mirror of
https://github.com/QuantumPackage/qp2.git
synced 2025-01-05 09:58:42 +01:00
149 lines
5.3 KiB
Fortran
149 lines
5.3 KiB
Fortran
|
BEGIN_PROVIDER [ double precision, ao_deriv2_x,(ao_num,ao_num) ]
|
||
|
&BEGIN_PROVIDER [ double precision, ao_deriv2_y,(ao_num,ao_num) ]
|
||
|
&BEGIN_PROVIDER [ double precision, ao_deriv2_z,(ao_num,ao_num) ]
|
||
|
implicit none
|
||
|
BEGIN_DOC
|
||
|
! Second derivative matrix elements in the |AO| basis.
|
||
|
!
|
||
|
! :math:`{\tt ao\_deriv2\_x} =
|
||
|
! \langle \chi_i(x,y,z) | \frac{\partial^2}{\partial x^2} |\chi_j (x,y,z) \rangle`
|
||
|
!
|
||
|
END_DOC
|
||
|
integer :: i,j,n,l
|
||
|
double precision :: f
|
||
|
integer :: dim1
|
||
|
double precision :: overlap, overlap_y, overlap_z
|
||
|
double precision :: overlap_x0, overlap_y0, overlap_z0
|
||
|
double precision :: alpha, beta, c
|
||
|
double precision :: A_center(3), B_center(3)
|
||
|
integer :: power_A(3), power_B(3)
|
||
|
double precision :: d_a_2,d_2
|
||
|
dim1=100
|
||
|
|
||
|
! -- Dummy call to provide everything
|
||
|
A_center(:) = 0.d0
|
||
|
B_center(:) = 1.d0
|
||
|
alpha = 1.d0
|
||
|
beta = .1d0
|
||
|
power_A = 1
|
||
|
power_B = 0
|
||
|
call overlap_gaussian_xyz(A_center,B_center,alpha,beta,power_A,power_B,overlap_y,d_a_2,overlap_z,overlap,dim1)
|
||
|
! --
|
||
|
|
||
|
!$OMP PARALLEL DO SCHEDULE(GUIDED) &
|
||
|
!$OMP DEFAULT(NONE) &
|
||
|
!$OMP PRIVATE(A_center,B_center,power_A,power_B,&
|
||
|
!$OMP overlap_y, overlap_z, overlap, &
|
||
|
!$OMP alpha, beta,i,j,c,d_a_2,d_2,deriv_tmp, &
|
||
|
!$OMP overlap_x0,overlap_y0,overlap_z0) &
|
||
|
!$OMP SHARED(nucl_coord,ao_power,ao_prim_num, &
|
||
|
!$OMP ao_deriv2_x,ao_deriv2_y,ao_deriv2_z,ao_num,ao_coef_normalized_ordered_transp,ao_nucl, &
|
||
|
!$OMP ao_expo_ordered_transp,dim1)
|
||
|
do j=1,ao_num
|
||
|
A_center(1) = nucl_coord( ao_nucl(j), 1 )
|
||
|
A_center(2) = nucl_coord( ao_nucl(j), 2 )
|
||
|
A_center(3) = nucl_coord( ao_nucl(j), 3 )
|
||
|
power_A(1) = ao_power( j, 1 )
|
||
|
power_A(2) = ao_power( j, 2 )
|
||
|
power_A(3) = ao_power( j, 3 )
|
||
|
do i= 1,ao_num
|
||
|
ao_deriv2_x(i,j)= 0.d0
|
||
|
ao_deriv2_y(i,j)= 0.d0
|
||
|
ao_deriv2_z(i,j)= 0.d0
|
||
|
B_center(1) = nucl_coord( ao_nucl(i), 1 )
|
||
|
B_center(2) = nucl_coord( ao_nucl(i), 2 )
|
||
|
B_center(3) = nucl_coord( ao_nucl(i), 3 )
|
||
|
power_B(1) = ao_power( i, 1 )
|
||
|
power_B(2) = ao_power( i, 2 )
|
||
|
power_B(3) = ao_power( i, 3 )
|
||
|
do n = 1,ao_prim_num(j)
|
||
|
alpha = ao_expo_ordered_transp(n,j)
|
||
|
do l = 1, ao_prim_num(i)
|
||
|
beta = ao_expo_ordered_transp(l,i)
|
||
|
call overlap_gaussian_xyz(A_center,B_center,alpha,beta,power_A,power_B,overlap_x0,overlap_y0,overlap_z0,overlap,dim1)
|
||
|
c = ao_coef_normalized_ordered_transp(n,j) * ao_coef_normalized_ordered_transp(l,i)
|
||
|
|
||
|
power_A(1) = power_A(1)-2
|
||
|
if (power_A(1)>-1) then
|
||
|
call overlap_gaussian_xyz(A_center,B_center,alpha,beta,power_A,power_B,d_a_2,overlap_y,overlap_z,overlap,dim1)
