2023-02-07 17:07:49 +01:00
|
|
|
|
|
|
|
! ---
|
|
|
|
|
|
|
|
subroutine davidson_general_ext_rout_nonsym_b1space(u_in, H_jj, energies, sze, N_st, N_st_diag_in, converged, hcalc)
|
|
|
|
|
|
|
|
use mmap_module
|
|
|
|
|
|
|
|
BEGIN_DOC
|
|
|
|
! Generic modified-Davidson diagonalization
|
|
|
|
!
|
|
|
|
! H_jj : specific diagonal H matrix elements to diagonalize de Davidson
|
|
|
|
!
|
|
|
|
! u_in : guess coefficients on the various states. Overwritten on exit by right eigenvectors
|
|
|
|
!
|
|
|
|
! sze : Number of determinants
|
|
|
|
!
|
|
|
|
! N_st : Number of eigenstates
|
|
|
|
!
|
|
|
|
! N_st_diag_in : Number of states in which H is diagonalized. Assumed > N_st
|
|
|
|
!
|
|
|
|
! Initial guess vectors are not necessarily orthonormal
|
|
|
|
!
|
|
|
|
! hcalc subroutine to compute W = H U (see routine hcalc_template for template of input/output)
|
|
|
|
END_DOC
|
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
|
|
|
integer, intent(in) :: sze, N_st, N_st_diag_in
|
|
|
|
double precision, intent(in) :: H_jj(sze)
|
|
|
|
logical, intent(inout) :: converged
|
|
|
|
double precision, intent(inout) :: u_in(sze,N_st_diag_in)
|
|
|
|
double precision, intent(out) :: energies(N_st)
|
|
|
|
external hcalc
|
|
|
|
|
|
|
|
character*(16384) :: write_buffer
|
|
|
|
integer :: iter, N_st_diag
|
|
|
|
integer :: i, j, k, l, m
|
|
|
|
integer :: iter2, itertot
|
|
|
|
logical :: disk_based
|
|
|
|
integer :: shift, shift2, itermax
|
|
|
|
integer :: nproc_target
|
|
|
|
integer :: order(N_st_diag_in)
|
|
|
|
double precision :: to_print(2,N_st)
|
|
|
|
double precision :: r1, r2, alpha
|
|
|
|
double precision :: cpu, wall
|
|
|
|
double precision :: cmax
|
|
|
|
double precision :: energy_shift(N_st_diag_in*davidson_sze_max)
|
|
|
|
double precision, allocatable :: U(:,:)
|
|
|
|
double precision, allocatable :: y(:,:), h(:,:), lambda(:)
|
|
|
|
double precision, allocatable :: residual_norm(:)
|
|
|
|
|
|
|
|
double precision :: lambda_tmp
|
|
|
|
integer, allocatable :: i_omax(:)
|
|
|
|
double precision, allocatable :: U_tmp(:), overlap(:)
|
|
|
|
|
|
|
|
double precision, allocatable :: W(:,:)
|
|
|
|
!double precision, pointer :: W(:,:)
|
|
|
|
double precision, external :: u_dot_v, u_dot_u
|
|
|
|
|
|
|
|
|
|
|
|
include 'constants.include.F'
|
|
|
|
|
|
|
|
N_st_diag = N_st_diag_in
|
|
|
|
! print*,'trial vector'
|
|
|
|
do i = 1, sze
|
|
|
|
if(isnan(u_in(i,1)))then
|
|
|
|
print*,'pb in input vector of davidson_general_ext_rout_nonsym_b1space'
|
|
|
|
print*,i,u_in(i,1)
|
|
|
|
stop
|
|
|
|
else if (dabs(u_in(i,1)).lt.1.d-16)then
|
|
|
|
u_in(i,1) = 0.d0
|
|
|
|
endif
|
|
|
|
enddo
|
|
|
|
|
|
|
|
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: U, W, y, h, lambda
|
|
|
|
if(N_st_diag*3 > sze) then
|
|
|
|
print *, 'error in Davidson :'
|
|
|
|
print *, 'Increase n_det_max_full to ', N_st_diag*3
|
|
|
|
stop -1
|
|
|
|
endif
|
|
|
|
|
|
|
|
itermax = max(2, min(davidson_sze_max, sze/N_st_diag)) + 1
|
|
|
|
|
|
|
|
provide threshold_nonsym_davidson
|
|
|
|
call write_time(6)
|
|
|
|
write(6,'(A)') ''
|
|
|
|
write(6,'(A)') 'Davidson Diagonalization'
|
|
|
|
write(6,'(A)') '------------------------'
|
|
|
|
write(6,'(A)') ''
|
|
|
|
|
|
|
|
|
|
|
|
! Find max number of cores to fit in memory
|
|
|
|
! -----------------------------------------
|
|
|
|
|
|
|
|
nproc_target = nproc
|
|
|
|
double precision :: rss
|
|
|
|
integer :: maxab
|
|
|
|
maxab = sze
|
|
|
|
|
|
|
|
m=1
|
|
|
|
disk_based = .False.
