mirror of
https://github.com/QuantumPackage/qp2.git
synced 2025-04-22 00:10:14 +02:00
6952 lines
252 KiB
Fortran
6952 lines
252 KiB
Fortran
|
subroutine gen_oh(code, num, x, y, z, w, a, b, v)
|
||
|
implicit logical(a-z)
|
||
|
double precision x(*),y(*),z(*),w(*)
|
||
|
double precision a,b,v
|
||
|
integer code
|
||
|
integer num
|
||
|
double precision c
|
||
|
chvd
|
||
|
chvd This subroutine is part of a set of subroutines that generate
|
||
|
chvd Lebedev grids [1-6] for integration on a sphere. The original
|
||
|
chvd C-code [1] was kindly provided by Dr. Dmitri N. Laikov and
|
||
|
chvd translated into fortran by Dr. Christoph van Wuellen.
|
||
|
chvd This subroutine was translated from C to fortran77 by hand.
|
||
|
chvd
|
||
|
chvd Users of this code are asked to include reference [1] in their
|
||
|
chvd publications, and in the user- and programmers-manuals
|
||
|
chvd describing their codes.
|
||
|
chvd
|
||
|
chvd This code was distributed through CCL (http://www.ccl.net/).
|
||
|
chvd
|
||
|
chvd [1] V.I. Lebedev, and D.N. Laikov
|
||
|
chvd "A quadrature formula for the sphere of the 131st
|
||
|
chvd algebraic order of accuracy"
|
||
|
chvd Doklady Mathematics, Vol. 59, No. 3, 1999, pp. 477-481.
|
||
|
chvd
|
||
|
chvd [2] V.I. Lebedev
|
||
|
chvd "A quadrature formula for the sphere of 59th algebraic
|
||
|
chvd order of accuracy"
|
||
|
chvd Russian Acad. Sci. Dokl. Math., Vol. 50, 1995, pp. 283-286.
|
||
|
chvd
|
||
|
chvd [3] V.I. Lebedev, and A.L. Skorokhodov
|
||
|
chvd "Quadrature formulas of orders 41, 47, and 53 for the sphere"
|
||
|
chvd Russian Acad. Sci. Dokl. Math., Vol. 45, 1992, pp. 587-592.
|
||
|
chvd
|
||
|
chvd [4] V.I. Lebedev
|
||
|
chvd "Spherical quadrature formulas exact to orders 25-29"
|
||
|
chvd Siberian Mathematical Journal, Vol. 18, 1977, pp. 99-107.
|
||
|
chvd
|
||
|
chvd [5] V.I. Lebedev
|
||
|
chvd "Quadratures on a sphere"
|
||
|
chvd Computational Mathematics and Mathematical Physics, Vol. 16,
|
||
|
chvd 1976, pp. 10-24.
|
||
|
chvd
|
||
|
chvd [6] V.I. Lebedev
|
||
|
chvd "Values of the nodes and weights of ninth to seventeenth
|
||
|
chvd order Gauss-Markov quadrature formulae invariant under the
|
||
|
chvd octahedron group with inversion"
|
||
|
chvd Computational Mathematics and Mathematical Physics, Vol. 15,
|
||
|
chvd 1975, pp. 44-51.
|
||
|
chvd
|
||
|
cvw
|
||
|
cvw Given a point on a sphere (specified by a and b), generate all
|
||
|
cvw the equivalent points under Oh symmetry, making grid points with
|
||
|
cvw weight v.
|
||
|
cvw The variable num is increased by the number of different points
|
||
|
cvw generated.
|
||
|
cvw
|
||
|
cvw Depending on code, there are 6...48 different but equivalent
|
||
|
cvw points.
|
||
|
cvw
|
||
|
cvw code=1: (0,0,1) etc ( 6 points)
|
||
|
cvw code=2: (0,a,a) etc, a=1/sqrt(2) ( 12 points)
|
||
|
cvw code=3: (a,a,a) etc, a=1/sqrt(3) ( 8 points)
|
||
|
cvw code=4: (a,a,b) etc, b=sqrt(1-2 a^2) ( 24 points)
|
||
|
cvw code=5: (a,b,0) etc, b=sqrt(1-a^2), a input ( 24 points)
|
||
|
cvw code=6: (a,b,c) etc, c=sqrt(1-a^2-b^2), a/b input ( 48 points)
|
||
|
cvw
|
||
|
goto (1,2,3,4,5,6) code
|
||
|
write (6,*) 'Gen_Oh: Invalid Code'
|
||
|
stop
|
||
|
1 continue
|
||
|
a=1.0d0
|
||
|
x(1) = a
|
||
|
y(1) = 0.0d0
|
||
|
z(1) = 0.0d0
|
||
|
w(1) = v
|
||
|
x(2) = -a
|
||
|
y(2) = 0.0d0
|
||
|
z(2) = 0.0d0
|
||
|
w(2) = v
|
||
|
x(3) = 0.0d0
|
||
|
y(3) = a
|
||
|
z(3) = 0.0d0
|
||
|
w(3) = v
|
||
|
x(4) = 0.0d0
|
||
|
y(4) = -a
|
||
|
z(4) = 0.0d0
|
||
|
w(4) = v
|
||
|
x(5) = 0.0d0
|
||
|
y(5) = 0.0d0
|
||
|
z(5) = a
|
||
|
w(5) = v
|
||
|
x(6) = 0.0d0
|
||
|
y(6) = 0.0d0
|
||
|
z(6) = -a
|
||
|
w(6) = v
|
||
|
num=num+6
|
||
|
return
|
||
|
cvw
|
||
|
2 continue
|
||
|
a=sqrt(0.5d0)
|
||
|
x( 1) = 0d0
|
||
|
y( 1) = a
|
||
|
z( 1) = a
|
||
|
w( 1) = v
|
||
|
x( 2) = 0d0
|
||
|
y( 2) = -a
|
||
|
z( 2) = a
|
||
|
w( 2) = v
|
||
|
x( 3) = 0d0
|
||
|
y( 3) = a
|
||
|
z( 3) = -a
|
||
|
w( 3) = v
|
||
|
x( 4) = 0d0
|
||
|
y( 4) = -a
|
||
|
z( 4) = -a
|
||
|
w( 4) = v
|
||
|
x( 5) = a
|
||
|
y( 5) = 0d0
|
||
|
z( 5) = a
|
||
|
w( 5) = v
|
||
|
x( 6) = -a
|
||
|
y( 6) = 0d0
|
||
|
z( 6) = a
|
||
|
w( 6) = v
|
||
|
x( 7) = a
|
||
|
y( 7) = 0d0
|
||
|
z( 7) = -a
|
||
|
w( 7) = v
|
||
|
x( 8) = -a
|
||
|
y( 8) = 0d0
|
||
|
z( 8) = -a
|
||
|
w( 8) = v
|
||
|
x( 9) = a
|
||
|
y( 9) = a
|
||
|
z( 9) = 0d0
|
||
|
w( 9) = v
|
||
|
x(10) = -a
|
||
|
y(10) = a
|
||
|
z(10) = 0d0
|
||
|
w(10) = v
|
||
|
x(11) = a
|
||
|
y(11) = -a
|
||
|
z(11) = 0d0
|
||
|
w(11) = v
|
||
|
x(12) = -a
|
||
|
y(12) = -a
|
||
|
z(12) = 0d0
|
||
|
w(12) = v
|
||
|
num=num+12
|
||
|
return
|
||
|
cvw
|
||
|
3 continue
|
||
|
a = sqrt(1d0/3d0)
|
||
|
x(1) = a
|
||
|
y(1) = a
|
||
|
z(1) = a
|
||
|
w(1) = v
|
||
|
x(2) = -a
|
||
|
y(2) = a
|
||
|
z(2) = a
|
||
|
w(2) = v
|
||
|
x(3) = a
|
||
|
y(3) = -a
|
||
|
z(3) = a
|
||
|
w(3) = v
|
||
|
x(4) = -a
|
||
|
y(4) = -a
|
||
|
z(4) = a
|
||
|
w(4) = v
|
||
|
x(5) = a
|
||
|
y(5) = a
|
||
|
z(5) = -a
|
||
|
w(5) = v
|
||
|
x(6) = -a
|
||
|
y(6) = a
|
||
|
z(6) = -a
|
||
|
w(6) = v
|
||
|
x(7) = a
|
||
|
y(7) = -a
|
||
|
z(7) = -a
|
||
|
w(7) = v
|
||
|
x(8) = -a
|
||
|
y(8) = -a
|
||
|
z(8) = -a
|
||
|
w(8) = v
|
||
|
num=num+8
|
||
|
return
|
||
|
cvw
|
||
|
4 continue
|
||
|
b = sqrt(1d0 - 2d0*a*a)
|
||
|
x( 1) = a
|
||
|
y( 1) = a
|
||
|
z( 1) = b
|
||
|
w( 1) = v
|
||
|
x( 2) = -a
|
||
|
y( 2) = a
|
||
|
z( 2) = b
|
||
|
w( 2) = v
|
||
|
x( 3) = a
|
||
|
y( 3) = -a
|
||
|
z( 3) = b
|
||
|
w( 3) = v
|
||
|
x( 4) = -a
|
||
|
y( 4) = -a
|
||
|
z( 4) = b
|
||
|
w( 4) = v
|
||
|
x( 5) = a
|
||
|
y( 5) = a
|
||
|
z( 5) = -b
|
||
|
w( 5) = v
|
||
|
x( 6) = -a
|
||
|
y( 6) = a
|
||
|
z( 6) = -b
|
||
|
w( 6) = v
|
||
|
x( 7) = a
|
||
|
y( 7) = -a
|
||
|
z( 7) = -b
|
||
|
w( 7) = v
|
||
|
x( 8) = -a
|
||
|
y( 8) = -a
|
||
|
z( 8) = -b
|
||
|
w( 8) = v
|
||
|
x( 9) = a
|
||
|
y( 9) = b
|
||
|
z( 9) = a
|
||
|
w( 9) = v
|
||
|
x(10) = -a
|
||
|
y(10) = b
|
||
|
z(10) = a
|
||
|
w(10) = v
|
||
|
x(11) = a
|
||
|
y(11) = -b
|
||
|
z(11) = a
|
||
|
w(11) = v
|
||
|
x(12) = -a
|
||
|
y(12) = -b
|
||
|
z(12) = a
|
||
|
w(12) = v
|
||
|
x(13) = a
|
||
|
y(13) = b
|
||
|
z(13) = -a
|
||
|
w(13) = v
|
||
|
x(14) = -a
|
||
|
y(14) = b
|
||
|
z(14) = -a
|
||
|
w(14) = v
|
||
|
x(15) = a
|
||
|
y(15) = -b
|
||
|
z(15) = -a
|
||
|
w(15) = v
|
||
|
x(16) = -a
|
||
|
y(16) = -b
|
||
|
z(16) = -a
|
||
|
w(16) = v
|
||
|
x(17) = b
|
||
|
y(17) = a
|
||
|
z(17) = a
|
||
|
w(17) = v
|
||
|
x(18) = -b
|
||
|
y(18) = a
|
||
|
z(18) = a
|
||
|
w(18) = v
|
||
|
x(19) = b
|
||
|
y(19) = -a
|
||
|
z(19) = a
|
||
|
w(19) = v
|
||
|
x(20) = -b
|
||
|
y(20) = -a
|
||
|
z(20) = a
|
||
|
w(20) = v
|
||
|
x(21) = b
|
||
|
y(21) = a
|
||
|
z(21) = -a
|
||
|
w(21) = v
|
||
|
x(22) = -b
|
||
|
y(22) = a
|
||
|
z(22) = -a
|
||
|
w(22) = v
|
||
|
x(23) = b
|
||
|
y(23) = -a
|
||
|
z(23) = -a
|
||
|
w(23) = v
|
||
|
x(24) = -b
|
||
|
y(24) = -a
|
||
|
z(24) = -a
|
||
|
w(24) = v
|
||
|
num=num+24
|
||
|
return
|
||
|
cvw
|
||
|
5 continue
|
||
|
b=sqrt(1d0-a*a)
|
||
|
x( 1) = a
|
||
|
y( 1) = b
|
||
|
z( 1) = 0d0
|
||
|
w( 1) = v
|
||
|
x( 2) = -a
|
||
|
y( 2) = b
|
||
|
z( 2) = 0d0
|
||
|
w( 2) = v
|
||
|
x( 3) = a
|
||
|
y( 3) = -b
|
||
|
z( 3) = 0d0
|
||
|
w( 3) = v
|
||
|
x( 4) = -a
|
||
|
y( 4) = -b
|
||
|
z( 4) = 0d0
|
||
|
w( 4) = v
|
||
|
x( 5) = b
|
||
|
y( 5) = a
|
||
|
z( 5) = 0d0
|
||
|
w( 5) = v
|
||
|
x( 6) = -b
|
||
|
y( 6) = a
|
||
|
z( 6) = 0d0
|
||
|
w( 6) = v
|
||
|
x( 7) = b
|
||
|
y( 7) = -a
|
||
|
z( 7) = 0d0
|
||
|
w( 7) = v
|
||
|
x( 8) = -b
|
||
|
y( 8) = -a
|
||
|
z( 8) = 0d0
|
||
|
w( 8) = v
|
||
|
x( 9) = a
|
||
|
y( 9) = 0d0
|
||
|
z( 9) = b
|
||
|
w( 9) = v
|
||
|
x(10) = -a
|
||
|
y(10) = 0d0
|
||
|
z(10) = b
|
||
|
w(10) = v
|
||
|
x(11) = a
|
||
|
y(11) = 0d0
|
||
|
z(11) = -b
|
||
|
w(11) = v
|
||
|
x(12) = -a
|
||
|
y(12) = 0d0
|
||
|
z(12) = -b
|
||
|
w(12) = v
|
||
|
x(13) = b
|
||
|
y(13) = 0d0
|
||
|
z(13) = a
|
||
|
w(13) = v
|
||
|
x(14) = -b
|
||
|
y(14) = 0d0
|
||
|
z(14) = a
|
||
|
w(14) = v
|
||
|
x(15) = b
|
||
|
y(15) = 0d0
|
||
|
z(15) = -a
|
||
|
w(15) = v
|
||
|
x(16) = -b
|
||
|
y(16) = 0d0
|
||
|
z(16) = -a
|
||
|
w(16) = v
|
||
|
x(17) = 0d0
|
||
|
y(17) = a
|
||
|
z(17) = b
|
||
|
w(17) = v
|
||
|
x(18) = 0d0
|
||
|
y(18) = -a
|
||
|
z(18) = b
|
||
|
w(18) = v
|
||
|
x(19) = 0d0
|
||
|
y(19) = a
|
||
|
z(19) = -b
|
||
|
w(19) = v
|
||
|
x(20) = 0d0
|
||
|
y(20) = -a
|
||
|
z(20) = -b
|
||
|
w(20) = v
|
||
|
x(21) = 0d0
|
||
|
y(21) = b
|
||
|
z(21) = a
|
||
|
w(21) = v
|
||
|
x(22) = 0d0
|
||
|
y(22) = -b
|
||
|
z(22) = a
|
||
|
w(22) = v
|
||
|
x(23) = 0d0
|
||
|
y(23) = b
|
||
|
z(23) = -a
|
||
|
w(23) = v
|
||
|
x(24) = 0d0
|
||
|
y(24) = -b
|
||
|
z(24) = -a
|
||
|
w(24) = v
|
||
|
num=num+24
|
||
|
return
|
||
|
cvw
|
||
|
6 continue
|
||
|
c=sqrt(1d0 - a*a - b*b)
|
||
|
x( 1) = a
|
||
|
y( 1) = b
|
||
|
z( 1) = c
|
||
|
w( 1) = v
|
||
|
x( 2) = -a
|
||
|
y( 2) = b
|
||
|
z( 2) = c
|
||
|
w( 2) = v
|
||
|
x( 3) = a
|
||
|
y( 3) = -b
|
||
|
z( 3) = c
|
||
|
w( 3) = v
|
||
|
x( 4) = -a
|
||
|
y( 4) = -b
|
||
|
z( 4) = c
|
||
|
w( 4) = v
|
||
|
x( 5) = a
|
||
|
y( 5) = b
|
||
|
z( 5) = -c
|
||
|
w( 5) = v
|
||
|
x( 6) = -a
|
||
|
y( 6) = b
|
||
|
z( 6) = -c
|
||
|
w( 6) = v
|
||
|
x( 7) = a
|
||
|
y( 7) = -b
|
||
|
z( 7) = -c
|
||
|
w( 7) = v
|
||
|
x( 8) = -a
|
||
|
y( 8) = -b
|
||
|
z( 8) = -c
|
||
|
w( 8) = v
|
||
|
x( 9) = a
|
||
|
y( 9) = c
|
||
|
z( 9) = b
|
||
|
w( 9) = v
|
||
|
x(10) = -a
|
||
|
y(10) = c
|
||
|
z(10) = b
|
||
|
w(10) = v
|
||
|
x(11) = a
|
||
|
y(11) = -c
|
||
|
z(11) = b
|
||
|
w(11) = v
|
||
|
x(12) = -a
|
||
|
y(12) = -c
|
||
|
z(12) = b
|
||
|
w(12) = v
|
||
|
x(13) = a
|
||
|
y(13) = c
|
||
|
z(13) = -b
|
||
|
w(13) = v
|
||
|
x(14) = -a
|
||
|
y(14) = c
|
||
|
z(14) = -b
|
||
|
w(14) = v
|
||
|
x(15) = a
|
||
|
y(15) = -c
|
||
|
z(15) = -b
|
||
|
w(15) = v
|
||
|
x(16) = -a
|
||
|
y(16) = -c
|
||
|
z(16) = -b
|
||
|
w(16) = v
|
||
|
x(17) = b
|
||
|
y(17) = a
|
||
|
z(17) = c
|
||
|
w(17) = v
|
||
|
x(18) = -b
|
||
|
y(18) = a
|
||
|
z(18) = c
|
||
|
w(18) = v
|
||
|
x(19) = b
|
||
|
y(19) = -a
|
||
|
z(19) = c
|
||
|
w(19) = v
|
||
|
x(20) = -b
|
||
|
y(20) = -a
|
||
|
z(20) = c
|
||
|
w(20) = v
|
||
|
x(21) = b
|
||
|
y(21) = a
|
||
|
z(21) = -c
|
||
|
w(21) = v
|
||
|
x(22) = -b
|
||
|
y(22) = a
|
||
|
z(22) = -c
|
||
|
w(22) = v
|
||
|
x(23) = b
|
||
|
y(23) = -a
|
||
|
z(23) = -c
|
||
|
w(23) = v
|
||
|
x(24) = -b
|
||
|
y(24) = -a
|
||
|
z(24) = -c
|
||
|
w(24) = v
|
||
|
x(25) = b
|
||
|
y(25) = c
|
||
|
z(25) = a
|
||
|
w(25) = v
|
||
|
x(26) = -b
|
||
|
y(26) = c
|
||
|
z(26) = a
|
||
|
w(26) = v
|
||
|
x(27) = b
|
||
|
y(27) = -c
|
||
|
z(27) = a
|
||
|
w(27) = v
|
||
|
x(28) = -b
|
||
|
y(28) = -c
|
||
|
z(28) = a
|
||
|
w(28) = v
|
||
|
x(29) = b
|
||
|
y(29) = c
|
||
|
z(29) = -a
|
||
|
w(29) = v
|
||
|
x(30) = -b
|
||
|
y(30) = c
|
||
|
z(30) = -a
|
||
|
w(30) = v
|
||
|
x(31) = b
|
||
|
y(31) = -c
|
||
|
z(31) = -a
|
||
|
w(31) = v
|
||
|
x(32) = -b
|
||
|
y(32) = -c
|
||
|
z(32) = -a
|
||
|
w(32) = v
|
||
|
x(33) = c
|
||
|
y(33) = a
|
||
|
z(33) = b
|
||
|
w(33) = v
|
||
|
x(34) = -c
|
||
|
y(34) = a
|
||
|
z(34) = b
|
||
|
w(34) = v
|
||
|
x(35) = c
|
||
|
y(35) = -a
|
||
|
z(35) = b
|
||
|
w(35) = v
|
||
|
x(36) = -c
|
||
|
y(36) = -a
|
||
|
z(36) = b
|
||
|
w(36) = v
|
||
|
x(37) = c
|
||
|
y(37) = a
|
||
|
z(37) = -b
|
||
|
w(37) = v
|
||
|
x(38) = -c
|
||
|
y(38) = a
|
||
|
z(38) = -b
|
||
|
w(38) = v
|
||
|
x(39) = c
|
||
|
y(39) = -a
|
||
|
z(39) = -b
|
||
|
w(39) = v
|
||
|
x(40) = -c
|
||
|
y(40) = -a
|
||
|
z(40) = -b
|
||
|
w(40) = v
|
||
|
x(41) = c
|
||
|
y(41) = b
|
||
|
z(41) = a
|
||
|
w(41) = v
|
||
|
x(42) = -c
|
||
|
y(42) = b
|
||
|
z(42) = a
|
||
|
w(42) = v
|
||
|
x(43) = c
|
||
|
y(43) = -b
|
||
|
z(43) = a
|
||
|
w(43) = v
|
||
|
x(44) = -c
|
||
|
y(44) = -b
|
||
|
z(44) = a
|
||
|
w(44) = v
|
||
|
x(45) = c
|
||
|
y(45) = b
|
||
|
z(45) = -a
|
||
|
w(45) = v
|
||
|
x(46) = -c
|
||
|
y(46) = b
|
||
|
z(46) = -a
|
||
|
w(46) = v
|
||
|
x(47) = c
|
||
|
y(47) = -b
|
||
|
z(47) = -a
|
||
|
w(47) = v
|
||
|
x(48) = -c
|
||
|
y(48) = -b
|
||
|
z(48) = -a
|
||
|
w(48) = v
|
||
|
num=num+48
|
||
|
return
|
||
|
end
|
||
|
SUBROUTINE LD0006(X,Y,Z,W,N)
|
||
|
DOUBLE PRECISION X( 6)
|
||
|
DOUBLE PRECISION Y( 6)
|
||
|
DOUBLE PRECISION Z( 6)
|
||
|
DOUBLE PRECISION W( 6)
|
||
|
INTEGER N
|
||
|
DOUBLE PRECISION A,B,V
|
||
|
CVW
|
||
|
CVW LEBEDEV 6-POINT ANGULAR GRID
|
||
|
CVW
|
||
|
chvd
|
||
|
chvd This subroutine is part of a set of subroutines that generate
|
||
|
chvd Lebedev grids [1-6] for integration on a sphere. The original
|
||
|
chvd C-code [1] was kindly provided by Dr. Dmitri N. Laikov and
|
||
|
chvd translated into fortran by Dr. Christoph van Wuellen.