|
||
|
else
|
||
|
d_a_2 = 0.d0
|
||
|
endif
|
||
|
power_A(1) = power_A(1)+4
|
||
|
call overlap_gaussian_xyz(A_center,B_center,alpha,beta,power_A,power_B,d_2,overlap_y,overlap_z,overlap,dim1)
|
||
|
power_A(1) = power_A(1)-2
|
||
|
|
||
|
double precision :: deriv_tmp
|
||
|
deriv_tmp = (-2.d0 * alpha * (2.d0 * power_A(1) +1.d0) * overlap_x0 &
|
||
|
+power_A(1) * (power_A(1)-1.d0) * d_a_2 &
|
||
|
+4.d0 * alpha * alpha * d_2 )*overlap_y0*overlap_z0
|
||
|
|
||
|
ao_deriv2_x(i,j) += c*deriv_tmp
|
||
|
power_A(2) = power_A(2)-2
|
||
|
if (power_A(2)>-1) then
|
||
|
call overlap_gaussian_xyz(A_center,B_center,alpha,beta,power_A,power_B,overlap_y,d_a_2,overlap_z,overlap,dim1)
|
||
|
else
|
||
|
d_a_2 = 0.d0
|
||
|
endif
|
||
|
power_A(2) = power_A(2)+4
|
||
|
call overlap_gaussian_xyz(A_center,B_center,alpha,beta,power_A,power_B,overlap_y,d_2,overlap_z,overlap,dim1)
|
||
|
power_A(2) = power_A(2)-2
|
||
|
|
||
|
deriv_tmp = (-2.d0 * alpha * (2.d0 * power_A(2) +1.d0 ) * overlap_y0 &
|
||
|
+power_A(2) * (power_A(2)-1.d0) * d_a_2 &
|
||
|
+4.d0 * alpha * alpha * d_2 )*overlap_x0*overlap_z0
|
||
|
ao_deriv2_y(i,j) += c*deriv_tmp
|
||
|
|
||
|
power_A(3) = power_A(3)-2
|
||
|
if (power_A(3)>-1) then
|
||
|
call overlap_gaussian_xyz(A_center,B_center,alpha,beta,power_A,power_B,overlap_y,overlap_z,d_a_2,overlap,dim1)
|
||
|
else
|
||
|
d_a_2 = 0.d0
|
||
|
endif
|
||
|
power_A(3) = power_A(3)+4
|
||
|
call overlap_gaussian_xyz(A_center,B_center,alpha,beta,power_A,power_B,overlap_y,overlap_z,d_2,overlap,dim1)
|
||
|
power_A(3) = power_A(3)-2
|
||
|
|
||
|
deriv_tmp = (-2.d0 * alpha * (2.d0 * power_A(3) +1.d0 ) * overlap_z0 &
|
||
|
+power_A(3) * (power_A(3)-1.d0) * d_a_2 &
|
||
|
+4.d0 * alpha * alpha * d_2 )*overlap_x0*overlap_y0
|
||
|
ao_deriv2_z(i,j) += c*deriv_tmp
|
||
|
|
||
|
enddo
|
||
|
enddo
|
||
|
enddo
|
||
|
enddo
|
||
|
!$OMP END PARALLEL DO
|
||
|
|
||
|
END_PROVIDER
|
||
|
|
||
|
BEGIN_PROVIDER [double precision, ao_kinetic_integrals, (ao_num,ao_num)]
|
||
|
implicit none
|
||
|
BEGIN_DOC
|
||
|
! Kinetic energy integrals in the |AO| basis.
|
||
|
!
|
||
|
! :math:`\langle \chi_i |\hat{T}| \chi_j \rangle`
|
||
|
END_DOC
|
||
|
integer :: i,j,k,l
|
||
|
|
||
|
if (read_ao_integrals_kinetic) then
|
||
|
call ezfio_get_ao_one_e_ints_ao_integrals_kinetic(ao_kinetic_integrals)
|
||
|
print *, 'AO kinetic integrals read from disk'
|
||
|
else
|
||
|
!$OMP PARALLEL DO DEFAULT(NONE) &
|
||
|
!$OMP PRIVATE(i,j) &
|
||
|
!$OMP SHARED(ao_num, ao_kinetic_integrals,ao_deriv2_x,ao_deriv2_y,ao_deriv2_z)
|
||
|
do j = 1, ao_num
|
||
|
do i = 1, ao_num
|
||
|
ao_kinetic_integrals(i,j) = -0.5d0 * (ao_deriv2_x(i,j) + ao_deriv2_y(i,j) + ao_deriv2_z(i,j) )
|
||
|
enddo
|
||
|
enddo
|
||
|
!$OMP END PARALLEL DO
|
||
|
endif
|
||
|
if (write_ao_integrals_kinetic) then
|
||
|
call ezfio_set_ao_one_e_ints_ao_integrals_kinetic(ao_kinetic_integrals)
|
||
|
print *, 'AO kinetic integrals written to disk'
|
||
|
endif
|
||
|
END_PROVIDER
|
||
|
|