f
BEGIN_PROVIDER [ double precision, my_hessian_loc_virt, (n_mo_dim_virt) ]
implicit none
BEGIN_DOC
! - Hessian of the MO localization with respect to the MO rotations for the virtual MOs
END_DOC
!PROVIDE something ?
call hessian_localization(n_mo_dim_virt, dim_list_virt_orb, list_virt, my_hessian_loc_virt)
END_PROVIDER
#+END_SRC

View File

@ -0,0 +1,91 @@
#+BEGIN_SRC f90 :comments org :tangle optimization.irp.f
program optimization
read_wf = .true. ! must be True for the orbital optimization !!!
TOUCH read_wf
call run_optimization
end
#+END_SRC
#+BEGIN_SRC f90 :comments org :tangle optimization.irp.f
subroutine run_optimization
implicit none
double precision :: e_cipsi, e_opt, delta_e
integer :: nb_iter,i
logical :: not_converged
character (len=100) :: filename
PROVIDE psi_det psi_coef mo_two_e_integrals_in_map
not_converged = .True.
nb_iter = 0
! To start from the wf
N_det_max = max(n_det,5)
TOUCH N_det_max
open(unit=10, file=trim(ezfio_filename)//'/mo_optimization/result_opt')
write(10,*) " Ndet E_cipsi E_opt Delta_e"
call state_average_energy(e_cipsi)
write(10,'(I10, 3F15.7)') n_det, e_cipsi, e_cipsi, 0d0
close(10)
do while (not_converged)
print*,''
print*,'======================'
print*,' Cipsi step:', nb_iter
print*,'======================'
print*,''
print*,'********** cipsi step **********'
! cispi calculation
call run_stochastic_cipsi
! State average energy after the cipsi step
call state_average_energy(e_cipsi)
print*,''
print*,'********** optimization step **********'
! orbital optimization
call run_orb_opt_trust_v2
! State average energy after the orbital optimization
call state_average_energy(e_opt)
print*,''
print*,'********** diff step **********'
! Gain in energy
delta_e = e_opt - e_cipsi
print*, 'Gain in energy during the orbital optimization:', delta_e
open(unit=10, file=trim(ezfio_filename)//'/mo_optimization/result_opt', position='append')
write(10,'(I10, 3F15.7)') n_det, e_cipsi, e_opt, delta_e
close(10)
! Exit
if (delta_e > 1d-12) then
print*, 'WARNING, something wrong happened'
print*, 'The gain (delta_e) in energy during the optimization process'
print*, 'is > 0, but it must be < 0'
print*, 'The program will exit'
exit
endif
if (n_det > n_det_max_opt) then
print*, 'The number of determinants in the wf > n_det_max_opt'
print*, 'The program will exit'
exit
endif
! To double the number of determinants in the wf
N_det_max = int(dble(n_det * 2)*0.9)
TOUCH N_det_max
nb_iter = nb_iter + 1
enddo
end
#+END_SRC

View File

@ -0,0 +1,349 @@
* Orbital optimization program
This is an optimization program for molecular orbitals. It produces
orbital rotations in order to lower the energy of a truncated wave
function.
This program just optimize the orbitals for a fixed number of
determinants. This optimization process must be repeated for different
number of determinants.
#+BEGIN_SRC f90 :comments org :tangle orb_opt.irp.f
#+END_SRC
* Main program : orb_opt_trust
#+BEGIN_SRC f90 :comments org :tangle orb_opt.irp.f
program orb_opt
read_wf = .true. ! must be True for the orbital optimization !!!
TOUCH read_wf
io_mo_two_e_integrals = 'None'
TOUCH io_mo_two_e_integrals
call run_orb_opt_trust_v2
end
#+END_SRC
* Subroutine : run_orb_opt_trust
#+BEGIN_SRC f90 :comments org :tangle run_orb_opt_trust_v2.irp.f
#+END_SRC
Subroutine to optimize the MOs using a trust region algorithm:
- choice of the method
- initialization
- optimization until convergence
The optimization use the trust region algorithm, the different parts
are explained in the corresponding subroutine files.
qp_edit:
| thresh_opt_max_elem_grad |
| optimization_max_nb_iter |
| optimization_method |
Provided:
| mo_num | integer | number of MOs |
| ao_num | integer | number of AOs |
| N_states | integer | number of states |
| ci_energy(N_states) | double precision | CI energies |
| state_average_weight(N_states) | double precision | Weight of the different states |
Variables:
| m | integer | number of active MOs |
| tmp_n | integer | m*(m-1)/2, number of MO parameters |
| tmp_n2 | integer | m*(m-1)/2 or 1 if the hessian is diagonal |
| v_grad(tmp_n) | double precision | gradient |
| H(tmp_n,tmp_n) | double precision | hessian (2D) |
| h_f(m,m,m,m) | double precision | hessian (4D) |
| e_val(m) | double precision | eigenvalues of the hessian |
| w(m,m) | double precision | eigenvectors of the hessian |
| x(m) | double precision | step given by the trust region |
| m_x(m,m) | double precision | step given by the trust region after |
| tmp_R(m,m) | double precision | rotation matrix for active MOs |
| R(mo_num,mo_num) | double precision | full rotation matrix |
| prev_mos(ao_num,mo_num) | double precision | previous MOs (before the rotation) |
| new_mos(ao_num,mo_num) | double precision | new MOs (after the roration) |
| delta | double precision | radius of the trust region |
| rho | double precision | agreement between the model and the exact function |
| max_elem | double precision | maximum element in the gradient |
| i | integer | index |
| tmp_i,tmp_j | integer | indexes in the subspace containing only |
| | | the active MOs |
| converged | logical | convergence of the algorithm |
| cancel_step | logical | if the step must be cancelled |
| nb_iter | integer | number of iterations (accepted) |
| nb_diag | integer | number of diagonalizations of the CI matrix |
| nb_cancel | integer | number of cancelled steps for the actual iteration |
| nb_cancel_tot | integer | total number of cancel steps |
| info | integer | if 0 ok, else problem in the diagonalization of |
| | | the hessian with the Lapack routine |
| criterion | double precision | energy at a given step |
| prev_criterion | double precision | energy before the rotation |
| criterion_model | double precision | estimated energy after the rotation using |
| | | a Taylor series |
| must_exit | logical | To exit the trust region algorithm when |
| | | criterion - criterion_model is too small |
| enforce_step_cancellation | logical | To force the cancellation of the step if the |
| | | error in the rotation matrix is too large |
#+BEGIN_SRC f90 :comments org :tangle run_orb_opt_trust_v2.irp.f
subroutine run_orb_opt_trust_v2
include 'constants.h'
implicit none
BEGIN_DOC
! Orbital optimization
END_DOC
! Variables
double precision, allocatable :: R(:,:)
double precision, allocatable :: H(:,:),h_f(:,:,:,:)
double precision, allocatable :: v_grad(:)
double precision, allocatable :: prev_mos(:,:),new_mos(:,:)
integer :: info
integer :: n
integer :: i,j,p,q,k
double precision :: max_elem_grad, delta, rho, norm_grad, normalization_factor
logical :: cancel_step
integer :: nb_iter, nb_diag, nb_cancel, nb_cancel_tot, nb_sub_iter
double precision :: t1, t2, t3
double precision :: prev_criterion, criterion, criterion_model
logical :: not_converged, must_exit, enforce_step_cancellation
integer :: m, tmp_n, tmp_i, tmp_j, tmp_k, tmp_n2
integer,allocatable :: tmp_list(:), key(:)
double precision, allocatable :: tmp_m_x(:,:),tmp_R(:,:), tmp_x(:), W(:,:), e_val(:)
PROVIDE mo_two_e_integrals_in_map ci_energy psi_det psi_coef
#+END_SRC
** Allocation
#+BEGIN_SRC f90 :comments org :tangle run_orb_opt_trust_v2.irp.f
allocate(R(mo_num,mo_num)) ! rotation matrix
allocate(prev_mos(ao_num,mo_num), new_mos(ao_num,mo_num)) ! old and new MOs
! Definition of m and tmp_n
m = dim_list_act_orb
tmp_n = m*(m-1)/2
allocate(tmp_list(m))
allocate(tmp_R(m,m), tmp_m_x(m,m), tmp_x(tmp_n))
allocate(e_val(tmp_n),key(tmp_n),v_grad(tmp_n))
#+END_SRC
** Method
There are three different methods :
- the "full" hessian, which uses all the elements of the hessian
matrix"
- the "diagonal" hessian, which uses only the diagonal elements of the
hessian
- without the hessian (hessian = identity matrix)
#+BEGIN_SRC f90 :comments org :tangle run_orb_opt_trust_v2.irp.f
!Display the method
print*, 'Method :', optimization_method
if (optimization_method == 'full') then
print*, 'Full hessian'
allocate(H(tmp_n,tmp_n), h_f(m,m,m,m),W(tmp_n,tmp_n))
tmp_n2 = tmp_n
elseif (optimization_method == 'diag') then
print*,'Diagonal hessian'
allocate(H(tmp_n,1),W(tmp_n,1))
tmp_n2 = 1
elseif (optimization_method == 'none') then
print*,'No hessian'
allocate(H(tmp_n,1),W(tmp_n,1))
tmp_n2 = 1
else
print*,'Unknown optimization_method, please select full, diag or none'
call abort
endif
print*, 'Absolute value of the hessian:', absolute_eig
#+END_SRC
** Calculations
*** Algorithm
Here is the main algorithm of the optimization:
- First of all we initialize some parameters and we compute the
criterion (the ci energy) before doing any MO rotations
- We compute the gradient and the hessian for the active MOs
- We diagonalize the hessian
- We compute a step and loop to reduce the radius of the
trust region (and the size of the step by the way) until the step is
accepted
- We repeat the process until the convergence
NB: the convergence criterion can be changed
#+BEGIN_SRC f90 :comments org :tangle run_orb_opt_trust_v2.irp.f
! Loop until the convergence of the optimization
! call diagonalize_ci
!### Initialization ###
nb_iter = 0
rho = 0.5d0
not_converged = .True.
tmp_list = list_act ! Optimization of the active MOs
nb_cancel_tot = 0
! Renormalization of the weights of the states
call state_weight_normalization
! Compute the criterion before the loop
call state_average_energy(prev_criterion)
do while (not_converged)
print*,''
print*,'******************'
print*,'Iteration', nb_iter
print*,'******************'
print*,''
! Gradient
call gradient_list_opt(tmp_n, m, tmp_list, v_grad, max_elem_grad, norm_grad)
! Hessian
if (optimization_method == 'full') then
! Full hessian
call hessian_list_opt(tmp_n, m, tmp_list, H, h_f)
! Diagonalization of the hessian
call diagonalization_hessian(tmp_n, H, e_val, w)
elseif (optimization_method == 'diag') then
! Diagonal hessian
call diag_hessian_list_opt(tmp_n, m, tmp_list, H)
else
! Identity matrix
do tmp_i = 1, tmp_n
H(tmp_i,1) = 1d0
enddo
endif
if (optimization_method /= 'full') then
! Sort
do tmp_i = 1, tmp_n
key(tmp_i) = tmp_i
e_val(tmp_i) = H(tmp_i,1)
enddo
call dsort(e_val,key,tmp_n)
! Eigenvalues and eigenvectors
do tmp_i = 1, tmp_n
w(tmp_i,1) = dble(key(tmp_i))
enddo
endif
! Init before the internal loop
cancel_step = .True. ! To enter in the loop just after
nb_cancel = 0
nb_sub_iter = 0
! Loop to reduce the trust radius until the criterion decreases and rho >= thresh_rho
do while (cancel_step)
print*,''
print*,'-----------------------------'
print*,'Iteration: ', nb_iter
print*,'Sub iteration:', nb_sub_iter
print*,'Max elem grad:', max_elem_grad
print*,'-----------------------------'
! Hessian,gradient,Criterion -> x
call trust_region_step_w_expected_e(tmp_n,tmp_n2,H,W,e_val,v_grad,prev_criterion,rho,nb_iter,delta,criterion_model,tmp_x,must_exit)
if (must_exit) then
print*,'step_in_trust_region sends: Exit'
exit
endif
! 1D tmp -> 2D tmp
call vec_to_mat_v2(tmp_n, m, tmp_x, tmp_m_x)
! Rotation matrix for the active MOs
call rotation_matrix(tmp_m_x, m, tmp_R, m, m, info, enforce_step_cancellation)
! Security to ensure an unitary transformation
if (enforce_step_cancellation) then
print*, 'Step cancellation, too large error in the rotation matrix'
rho = 0d0
cycle
endif
! tmp_R to R, subspace to full space
call sub_to_full_rotation_matrix(m, tmp_list, tmp_R, R)
! MO rotations
call apply_mo_rotation(R, prev_mos)
! Update of the energy before the diagonalization of the hamiltonian
call clear_mo_map
TOUCH mo_coef psi_det psi_coef ci_energy two_e_dm_mo
call state_average_energy(criterion)
! Criterion -> step accepted or rejected
call trust_region_is_step_cancelled(nb_iter, prev_criterion, criterion, criterion_model, rho, cancel_step)
! Cancellation of the step if necessary
if (cancel_step) then
mo_coef = prev_mos
call save_mos()
nb_cancel = nb_cancel + 1
nb_cancel_tot = nb_cancel_tot + 1
else
! Diagonalization of the hamiltonian
FREE ci_energy! To enforce the recomputation
call diagonalize_ci
call save_wavefunction_unsorted
! Energy obtained after the diagonalization of the CI matrix
call state_average_energy(prev_criterion)
endif
nb_sub_iter = nb_sub_iter + 1
enddo
call save_mos() !### depend of the time for 1 iteration
! To exit the external loop if must_exit = .True.
if (must_exit) then
exit
endif
! Step accepted, nb iteration + 1
nb_iter = nb_iter + 1
! External loop exit conditions
if (DABS(max_elem_grad) < thresh_opt_max_elem_grad) then
print*,'Converged: DABS(max_elem_grad) < thresh_opt_max_elem_grad'
not_converged = .False.
endif
if (nb_iter >= optimization_max_nb_iter) then
print*,'Not converged: nb_iter >= optimization_max_nb_iter'
not_converged = .False.
endif
if (.not. not_converged) then
print*,'#############################'
print*,' End of the optimization'
print*,'#############################'
endif
enddo
#+END_SRC
** Deallocation, end
#+BEGIN_SRC f90 :comments org :tangle run_orb_opt_trust_v2.irp.f
deallocate(v_grad,H,R,W,e_val)
deallocate(prev_mos,new_mos)
if (optimization_method == 'full') then
deallocate(h_f)
endif
end
#+END_SRC

