mirror of
https://github.com/QuantumPackage/qp2.git
synced 2024-11-18 11:23:38 +01:00
working on converter
hdf5 outputs c-contiguous numpy arrays ezfio assumes arrays are fortran-ordered np.view can be used to get re,im parts as floats with doubling of one dimension (last for c-contiguous, possibly first for f-contiguous?) working on changing the converter to minimize transposing, reshaping, taking re/im parts, stacking, etc.
This commit is contained in:
parent
b0bf0c79d6
commit
01360efd84
@ -434,6 +434,8 @@ def get_j3ao(fname,nao,Nk):
|
|||||||
'''
|
'''
|
||||||
returns padded df AO array
|
returns padded df AO array
|
||||||
fills in zeros when functions are dropped due to linear dependency
|
fills in zeros when functions are dropped due to linear dependency
|
||||||
|
last AO index corresponds to smallest kpt index?
|
||||||
|
(k, mu, i, j) where i.kpt >= j.kpt
|
||||||
'''
|
'''
|
||||||
import h5py
|
import h5py
|
||||||
with h5py.File(fname,'r') as intfile:
|
with h5py.File(fname,'r') as intfile:
|
||||||
@ -461,8 +463,48 @@ def get_j3ao(fname,nao,Nk):
|
|||||||
iaux,dim2 = j3c[kpair+keysub].shape
|
iaux,dim2 = j3c[kpair+keysub].shape
|
||||||
if (dim2==naosq):
|
if (dim2==naosq):
|
||||||
j3arr[i,:iaux,:,:] = j3c[kpair+keysub][()].reshape([iaux,nao,nao]) * nkinvsq
|
j3arr[i,:iaux,:,:] = j3c[kpair+keysub][()].reshape([iaux,nao,nao]) * nkinvsq
|
||||||
|
#j3arr[i,:iaux,:,:] = j3c[kpair+keysub][()].reshape([iaux,nao,nao]).transpose((0,2,1)) * nkinvsq
|
||||||
else:
|
else:
|
||||||
j3arr[i,:iaux,:,:] = makesq3(j3c[kpair+keysub][()],nao) * nkinvsq
|
j3arr[i,:iaux,:,:] = makesq3(j3c[kpair+keysub][()],nao) * nkinvsq
|
||||||
|
#j3arr[i,:iaux,:,:] = makesq3(j3c[kpair+keysub][()].conj(),nao) * nkinvsq
|
||||||
|
|
||||||
|
return j3arr
|
||||||
|
|
||||||
|
def get_j3ao_new(fname,nao,Nk):
|
||||||
|
'''
|
||||||
|
returns padded df AO array
|
||||||
|
fills in zeros when functions are dropped due to linear dependency
|
||||||
|
last AO index corresponds to largest kpt index?
|
||||||
|
(k, mu, j, i) where i.kpt >= j.kpt
|
||||||
|
'''
|
||||||
|
import h5py
|
||||||
|
with h5py.File(fname,'r') as intfile:
|
||||||
|
j3c = intfile.get('j3c')
|
||||||
|
j3ckeys = list(j3c.keys())
|
||||||
|
nkpairs = len(j3ckeys)
|
||||||
|
|
||||||
|
# get num order instead of lex order
|
||||||
|
j3ckeys.sort(key=lambda strkey:int(strkey))