|
|
|
|
call resident_memory(rss)
|
|
|
|
do
|
|
|
|
r1 = 8.d0 * &! bytes
|
|
|
|
( dble(sze)*(N_st_diag*itermax) &! U
|
|
|
|
+ 1.d0*dble(sze*m)*(N_st_diag*itermax) &! W
|
|
|
|
+ 2.d0*(N_st_diag*itermax)**2 &! h,y
|
|
|
|
+ 2.d0*(N_st_diag*itermax) &! s2,lambda
|
|
|
|
+ 1.d0*(N_st_diag) &! residual_norm
|
|
|
|
! In H_S2_u_0_nstates_zmq
|
|
|
|
+ 3.d0*(N_st_diag*N_det) &! u_t, v_t, s_t on collector
|
|
|
|
+ 3.d0*(N_st_diag*N_det) &! u_t, v_t, s_t on slave
|
|
|
|
+ 0.5d0*maxab &! idx0 in H_S2_u_0_nstates_openmp_work_*
|
|
|
|
+ nproc_target * &! In OMP section
|
|
|
|
( 1.d0*(N_int*maxab) &! buffer
|
|
|
|
+ 3.5d0*(maxab) ) &! singles_a, singles_b, doubles, idx
|
|
|
|
) / 1024.d0**3
|
|
|
|
|
|
|
|
if(nproc_target == 0) then
|
|
|
|
call check_mem(r1, irp_here)
|
|
|
|
nproc_target = 1
|
|
|
|
exit
|
|
|
|
endif
|
|
|
|
|
|
|
|
if(r1+rss < qp_max_mem) then
|
|
|
|
exit
|
|
|
|
endif
|
|
|
|
|
|
|
|
if(itermax > 4) then
|
|
|
|
itermax = itermax - 1
|
|
|
|
! else if (m==1.and.disk_based_davidson) then
|
|
|
|
! m = 0
|
|
|
|
! disk_based = .True.