View File

@ -0,0 +1,73 @@
* State average energy
Calculation of the state average energy from the integrals and the
density matrices.
\begin{align*}
E = \sum_{ij} h_{ij} \gamma_{ij} + \frac{1}{2} v_{ij}^{kl} \Gamma_{ij}^{kl}
\end{align*}
$h_{ij}$: mono-electronic integral
$\gamma_{ij}$: one electron density matrix
$v_{ij}^{kl}$: bi-electronic integral
$\Gamma_{ij}^{kl}$: two electrons density matrix
TODO: OMP version
PROVIDED:
| mo_one_e_integrals | double precision | mono-electronic integrals |
| get_two_e_integral | double precision | bi-electronic integrals |
| one_e_dm_mo | double precision | one electron density matrix |
| two_e_dm_mo | double precision | two electrons density matrix |
| nuclear_repulsion | double precision | nuclear repulsion |
| mo_num | integer | number of MOs |
Output:
| energy | double precision | state average energy |
Internal:
| mono_e | double precision | mono-electronic energy |
| bi_e | double precision | bi-electronic energy |
| i,j,k,l | integer | indexes to loop over the MOs |
#+BEGIN_SRC f90 :comments org :tangle state_average_energy.irp.f
subroutine state_average_energy(energy)
implicit none
double precision, intent(out) :: energy
double precision :: get_two_e_integral
double precision :: mono_e, bi_e
integer :: i,j,k,l
! mono electronic part
mono_e = 0d0
do j = 1, mo_num
do i = 1, mo_num
mono_e = mono_e + mo_one_e_integrals(i,j) * one_e_dm_mo(i,j)
enddo
enddo
! bi electronic part
bi_e = 0d0
do l = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do i = 1, mo_num
bi_e = bi_e + get_two_e_integral(i,j,k,l,mo_integrals_map) * two_e_dm_mo(i,j,k,l)
enddo
enddo
enddo
enddo
! State average energy
energy = mono_e + 0.5d0 * bi_e + nuclear_repulsion
! Check
!call print_energy_components
print*,'State average energy:', energy
!print*,ci_energy
end
#+END_SRC

View File

@ -0,0 +1,31 @@
#+BEGIN_SRC f90 :comments org :tangle state_weight_normalization.irp.f
subroutine state_weight_normalization
implicit none
BEGIN_DOC
! Renormalization of the state weights or enforcing state average
! weights for orbital optimization
END_DOC
integer :: i
double precision :: normalization_factor
! To normalize the sum of the state weights
normalization_factor = 0d0
do i = 1, N_states
normalization_factor = normalization_factor + state_average_weight(i)
enddo
normalization_factor = 1d0 / normalization_factor
do i = 1, N_states
state_average_weight(i) = state_average_weight(i) * normalization_factor
enddo
TOUCH state_average_weight
print*, 'Number of states:', N_states
print*, 'State average weights:'
print*, state_average_weight(:)
end
#+END_SRC

View File

@ -0,0 +1,16 @@
Subroutine toupdate the parameters.
Ex: TOUCH mo_coef ...
#+BEGIN_SRC f90 :comments org :tangle update_parameters.irp.f
subroutine update_parameters()
implicit none
!### TODO
! Touch yours parameters
call clear_mo_map
TOUCH mo_coef psi_det psi_coef
call diagonalize_ci
call save_wavefunction_unsorted
end
#+END_SRC

View File

@ -0,0 +1,26 @@
* Update the CI state average energy
Computes the state average energy
\begin{align*}
E =\sum_{i=1}^{N_{states}} E_i . w_i
\end{align*}
$E_i$: energy of state i
$w_i$: weight of state i
#+BEGIN_SRC f90 :comments org :tangle update_st_av_ci_energy.irp.f
subroutine update_st_av_ci_energy(energy)
implicit none
double precision, intent(out) :: energy
integer :: i
energy = 0d0
do i = 1, N_states
energy = energy + ci_energy(i) * state_average_weight(i)
enddo
print*, 'ci_energy :', energy
end
#+END_SRC

View File

@ -0,0 +1,317 @@
! Subroutine : run_orb_opt_trust
! Subroutine to optimize the MOs using a trust region algorithm:
! - choice of the method
! - initialization
! - optimization until convergence
! The optimization use the trust region algorithm, the different parts
! are explained in the corresponding subroutine files.
! qp_edit:
! | thresh_opt_max_elem_grad |
! | optimization_max_nb_iter |
! | optimization_method |
! Provided:
! | mo_num | integer | number of MOs |
! | ao_num | integer | number of AOs |
! | N_states | integer | number of states |
! | ci_energy(N_states) | double precision | CI energies |
! | state_average_weight(N_states) | double precision | Weight of the different states |
! Variables:
! | m | integer | number of active MOs |
! | tmp_n | integer | m*(m-1)/2, number of MO parameters |
! | tmp_n2 | integer | m*(m-1)/2 or 1 if the hessian is diagonal |
! | v_grad(tmp_n) | double precision | gradient |
! | H(tmp_n,tmp_n) | double precision | hessian (2D) |
! | h_f(m,m,m,m) | double precision | hessian (4D) |
! | e_val(m) | double precision | eigenvalues of the hessian |
! | w(m,m) | double precision | eigenvectors of the hessian |
! | x(m) | double precision | step given by the trust region |
! | m_x(m,m) | double precision | step given by the trust region after |
! | tmp_R(m,m) | double precision | rotation matrix for active MOs |
! | R(mo_num,mo_num) | double precision | full rotation matrix |
! | prev_mos(ao_num,mo_num) | double precision | previous MOs (before the rotation) |
! | new_mos(ao_num,mo_num) | double precision | new MOs (after the roration) |
! | delta | double precision | radius of the trust region |
! | rho | double precision | agreement between the model and the exact function |
! | max_elem | double precision | maximum element in the gradient |
! | i | integer | index |
! | tmp_i,tmp_j | integer | indexes in the subspace containing only |
! | | | the active MOs |
! | converged | logical | convergence of the algorithm |
! | cancel_step | logical | if the step must be cancelled |
! | nb_iter | integer | number of iterations (accepted) |
! | nb_diag | integer | number of diagonalizations of the CI matrix |
! | nb_cancel | integer | number of cancelled steps for the actual iteration |
! | nb_cancel_tot | integer | total number of cancel steps |
! | info | integer | if 0 ok, else problem in the diagonalization of |
! | | | the hessian with the Lapack routine |
! | criterion | double precision | energy at a given step |
! | prev_criterion | double precision | energy before the rotation |
! | criterion_model | double precision | estimated energy after the rotation using |
! | | | a Taylor series |
! | must_exit | logical | To exit the trust region algorithm when |
! | | | criterion - criterion_model is too small |
! | enforce_step_cancellation | logical | To force the cancellation of the step if the |
! | | | error in the rotation matrix is too large |
subroutine run_orb_opt_trust_v2
include 'constants.h'
implicit none
BEGIN_DOC
! Orbital optimization
END_DOC
! Variables
double precision, allocatable :: R(:,:)
double precision, allocatable :: H(:,:),h_f(:,:,:,:)
double precision, allocatable :: v_grad(:)
double precision, allocatable :: prev_mos(:,:),new_mos(:,:)
integer :: info
integer :: n
integer :: i,j,p,q,k
double precision :: max_elem_grad, delta, rho, norm_grad, normalization_factor
logical :: cancel_step
integer :: nb_iter, nb_diag, nb_cancel, nb_cancel_tot, nb_sub_iter
double precision :: t1, t2, t3
double precision :: prev_criterion, criterion, criterion_model
logical :: not_converged, must_exit, enforce_step_cancellation
integer :: m, tmp_n, tmp_i, tmp_j, tmp_k, tmp_n2
integer,allocatable :: tmp_list(:), key(:)
double precision, allocatable :: tmp_m_x(:,:),tmp_R(:,:), tmp_x(:), W(:,:), e_val(:)
PROVIDE mo_two_e_integrals_in_map ci_energy psi_det psi_coef
! Allocation
allocate(R(mo_num,mo_num)) ! rotation matrix
allocate(prev_mos(ao_num,mo_num), new_mos(ao_num,mo_num)) ! old and new MOs
! Definition of m and tmp_n
m = dim_list_act_orb
tmp_n = m*(m-1)/2
allocate(tmp_list(m))
allocate(tmp_R(m,m), tmp_m_x(m,m), tmp_x(tmp_n))
allocate(e_val(tmp_n),key(tmp_n),v_grad(tmp_n))
! Method
! There are three different methods :
! - the "full" hessian, which uses all the elements of the hessian
! matrix"
! - the "diagonal" hessian, which uses only the diagonal elements of the
! hessian
! - without the hessian (hessian = identity matrix)
!Display the method
print*, 'Method :', optimization_method
if (optimization_method == 'full') then
print*, 'Full hessian'
allocate(H(tmp_n,tmp_n), h_f(m,m,m,m),W(tmp_n,tmp_n))
tmp_n2 = tmp_n
elseif (optimization_method == 'diag') then
print*,'Diagonal hessian'
allocate(H(tmp_n,1),W(tmp_n,1))
tmp_n2 = 1
elseif (optimization_method == 'none') then
print*,'No hessian'
allocate(H(tmp_n,1),W(tmp_n,1))
tmp_n2 = 1
else
print*,'Unknown optimization_method, please select full, diag or none'
call abort
endif
print*, 'Absolute value of the hessian:', absolute_eig
! Algorithm
! Here is the main algorithm of the optimization:
! - First of all we initialize some parameters and we compute the
! criterion (the ci energy) before doing any MO rotations
! - We compute the gradient and the hessian for the active MOs
! - We diagonalize the hessian
! - We compute a step and loop to reduce the radius of the
! trust region (and the size of the step by the way) until the step is
! accepted
! - We repeat the process until the convergence
! NB: the convergence criterion can be changed
! Loop until the convergence of the optimization
! call diagonalize_ci
!### Initialization ###
nb_iter = 0
rho = 0.5d0
not_converged = .True.
tmp_list = list_act ! Optimization of the active MOs
nb_cancel_tot = 0
! Renormalization of the weights of the states
call state_weight_normalization
! Compute the criterion before the loop
call state_average_energy(prev_criterion)
do while (not_converged)
print*,''
print*,'******************'
print*,'Iteration', nb_iter
print*,'******************'
print*,''
! Gradient
call gradient_list_opt(tmp_n, m, tmp_list, v_grad, max_elem_grad, norm_grad)
! Hessian
if (optimization_method == 'full') then
! Full hessian
call hessian_list_opt(tmp_n, m, tmp_list, H, h_f)
! Diagonalization of the hessian
call diagonalization_hessian(tmp_n, H, e_val, w)
elseif (optimization_method == 'diag') then
! Diagonal hessian
call diag_hessian_list_opt(tmp_n, m, tmp_list, H)
else
! Identity matrix
do tmp_i = 1, tmp_n
H(tmp_i,1) = 1d0
enddo
endif
if (optimization_method /= 'full') then
! Sort
do tmp_i = 1, tmp_n
key(tmp_i) = tmp_i
e_val(tmp_i) = H(tmp_i,1)
enddo
call dsort(e_val,key,tmp_n)
! Eigenvalues and eigenvectors
do tmp_i = 1, tmp_n
w(tmp_i,1) = dble(key(tmp_i))
enddo
endif
! Init before the internal loop
cancel_step = .True. ! To enter in the loop just after
nb_cancel = 0
nb_sub_iter = 0
! Loop to reduce the trust radius until the criterion decreases and rho >= thresh_rho
do while (cancel_step)
print*,''
print*,'-----------------------------'
print*,'Iteration: ', nb_iter
print*,'Sub iteration:', nb_sub_iter
print*,'Max elem grad:', max_elem_grad
print*,'-----------------------------'
! Hessian,gradient,Criterion -> x
call trust_region_step_w_expected_e(tmp_n,tmp_n2,H,W,e_val,v_grad,prev_criterion,rho,nb_iter,delta,criterion_model,tmp_x,must_exit)
if (must_exit) then
print*,'step_in_trust_region sends: Exit'
exit
endif
! 1D tmp -> 2D tmp
call vec_to_mat_v2(tmp_n, m, tmp_x, tmp_m_x)
! Rotation matrix for the active MOs
call rotation_matrix(tmp_m_x, m, tmp_R, m, m, info, enforce_step_cancellation)
! Security to ensure an unitary transformation
if (enforce_step_cancellation) then
print*, 'Step cancellation, too large error in the rotation matrix'
rho = 0d0
cycle
endif
! tmp_R to R, subspace to full space
call sub_to_full_rotation_matrix(m, tmp_list, tmp_R, R)
! MO rotations
call apply_mo_rotation(R, prev_mos)
! Update of the energy before the diagonalization of the hamiltonian
call clear_mo_map
TOUCH mo_coef psi_det psi_coef ci_energy two_e_dm_mo
call state_average_energy(criterion)
! Criterion -> step accepted or rejected
call trust_region_is_step_cancelled(nb_iter, prev_criterion, criterion, criterion_model, rho, cancel_step)
! Cancellation of the step if necessary
if (cancel_step) then
mo_coef = prev_mos
call save_mos()
nb_cancel = nb_cancel + 1
nb_cancel_tot = nb_cancel_tot + 1
else
! Diagonalization of the hamiltonian
FREE ci_energy! To enforce the recomputation
call diagonalize_ci
call save_wavefunction_unsorted
! Energy obtained after the diagonalization of the CI matrix
call state_average_energy(prev_criterion)
endif
nb_sub_iter = nb_sub_iter + 1
enddo
call save_mos() !### depend of the time for 1 iteration
! To exit the external loop if must_exit = .True.
if (must_exit) then
exit
endif
! Step accepted, nb iteration + 1
nb_iter = nb_iter + 1
! External loop exit conditions
if (DABS(max_elem_grad) < thresh_opt_max_elem_grad) then
print*,'Converged: DABS(max_elem_grad) < thresh_opt_max_elem_grad'
not_converged = .False.
endif
if (nb_iter >= optimization_max_nb_iter) then
print*,'Not converged: nb_iter >= optimization_max_nb_iter'
not_converged = .False.
endif
if (.not. not_converged) then
print*,'#############################'
print*,' End of the optimization'
print*,'#############################'
endif
enddo
! Deallocation, end
deallocate(v_grad,H,R,W,e_val)
deallocate(prev_mos,new_mos)
if (optimization_method == 'full') then
deallocate(h_f)
endif
end

View File

@ -0,0 +1,9 @@
subroutine save_energy(E,pt2)
implicit none
BEGIN_DOC
! Saves the energy in |EZFIO|.
END_DOC
double precision, intent(in) :: E(N_states), pt2(N_states)
call ezfio_set_fci_energy(E(1:N_states))
call ezfio_set_fci_energy_pt2(E(1:N_states)+pt2(1:N_states))
end