|
||
|
chvd This subroutine was translated using a C to fortran77 conversion
|
||
|
chvd tool written by Dr. Christoph van Wuellen.
|
||
|
chvd
|
||
|
chvd Users of this code are asked to include reference [1] in their
|
||
|
chvd publications, and in the user- and programmers-manuals
|
||
|
chvd describing their codes.
|
||
|
chvd
|
||
|
chvd This code was distributed through CCL (http://www.ccl.net/).
|
||
|
chvd
|
||
|
chvd [1] V.I. Lebedev, and D.N. Laikov
|
||
|
chvd "A quadrature formula for the sphere of the 131st
|
||
|
chvd algebraic order of accuracy"
|
||
|
chvd Doklady Mathematics, Vol. 59, No. 3, 1999, pp. 477-481.
|
||
|
chvd
|
||
|
chvd [2] V.I. Lebedev
|
||
|
chvd "A quadrature formula for the sphere of 59th algebraic
|
||
|
chvd order of accuracy"
|
||
|
chvd Russian Acad. Sci. Dokl. Math., Vol. 50, 1995, pp. 283-286.
|
||
|
chvd
|
||
|
chvd [3] V.I. Lebedev, and A.L. Skorokhodov
|
||
|
chvd "Quadrature formulas of orders 41, 47, and 53 for the sphere"
|
||
|
chvd Russian Acad. Sci. Dokl. Math., Vol. 45, 1992, pp. 587-592.
|
||
|
chvd
|
||
|
chvd [4] V.I. Lebedev
|
||
|
chvd "Spherical quadrature formulas exact to orders 25-29"
|
||
|
chvd Siberian Mathematical Journal, Vol. 18, 1977, pp. 99-107.
|
||
|
chvd
|
||
|
chvd [5] V.I. Lebedev
|
||
|
chvd "Quadratures on a sphere"
|
||
|
chvd Computational Mathematics and Mathematical Physics, Vol. 16,
|
||
|
chvd 1976, pp. 10-24.
|
||
|
chvd
|
||
|
chvd [6] V.I. Lebedev
|
||
|
chvd "Values of the nodes and weights of ninth to seventeenth
|
||
|
chvd order Gauss-Markov quadrature formulae invariant under the
|
||
|
chvd octahedron group with inversion"
|
||
|
chvd Computational Mathematics and Mathematical Physics, Vol. 15,
|
||
|
chvd 1975, pp. 44-51.
|
||
|
chvd
|
||
|
N=1
|
||
|
V=0.1666666666666667D+0
|
||
|
Call GEN_OH( 1, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
N=N-1
|
||
|
RETURN
|
||
|
END
|
||
|
SUBROUTINE LD0014(X,Y,Z,W,N)
|
||
|
DOUBLE PRECISION X( 14)
|
||
|
DOUBLE PRECISION Y( 14)
|
||
|
DOUBLE PRECISION Z( 14)
|
||
|
DOUBLE PRECISION W( 14)
|
||
|
INTEGER N
|
||
|
DOUBLE PRECISION A,B,V
|
||
|
CVW
|
||
|
CVW LEBEDEV 14-POINT ANGULAR GRID
|
||
|
CVW
|
||
|
chvd
|
||
|
chvd This subroutine is part of a set of subroutines that generate
|
||
|
chvd Lebedev grids [1-6] for integration on a sphere. The original
|
||
|
chvd C-code [1] was kindly provided by Dr. Dmitri N. Laikov and
|
||
|
chvd translated into fortran by Dr. Christoph van Wuellen.
|
||
|
chvd This subroutine was translated using a C to fortran77 conversion
|
||
|
chvd tool written by Dr. Christoph van Wuellen.
|
||
|
chvd
|
||
|
chvd Users of this code are asked to include reference [1] in their
|
||
|
chvd publications, and in the user- and programmers-manuals
|
||
|
chvd describing their codes.
|
||
|
chvd
|
||
|
chvd This code was distributed through CCL (http://www.ccl.net/).
|
||
|
chvd
|
||
|
chvd [1] V.I. Lebedev, and D.N. Laikov
|
||
|
chvd "A quadrature formula for the sphere of the 131st
|
||
|
chvd algebraic order of accuracy"
|
||
|
chvd Doklady Mathematics, Vol. 59, No. 3, 1999, pp. 477-481.
|
||
|
chvd
|
||
|
chvd [2] V.I. Lebedev
|
||
|
chvd "A quadrature formula for the sphere of 59th algebraic
|
||
|
chvd order of accuracy"
|
||
|
chvd Russian Acad. Sci. Dokl. Math., Vol. 50, 1995, pp. 283-286.
|
||
|
chvd
|
||
|
chvd [3] V.I. Lebedev, and A.L. Skorokhodov
|
||
|
chvd "Quadrature formulas of orders 41, 47, and 53 for the sphere"
|
||
|
chvd Russian Acad. Sci. Dokl. Math., Vol. 45, 1992, pp. 587-592.
|
||
|
chvd
|
||
|
chvd [4] V.I. Lebedev
|
||
|
chvd "Spherical quadrature formulas exact to orders 25-29"
|
||
|
chvd Siberian Mathematical Journal, Vol. 18, 1977, pp. 99-107.
|
||
|
chvd
|
||
|
chvd [5] V.I. Lebedev
|
||
|
chvd "Quadratures on a sphere"
|
||
|
chvd Computational Mathematics and Mathematical Physics, Vol. 16,
|
||
|
chvd 1976, pp. 10-24.
|
||
|
chvd
|
||
|
chvd [6] V.I. Lebedev
|
||
|
chvd "Values of the nodes and weights of ninth to seventeenth
|
||
|
chvd order Gauss-Markov quadrature formulae invariant under the
|
||
|
chvd octahedron group with inversion"
|
||
|
chvd Computational Mathematics and Mathematical Physics, Vol. 15,
|
||
|
chvd 1975, pp. 44-51.
|
||
|
chvd
|
||
|
N=1
|
||
|
V=0.6666666666666667D-1
|
||
|
Call GEN_OH( 1, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
V=0.7500000000000000D-1
|
||
|
Call GEN_OH( 3, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
N=N-1
|
||
|
RETURN
|
||
|
END
|
||
|
SUBROUTINE LD0026(X,Y,Z,W,N)
|
||
|
DOUBLE PRECISION X( 26)
|
||
|
DOUBLE PRECISION Y( 26)
|
||
|
DOUBLE PRECISION Z( 26)
|
||
|
DOUBLE PRECISION W( 26)
|
||
|
INTEGER N
|
||
|
DOUBLE PRECISION A,B,V
|
||
|
CVW
|
||
|
CVW LEBEDEV 26-POINT ANGULAR GRID
|
||
|
CVW
|
||
|
chvd
|
||
|
chvd This subroutine is part of a set of subroutines that generate
|
||
|
chvd Lebedev grids [1-6] for integration on a sphere. The original
|
||
|
chvd C-code [1] was kindly provided by Dr. Dmitri N. Laikov and
|
||
|
chvd translated into fortran by Dr. Christoph van Wuellen.
|
||
|
chvd This subroutine was translated using a C to fortran77 conversion
|
||
|
chvd tool written by Dr. Christoph van Wuellen.
|
||
|
chvd
|
||
|
chvd Users of this code are asked to include reference [1] in their
|
||
|
chvd publications, and in the user- and programmers-manuals
|
||
|
chvd describing their codes.
|
||
|
chvd
|
||
|
chvd This code was distributed through CCL (http://www.ccl.net/).
|
||
|
chvd
|
||
|
chvd [1] V.I. Lebedev, and D.N. Laikov
|
||
|
chvd "A quadrature formula for the sphere of the 131st
|
||
|
chvd algebraic order of accuracy"
|
||
|
chvd Doklady Mathematics, Vol. 59, No. 3, 1999, pp. 477-481.
|
||
|
chvd
|
||
|
chvd [2] V.I. Lebedev
|
||
|
chvd "A quadrature formula for the sphere of 59th algebraic
|
||
|
chvd order of accuracy"
|
||
|
chvd Russian Acad. Sci. Dokl. Math., Vol. 50, 1995, pp. 283-286.
|
||
|
chvd
|
||
|
chvd [3] V.I. Lebedev, and A.L. Skorokhodov
|
||
|
chvd "Quadrature formulas of orders 41, 47, and 53 for the sphere"
|
||
|
chvd Russian Acad. Sci. Dokl. Math., Vol. 45, 1992, pp. 587-592.
|
||
|
chvd
|
||
|
chvd [4] V.I. Lebedev
|
||
|
chvd "Spherical quadrature formulas exact to orders 25-29"
|
||
|
chvd Siberian Mathematical Journal, Vol. 18, 1977, pp. 99-107.
|
||
|
chvd
|
||
|
chvd [5] V.I. Lebedev
|
||
|
chvd "Quadratures on a sphere"
|
||
|
chvd Computational Mathematics and Mathematical Physics, Vol. 16,
|
||
|
chvd 1976, pp. 10-24.
|
||
|
chvd
|
||
|
chvd [6] V.I. Lebedev
|
||
|
chvd "Values of the nodes and weights of ninth to seventeenth
|
||
|
chvd order Gauss-Markov quadrature formulae invariant under the
|
||
|
chvd octahedron group with inversion"
|
||
|
chvd Computational Mathematics and Mathematical Physics, Vol. 15,
|
||
|
chvd 1975, pp. 44-51.
|
||
|
chvd
|
||
|
N=1
|
||
|
V=0.4761904761904762D-1
|
||
|
Call GEN_OH( 1, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
V=0.3809523809523810D-1
|
||
|
Call GEN_OH( 2, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
V=0.3214285714285714D-1
|
||
|
Call GEN_OH( 3, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
N=N-1
|
||
|
RETURN
|
||
|
END
|
||
|
SUBROUTINE LD0038(X,Y,Z,W,N)
|
||
|
DOUBLE PRECISION X( 38)
|
||
|
DOUBLE PRECISION Y( 38)
|
||
|
DOUBLE PRECISION Z( 38)
|
||
|
DOUBLE PRECISION W( 38)
|
||
|
INTEGER N
|
||
|
DOUBLE PRECISION A,B,V
|
||
|
CVW
|
||
|
CVW LEBEDEV 38-POINT ANGULAR GRID
|
||
|
CVW
|
||
|
chvd
|
||
|
chvd This subroutine is part of a set of subroutines that generate
|
||
|
chvd Lebedev grids [1-6] for integration on a sphere. The original
|
||
|
chvd C-code [1] was kindly provided by Dr. Dmitri N. Laikov and
|
||
|
chvd translated into fortran by Dr. Christoph van Wuellen.
|
||
|
chvd This subroutine was translated using a C to fortran77 conversion
|
||
|
chvd tool written by Dr. Christoph van Wuellen.
|
||
|
chvd
|
||
|
chvd Users of this code are asked to include reference [1] in their
|
||
|
chvd publications, and in the user- and programmers-manuals
|
||
|
chvd describing their codes.
|
||
|
chvd
|
||
|
chvd This code was distributed through CCL (http://www.ccl.net/).
|
||
|
chvd
|
||
|
chvd [1] V.I. Lebedev, and D.N. Laikov
|
||
|
chvd "A quadrature formula for the sphere of the 131st
|
||
|
chvd algebraic order of accuracy"
|
||
|
chvd Doklady Mathematics, Vol. 59, No. 3, 1999, pp. 477-481.
|
||
|
chvd
|
||
|
chvd [2] V.I. Lebedev
|
||
|
chvd "A quadrature formula for the sphere of 59th algebraic
|
||
|
chvd order of accuracy"
|
||
|
chvd Russian Acad. Sci. Dokl. Math., Vol. 50, 1995, pp. 283-286.
|
||
|
chvd
|
||
|
chvd [3] V.I. Lebedev, and A.L. Skorokhodov
|
||
|
chvd "Quadrature formulas of orders 41, 47, and 53 for the sphere"
|
||
|
chvd Russian Acad. Sci. Dokl. Math., Vol. 45, 1992, pp. 587-592.
|
||
|
chvd
|
||
|
chvd [4] V.I. Lebedev
|
||
|
chvd "Spherical quadrature formulas exact to orders 25-29"
|
||
|
chvd Siberian Mathematical Journal, Vol. 18, 1977, pp. 99-107.
|
||
|
chvd
|
||
|
chvd [5] V.I. Lebedev
|
||
|
chvd "Quadratures on a sphere"
|
||
|
chvd Computational Mathematics and Mathematical Physics, Vol. 16,
|
||
|
chvd 1976, pp. 10-24.
|
||
|
chvd
|
||
|
chvd [6] V.I. Lebedev
|
||
|
chvd "Values of the nodes and weights of ninth to seventeenth
|
||
|
chvd order Gauss-Markov quadrature formulae invariant under the
|
||
|
chvd octahedron group with inversion"
|
||
|
chvd Computational Mathematics and Mathematical Physics, Vol. 15,
|
||
|
chvd 1975, pp. 44-51.
|
||
|
chvd
|
||
|
N=1
|
||
|
V=0.9523809523809524D-2
|
||
|
Call GEN_OH( 1, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
V=0.3214285714285714D-1
|
||
|
Call GEN_OH( 3, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.4597008433809831D+0
|
||
|
V=0.2857142857142857D-1
|
||
|
Call GEN_OH( 5, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
N=N-1
|
||
|
RETURN
|
||
|
END
|
||
|
SUBROUTINE LD0050(X,Y,Z,W,N)
|
||
|
DOUBLE PRECISION X( 50)
|
||
|
DOUBLE PRECISION Y( 50)
|
||
|
DOUBLE PRECISION Z( 50)
|
||
|
DOUBLE PRECISION W( 50)
|
||
|
INTEGER N
|
||
|
DOUBLE PRECISION A,B,V
|
||
|
CVW
|
||
|
CVW LEBEDEV 50-POINT ANGULAR GRID
|
||
|
CVW
|
||
|
chvd
|
||
|
chvd This subroutine is part of a set of subroutines that generate
|
||
|
chvd Lebedev grids [1-6] for integration on a sphere. The original
|
||
|
chvd C-code [1] was kindly provided by Dr. Dmitri N. Laikov and
|
||
|
chvd translated into fortran by Dr. Christoph van Wuellen.
|
||
|
chvd This subroutine was translated using a C to fortran77 conversion
|
||
|
chvd tool written by Dr. Christoph van Wuellen.
|
||
|
chvd
|
||
|
chvd Users of this code are asked to include reference [1] in their
|
||
|
chvd publications, and in the user- and programmers-manuals
|
||
|
chvd describing their codes.
|
||
|
chvd
|
||
|
chvd This code was distributed through CCL (http://www.ccl.net/).
|
||
|
chvd
|
||
|
chvd [1] V.I. Lebedev, and D.N. Laikov
|
||
|
chvd "A quadrature formula for the sphere of the 131st
|
||
|
chvd algebraic order of accuracy"
|
||
|
chvd Doklady Mathematics, Vol. 59, No. 3, 1999, pp. 477-481.
|
||
|
chvd
|
||
|
chvd [2] V.I. Lebedev
|
||
|
chvd "A quadrature formula for the sphere of 59th algebraic
|
||
|
chvd order of accuracy"
|
||
|
chvd Russian Acad. Sci. Dokl. Math., Vol. 50, 1995, pp. 283-286.
|
||
|
chvd
|
||
|
chvd [3] V.I. Lebedev, and A.L. Skorokhodov
|
||
|
chvd "Quadrature formulas of orders 41, 47, and 53 for the sphere"
|
||
|
chvd Russian Acad. Sci. Dokl. Math., Vol. 45, 1992, pp. 587-592.
|
||
|
chvd
|
||
|
chvd [4] V.I. Lebedev
|
||
|
chvd "Spherical quadrature formulas exact to orders 25-29"
|
||
|
chvd Siberian Mathematical Journal, Vol. 18, 1977, pp. 99-107.
|
||
|
chvd
|
||
|
chvd [5] V.I. Lebedev
|
||
|
chvd "Quadratures on a sphere"
|
||
|
chvd Computational Mathematics and Mathematical Physics, Vol. 16,
|
||
|
chvd 1976, pp. 10-24.
|
||
|
chvd
|
||
|
chvd [6] V.I. Lebedev
|
||
|
chvd "Values of the nodes and weights of ninth to seventeenth
|
||
|
chvd order Gauss-Markov quadrature formulae invariant under the
|
||
|
chvd octahedron group with inversion"
|
||
|
chvd Computational Mathematics and Mathematical Physics, Vol. 15,
|
||
|
chvd 1975, pp. 44-51.
|
||
|
chvd
|
||
|
N=1
|
||
|
V=0.1269841269841270D-1
|
||
|
Call GEN_OH( 1, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
V=0.2257495590828924D-1
|
||
|
Call GEN_OH( 2, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
V=0.2109375000000000D-1
|
||
|
Call GEN_OH( 3, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.3015113445777636D+0
|
||
|
V=0.2017333553791887D-1
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
N=N-1
|
||
|
RETURN
|
||
|
END
|
||
|
SUBROUTINE LD0074(X,Y,Z,W,N)
|
||
|
DOUBLE PRECISION X( 74)
|
||
|
DOUBLE PRECISION Y( 74)
|
||
|
DOUBLE PRECISION Z( 74)
|
||
|
DOUBLE PRECISION W( 74)
|
||
|
INTEGER N
|
||
|
DOUBLE PRECISION A,B,V
|
||
|
CVW
|
||
|
CVW LEBEDEV 74-POINT ANGULAR GRID
|
||
|
CVW
|
||
|
chvd
|
||
|
chvd This subroutine is part of a set of subroutines that generate
|
||
|
chvd Lebedev grids [1-6] for integration on a sphere. The original
|
||
|
chvd C-code [1] was kindly provided by Dr. Dmitri N. Laikov and
|
||
|
chvd translated into fortran by Dr. Christoph van Wuellen.
|
||
|
chvd This subroutine was translated using a C to fortran77 conversion
|
||
|
chvd tool written by Dr. Christoph van Wuellen.
|
||
|
chvd
|
||
|
chvd Users of this code are asked to include reference [1] in their
|
||
|
chvd publications, and in the user- and programmers-manuals
|
||
|
chvd describing their codes.
|
||
|
chvd
|
||
|
chvd This code was distributed through CCL (http://www.ccl.net/).