|
|
|
|
! itermax = 6
|
|
|
|
else
|
|
|
|
nproc_target = nproc_target - 1
|
|
|
|
endif
|
|
|
|
|
|
|
|
enddo
|
|
|
|
|
|
|
|
nthreads_davidson = nproc_target
|
|
|
|
TOUCH nthreads_davidson
|
|
|
|
|
|
|
|
call write_int(6, N_st, 'Number of states')
|
|
|
|
call write_int(6, N_st_diag, 'Number of states in diagonalization')
|
|
|
|
call write_int(6, sze, 'Number of basis functions')
|
|
|
|
call write_int(6, nproc_target, 'Number of threads for diagonalization')
|
|
|
|
call write_double(6, r1, 'Memory(Gb)')
|
|
|
|
if(disk_based) then
|
|
|
|
print *, 'Using swap space to reduce RAM'
|
|
|
|
endif
|
|
|
|
|
|
|
|
!---------------
|
|
|
|
|
|
|
|
write(6,'(A)') ''
|
|
|
|
write_buffer = '====='
|
|
|
|
do i=1,N_st
|
|
|
|
write_buffer = trim(write_buffer)//' ================ ==========='
|
|
|
|
enddo
|
|
|
|
write(6,'(A)') write_buffer(1:6+41*N_st)
|
|
|
|
write_buffer = 'Iter'
|
|
|
|
do i=1,N_st
|
|
|
|
write_buffer = trim(write_buffer)//' Energy Residual '
|
|
|
|
enddo
|
|
|
|
write(6,'(A)') write_buffer(1:6+41*N_st)
|
|
|
|
write_buffer = '====='
|
|
|
|
do i=1,N_st
|
|
|
|
write_buffer = trim(write_buffer)//' ================ ==========='
|
|
|
|
enddo
|
|
|
|
write(6,'(A)') write_buffer(1:6+41*N_st)
|
|
|
|
|
|
|
|
! ---
|
|
|
|
|
|
|
|
|
|
|
|
allocate( W(sze,N_st_diag*itermax) )
|
|
|
|
|
|
|
|
allocate( &
|
|
|
|
! Large
|
|
|
|
U(sze,N_st_diag*itermax), &
|
|
|
|
! Small
|
|
|
|
h(N_st_diag*itermax,N_st_diag*itermax), &
|
|
|
|
y(N_st_diag*itermax,N_st_diag*itermax), &
|
|
|
|
lambda(N_st_diag*itermax), &
|
|
|
|
residual_norm(N_st_diag), &
|
|
|
|
i_omax(N_st) &
|
|
|
|
)
|
|
|
|
|
|
|
|
U = 0.d0
|
|
|
|
h = 0.d0
|
|
|
|
y = 0.d0
|
|
|
|
lambda = 0.d0
|
|
|
|
residual_norm = 0.d0
|
|
|
|
|
|
|
|
|
|
|
|
ASSERT (N_st > 0)
|
|
|
|
ASSERT (N_st_diag >= N_st)
|
|
|
|
ASSERT (sze > 0)
|
|
|
|
|
|
|
|
! Davidson iterations
|
|
|
|
! ===================
|
|
|
|
|
|
|
|
converged = .False.
|
|
|
|
|
|
|
|
! Initialize from N_st to N_st_diag with gaussian random numbers
|
|
|
|
! to be sure to have overlap with any eigenvectors
|
|
|
|
do k = N_st+1, N_st_diag
|
|
|
|
u_in(k,k) = 10.d0
|
|
|
|
do i = 1, sze
|
|
|
|
call random_number(r1)
|
|
|
|
call random_number(r2)
|
|
|
|
r1 = dsqrt(-2.d0*dlog(r1))
|
|
|
|
r2 = dtwo_pi*r2
|
|
|
|
u_in(i,k) = r1*dcos(r2)
|
|
|
|
enddo
|
|
|
|
enddo
|
|
|
|
! Normalize all states
|
|
|
|
do k = 1, N_st_diag
|
|
|
|
call normalize(u_in(1,k), sze)
|
|
|
|
enddo
|
|
|
|
|
|
|
|
! Copy from the guess input "u_in" to the working vectors "U"
|
|
|
|
do k = 1, N_st_diag
|
|
|
|
do i = 1, sze
|
|
|
|
U(i,k) = u_in(i,k)
|
|
|