View File

@ -0,0 +1,72 @@
! State average energy
! Calculation of the state average energy from the integrals and the
! density matrices.
! \begin{align*}
! E = \sum_{ij} h_{ij} \gamma_{ij} + \frac{1}{2} v_{ij}^{kl} \Gamma_{ij}^{kl}
! \end{align*}
! $h_{ij}$: mono-electronic integral
! $\gamma_{ij}$: one electron density matrix
! $v_{ij}^{kl}$: bi-electronic integral
! $\Gamma_{ij}^{kl}$: two electrons density matrix
! TODO: OMP version
! PROVIDED:
! | mo_one_e_integrals | double precision | mono-electronic integrals |
! | get_two_e_integral | double precision | bi-electronic integrals |
! | one_e_dm_mo | double precision | one electron density matrix |
! | two_e_dm_mo | double precision | two electrons density matrix |
! | nuclear_repulsion | double precision | nuclear repulsion |
! | mo_num | integer | number of MOs |
! Output:
! | energy | double precision | state average energy |
! Internal:
! | mono_e | double precision | mono-electronic energy |
! | bi_e | double precision | bi-electronic energy |
! | i,j,k,l | integer | indexes to loop over the MOs |
subroutine state_average_energy(energy)
implicit none
double precision, intent(out) :: energy
double precision :: get_two_e_integral
double precision :: mono_e, bi_e
integer :: i,j,k,l
! mono electronic part
mono_e = 0d0
do j = 1, mo_num
do i = 1, mo_num
mono_e = mono_e + mo_one_e_integrals(i,j) * one_e_dm_mo(i,j)
enddo
enddo
! bi electronic part
bi_e = 0d0
do l = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do i = 1, mo_num
bi_e = bi_e + get_two_e_integral(i,j,k,l,mo_integrals_map) * two_e_dm_mo(i,j,k,l)
enddo
enddo
enddo
enddo
! State average energy
energy = mono_e + 0.5d0 * bi_e + nuclear_repulsion
! Check
!call print_energy_components
print*,'State average energy:', energy
!print*,ci_energy
end

View File

@ -0,0 +1,29 @@
subroutine state_weight_normalization
implicit none
BEGIN_DOC
! Renormalization of the state weights or enforcing state average
! weights for orbital optimization
END_DOC
integer :: i
double precision :: normalization_factor
! To normalize the sum of the state weights
normalization_factor = 0d0
do i = 1, N_states
normalization_factor = normalization_factor + state_average_weight(i)
enddo
normalization_factor = 1d0 / normalization_factor
do i = 1, N_states
state_average_weight(i) = state_average_weight(i) * normalization_factor
enddo
TOUCH state_average_weight
print*, 'Number of states:', N_states
print*, 'State average weights:'
print*, state_average_weight(:)
end

View File

@ -0,0 +1,15 @@
! Subroutine toupdate the parameters.
! Ex: TOUCH mo_coef ...
subroutine update_parameters()
implicit none
!### TODO
! Touch yours parameters
call clear_mo_map
TOUCH mo_coef psi_det psi_coef
call diagonalize_ci
call save_wavefunction_unsorted
end

View File

@ -0,0 +1,25 @@
! Update the CI state average energy
! Computes the state average energy
! \begin{align*}
! E =\sum_{i=1}^{N_{states}} E_i . w_i
! \end{align*}
! $E_i$: energy of state i
! $w_i$: weight of state i
subroutine update_st_av_ci_energy(energy)
implicit none
double precision, intent(out) :: energy
integer :: i
energy = 0d0
do i = 1, N_states
energy = energy + ci_energy(i) * state_average_weight(i)
enddo
print*, 'ci_energy :', energy
end

View File

@ -0,0 +1,11 @@
# Utils trust region
The documentation can be found in the org files.
# Org files
The org files are stored in the directory org in order to avoid overwriting on user changes.
The org files can be modified, to export the change to the source code, run
```
./TANGLE_org_mode.sh
mv *.irp.f ../.
```

View File

@ -1,5 +0,0 @@
============
trust_region
============
The documentation can be found in the org files.

View File

@ -133,19 +133,19 @@
! | must_exit | logical | If the program must exit the loop | ! | must_exit | logical | If the program must exit the loop |
subroutine trust_region_step_w_expected_e(n,H,W,e_val,v_grad,prev_criterion,rho,nb_iter,delta,criterion_model,x,must_exit) subroutine trust_region_step_w_expected_e(n,n2,H,W,e_val,v_grad,prev_criterion,rho,nb_iter,delta,criterion_model,x,must_exit)
include 'pi.h' include 'pi.h'
BEGIN_DOC !BEGIN_DOC
! Compute the step and the expected criterion/energy after the step ! Compute the step and the expected criterion/energy after the step
END_DOC !END_DOC
implicit none implicit none
! in ! in
integer, intent(in) :: n, nb_iter integer, intent(in) :: n,n2, nb_iter
double precision, intent(in) :: H(n,n), W(n,n), v_grad(n) double precision, intent(in) :: H(n,n2), W(n,n2), v_grad(n)
double precision, intent(in) :: rho, prev_criterion double precision, intent(in) :: rho, prev_criterion
! inout ! inout
@ -160,9 +160,9 @@ subroutine trust_region_step_w_expected_e(n,H,W,e_val,v_grad,prev_criterion,rho,
must_exit = .False. must_exit = .False.
call trust_region_step(n,nb_iter,v_grad,rho,e_val,W,x,delta) call trust_region_step(n,n2,nb_iter,v_grad,rho,e_val,W,x,delta)
call trust_region_expected_e(n,v_grad,H,x,prev_criterion,criterion_model) call trust_region_expected_e(n,n2,v_grad,H,x,prev_criterion,criterion_model)
! exit if DABS(prev_criterion - criterion_model) < 1d-12 ! exit if DABS(prev_criterion - criterion_model) < 1d-12
if (DABS(prev_criterion - criterion_model) < thresh_model) then if (DABS(prev_criterion - criterion_model) < thresh_model) then
@ -210,9 +210,9 @@ subroutine trust_region_is_step_cancelled(nb_iter,prev_criterion, criterion, cri
include 'pi.h' include 'pi.h'
BEGIN_DOC !BEGIN_DOC
! Compute if the step should be cancelled ! Compute if the step should be cancelled
END_DOC !END_DOC
implicit none implicit none

View File

@ -25,9 +25,9 @@ subroutine apply_mo_rotation(R,prev_mos)
include 'pi.h' include 'pi.h'
BEGIN_DOC !BEGIN_DOC
! Compute the new MOs knowing the rotation matrix ! Compute the new MOs knowing the rotation matrix
END_DOC !END_DOC
implicit none implicit none
@ -60,12 +60,12 @@ subroutine apply_mo_rotation(R,prev_mos)
prev_mos = mo_coef prev_mos = mo_coef
mo_coef = new_mos mo_coef = new_mos
!if (debug) then if (debug) then
! print*,'New mo_coef : ' print*,'New mo_coef : '
! do i = 1, mo_num do i = 1, mo_num
! write(*,'(100(F10.5))') mo_coef(i,:) write(*,'(100(F10.5))') mo_coef(i,:)
! enddo enddo
!endif endif
! Save the new MOs and change the label ! Save the new MOs and change the label
mo_label = 'MCSCF' mo_label = 'MCSCF'

View File

@ -0,0 +1,7 @@
#!/bin/sh
list='ls *.org'
for element in $list
do
emacs --batch $element -f org-babel-tangle
done

View File

@ -132,19 +132,19 @@ Output:
| must_exit | logical | If the program must exit the loop | | must_exit | logical | If the program must exit the loop |
#+BEGIN_SRC f90 :comments org :tangle algo_trust.irp.f #+BEGIN_SRC f90 :comments org :tangle algo_trust.irp.f
subroutine trust_region_step_w_expected_e(n,H,W,e_val,v_grad,prev_criterion,rho,nb_iter,delta,criterion_model,x,must_exit) subroutine trust_region_step_w_expected_e(n,n2,H,W,e_val,v_grad,prev_criterion,rho,nb_iter,delta,criterion_model,x,must_exit)
include 'pi.h' include 'pi.h'
BEGIN_DOC !BEGIN_DOC
! Compute the step and the expected criterion/energy after the step ! Compute the step and the expected criterion/energy after the step
END_DOC !END_DOC
implicit none implicit none
! in ! in
integer, intent(in) :: n, nb_iter integer, intent(in) :: n,n2, nb_iter
double precision, intent(in) :: H(n,n), W(n,n), v_grad(n) double precision, intent(in) :: H(n,n2), W(n,n2), v_grad(n)
double precision, intent(in) :: rho, prev_criterion double precision, intent(in) :: rho, prev_criterion
! inout ! inout
@ -159,9 +159,9 @@ subroutine trust_region_step_w_expected_e(n,H,W,e_val,v_grad,prev_criterion,rho,
must_exit = .False. must_exit = .False.
call trust_region_step(n,nb_iter,v_grad,rho,e_val,W,x,delta) call trust_region_step(n,n2,nb_iter,v_grad,rho,e_val,W,x,delta)
call trust_region_expected_e(n,v_grad,H,x,prev_criterion,criterion_model) call trust_region_expected_e(n,n2,v_grad,H,x,prev_criterion,criterion_model)
! exit if DABS(prev_criterion - criterion_model) < 1d-12 ! exit if DABS(prev_criterion - criterion_model) < 1d-12
if (DABS(prev_criterion - criterion_model) < thresh_model) then if (DABS(prev_criterion - criterion_model) < thresh_model) then
@ -208,9 +208,9 @@ subroutine trust_region_is_step_cancelled(nb_iter,prev_criterion, criterion, cri
include 'pi.h' include 'pi.h'
BEGIN_DOC !BEGIN_DOC
! Compute if the step should be cancelled ! Compute if the step should be cancelled
END_DOC !END_DOC
implicit none implicit none
@ -310,7 +310,7 @@ subroutine algo_trust_template(tmp_n, tmp_list_size, tmp_list)
print*,'-----------------------------' print*,'-----------------------------'
! Hessian,gradient,Criterion -> x ! Hessian,gradient,Criterion -> x
call trust_region_step_w_expected_e(tmp_n, H_PROVIDER, W, e_val, g_PROVIDER, & call trust_region_step_w_expected_e(tmp_n,tmp_n, H_PROVIDER, W, e_val, g_PROVIDER, &
prev_criterion, rho, nb_iter, delta, criterion_model, tmp_x, must_exit) prev_criterion, rho, nb_iter, delta, criterion_model, tmp_x, must_exit)
if (must_exit) then if (must_exit) then
@ -489,7 +489,7 @@ subroutine algo_trust_cartesian_template(tmp_n)
print*,'-----------------------------' print*,'-----------------------------'
! Hessian,gradient,Criterion -> x ! Hessian,gradient,Criterion -> x
call trust_region_step_w_expected_e(tmp_n, H_PROVIDER, W, e_val, g_PROVIDER, & call trust_region_step_w_expected_e(tmp_n,tmp_n, H_PROVIDER, W, e_val, g_PROVIDER, &
prev_criterion, rho, nb_iter, delta, criterion_model, tmp_x, must_exit) prev_criterion, rho, nb_iter, delta, criterion_model, tmp_x, must_exit)
if (must_exit) then if (must_exit) then

View File

@ -25,9 +25,9 @@ subroutine apply_mo_rotation(R,prev_mos)
include 'pi.h' include 'pi.h'
BEGIN_DOC !BEGIN_DOC
! Compute the new MOs knowing the rotation matrix ! Compute the new MOs knowing the rotation matrix
END_DOC !END_DOC
implicit none implicit none
@ -60,12 +60,12 @@ subroutine apply_mo_rotation(R,prev_mos)
prev_mos = mo_coef prev_mos = mo_coef
mo_coef = new_mos mo_coef = new_mos
!if (debug) then if (debug) then
! print*,'New mo_coef : ' print*,'New mo_coef : '
! do i = 1, mo_num do i = 1, mo_num
! write(*,'(100(F10.5))') mo_coef(i,:) write(*,'(100(F10.5))') mo_coef(i,:)
! enddo enddo
!endif endif
! Save the new MOs and change the label ! Save the new MOs and change the label
mo_label = 'MCSCF' mo_label = 'MCSCF'

View File

@ -61,10 +61,10 @@ subroutine rotation_matrix(A,LDA,R,LDR,n,info,enforce_step_cancellation)
implicit none implicit none
BEGIN_DOC !BEGIN_DOC
! Rotation matrix to rotate the molecular orbitals. ! Rotation matrix to rotate the molecular orbitals.
! If the rotation is too large the transformation is not unitary and must be cancelled. ! If the rotation is too large the transformation is not unitary and must be cancelled.
END_DOC !END_DOC
include 'pi.h' include 'pi.h'
@ -188,7 +188,7 @@ subroutine rotation_matrix(A,LDA,R,LDR,n,info,enforce_step_cancellation)
endif endif
enddo enddo
enddo enddo
print*,'max element in A', max_elem_A !print*,'max element in A', max_elem_A
if (ABS(max_elem_A) > 2 * pi) then if (ABS(max_elem_A) > 2 * pi) then
print*,'' print*,''
@ -220,18 +220,16 @@ subroutine rotation_matrix(A,LDA,R,LDR,n,info,enforce_step_cancellation)
lwork = 3*n-1 lwork = 3*n-1
allocate(work(lwork,n)) allocate(work(lwork,n))
print*,'Starting diagonalization ...' !print*,'Starting diagonalization ...'
call dsyev('V','U',n,W,size(W,1),e_val,work,lwork,info2) call dsyev('V','U',n,W,size(W,1),e_val,work,lwork,info2)
deallocate(work) deallocate(work)
if (info2 == 0) then if (info2 < 0) then
print*, 'Diagonalization : Done'
elseif (info2 < 0) then
print*, 'WARNING: error in the diagonalization' print*, 'WARNING: error in the diagonalization'
print*, 'Illegal value of the ', info2,'-th parameter' print*, 'Illegal value of the ', info2,'-th parameter'
else elseif (info2 >0) then
print*, "WARNING: Diagonalization failed to converge" print*, "WARNING: Diagonalization failed to converge"
endif endif
#+END_SRC #+END_SRC
@ -308,7 +306,7 @@ subroutine rotation_matrix(A,LDA,R,LDR,n,info,enforce_step_cancellation)
max_elem = tau_m1(i,i) max_elem = tau_m1(i,i)
endif endif
enddo enddo
print*,'max elem tau^-1:', max_elem !print*,'max elem tau^-1:', max_elem
! Debug ! Debug
!print*,'eigenvalues:' !print*,'eigenvalues:'
@ -380,7 +378,7 @@ subroutine rotation_matrix(A,LDA,R,LDR,n,info,enforce_step_cancellation)
call dgemm('N','T',n,n,n,1d0,R,size(R,1),R,size(R,1),-1d0,RR_t,size(RR_t,1)) call dgemm('N','T',n,n,n,1d0,R,size(R,1),R,size(R,1),-1d0,RR_t,size(RR_t,1))
norm = dnrm2(n*n,RR_t,1) norm = dnrm2(n*n,RR_t,1)
print*, 'Rotation matrix check, norm R.R^T = ', norm !print*, 'Rotation matrix check, norm R.R^T = ', norm
! Debug ! Debug
!if (debug) then !if (debug) then
@ -404,9 +402,9 @@ subroutine rotation_matrix(A,LDA,R,LDR,n,info,enforce_step_cancellation)
enddo enddo
print*, 'Max error in R.R^T:', max_elem print*, 'Max error in R.R^T:', max_elem
print*, 'e_val(1):', e_val(1) !print*, 'e_val(1):', e_val(1)
print*, 'e_val(n):', e_val(n) !print*, 'e_val(n):', e_val(n)
print*, 'max elem in A:', max_elem_A !print*, 'max elem in A:', max_elem_A
if (ABS(max_elem) > 1d-12) then if (ABS(max_elem) > 1d-12) then
print*, 'WARNING: max error in R.R^T > 1d-12' print*, 'WARNING: max error in R.R^T > 1d-12'

