9
1
mirror of https://github.com/QuantumPackage/qp2.git synced 2025-01-02 16:45:38 +01:00
qp2/src/dft_utils_one_e/sr_exc.irp.f

87 lines
3.6 KiB
Fortran
Raw Normal View History

2019-01-25 11:39:31 +01:00
BEGIN_PROVIDER[double precision, energy_sr_x_LDA, (N_states) ]
&BEGIN_PROVIDER[double precision, energy_sr_c_LDA, (N_states) ]
implicit none
BEGIN_DOC
! exchange/correlation energy with the short range LDA functional
END_DOC
integer :: istate,i,j
double precision :: r(3)
double precision :: mu,weight
double precision :: e_c,vc_a,vc_b,e_x,vx_a,vx_b
double precision, allocatable :: rhoa(:),rhob(:)
allocate(rhoa(N_states), rhob(N_states))
energy_sr_x_LDA = 0.d0
energy_sr_c_LDA = 0.d0
do istate = 1, N_states
do i = 1, n_points_final_grid
r(1) = final_grid_points(1,i)
r(2) = final_grid_points(2,i)
r(3) = final_grid_points(3,i)
weight = final_weight_at_r_vector(i)
rhoa(istate) = one_e_dm_alpha_at_r(i,istate)
rhob(istate) = one_e_dm_beta_at_r(i,istate)
call ec_LDA_sr(mu_erf_dft,rhoa(istate),rhob(istate),e_c,vc_a,vc_b)
call ex_LDA_sr(mu_erf_dft,rhoa(istate),rhob(istate),e_x,vx_a,vx_b)
energy_sr_x_LDA(istate) += weight * e_x
energy_sr_c_LDA(istate) += weight * e_c
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER[double precision, energy_sr_x_PBE, (N_states) ]
&BEGIN_PROVIDER[double precision, energy_sr_c_PBE, (N_states) ]
implicit none
BEGIN_DOC
! exchange/correlation energy with the short range PBE functional
END_DOC
integer :: istate,i,j,m
double precision :: r(3)
double precision :: mu,weight
double precision, allocatable :: ex(:), ec(:)
double precision, allocatable :: rho_a(:),rho_b(:),grad_rho_a(:,:),grad_rho_b(:,:),grad_rho_a_2(:),grad_rho_b_2(:),grad_rho_a_b(:)
double precision, allocatable :: contrib_grad_xa(:,:),contrib_grad_xb(:,:),contrib_grad_ca(:,:),contrib_grad_cb(:,:)
double precision, allocatable :: vc_rho_a(:), vc_rho_b(:), vx_rho_a(:), vx_rho_b(:)
double precision, allocatable :: vx_grad_rho_a_2(:), vx_grad_rho_b_2(:), vx_grad_rho_a_b(:), vc_grad_rho_a_2(:), vc_grad_rho_b_2(:), vc_grad_rho_a_b(:)
allocate(vc_rho_a(N_states), vc_rho_b(N_states), vx_rho_a(N_states), vx_rho_b(N_states))
allocate(vx_grad_rho_a_2(N_states), vx_grad_rho_b_2(N_states), vx_grad_rho_a_b(N_states), vc_grad_rho_a_2(N_states), vc_grad_rho_b_2(N_states), vc_grad_rho_a_b(N_states))
allocate(rho_a(N_states), rho_b(N_states),grad_rho_a(3,N_states),grad_rho_b(3,N_states))
allocate(grad_rho_a_2(N_states),grad_rho_b_2(N_states),grad_rho_a_b(N_states), ex(N_states), ec(N_states))
energy_sr_x_PBE = 0.d0
energy_sr_c_PBE = 0.d0
do istate = 1, N_states
do i = 1, n_points_final_grid
r(1) = final_grid_points(1,i)
r(2) = final_grid_points(2,i)
r(3) = final_grid_points(3,i)
weight = final_weight_at_r_vector(i)
rho_a(istate) = one_e_dm_and_grad_alpha_in_r(4,i,istate)
rho_b(istate) = one_e_dm_and_grad_beta_in_r(4,i,istate)
grad_rho_a(1:3,istate) = one_e_dm_and_grad_alpha_in_r(1:3,i,istate)
grad_rho_b(1:3,istate) = one_e_dm_and_grad_beta_in_r(1:3,i,istate)
grad_rho_a_2 = 0.d0
grad_rho_b_2 = 0.d0
grad_rho_a_b = 0.d0
do m = 1, 3
grad_rho_a_2(istate) += grad_rho_a(m,istate) * grad_rho_a(m,istate)
grad_rho_b_2(istate) += grad_rho_b(m,istate) * grad_rho_b(m,istate)
grad_rho_a_b(istate) += grad_rho_a(m,istate) * grad_rho_b(m,istate)
enddo
! inputs
call GGA_sr_type_functionals(r,rho_a,rho_b,grad_rho_a_2,grad_rho_b_2,grad_rho_a_b, & ! outputs exchange
ex,vx_rho_a,vx_rho_b,vx_grad_rho_a_2,vx_grad_rho_b_2,vx_grad_rho_a_b, & ! outputs correlation
ec,vc_rho_a,vc_rho_b,vc_grad_rho_a_2,vc_grad_rho_b_2,vc_grad_rho_a_b )
energy_sr_x_PBE += ex * weight
energy_sr_c_PBE += ec * weight
enddo
enddo
END_PROVIDER