|
||||||
|
|
||||||
|
# in new(?) version of PySCF, there is an extra layer of groups before the datasets
|
||||||
|
# datasets used to be [/j3c/0, /j3c/1, /j3c/2, ...]
|
||||||
|
# datasets now are [/j3c/0/0, /j3c/1/0, /j3c/2/0, ...]
|
||||||
|
keysub = '/0' if bool(j3c.get('0/0',getclass=True)) else ''
|
||||||
|
|
||||||
|
naux = max(map(lambda k: j3c[k+keysub].shape[0],j3c.keys()))
|
||||||
|
|
||||||
|
naosq = nao*nao
|
||||||
|
naotri = (nao*(nao+1))//2
|
||||||
|
nkinvsq = 1./np.sqrt(Nk)
|
||||||
|
|
||||||
|
j3arr = np.zeros((nkpairs,naux,nao,nao),dtype=np.complex128)
|
||||||
|
|
||||||
|
for i,kpair in enumerate(j3ckeys):
|
||||||
|
iaux,dim2 = j3c[kpair+keysub].shape
|
||||||
|
if (dim2==naosq):
|
||||||
|
j3arr[i,:iaux,:,:] = j3c[kpair+keysub][()].reshape([iaux,nao,nao]).transpose((0,2,1)) * nkinvsq
|
||||||
|
else:
|
||||||
|
j3arr[i,:iaux,:,:] = makesq3(j3c[kpair+keysub][()].conj(),nao) * nkinvsq
|
||||||
|
|
||||||
return j3arr
|
return j3arr
|
||||||
|
|
||||||
@ -494,6 +536,16 @@ def df_ao_to_mo(j3ao,mo_coef):
|
|||||||
np.einsum('mij,ik,jl->mkl',j3ao[kij],mo_coef[ki].conj(),mo_coef[kj])
|
np.einsum('mij,ik,jl->mkl',j3ao[kij],mo_coef[ki].conj(),mo_coef[kj])
|
||||||
for ki,kj,kij in kpair_list])
|
for ki,kj,kij in kpair_list])
|
||||||
|
|
||||||
|
|
||||||
|
def df_ao_to_mo_new(j3ao,mo_coef):
|
||||||
|
#TODO: fix this (C/F ordering, conj, transpose, view cmplx->float)
|
||||||
|
|
||||||
|
from itertools import product
|
||||||
|
Nk = mo_coef.shape[0]
|
||||||
|
return np.array([
|
||||||
|
np.einsum('mji,ik,jl->mlk',j3ao[idx2_tri((ki,kj))],mo_coef[ki].conj(),mo_coef[kj])
|
||||||
|
for ki,kj in product(range(Nk),repeat=2) if (ki>=kj)])
|
||||||
|
|
||||||
def df_ao_to_mo_test(j3ao,mo_coef):
|
def df_ao_to_mo_test(j3ao,mo_coef):
|
||||||
from itertools import product
|
from itertools import product
|
||||||
Nk = mo_coef.shape[0]
|
Nk = mo_coef.shape[0]
|
||||||
@ -628,12 +680,16 @@ def pyscf2QP2(cell,mf, kpts, kmesh=None, cas_idx=None, int_threshold = 1E-8,
|
|||||||
# #
|
# #
|
||||||
##########################################
|
##########################################
|
||||||
|
|
||||||
mo_coef_blocked=block_diag(*mo_k)
|
|
||||||
with h5py.File(qph5path,'a') as qph5:
|
with h5py.File(qph5path,'a') as qph5:
|
||||||
|
mo_coef_f = np.array(mo_k.transpose((0,2,1)),order='c')
|
||||||
|
mo_coef_blocked=block_diag(*mo_k)
|
||||||
|
mo_coef_blocked_f = block_diag(*mo_coef_f)
|
||||||
qph5.create_dataset('mo_basis/mo_coef_real',data=mo_coef_blocked.real)
|
qph5.create_dataset('mo_basis/mo_coef_real',data=mo_coef_blocked.real)
|
||||||
qph5.create_dataset('mo_basis/mo_coef_imag',data=mo_coef_blocked.imag)
|
qph5.create_dataset('mo_basis/mo_coef_imag',data=mo_coef_blocked.imag)
|
||||||
qph5.create_dataset('mo_basis/mo_coef_kpts_real',data=mo_k.real)
|
qph5.create_dataset('mo_basis/mo_coef_kpts_real',data=mo_k.real)
|
||||||
qph5.create_dataset('mo_basis/mo_coef_kpts_imag',data=mo_k.imag)
|
qph5.create_dataset('mo_basis/mo_coef_kpts_imag',data=mo_k.imag)
|
||||||
|
qph5.create_dataset('mo_basis/mo_coef',data=mo_coef_blocked_f.view(dtype=np.float64).reshape((Nk*nmo,Nk*nao,2)))
|
||||||
|
qph5.create_dataset('mo_basis/mo_coef_kpts',data=mo_coef_f.view(dtype=np.float64).reshape((Nk,nmo,nao,2)))
|
||||||
|
|
||||||
print_kpts_unblocked(mo_k,'C.qp',mo_coef_threshold)
|
print_kpts_unblocked(mo_k,'C.qp',mo_coef_threshold)
|
||||||
|
|
||||||
@ -714,12 +770,9 @@ def pyscf2QP2(cell,mf, kpts, kmesh=None, cas_idx=None, int_threshold = 1E-8,
|
|||||||
|
|
||||||
j3arr = get_j3ao(mf.with_df._cderi,nao,Nk)