View File

@ -0,0 +1,136 @@
* Rotation matrix with the iterative method
\begin{align*}
\textbf{R} = \sum_{k=0}^{\infty} \frac{1}{k!} \textbf{X}^k
\end{align*}
!!! Doesn't work !!!
#+BEGIN_SRC f90 :comments org :tangle rotation_matrix_iterative.irp.f
subroutine rotation_matrix_iterative(m,X,R)
implicit none
! in
integer, intent(in) :: m
double precision, intent(in) :: X(m,m)
! out
double precision, intent(out) :: R(m,m)
! internal
double precision :: max_elem, pre_factor
double precision :: t1,t2,t3
integer :: k,l,i,j
logical :: not_converged
double precision, allocatable :: RRT(:,:), A(:,:), B(:,:)
! Functions
integer :: factorial
print*,'---rotation_matrix_iterative---'
call wall_time(t1)
allocate(RRT(m,m),A(m,m),B(m,m))
! k = 0
R = 0d0
do i = 1, m
R(i,i) = 1d0
enddo
! k = 1
R = R + X
k = 2
not_converged = .True.
do while (not_converged)
pre_factor = 1d0/DBLE(factorial(k))
if (pre_factor < 1d-15) then
print*,'pre factor=', pre_factor,'< 1d-15, exit'
exit
endif
A = X
B = 0d0
do l = 1, k-1
call dgemm('N','N',m,m,m,1d0,X,size(X,1),A,size(A,1),0d0,B,size(B,1))
A = B
enddo
!print*,'B'
!do i = 1, m
! print*,B(i,:) * 1d0/DBLE(factorial(k))
!enddo
R = R + pre_factor * B
k = k + 1
call dgemm('T','N',m,m,m,1d0,R,size(R,1),R,size(R,1),0d0,RRT,size(RRT,1))
!print*,'R'
!do i = 1, m
! write(*,'(10(E12.5))') R(i,:)
!enddo
do i = 1, m
RRT(i,i) = RRT(i,i) - 1d0
enddo
!print*,'RRT'
!do i = 1, m
! write(*,'(10(E12.5))') RRT(i,:)
!enddo
max_elem = 0d0
do j = 1, m
do i = 1, m
if (dabs(RRT(i,j)) > max_elem) then
max_elem = dabs(RRT(i,j))
endif
enddo
enddo
print*, 'Iteration:', k
print*, 'Max error in R:', max_elem
if (max_elem < 1d-12) then
not_converged = .False.
endif
enddo
deallocate(RRT,A,B)
call wall_time(t2)
t3 = t2 - t1
print*,'Time in rotation matrix iterative:', t3
print*,'---End roration_matrix_iterative---'
print*,'Does not work yet, abort'
call abort
end
#+END_SRC
** Factorial
#+BEGIN_SRC f90 :comments org :tangle rotation_matrix_iterative.irp.f
function factorial(n)
implicit none
integer, intent(in) :: n
integer :: factorial, k
factorial = 1
do k = 1, n
factorial = factorial * k
enddo
end
#+END_SRC

View File

@ -32,9 +32,9 @@ Internal:
#+BEGIN_SRC f90 :comments org :tangle sub_to_full_rotation_matrix.irp.f #+BEGIN_SRC f90 :comments org :tangle sub_to_full_rotation_matrix.irp.f
subroutine sub_to_full_rotation_matrix(m,tmp_list,tmp_R,R) subroutine sub_to_full_rotation_matrix(m,tmp_list,tmp_R,R)
BEGIN_DOC !BEGIN_DOC
! Compute the full rotation matrix from a smaller one ! Compute the full rotation matrix from a smaller one
END_DOC !END_DOC
implicit none implicit none

View File

@ -10,11 +10,12 @@ E_{k+1} = E_{k} + \textbf{g}_k^{T} \cdot \textbf{x}_{k+1} + \frac{1}{2} \cdot \t
\end{align*} \end{align*}
Input: Input:
| n | integer | m*(m-1)/2 | | n | integer | m*(m-1)/2 |
| v_grad(n) | double precision | gradient | | n2 | integer | m*(m-1)/2 or 1 if the hessian is diagonal |
| H(n,n) | double precision | hessian | | v_grad(n) | double precision | gradient |
| x(n) | double precision | Step in the trust region | | H(n,n) | double precision | hessian |
| prev_energy | double precision | previous energy | | x(n) | double precision | Step in the trust region |
| prev_energy | double precision | previous energy |
Output: Output:
| e_model | double precision | predicted energy after the rotation of the MOs | | e_model | double precision | predicted energy after the rotation of the MOs |
@ -29,21 +30,21 @@ Function:
| ddot | double precision | dot product (Lapack) | | ddot | double precision | dot product (Lapack) |
#+BEGIN_SRC f90 :comments org :tangle trust_region_expected_e.irp.f #+BEGIN_SRC f90 :comments org :tangle trust_region_expected_e.irp.f
subroutine trust_region_expected_e(n,v_grad,H,x,prev_energy,e_model) subroutine trust_region_expected_e(n,n2,v_grad,H,x,prev_energy,e_model)
include 'pi.h' include 'pi.h'
BEGIN_DOC !BEGIN_DOC
! Compute the expected criterion/energy after the application of the step x ! Compute the expected criterion/energy after the application of the step x
END_DOC !END_DOC
implicit none implicit none
! Variables ! Variables
! in ! in
integer, intent(in) :: n integer, intent(in) :: n,n2
double precision, intent(in) :: v_grad(n),H(n,n),x(n) double precision, intent(in) :: v_grad(n),H(n,n2),x(n)
double precision, intent(in) :: prev_energy double precision, intent(in) :: prev_energy
! out ! out
@ -80,27 +81,34 @@ TODO: remove the dot products
part_1 = ddot(n,v_grad,1,x,1) part_1 = ddot(n,v_grad,1,x,1)
!if (debug) then !if (debug) then
print*,'g.x : ', part_1 ! print*,'g.x : ', part_1
!endif !endif
! Product H.x ! Product H.x
call dgemv('N',n,n,1d0,H,size(H,1),x,1,0d0,part_2a,1) if (n == n2) then
call dgemv('N',n,n,1d0,H,size(H,1),x,1,0d0,part_2a,1)
else
! If the hessian is diagonal
do i = 1, n
part_2a(i) = H(i,1) * x(i)
enddo
endif
! Product 1/2 . x^T.H.x ! Product 1/2 . x^T.H.x
part_2 = 0.5d0 * ddot(n,x,1,part_2a,1) part_2 = 0.5d0 * ddot(n,x,1,part_2a,1)
!if (debug) then !if (debug) then
print*,'1/2*x^T.H.x : ', part_2 ! print*,'1/2*x^T.H.x : ', part_2
!endif !endif
print*,'prev_energy', prev_energy
! Sum ! Sum
e_model = prev_energy + part_1 + part_2 e_model = prev_energy + part_1 + part_2
! Writing the predicted energy ! Writing the predicted energy
print*, 'Predicted energy after the rotation : ', e_model print*, 'prev_energy: ', prev_energy
print*, 'Previous energy - predicted energy:', prev_energy - e_model print*, 'Predicted energy after the rotation:', e_model
print*, 'Previous energy - predicted energy: ', prev_energy - e_model
! Can be deleted, already in another subroutine ! Can be deleted, already in another subroutine
if (DABS(prev_energy - e_model) < 1d-12 ) then if (DABS(prev_energy - e_model) < 1d-12 ) then
@ -115,7 +123,6 @@ TODO: remove the dot products
print*,'Time in trust e model:', t3 print*,'Time in trust e model:', t3
print*,'---End trust_e_model---' print*,'---End trust_e_model---'
print*,''
end subroutine end subroutine
#+END_SRC #+END_SRC