|
enddo
|
|
|
|
enddo
|
|
|
|
|
|
|
|
! ---
|
|
|
|
|
|
|
|
itertot = 0
|
|
|
|
|
|
|
|
do while (.not.converged)
|
|
|
|
|
|
|
|
itertot = itertot + 1
|
|
|
|
if(itertot == 8) then
|
|
|
|
exit
|
|
|
|
endif
|
|
|
|
|
|
|
|
do iter = 1, itermax-1
|
|
|
|
|
|
|
|
shift = N_st_diag * (iter-1)
|
|
|
|
shift2 = N_st_diag * iter
|
|
|
|
|
|
|
|
if( (iter > 1) .or. (itertot == 1) ) then
|
|
|
|
|
|
|
|
! Gram-Schmidt to orthogonalize all new guess with the previous vectors
|
|
|
|
call ortho_qr(U, size(U, 1), sze, shift2)
|
|
|
|
call ortho_qr(U, size(U, 1), sze, shift2)
|
|
|
|
|
|
|
|
! W = H U
|
|
|
|
call hcalc(W(1,shift+1), U(1,shift+1), N_st_diag, sze)
|
|
|
|
|
|
|
|
else
|
|
|
|
|
|
|
|
! Already computed in update below
|
|
|
|
continue
|
|
|
|
endif
|
|
|
|
|
|
|
|
! Compute h_kl = <u_k | W_l> = <u_k| H |u_l>
|
|
|
|
! -------------------------------------------
|
|
|
|
call dgemm( 'T', 'N', shift2, shift2, sze, 1.d0 &
|
|
|
|
, U, size(U, 1), W, size(W, 1) &
|
|
|
|
, 0.d0, h, size(h, 1) )
|
|
|
|
|
|
|
|
|
|
|
|
! Diagonalize h y = lambda y
|
|
|
|
! ---------------------------
|
|
|
|
call diag_nonsym_right(shift2, h(1,1), size(h, 1), y(1,1), size(y, 1), lambda(1), size(lambda, 1))
|
|
|
|
|
|
|
|
|
|
|
|
! Express eigenvectors of h in the determinant basis:
|
|
|
|
! ---------------------------------------------------
|
|
|
|
|
|
|
|
! y(:,k) = rk
|
|
|
|
! U(:,k) = Bk
|
|
|
|
! U(:,shift2+k) = Rk = Bk x rk
|
|
|
|
call dgemm( 'N', 'N', sze, N_st_diag, shift2, 1.d0 &
|
|
|
|
, U, size(U, 1), y, size(y, 1) &
|
|
|
|
, 0.d0, U(1,shift2+1), size(U, 1) )
|
|
|
|
|
|
|
|
do k = 1, N_st_diag
|
|
|
|
call normalize(U(1,shift2+k), sze)
|
|
|
|
enddo
|
|
|
|
|
|
|
|
! ---
|
|
|
|
! select the max overlap
|
|
|
|
|
|
|
|
!
|
|
|
|
! start test ------------------------------------------------------------------------
|
|
|
|
!
|
|
|
|
!double precision, allocatable :: Utest(:,:), Otest(:)
|
|
|
|
!allocate( Utest(sze,shift2), Otest(shift2) )
|
|
|
|
|
|
|
|
!call dgemm( 'N', 'N', sze, shift2, shift2, 1.d0 &
|
|
|
|
! , U, size(U, 1), y, size(y, 1), 0.d0, Utest(1,1), size(Utest, 1) )
|
|
|
|
!do k = 1, shift2
|
|
|
|
! call normalize(Utest(1,k), sze)
|
|
|
|
!enddo
|
|
|
|
!do j = 1, sze
|
|
|
|
! write(455, '(100(1X, F16.10))') (Utest(j,k), k=1,shift2)
|
|
|
|
!enddo
|
|
|
|
|
|
|
|
!do k = 1, shift2
|
|
|
|
! Otest(k) = 0.d0
|
|
|
|
! do i = 1, sze
|
|
|
|
! Otest(k) += Utest(i,k) * u_in(i,1)
|
|
|
|
! enddo
|
|
|
|
! Otest(k) = dabs(Otest(k))
|
|
|
|
! print *, ' Otest =', k, Otest(k), lambda(k)
|
|
|
|
!enddo
|
|
|
|
|
|
|
|
!deallocate(Utest, Otest)
|
|
|
|
!