|
||
|
chvd
|
||
|
chvd [1] V.I. Lebedev, and D.N. Laikov
|
||
|
chvd "A quadrature formula for the sphere of the 131st
|
||
|
chvd algebraic order of accuracy"
|
||
|
chvd Doklady Mathematics, Vol. 59, No. 3, 1999, pp. 477-481.
|
||
|
chvd
|
||
|
chvd [2] V.I. Lebedev
|
||
|
chvd "A quadrature formula for the sphere of 59th algebraic
|
||
|
chvd order of accuracy"
|
||
|
chvd Russian Acad. Sci. Dokl. Math., Vol. 50, 1995, pp. 283-286.
|
||
|
chvd
|
||
|
chvd [3] V.I. Lebedev, and A.L. Skorokhodov
|
||
|
chvd "Quadrature formulas of orders 41, 47, and 53 for the sphere"
|
||
|
chvd Russian Acad. Sci. Dokl. Math., Vol. 45, 1992, pp. 587-592.
|
||
|
chvd
|
||
|
chvd [4] V.I. Lebedev
|
||
|
chvd "Spherical quadrature formulas exact to orders 25-29"
|
||
|
chvd Siberian Mathematical Journal, Vol. 18, 1977, pp. 99-107.
|
||
|
chvd
|
||
|
chvd [5] V.I. Lebedev
|
||
|
chvd "Quadratures on a sphere"
|
||
|
chvd Computational Mathematics and Mathematical Physics, Vol. 16,
|
||
|
chvd 1976, pp. 10-24.
|
||
|
chvd
|
||
|
chvd [6] V.I. Lebedev
|
||
|
chvd "Values of the nodes and weights of ninth to seventeenth
|
||
|
chvd order Gauss-Markov quadrature formulae invariant under the
|
||
|
chvd octahedron group with inversion"
|
||
|
chvd Computational Mathematics and Mathematical Physics, Vol. 15,
|
||
|
chvd 1975, pp. 44-51.
|
||
|
chvd
|
||
|
N=1
|
||
|
V=0.5130671797338464D-3
|
||
|
Call GEN_OH( 1, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
V=0.1660406956574204D-1
|
||
|
Call GEN_OH( 2, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
V=-0.2958603896103896D-1
|
||
|
Call GEN_OH( 3, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.4803844614152614D+0
|
||
|
V=0.2657620708215946D-1
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.3207726489807764D+0
|
||
|
V=0.1652217099371571D-1
|
||
|
Call GEN_OH( 5, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
N=N-1
|
||
|
RETURN
|
||
|
END
|
||
|
SUBROUTINE LD0086(X,Y,Z,W,N)
|
||
|
DOUBLE PRECISION X( 86)
|
||
|
DOUBLE PRECISION Y( 86)
|
||
|
DOUBLE PRECISION Z( 86)
|
||
|
DOUBLE PRECISION W( 86)
|
||
|
INTEGER N
|
||
|
DOUBLE PRECISION A,B,V
|
||
|
CVW
|
||
|
CVW LEBEDEV 86-POINT ANGULAR GRID
|
||
|
CVW
|
||
|
chvd
|
||
|
chvd This subroutine is part of a set of subroutines that generate
|
||
|
chvd Lebedev grids [1-6] for integration on a sphere. The original
|
||
|
chvd C-code [1] was kindly provided by Dr. Dmitri N. Laikov and
|
||
|
chvd translated into fortran by Dr. Christoph van Wuellen.
|
||
|
chvd This subroutine was translated using a C to fortran77 conversion
|
||
|
chvd tool written by Dr. Christoph van Wuellen.
|
||
|
chvd
|
||
|
chvd Users of this code are asked to include reference [1] in their
|
||
|
chvd publications, and in the user- and programmers-manuals
|
||
|
chvd describing their codes.
|
||
|
chvd
|
||
|
chvd This code was distributed through CCL (http://www.ccl.net/).
|
||
|
chvd
|
||
|
chvd [1] V.I. Lebedev, and D.N. Laikov
|
||
|
chvd "A quadrature formula for the sphere of the 131st
|
||
|
chvd algebraic order of accuracy"
|
||
|
chvd Doklady Mathematics, Vol. 59, No. 3, 1999, pp. 477-481.
|
||
|
chvd
|
||
|
chvd [2] V.I. Lebedev
|
||
|
chvd "A quadrature formula for the sphere of 59th algebraic
|
||
|
chvd order of accuracy"
|
||
|
chvd Russian Acad. Sci. Dokl. Math., Vol. 50, 1995, pp. 283-286.
|
||
|
chvd
|
||
|
chvd [3] V.I. Lebedev, and A.L. Skorokhodov
|
||
|
chvd "Quadrature formulas of orders 41, 47, and 53 for the sphere"
|
||
|
chvd Russian Acad. Sci. Dokl. Math., Vol. 45, 1992, pp. 587-592.
|
||
|
chvd
|
||
|
chvd [4] V.I. Lebedev
|
||
|
chvd "Spherical quadrature formulas exact to orders 25-29"
|
||
|
chvd Siberian Mathematical Journal, Vol. 18, 1977, pp. 99-107.
|
||
|
chvd
|
||
|
chvd [5] V.I. Lebedev
|
||
|
chvd "Quadratures on a sphere"
|
||
|
chvd Computational Mathematics and Mathematical Physics, Vol. 16,
|
||
|
chvd 1976, pp. 10-24.
|
||
|
chvd
|
||
|
chvd [6] V.I. Lebedev
|
||
|
chvd "Values of the nodes and weights of ninth to seventeenth
|
||
|
chvd order Gauss-Markov quadrature formulae invariant under the
|
||
|
chvd octahedron group with inversion"
|
||
|
chvd Computational Mathematics and Mathematical Physics, Vol. 15,
|
||
|
chvd 1975, pp. 44-51.
|
||
|
chvd
|
||
|
N=1
|
||
|
V=0.1154401154401154D-1
|
||
|
Call GEN_OH( 1, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
V=0.1194390908585628D-1
|
||
|
Call GEN_OH( 3, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.3696028464541502D+0
|
||
|
V=0.1111055571060340D-1
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6943540066026664D+0
|
||
|
V=0.1187650129453714D-1
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.3742430390903412D+0
|
||
|
V=0.1181230374690448D-1
|
||
|
Call GEN_OH( 5, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
N=N-1
|
||
|
RETURN
|
||
|
END
|
||
|
SUBROUTINE LD0110(X,Y,Z,W,N)
|
||
|
DOUBLE PRECISION X( 110)
|
||
|
DOUBLE PRECISION Y( 110)
|
||
|
DOUBLE PRECISION Z( 110)
|
||
|
DOUBLE PRECISION W( 110)
|
||
|
INTEGER N
|
||
|
DOUBLE PRECISION A,B,V
|
||
|
CVW
|
||
|
CVW LEBEDEV 110-POINT ANGULAR GRID
|
||
|
CVW
|
||
|
chvd
|
||
|
chvd This subroutine is part of a set of subroutines that generate
|
||
|
chvd Lebedev grids [1-6] for integration on a sphere. The original
|
||
|
chvd C-code [1] was kindly provided by Dr. Dmitri N. Laikov and
|
||
|
chvd translated into fortran by Dr. Christoph van Wuellen.
|
||
|
chvd This subroutine was translated using a C to fortran77 conversion
|
||
|
chvd tool written by Dr. Christoph van Wuellen.
|
||
|
chvd
|
||
|
chvd Users of this code are asked to include reference [1] in their
|
||
|
chvd publications, and in the user- and programmers-manuals
|
||
|
chvd describing their codes.
|
||
|
chvd
|
||
|
chvd This code was distributed through CCL (http://www.ccl.net/).
|
||
|
chvd
|
||
|
chvd [1] V.I. Lebedev, and D.N. Laikov
|
||
|
chvd "A quadrature formula for the sphere of the 131st
|
||
|
chvd algebraic order of accuracy"
|
||
|
chvd Doklady Mathematics, Vol. 59, No. 3, 1999, pp. 477-481.
|
||
|
chvd
|
||
|
chvd [2] V.I. Lebedev
|
||
|
chvd "A quadrature formula for the sphere of 59th algebraic
|
||
|
chvd order of accuracy"
|
||
|
chvd Russian Acad. Sci. Dokl. Math., Vol. 50, 1995, pp. 283-286.
|
||
|
chvd
|
||
|
chvd [3] V.I. Lebedev, and A.L. Skorokhodov
|
||
|
chvd "Quadrature formulas of orders 41, 47, and 53 for the sphere"
|
||
|
chvd Russian Acad. Sci. Dokl. Math., Vol. 45, 1992, pp. 587-592.
|
||
|
chvd
|
||
|
chvd [4] V.I. Lebedev
|
||
|
chvd "Spherical quadrature formulas exact to orders 25-29"
|
||
|
chvd Siberian Mathematical Journal, Vol. 18, 1977, pp. 99-107.
|
||
|
chvd
|
||
|
chvd [5] V.I. Lebedev
|
||
|
chvd "Quadratures on a sphere"
|
||
|
chvd Computational Mathematics and Mathematical Physics, Vol. 16,
|
||
|
chvd 1976, pp. 10-24.
|
||
|
chvd
|
||
|
chvd [6] V.I. Lebedev
|
||
|
chvd "Values of the nodes and weights of ninth to seventeenth
|
||
|
chvd order Gauss-Markov quadrature formulae invariant under the
|
||
|
chvd octahedron group with inversion"
|
||
|
chvd Computational Mathematics and Mathematical Physics, Vol. 15,
|
||
|
chvd 1975, pp. 44-51.
|
||
|
chvd
|
||
|
N=1
|
||
|
V=0.3828270494937162D-2
|
||
|
Call GEN_OH( 1, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
V=0.9793737512487512D-2
|
||
|
Call GEN_OH( 3, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.1851156353447362D+0
|
||
|
V=0.8211737283191111D-2
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6904210483822922D+0
|
||
|
V=0.9942814891178103D-2
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.3956894730559419D+0
|
||
|
V=0.9595471336070963D-2
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.4783690288121502D+0
|
||
|
V=0.9694996361663028D-2
|
||
|
Call GEN_OH( 5, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
N=N-1
|
||
|
RETURN
|
||
|
END
|
||
|
SUBROUTINE LD0146(X,Y,Z,W,N)
|
||
|
DOUBLE PRECISION X( 146)
|
||
|
DOUBLE PRECISION Y( 146)
|
||
|
DOUBLE PRECISION Z( 146)
|
||
|
DOUBLE PRECISION W( 146)
|
||
|
INTEGER N
|
||
|
DOUBLE PRECISION A,B,V
|
||
|
CVW
|
||
|
CVW LEBEDEV 146-POINT ANGULAR GRID
|
||
|
CVW
|
||
|
chvd
|
||
|
chvd This subroutine is part of a set of subroutines that generate
|
||
|
chvd Lebedev grids [1-6] for integration on a sphere. The original
|
||
|
chvd C-code [1] was kindly provided by Dr. Dmitri N. Laikov and
|
||
|
chvd translated into fortran by Dr. Christoph van Wuellen.
|
||
|
chvd This subroutine was translated using a C to fortran77 conversion
|
||
|
chvd tool written by Dr. Christoph van Wuellen.
|
||
|
chvd
|
||
|
chvd Users of this code are asked to include reference [1] in their
|
||
|
chvd publications, and in the user- and programmers-manuals
|
||
|
chvd describing their codes.
|
||
|
chvd
|
||
|
chvd This code was distributed through CCL (http://www.ccl.net/).
|
||
|
chvd
|
||
|
chvd [1] V.I. Lebedev, and D.N. Laikov
|
||
|
chvd "A quadrature formula for the sphere of the 131st
|
||
|
chvd algebraic order of accuracy"
|
||
|
chvd Doklady Mathematics, Vol. 59, No. 3, 1999, pp. 477-481.
|
||
|
chvd
|
||
|
chvd [2] V.I. Lebedev
|
||
|
chvd "A quadrature formula for the sphere of 59th algebraic
|
||
|
chvd order of accuracy"
|
||
|
chvd Russian Acad. Sci. Dokl. Math., Vol. 50, 1995, pp. 283-286.
|
||
|
chvd
|
||
|
chvd [3] V.I. Lebedev, and A.L. Skorokhodov
|
||
|
chvd "Quadrature formulas of orders 41, 47, and 53 for the sphere"
|
||
|
chvd Russian Acad. Sci. Dokl. Math., Vol. 45, 1992, pp. 587-592.
|
||
|
chvd
|
||
|
chvd [4] V.I. Lebedev
|
||
|
chvd "Spherical quadrature formulas exact to orders 25-29"
|
||
|
chvd Siberian Mathematical Journal, Vol. 18, 1977, pp. 99-107.
|
||
|
chvd
|
||
|
chvd [5] V.I. Lebedev
|
||
|
chvd "Quadratures on a sphere"
|
||
|
chvd Computational Mathematics and Mathematical Physics, Vol. 16,
|
||
|
chvd 1976, pp. 10-24.
|
||
|
chvd
|
||
|
chvd [6] V.I. Lebedev
|
||
|
chvd "Values of the nodes and weights of ninth to seventeenth
|
||
|
chvd order Gauss-Markov quadrature formulae invariant under the
|
||
|
chvd octahedron group with inversion"
|
||
|
chvd Computational Mathematics and Mathematical Physics, Vol. 15,
|
||
|
chvd 1975, pp. 44-51.
|
||
|
chvd
|
||
|
N=1
|
||
|
V=0.5996313688621381D-3
|
||
|
Call GEN_OH( 1, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
V=0.7372999718620756D-2
|
||
|
Call GEN_OH( 2, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
V=0.7210515360144488D-2
|
||
|
Call GEN_OH( 3, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6764410400114264D+0
|
||
|
V=0.7116355493117555D-2
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.4174961227965453D+0
|
||
|
V=0.6753829486314477D-2
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.1574676672039082D+0
|
||
|
V=0.7574394159054034D-2
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.1403553811713183D+0
|
||
|
B=0.4493328323269557D+0
|
||
|
V=0.6991087353303262D-2
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
N=N-1
|
||
|
RETURN
|
||
|
END
|
||
|
SUBROUTINE LD0170(X,Y,Z,W,N)
|
||
|
DOUBLE PRECISION X( 170)
|
||
|
DOUBLE PRECISION Y( 170)
|
||
|
DOUBLE PRECISION Z( 170)
|
||
|
DOUBLE PRECISION W( 170)
|
||
|
INTEGER N
|
||
|
DOUBLE PRECISION A,B,V
|
||
|
CVW
|
||
|
CVW LEBEDEV 170-POINT ANGULAR GRID
|
||
|
CVW
|
||
|
chvd
|
||
|
chvd This subroutine is part of a set of subroutines that generate
|
||
|
chvd Lebedev grids [1-6] for integration on a sphere. The original
|
||
|
chvd C-code [1] was kindly provided by Dr. Dmitri N. Laikov and
|
||
|
chvd translated into fortran by Dr. Christoph van Wuellen.
|
||
|
chvd This subroutine was translated using a C to fortran77 conversion
|
||
|
chvd tool written by Dr. Christoph van Wuellen.
|
||
|
chvd
|
||
|
chvd Users of this code are asked to include reference [1] in their
|
||
|
chvd publications, and in the user- and programmers-manuals
|
||
|
chvd describing their codes.
|
||
|
chvd
|
||
|
chvd This code was distributed through CCL (http://www.ccl.net/).
|
||
|
chvd
|
||
|
chvd [1] V.I. Lebedev, and D.N. Laikov
|
||
|
chvd "A quadrature formula for the sphere of the 131st
|
||
|
chvd algebraic order of accuracy"
|
||
|
chvd Doklady Mathematics, Vol. 59, No. 3, 1999, pp. 477-481.
|
||
|
chvd
|
||
|
chvd [2] V.I. Lebedev
|
||
|
chvd "A quadrature formula for the sphere of 59th algebraic
|
||
|
chvd order of accuracy"
|
||
|
chvd Russian Acad. Sci. Dokl. Math., Vol. 50, 1995, pp. 283-286.
|
||
|
chvd
|
||
|
chvd [3] V.I. Lebedev, and A.L. Skorokhodov
|
||
|
chvd "Quadrature formulas of orders 41, 47, and 53 for the sphere"
|
||
|
chvd Russian Acad. Sci. Dokl. Math., Vol. 45, 1992, pp. 587-592.
|
||
|
chvd
|
||
|
chvd [4] V.I. Lebedev
|
||
|
chvd "Spherical quadrature formulas exact to orders 25-29"
|
||
|
chvd Siberian Mathematical Journal, Vol. 18, 1977, pp. 99-107.
|
||
|
chvd
|
||
|
chvd [5] V.I. Lebedev
|
||
|
chvd "Quadratures on a sphere"
|
||
|
chvd Computational Mathematics and Mathematical Physics, Vol. 16,
|
||
|
chvd 1976, pp. 10-24.
|
||
|
chvd
|
||
|
chvd [6] V.I. Lebedev
|
||
|
chvd "Values of the nodes and weights of ninth to seventeenth
|
||
|
chvd order Gauss-Markov quadrature formulae invariant under the
|
||
|
chvd octahedron group with inversion"
|
||
|
chvd Computational Mathematics and Mathematical Physics, Vol. 15,
|
||
|
chvd 1975, pp. 44-51.
|
||
|
chvd
|
||
|
N=1
|
||
|
V=0.5544842902037365D-2
|
||
|
Call GEN_OH( 1, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
V=0.6071332770670752D-2
|
||
|
Call GEN_OH( 2, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
V=0.6383674773515093D-2
|
||
|
Call GEN_OH( 3, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.2551252621114134D+0
|
||
|
V=0.5183387587747790D-2
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6743601460362766D+0
|
||
|
V=0.6317929009813725D-2
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.4318910696719410D+0
|
||
|
V=0.6201670006589077D-2
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.2613931360335988D+0
|
||
|
V=0.5477143385137348D-2
|
||
|
Call GEN_OH( 5, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.4990453161796037D+0
|
||
|
B=0.1446630744325115D+0
|
||
|
V=0.5968383987681156D-2
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
N=N-1
|
||
|
RETURN
|
||
|
END
|
||
|
SUBROUTINE LD0194(X,Y,Z,W,N)
|
||
|
DOUBLE PRECISION X( 194)
|
||
|
DOUBLE PRECISION Y( 194)
|
||
|
DOUBLE PRECISION Z( 194)
|
||
|
DOUBLE PRECISION W( 194)
|
||
|
INTEGER N
|
||
|
DOUBLE PRECISION A,B,V
|
||
|
CVW
|
||
|
CVW LEBEDEV 194-POINT ANGULAR GRID
|
||
|
CVW
|
||
|
chvd
|
||
|
chvd This subroutine is part of a set of subroutines that generate
|
||
|
chvd Lebedev grids [1-6] for integration on a sphere. The original
|
||
|
chvd C-code [1] was kindly provided by Dr. Dmitri N. Laikov and
|
||
|
chvd translated into fortran by Dr. Christoph van Wuellen.
|
||
|
chvd This subroutine was translated using a C to fortran77 conversion
|
||
|
chvd tool written by Dr. Christoph van Wuellen.
|
||
|
chvd
|
||
|
chvd Users of this code are asked to include reference [1] in their
|
||
|
chvd publications, and in the user- and programmers-manuals
|
||
|
chvd describing their codes.
|
||
|
chvd
|
||
|
chvd This code was distributed through CCL (http://www.ccl.net/).
|
||
|
chvd
|
||
|
chvd [1] V.I. Lebedev, and D.N. Laikov
|
||
|
chvd "A quadrature formula for the sphere of the 131st
|
||
|
chvd algebraic order of accuracy"
|
||
|
chvd Doklady Mathematics, Vol. 59, No. 3, 1999, pp. 477-481.
|
||
|
chvd
|
||
|
chvd [2] V.I. Lebedev
|
||
|
chvd "A quadrature formula for the sphere of 59th algebraic
|
||
|
chvd order of accuracy"
|
||
|
chvd Russian Acad. Sci. Dokl. Math., Vol. 50, 1995, pp. 283-286.
|
||
|
chvd
|
||
|
chvd [3] V.I. Lebedev, and A.L. Skorokhodov
|
||
|
chvd "Quadrature formulas of orders 41, 47, and 53 for the sphere"
|
||
|
chvd Russian Acad. Sci. Dokl. Math., Vol. 45, 1992, pp. 587-592.
|
||
|
chvd
|
||
|
chvd [4] V.I. Lebedev
|
||
|
chvd "Spherical quadrature formulas exact to orders 25-29"
|
||
|
chvd Siberian Mathematical Journal, Vol. 18, 1977, pp. 99-107.