View File

@ -153,9 +153,9 @@ subroutine trust_region_optimal_lambda(n,e_val,tmp_wtg,delta,lambda)
include 'pi.h' include 'pi.h'
BEGIN_DOC !BEGIN_DOC
! Research the optimal lambda to constrain the step size in the trust region ! Research the optimal lambda to constrain the step size in the trust region
END_DOC !END_DOC
implicit none implicit none
@ -195,18 +195,17 @@ subroutine trust_region_optimal_lambda(n,e_val,tmp_wtg,delta,lambda)
print*,'' print*,''
print*,'---Trust_newton---' print*,'---Trust_newton---'
print*,''
call wall_time(t1) call wall_time(t1)
! version_lambda_search ! version_lambda_search
! 1 -> ||x||^2 - delta^2 = 0, ! 1 -> ||x||^2 - delta^2 = 0,
! 2 -> 1/||x||^2 - 1/delta^2 = 0 (better) ! 2 -> 1/||x||^2 - 1/delta^2 = 0 (better)
if (version_lambda_search == 1) then !if (version_lambda_search == 1) then
print*, 'Research of the optimal lambda by solving ||x||^2 - delta^2 = 0' ! print*, 'Research of the optimal lambda by solving ||x||^2 - delta^2 = 0'
else !else
print*, 'Research of the optimal lambda by solving 1/||x||^2 - 1/delta^2 = 0' ! print*, 'Research of the optimal lambda by solving 1/||x||^2 - 1/delta^2 = 0'
endif !endif
! Version 2 is normally better ! Version 2 is normally better
#+END_SRC #+END_SRC
@ -215,21 +214,21 @@ Resolution with the Newton method:
#+BEGIN_SRC f90 :comments org :tangle trust_region_optimal_lambda.irp.f #+BEGIN_SRC f90 :comments org :tangle trust_region_optimal_lambda.irp.f
! Initialization ! Initialization
epsilon = 1d-4 epsilon = 1d-4
lambda =MAX(0d0, -e_val(1)) lambda = max(0d0, -e_val(1))
! Pre research of lambda to start near the optimal lambda ! Pre research of lambda to start near the optimal lambda
! by adding a constant epsilon and changing the constant to ! by adding a constant epsilon and changing the constant to
! have ||x(lambda + epsilon)|| ~ delta, before setting ! have ||x(lambda + epsilon)|| ~ delta, before setting
! lambda = lambda + epsilon ! lambda = lambda + epsilon
print*, 'Pre research of lambda:' !print*, 'Pre research of lambda:'
print*,'Initial lambda =', lambda !print*,'Initial lambda =', lambda
f_N = f_norm_trust_region_omp(n,e_val,tmp_wtg,lambda + epsilon) f_N = f_norm_trust_region_omp(n,e_val,tmp_wtg,lambda + epsilon)
print*,'||x(lambda)||=', dsqrt(f_N),'delta=',delta !print*,'||x(lambda)||=', dsqrt(f_N),'delta=',delta
i = 1 i = 1
! To increase lambda ! To increase lambda
if (f_N > delta**2) then if (f_N > delta**2) then
print*,'Increasing lambda...' !print*,'Increasing lambda...'
do while (f_N > delta**2 .and. i <= nb_it_max_pre_search) do while (f_N > delta**2 .and. i <= nb_it_max_pre_search)
! Update the previous norm ! Update the previous norm
@ -239,7 +238,7 @@ Resolution with the Newton method:
! New norm ! New norm
f_N = f_norm_trust_region_omp(n,e_val,tmp_wtg,lambda + epsilon) f_N = f_norm_trust_region_omp(n,e_val,tmp_wtg,lambda + epsilon)
print*, 'lambda', lambda + epsilon, '||x||', dsqrt(f_N), 'delta', delta !print*, 'lambda', lambda + epsilon, '||x||', dsqrt(f_N), 'delta', delta
! Security ! Security
if (prev_f_N < f_N) then if (prev_f_N < f_N) then
@ -253,7 +252,7 @@ Resolution with the Newton method:
! To reduce lambda ! To reduce lambda
else else
print*,'Reducing lambda...' !print*,'Reducing lambda...'
do while (f_N < delta**2 .and. i <= nb_it_max_pre_search) do while (f_N < delta**2 .and. i <= nb_it_max_pre_search)
! Update the previous norm ! Update the previous norm
@ -263,7 +262,7 @@ Resolution with the Newton method:
! New norm ! New norm
f_N = f_norm_trust_region_omp(n,e_val,tmp_wtg,lambda + epsilon) f_N = f_norm_trust_region_omp(n,e_val,tmp_wtg,lambda + epsilon)
print*, 'lambda', lambda + epsilon, '||x||', dsqrt(f_N), 'delta', delta !print*, 'lambda', lambda + epsilon, '||x||', dsqrt(f_N), 'delta', delta
! Security ! Security
if (prev_f_N > f_N) then if (prev_f_N > f_N) then
@ -276,27 +275,25 @@ Resolution with the Newton method:
enddo enddo
endif endif
print*,'End of the pre research of lambda' !print*,'End of the pre research of lambda'
! New value of lambda ! New value of lambda
lambda = lambda + epsilon lambda = lambda + epsilon
print*, 'e_val(1):', e_val(1) !print*, 'e_val(1):', e_val(1)
print*, 'Staring point, lambda =', lambda !print*, 'Staring point, lambda =', lambda
! thresh_cc, threshold for the research of the optimal lambda ! thresh_cc, threshold for the research of the optimal lambda
! Leaves the loop when ABS(1d0-||x||^2/delta^2) > thresh_cc ! Leaves the loop when ABS(1d0-||x||^2/delta^2) > thresh_cc
! thresh_rho_2, threshold to cancel the step in the research ! thresh_rho_2, threshold to cancel the step in the research
! of the optimal lambda, the step is cancelled if rho_2 < thresh_rho_2 ! of the optimal lambda, the step is cancelled if rho_2 < thresh_rho_2
print*,'Threshold for the CC:', thresh_cc
print*,'Threshold for rho_2:', thresh_rho_2 !print*,'Threshold for the CC:', thresh_cc
!print*,'Threshold for rho_2:', thresh_rho_2
print*, 'w_1^T . g =', tmp_wtg(1) !print*, 'w_1^T . g =', tmp_wtg(1)
! Debug ! Debug
!if (debug) then !print*, 'Iteration rho_2 lambda delta ||x|| |1-(||x||^2/delta^2)|'
! print*, 'Iteration rho_2 lambda delta ||x|| |1-(||x||^2/delta^2)|'
!endif
! Initialization ! Initialization
i = 1 i = 1
@ -323,9 +320,9 @@ Resolution with the Newton method:
! Newton's method ! Newton's method
do while (i <= 100 .and. DABS(1d0-f_N/delta**2) > thresh_cc) do while (i <= 100 .and. DABS(1d0-f_N/delta**2) > thresh_cc)
print*,'--------------------------------------' !print*,'--------------------------------------'
print*,'Research of lambda, iteration:', i !print*,'Research of lambda, iteration:', i
print*,'--------------------------------------' !print*,'--------------------------------------'
! Update of f_N, f_R and the derivatives ! Update of f_N, f_R and the derivatives
prev_f_N = f_N prev_f_N = f_N
@ -338,7 +335,7 @@ Resolution with the Newton method:
d_1 = d1_norm_inverse_trust_region_omp(n,e_val,tmp_wtg,lambda,delta) ! first derivative of (1/||x(lambda)||^2 - 1/delta^2)^2 d_1 = d1_norm_inverse_trust_region_omp(n,e_val,tmp_wtg,lambda,delta) ! first derivative of (1/||x(lambda)||^2 - 1/delta^2)^2
d_2 = d2_norm_inverse_trust_region_omp(n,e_val,tmp_wtg,lambda,delta) ! second derivative of (1/||x(lambda)||^2 - 1/delta^2)^2 d_2 = d2_norm_inverse_trust_region_omp(n,e_val,tmp_wtg,lambda,delta) ! second derivative of (1/||x(lambda)||^2 - 1/delta^2)^2
endif endif
write(*,'(a,E12.5,a,E12.5)') ' 1st and 2nd derivative: ', d_1,', ', d_2 !write(*,'(a,E12.5,a,E12.5)') ' 1st and 2nd derivative: ', d_1,', ', d_2
! Newton's step ! Newton's step
y = -(1d0/DABS(d_2))*d_1 y = -(1d0/DABS(d_2))*d_1
@ -347,7 +344,7 @@ Resolution with the Newton method:
if (DABS(y) > alpha) then if (DABS(y) > alpha) then
y = alpha * (y/DABS(y)) ! preservation of the sign of y y = alpha * (y/DABS(y)) ! preservation of the sign of y
endif endif
write(*,'(a,E12.5)') ' Step length: ', y !write(*,'(a,E12.5)') ' Step length: ', y
! Predicted value of (||x(lambda)||^2 - delta^2)^2, Taylor series ! Predicted value of (||x(lambda)||^2 - delta^2)^2, Taylor series
model = prev_f_R + d_1 * y + 0.5d0 * d_2 * y**2 model = prev_f_R + d_1 * y + 0.5d0 * d_2 * y**2
@ -355,8 +352,8 @@ Resolution with the Newton method:
! Updates lambda ! Updates lambda
prev_lambda = lambda prev_lambda = lambda
lambda = prev_lambda + y lambda = prev_lambda + y
print*,'prev lambda:', prev_lambda !print*,'prev lambda:', prev_lambda
print*,'new lambda:', lambda !print*,'new lambda:', lambda
! Checks if lambda is in (-h_1, \infty) ! Checks if lambda is in (-h_1, \infty)
if (lambda > MAX(0d0, -e_val(1))) then if (lambda > MAX(0d0, -e_val(1))) then
@ -370,18 +367,18 @@ Resolution with the Newton method:
f_R = (1d0/f_N - 1d0/delta**2)**2 ! new value of (1/||x(lambda)||^2 -1/delta^2)^2 f_R = (1d0/f_N - 1d0/delta**2)**2 ! new value of (1/||x(lambda)||^2 -1/delta^2)^2
endif endif
if (version_lambda_search == 1) then !if (version_lambda_search == 1) then
print*,'Previous value of (||x(lambda)||^2 - delta^2)^2:', prev_f_R ! print*,'Previous value of (||x(lambda)||^2 - delta^2)^2:', prev_f_R
print*,'Actual value of (||x(lambda)||^2 - delta^2)^2:', f_R ! print*,'Actual value of (||x(lambda)||^2 - delta^2)^2:', f_R
print*,'Predicted value of (||x(lambda)||^2 - delta^2)^2:', model ! print*,'Predicted value of (||x(lambda)||^2 - delta^2)^2:', model
else !else
print*,'Previous value of (1/||x(lambda)||^2 - 1/delta^2)^2:', prev_f_R ! print*,'Previous value of (1/||x(lambda)||^2 - 1/delta^2)^2:', prev_f_R
print*,'Actual value of (1/||x(lambda)||^2 - 1/delta^2)^2:', f_R ! print*,'Actual value of (1/||x(lambda)||^2 - 1/delta^2)^2:', f_R
print*,'Predicted value of (1/||x(lambda)||^2 - 1/delta^2)^2:', model ! print*,'Predicted value of (1/||x(lambda)||^2 - 1/delta^2)^2:', model
endif !endif
print*,'previous - actual:', prev_f_R - f_R !print*,'previous - actual:', prev_f_R - f_R
print*,'previous - model:', prev_f_R - model !print*,'previous - model:', prev_f_R - model
! Check the gain ! Check the gain
if (DABS(prev_f_R - model) < thresh_model_2) then if (DABS(prev_f_R - model) < thresh_model_2) then
@ -400,10 +397,10 @@ Resolution with the Newton method:
! Computes rho_2 ! Computes rho_2
rho_2 = (prev_f_R - f_R)/(prev_f_R - model) rho_2 = (prev_f_R - f_R)/(prev_f_R - model)
print*,'rho_2:', rho_2 !print*,'rho_2:', rho_2
else else
rho_2 = 0d0 ! in order to reduce the size of the trust region, alpha, until lambda is in (-h_1, \infty) rho_2 = 0d0 ! in order to reduce the size of the trust region, alpha, until lambda is in (-h_1, \infty)
print*,'lambda < -e_val(1) ===> rho_2 = 0' !print*,'lambda < -e_val(1) ===> rho_2 = 0'
endif endif
! Evolution of the trust length, alpha ! Evolution of the trust length, alpha
@ -416,20 +413,20 @@ Resolution with the Newton method:
else else
alpha = 0.25d0 * alpha alpha = 0.25d0 * alpha
endif endif
write(*,'(a,E12.5)') ' New trust length alpha: ', alpha !write(*,'(a,E12.5)') ' New trust length alpha: ', alpha
! cancellaion of the step if rho < 0.1 ! cancellaion of the step if rho < 0.1
if (rho_2 < thresh_rho_2) then !0.1d0) then if (rho_2 < thresh_rho_2) then !0.1d0) then
lambda = prev_lambda lambda = prev_lambda
f_N = prev_f_N f_N = prev_f_N
print*,'Rho_2 <', thresh_rho_2,', cancellation of the step: lambda = prev_lambda' !print*,'Rho_2 <', thresh_rho_2,', cancellation of the step: lambda = prev_lambda'
endif endif
print*,'' !print*,''
print*,'lambda, ||x||, delta:' !print*,'lambda, ||x||, delta:'
print*, lambda, dsqrt(f_N), delta !print*, lambda, dsqrt(f_N), delta
print*,'CC:', DABS(1d0 - f_N/delta**2) !print*,'CC:', DABS(1d0 - f_N/delta**2)
print*,'' !print*,''
i = i + 1 i = i + 1
enddo enddo
@ -444,20 +441,19 @@ Resolution with the Newton method:
print*,'' print*,''
endif endif
print*,'Number of iterations :', i print*,'Number of iterations:', i
print*,'Value of lambda :', lambda print*,'Value of lambda:', lambda
print*,'Error on the trust region (1d0-f_N/delta**2) (Convergence criterion) :', 1d0-f_N/delta**2 !print*,'Error on the trust region (1d0-f_N/delta**2) (Convergence criterion) :', 1d0-f_N/delta**2
print*,'Error on the trust region (||x||^2 - delta^2)^2) :', (f_N - delta**2)**2 print*,'Convergence criterion:', 1d0-f_N/delta**2
print*,'Error on the trust region (1/||x||^2 - 1/delta^2)^2)', (1d0/f_N - 1d0/delta**2)**2 !print*,'Error on the trust region (||x||^2 - delta^2)^2):', (f_N - delta**2)**2
!print*,'Error on the trust region (1/||x||^2 - 1/delta^2)^2)', (1d0/f_N - 1d0/delta**2)**2
! Time ! Time
call wall_time(t2) call wall_time(t2)
t3 = t2 - t1 t3 = t2 - t1
print*,'Time in trust_newton:', t3 print*,'Time in trust_newton:', t3
print*,''
print*,'---End trust_newton---' print*,'---End trust_newton---'
print*,''
end subroutine end subroutine
#+END_SRC #+END_SRC
@ -508,9 +504,9 @@ function d1_norm_trust_region_omp(n,e_val,tmp_wtg,lambda,delta)
use omp_lib use omp_lib
include 'pi.h' include 'pi.h'
BEGIN_DOC !BEGIN_DOC
! Compute the first derivative with respect to lambda of (||x(lambda)||^2 - Delta^2)^2 ! Compute the first derivative with respect to lambda of (||x(lambda)||^2 - Delta^2)^2
END_DOC !END_DOC
implicit none implicit none
@ -645,9 +641,9 @@ function d2_norm_trust_region_omp(n,e_val,tmp_wtg,lambda,delta)
use omp_lib use omp_lib
include 'pi.h' include 'pi.h'
BEGIN_DOC !BEGIN_DOC
! Compute the second derivative with respect to lambda of (||x(lambda)||^2 - Delta^2)^2 ! Compute the second derivative with respect to lambda of (||x(lambda)||^2 - Delta^2)^2
END_DOC !END_DOC
implicit none implicit none
@ -794,9 +790,9 @@ function f_norm_trust_region_omp(n,e_val,tmp_wtg,lambda)
include 'pi.h' include 'pi.h'
BEGIN_DOC !BEGIN_DOC
! Compute ||x(lambda)||^2 ! Compute ||x(lambda)||^2
END_DOC !END_DOC
implicit none implicit none
@ -906,9 +902,9 @@ function d1_norm_trust_region(n,e_val,w,v_grad,lambda,delta)
include 'pi.h' include 'pi.h'
BEGIN_DOC !BEGIN_DOC
! Compute the first derivative with respect to lambda of (||x(lambda)||^2 - Delta^2)^2 ! Compute the first derivative with respect to lambda of (||x(lambda)||^2 - Delta^2)^2
END_DOC !END_DOC
implicit none implicit none
@ -1004,9 +1000,9 @@ function d2_norm_trust_region(n,e_val,w,v_grad,lambda,delta)
include 'pi.h' include 'pi.h'
BEGIN_DOC !BEGIN_DOC
! Compute the second derivative with respect to lambda of (||x(lambda)||^2 - Delta^2)^2 ! Compute the second derivative with respect to lambda of (||x(lambda)||^2 - Delta^2)^2
END_DOC !END_DOC
implicit none implicit none
@ -1107,9 +1103,9 @@ function f_norm_trust_region(n,e_val,tmp_wtg,lambda)
include 'pi.h' include 'pi.h'
BEGIN_DOC !BEGIN_DOC
! Compute ||x(lambda)||^2 ! Compute ||x(lambda)||^2
END_DOC !END_DOC
implicit none implicit none
@ -1190,9 +1186,9 @@ function d1_norm_inverse_trust_region_omp(n,e_val,tmp_wtg,lambda,delta)
use omp_lib use omp_lib
include 'pi.h' include 'pi.h'
BEGIN_DOC !BEGIN_DOC
! Compute the first derivative of (1/||x||^2 - 1/Delta^2)^2 ! Compute the first derivative of (1/||x||^2 - 1/Delta^2)^2
END_DOC !END_DOC
implicit none implicit none
@ -1347,9 +1343,9 @@ function d2_norm_inverse_trust_region_omp(n,e_val,tmp_wtg,lambda,delta)
use omp_lib use omp_lib
include 'pi.h' include 'pi.h'
BEGIN_DOC !BEGIN_DOC
! Compute the second derivative of (1/||x||^2 - 1/Delta^2)^2 ! Compute the second derivative of (1/||x||^2 - 1/Delta^2)^2
END_DOC !END_DOC
implicit none implicit none
@ -1506,9 +1502,9 @@ function d1_norm_inverse_trust_region(n,e_val,w,v_grad,lambda,delta)
include 'pi.h' include 'pi.h'
BEGIN_DOC !BEGIN_DOC
! Compute the first derivative of (1/||x||^2 - 1/Delta^2)^2 ! Compute the first derivative of (1/||x||^2 - 1/Delta^2)^2
END_DOC !END_DOC
implicit none implicit none
@ -1601,9 +1597,9 @@ function d2_norm_inverse_trust_region(n,e_val,w,v_grad,lambda,delta)
include 'pi.h' include 'pi.h'
BEGIN_DOC !BEGIN_DOC
! Compute the second derivative of (1/||x||^2 - 1/Delta^2)^2 ! Compute the second derivative of (1/||x||^2 - 1/Delta^2)^2
END_DOC !END_DOC
implicit none implicit none

View File

@ -47,9 +47,9 @@ subroutine trust_region_rho(prev_energy, energy,e_model,rho)
include 'pi.h' include 'pi.h'
BEGIN_DOC !BEGIN_DOC
! Compute rho, the agreement between the predicted criterion/energy and the real one ! Compute rho, the agreement between the predicted criterion/energy and the real one
END_DOC !END_DOC
implicit none implicit none
@ -69,7 +69,7 @@ subroutine trust_region_rho(prev_energy, energy,e_model,rho)
print*,'' print*,''
print*,'---Rho_model---' print*,'---Rho_model---'
call wall_time(t1) !call wall_time(t1)
#+END_SRC #+END_SRC
** Rho ** Rho
@ -93,31 +93,30 @@ If the step (k+1) is accepted, then the "previous energy" becomes E(k+1)
rho = (prev_energy - energy) / (prev_energy - e_model) rho = (prev_energy - energy) / (prev_energy - e_model)
print*, 'previous energy, prev_energy :', prev_energy !print*, 'previous energy, prev_energy:', prev_energy
print*, 'predicted energy, e_model :', e_model !print*, 'predicted energy, e_model:', e_model
print*, 'real energy, energy :', energy !print*, 'real energy, energy:', energy
print*, 'prev_energy - energy :', prev_energy - energy !print*, 'prev_energy - energy:', prev_energy - energy
print*, 'prev_energy - e_model :', prev_energy - e_model !print*, 'prev_energy - e_model:', prev_energy - e_model
print*, 'Rho :', rho print*, 'Rho:', rho
print*, 'Threshold for rho:', thresh_rho !print*, 'Threshold for rho:', thresh_rho
! Modification of prev_energy in function of rho ! Modification of prev_energy in function of rho
if (rho < thresh_rho) then !0.1) then if (rho < thresh_rho) then !0.1) then
! the step is cancelled ! the step is cancelled
print*, 'Rho <', thresh_rho,', the previous energy does not changed' print*, 'Rho <', thresh_rho,', the previous energy does not changed'
print*, 'prev_energy :', prev_energy !print*, 'prev_energy :', prev_energy
else else
! the step is accepted ! the step is accepted
prev_energy = energy prev_energy = energy
print*, 'Rho >=', thresh_rho,', energy -> prev_energy :', energy print*, 'Rho >=', thresh_rho,', energy -> prev_energy:', energy
endif endif
call wall_time(t2) !call wall_time(t2)
t3 = t2 - t1 !t3 = t2 - t1
print*,'Time in rho model:', t3 !print*,'Time in rho model:', t3
print*,'---End rho_model---' print*,'---End rho_model---'
print*,''
end subroutine end subroutine
#+END_SRC #+END_SRC

