9
1
mirror of https://github.com/QuantumPackage/qp2.git synced 2024-11-19 20:02:20 +01:00
qp2/src/casscf_tc_bi/grad_dm.irp.f

139 lines
3.6 KiB
Fortran
Raw Normal View History

BEGIN_PROVIDER [real*8, gradvec_tc_r, (0:3,nMonoEx)]
&BEGIN_PROVIDER [real*8, gradvec_tc_l, (0:3,nMonoEx)]
BEGIN_DOC
! gradvec_tc_r(0:3,i) = <Chi_0| H E_q^p(i) |Phi_0>
!
! gradvec_tc_l(0:3,i) = <Chi_0| E_p^q(i) H |Phi_0>
!
! where the indices "i" corresponds to E_q^p(i)
!
! i = mat_idx_c_a(q,p)
!
! and gradvec_tc_r/l(0) = full matrix element
!
! gradvec_tc_r/l(1) = one-body part
! gradvec_tc_r/l(2) = two-body part
! gradvec_tc_r/l(3) = three-body part
END_DOC
implicit none
integer :: ii,tt,aa,indx
integer :: i,t,a,fff
double precision :: res_l(0:3), res_r(0:3)
gradvec_tc_l = 0.d0
gradvec_tc_r = 0.d0
! computing the core/inactive --> virtual orbitals gradients
do i=1,n_core_inact_orb
ii=list_core_inact(i)
do t=1,n_act_orb
tt=list_act(t)
indx = mat_idx_c_a(i,t)
call gradvec_tc_it(ii,tt,res_l,res_r)
do fff = 0,3
gradvec_tc_l(fff,indx)=res_l(fff)
gradvec_tc_r(fff,indx)=res_r(fff)
enddo
end do
end do
do i=1,n_core_inact_orb
ii=list_core_inact(i)
do a=1,n_virt_orb
indx = mat_idx_c_v(i,a)
aa=list_virt(a)
2023-08-10 15:53:35 +02:00
call gradvec_tc_ia(ii,aa,res_l,res_r)
do fff = 0,3
gradvec_tc_l(fff,indx)=res_l(fff)
gradvec_tc_r(fff,indx)=res_r(fff)
enddo
end do
end do
do t=1,n_act_orb
tt=list_act(t)
do a=1,n_virt_orb
aa=list_virt(a)
indx = mat_idx_a_v(t,a)
call gradvec_tc_ta(tt,aa,res_l, res_r)
do fff = 0,3
gradvec_tc_l(fff,indx)=res_l(fff)
gradvec_tc_r(fff,indx)=res_r(fff)
enddo
end do
end do
END_PROVIDER
2023-08-10 15:53:35 +02:00
subroutine gradvec_tc_ia(i,a,res_l, res_r)
implicit none
BEGIN_DOC
! doubly occupied --> virtual TC gradient
!
2023-08-10 15:53:35 +02:00
! Corresponds to res_r = <X0|H E_i^a|Phi_0>,
!
! res_l = <X0|E_a^i H|Phi_0>
END_DOC
integer, intent(in) :: i,a
2023-08-10 15:53:35 +02:00
double precision, intent(out) :: res_l(0:3), res_r(0:3)
res_l = 0.d0
res_r = 0.d0
res_l(1) = -2 * mo_bi_ortho_tc_one_e(a,i)
res_r(1) = -2 * mo_bi_ortho_tc_one_e(i,a)
end
subroutine gradvec_tc_it(i,t,res_l, res_r)
implicit none
BEGIN_DOC
! doubly occupied --> active TC gradient
!
! Corresponds to res_r = <X0|H E_i^t|Phi_0>
!
! res_l = <X0|E_t^i H |Phi_0>
END_DOC
integer, intent(in) :: i,t
double precision, intent(out) :: res_l(0:3),res_r(0:3)
integer :: rr,r,ss,s,m
double precision :: dm
res_r = 0.d0
do m = 1, mo_num
res_r(1) += mo_bi_ortho_tc_one_e(i,m) * tc_transition_matrix_mo(t,m,1,1) &
-mo_bi_ortho_tc_one_e(m,t) * tc_transition_matrix_mo(m,i,1,1)
enddo
res_l = 0.d0
do m = 1, mo_num
res_l(1) += mo_bi_ortho_tc_one_e(t,m) * tc_transition_matrix_mo(i,m,1,1) &
-mo_bi_ortho_tc_one_e(m,i) * tc_transition_matrix_mo(m,t,1,1)
enddo
end
subroutine gradvec_tc_ta(t,a,res_l, res_r)
implicit none
BEGIN_DOC
! active --> virtual TC gradient
!
! Corresponds to res_r = <X0|H E_t^a|Phi_0>
!
! res_l = <X0|E_a^t H |Phi_0>
END_DOC
integer, intent(in) :: t,a
double precision, intent(out) :: res_l(0:3),res_r(0:3)
integer :: rr,r,m
double precision :: dm
res_r = 0.d0
res_l = 0.d0
! do rr = 1, n_act_orb
! r = list_act(rr)
! res_l(1) += mo_bi_ortho_tc_one_e(a,r) * tc_transition_matrix_mo(t,r,1,1)
! res_r(1) += -mo_bi_ortho_tc_one_e(r,a) * tc_transition_matrix_mo(r,t,1,1)
! enddo
do m = 1, mo_num
res_r(1) += mo_bi_ortho_tc_one_e(t,m) * tc_transition_matrix_mo(a,m,1,1) &
-mo_bi_ortho_tc_one_e(m,a) * tc_transition_matrix_mo(m,t,1,1)
res_l(1) += mo_bi_ortho_tc_one_e(a,m) * tc_transition_matrix_mo(t,m,1,1) &
-mo_bi_ortho_tc_one_e(m,t) * tc_transition_matrix_mo(m,a,1,1)
enddo
end