9
1
mirror of https://github.com/QuantumPackage/qp2.git synced 2025-01-02 16:45:38 +01:00
qp2/src/kohn_sham_rs/fock_matrix_rs_ks.irp.f

243 lines
8.8 KiB
Fortran
Raw Normal View History

2019-01-25 11:39:31 +01:00
BEGIN_PROVIDER [ double precision, ao_two_e_integral_alpha, (ao_num, ao_num) ]
&BEGIN_PROVIDER [ double precision, ao_two_e_integral_beta , (ao_num, ao_num) ]
use map_module
implicit none
BEGIN_DOC
! Alpha Fock matrix in ao basis set
2019-01-25 11:39:31 +01:00
END_DOC
integer :: i,j,k,l,k1,r,s
integer :: i0,j0,k0,l0
integer*8 :: p,q
double precision :: integral, c0, c1, c2
double precision :: ao_two_e_integral, local_threshold
double precision, allocatable :: ao_two_e_integral_alpha_tmp(:,:)
double precision, allocatable :: ao_two_e_integral_beta_tmp(:,:)
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: ao_two_e_integral_beta_tmp
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: ao_two_e_integral_alpha_tmp
ao_two_e_integral_alpha = 0.d0
ao_two_e_integral_beta = 0.d0
if (do_direct_integrals) then
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP PRIVATE(i,j,l,k1,k,integral,ii,jj,kk,ll,i8,keys,values,p,q,r,s,i0,j0,k0,l0, &
!$OMP ao_two_e_integral_alpha_tmp,ao_two_e_integral_beta_tmp, c0, c1, c2, &
!$OMP local_threshold)&
!$OMP SHARED(ao_num,SCF_density_matrix_ao_alpha,SCF_density_matrix_ao_beta,&
!$OMP ao_integrals_map,ao_integrals_threshold, ao_two_e_integral_schwartz, &
!$OMP ao_overlap_abs, ao_two_e_integral_alpha, ao_two_e_integral_beta)
allocate(keys(1), values(1))
allocate(ao_two_e_integral_alpha_tmp(ao_num,ao_num), &
ao_two_e_integral_beta_tmp(ao_num,ao_num))
ao_two_e_integral_alpha_tmp = 0.d0
ao_two_e_integral_beta_tmp = 0.d0
q = ao_num*ao_num*ao_num*ao_num
!$OMP DO SCHEDULE(dynamic)
2019-01-25 11:39:31 +01:00
do p=1_8,q
call two_e_integrals_index_reverse(kk,ii,ll,jj,p)
if ( (kk(1)>ao_num).or. &
(ii(1)>ao_num).or. &
(jj(1)>ao_num).or. &
(ll(1)>ao_num) ) then
cycle
endif
k = kk(1)
i = ii(1)
l = ll(1)
j = jj(1)
if (ao_overlap_abs(k,l)*ao_overlap_abs(i,j) &
< ao_integrals_threshold) then
cycle
endif
local_threshold = ao_two_e_integral_schwartz(k,l)*ao_two_e_integral_schwartz(i,j)
if (local_threshold < ao_integrals_threshold) then
cycle
endif
i0 = i
j0 = j
k0 = k
l0 = l
values(1) = 0.d0
local_threshold = ao_integrals_threshold/local_threshold
do k2=1,8
if (kk(k2)==0) then
cycle
endif
i = ii(k2)
j = jj(k2)
k = kk(k2)
l = ll(k2)
c0 = SCF_density_matrix_ao_alpha(k,l)+SCF_density_matrix_ao_beta(k,l)
c1 = SCF_density_matrix_ao_alpha(k,i)
c2 = SCF_density_matrix_ao_beta(k,i)
if ( dabs(c0)+dabs(c1)+dabs(c2) < local_threshold) then
cycle
endif
if (values(1) == 0.d0) then