|
||
|
chvd
|
||
|
chvd [5] V.I. Lebedev
|
||
|
chvd "Quadratures on a sphere"
|
||
|
chvd Computational Mathematics and Mathematical Physics, Vol. 16,
|
||
|
chvd 1976, pp. 10-24.
|
||
|
chvd
|
||
|
chvd [6] V.I. Lebedev
|
||
|
chvd "Values of the nodes and weights of ninth to seventeenth
|
||
|
chvd order Gauss-Markov quadrature formulae invariant under the
|
||
|
chvd octahedron group with inversion"
|
||
|
chvd Computational Mathematics and Mathematical Physics, Vol. 15,
|
||
|
chvd 1975, pp. 44-51.
|
||
|
chvd
|
||
|
N=1
|
||
|
V=0.1782340447244611D-2
|
||
|
Call GEN_OH( 1, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
V=0.5716905949977102D-2
|
||
|
Call GEN_OH( 2, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
V=0.5573383178848738D-2
|
||
|
Call GEN_OH( 3, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6712973442695226D+0
|
||
|
V=0.5608704082587997D-2
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.2892465627575439D+0
|
||
|
V=0.5158237711805383D-2
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.4446933178717437D+0
|
||
|
V=0.5518771467273614D-2
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.1299335447650067D+0
|
||
|
V=0.4106777028169394D-2
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.3457702197611283D+0
|
||
|
V=0.5051846064614808D-2
|
||
|
Call GEN_OH( 5, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.1590417105383530D+0
|
||
|
B=0.8360360154824589D+0
|
||
|
V=0.5530248916233094D-2
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
N=N-1
|
||
|
RETURN
|
||
|
END
|
||
|
SUBROUTINE LD0230(X,Y,Z,W,N)
|
||
|
DOUBLE PRECISION X( 230)
|
||
|
DOUBLE PRECISION Y( 230)
|
||
|
DOUBLE PRECISION Z( 230)
|
||
|
DOUBLE PRECISION W( 230)
|
||
|
INTEGER N
|
||
|
DOUBLE PRECISION A,B,V
|
||
|
CVW
|
||
|
CVW LEBEDEV 230-POINT ANGULAR GRID
|
||
|
CVW
|
||
|
chvd
|
||
|
chvd This subroutine is part of a set of subroutines that generate
|
||
|
chvd Lebedev grids [1-6] for integration on a sphere. The original
|
||
|
chvd C-code [1] was kindly provided by Dr. Dmitri N. Laikov and
|
||
|
chvd translated into fortran by Dr. Christoph van Wuellen.
|
||
|
chvd This subroutine was translated using a C to fortran77 conversion
|
||
|
chvd tool written by Dr. Christoph van Wuellen.
|
||
|
chvd
|
||
|
chvd Users of this code are asked to include reference [1] in their
|
||
|
chvd publications, and in the user- and programmers-manuals
|
||
|
chvd describing their codes.
|
||
|
chvd
|
||
|
chvd This code was distributed through CCL (http://www.ccl.net/).
|
||
|
chvd
|
||
|
chvd [1] V.I. Lebedev, and D.N. Laikov
|
||
|
chvd "A quadrature formula for the sphere of the 131st
|
||
|
chvd algebraic order of accuracy"
|
||
|
chvd Doklady Mathematics, Vol. 59, No. 3, 1999, pp. 477-481.
|
||
|
chvd
|
||
|
chvd [2] V.I. Lebedev
|
||
|
chvd "A quadrature formula for the sphere of 59th algebraic
|
||
|
chvd order of accuracy"
|
||
|
chvd Russian Acad. Sci. Dokl. Math., Vol. 50, 1995, pp. 283-286.
|
||
|
chvd
|
||
|
chvd [3] V.I. Lebedev, and A.L. Skorokhodov
|
||
|
chvd "Quadrature formulas of orders 41, 47, and 53 for the sphere"
|
||
|
chvd Russian Acad. Sci. Dokl. Math., Vol. 45, 1992, pp. 587-592.
|
||
|
chvd
|
||
|
chvd [4] V.I. Lebedev
|
||
|
chvd "Spherical quadrature formulas exact to orders 25-29"
|
||
|
chvd Siberian Mathematical Journal, Vol. 18, 1977, pp. 99-107.
|
||
|
chvd
|
||
|
chvd [5] V.I. Lebedev
|
||
|
chvd "Quadratures on a sphere"
|
||
|
chvd Computational Mathematics and Mathematical Physics, Vol. 16,
|
||
|
chvd 1976, pp. 10-24.
|
||
|
chvd
|
||
|
chvd [6] V.I. Lebedev
|
||
|
chvd "Values of the nodes and weights of ninth to seventeenth
|
||
|
chvd order Gauss-Markov quadrature formulae invariant under the
|
||
|
chvd octahedron group with inversion"
|
||
|
chvd Computational Mathematics and Mathematical Physics, Vol. 15,
|
||
|
chvd 1975, pp. 44-51.
|
||
|
chvd
|
||
|
N=1
|
||
|
V=-0.5522639919727325D-1
|
||
|
Call GEN_OH( 1, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
V=0.4450274607445226D-2
|
||
|
Call GEN_OH( 3, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.4492044687397611D+0
|
||
|
V=0.4496841067921404D-2
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.2520419490210201D+0
|
||
|
V=0.5049153450478750D-2
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6981906658447242D+0
|
||
|
V=0.3976408018051883D-2
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6587405243460960D+0
|
||
|
V=0.4401400650381014D-2
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.4038544050097660D-1
|
||
|
V=0.1724544350544401D-1
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.5823842309715585D+0
|
||
|
V=0.4231083095357343D-2
|
||
|
Call GEN_OH( 5, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.3545877390518688D+0
|
||
|
V=0.5198069864064399D-2
|
||
|
Call GEN_OH( 5, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.2272181808998187D+0
|
||
|
B=0.4864661535886647D+0
|
||
|
V=0.4695720972568883D-2
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
N=N-1
|
||
|
RETURN
|
||
|
END
|
||
|
SUBROUTINE LD0266(X,Y,Z,W,N)
|
||
|
DOUBLE PRECISION X( 266)
|
||
|
DOUBLE PRECISION Y( 266)
|
||
|
DOUBLE PRECISION Z( 266)
|
||
|
DOUBLE PRECISION W( 266)
|
||
|
INTEGER N
|
||
|
DOUBLE PRECISION A,B,V
|
||
|
CVW
|
||
|
CVW LEBEDEV 266-POINT ANGULAR GRID
|
||
|
CVW
|
||
|
chvd
|
||
|
chvd This subroutine is part of a set of subroutines that generate
|
||
|
chvd Lebedev grids [1-6] for integration on a sphere. The original
|
||
|
chvd C-code [1] was kindly provided by Dr. Dmitri N. Laikov and
|
||
|
chvd translated into fortran by Dr. Christoph van Wuellen.
|
||
|
chvd This subroutine was translated using a C to fortran77 conversion
|
||
|
chvd tool written by Dr. Christoph van Wuellen.
|
||
|
chvd
|
||
|
chvd Users of this code are asked to include reference [1] in their
|
||
|
chvd publications, and in the user- and programmers-manuals
|
||
|
chvd describing their codes.
|
||
|
chvd
|
||
|
chvd This code was distributed through CCL (http://www.ccl.net/).
|
||
|
chvd
|
||
|
chvd [1] V.I. Lebedev, and D.N. Laikov
|
||
|
chvd "A quadrature formula for the sphere of the 131st
|
||
|
chvd algebraic order of accuracy"
|
||
|
chvd Doklady Mathematics, Vol. 59, No. 3, 1999, pp. 477-481.
|
||
|
chvd
|
||
|
chvd [2] V.I. Lebedev
|
||
|
chvd "A quadrature formula for the sphere of 59th algebraic
|
||
|
chvd order of accuracy"
|
||
|
chvd Russian Acad. Sci. Dokl. Math., Vol. 50, 1995, pp. 283-286.
|
||
|
chvd
|
||
|
chvd [3] V.I. Lebedev, and A.L. Skorokhodov
|
||
|
chvd "Quadrature formulas of orders 41, 47, and 53 for the sphere"
|
||
|
chvd Russian Acad. Sci. Dokl. Math., Vol. 45, 1992, pp. 587-592.
|
||
|
chvd
|
||
|
chvd [4] V.I. Lebedev
|
||
|
chvd "Spherical quadrature formulas exact to orders 25-29"
|
||
|
chvd Siberian Mathematical Journal, Vol. 18, 1977, pp. 99-107.
|
||
|
chvd
|
||
|
chvd [5] V.I. Lebedev
|
||
|
chvd "Quadratures on a sphere"
|
||
|
chvd Computational Mathematics and Mathematical Physics, Vol. 16,
|
||
|
chvd 1976, pp. 10-24.
|
||
|
chvd
|
||
|
chvd [6] V.I. Lebedev
|
||
|
chvd "Values of the nodes and weights of ninth to seventeenth
|
||
|
chvd order Gauss-Markov quadrature formulae invariant under the
|
||
|
chvd octahedron group with inversion"
|
||
|
chvd Computational Mathematics and Mathematical Physics, Vol. 15,
|
||
|
chvd 1975, pp. 44-51.
|
||
|
chvd
|
||
|
N=1
|
||
|
V=-0.1313769127326952D-2
|
||
|
Call GEN_OH( 1, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
V=-0.2522728704859336D-2
|
||
|
Call GEN_OH( 2, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
V=0.4186853881700583D-2
|
||
|
Call GEN_OH( 3, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.7039373391585475D+0
|
||
|
V=0.5315167977810885D-2
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.1012526248572414D+0
|
||
|
V=0.4047142377086219D-2
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.4647448726420539D+0
|
||
|
V=0.4112482394406990D-2
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.3277420654971629D+0
|
||
|
V=0.3595584899758782D-2
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6620338663699974D+0
|
||
|
V=0.4256131351428158D-2
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.8506508083520399D+0
|
||
|
V=0.4229582700647240D-2
|
||
|
Call GEN_OH( 5, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.3233484542692899D+0
|
||
|
B=0.1153112011009701D+0
|
||
|
V=0.4080914225780505D-2
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.2314790158712601D+0
|
||
|
B=0.5244939240922365D+0
|
||
|
V=0.4071467593830964D-2
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
N=N-1
|
||
|
RETURN
|
||
|
END
|
||
|
SUBROUTINE LD0302(X,Y,Z,W,N)
|
||
|
DOUBLE PRECISION X( 302)
|
||
|
DOUBLE PRECISION Y( 302)
|
||
|
DOUBLE PRECISION Z( 302)
|
||
|
DOUBLE PRECISION W( 302)
|
||
|
INTEGER N
|
||
|
DOUBLE PRECISION A,B,V
|
||
|
CVW
|
||
|
CVW LEBEDEV 302-POINT ANGULAR GRID
|
||
|
CVW
|
||
|
chvd
|
||
|
chvd This subroutine is part of a set of subroutines that generate
|
||
|
chvd Lebedev grids [1-6] for integration on a sphere. The original
|
||
|
chvd C-code [1] was kindly provided by Dr. Dmitri N. Laikov and
|
||
|
chvd translated into fortran by Dr. Christoph van Wuellen.
|
||
|
chvd This subroutine was translated using a C to fortran77 conversion
|
||
|
chvd tool written by Dr. Christoph van Wuellen.
|
||
|
chvd
|
||
|
chvd Users of this code are asked to include reference [1] in their
|
||
|
chvd publications, and in the user- and programmers-manuals
|
||
|
chvd describing their codes.
|
||
|
chvd
|
||
|
chvd This code was distributed through CCL (http://www.ccl.net/).
|
||
|
chvd
|
||
|
chvd [1] V.I. Lebedev, and D.N. Laikov
|
||
|
chvd "A quadrature formula for the sphere of the 131st
|
||
|
chvd algebraic order of accuracy"
|
||
|
chvd Doklady Mathematics, Vol. 59, No. 3, 1999, pp. 477-481.
|
||
|
chvd
|
||
|
chvd [2] V.I. Lebedev
|
||
|
chvd "A quadrature formula for the sphere of 59th algebraic
|
||
|
chvd order of accuracy"
|
||
|
chvd Russian Acad. Sci. Dokl. Math., Vol. 50, 1995, pp. 283-286.
|
||
|
chvd
|
||
|
chvd [3] V.I. Lebedev, and A.L. Skorokhodov
|
||
|
chvd "Quadrature formulas of orders 41, 47, and 53 for the sphere"
|
||
|
chvd Russian Acad. Sci. Dokl. Math., Vol. 45, 1992, pp. 587-592.
|
||
|
chvd
|
||
|
chvd [4] V.I. Lebedev
|
||
|
chvd "Spherical quadrature formulas exact to orders 25-29"
|
||
|
chvd Siberian Mathematical Journal, Vol. 18, 1977, pp. 99-107.
|
||
|
chvd
|
||
|
chvd [5] V.I. Lebedev
|
||
|
chvd "Quadratures on a sphere"
|
||
|
chvd Computational Mathematics and Mathematical Physics, Vol. 16,
|
||
|
chvd 1976, pp. 10-24.
|
||
|
chvd
|
||
|
chvd [6] V.I. Lebedev
|
||
|
chvd "Values of the nodes and weights of ninth to seventeenth
|
||
|
chvd order Gauss-Markov quadrature formulae invariant under the
|
||
|
chvd octahedron group with inversion"
|
||
|
chvd Computational Mathematics and Mathematical Physics, Vol. 15,
|
||
|
chvd 1975, pp. 44-51.
|
||
|
chvd
|
||
|
N=1
|
||
|
V=0.8545911725128148D-3
|
||
|
Call GEN_OH( 1, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
V=0.3599119285025571D-2
|
||
|
Call GEN_OH( 3, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.3515640345570105D+0
|
||
|
V=0.3449788424305883D-2
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6566329410219612D+0
|
||
|
V=0.3604822601419882D-2
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.4729054132581005D+0
|
||
|
V=0.3576729661743367D-2
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.9618308522614784D-1
|
||
|
V=0.2352101413689164D-2
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.2219645236294178D+0
|
||
|
V=0.3108953122413675D-2
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.7011766416089545D+0
|
||
|
V=0.3650045807677255D-2
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.2644152887060663D+0
|
||
|
V=0.2982344963171804D-2
|
||
|
Call GEN_OH( 5, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.5718955891878961D+0
|
||
|
V=0.3600820932216460D-2
|
||
|
Call GEN_OH( 5, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.2510034751770465D+0
|
||
|
B=0.8000727494073952D+0
|
||
|
V=0.3571540554273387D-2
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.1233548532583327D+0
|
||
|
B=0.4127724083168531D+0
|
||
|
V=0.3392312205006170D-2
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
N=N-1
|
||
|
RETURN
|
||
|
END
|
||
|
SUBROUTINE LD0350(X,Y,Z,W,N)
|
||
|
DOUBLE PRECISION X( 350)
|
||
|
DOUBLE PRECISION Y( 350)
|
||
|
DOUBLE PRECISION Z( 350)
|
||
|
DOUBLE PRECISION W( 350)
|
||
|
INTEGER N
|
||
|
DOUBLE PRECISION A,B,V
|
||
|
CVW
|
||
|
CVW LEBEDEV 350-POINT ANGULAR GRID
|
||
|
CVW
|
||
|
chvd
|
||
|
chvd This subroutine is part of a set of subroutines that generate
|
||
|
chvd Lebedev grids [1-6] for integration on a sphere. The original
|
||
|
chvd C-code [1] was kindly provided by Dr. Dmitri N. Laikov and
|
||
|
chvd translated into fortran by Dr. Christoph van Wuellen.
|
||
|
chvd This subroutine was translated using a C to fortran77 conversion
|
||
|
chvd tool written by Dr. Christoph van Wuellen.
|
||
|
chvd
|
||
|
chvd Users of this code are asked to include reference [1] in their
|
||
|
chvd publications, and in the user- and programmers-manuals
|
||
|
chvd describing their codes.
|
||
|
chvd
|
||
|
chvd This code was distributed through CCL (http://www.ccl.net/).
|
||
|
chvd
|
||
|
chvd [1] V.I. Lebedev, and D.N. Laikov
|
||
|
chvd "A quadrature formula for the sphere of the 131st
|
||
|
chvd algebraic order of accuracy"
|
||
|
chvd Doklady Mathematics, Vol. 59, No. 3, 1999, pp. 477-481.
|
||
|
chvd
|
||
|
chvd [2] V.I. Lebedev
|
||
|
chvd "A quadrature formula for the sphere of 59th algebraic
|
||
|
chvd order of accuracy"
|
||
|
chvd Russian Acad. Sci. Dokl. Math., Vol. 50, 1995, pp. 283-286.
|
||
|
chvd
|
||
|
chvd [3] V.I. Lebedev, and A.L. Skorokhodov
|
||
|
chvd "Quadrature formulas of orders 41, 47, and 53 for the sphere"
|
||
|
chvd Russian Acad. Sci. Dokl. Math., Vol. 45, 1992, pp. 587-592.
|
||
|
chvd
|
||
|
chvd [4] V.I. Lebedev
|
||
|
chvd "Spherical quadrature formulas exact to orders 25-29"
|
||
|
chvd Siberian Mathematical Journal, Vol. 18, 1977, pp. 99-107.
|
||
|
chvd
|
||
|
chvd [5] V.I. Lebedev
|
||
|
chvd "Quadratures on a sphere"
|
||
|
chvd Computational Mathematics and Mathematical Physics, Vol. 16,
|
||
|
chvd 1976, pp. 10-24.
|
||
|
chvd
|
||
|
chvd [6] V.I. Lebedev
|
||
|
chvd "Values of the nodes and weights of ninth to seventeenth
|
||
|
chvd order Gauss-Markov quadrature formulae invariant under the
|
||
|
chvd octahedron group with inversion"
|
||
|
chvd Computational Mathematics and Mathematical Physics, Vol. 15,
|
||
|
chvd 1975, pp. 44-51.
|
||
|
chvd
|
||
|
N=1
|
||
|
V=0.3006796749453936D-2
|
||
|
Call GEN_OH( 1, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
V=0.3050627745650771D-2
|
||
|
Call GEN_OH( 3, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.7068965463912316D+0
|
||
|
V=0.1621104600288991D-2
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.4794682625712025D+0
|
||
|
V=0.3005701484901752D-2
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.1927533154878019D+0
|
||
|
V=0.2990992529653774D-2
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6930357961327123D+0
|
||
|
V=0.2982170644107595D-2
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.3608302115520091D+0
|
||
|
V=0.2721564237310992D-2
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6498486161496169D+0
|
||
|
V=0.3033513795811141D-2
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.1932945013230339D+0
|
||
|
V=0.3007949555218533D-2
|
||
|
Call GEN_OH( 5, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.3800494919899303D+0
|
||
|
V=0.2881964603055307D-2
|
||
|
Call GEN_OH( 5, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.2899558825499574D+0
|
||
|
B=0.7934537856582316D+0
|
||
|
V=0.2958357626535696D-2
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.9684121455103957D-1
|
||
|
B=0.8280801506686862D+0
|
||
|
V=0.3036020026407088D-2
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.1833434647041659D+0
|
||
|
B=0.9074658265305127D+0
|
||
|
V=0.2832187403926303D-2
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
N=N-1
|
||
|
RETURN
|
||
|
END
|
||
|
SUBROUTINE LD0434(X,Y,Z,W,N)
|
||
|
DOUBLE PRECISION X( 434)
|
||
|
DOUBLE PRECISION Y( 434)
|
||
|
DOUBLE PRECISION Z( 434)
|
||
|
DOUBLE PRECISION W( 434)
|
||
|
INTEGER N
|
||
|
DOUBLE PRECISION A,B,V
|
||
|
CVW
|
||
|
CVW LEBEDEV 434-POINT ANGULAR GRID
|
||
|
CVW
|
||
|
chvd
|
||
|
chvd This subroutine is part of a set of subroutines that generate
|
||
|
chvd Lebedev grids [1-6] for integration on a sphere. The original
|
||
|
chvd C-code [1] was kindly provided by Dr. Dmitri N. Laikov and
|
||
|
chvd translated into fortran by Dr. Christoph van Wuellen.
|
||
|
chvd This subroutine was translated using a C to fortran77 conversion
|
||
|
chvd tool written by Dr. Christoph van Wuellen.
|
||
|
chvd
|
||
|
chvd Users of this code are asked to include reference [1] in their
|
||
|
chvd publications, and in the user- and programmers-manuals
|
||
|
chvd describing their codes.
|
||
|
chvd
|
||
|
chvd This code was distributed through CCL (http://www.ccl.net/).