|
|
|
|
! end test ------------------------------------------------------------------------
|
|
|
|
!
|
|
|
|
|
|
|
|
! TODO
|
|
|
|
! state_following is more efficient
|
|
|
|
do l = 1, N_st
|
|
|
|
|
|
|
|
allocate( overlap(N_st_diag) )
|
|
|
|
|
|
|
|
do k = 1, N_st_diag
|
|
|
|
overlap(k) = 0.d0
|
|
|
|
do i = 1, sze
|
|
|
|
overlap(k) = overlap(k) + U(i,shift2+k) * u_in(i,l)
|
|
|
|
enddo
|
|
|
|
overlap(k) = dabs(overlap(k))
|
|
|
|
!print *, ' overlap =', k, overlap(k)
|
|
|
|
enddo
|
|
|
|
|
|
|
|
lambda_tmp = 0.d0
|
|
|
|
do k = 1, N_st_diag
|
|
|
|
if(overlap(k) .gt. lambda_tmp) then
|
|
|
|
i_omax(l) = k
|
|
|
|
lambda_tmp = overlap(k)
|
|
|
|
endif
|
|
|
|
enddo
|
|
|
|
|
|
|
|
deallocate(overlap)
|
|
|
|
|
|
|
|
if(lambda_tmp .lt. 0.7d0) then
|
|
|
|
print *, ' very small overlap ...', l, i_omax(l)
|
|
|
|
print *, ' max overlap = ', lambda_tmp
|
2023-06-21 10:44:37 +02:00
|
|
|
!stop
|
2023-02-07 17:07:49 +01:00
|
|
|
endif
|
|
|
|
|
|
|
|
if(i_omax(l) .ne. l) then
|
2023-12-22 20:15:58 +01:00
|
|
|
print *, ' !!! WARNING !!!'
|
2023-02-07 17:07:49 +01:00
|
|
|
print *, ' index of state', l, i_omax(l)
|
|
|
|
endif
|
|
|
|
enddo
|
|
|
|
|
|
|
|
! y(:,k) = rk
|
|
|
|
! W(:,k) = H x Bk
|
|
|
|
! W(:,shift2+k) = H x Bk x rk
|
|
|
|
! = Wk
|
|
|
|
call dgemm( 'N', 'N', sze, N_st_diag, shift2, 1.d0 &
|
|
|
|
, W, size(W, 1), y, size(y, 1) &
|
|
|
|
, 0.d0, W(1,shift2+1), size(W, 1) )
|
|
|
|
|
|
|
|
! ---
|
|
|
|
|
|
|
|
! Compute residual vector and davidson step
|
|
|
|
! -----------------------------------------
|
|
|
|
|
|
|
|
!$OMP PARALLEL DO DEFAULT(SHARED) PRIVATE(i,k)
|
|
|
|
do k = 1, N_st_diag
|
|
|
|
do i = 1, sze
|
|
|
|
U(i,shift2+k) = (lambda(k) * U(i,shift2+k) - W(i,shift2+k)) / max(H_jj(i)-lambda(k), 1.d-2)
|
|
|
|
enddo
|
|
|
|
if(k <= N_st) then
|
|
|
|
l = k
|
|
|
|
residual_norm(k) = u_dot_u(U(1,shift2+l), sze)
|
|
|
|
to_print(1,k) = lambda(l)
|
|
|
|
to_print(2,k) = residual_norm(l)
|
|
|
|
endif
|
|
|
|
enddo
|
|
|
|
!$OMP END PARALLEL DO
|
|
|
|
!residual_norm(1) = u_dot_u(U(1,shift2+1), sze)
|
|
|
|
!to_print(1,1) = lambda(1)
|
|
|
|
!to_print(2,1) = residual_norm(1)
|
|
|
|
|
|
|
|
|
|
|
|
if( (itertot > 1) .and. (iter == 1) ) then
|
|
|
|
!don't print
|
|
|
|
continue
|
|
|
|
else
|
|
|
|
write(*, '(1X, I3, 1X, 100(1X, F16.10, 1X, F16.10, 1X, F16.10))') iter-1, to_print(1:2,1:N_st)
|
|
|
|
endif
|
|
|
|
|
|
|
|
! Check convergence
|
|
|
|
if(iter > 1) then
|
|
|
|
converged = dabs(maxval(residual_norm(1:N_st))) < threshold_nonsym_davidson
|
|
|
|
endif
|
|
|
|
|
|
|
|
do k = 1, N_st
|
|
|
|
if(residual_norm(k) > 1.e8) then
|
|
|
|
print *, 'Davidson failed'
|
|
|
|
stop -1
|
|
|
|
endif
|
|
|
|
enddo
|
|
|
|
if(converged) then
|
|
|
|
exit
|
|
|
|
endif
|
|
|
|
|
|
|
|
logical, external :: qp_stop
|
|
|
|
if(qp_stop()) then
|
|
|
|
converged = .True.