values(1) = ao_two_e_integral(k0,l0,i0,j0)
endif
integral = c0 * values(1)
ao_two_e_integral_alpha_tmp(i,j) += integral
ao_two_e_integral_beta_tmp (i,j) += integral
integral = values(1)
ao_two_e_integral_alpha_tmp(l,j) -= c1 * integral
ao_two_e_integral_beta_tmp (l,j) -= c2 * integral
enddo
enddo
!$OMP END DO NOWAIT
!$OMP CRITICAL
ao_two_e_integral_alpha += ao_two_e_integral_alpha_tmp
!$OMP END CRITICAL
!$OMP CRITICAL
2019-01-25 11:39:31 +01:00
ao_two_e_integral_beta += ao_two_e_integral_beta_tmp
!$OMP END CRITICAL
deallocate(keys,values,ao_two_e_integral_alpha_tmp,ao_two_e_integral_beta_tmp)
!$OMP END PARALLEL
else
PROVIDE ao_two_e_integrals_in_map
PROVIDE ao_two_e_integrals_erf_in_map
integer(omp_lock_kind) :: lck(ao_num)
integer*8 :: i8
integer :: ii(8), jj(8), kk(8), ll(8), k2
integer(cache_map_size_kind) :: n_elements_max, n_elements
integer(key_kind), allocatable :: keys(:)
double precision, allocatable :: values(:)
integer(cache_map_size_kind) :: n_elements_max_erf, n_elements_erf
integer(key_kind), allocatable :: keys_erf(:)
double precision, allocatable :: values_erf(:)
!$OMP PARALLEL DEFAULT(NONE) if (ao_num > 100) &
!$OMP PRIVATE(i,j,l,k1,k,integral,ii,jj,kk,ll,i8,keys,values,n_elements_max, &
!$OMP n_elements,ao_two_e_integral_alpha_tmp,ao_two_e_integral_beta_tmp)&
!$OMP SHARED(ao_num,SCF_density_matrix_ao_alpha,SCF_density_matrix_ao_beta,&
!$OMP ao_integrals_map, ao_two_e_integral_alpha, ao_two_e_integral_beta)
call get_cache_map_n_elements_max(ao_integrals_map,n_elements_max)
allocate(keys(n_elements_max), values(n_elements_max))
allocate(ao_two_e_integral_alpha_tmp(ao_num,ao_num), &
ao_two_e_integral_beta_tmp(ao_num,ao_num))
ao_two_e_integral_alpha_tmp = 0.d0
ao_two_e_integral_beta_tmp = 0.d0
!$OMP DO SCHEDULE(static,1)
!DIR$ NOVECTOR
do i8=0_8,ao_integrals_map%map_size
n_elements = n_elements_max
call get_cache_map(ao_integrals_map,i8,keys,values,n_elements)
do k1=1,n_elements
call two_e_integrals_index_reverse(kk,ii,ll,jj,keys(k1))
do k2=1,8
if (kk(k2)==0) then
cycle
endif
i = ii(k2)
j = jj(k2)
k = kk(k2)
l = ll(k2)
integral = (SCF_density_matrix_ao_alpha(k,l)+SCF_density_matrix_ao_beta(k,l)) * values(k1)
ao_two_e_integral_alpha_tmp(i,j) += integral
ao_two_e_integral_beta_tmp (i,j) += integral
enddo
enddo
enddo
!$OMP END DO NOWAIT
!$OMP CRITICAL
ao_two_e_integral_alpha += ao_two_e_integral_alpha_tmp
ao_two_e_integral_beta += ao_two_e_integral_beta_tmp
!$OMP END CRITICAL
deallocate(keys,values,ao_two_e_integral_alpha_tmp,ao_two_e_integral_beta_tmp)
!$OMP END PARALLEL
!$OMP PARALLEL DEFAULT(NONE) if (ao_num > 100) &