|
||
|
chvd
|
||
|
chvd [1] V.I. Lebedev, and D.N. Laikov
|
||
|
chvd "A quadrature formula for the sphere of the 131st
|
||
|
chvd algebraic order of accuracy"
|
||
|
chvd Doklady Mathematics, Vol. 59, No. 3, 1999, pp. 477-481.
|
||
|
chvd
|
||
|
chvd [2] V.I. Lebedev
|
||
|
chvd "A quadrature formula for the sphere of 59th algebraic
|
||
|
chvd order of accuracy"
|
||
|
chvd Russian Acad. Sci. Dokl. Math., Vol. 50, 1995, pp. 283-286.
|
||
|
chvd
|
||
|
chvd [3] V.I. Lebedev, and A.L. Skorokhodov
|
||
|
chvd "Quadrature formulas of orders 41, 47, and 53 for the sphere"
|
||
|
chvd Russian Acad. Sci. Dokl. Math., Vol. 45, 1992, pp. 587-592.
|
||
|
chvd
|
||
|
chvd [4] V.I. Lebedev
|
||
|
chvd "Spherical quadrature formulas exact to orders 25-29"
|
||
|
chvd Siberian Mathematical Journal, Vol. 18, 1977, pp. 99-107.
|
||
|
chvd
|
||
|
chvd [5] V.I. Lebedev
|
||
|
chvd "Quadratures on a sphere"
|
||
|
chvd Computational Mathematics and Mathematical Physics, Vol. 16,
|
||
|
chvd 1976, pp. 10-24.
|
||
|
chvd
|
||
|
chvd [6] V.I. Lebedev
|
||
|
chvd "Values of the nodes and weights of ninth to seventeenth
|
||
|
chvd order Gauss-Markov quadrature formulae invariant under the
|
||
|
chvd octahedron group with inversion"
|
||
|
chvd Computational Mathematics and Mathematical Physics, Vol. 15,
|
||
|
chvd 1975, pp. 44-51.
|
||
|
chvd
|
||
|
N=1
|
||
|
V=0.5265897968224436D-3
|
||
|
Call GEN_OH( 1, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
V=0.2548219972002607D-2
|
||
|
Call GEN_OH( 2, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
V=0.2512317418927307D-2
|
||
|
Call GEN_OH( 3, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6909346307509111D+0
|
||
|
V=0.2530403801186355D-2
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.1774836054609158D+0
|
||
|
V=0.2014279020918528D-2
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.4914342637784746D+0
|
||
|
V=0.2501725168402936D-2
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6456664707424256D+0
|
||
|
V=0.2513267174597564D-2
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.2861289010307638D+0
|
||
|
V=0.2302694782227416D-2
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.7568084367178018D-1
|
||
|
V=0.1462495621594614D-2
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.3927259763368002D+0
|
||
|
V=0.2445373437312980D-2
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.8818132877794288D+0
|
||
|
V=0.2417442375638981D-2
|
||
|
Call GEN_OH( 5, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.9776428111182649D+0
|
||
|
V=0.1910951282179532D-2
|
||
|
Call GEN_OH( 5, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.2054823696403044D+0
|
||
|
B=0.8689460322872412D+0
|
||
|
V=0.2416930044324775D-2
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.5905157048925271D+0
|
||
|
B=0.7999278543857286D+0
|
||
|
V=0.2512236854563495D-2
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.5550152361076807D+0
|
||
|
B=0.7717462626915901D+0
|
||
|
V=0.2496644054553086D-2
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.9371809858553722D+0
|
||
|
B=0.3344363145343455D+0
|
||
|
V=0.2236607760437849D-2
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
N=N-1
|
||
|
RETURN
|
||
|
END
|
||
|
SUBROUTINE LD0590(X,Y,Z,W,N)
|
||
|
DOUBLE PRECISION X( 590)
|
||
|
DOUBLE PRECISION Y( 590)
|
||
|
DOUBLE PRECISION Z( 590)
|
||
|
DOUBLE PRECISION W( 590)
|
||
|
INTEGER N
|
||
|
DOUBLE PRECISION A,B,V
|
||
|
CVW
|
||
|
CVW LEBEDEV 590-POINT ANGULAR GRID
|
||
|
CVW
|
||
|
chvd
|
||
|
chvd This subroutine is part of a set of subroutines that generate
|
||
|
chvd Lebedev grids [1-6] for integration on a sphere. The original
|
||
|
chvd C-code [1] was kindly provided by Dr. Dmitri N. Laikov and
|
||
|
chvd translated into fortran by Dr. Christoph van Wuellen.
|
||
|
chvd This subroutine was translated using a C to fortran77 conversion
|
||
|
chvd tool written by Dr. Christoph van Wuellen.
|
||
|
chvd
|
||
|
chvd Users of this code are asked to include reference [1] in their
|
||
|
chvd publications, and in the user- and programmers-manuals
|
||
|
chvd describing their codes.
|
||
|
chvd
|
||
|
chvd This code was distributed through CCL (http://www.ccl.net/).
|
||
|
chvd
|
||
|
chvd [1] V.I. Lebedev, and D.N. Laikov
|
||
|
chvd "A quadrature formula for the sphere of the 131st
|
||
|
chvd algebraic order of accuracy"
|
||
|
chvd Doklady Mathematics, Vol. 59, No. 3, 1999, pp. 477-481.
|
||
|
chvd
|
||
|
chvd [2] V.I. Lebedev
|
||
|
chvd "A quadrature formula for the sphere of 59th algebraic
|
||
|
chvd order of accuracy"
|
||
|
chvd Russian Acad. Sci. Dokl. Math., Vol. 50, 1995, pp. 283-286.
|
||
|
chvd
|
||
|
chvd [3] V.I. Lebedev, and A.L. Skorokhodov
|
||
|
chvd "Quadrature formulas of orders 41, 47, and 53 for the sphere"
|
||
|
chvd Russian Acad. Sci. Dokl. Math., Vol. 45, 1992, pp. 587-592.
|
||
|
chvd
|
||
|
chvd [4] V.I. Lebedev
|
||
|
chvd "Spherical quadrature formulas exact to orders 25-29"
|
||
|
chvd Siberian Mathematical Journal, Vol. 18, 1977, pp. 99-107.
|
||
|
chvd
|
||
|
chvd [5] V.I. Lebedev
|
||
|
chvd "Quadratures on a sphere"
|
||
|
chvd Computational Mathematics and Mathematical Physics, Vol. 16,
|
||
|
chvd 1976, pp. 10-24.
|
||
|
chvd
|
||
|
chvd [6] V.I. Lebedev
|
||
|
chvd "Values of the nodes and weights of ninth to seventeenth
|
||
|
chvd order Gauss-Markov quadrature formulae invariant under the
|
||
|
chvd octahedron group with inversion"
|
||
|
chvd Computational Mathematics and Mathematical Physics, Vol. 15,
|
||
|
chvd 1975, pp. 44-51.
|
||
|
chvd
|
||
|
N=1
|
||
|
V=0.3095121295306187D-3
|
||
|
Call GEN_OH( 1, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
V=0.1852379698597489D-2
|
||
|
Call GEN_OH( 3, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.7040954938227469D+0
|
||
|
V=0.1871790639277744D-2
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6807744066455243D+0
|
||
|
V=0.1858812585438317D-2
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6372546939258752D+0
|
||
|
V=0.1852028828296213D-2
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.5044419707800358D+0
|
||
|
V=0.1846715956151242D-2
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.4215761784010967D+0
|
||
|
V=0.1818471778162769D-2
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.3317920736472123D+0
|
||
|
V=0.1749564657281154D-2
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.2384736701421887D+0
|
||
|
V=0.1617210647254411D-2
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.1459036449157763D+0
|
||
|
V=0.1384737234851692D-2
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6095034115507196D-1
|
||
|
V=0.9764331165051050D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6116843442009876D+0
|
||
|
V=0.1857161196774078D-2
|
||
|
Call GEN_OH( 5, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.3964755348199858D+0
|
||
|
V=0.1705153996395864D-2
|
||
|
Call GEN_OH( 5, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.1724782009907724D+0
|
||
|
V=0.1300321685886048D-2
|
||
|
Call GEN_OH( 5, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.5610263808622060D+0
|
||
|
B=0.3518280927733519D+0
|
||
|
V=0.1842866472905286D-2
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.4742392842551980D+0
|
||
|
B=0.2634716655937950D+0
|
||
|
V=0.1802658934377451D-2
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.5984126497885380D+0
|
||
|
B=0.1816640840360209D+0
|
||
|
V=0.1849830560443660D-2
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.3791035407695563D+0
|
||
|
B=0.1720795225656878D+0
|
||
|
V=0.1713904507106709D-2
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.2778673190586244D+0
|
||
|
B=0.8213021581932511D-1
|
||
|
V=0.1555213603396808D-2
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.5033564271075117D+0
|
||
|
B=0.8999205842074875D-1
|
||
|
V=0.1802239128008525D-2
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
N=N-1
|
||
|
RETURN
|
||
|
END
|
||
|
SUBROUTINE LD0770(X,Y,Z,W,N)
|
||
|
DOUBLE PRECISION X( 770)
|
||
|
DOUBLE PRECISION Y( 770)
|
||
|
DOUBLE PRECISION Z( 770)
|
||
|
DOUBLE PRECISION W( 770)
|
||
|
INTEGER N
|
||
|
DOUBLE PRECISION A,B,V
|
||
|
CVW
|
||
|
CVW LEBEDEV 770-POINT ANGULAR GRID
|
||
|
CVW
|
||
|
chvd
|
||
|
chvd This subroutine is part of a set of subroutines that generate
|
||
|
chvd Lebedev grids [1-6] for integration on a sphere. The original
|
||
|
chvd C-code [1] was kindly provided by Dr. Dmitri N. Laikov and
|
||
|
chvd translated into fortran by Dr. Christoph van Wuellen.
|
||
|
chvd This subroutine was translated using a C to fortran77 conversion
|
||
|
chvd tool written by Dr. Christoph van Wuellen.
|
||
|
chvd
|
||
|
chvd Users of this code are asked to include reference [1] in their
|
||
|
chvd publications, and in the user- and programmers-manuals
|
||
|
chvd describing their codes.
|
||
|
chvd
|
||
|
chvd This code was distributed through CCL (http://www.ccl.net/).
|
||
|
chvd
|
||
|
chvd [1] V.I. Lebedev, and D.N. Laikov
|
||
|
chvd "A quadrature formula for the sphere of the 131st
|
||
|
chvd algebraic order of accuracy"
|
||
|
chvd Doklady Mathematics, Vol. 59, No. 3, 1999, pp. 477-481.
|
||
|
chvd
|
||
|
chvd [2] V.I. Lebedev
|
||
|
chvd "A quadrature formula for the sphere of 59th algebraic
|
||
|
chvd order of accuracy"
|
||
|
chvd Russian Acad. Sci. Dokl. Math., Vol. 50, 1995, pp. 283-286.
|
||
|
chvd
|
||
|
chvd [3] V.I. Lebedev, and A.L. Skorokhodov
|
||
|
chvd "Quadrature formulas of orders 41, 47, and 53 for the sphere"
|
||
|
chvd Russian Acad. Sci. Dokl. Math., Vol. 45, 1992, pp. 587-592.
|
||
|
chvd
|
||
|
chvd [4] V.I. Lebedev
|
||
|
chvd "Spherical quadrature formulas exact to orders 25-29"
|
||
|
chvd Siberian Mathematical Journal, Vol. 18, 1977, pp. 99-107.
|
||
|
chvd
|
||
|
chvd [5] V.I. Lebedev
|
||
|
chvd "Quadratures on a sphere"
|
||
|
chvd Computational Mathematics and Mathematical Physics, Vol. 16,
|
||
|
chvd 1976, pp. 10-24.
|
||
|
chvd
|
||
|
chvd [6] V.I. Lebedev
|
||
|
chvd "Values of the nodes and weights of ninth to seventeenth
|
||
|
chvd order Gauss-Markov quadrature formulae invariant under the
|
||
|
chvd octahedron group with inversion"
|
||
|
chvd Computational Mathematics and Mathematical Physics, Vol. 15,
|
||
|
chvd 1975, pp. 44-51.
|
||
|
chvd
|
||
|
N=1
|
||
|
V=0.2192942088181184D-3
|
||
|
Call GEN_OH( 1, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
V=0.1436433617319080D-2
|
||
|
Call GEN_OH( 2, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
V=0.1421940344335877D-2
|
||
|
Call GEN_OH( 3, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.5087204410502360D-1
|
||
|
V=0.6798123511050502D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.1228198790178831D+0
|
||
|
V=0.9913184235294912D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.2026890814408786D+0
|
||
|
V=0.1180207833238949D-2
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.2847745156464294D+0
|
||
|
V=0.1296599602080921D-2
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.3656719078978026D+0
|
||
|
V=0.1365871427428316D-2
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.4428264886713469D+0
|
||
|
V=0.1402988604775325D-2
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.5140619627249735D+0
|
||
|
V=0.1418645563595609D-2
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6306401219166803D+0
|
||
|
V=0.1421376741851662D-2
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6716883332022612D+0
|
||
|
V=0.1423996475490962D-2
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6979792685336881D+0
|
||
|
V=0.1431554042178567D-2
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.1446865674195309D+0
|
||
|
V=0.9254401499865368D-3
|
||
|
Call GEN_OH( 5, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.3390263475411216D+0
|
||
|
V=0.1250239995053509D-2
|
||
|
Call GEN_OH( 5, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.5335804651263506D+0
|
||
|
V=0.1394365843329230D-2
|
||
|
Call GEN_OH( 5, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6944024393349413D-1
|
||
|
B=0.2355187894242326D+0
|
||
|
V=0.1127089094671749D-2
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.2269004109529460D+0
|
||
|
B=0.4102182474045730D+0
|
||
|
V=0.1345753760910670D-2
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.8025574607775339D-1
|
||
|
B=0.6214302417481605D+0
|
||
|
V=0.1424957283316783D-2
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.1467999527896572D+0
|
||
|
B=0.3245284345717394D+0
|
||
|
V=0.1261523341237750D-2
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.1571507769824727D+0
|
||
|
B=0.5224482189696630D+0
|
||
|
V=0.1392547106052696D-2
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.2365702993157246D+0
|
||
|
B=0.6017546634089558D+0
|
||
|
V=0.1418761677877656D-2
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.7714815866765732D-1
|
||
|
B=0.4346575516141163D+0
|
||
|
V=0.1338366684479554D-2
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.3062936666210730D+0
|
||
|
B=0.4908826589037616D+0
|
||
|
V=0.1393700862676131D-2
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.3822477379524787D+0
|
||
|
B=0.5648768149099500D+0
|
||
|
V=0.1415914757466932D-2
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
N=N-1
|
||
|
RETURN
|
||
|
END
|
||
|
SUBROUTINE LD0974(X,Y,Z,W,N)
|
||
|
DOUBLE PRECISION X( 974)
|
||
|
DOUBLE PRECISION Y( 974)
|
||
|
DOUBLE PRECISION Z( 974)
|
||
|
DOUBLE PRECISION W( 974)
|
||
|
INTEGER N
|
||
|
DOUBLE PRECISION A,B,V
|
||
|
CVW
|
||
|
CVW LEBEDEV 974-POINT ANGULAR GRID
|
||
|
CVW
|
||
|
chvd
|
||
|
chvd This subroutine is part of a set of subroutines that generate
|
||
|
chvd Lebedev grids [1-6] for integration on a sphere. The original
|
||
|
chvd C-code [1] was kindly provided by Dr. Dmitri N. Laikov and
|
||
|
chvd translated into fortran by Dr. Christoph van Wuellen.
|
||
|
chvd This subroutine was translated using a C to fortran77 conversion
|
||
|
chvd tool written by Dr. Christoph van Wuellen.
|
||
|
chvd
|
||
|
chvd Users of this code are asked to include reference [1] in their
|
||
|
chvd publications, and in the user- and programmers-manuals
|
||
|
chvd describing their codes.
|
||
|
chvd
|
||
|
chvd This code was distributed through CCL (http://www.ccl.net/).
|
||
|
chvd
|
||
|
chvd [1] V.I. Lebedev, and D.N. Laikov
|
||
|
chvd "A quadrature formula for the sphere of the 131st
|
||
|
chvd algebraic order of accuracy"
|
||
|
chvd Doklady Mathematics, Vol. 59, No. 3, 1999, pp. 477-481.
|
||
|
chvd
|
||
|
chvd [2] V.I. Lebedev
|
||
|
chvd "A quadrature formula for the sphere of 59th algebraic
|
||
|
chvd order of accuracy"
|
||
|
chvd Russian Acad. Sci. Dokl. Math., Vol. 50, 1995, pp. 283-286.
|
||
|
chvd
|
||
|
chvd [3] V.I. Lebedev, and A.L. Skorokhodov
|
||
|
chvd "Quadrature formulas of orders 41, 47, and 53 for the sphere"
|
||
|
chvd Russian Acad. Sci. Dokl. Math., Vol. 45, 1992, pp. 587-592.
|
||
|
chvd
|
||
|
chvd [4] V.I. Lebedev
|
||
|
chvd "Spherical quadrature formulas exact to orders 25-29"
|
||
|
chvd Siberian Mathematical Journal, Vol. 18, 1977, pp. 99-107.
|
||
|
chvd
|
||
|
chvd [5] V.I. Lebedev
|
||
|
chvd "Quadratures on a sphere"
|
||
|
chvd Computational Mathematics and Mathematical Physics, Vol. 16,
|
||
|
chvd 1976, pp. 10-24.
|
||
|
chvd
|
||
|
chvd [6] V.I. Lebedev
|
||
|
chvd "Values of the nodes and weights of ninth to seventeenth
|
||
|
chvd order Gauss-Markov quadrature formulae invariant under the
|
||
|
chvd octahedron group with inversion"
|
||
|
chvd Computational Mathematics and Mathematical Physics, Vol. 15,
|
||
|
chvd 1975, pp. 44-51.
|
||
|
chvd
|
||
|
N=1
|
||
|
V=0.1438294190527431D-3
|
||
|
Call GEN_OH( 1, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
V=0.1125772288287004D-2
|
||
|
Call GEN_OH( 3, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.4292963545341347D-1
|
||
|
V=0.4948029341949241D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.1051426854086404D+0
|
||
|
V=0.7357990109125470D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.1750024867623087D+0
|
||
|
V=0.8889132771304384D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.2477653379650257D+0
|
||
|
V=0.9888347838921435D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.3206567123955957D+0
|
||
|
V=0.1053299681709471D-2
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.3916520749849983D+0
|
||
|
V=0.1092778807014578D-2
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.4590825874187624D+0
|
||
|
V=0.1114389394063227D-2
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.5214563888415861D+0
|
||
|
V=0.1123724788051555D-2
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6253170244654199D+0
|
||
|
V=0.1125239325243814D-2
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6637926744523170D+0
|
||
|
V=0.1126153271815905D-2
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6910410398498301D+0
|
||
|
V=0.1130286931123841D-2
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.7052907007457760D+0
|
||
|
V=0.1134986534363955D-2
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.1236686762657990D+0
|
||
|
V=0.6823367927109931D-3
|
||
|
Call GEN_OH( 5, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.2940777114468387D+0
|
||
|
V=0.9454158160447096D-3
|
||
|
Call GEN_OH( 5, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.4697753849207649D+0
|
||
|
V=0.1074429975385679D-2
|
||
|
Call GEN_OH( 5, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6334563241139567D+0
|
||
|
V=0.1129300086569132D-2
|
||
|
Call GEN_OH( 5, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.5974048614181342D-1
|
||
|
B=0.2029128752777523D+0
|
||
|
V=0.8436884500901954D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.1375760408473636D+0
|
||
|
B=0.4602621942484054D+0
|
||
|
V=0.1075255720448885D-2
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.3391016526336286D+0
|
||
|
B=0.5030673999662036D+0
|
||
|
V=0.1108577236864462D-2
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.1271675191439820D+0
|
||
|
B=0.2817606422442134D+0
|
||
|
V=0.9566475323783357D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.2693120740413512D+0
|
||
|
B=0.4331561291720157D+0
|
||
|
V=0.1080663250717391D-2
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.1419786452601918D+0
|
||
|
B=0.6256167358580814D+0
|
||
|
V=0.1126797131196295D-2
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6709284600738255D-1
|
||
|
B=0.3798395216859157D+0
|
||
|
V=0.1022568715358061D-2
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.7057738183256172D-1
|
||
|
B=0.5517505421423520D+0
|
||
|
V=0.1108960267713108D-2
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.2783888477882155D+0
|
||
|
B=0.6029619156159187D+0
|
||
|
V=0.1122790653435766D-2
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.1979578938917407D+0
|
||
|
B=0.3589606329589096D+0
|
||
|
V=0.1032401847117460D-2
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.2087307061103274D+0
|
||
|
B=0.5348666438135476D+0
|
||
|
V=0.1107249382283854D-2
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.4055122137872836D+0
|
||
|
B=0.5674997546074373D+0
|
||
|
V=0.1121780048519972D-2
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
N=N-1
|
||
|
RETURN
|
||
|
END
|
||
|
SUBROUTINE LD1202(X,Y,Z,W,N)
|
||
|
DOUBLE PRECISION X(1202)
|
||
|
DOUBLE PRECISION Y(1202)
|
||
|
DOUBLE PRECISION Z(1202)
|
||
|
DOUBLE PRECISION W(1202)
|
||
|
INTEGER N
|
||
|
DOUBLE PRECISION A,B,V
|
||
|
CVW
|
||
|
CVW LEBEDEV 1202-POINT ANGULAR GRID
|
||
|
CVW
|
||
|
chvd
|
||
|
chvd This subroutine is part of a set of subroutines that generate
|
||
|
chvd Lebedev grids [1-6] for integration on a sphere. The original
|
||
|
chvd C-code [1] was kindly provided by Dr. Dmitri N. Laikov and
|
||
|
chvd translated into fortran by Dr. Christoph van Wuellen.
