9
1
mirror of https://github.com/QuantumPackage/qp2.git synced 2024-12-10 21:53:29 +01:00
qp2/src/nuclei/atomic_radii.irp.f

113 lines
3.3 KiB
Fortran
Raw Normal View History

2019-01-25 11:39:31 +01:00
BEGIN_PROVIDER [ double precision, slater_bragg_radii, (100)]
implicit none
BEGIN_DOC
! atomic radii in Angstrom defined in table I of JCP 41, 3199 (1964) Slater
! execpt for the Hydrogen atom where we took the value of Becke (1988, JCP)
END_DOC
slater_bragg_radii = 0.d0
slater_bragg_radii(1) = 0.35d0
slater_bragg_radii(2) = 0.35d0
slater_bragg_radii(3) = 1.45d0
slater_bragg_radii(4) = 1.05d0
slater_bragg_radii(5) = 0.85d0
slater_bragg_radii(6) = 0.70d0
slater_bragg_radii(7) = 0.65d0
slater_bragg_radii(8) = 0.60d0
slater_bragg_radii(9) = 0.50d0
slater_bragg_radii(10) = 0.45d0
slater_bragg_radii(11) = 1.80d0
slater_bragg_radii(12) = 1.70d0
slater_bragg_radii(13) = 1.50d0
slater_bragg_radii(14) = 1.25d0
slater_bragg_radii(15) = 1.10d0
slater_bragg_radii(16) = 1.00d0
slater_bragg_radii(17) = 1.00d0
slater_bragg_radii(18) = 1.00d0
slater_bragg_radii(19) = 2.20d0
slater_bragg_radii(20) = 1.80d0
slater_bragg_radii(21) = 1.60d0
slater_bragg_radii(22) = 1.40d0
slater_bragg_radii(23) = 1.34d0
slater_bragg_radii(24) = 1.40d0
slater_bragg_radii(25) = 1.40d0
slater_bragg_radii(26) = 1.40d0
slater_bragg_radii(27) = 1.35d0
slater_bragg_radii(28) = 1.35d0
slater_bragg_radii(29) = 1.35d0
slater_bragg_radii(30) = 1.35d0
slater_bragg_radii(31) = 1.30d0
slater_bragg_radii(32) = 1.25d0
slater_bragg_radii(33) = 1.15d0
slater_bragg_radii(34) = 1.15d0
slater_bragg_radii(35) = 1.15d0
slater_bragg_radii(36) = 1.15d0
END_PROVIDER
BEGIN_PROVIDER [double precision, slater_bragg_radii_ua, (100)]
implicit none
integer :: i
do i = 1, 100
slater_bragg_radii_ua(i) = slater_bragg_radii(i) * 1.889725989d0
enddo
END_PROVIDER
BEGIN_PROVIDER [double precision, slater_bragg_radii_per_atom, (nucl_num)]
implicit none
integer :: i
do i = 1, nucl_num
slater_bragg_radii_per_atom(i) = slater_bragg_radii(int(nucl_charge(i)))
enddo
END_PROVIDER
BEGIN_PROVIDER [double precision, slater_bragg_radii_per_atom_ua, (nucl_num)]
implicit none
integer :: i
do i = 1, nucl_num
slater_bragg_radii_per_atom_ua(i) = slater_bragg_radii_ua(int(nucl_charge(i)))
enddo
END_PROVIDER
BEGIN_PROVIDER [double precision, slater_bragg_type_inter_distance, (nucl_num, nucl_num)]
implicit none
integer :: i,j
double precision :: xhi_tmp,u_ij
slater_bragg_type_inter_distance = 0.d0
do i = 1, nucl_num
do j = i+1, nucl_num
xhi_tmp = slater_bragg_radii_per_atom(i) / slater_bragg_radii_per_atom(j)
u_ij = (xhi_tmp - 1.d0 ) / (xhi_tmp +1.d0)
slater_bragg_type_inter_distance(i,j) = u_ij / (u_ij * u_ij - 1.d0)
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [double precision, slater_bragg_type_inter_distance_ua, (nucl_num, nucl_num)]
implicit none
integer :: i,j
double precision :: xhi_tmp,u_ij
slater_bragg_type_inter_distance_ua = 0.d0
do i = 1, nucl_num
do j = i+1, nucl_num
xhi_tmp = slater_bragg_radii_per_atom_ua(i) / slater_bragg_radii_per_atom_ua(j)
u_ij = (xhi_tmp - 1.d0 ) / (xhi_tmp +1.d0)
slater_bragg_type_inter_distance_ua(i,j) = u_ij / (u_ij * u_ij - 1.d0)
if(slater_bragg_type_inter_distance_ua(i,j).gt.0.5d0)then
slater_bragg_type_inter_distance_ua(i,j) = 0.5d0
else if( slater_bragg_type_inter_distance_ua(i,j) .le.-0.5d0)then
slater_bragg_type_inter_distance_ua(i,j) = -0.5d0
endif
enddo
enddo
END_PROVIDER