|
|
|
|
exit
|
|
|
|
endif
|
|
|
|
|
|
|
|
enddo ! loop over iter
|
|
|
|
|
|
|
|
|
|
|
|
! Re-contract U and update W
|
|
|
|
! --------------------------------
|
|
|
|
|
|
|
|
call dgemm( 'N', 'N', sze, N_st_diag, shift2, 1.d0 &
|
|
|
|
, W, size(W, 1), y, size(y, 1) &
|
|
|
|
, 0.d0, u_in, size(u_in, 1) )
|
|
|
|
do k = 1, N_st_diag
|
|
|
|
do i = 1, sze
|
|
|
|
W(i,k) = u_in(i,k)
|
|
|
|
enddo
|
|
|
|
enddo
|
|
|
|
|
|
|
|
call dgemm( 'N', 'N', sze, N_st_diag, shift2, 1.d0 &
|
|
|
|
, U, size(U, 1), y, size(y, 1) &
|
|
|
|
, 0.d0, u_in, size(u_in, 1) )
|
|
|
|
do k = 1, N_st_diag
|
|
|
|
do i = 1, sze
|
|
|
|
U(i,k) = u_in(i,k)
|
|
|
|
enddo
|
|
|
|
enddo
|
|
|
|
|
|
|
|
call ortho_qr(U, size(U, 1), sze, N_st_diag)
|
|
|
|
call ortho_qr(U, size(U, 1), sze, N_st_diag)
|
|
|
|
do j = 1, N_st_diag
|
|
|
|
k = 1
|
|
|
|
do while( (k < sze) .and. (U(k,j) == 0.d0) )
|
|
|
|
k = k+1
|
|
|
|
enddo
|
|
|
|
if(U(k,j) * u_in(k,j) < 0.d0) then
|
|
|
|
do i = 1, sze
|
|
|
|
W(i,j) = -W(i,j)
|
|
|
|
enddo
|
|
|
|
endif
|
|
|
|
enddo
|
|
|
|
|
|
|
|
enddo ! loop over while
|
|
|
|
|
|
|
|
! ---
|
|
|
|
|
|
|
|
do k = 1, N_st
|
|
|
|
energies(k) = lambda(k)
|
|
|
|
enddo
|
|
|
|
write_buffer = '====='
|
|
|
|
do i = 1, N_st
|
|
|
|
write_buffer = trim(write_buffer)//' ================ ==========='
|
|
|
|
enddo
|
|
|
|
write(6,'(A)') trim(write_buffer)
|
|
|
|
write(6,'(A)') ''
|
|
|
|
call write_time(6)
|
|
|
|
|
|
|
|
deallocate(W)
|
|
|
|
deallocate(U, h, y, lambda, residual_norm, i_omax)
|
|
|
|
|
|
|
|
FREE nthreads_davidson
|
|
|
|
|
|
|
|
end subroutine davidson_general_ext_rout_nonsym_b1space
|
|
|
|
|
|
|
|
! ---
|