|
||
|
chvd This subroutine was translated using a C to fortran77 conversion
|
||
|
chvd tool written by Dr. Christoph van Wuellen.
|
||
|
chvd
|
||
|
chvd Users of this code are asked to include reference [1] in their
|
||
|
chvd publications, and in the user- and programmers-manuals
|
||
|
chvd describing their codes.
|
||
|
chvd
|
||
|
chvd This code was distributed through CCL (http://www.ccl.net/).
|
||
|
chvd
|
||
|
chvd [1] V.I. Lebedev, and D.N. Laikov
|
||
|
chvd "A quadrature formula for the sphere of the 131st
|
||
|
chvd algebraic order of accuracy"
|
||
|
chvd Doklady Mathematics, Vol. 59, No. 3, 1999, pp. 477-481.
|
||
|
chvd
|
||
|
chvd [2] V.I. Lebedev
|
||
|
chvd "A quadrature formula for the sphere of 59th algebraic
|
||
|
chvd order of accuracy"
|
||
|
chvd Russian Acad. Sci. Dokl. Math., Vol. 50, 1995, pp. 283-286.
|
||
|
chvd
|
||
|
chvd [3] V.I. Lebedev, and A.L. Skorokhodov
|
||
|
chvd "Quadrature formulas of orders 41, 47, and 53 for the sphere"
|
||
|
chvd Russian Acad. Sci. Dokl. Math., Vol. 45, 1992, pp. 587-592.
|
||
|
chvd
|
||
|
chvd [4] V.I. Lebedev
|
||
|
chvd "Spherical quadrature formulas exact to orders 25-29"
|
||
|
chvd Siberian Mathematical Journal, Vol. 18, 1977, pp. 99-107.
|
||
|
chvd
|
||
|
chvd [5] V.I. Lebedev
|
||
|
chvd "Quadratures on a sphere"
|
||
|
chvd Computational Mathematics and Mathematical Physics, Vol. 16,
|
||
|
chvd 1976, pp. 10-24.
|
||
|
chvd
|
||
|
chvd [6] V.I. Lebedev
|
||
|
chvd "Values of the nodes and weights of ninth to seventeenth
|
||
|
chvd order Gauss-Markov quadrature formulae invariant under the
|
||
|
chvd octahedron group with inversion"
|
||
|
chvd Computational Mathematics and Mathematical Physics, Vol. 15,
|
||
|
chvd 1975, pp. 44-51.
|
||
|
chvd
|
||
|
N=1
|
||
|
V=0.1105189233267572D-3
|
||
|
Call GEN_OH( 1, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
V=0.9205232738090741D-3
|
||
|
Call GEN_OH( 2, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
V=0.9133159786443561D-3
|
||
|
Call GEN_OH( 3, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.3712636449657089D-1
|
||
|
V=0.3690421898017899D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.9140060412262223D-1
|
||
|
V=0.5603990928680660D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.1531077852469906D+0
|
||
|
V=0.6865297629282609D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.2180928891660612D+0
|
||
|
V=0.7720338551145630D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.2839874532200175D+0
|
||
|
V=0.8301545958894795D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.3491177600963764D+0
|
||
|
V=0.8686692550179628D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.4121431461444309D+0
|
||
|
V=0.8927076285846890D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.4718993627149127D+0
|
||
|
V=0.9060820238568219D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.5273145452842337D+0
|
||
|
V=0.9119777254940867D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6209475332444019D+0
|
||
|
V=0.9128720138604181D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6569722711857291D+0
|
||
|
V=0.9130714935691735D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6841788309070143D+0
|
||
|
V=0.9152873784554116D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.7012604330123631D+0
|
||
|
V=0.9187436274321654D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.1072382215478166D+0
|
||
|
V=0.5176977312965694D-3
|
||
|
Call GEN_OH( 5, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.2582068959496968D+0
|
||
|
V=0.7331143682101417D-3
|
||
|
Call GEN_OH( 5, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.4172752955306717D+0
|
||
|
V=0.8463232836379928D-3
|
||
|
Call GEN_OH( 5, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.5700366911792503D+0
|
||
|
V=0.9031122694253992D-3
|
||
|
Call GEN_OH( 5, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.9827986018263947D+0
|
||
|
B=0.1771774022615325D+0
|
||
|
V=0.6485778453163257D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.9624249230326228D+0
|
||
|
B=0.2475716463426288D+0
|
||
|
V=0.7435030910982369D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.9402007994128811D+0
|
||
|
B=0.3354616289066489D+0
|
||
|
V=0.7998527891839054D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.9320822040143202D+0
|
||
|
B=0.3173615246611977D+0
|
||
|
V=0.8101731497468018D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.9043674199393299D+0
|
||
|
B=0.4090268427085357D+0
|
||
|
V=0.8483389574594331D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.8912407560074747D+0
|
||
|
B=0.3854291150669224D+0
|
||
|
V=0.8556299257311812D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.8676435628462708D+0
|
||
|
B=0.4932221184851285D+0
|
||
|
V=0.8803208679738260D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.8581979986041619D+0
|
||
|
B=0.4785320675922435D+0
|
||
|
V=0.8811048182425720D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.8396753624049856D+0
|
||
|
B=0.4507422593157064D+0
|
||
|
V=0.8850282341265444D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.8165288564022188D+0
|
||
|
B=0.5632123020762100D+0
|
||
|
V=0.9021342299040653D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.8015469370783529D+0
|
||
|
B=0.5434303569693900D+0
|
||
|
V=0.9010091677105086D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.7773563069070351D+0
|
||
|
B=0.5123518486419871D+0
|
||
|
V=0.9022692938426915D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.7661621213900394D+0
|
||
|
B=0.6394279634749102D+0
|
||
|
V=0.9158016174693465D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.7553584143533510D+0
|
||
|
B=0.6269805509024392D+0
|
||
|
V=0.9131578003189435D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.7344305757559503D+0
|
||
|
B=0.6031161693096310D+0
|
||
|
V=0.9107813579482705D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.7043837184021765D+0
|
||
|
B=0.5693702498468441D+0
|
||
|
V=0.9105760258970126D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
N=N-1
|
||
|
RETURN
|
||
|
END
|
||
|
SUBROUTINE LD1454(X,Y,Z,W,N)
|
||
|
DOUBLE PRECISION X(1454)
|
||
|
DOUBLE PRECISION Y(1454)
|
||
|
DOUBLE PRECISION Z(1454)
|
||
|
DOUBLE PRECISION W(1454)
|
||
|
INTEGER N
|
||
|
DOUBLE PRECISION A,B,V
|
||
|
CVW
|
||
|
CVW LEBEDEV 1454-POINT ANGULAR GRID
|
||
|
CVW
|
||
|
chvd
|
||
|
chvd This subroutine is part of a set of subroutines that generate
|
||
|
chvd Lebedev grids [1-6] for integration on a sphere. The original
|
||
|
chvd C-code [1] was kindly provided by Dr. Dmitri N. Laikov and
|
||
|
chvd translated into fortran by Dr. Christoph van Wuellen.
|
||
|
chvd This subroutine was translated using a C to fortran77 conversion
|
||
|
chvd tool written by Dr. Christoph van Wuellen.
|
||
|
chvd
|
||
|
chvd Users of this code are asked to include reference [1] in their
|
||
|
chvd publications, and in the user- and programmers-manuals
|
||
|
chvd describing their codes.
|
||
|
chvd
|
||
|
chvd This code was distributed through CCL (http://www.ccl.net/).
|
||
|
chvd
|
||
|
chvd [1] V.I. Lebedev, and D.N. Laikov
|
||
|
chvd "A quadrature formula for the sphere of the 131st
|
||
|
chvd algebraic order of accuracy"
|
||
|
chvd Doklady Mathematics, Vol. 59, No. 3, 1999, pp. 477-481.
|
||
|
chvd
|
||
|
chvd [2] V.I. Lebedev
|
||
|
chvd "A quadrature formula for the sphere of 59th algebraic
|
||
|
chvd order of accuracy"
|
||
|
chvd Russian Acad. Sci. Dokl. Math., Vol. 50, 1995, pp. 283-286.
|
||
|
chvd
|
||
|
chvd [3] V.I. Lebedev, and A.L. Skorokhodov
|
||
|
chvd "Quadrature formulas of orders 41, 47, and 53 for the sphere"
|
||
|
chvd Russian Acad. Sci. Dokl. Math., Vol. 45, 1992, pp. 587-592.
|
||
|
chvd
|
||
|
chvd [4] V.I. Lebedev
|
||
|
chvd "Spherical quadrature formulas exact to orders 25-29"
|
||
|
chvd Siberian Mathematical Journal, Vol. 18, 1977, pp. 99-107.
|
||
|
chvd
|
||
|
chvd [5] V.I. Lebedev
|
||
|
chvd "Quadratures on a sphere"
|
||
|
chvd Computational Mathematics and Mathematical Physics, Vol. 16,
|
||
|
chvd 1976, pp. 10-24.
|
||
|
chvd
|
||
|
chvd [6] V.I. Lebedev
|
||
|
chvd "Values of the nodes and weights of ninth to seventeenth
|
||
|
chvd order Gauss-Markov quadrature formulae invariant under the
|
||
|
chvd octahedron group with inversion"
|
||
|
chvd Computational Mathematics and Mathematical Physics, Vol. 15,
|
||
|
chvd 1975, pp. 44-51.
|
||
|
chvd
|
||
|
N=1
|
||
|
V=0.7777160743261247D-4
|
||
|
Call GEN_OH( 1, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
V=0.7557646413004701D-3
|
||
|
Call GEN_OH( 3, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.3229290663413854D-1
|
||
|
V=0.2841633806090617D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.8036733271462222D-1
|
||
|
V=0.4374419127053555D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.1354289960531653D+0
|
||
|
V=0.5417174740872172D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.1938963861114426D+0
|
||
|
V=0.6148000891358593D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.2537343715011275D+0
|
||
|
V=0.6664394485800705D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.3135251434752570D+0
|
||
|
V=0.7025039356923220D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.3721558339375338D+0
|
||
|
V=0.7268511789249627D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.4286809575195696D+0
|
||
|
V=0.7422637534208629D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.4822510128282994D+0
|
||
|
V=0.7509545035841214D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.5320679333566263D+0
|
||
|
V=0.7548535057718401D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6172998195394274D+0
|
||
|
V=0.7554088969774001D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6510679849127481D+0
|
||
|
V=0.7553147174442808D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6777315251687360D+0
|
||
|
V=0.7564767653292297D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6963109410648741D+0
|
||
|
V=0.7587991808518730D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.7058935009831749D+0
|
||
|
V=0.7608261832033027D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.9955546194091857D+0
|
||
|
V=0.4021680447874916D-3
|
||
|
Call GEN_OH( 5, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.9734115901794209D+0
|
||
|
V=0.5804871793945964D-3
|
||
|
Call GEN_OH( 5, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.9275693732388626D+0
|
||
|
V=0.6792151955945159D-3
|
||
|
Call GEN_OH( 5, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.8568022422795103D+0
|
||
|
V=0.7336741211286294D-3
|
||
|
Call GEN_OH( 5, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.7623495553719372D+0
|
||
|
V=0.7581866300989608D-3
|
||
|
Call GEN_OH( 5, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.5707522908892223D+0
|
||
|
B=0.4387028039889501D+0
|
||
|
V=0.7538257859800743D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.5196463388403083D+0
|
||
|
B=0.3858908414762617D+0
|
||
|
V=0.7483517247053123D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.4646337531215351D+0
|
||
|
B=0.3301937372343854D+0
|
||
|
V=0.7371763661112059D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.4063901697557691D+0
|
||
|
B=0.2725423573563777D+0
|
||
|
V=0.7183448895756934D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.3456329466643087D+0
|
||
|
B=0.2139510237495250D+0
|
||
|
V=0.6895815529822191D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.2831395121050332D+0
|
||
|
B=0.1555922309786647D+0
|
||
|
V=0.6480105801792886D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.2197682022925330D+0
|
||
|
B=0.9892878979686097D-1
|
||
|
V=0.5897558896594636D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.1564696098650355D+0
|
||
|
B=0.4598642910675510D-1
|
||
|
V=0.5095708849247346D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6027356673721295D+0
|
||
|
B=0.3376625140173426D+0
|
||
|
V=0.7536906428909755D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.5496032320255096D+0
|
||
|
B=0.2822301309727988D+0
|
||
|
V=0.7472505965575118D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.4921707755234567D+0
|
||
|
B=0.2248632342592540D+0
|
||
|
V=0.7343017132279698D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.4309422998598483D+0
|
||
|
B=0.1666224723456479D+0
|
||
|
V=0.7130871582177445D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.3664108182313672D+0
|
||
|
B=0.1086964901822169D+0
|
||
|
V=0.6817022032112776D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.2990189057758436D+0
|
||
|
B=0.5251989784120085D-1
|
||
|
V=0.6380941145604121D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6268724013144998D+0
|
||
|
B=0.2297523657550023D+0
|
||
|
V=0.7550381377920310D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.5707324144834607D+0
|
||
|
B=0.1723080607093800D+0
|
||
|
V=0.7478646640144802D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.5096360901960365D+0
|
||
|
B=0.1140238465390513D+0
|
||
|
V=0.7335918720601220D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.4438729938312456D+0
|
||
|
B=0.5611522095882537D-1
|
||
|
V=0.7110120527658118D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6419978471082389D+0
|
||
|
B=0.1164174423140873D+0
|
||
|
V=0.7571363978689501D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.5817218061802611D+0
|
||
|
B=0.5797589531445219D-1
|
||
|
V=0.7489908329079234D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
N=N-1
|
||
|
RETURN
|
||
|
END
|
||
|
SUBROUTINE LD1730(X,Y,Z,W,N)
|
||
|
DOUBLE PRECISION X(1730)
|
||
|
DOUBLE PRECISION Y(1730)
|
||
|
DOUBLE PRECISION Z(1730)
|
||
|
DOUBLE PRECISION W(1730)
|
||
|
INTEGER N
|
||
|
DOUBLE PRECISION A,B,V
|
||
|
CVW
|
||
|
CVW LEBEDEV 1730-POINT ANGULAR GRID
|
||
|
CVW
|
||
|
chvd
|
||
|
chvd This subroutine is part of a set of subroutines that generate
|
||
|
chvd Lebedev grids [1-6] for integration on a sphere. The original
|
||
|
chvd C-code [1] was kindly provided by Dr. Dmitri N. Laikov and
|
||
|
chvd translated into fortran by Dr. Christoph van Wuellen.
|
||
|
chvd This subroutine was translated using a C to fortran77 conversion
|
||
|
chvd tool written by Dr. Christoph van Wuellen.
|
||
|
chvd
|
||
|
chvd Users of this code are asked to include reference [1] in their
|
||
|
chvd publications, and in the user- and programmers-manuals
|
||
|
chvd describing their codes.
|
||
|
chvd
|
||
|
chvd This code was distributed through CCL (http://www.ccl.net/).
|
||
|
chvd
|
||
|
chvd [1] V.I. Lebedev, and D.N. Laikov
|
||
|
chvd "A quadrature formula for the sphere of the 131st
|
||
|
chvd algebraic order of accuracy"
|
||
|
chvd Doklady Mathematics, Vol. 59, No. 3, 1999, pp. 477-481.
|
||
|
chvd
|
||
|
chvd [2] V.I. Lebedev
|
||
|
chvd "A quadrature formula for the sphere of 59th algebraic
|
||
|
chvd order of accuracy"
|
||
|
chvd Russian Acad. Sci. Dokl. Math., Vol. 50, 1995, pp. 283-286.
|
||
|
chvd
|
||
|
chvd [3] V.I. Lebedev, and A.L. Skorokhodov
|
||
|
chvd "Quadrature formulas of orders 41, 47, and 53 for the sphere"
|
||
|
chvd Russian Acad. Sci. Dokl. Math., Vol. 45, 1992, pp. 587-592.
|
||
|
chvd
|
||
|
chvd [4] V.I. Lebedev
|
||
|
chvd "Spherical quadrature formulas exact to orders 25-29"
|
||
|
chvd Siberian Mathematical Journal, Vol. 18, 1977, pp. 99-107.
|
||
|
chvd
|
||
|
chvd [5] V.I. Lebedev
|
||
|
chvd "Quadratures on a sphere"
|
||
|
chvd Computational Mathematics and Mathematical Physics, Vol. 16,
|
||
|
chvd 1976, pp. 10-24.
|
||
|
chvd
|
||
|
chvd [6] V.I. Lebedev
|
||
|
chvd "Values of the nodes and weights of ninth to seventeenth
|
||
|
chvd order Gauss-Markov quadrature formulae invariant under the
|
||
|
chvd octahedron group with inversion"
|
||
|
chvd Computational Mathematics and Mathematical Physics, Vol. 15,
|
||
|
chvd 1975, pp. 44-51.