View File

@ -341,9 +341,10 @@ Provided:
Cf. qp_edit in orbital optimization section, for some constants/thresholds Cf. qp_edit in orbital optimization section, for some constants/thresholds
Input: Input:
| m | integer | number of MOs | | m | integer | number of MOs |
| n | integer | m*(m-1)/2 | | n | integer | m*(m-1)/2 |
| H(n, n) | double precision | hessian | | n2 | integer | m*(m-1)/2 or 1 if the hessian is diagonal |
| H(n,n2) | double precision | hessian |
| v_grad(n) | double precision | gradient | | v_grad(n) | double precision | gradient |
| e_val(n) | double precision | eigenvalues of the hessian | | e_val(n) | double precision | eigenvalues of the hessian |
| W(n, n) | double precision | eigenvectors of the hessian | | W(n, n) | double precision | eigenvectors of the hessian |
@ -371,23 +372,23 @@ Function:
| f_norm_trust_region_omp | double precision | compute the value of norm(x(lambda)^2) | | f_norm_trust_region_omp | double precision | compute the value of norm(x(lambda)^2) |
#+BEGIN_SRC f90 :comments org :tangle trust_region_step.irp.f #+BEGIN_SRC f90 :comments org :tangle trust_region_step.irp.f
subroutine trust_region_step(n,nb_iter,v_grad,rho,e_val,w,x,delta) subroutine trust_region_step(n,n2,nb_iter,v_grad,rho,e_val,w,x,delta)
include 'pi.h' include 'pi.h'
BEGIN_DOC !BEGIN_DOC
! Compuet the step in the trust region ! Compuet the step in the trust region
END_DOC !END_DOC
implicit none implicit none
! Variables ! Variables
! in ! in
integer, intent(in) :: n integer, intent(in) :: n,n2
double precision, intent(in) :: v_grad(n), rho double precision, intent(in) :: v_grad(n), rho
integer, intent(inout) :: nb_iter integer, intent(inout) :: nb_iter
double precision, intent(in) :: e_val(n), w(n,n) double precision, intent(in) :: e_val(n), w(n,n2)
! inout ! inout
double precision, intent(inout) :: delta double precision, intent(inout) :: delta
@ -434,11 +435,19 @@ avoid_saddle is actually a test to avoid saddle points
! List of w^T.g, to avoid the recomputation ! List of w^T.g, to avoid the recomputation
tmp_wtg = 0d0 tmp_wtg = 0d0
do j = 1, n if (n == n2) then
do i = 1, n do j = 1, n
tmp_wtg(j) = tmp_wtg(j) + w(i,j) * v_grad(i) do i = 1, n
tmp_wtg(j) = tmp_wtg(j) + w(i,j) * v_grad(i)
enddo
enddo enddo
enddo else
! For the diagonal case
do j = 1, n
k = int(w(j,1)+1d-15)
tmp_wtg(j) = v_grad(k)
enddo
endif
! Replacement of the small tmp_wtg corresponding to a negative eigenvalue ! Replacement of the small tmp_wtg corresponding to a negative eigenvalue
! in the case of avoid_saddle ! in the case of avoid_saddle
@ -465,18 +474,18 @@ avoid_saddle is actually a test to avoid saddle points
tmp_wtg(1) = 0d0 tmp_wtg(1) = 0d0
endif endif
endif endif
! Norm^2 of x, ||x||^2 ! Norm^2 of x, ||x||^2
norm2_x = f_norm_trust_region_omp(n,e_val,tmp_wtg,0d0) norm2_x = f_norm_trust_region_omp(n,e_val,tmp_wtg,0d0)
! We just use this norm for the nb_iter = 0 in order to initialize the trust radius delta ! We just use this norm for the nb_iter = 0 in order to initialize the trust radius delta
! We don't care about the sign of the eigenvalue we just want the size of the step in a normal Newton-Raphson algorithm ! We don't care about the sign of the eigenvalue we just want the size of the step in a normal Newton-Raphson algorithm
! Anyway if the step is too big it will be reduced ! Anyway if the step is too big it will be reduced
print*,'||x||^2 :', norm2_x !print*,'||x||^2 :', norm2_x
! Norm^2 of the gradient, ||v_grad||^2 ! Norm^2 of the gradient, ||v_grad||^2
norm2_g = (dnrm2(n,v_grad,1))**2 norm2_g = (dnrm2(n,v_grad,1))**2
print*,'||grad||^2 :', norm2_g !print*,'||grad||^2 :', norm2_g
#+END_SRC #+END_SRC
*** Trust radius initialization *** Trust radius initialization
@ -530,7 +539,7 @@ To avoid too big trust region we put a maximum size.
delta = 1d10 delta = 1d10
endif endif
print*, 'Delta :', delta !print*, 'Delta :', delta
#+END_SRC #+END_SRC
*** Calculation of the optimal lambda *** Calculation of the optimal lambda
@ -550,26 +559,26 @@ You will find more details at the beginning
! Research of lambda to solve ||x(lambda)|| = Delta ! Research of lambda to solve ||x(lambda)|| = Delta
! Display ! Display
print*, 'e_val(1) = ', e_val(1) !print*, 'e_val(1) = ', e_val(1)
print*, 'w_1^T.g =', tmp_wtg(1) !print*, 'w_1^T.g =', tmp_wtg(1)
! H positive definite ! H positive definite
if (e_val(1) > - thresh_eig) then if (e_val(1) > - thresh_eig) then
norm2_x = f_norm_trust_region_omp(n,e_val,tmp_wtg,0d0) norm2_x = f_norm_trust_region_omp(n,e_val,tmp_wtg,0d0)
print*, '||x(0)||=', dsqrt(norm2_x) !print*, '||x(0)||=', dsqrt(norm2_x)
print*, 'Delta=', delta !print*, 'Delta=', delta
! H positive definite, ||x(lambda = 0)|| <= Delta ! H positive definite, ||x(lambda = 0)|| <= Delta
if (dsqrt(norm2_x) <= delta) then if (dsqrt(norm2_x) <= delta) then
print*, 'H positive definite, ||x(lambda = 0)|| <= Delta' !print*, 'H positive definite, ||x(lambda = 0)|| <= Delta'
print*, 'lambda = 0, no lambda optimization' !print*, 'lambda = 0, no lambda optimization'
lambda = 0d0 lambda = 0d0
! H positive definite, ||x(lambda = 0)|| > Delta ! H positive definite, ||x(lambda = 0)|| > Delta
else else
! Constraint solution ! Constraint solution
print*, 'H positive definite, ||x(lambda = 0)|| > Delta' !print*, 'H positive definite, ||x(lambda = 0)|| > Delta'
print*,'Computation of the optimal lambda...' !print*,'Computation of the optimal lambda...'
call trust_region_optimal_lambda(n,e_val,tmp_wtg,delta,lambda) call trust_region_optimal_lambda(n,e_val,tmp_wtg,delta,lambda)
endif endif
@ -577,14 +586,14 @@ You will find more details at the beginning
else else
if (DABS(tmp_wtg(1)) < thresh_wtg) then if (DABS(tmp_wtg(1)) < thresh_wtg) then
norm2_x = f_norm_trust_region_omp(n,e_val,tmp_wtg, - e_val(1)) norm2_x = f_norm_trust_region_omp(n,e_val,tmp_wtg, - e_val(1))
print*, 'w_1^T.g <', thresh_wtg,', ||x(lambda = -e_val(1))|| =', dsqrt(norm2_x) !print*, 'w_1^T.g <', thresh_wtg,', ||x(lambda = -e_val(1))|| =', dsqrt(norm2_x)
endif endif
! H indefinite, w_1^T.g = 0, ||x(lambda = -e_val(1))|| <= Delta ! H indefinite, w_1^T.g = 0, ||x(lambda = -e_val(1))|| <= Delta
if (dsqrt(norm2_x) <= delta .and. DABS(tmp_wtg(1)) < thresh_wtg) then if (dsqrt(norm2_x) <= delta .and. DABS(tmp_wtg(1)) < thresh_wtg) then
! Add e_val(1) in order to have (H - e_val(1) I) positive definite ! Add e_val(1) in order to have (H - e_val(1) I) positive definite
print*, 'H indefinite, w_1^T.g = 0, ||x(lambda = -e_val(1))|| <= Delta' !print*, 'H indefinite, w_1^T.g = 0, ||x(lambda = -e_val(1))|| <= Delta'
print*, 'lambda = -e_val(1), no lambda optimization' !print*, 'lambda = -e_val(1), no lambda optimization'
lambda = - e_val(1) lambda = - e_val(1)
! H indefinite, w_1^T.g = 0, ||x(lambda = -e_val(1))|| > Delta ! H indefinite, w_1^T.g = 0, ||x(lambda = -e_val(1))|| > Delta
@ -592,12 +601,12 @@ You will find more details at the beginning
! H indefinite, w_1^T.g =/= 0 ! H indefinite, w_1^T.g =/= 0
else else
! Constraint solution/ add lambda ! Constraint solution/ add lambda
if (DABS(tmp_wtg(1)) < thresh_wtg) then !if (DABS(tmp_wtg(1)) < thresh_wtg) then
print*, 'H indefinite, w_1^T.g = 0, ||x(lambda = -e_val(1))|| > Delta' ! print*, 'H indefinite, w_1^T.g = 0, ||x(lambda = -e_val(1))|| > Delta'
else !else
print*, 'H indefinite, w_1^T.g =/= 0' ! print*, 'H indefinite, w_1^T.g =/= 0'
endif !endif
print*, 'Computation of the optimal lambda...' !print*, 'Computation of the optimal lambda...'
call trust_region_optimal_lambda(n,e_val,tmp_wtg,delta,lambda) call trust_region_optimal_lambda(n,e_val,tmp_wtg,delta,lambda)
endif endif
@ -627,28 +636,53 @@ We compute x in function of lambda using its formula :
! Calculation of the step x ! Calculation of the step x
! Normal version if (n == n2) then
if (.not. absolute_eig) then ! Normal version
if (.not. absolute_eig) then
do i = 1, n do i = 1, n
if (DABS(e_val(i)) > thresh_eig .and. DABS(e_val(i)+lambda) > thresh_eig) then if (DABS(e_val(i)) > thresh_eig .and. DABS(e_val(i)+lambda) > thresh_eig) then
do j = 1, n do j = 1, n
x(j) = x(j) - tmp_wtg(i) * W(j,i) / (e_val(i) + lambda) x(j) = x(j) - tmp_wtg(i) * W(j,i) / (e_val(i) + lambda)
enddo enddo
endif endif
enddo enddo
! Version to use the absolute value of the eigenvalues ! Version to use the absolute value of the eigenvalues
else
do i = 1, n
if (DABS(e_val(i)) > thresh_eig) then
do j = 1, n
x(j) = x(j) - tmp_wtg(i) * W(j,i) / (DABS(e_val(i)) + lambda)
enddo
endif
enddo
endif
else else
! If the hessian is diagonal
! Normal version
if (.not. absolute_eig) then
do i = 1, n do i = 1, n
if (DABS(e_val(i)) > thresh_eig) then if (DABS(e_val(i)) > thresh_eig .and. DABS(e_val(i)+lambda) > thresh_eig) then
do j = 1, n j = int(w(i,1) + 1d-15)
x(j) = x(j) - tmp_wtg(i) * W(j,i) / (DABS(e_val(i)) + lambda) x(j) = - tmp_wtg(i) * 1d0 / (e_val(i) + lambda)
enddo endif
endif enddo
enddo
! Version to use the absolute value of the eigenvalues
else
do i = 1, n
if (DABS(e_val(i)) > thresh_eig) then
j = int(w(i,1) + 1d-15)
x(j) = - tmp_wtg(i) * 1d0 / (DABS(e_val(i)) + lambda)
endif
enddo
endif
endif endif
double precision :: beta, norm_x double precision :: beta, norm_x
@ -719,7 +753,6 @@ antisymmetric matrix m_x cf. "mat_to_vec_index" and "vec_to_mat_index".
print*,'======================' print*,'======================'
print*,'---End trust_region---' print*,'---End trust_region---'
print*,'======================' print*,'======================'
print*,''
end end
#+END_SRC #+END_SRC

View File

@ -36,10 +36,10 @@ subroutine vec_to_mat_index(i,p,q)
include 'pi.h' include 'pi.h'
BEGIN_DOC !BEGIN_DOC
! Compute the indexes (p,q) of the element in the lower diagonal matrix knowing ! Compute the indexes (p,q) of the element in the lower diagonal matrix knowing
! its index i a vector ! its index i a vector
END_DOC !END_DOC
implicit none implicit none

View File

@ -8,9 +8,9 @@ Can be done in OMP (for the first part and with omp critical for the second)
#+BEGIN_SRC f90 :comments org :tangle vec_to_mat_v2.irp.f #+BEGIN_SRC f90 :comments org :tangle vec_to_mat_v2.irp.f
subroutine vec_to_mat_v2(n,m,v_x,m_x) subroutine vec_to_mat_v2(n,m,v_x,m_x)
BEGIN_DOC !BEGIN_DOC
! Vector to antisymmetric matrix ! Vector to antisymmetric matrix
END_DOC !END_DOC
implicit none implicit none

View File

@ -1,2 +1,2 @@
!logical, parameter :: debug=.False. logical, parameter :: debug=.False.
double precision, parameter :: pi = 3.1415926535897932d0 double precision, parameter :: pi = 3.1415926535897932d0