|
j3arr = get_j3ao(mf.with_df._cderi,nao,Nk)
|
||||||
|
|
||||||
# test? should be (Nk*(Nk+1))//2
|
# test? nkpt_pairs should be (Nk*(Nk+1))//2
|
||||||
nkpt_pairs = j3arr.shape[0]
|
nkpt_pairs, naux, _, _ = j3arr.shape
|
||||||
|
|
||||||
# mf.with_df.get_naoaux() gives correct naux if no linear dependency in auxbasis
|
|
||||||
# this should work even with linear dependency
|
|
||||||
naux = max(i.shape[0] for i in j3arr)
|
|
||||||
print("n df fitting functions", naux)
|
print("n df fitting functions", naux)
|
||||||
with h5py.File(qph5path,'a') as qph5:
|
with h5py.File(qph5path,'a') as qph5:
|
||||||
qph5.create_group('ao_two_e_ints')
|
qph5.create_group('ao_two_e_ints')
|
||||||
@ -727,36 +780,24 @@ def pyscf2QP2(cell,mf, kpts, kmesh=None, cas_idx=None, int_threshold = 1E-8,
|
|||||||
|
|
||||||
if print_ao_ints_df:
|
if print_ao_ints_df:
|
||||||
print_df(j3arr,'D.qp',bielec_int_threshold)
|
print_df(j3arr,'D.qp',bielec_int_threshold)
|
||||||
|
j3ao_new = get_j3ao_new(mf.with_df._cderi,nao,Nk)
|
||||||
df_ao_tmp = np.zeros((nao,nao,naux,nkpt_pairs),dtype=np.complex128)
|
|
||||||
for i,di in enumerate(j3arr):
|
|
||||||
df_ao_tmp[:,:,:di.shape[0],i] = np.transpose(di,(1,2,0))
|
|
||||||
|
|
||||||
#df_ao_old = df_pad_ref_test(j3arr,nao,naux,nkpt_pairs)
|
|
||||||
#assert(abs(df_ao_tmp - df_ao_old).max() <= 1e-12)
|
|
||||||
|
|
||||||
with h5py.File(qph5path,'a') as qph5:
|
with h5py.File(qph5path,'a') as qph5:
|
||||||
qph5.create_dataset('ao_two_e_ints/df_ao_integrals_real',data=df_ao_tmp.real)
|
qph5.create_dataset('ao_two_e_ints/df_ao_integrals_real',data=j3arr.transpose((2,3,1,0)).real)
|
||||||
qph5.create_dataset('ao_two_e_ints/df_ao_integrals_imag',data=df_ao_tmp.imag)
|
qph5.create_dataset('ao_two_e_ints/df_ao_integrals_imag',data=j3arr.transpose((2,3,1,0)).imag)
|
||||||
|
qph5.create_dataset('ao_two_e_ints/df_ao_integrals',data=j3ao_new.view(dtype=np.float64).reshape((nkpt_pairs,naux,nao,nao,2)))
|
||||||
|
|
||||||
if print_mo_ints_df:
|
if print_mo_ints_df:
|
||||||
|
|
||||||
j3mo = df_ao_to_mo(j3arr,mo_k)
|
j3mo = df_ao_to_mo(j3arr,mo_k)
|
||||||
#j3mo_test = df_ao_to_mo_test(j3arr,mo_k)
|
j3mo_new = df_ao_to_mo_new(j3ao_new,mo_k)
|
||||||
#assert(all([abs(i-j).max() <= 1e-12 for (i,j) in zip(j3mo,j3mo_test)]))
|
|
||||||
|
|
||||||
print_df(j3mo,'D.mo.qp',bielec_int_threshold)
|
print_df(j3mo,'D.mo.qp',bielec_int_threshold)
|
||||||
|
|
||||||
df_mo_tmp = np.zeros((nmo,nmo,naux,nkpt_pairs),dtype=np.complex128)
|
|
||||||
for i,di in enumerate(j3mo):
|
|
||||||
df_mo_tmp[:,:,:di.shape[0],i] = np.transpose(di,(1,2,0))
|
|
||||||
|
|
||||||
#df_mo_old = df_pad_ref_test(j3mo,nmo,naux,nkpt_pairs)
|
|
||||||
#assert(abs(df_mo_tmp - df_mo_old).max() <= 1e-12)
|
|
||||||
|
|
||||||
with h5py.File(qph5path,'a') as qph5:
|
with h5py.File(qph5path,'a') as qph5:
|
||||||
qph5.create_dataset('mo_two_e_ints/df_mo_integrals_real',data=df_mo_tmp.real)
|
qph5.create_dataset('mo_two_e_ints/df_mo_integrals_real',data=j3mo.transpose((2,3,1,0)).real)
|
||||||
qph5.create_dataset('mo_two_e_ints/df_mo_integrals_imag',data=df_mo_tmp.imag)
|
qph5.create_dataset('mo_two_e_ints/df_mo_integrals_imag',data=j3mo.transpose((2,3,1,0)).imag)
|
||||||
|
qph5.create_dataset('mo_two_e_ints/df_mo_integrals',data=j3mo_new.view(dtype=np.float64).reshape((nkpt_pairs,naux,nmo,nmo,2)))
|
||||||
|
|
||||||
if (print_ao_ints_bi):
|
if (print_ao_ints_bi):
|
||||||
print_ao_bi(mf,kconserv,'W.qp',bielec_int_threshold)
|
print_ao_bi(mf,kconserv,'W.qp',bielec_int_threshold)
|
||||||
|
Loading…
Reference in New Issue
Block a user