|
||
|
chvd
|
||
|
N=1
|
||
|
V=0.6309049437420976D-4
|
||
|
Call GEN_OH( 1, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
V=0.6398287705571748D-3
|
||
|
Call GEN_OH( 2, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
V=0.6357185073530720D-3
|
||
|
Call GEN_OH( 3, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.2860923126194662D-1
|
||
|
V=0.2221207162188168D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.7142556767711522D-1
|
||
|
V=0.3475784022286848D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.1209199540995559D+0
|
||
|
V=0.4350742443589804D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.1738673106594379D+0
|
||
|
V=0.4978569136522127D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.2284645438467734D+0
|
||
|
V=0.5435036221998053D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.2834807671701512D+0
|
||
|
V=0.5765913388219542D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.3379680145467339D+0
|
||
|
V=0.6001200359226003D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.3911355454819537D+0
|
||
|
V=0.6162178172717512D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.4422860353001403D+0
|
||
|
V=0.6265218152438485D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.4907781568726057D+0
|
||
|
V=0.6323987160974212D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.5360006153211468D+0
|
||
|
V=0.6350767851540569D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6142105973596603D+0
|
||
|
V=0.6354362775297107D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6459300387977504D+0
|
||
|
V=0.6352302462706235D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6718056125089225D+0
|
||
|
V=0.6358117881417972D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6910888533186254D+0
|
||
|
V=0.6373101590310117D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.7030467416823252D+0
|
||
|
V=0.6390428961368665D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.8354951166354646D-1
|
||
|
V=0.3186913449946576D-3
|
||
|
Call GEN_OH( 5, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.2050143009099486D+0
|
||
|
V=0.4678028558591711D-3
|
||
|
Call GEN_OH( 5, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.3370208290706637D+0
|
||
|
V=0.5538829697598626D-3
|
||
|
Call GEN_OH( 5, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.4689051484233963D+0
|
||
|
V=0.6044475907190476D-3
|
||
|
Call GEN_OH( 5, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.5939400424557334D+0
|
||
|
V=0.6313575103509012D-3
|
||
|
Call GEN_OH( 5, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.1394983311832261D+0
|
||
|
B=0.4097581162050343D-1
|
||
|
V=0.4078626431855630D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.1967999180485014D+0
|
||
|
B=0.8851987391293348D-1
|
||
|
V=0.4759933057812725D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.2546183732548967D+0
|
||
|
B=0.1397680182969819D+0
|
||
|
V=0.5268151186413440D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.3121281074713875D+0
|
||
|
B=0.1929452542226526D+0
|
||
|
V=0.5643048560507316D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.3685981078502492D+0
|
||
|
B=0.2467898337061562D+0
|
||
|
V=0.5914501076613073D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.4233760321547856D+0
|
||
|
B=0.3003104124785409D+0
|
||
|
V=0.6104561257874195D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.4758671236059246D+0
|
||
|
B=0.3526684328175033D+0
|
||
|
V=0.6230252860707806D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.5255178579796463D+0
|
||
|
B=0.4031134861145713D+0
|
||
|
V=0.6305618761760796D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.5718025633734589D+0
|
||
|
B=0.4509426448342351D+0
|
||
|
V=0.6343092767597889D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.2686927772723415D+0
|
||
|
B=0.4711322502423248D-1
|
||
|
V=0.5176268945737826D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.3306006819904809D+0
|
||
|
B=0.9784487303942695D-1
|
||
|
V=0.5564840313313692D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.3904906850594983D+0
|
||
|
B=0.1505395810025273D+0
|
||
|
V=0.5856426671038980D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.4479957951904390D+0
|
||
|
B=0.2039728156296050D+0
|
||
|
V=0.6066386925777091D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.5027076848919780D+0
|
||
|
B=0.2571529941121107D+0
|
||
|
V=0.6208824962234458D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.5542087392260217D+0
|
||
|
B=0.3092191375815670D+0
|
||
|
V=0.6296314297822907D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6020850887375187D+0
|
||
|
B=0.3593807506130276D+0
|
||
|
V=0.6340423756791859D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.4019851409179594D+0
|
||
|
B=0.5063389934378671D-1
|
||
|
V=0.5829627677107342D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.4635614567449800D+0
|
||
|
B=0.1032422269160612D+0
|
||
|
V=0.6048693376081110D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.5215860931591575D+0
|
||
|
B=0.1566322094006254D+0
|
||
|
V=0.6202362317732461D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.5758202499099271D+0
|
||
|
B=0.2098082827491099D+0
|
||
|
V=0.6299005328403779D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6259893683876795D+0
|
||
|
B=0.2618824114553391D+0
|
||
|
V=0.6347722390609353D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.5313795124811891D+0
|
||
|
B=0.5263245019338556D-1
|
||
|
V=0.6203778981238834D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.5893317955931995D+0
|
||
|
B=0.1061059730982005D+0
|
||
|
V=0.6308414671239979D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6426246321215801D+0
|
||
|
B=0.1594171564034221D+0
|
||
|
V=0.6362706466959498D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6511904367376113D+0
|
||
|
B=0.5354789536565540D-1
|
||
|
V=0.6375414170333233D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
N=N-1
|
||
|
RETURN
|
||
|
END
|
||
|
SUBROUTINE LD2030(X,Y,Z,W,N)
|
||
|
DOUBLE PRECISION X(2030)
|
||
|
DOUBLE PRECISION Y(2030)
|
||
|
DOUBLE PRECISION Z(2030)
|
||
|
DOUBLE PRECISION W(2030)
|
||
|
INTEGER N
|
||
|
DOUBLE PRECISION A,B,V
|
||
|
CVW
|
||
|
CVW LEBEDEV 2030-POINT ANGULAR GRID
|
||
|
CVW
|
||
|
chvd
|
||
|
chvd This subroutine is part of a set of subroutines that generate
|
||
|
chvd Lebedev grids [1-6] for integration on a sphere. The original
|
||
|
chvd C-code [1] was kindly provided by Dr. Dmitri N. Laikov and
|
||
|
chvd translated into fortran by Dr. Christoph van Wuellen.
|
||
|
chvd This subroutine was translated using a C to fortran77 conversion
|
||
|
chvd tool written by Dr. Christoph van Wuellen.
|
||
|
chvd
|
||
|
chvd Users of this code are asked to include reference [1] in their
|
||
|
chvd publications, and in the user- and programmers-manuals
|
||
|
chvd describing their codes.
|
||
|
chvd
|
||
|
chvd This code was distributed through CCL (http://www.ccl.net/).
|
||
|
chvd
|
||
|
chvd [1] V.I. Lebedev, and D.N. Laikov
|
||
|
chvd "A quadrature formula for the sphere of the 131st
|
||
|
chvd algebraic order of accuracy"
|
||
|
chvd Doklady Mathematics, Vol. 59, No. 3, 1999, pp. 477-481.
|
||
|
chvd
|
||
|
chvd [2] V.I. Lebedev
|
||
|
chvd "A quadrature formula for the sphere of 59th algebraic
|
||
|
chvd order of accuracy"
|
||
|
chvd Russian Acad. Sci. Dokl. Math., Vol. 50, 1995, pp. 283-286.
|
||
|
chvd
|
||
|
chvd [3] V.I. Lebedev, and A.L. Skorokhodov
|
||
|
chvd "Quadrature formulas of orders 41, 47, and 53 for the sphere"
|
||
|
chvd Russian Acad. Sci. Dokl. Math., Vol. 45, 1992, pp. 587-592.
|
||
|
chvd
|
||
|
chvd [4] V.I. Lebedev
|
||
|
chvd "Spherical quadrature formulas exact to orders 25-29"
|
||
|
chvd Siberian Mathematical Journal, Vol. 18, 1977, pp. 99-107.
|
||
|
chvd
|
||
|
chvd [5] V.I. Lebedev
|
||
|
chvd "Quadratures on a sphere"
|
||
|
chvd Computational Mathematics and Mathematical Physics, Vol. 16,
|
||
|
chvd 1976, pp. 10-24.
|
||
|
chvd
|
||
|
chvd [6] V.I. Lebedev
|
||
|
chvd "Values of the nodes and weights of ninth to seventeenth
|
||
|
chvd order Gauss-Markov quadrature formulae invariant under the
|
||
|
chvd octahedron group with inversion"
|
||
|
chvd Computational Mathematics and Mathematical Physics, Vol. 15,
|
||
|
chvd 1975, pp. 44-51.
|
||
|
chvd
|
||
|
N=1
|
||
|
V=0.4656031899197431D-4
|
||
|
Call GEN_OH( 1, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
V=0.5421549195295507D-3
|
||
|
Call GEN_OH( 3, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.2540835336814348D-1
|
||
|
V=0.1778522133346553D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6399322800504915D-1
|
||
|
V=0.2811325405682796D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.1088269469804125D+0
|
||
|
V=0.3548896312631459D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.1570670798818287D+0
|
||
|
V=0.4090310897173364D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.2071163932282514D+0
|
||
|
V=0.4493286134169965D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.2578914044450844D+0
|
||
|
V=0.4793728447962723D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.3085687558169623D+0
|
||
|
V=0.5015415319164265D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.3584719706267024D+0
|
||
|
V=0.5175127372677937D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.4070135594428709D+0
|
||
|
V=0.5285522262081019D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.4536618626222638D+0
|
||
|
V=0.5356832703713962D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.4979195686463577D+0
|
||
|
V=0.5397914736175170D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.5393075111126999D+0
|
||
|
V=0.5416899441599930D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6115617676843916D+0
|
||
|
V=0.5419308476889938D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6414308435160159D+0
|
||
|
V=0.5416936902030596D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6664099412721607D+0
|
||
|
V=0.5419544338703164D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6859161771214913D+0
|
||
|
V=0.5428983656630975D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6993625593503890D+0
|
||
|
V=0.5442286500098193D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.7062393387719380D+0
|
||
|
V=0.5452250345057301D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.7479028168349763D-1
|
||
|
V=0.2568002497728530D-3
|
||
|
Call GEN_OH( 5, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.1848951153969366D+0
|
||
|
V=0.3827211700292145D-3
|
||
|
Call GEN_OH( 5, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.3059529066581305D+0
|
||
|
V=0.4579491561917824D-3
|
||
|
Call GEN_OH( 5, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.4285556101021362D+0
|
||
|
V=0.5042003969083574D-3
|
||
|
Call GEN_OH( 5, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.5468758653496526D+0
|
||
|
V=0.5312708889976025D-3
|
||
|
Call GEN_OH( 5, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6565821978343439D+0
|
||
|
V=0.5438401790747117D-3
|
||
|
Call GEN_OH( 5, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.1253901572367117D+0
|
||
|
B=0.3681917226439641D-1
|
||
|
V=0.3316041873197344D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.1775721510383941D+0
|
||
|
B=0.7982487607213301D-1
|
||
|
V=0.3899113567153771D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.2305693358216114D+0
|
||
|
B=0.1264640966592335D+0
|
||
|
V=0.4343343327201309D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.2836502845992063D+0
|
||
|
B=0.1751585683418957D+0
|
||
|
V=0.4679415262318919D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.3361794746232590D+0
|
||
|
B=0.2247995907632670D+0
|
||
|
V=0.4930847981631031D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.3875979172264824D+0
|
||
|
B=0.2745299257422246D+0
|
||
|
V=0.5115031867540091D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.4374019316999074D+0
|
||
|
B=0.3236373482441118D+0
|
||
|
V=0.5245217148457367D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.4851275843340022D+0
|
||
|
B=0.3714967859436741D+0
|
||
|
V=0.5332041499895321D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.5303391803806868D+0
|
||
|
B=0.4175353646321745D+0
|
||
|
V=0.5384583126021542D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.5726197380596287D+0
|
||
|
B=0.4612084406355461D+0
|
||
|
V=0.5411067210798852D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.2431520732564863D+0
|
||
|
B=0.4258040133043952D-1
|
||
|
V=0.4259797391468714D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.3002096800895869D+0
|
||
|
B=0.8869424306722721D-1
|
||
|
V=0.4604931368460021D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.3558554457457432D+0
|
||
|
B=0.1368811706510655D+0
|
||
|
V=0.4871814878255202D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.4097782537048887D+0
|
||
|
B=0.1860739985015033D+0
|
||
|
V=0.5072242910074885D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.4616337666067458D+0
|
||
|
B=0.2354235077395853D+0
|
||
|
V=0.5217069845235350D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.5110707008417874D+0
|
||
|
B=0.2842074921347011D+0
|
||
|
V=0.5315785966280310D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.5577415286163795D+0
|
||
|
B=0.3317784414984102D+0
|
||
|
V=0.5376833708758905D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6013060431366950D+0
|
||
|
B=0.3775299002040700D+0
|
||
|
V=0.5408032092069521D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.3661596767261781D+0
|
||
|
B=0.4599367887164592D-1
|
||
|
V=0.4842744917904866D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.4237633153506581D+0
|
||
|
B=0.9404893773654421D-1
|
||
|
V=0.5048926076188130D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.4786328454658452D+0
|
||
|
B=0.1431377109091971D+0
|
||
|
V=0.5202607980478373D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.5305702076789774D+0
|
||
|
B=0.1924186388843570D+0
|
||
|
V=0.5309932388325743D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.5793436224231788D+0
|
||
|
B=0.2411590944775190D+0
|
||
|
V=0.5377419770895208D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6247069017094747D+0
|
||
|
B=0.2886871491583605D+0
|
||
|
V=0.5411696331677717D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.4874315552535204D+0
|
||
|
B=0.4804978774953206D-1
|
||
|
V=0.5197996293282420D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.5427337322059053D+0
|
||
|
B=0.9716857199366665D-1
|
||
|
V=0.5311120836622945D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.5943493747246700D+0
|
||
|
B=0.1465205839795055D+0
|
||
|
V=0.5384309319956951D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6421314033564943D+0
|
||
|
B=0.1953579449803574D+0
|
||
|
V=0.5421859504051886D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6020628374713980D+0
|
||
|
B=0.4916375015738108D-1
|
||
|
V=0.5390948355046314D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6529222529856881D+0
|
||
|
B=0.9861621540127005D-1
|
||
|
V=0.5433312705027845D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
N=N-1
|
||
|
RETURN
|
||
|
END
|
||
|
SUBROUTINE LD2354(X,Y,Z,W,N)
|
||
|
DOUBLE PRECISION X(2354)
|
||
|
DOUBLE PRECISION Y(2354)
|
||
|
DOUBLE PRECISION Z(2354)
|
||
|
DOUBLE PRECISION W(2354)
|
||
|
INTEGER N
|
||
|
DOUBLE PRECISION A,B,V
|
||
|
CVW
|
||
|
CVW LEBEDEV 2354-POINT ANGULAR GRID
|
||
|
CVW
|
||
|
chvd
|
||
|
chvd This subroutine is part of a set of subroutines that generate
|
||
|
chvd Lebedev grids [1-6] for integration on a sphere. The original
|
||
|
chvd C-code [1] was kindly provided by Dr. Dmitri N. Laikov and
|
||
|
chvd translated into fortran by Dr. Christoph van Wuellen.
|
||
|
chvd This subroutine was translated using a C to fortran77 conversion
|
||
|
chvd tool written by Dr. Christoph van Wuellen.
|
||
|
chvd
|
||
|
chvd Users of this code are asked to include reference [1] in their
|
||
|
chvd publications, and in the user- and programmers-manuals
|
||
|
chvd describing their codes.
|
||
|
chvd
|
||
|
chvd This code was distributed through CCL (http://www.ccl.net/).
|
||
|
chvd
|
||
|
chvd [1] V.I. Lebedev, and D.N. Laikov
|
||
|
chvd "A quadrature formula for the sphere of the 131st
|
||
|
chvd algebraic order of accuracy"
|
||
|
chvd Doklady Mathematics, Vol. 59, No. 3, 1999, pp. 477-481.
|
||
|
chvd
|
||
|
chvd [2] V.I. Lebedev
|
||
|
chvd "A quadrature formula for the sphere of 59th algebraic
|
||
|
chvd order of accuracy"
|
||
|
chvd Russian Acad. Sci. Dokl. Math., Vol. 50, 1995, pp. 283-286.
|
||
|
chvd
|
||
|
chvd [3] V.I. Lebedev, and A.L. Skorokhodov
|
||
|
chvd "Quadrature formulas of orders 41, 47, and 53 for the sphere"
|
||
|
chvd Russian Acad. Sci. Dokl. Math., Vol. 45, 1992, pp. 587-592.
|
||
|
chvd
|
||
|
chvd [4] V.I. Lebedev
|
||
|
chvd "Spherical quadrature formulas exact to orders 25-29"
|
||
|
chvd Siberian Mathematical Journal, Vol. 18, 1977, pp. 99-107.
|
||
|
chvd
|
||
|
chvd [5] V.I. Lebedev
|
||
|
chvd "Quadratures on a sphere"
|
||
|
chvd Computational Mathematics and Mathematical Physics, Vol. 16,
|
||
|
chvd 1976, pp. 10-24.
|
||
|
chvd
|
||
|
chvd [6] V.I. Lebedev
|
||
|
chvd "Values of the nodes and weights of ninth to seventeenth
|
||
|
chvd order Gauss-Markov quadrature formulae invariant under the
|
||
|
chvd octahedron group with inversion"
|
||
|
chvd Computational Mathematics and Mathematical Physics, Vol. 15,
|
||
|
chvd 1975, pp. 44-51.
|
||
|
chvd
|
||
|
N=1
|
||
|
V=0.3922616270665292D-4
|
||
|
Call GEN_OH( 1, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
V=0.4703831750854424D-3
|
||
|
Call GEN_OH( 2, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
V=0.4678202801282136D-3
|
||
|
Call GEN_OH( 3, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.2290024646530589D-1
|
||
|
V=0.1437832228979900D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.5779086652271284D-1
|
||
|
V=0.2303572493577644D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.9863103576375984D-1
|
||
|
V=0.2933110752447454D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.1428155792982185D+0
|
||
|
V=0.3402905998359838D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.1888978116601463D+0
|
||
|
V=0.3759138466870372D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.2359091682970210D+0
|
||
|
V=0.4030638447899798D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.2831228833706171D+0
|
||
|
V=0.4236591432242211D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.3299495857966693D+0
|
||
|
V=0.4390522656946746D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.3758840802660796D+0
|
||
|
V=0.4502523466626247D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.4204751831009480D+0
|
||
|
V=0.4580577727783541D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.4633068518751051D+0
|
||
|
V=0.4631391616615899D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.5039849474507313D+0
|
||
|
V=0.4660928953698676D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.5421265793440747D+0
|
||
|
V=0.4674751807936953D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6092660230557310D+0
|
||
|
V=0.4676414903932920D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6374654204984869D+0
|
||
|
V=0.4674086492347870D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6615136472609892D+0
|
||
|
V=0.4674928539483207D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6809487285958127D+0
|
||
|
V=0.4680748979686447D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6952980021665196D+0
|
||
|
V=0.4690449806389040D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.7041245497695400D+0
|
||
|
V=0.4699877075860818D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6744033088306065D-1
|
||
|
V=0.2099942281069176D-3
|
||
|
Call GEN_OH( 5, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.1678684485334166D+0
|
||
|
V=0.3172269150712804D-3
|
||
|
Call GEN_OH( 5, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.2793559049539613D+0
|
||
|
V=0.3832051358546523D-3
|
||
|
Call GEN_OH( 5, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.3935264218057639D+0
|
||
|
V=0.4252193818146985D-3
|
||
|
Call GEN_OH( 5, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.5052629268232558D+0
|
||
|
V=0.4513807963755000D-3
|
||
|
Call GEN_OH( 5, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6107905315437531D+0
|
||
|
V=0.4657797469114178D-3
|
||
|
Call GEN_OH( 5, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.1135081039843524D+0
|
||
|
B=0.3331954884662588D-1
|
||
|
V=0.2733362800522836D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.1612866626099378D+0
|
||
|
B=0.7247167465436538D-1
|
||
|
V=0.3235485368463559D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.2100786550168205D+0
|
||
|
B=0.1151539110849745D+0
|
||
|
V=0.3624908726013453D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.2592282009459942D+0
|
||
|
B=0.1599491097143677D+0
|
||
|
V=0.3925540070712828D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.3081740561320203D+0
|
||
|
B=0.2058699956028027D+0
|
||
|
V=0.4156129781116235D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.3564289781578164D+0
|
||
|
B=0.2521624953502911D+0
|
||
|
V=0.4330644984623263D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.4035587288240703D+0
|
||
|
B=0.2982090785797674D+0
|
||
|
V=0.4459677725921312D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.4491671196373903D+0
|
||
|
B=0.3434762087235733D+0
|
||
|
V=0.4551593004456795D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.4928854782917489D+0
|
||
|
B=0.3874831357203437D+0
|
||
|
V=0.4613341462749918D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.5343646791958988D+0
|
||
|
B=0.4297814821746926D+0
|
||
|
V=0.4651019618269806D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.5732683216530990D+0
|
||
|
B=0.4699402260943537D+0
|
||
|
V=0.4670249536100625D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.2214131583218986D+0
|
||
|
B=0.3873602040643895D-1
|
||
|
V=0.3549555576441708D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.2741796504750071D+0
|
||
|
B=0.8089496256902013D-1
|
||
|
V=0.3856108245249010D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.3259797439149485D+0
|
||
|
B=0.1251732177620872D+0
|
||
|
V=0.4098622845756882D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.3765441148826891D+0
|
||
|
B=0.1706260286403185D+0
|
||
|
V=0.4286328604268950D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.4255773574530558D+0
|
||
|
B=0.2165115147300408D+0
|
||
|
V=0.4427802198993945D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.4727795117058430D+0
|
||
|
B=0.2622089812225259D+0
|
||
|
V=0.4530473511488561D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.5178546895819012D+0
|
||
|
B=0.3071721431296201D+0
|
||
|
V=0.4600805475703138D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.5605141192097460D+0
|
||
|
B=0.3508998998801138D+0
|
||
|
V=0.4644599059958017D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6004763319352512D+0
|
||
|
B=0.3929160876166931D+0
|
||
|
V=0.4667274455712508D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.3352842634946949D+0
|
||
|
B=0.4202563457288019D-1
|
||
|
V=0.4069360518020356D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.3891971629814670D+0
|
||
|
B=0.8614309758870850D-1
|
||
|
V=0.4260442819919195D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.4409875565542281D+0
|
||
|
B=0.1314500879380001D+0
|
||
|
V=0.4408678508029063D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.4904893058592484D+0
|
||
|
B=0.1772189657383859D+0
|
||
|
V=0.4518748115548597D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.5375056138769549D+0
|
||
|
B=0.2228277110050294D+0
|
||
|
V=0.4595564875375116D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.5818255708669969D+0
|
||
|
B=0.2677179935014386D+0
|
||
|
V=0.4643988774315846D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6232334858144959D+0
|
||
|
B=0.3113675035544165D+0
|
||
|
V=0.4668827491646946D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.4489485354492058D+0
|
||
|
B=0.4409162378368174D-1
|
||
|
V=0.4400541823741973D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.5015136875933150D+0
|
||
|
B=0.8939009917748489D-1
|
||
|
V=0.4514512890193797D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.5511300550512623D+0
|
||
|
B=0.1351806029383365D+0
|
||
|
V=0.4596198627347549D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.5976720409858000D+0
|
||
|
B=0.1808370355053196D+0
|
||
|
V=0.4648659016801781D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6409956378989354D+0
|
||
|
B=0.2257852192301602D+0
|
||
|
V=0.4675502017157673D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.5581222330827514D+0
|
||
|
B=0.4532173421637160D-1
|
||
|
V=0.4598494476455523D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6074705984161695D+0
|
||
|
B=0.9117488031840314D-1
|
||
|
V=0.4654916955152048D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6532272537379033D+0
|
||
|
B=0.1369294213140155D+0
|
||
|
V=0.4684709779505137D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6594761494500487D+0
|
||
|
B=0.4589901487275583D-1
|
||
|
V=0.4691445539106986D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
N=N-1
|
||
|
RETURN
|
||
|
END
|
||
|
SUBROUTINE LD2702(X,Y,Z,W,N)
|
||
|
DOUBLE PRECISION X(2702)
|
||
|
DOUBLE PRECISION Y(2702)
|
||
|
DOUBLE PRECISION Z(2702)
|
||
|
DOUBLE PRECISION W(2702)
|
||
|
INTEGER N
|
||
|
DOUBLE PRECISION A,B,V
|
||
|
CVW
|
||
|
CVW LEBEDEV 2702-POINT ANGULAR GRID
|
||
|
CVW
|
||
|
chvd
|
||
|
chvd This subroutine is part of a set of subroutines that generate
|
||
|
chvd Lebedev grids [1-6] for integration on a sphere. The original
|
||
|
chvd C-code [1] was kindly provided by Dr. Dmitri N. Laikov and
|
||
|
chvd translated into fortran by Dr. Christoph van Wuellen.