View File

@ -61,10 +61,10 @@ subroutine rotation_matrix(A,LDA,R,LDR,n,info,enforce_step_cancellation)
implicit none implicit none
BEGIN_DOC !BEGIN_DOC
! Rotation matrix to rotate the molecular orbitals. ! Rotation matrix to rotate the molecular orbitals.
! If the rotation is too large the transformation is not unitary and must be cancelled. ! If the rotation is too large the transformation is not unitary and must be cancelled.
END_DOC !END_DOC
include 'pi.h' include 'pi.h'
@ -187,7 +187,7 @@ do j = 1, n
endif endif
enddo enddo
enddo enddo
print*,'max element in A', max_elem_A !print*,'max element in A', max_elem_A
if (ABS(max_elem_A) > 2 * pi) then if (ABS(max_elem_A) > 2 * pi) then
print*,'' print*,''
@ -215,18 +215,16 @@ W=B
lwork = 3*n-1 lwork = 3*n-1
allocate(work(lwork,n)) allocate(work(lwork,n))
print*,'Starting diagonalization ...' !print*,'Starting diagonalization ...'
call dsyev('V','U',n,W,size(W,1),e_val,work,lwork,info2) call dsyev('V','U',n,W,size(W,1),e_val,work,lwork,info2)
deallocate(work) deallocate(work)
if (info2 == 0) then if (info2 < 0) then
print*, 'Diagonalization : Done'
elseif (info2 < 0) then
print*, 'WARNING: error in the diagonalization' print*, 'WARNING: error in the diagonalization'
print*, 'Illegal value of the ', info2,'-th parameter' print*, 'Illegal value of the ', info2,'-th parameter'
else elseif (info2 >0) then
print*, "WARNING: Diagonalization failed to converge" print*, "WARNING: Diagonalization failed to converge"
endif endif
@ -302,7 +300,7 @@ do i = 1, n
max_elem = tau_m1(i,i) max_elem = tau_m1(i,i)
endif endif
enddo enddo
print*,'max elem tau^-1:', max_elem !print*,'max elem tau^-1:', max_elem
! Debug ! Debug
!print*,'eigenvalues:' !print*,'eigenvalues:'
@ -373,7 +371,7 @@ enddo
call dgemm('N','T',n,n,n,1d0,R,size(R,1),R,size(R,1),-1d0,RR_t,size(RR_t,1)) call dgemm('N','T',n,n,n,1d0,R,size(R,1),R,size(R,1),-1d0,RR_t,size(RR_t,1))
norm = dnrm2(n*n,RR_t,1) norm = dnrm2(n*n,RR_t,1)
print*, 'Rotation matrix check, norm R.R^T = ', norm !print*, 'Rotation matrix check, norm R.R^T = ', norm
! Debug ! Debug
!if (debug) then !if (debug) then
@ -396,9 +394,9 @@ do j = 1, n
enddo enddo
print*, 'Max error in R.R^T:', max_elem print*, 'Max error in R.R^T:', max_elem
print*, 'e_val(1):', e_val(1) !print*, 'e_val(1):', e_val(1)
print*, 'e_val(n):', e_val(n) !print*, 'e_val(n):', e_val(n)
print*, 'max elem in A:', max_elem_A !print*, 'max elem in A:', max_elem_A
if (ABS(max_elem) > 1d-12) then if (ABS(max_elem) > 1d-12) then
print*, 'WARNING: max error in R.R^T > 1d-12' print*, 'WARNING: max error in R.R^T > 1d-12'

View File

@ -0,0 +1,134 @@
! Rotation matrix with the iterative method
! \begin{align*}
! \textbf{R} = \sum_{k=0}^{\infty} \frac{1}{k!} \textbf{X}^k
! \end{align*}
! !!! Doesn't work !!!
subroutine rotation_matrix_iterative(m,X,R)
implicit none
! in
integer, intent(in) :: m
double precision, intent(in) :: X(m,m)
! out
double precision, intent(out) :: R(m,m)
! internal
double precision :: max_elem, pre_factor
double precision :: t1,t2,t3
integer :: k,l,i,j
logical :: not_converged
double precision, allocatable :: RRT(:,:), A(:,:), B(:,:)
! Functions
integer :: factorial
print*,'---rotation_matrix_iterative---'
call wall_time(t1)
allocate(RRT(m,m),A(m,m),B(m,m))
! k = 0
R = 0d0
do i = 1, m
R(i,i) = 1d0
enddo
! k = 1
R = R + X
k = 2
not_converged = .True.
do while (not_converged)
pre_factor = 1d0/DBLE(factorial(k))
if (pre_factor < 1d-15) then
print*,'pre factor=', pre_factor,'< 1d-15, exit'
exit
endif
A = X
B = 0d0
do l = 1, k-1
call dgemm('N','N',m,m,m,1d0,X,size(X,1),A,size(A,1),0d0,B,size(B,1))
A = B
enddo
!print*,'B'
!do i = 1, m
! print*,B(i,:) * 1d0/DBLE(factorial(k))
!enddo
R = R + pre_factor * B
k = k + 1
call dgemm('T','N',m,m,m,1d0,R,size(R,1),R,size(R,1),0d0,RRT,size(RRT,1))
!print*,'R'
!do i = 1, m
! write(*,'(10(E12.5))') R(i,:)
!enddo
do i = 1, m
RRT(i,i) = RRT(i,i) - 1d0
enddo
!print*,'RRT'
!do i = 1, m
! write(*,'(10(E12.5))') RRT(i,:)
!enddo
max_elem = 0d0
do j = 1, m
do i = 1, m
if (dabs(RRT(i,j)) > max_elem) then
max_elem = dabs(RRT(i,j))
endif
enddo
enddo
print*, 'Iteration:', k
print*, 'Max error in R:', max_elem
if (max_elem < 1d-12) then
not_converged = .False.
endif
enddo
deallocate(RRT,A,B)
call wall_time(t2)
t3 = t2 - t1
print*,'Time in rotation matrix iterative:', t3
print*,'---End roration_matrix_iterative---'
print*,'Does not work yet, abort'
call abort
end
! Factorial
function factorial(n)
implicit none
integer, intent(in) :: n
integer :: factorial, k
factorial = 1
do k = 1, n
factorial = factorial * k
enddo
end

View File

@ -32,9 +32,9 @@
subroutine sub_to_full_rotation_matrix(m,tmp_list,tmp_R,R) subroutine sub_to_full_rotation_matrix(m,tmp_list,tmp_R,R)
BEGIN_DOC !BEGIN_DOC
! Compute the full rotation matrix from a smaller one ! Compute the full rotation matrix from a smaller one
END_DOC !END_DOC
implicit none implicit none

View File

@ -10,11 +10,12 @@
! \end{align*} ! \end{align*}
! Input: ! Input:
! | n | integer | m*(m-1)/2 | ! | n | integer | m*(m-1)/2 |
! | v_grad(n) | double precision | gradient | ! | n2 | integer | m*(m-1)/2 or 1 if the hessian is diagonal |
! | H(n,n) | double precision | hessian | ! | v_grad(n) | double precision | gradient |
! | x(n) | double precision | Step in the trust region | ! | H(n,n) | double precision | hessian |
! | prev_energy | double precision | previous energy | ! | x(n) | double precision | Step in the trust region |
! | prev_energy | double precision | previous energy |
! Output: ! Output:
! | e_model | double precision | predicted energy after the rotation of the MOs | ! | e_model | double precision | predicted energy after the rotation of the MOs |
@ -29,21 +30,21 @@
! | ddot | double precision | dot product (Lapack) | ! | ddot | double precision | dot product (Lapack) |
subroutine trust_region_expected_e(n,v_grad,H,x,prev_energy,e_model) subroutine trust_region_expected_e(n,n2,v_grad,H,x,prev_energy,e_model)
include 'pi.h' include 'pi.h'
BEGIN_DOC !BEGIN_DOC
! Compute the expected criterion/energy after the application of the step x ! Compute the expected criterion/energy after the application of the step x
END_DOC !END_DOC
implicit none implicit none
! Variables ! Variables
! in ! in
integer, intent(in) :: n integer, intent(in) :: n,n2
double precision, intent(in) :: v_grad(n),H(n,n),x(n) double precision, intent(in) :: v_grad(n),H(n,n2),x(n)
double precision, intent(in) :: prev_energy double precision, intent(in) :: prev_energy
! out ! out
@ -79,27 +80,34 @@ subroutine trust_region_expected_e(n,v_grad,H,x,prev_energy,e_model)
part_1 = ddot(n,v_grad,1,x,1) part_1 = ddot(n,v_grad,1,x,1)
!if (debug) then !if (debug) then
print*,'g.x : ', part_1 ! print*,'g.x : ', part_1
!endif !endif
! Product H.x ! Product H.x
call dgemv('N',n,n,1d0,H,size(H,1),x,1,0d0,part_2a,1) if (n == n2) then
call dgemv('N',n,n,1d0,H,size(H,1),x,1,0d0,part_2a,1)
else
! If the hessian is diagonal
do i = 1, n
part_2a(i) = H(i,1) * x(i)
enddo
endif
! Product 1/2 . x^T.H.x ! Product 1/2 . x^T.H.x
part_2 = 0.5d0 * ddot(n,x,1,part_2a,1) part_2 = 0.5d0 * ddot(n,x,1,part_2a,1)
!if (debug) then !if (debug) then
print*,'1/2*x^T.H.x : ', part_2 ! print*,'1/2*x^T.H.x : ', part_2
!endif !endif
print*,'prev_energy', prev_energy
! Sum ! Sum
e_model = prev_energy + part_1 + part_2 e_model = prev_energy + part_1 + part_2
! Writing the predicted energy ! Writing the predicted energy
print*, 'Predicted energy after the rotation : ', e_model print*, 'prev_energy: ', prev_energy
print*, 'Previous energy - predicted energy:', prev_energy - e_model print*, 'Predicted energy after the rotation:', e_model
print*, 'Previous energy - predicted energy: ', prev_energy - e_model
! Can be deleted, already in another subroutine ! Can be deleted, already in another subroutine
if (DABS(prev_energy - e_model) < 1d-12 ) then if (DABS(prev_energy - e_model) < 1d-12 ) then
@ -114,6 +122,5 @@ subroutine trust_region_expected_e(n,v_grad,H,x,prev_energy,e_model)
print*,'Time in trust e model:', t3 print*,'Time in trust e model:', t3
print*,'---End trust_e_model---' print*,'---End trust_e_model---'
print*,''
end subroutine end subroutine