!$OMP PRIVATE(i,j,l,k1,k,integral_erf,ii,jj,kk,ll,i8,keys_erf,values_erf,n_elements_max_erf, &
!$OMP n_elements_erf,ao_two_e_integral_alpha_tmp,ao_two_e_integral_beta_tmp)&
!$OMP SHARED(ao_num,SCF_density_matrix_ao_alpha,SCF_density_matrix_ao_beta,&
!$OMP ao_integrals_erf_map, ao_two_e_integral_alpha, ao_two_e_integral_beta)
call get_cache_map_n_elements_max(ao_integrals_erf_map,n_elements_max_erf)
allocate(ao_two_e_integral_alpha_tmp(ao_num,ao_num), &
ao_two_e_integral_beta_tmp(ao_num,ao_num))
allocate(keys_Erf(n_elements_max_erf), values_erf(n_elements_max_erf))
ao_two_e_integral_alpha_tmp = 0.d0
ao_two_e_integral_beta_tmp = 0.d0
!$OMP DO SCHEDULE(static,1)
!DIR$ NOVECTOR
do i8=0_8,ao_integrals_erf_map%map_size
n_elements_erf = n_elements_max_erf
call get_cache_map(ao_integrals_erf_map,i8,keys_erf,values_erf,n_elements_erf)
do k1=1,n_elements_erf
call two_e_integrals_index_reverse(kk,ii,ll,jj,keys_erf(k1))
do k2=1,8
if (kk(k2)==0) then
cycle
endif
i = ii(k2)
j = jj(k2)
k = kk(k2)
l = ll(k2)
double precision :: integral_erf
integral_erf = values_erf(k1)
ao_two_e_integral_alpha_tmp(l,j) -= (SCF_density_matrix_ao_alpha(k,i) * integral_erf)
ao_two_e_integral_beta_tmp (l,j) -= (SCF_density_matrix_ao_beta (k,i) * integral_erf)
enddo
enddo
enddo
!$OMP END DO NOWAIT
!$OMP CRITICAL
ao_two_e_integral_alpha = ao_two_e_integral_alpha + ao_two_e_integral_alpha_tmp
ao_two_e_integral_beta = ao_two_e_integral_beta + ao_two_e_integral_beta_tmp
!$OMP END CRITICAL
deallocate(ao_two_e_integral_alpha_tmp,ao_two_e_integral_beta_tmp)
deallocate(keys_erf,values_erf)
!$OMP END PARALLEL
endif
END_PROVIDER
BEGIN_PROVIDER [ double precision, Fock_matrix_ao_alpha, (ao_num, ao_num) ]
&BEGIN_PROVIDER [ double precision, Fock_matrix_ao_beta, (ao_num, ao_num) ]
implicit none
BEGIN_DOC
! Alpha Fock matrix in ao basis set
2019-01-25 11:39:31 +01:00
END_DOC
integer :: i,j
do j=1,ao_num
do i=1,ao_num
Fock_matrix_ao_alpha(i,j) = Fock_matrix_alpha_no_xc_ao(i,j) + ao_potential_alpha_xc(i,j)
Fock_matrix_ao_beta(i,j) = Fock_matrix_beta_no_xc_ao(i,j) + ao_potential_beta_xc(i,j)
2019-01-25 11:39:31 +01:00
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [ double precision, Fock_matrix_alpha_no_xc_ao, (ao_num, ao_num) ]
&BEGIN_PROVIDER [ double precision, Fock_matrix_beta_no_xc_ao, (ao_num, ao_num) ]
implicit none
BEGIN_DOC
! Mono electronic an Coulomb matrix in ao basis set
2019-01-25 11:39:31 +01:00
END_DOC
integer :: i,j
do j=1,ao_num
do i=1,ao_num
Fock_matrix_alpha_no_xc_ao(i,j) = ao_one_e_integrals(i,j) + ao_two_e_integral_alpha(i,j)
Fock_matrix_beta_no_xc_ao(i,j) = ao_one_e_integrals(i,j) + ao_two_e_integral_beta (i,j)
enddo
enddo
END_PROVIDER