View File

@ -153,9 +153,9 @@ subroutine trust_region_optimal_lambda(n,e_val,tmp_wtg,delta,lambda)
include 'pi.h' include 'pi.h'
BEGIN_DOC !BEGIN_DOC
! Research the optimal lambda to constrain the step size in the trust region ! Research the optimal lambda to constrain the step size in the trust region
END_DOC !END_DOC
implicit none implicit none
@ -195,18 +195,17 @@ subroutine trust_region_optimal_lambda(n,e_val,tmp_wtg,delta,lambda)
print*,'' print*,''
print*,'---Trust_newton---' print*,'---Trust_newton---'
print*,''
call wall_time(t1) call wall_time(t1)
! version_lambda_search ! version_lambda_search
! 1 -> ||x||^2 - delta^2 = 0, ! 1 -> ||x||^2 - delta^2 = 0,
! 2 -> 1/||x||^2 - 1/delta^2 = 0 (better) ! 2 -> 1/||x||^2 - 1/delta^2 = 0 (better)
if (version_lambda_search == 1) then !if (version_lambda_search == 1) then
print*, 'Research of the optimal lambda by solving ||x||^2 - delta^2 = 0' ! print*, 'Research of the optimal lambda by solving ||x||^2 - delta^2 = 0'
else !else
print*, 'Research of the optimal lambda by solving 1/||x||^2 - 1/delta^2 = 0' ! print*, 'Research of the optimal lambda by solving 1/||x||^2 - 1/delta^2 = 0'
endif !endif
! Version 2 is normally better ! Version 2 is normally better
@ -216,21 +215,21 @@ subroutine trust_region_optimal_lambda(n,e_val,tmp_wtg,delta,lambda)
! Initialization ! Initialization
epsilon = 1d-4 epsilon = 1d-4
lambda =MAX(0d0, -e_val(1)) lambda = max(0d0, -e_val(1))
! Pre research of lambda to start near the optimal lambda ! Pre research of lambda to start near the optimal lambda
! by adding a constant epsilon and changing the constant to ! by adding a constant epsilon and changing the constant to
! have ||x(lambda + epsilon)|| ~ delta, before setting ! have ||x(lambda + epsilon)|| ~ delta, before setting
! lambda = lambda + epsilon ! lambda = lambda + epsilon
print*, 'Pre research of lambda:' !print*, 'Pre research of lambda:'
print*,'Initial lambda =', lambda !print*,'Initial lambda =', lambda
f_N = f_norm_trust_region_omp(n,e_val,tmp_wtg,lambda + epsilon) f_N = f_norm_trust_region_omp(n,e_val,tmp_wtg,lambda + epsilon)
print*,'||x(lambda)||=', dsqrt(f_N),'delta=',delta !print*,'||x(lambda)||=', dsqrt(f_N),'delta=',delta
i = 1 i = 1
! To increase lambda ! To increase lambda
if (f_N > delta**2) then if (f_N > delta**2) then
print*,'Increasing lambda...' !print*,'Increasing lambda...'
do while (f_N > delta**2 .and. i <= nb_it_max_pre_search) do while (f_N > delta**2 .and. i <= nb_it_max_pre_search)
! Update the previous norm ! Update the previous norm
@ -240,7 +239,7 @@ subroutine trust_region_optimal_lambda(n,e_val,tmp_wtg,delta,lambda)
! New norm ! New norm
f_N = f_norm_trust_region_omp(n,e_val,tmp_wtg,lambda + epsilon) f_N = f_norm_trust_region_omp(n,e_val,tmp_wtg,lambda + epsilon)
print*, 'lambda', lambda + epsilon, '||x||', dsqrt(f_N), 'delta', delta !print*, 'lambda', lambda + epsilon, '||x||', dsqrt(f_N), 'delta', delta
! Security ! Security
if (prev_f_N < f_N) then if (prev_f_N < f_N) then
@ -254,7 +253,7 @@ subroutine trust_region_optimal_lambda(n,e_val,tmp_wtg,delta,lambda)
! To reduce lambda ! To reduce lambda
else else
print*,'Reducing lambda...' !print*,'Reducing lambda...'
do while (f_N < delta**2 .and. i <= nb_it_max_pre_search) do while (f_N < delta**2 .and. i <= nb_it_max_pre_search)
! Update the previous norm ! Update the previous norm
@ -264,7 +263,7 @@ subroutine trust_region_optimal_lambda(n,e_val,tmp_wtg,delta,lambda)
! New norm ! New norm
f_N = f_norm_trust_region_omp(n,e_val,tmp_wtg,lambda + epsilon) f_N = f_norm_trust_region_omp(n,e_val,tmp_wtg,lambda + epsilon)
print*, 'lambda', lambda + epsilon, '||x||', dsqrt(f_N), 'delta', delta !print*, 'lambda', lambda + epsilon, '||x||', dsqrt(f_N), 'delta', delta
! Security ! Security
if (prev_f_N > f_N) then if (prev_f_N > f_N) then
@ -277,27 +276,25 @@ subroutine trust_region_optimal_lambda(n,e_val,tmp_wtg,delta,lambda)
enddo enddo
endif endif
print*,'End of the pre research of lambda' !print*,'End of the pre research of lambda'
! New value of lambda ! New value of lambda
lambda = lambda + epsilon lambda = lambda + epsilon
print*, 'e_val(1):', e_val(1) !print*, 'e_val(1):', e_val(1)
print*, 'Staring point, lambda =', lambda !print*, 'Staring point, lambda =', lambda
! thresh_cc, threshold for the research of the optimal lambda ! thresh_cc, threshold for the research of the optimal lambda
! Leaves the loop when ABS(1d0-||x||^2/delta^2) > thresh_cc ! Leaves the loop when ABS(1d0-||x||^2/delta^2) > thresh_cc
! thresh_rho_2, threshold to cancel the step in the research ! thresh_rho_2, threshold to cancel the step in the research
! of the optimal lambda, the step is cancelled if rho_2 < thresh_rho_2 ! of the optimal lambda, the step is cancelled if rho_2 < thresh_rho_2
print*,'Threshold for the CC:', thresh_cc
print*,'Threshold for rho_2:', thresh_rho_2 !print*,'Threshold for the CC:', thresh_cc
!print*,'Threshold for rho_2:', thresh_rho_2
print*, 'w_1^T . g =', tmp_wtg(1) !print*, 'w_1^T . g =', tmp_wtg(1)
! Debug ! Debug
!if (debug) then !print*, 'Iteration rho_2 lambda delta ||x|| |1-(||x||^2/delta^2)|'
! print*, 'Iteration rho_2 lambda delta ||x|| |1-(||x||^2/delta^2)|'
!endif
! Initialization ! Initialization
i = 1 i = 1
@ -324,9 +321,9 @@ subroutine trust_region_optimal_lambda(n,e_val,tmp_wtg,delta,lambda)
! Newton's method ! Newton's method
do while (i <= 100 .and. DABS(1d0-f_N/delta**2) > thresh_cc) do while (i <= 100 .and. DABS(1d0-f_N/delta**2) > thresh_cc)
print*,'--------------------------------------' !print*,'--------------------------------------'
print*,'Research of lambda, iteration:', i !print*,'Research of lambda, iteration:', i
print*,'--------------------------------------' !print*,'--------------------------------------'
! Update of f_N, f_R and the derivatives ! Update of f_N, f_R and the derivatives
prev_f_N = f_N prev_f_N = f_N
@ -339,7 +336,7 @@ subroutine trust_region_optimal_lambda(n,e_val,tmp_wtg,delta,lambda)
d_1 = d1_norm_inverse_trust_region_omp(n,e_val,tmp_wtg,lambda,delta) ! first derivative of (1/||x(lambda)||^2 - 1/delta^2)^2 d_1 = d1_norm_inverse_trust_region_omp(n,e_val,tmp_wtg,lambda,delta) ! first derivative of (1/||x(lambda)||^2 - 1/delta^2)^2
d_2 = d2_norm_inverse_trust_region_omp(n,e_val,tmp_wtg,lambda,delta) ! second derivative of (1/||x(lambda)||^2 - 1/delta^2)^2 d_2 = d2_norm_inverse_trust_region_omp(n,e_val,tmp_wtg,lambda,delta) ! second derivative of (1/||x(lambda)||^2 - 1/delta^2)^2
endif endif
write(*,'(a,E12.5,a,E12.5)') ' 1st and 2nd derivative: ', d_1,', ', d_2 !write(*,'(a,E12.5,a,E12.5)') ' 1st and 2nd derivative: ', d_1,', ', d_2
! Newton's step ! Newton's step
y = -(1d0/DABS(d_2))*d_1 y = -(1d0/DABS(d_2))*d_1
@ -348,7 +345,7 @@ subroutine trust_region_optimal_lambda(n,e_val,tmp_wtg,delta,lambda)
if (DABS(y) > alpha) then if (DABS(y) > alpha) then
y = alpha * (y/DABS(y)) ! preservation of the sign of y y = alpha * (y/DABS(y)) ! preservation of the sign of y
endif endif
write(*,'(a,E12.5)') ' Step length: ', y !write(*,'(a,E12.5)') ' Step length: ', y
! Predicted value of (||x(lambda)||^2 - delta^2)^2, Taylor series ! Predicted value of (||x(lambda)||^2 - delta^2)^2, Taylor series
model = prev_f_R + d_1 * y + 0.5d0 * d_2 * y**2 model = prev_f_R + d_1 * y + 0.5d0 * d_2 * y**2
@ -356,8 +353,8 @@ subroutine trust_region_optimal_lambda(n,e_val,tmp_wtg,delta,lambda)
! Updates lambda ! Updates lambda
prev_lambda = lambda prev_lambda = lambda
lambda = prev_lambda + y lambda = prev_lambda + y
print*,'prev lambda:', prev_lambda !print*,'prev lambda:', prev_lambda
print*,'new lambda:', lambda !print*,'new lambda:', lambda
! Checks if lambda is in (-h_1, \infty) ! Checks if lambda is in (-h_1, \infty)
if (lambda > MAX(0d0, -e_val(1))) then if (lambda > MAX(0d0, -e_val(1))) then
@ -371,18 +368,18 @@ subroutine trust_region_optimal_lambda(n,e_val,tmp_wtg,delta,lambda)
f_R = (1d0/f_N - 1d0/delta**2)**2 ! new value of (1/||x(lambda)||^2 -1/delta^2)^2 f_R = (1d0/f_N - 1d0/delta**2)**2 ! new value of (1/||x(lambda)||^2 -1/delta^2)^2
endif endif
if (version_lambda_search == 1) then !if (version_lambda_search == 1) then
print*,'Previous value of (||x(lambda)||^2 - delta^2)^2:', prev_f_R ! print*,'Previous value of (||x(lambda)||^2 - delta^2)^2:', prev_f_R
print*,'Actual value of (||x(lambda)||^2 - delta^2)^2:', f_R ! print*,'Actual value of (||x(lambda)||^2 - delta^2)^2:', f_R
print*,'Predicted value of (||x(lambda)||^2 - delta^2)^2:', model ! print*,'Predicted value of (||x(lambda)||^2 - delta^2)^2:', model
else !else
print*,'Previous value of (1/||x(lambda)||^2 - 1/delta^2)^2:', prev_f_R ! print*,'Previous value of (1/||x(lambda)||^2 - 1/delta^2)^2:', prev_f_R
print*,'Actual value of (1/||x(lambda)||^2 - 1/delta^2)^2:', f_R ! print*,'Actual value of (1/||x(lambda)||^2 - 1/delta^2)^2:', f_R
print*,'Predicted value of (1/||x(lambda)||^2 - 1/delta^2)^2:', model ! print*,'Predicted value of (1/||x(lambda)||^2 - 1/delta^2)^2:', model
endif !endif
print*,'previous - actual:', prev_f_R - f_R !print*,'previous - actual:', prev_f_R - f_R
print*,'previous - model:', prev_f_R - model !print*,'previous - model:', prev_f_R - model
! Check the gain ! Check the gain
if (DABS(prev_f_R - model) < thresh_model_2) then if (DABS(prev_f_R - model) < thresh_model_2) then
@ -401,10 +398,10 @@ subroutine trust_region_optimal_lambda(n,e_val,tmp_wtg,delta,lambda)
! Computes rho_2 ! Computes rho_2
rho_2 = (prev_f_R - f_R)/(prev_f_R - model) rho_2 = (prev_f_R - f_R)/(prev_f_R - model)
print*,'rho_2:', rho_2 !print*,'rho_2:', rho_2
else else
rho_2 = 0d0 ! in order to reduce the size of the trust region, alpha, until lambda is in (-h_1, \infty) rho_2 = 0d0 ! in order to reduce the size of the trust region, alpha, until lambda is in (-h_1, \infty)
print*,'lambda < -e_val(1) ===> rho_2 = 0' !print*,'lambda < -e_val(1) ===> rho_2 = 0'
endif endif
! Evolution of the trust length, alpha ! Evolution of the trust length, alpha
@ -417,20 +414,20 @@ subroutine trust_region_optimal_lambda(n,e_val,tmp_wtg,delta,lambda)
else else
alpha = 0.25d0 * alpha alpha = 0.25d0 * alpha
endif endif
write(*,'(a,E12.5)') ' New trust length alpha: ', alpha !write(*,'(a,E12.5)') ' New trust length alpha: ', alpha
! cancellaion of the step if rho < 0.1 ! cancellaion of the step if rho < 0.1
if (rho_2 < thresh_rho_2) then !0.1d0) then if (rho_2 < thresh_rho_2) then !0.1d0) then
lambda = prev_lambda lambda = prev_lambda
f_N = prev_f_N f_N = prev_f_N
print*,'Rho_2 <', thresh_rho_2,', cancellation of the step: lambda = prev_lambda' !print*,'Rho_2 <', thresh_rho_2,', cancellation of the step: lambda = prev_lambda'
endif endif
print*,'' !print*,''
print*,'lambda, ||x||, delta:' !print*,'lambda, ||x||, delta:'
print*, lambda, dsqrt(f_N), delta !print*, lambda, dsqrt(f_N), delta
print*,'CC:', DABS(1d0 - f_N/delta**2) !print*,'CC:', DABS(1d0 - f_N/delta**2)
print*,'' !print*,''
i = i + 1 i = i + 1
enddo enddo
@ -445,20 +442,19 @@ subroutine trust_region_optimal_lambda(n,e_val,tmp_wtg,delta,lambda)
print*,'' print*,''
endif endif
print*,'Number of iterations :', i print*,'Number of iterations:', i
print*,'Value of lambda :', lambda print*,'Value of lambda:', lambda
print*,'Error on the trust region (1d0-f_N/delta**2) (Convergence criterion) :', 1d0-f_N/delta**2 !print*,'Error on the trust region (1d0-f_N/delta**2) (Convergence criterion) :', 1d0-f_N/delta**2
print*,'Error on the trust region (||x||^2 - delta^2)^2) :', (f_N - delta**2)**2 print*,'Convergence criterion:', 1d0-f_N/delta**2
print*,'Error on the trust region (1/||x||^2 - 1/delta^2)^2)', (1d0/f_N - 1d0/delta**2)**2 !print*,'Error on the trust region (||x||^2 - delta^2)^2):', (f_N - delta**2)**2
!print*,'Error on the trust region (1/||x||^2 - 1/delta^2)^2)', (1d0/f_N - 1d0/delta**2)**2
! Time ! Time
call wall_time(t2) call wall_time(t2)
t3 = t2 - t1 t3 = t2 - t1
print*,'Time in trust_newton:', t3 print*,'Time in trust_newton:', t3
print*,''
print*,'---End trust_newton---' print*,'---End trust_newton---'
print*,''
end subroutine end subroutine
@ -508,9 +504,9 @@ function d1_norm_trust_region_omp(n,e_val,tmp_wtg,lambda,delta)
use omp_lib use omp_lib
include 'pi.h' include 'pi.h'
BEGIN_DOC !BEGIN_DOC
! Compute the first derivative with respect to lambda of (||x(lambda)||^2 - Delta^2)^2 ! Compute the first derivative with respect to lambda of (||x(lambda)||^2 - Delta^2)^2
END_DOC !END_DOC
implicit none implicit none
@ -644,9 +640,9 @@ function d2_norm_trust_region_omp(n,e_val,tmp_wtg,lambda,delta)
use omp_lib use omp_lib
include 'pi.h' include 'pi.h'
BEGIN_DOC !BEGIN_DOC
! Compute the second derivative with respect to lambda of (||x(lambda)||^2 - Delta^2)^2 ! Compute the second derivative with respect to lambda of (||x(lambda)||^2 - Delta^2)^2
END_DOC !END_DOC
implicit none implicit none
@ -792,9 +788,9 @@ function f_norm_trust_region_omp(n,e_val,tmp_wtg,lambda)
include 'pi.h' include 'pi.h'
BEGIN_DOC !BEGIN_DOC
! Compute ||x(lambda)||^2 ! Compute ||x(lambda)||^2
END_DOC !END_DOC
implicit none implicit none
@ -903,9 +899,9 @@ function d1_norm_trust_region(n,e_val,w,v_grad,lambda,delta)
include 'pi.h' include 'pi.h'
BEGIN_DOC !BEGIN_DOC
! Compute the first derivative with respect to lambda of (||x(lambda)||^2 - Delta^2)^2 ! Compute the first derivative with respect to lambda of (||x(lambda)||^2 - Delta^2)^2
END_DOC !END_DOC
implicit none implicit none
@ -1000,9 +996,9 @@ function d2_norm_trust_region(n,e_val,w,v_grad,lambda,delta)
include 'pi.h' include 'pi.h'
BEGIN_DOC !BEGIN_DOC
! Compute the second derivative with respect to lambda of (||x(lambda)||^2 - Delta^2)^2 ! Compute the second derivative with respect to lambda of (||x(lambda)||^2 - Delta^2)^2
END_DOC !END_DOC
implicit none implicit none
@ -1102,9 +1098,9 @@ function f_norm_trust_region(n,e_val,tmp_wtg,lambda)
include 'pi.h' include 'pi.h'
BEGIN_DOC !BEGIN_DOC
! Compute ||x(lambda)||^2 ! Compute ||x(lambda)||^2
END_DOC !END_DOC
implicit none implicit none
@ -1184,9 +1180,9 @@ function d1_norm_inverse_trust_region_omp(n,e_val,tmp_wtg,lambda,delta)
use omp_lib use omp_lib
include 'pi.h' include 'pi.h'
BEGIN_DOC !BEGIN_DOC
! Compute the first derivative of (1/||x||^2 - 1/Delta^2)^2 ! Compute the first derivative of (1/||x||^2 - 1/Delta^2)^2
END_DOC !END_DOC
implicit none implicit none
@ -1340,9 +1336,9 @@ function d2_norm_inverse_trust_region_omp(n,e_val,tmp_wtg,lambda,delta)
use omp_lib use omp_lib
include 'pi.h' include 'pi.h'
BEGIN_DOC !BEGIN_DOC
! Compute the second derivative of (1/||x||^2 - 1/Delta^2)^2 ! Compute the second derivative of (1/||x||^2 - 1/Delta^2)^2
END_DOC !END_DOC
implicit none implicit none
@ -1498,9 +1494,9 @@ function d1_norm_inverse_trust_region(n,e_val,w,v_grad,lambda,delta)
include 'pi.h' include 'pi.h'
BEGIN_DOC !BEGIN_DOC
! Compute the first derivative of (1/||x||^2 - 1/Delta^2)^2 ! Compute the first derivative of (1/||x||^2 - 1/Delta^2)^2
END_DOC !END_DOC
implicit none implicit none
@ -1592,9 +1588,9 @@ function d2_norm_inverse_trust_region(n,e_val,w,v_grad,lambda,delta)
include 'pi.h' include 'pi.h'
BEGIN_DOC !BEGIN_DOC
! Compute the second derivative of (1/||x||^2 - 1/Delta^2)^2 ! Compute the second derivative of (1/||x||^2 - 1/Delta^2)^2
END_DOC !END_DOC
implicit none implicit none

Some files were not shown because too many files have changed in this diff Show More