|
||
|
chvd This subroutine was translated using a C to fortran77 conversion
|
||
|
chvd tool written by Dr. Christoph van Wuellen.
|
||
|
chvd
|
||
|
chvd Users of this code are asked to include reference [1] in their
|
||
|
chvd publications, and in the user- and programmers-manuals
|
||
|
chvd describing their codes.
|
||
|
chvd
|
||
|
chvd This code was distributed through CCL (http://www.ccl.net/).
|
||
|
chvd
|
||
|
chvd [1] V.I. Lebedev, and D.N. Laikov
|
||
|
chvd "A quadrature formula for the sphere of the 131st
|
||
|
chvd algebraic order of accuracy"
|
||
|
chvd Doklady Mathematics, Vol. 59, No. 3, 1999, pp. 477-481.
|
||
|
chvd
|
||
|
chvd [2] V.I. Lebedev
|
||
|
chvd "A quadrature formula for the sphere of 59th algebraic
|
||
|
chvd order of accuracy"
|
||
|
chvd Russian Acad. Sci. Dokl. Math., Vol. 50, 1995, pp. 283-286.
|
||
|
chvd
|
||
|
chvd [3] V.I. Lebedev, and A.L. Skorokhodov
|
||
|
chvd "Quadrature formulas of orders 41, 47, and 53 for the sphere"
|
||
|
chvd Russian Acad. Sci. Dokl. Math., Vol. 45, 1992, pp. 587-592.
|
||
|
chvd
|
||
|
chvd [4] V.I. Lebedev
|
||
|
chvd "Spherical quadrature formulas exact to orders 25-29"
|
||
|
chvd Siberian Mathematical Journal, Vol. 18, 1977, pp. 99-107.
|
||
|
chvd
|
||
|
chvd [5] V.I. Lebedev
|
||
|
chvd "Quadratures on a sphere"
|
||
|
chvd Computational Mathematics and Mathematical Physics, Vol. 16,
|
||
|
chvd 1976, pp. 10-24.
|
||
|
chvd
|
||
|
chvd [6] V.I. Lebedev
|
||
|
chvd "Values of the nodes and weights of ninth to seventeenth
|
||
|
chvd order Gauss-Markov quadrature formulae invariant under the
|
||
|
chvd octahedron group with inversion"
|
||
|
chvd Computational Mathematics and Mathematical Physics, Vol. 15,
|
||
|
chvd 1975, pp. 44-51.
|
||
|
chvd
|
||
|
N=1
|
||
|
V=0.2998675149888161D-4
|
||
|
Call GEN_OH( 1, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
V=0.4077860529495355D-3
|
||
|
Call GEN_OH( 3, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.2065562538818703D-1
|
||
|
V=0.1185349192520667D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.5250918173022379D-1
|
||
|
V=0.1913408643425751D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.8993480082038376D-1
|
||
|
V=0.2452886577209897D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.1306023924436019D+0
|
||
|
V=0.2862408183288702D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.1732060388531418D+0
|
||
|
V=0.3178032258257357D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.2168727084820249D+0
|
||
|
V=0.3422945667633690D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.2609528309173586D+0
|
||
|
V=0.3612790520235922D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.3049252927938952D+0
|
||
|
V=0.3758638229818521D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.3483484138084404D+0
|
||
|
V=0.3868711798859953D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.3908321549106406D+0
|
||
|
V=0.3949429933189938D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.4320210071894814D+0
|
||
|
V=0.4006068107541156D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.4715824795890053D+0
|
||
|
V=0.4043192149672723D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.5091984794078453D+0
|
||
|
V=0.4064947495808078D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.5445580145650803D+0
|
||
|
V=0.4075245619813152D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6072575796841768D+0
|
||
|
V=0.4076423540893566D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6339484505755803D+0
|
||
|
V=0.4074280862251555D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6570718257486958D+0
|
||
|
V=0.4074163756012244D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6762557330090709D+0
|
||
|
V=0.4077647795071246D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6911161696923790D+0
|
||
|
V=0.4084517552782530D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.7012841911659961D+0
|
||
|
V=0.4092468459224052D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.7064559272410020D+0
|
||
|
V=0.4097872687240906D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6123554989894765D-1
|
||
|
V=0.1738986811745028D-3
|
||
|
Call GEN_OH( 5, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.1533070348312393D+0
|
||
|
V=0.2659616045280191D-3
|
||
|
Call GEN_OH( 5, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.2563902605244206D+0
|
||
|
V=0.3240596008171533D-3
|
||
|
Call GEN_OH( 5, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.3629346991663361D+0
|
||
|
V=0.3621195964432943D-3
|
||
|
Call GEN_OH( 5, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.4683949968987538D+0
|
||
|
V=0.3868838330760539D-3
|
||
|
Call GEN_OH( 5, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.5694479240657952D+0
|
||
|
V=0.4018911532693111D-3
|
||
|
Call GEN_OH( 5, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6634465430993955D+0
|
||
|
V=0.4089929432983252D-3
|
||
|
Call GEN_OH( 5, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.1033958573552305D+0
|
||
|
B=0.3034544009063584D-1
|
||
|
V=0.2279907527706409D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.1473521412414395D+0
|
||
|
B=0.6618803044247135D-1
|
||
|
V=0.2715205490578897D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.1924552158705967D+0
|
||
|
B=0.1054431128987715D+0
|
||
|
V=0.3057917896703976D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.2381094362890328D+0
|
||
|
B=0.1468263551238858D+0
|
||
|
V=0.3326913052452555D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.2838121707936760D+0
|
||
|
B=0.1894486108187886D+0
|
||
|
V=0.3537334711890037D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.3291323133373415D+0
|
||
|
B=0.2326374238761579D+0
|
||
|
V=0.3700567500783129D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.3736896978741460D+0
|
||
|
B=0.2758485808485768D+0
|
||
|
V=0.3825245372589122D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.4171406040760013D+0
|
||
|
B=0.3186179331996921D+0
|
||
|
V=0.3918125171518296D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.4591677985256915D+0
|
||
|
B=0.3605329796303794D+0
|
||
|
V=0.3984720419937579D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.4994733831718418D+0
|
||
|
B=0.4012147253586509D+0
|
||
|
V=0.4029746003338211D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.5377731830445096D+0
|
||
|
B=0.4403050025570692D+0
|
||
|
V=0.4057428632156627D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.5737917830001331D+0
|
||
|
B=0.4774565904277483D+0
|
||
|
V=0.4071719274114857D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.2027323586271389D+0
|
||
|
B=0.3544122504976147D-1
|
||
|
V=0.2990236950664119D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.2516942375187273D+0
|
||
|
B=0.7418304388646328D-1
|
||
|
V=0.3262951734212878D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.3000227995257181D+0
|
||
|
B=0.1150502745727186D+0
|
||
|
V=0.3482634608242413D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.3474806691046342D+0
|
||
|
B=0.1571963371209364D+0
|
||
|
V=0.3656596681700892D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.3938103180359209D+0
|
||
|
B=0.1999631877247100D+0
|
||
|
V=0.3791740467794218D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.4387519590455703D+0
|
||
|
B=0.2428073457846535D+0
|
||
|
V=0.3894034450156905D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.4820503960077787D+0
|
||
|
B=0.2852575132906155D+0
|
||
|
V=0.3968600245508371D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.5234573778475101D+0
|
||
|
B=0.3268884208674639D+0
|
||
|
V=0.4019931351420050D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.5627318647235282D+0
|
||
|
B=0.3673033321675939D+0
|
||
|
V=0.4052108801278599D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.5996390607156954D+0
|
||
|
B=0.4061211551830290D+0
|
||
|
V=0.4068978613940934D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.3084780753791947D+0
|
||
|
B=0.3860125523100059D-1
|
||
|
V=0.3454275351319704D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.3589988275920223D+0
|
||
|
B=0.7928938987104867D-1
|
||
|
V=0.3629963537007920D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.4078628415881973D+0
|
||
|
B=0.1212614643030087D+0
|
||
|
V=0.3770187233889873D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.4549287258889735D+0
|
||
|
B=0.1638770827382693D+0
|
||
|
V=0.3878608613694378D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.5000278512957279D+0
|
||
|
B=0.2065965798260176D+0
|
||
|
V=0.3959065270221274D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.5429785044928199D+0
|
||
|
B=0.2489436378852235D+0
|
||
|
V=0.4015286975463570D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.5835939850491711D+0
|
||
|
B=0.2904811368946891D+0
|
||
|
V=0.4050866785614717D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6216870353444856D+0
|
||
|
B=0.3307941957666609D+0
|
||
|
V=0.4069320185051913D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.4151104662709091D+0
|
||
|
B=0.4064829146052554D-1
|
||
|
V=0.3760120964062763D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.4649804275009218D+0
|
||
|
B=0.8258424547294755D-1
|
||
|
V=0.3870969564418064D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.5124695757009662D+0
|
||
|
B=0.1251841962027289D+0
|
||
|
V=0.3955287790534055D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.5574711100606224D+0
|
||
|
B=0.1679107505976331D+0
|
||
|
V=0.4015361911302668D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.5998597333287227D+0
|
||
|
B=0.2102805057358715D+0
|
||
|
V=0.4053836986719548D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6395007148516600D+0
|
||
|
B=0.2518418087774107D+0
|
||
|
V=0.4073578673299117D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.5188456224746252D+0
|
||
|
B=0.4194321676077518D-1
|
||
|
V=0.3954628379231406D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.5664190707942778D+0
|
||
|
B=0.8457661551921499D-1
|
||
|
V=0.4017645508847530D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6110464353283153D+0
|
||
|
B=0.1273652932519396D+0
|
||
|
V=0.4059030348651293D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6526430302051563D+0
|
||
|
B=0.1698173239076354D+0
|
||
|
V=0.4080565809484880D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6167551880377548D+0
|
||
|
B=0.4266398851548864D-1
|
||
|
V=0.4063018753664651D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6607195418355383D+0
|
||
|
B=0.8551925814238349D-1
|
||
|
V=0.4087191292799671D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
N=N-1
|
||
|
RETURN
|
||
|
END
|
||
|
SUBROUTINE LD3074(X,Y,Z,W,N)
|
||
|
DOUBLE PRECISION X(3074)
|
||
|
DOUBLE PRECISION Y(3074)
|
||
|
DOUBLE PRECISION Z(3074)
|
||
|
DOUBLE PRECISION W(3074)
|
||
|
INTEGER N
|
||
|
DOUBLE PRECISION A,B,V
|
||
|
CVW
|
||
|
CVW LEBEDEV 3074-POINT ANGULAR GRID
|
||
|
CVW
|
||
|
chvd
|
||
|
chvd This subroutine is part of a set of subroutines that generate
|
||
|
chvd Lebedev grids [1-6] for integration on a sphere. The original
|
||
|
chvd C-code [1] was kindly provided by Dr. Dmitri N. Laikov and
|
||
|
chvd translated into fortran by Dr. Christoph van Wuellen.
|
||
|
chvd This subroutine was translated using a C to fortran77 conversion
|
||
|
chvd tool written by Dr. Christoph van Wuellen.
|
||
|
chvd
|
||
|
chvd Users of this code are asked to include reference [1] in their
|
||
|
chvd publications, and in the user- and programmers-manuals
|
||
|
chvd describing their codes.
|
||
|
chvd
|
||
|
chvd This code was distributed through CCL (http://www.ccl.net/).
|
||
|
chvd
|
||
|
chvd [1] V.I. Lebedev, and D.N. Laikov
|
||
|
chvd "A quadrature formula for the sphere of the 131st
|
||
|
chvd algebraic order of accuracy"
|
||
|
chvd Doklady Mathematics, Vol. 59, No. 3, 1999, pp. 477-481.
|
||
|
chvd
|
||
|
chvd [2] V.I. Lebedev
|
||
|
chvd "A quadrature formula for the sphere of 59th algebraic
|
||
|
chvd order of accuracy"
|
||
|
chvd Russian Acad. Sci. Dokl. Math., Vol. 50, 1995, pp. 283-286.
|
||
|
chvd
|
||
|
chvd [3] V.I. Lebedev, and A.L. Skorokhodov
|
||
|
chvd "Quadrature formulas of orders 41, 47, and 53 for the sphere"
|
||
|
chvd Russian Acad. Sci. Dokl. Math., Vol. 45, 1992, pp. 587-592.
|
||
|
chvd
|
||
|
chvd [4] V.I. Lebedev
|
||
|
chvd "Spherical quadrature formulas exact to orders 25-29"
|
||
|
chvd Siberian Mathematical Journal, Vol. 18, 1977, pp. 99-107.
|
||
|
chvd
|
||
|
chvd [5] V.I. Lebedev
|
||
|
chvd "Quadratures on a sphere"
|
||
|
chvd Computational Mathematics and Mathematical Physics, Vol. 16,
|
||
|
chvd 1976, pp. 10-24.
|
||
|
chvd
|
||
|
chvd [6] V.I. Lebedev
|
||
|
chvd "Values of the nodes and weights of ninth to seventeenth
|
||
|
chvd order Gauss-Markov quadrature formulae invariant under the
|
||
|
chvd octahedron group with inversion"
|
||
|
chvd Computational Mathematics and Mathematical Physics, Vol. 15,
|
||
|
chvd 1975, pp. 44-51.
|
||
|
chvd
|
||
|
N=1
|
||
|
V=0.2599095953754734D-4
|
||
|
Call GEN_OH( 1, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
V=0.3603134089687541D-3
|
||
|
Call GEN_OH( 2, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
V=0.3586067974412447D-3
|
||
|
Call GEN_OH( 3, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.1886108518723392D-1
|
||
|
V=0.9831528474385880D-4
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.4800217244625303D-1
|
||
|
V=0.1605023107954450D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.8244922058397242D-1
|
||
|
V=0.2072200131464099D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.1200408362484023D+0
|
||
|
V=0.2431297618814187D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.1595773530809965D+0
|
||
|
V=0.2711819064496707D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.2002635973434064D+0
|
||
|
V=0.2932762038321116D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.2415127590139982D+0
|
||
|
V=0.3107032514197368D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.2828584158458477D+0
|
||
|
V=0.3243808058921213D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.3239091015338138D+0
|
||
|
V=0.3349899091374030D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.3643225097962194D+0
|
||
|
V=0.3430580688505218D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.4037897083691802D+0
|
||
|
V=0.3490124109290343D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.4420247515194127D+0
|
||
|
V=0.3532148948561955D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.4787572538464938D+0
|
||
|
V=0.3559862669062833D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.5137265251275234D+0
|
||
|
V=0.3576224317551411D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.5466764056654611D+0
|
||
|
V=0.3584050533086076D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6054859420813535D+0
|
||
|
V=0.3584903581373224D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6308106701764562D+0
|
||
|
V=0.3582991879040586D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6530369230179584D+0
|
||
|
V=0.3582371187963125D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6718609524611158D+0
|
||
|
V=0.3584353631122350D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6869676499894013D+0
|
||
|
V=0.3589120166517785D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6980467077240748D+0
|
||
|
V=0.3595445704531601D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.7048241721250522D+0
|
||
|
V=0.3600943557111074D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.5591105222058232D-1
|
||
|
V=0.1456447096742039D-3
|
||
|
Call GEN_OH( 5, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.1407384078513916D+0
|
||
|
V=0.2252370188283782D-3
|
||
|
Call GEN_OH( 5, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.2364035438976309D+0
|
||
|
V=0.2766135443474897D-3
|
||
|
Call GEN_OH( 5, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.3360602737818170D+0
|
||
|
V=0.3110729491500851D-3
|
||
|
Call GEN_OH( 5, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.4356292630054665D+0
|
||
|
V=0.3342506712303391D-3
|
||
|
Call GEN_OH( 5, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.5321569415256174D+0
|
||
|
V=0.3491981834026860D-3
|
||
|
Call GEN_OH( 5, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6232956305040554D+0
|
||
|
V=0.3576003604348932D-3
|
||
|
Call GEN_OH( 5, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.9469870086838469D-1
|
||
|
B=0.2778748387309470D-1
|
||
|
V=0.1921921305788564D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.1353170300568141D+0
|
||
|
B=0.6076569878628364D-1
|
||
|
V=0.2301458216495632D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.1771679481726077D+0
|
||
|
B=0.9703072762711040D-1
|
||
|
V=0.2604248549522893D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.2197066664231751D+0
|
||
|
B=0.1354112458524762D+0
|
||
|
V=0.2845275425870697D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.2624783557374927D+0
|
||
|
B=0.1750996479744100D+0
|
||
|
V=0.3036870897974840D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.3050969521214442D+0
|
||
|
B=0.2154896907449802D+0
|
||
|
V=0.3188414832298066D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.3472252637196021D+0
|
||
|
B=0.2560954625740152D+0
|
||
|
V=0.3307046414722089D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.3885610219026360D+0
|
||
|
B=0.2965070050624096D+0
|
||
|
V=0.3398330969031360D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.4288273776062765D+0
|
||
|
B=0.3363641488734497D+0
|
||
|
V=0.3466757899705373D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.4677662471302948D+0
|
||
|
B=0.3753400029836788D+0
|
||
|
V=0.3516095923230054D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.5051333589553359D+0
|
||
|
B=0.4131297522144286D+0
|
||
|
V=0.3549645184048486D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.5406942145810492D+0
|
||
|
B=0.4494423776081795D+0
|
||
|
V=0.3570415969441392D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.5742204122576457D+0
|
||
|
B=0.4839938958841502D+0
|
||
|
V=0.3581251798496118D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.1865407027225188D+0
|
||
|
B=0.3259144851070796D-1
|
||
|
V=0.2543491329913348D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.2321186453689432D+0
|
||
|
B=0.6835679505297343D-1
|
||
|
V=0.2786711051330776D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.2773159142523882D+0
|
||
|
B=0.1062284864451989D+0
|
||
|
V=0.2985552361083679D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.3219200192237254D+0
|
||
|
B=0.1454404409323047D+0
|
||
|
V=0.3145867929154039D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.3657032593944029D+0
|
||
|
B=0.1854018282582510D+0
|
||
|
V=0.3273290662067609D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.4084376778363622D+0
|
||
|
B=0.2256297412014750D+0
|
||
|
V=0.3372705511943501D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.4499004945751427D+0
|
||
|
B=0.2657104425000896D+0
|
||
|
V=0.3448274437851510D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.4898758141326335D+0
|
||
|
B=0.3052755487631557D+0
|
||
|
V=0.3503592783048583D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.5281547442266309D+0
|
||
|
B=0.3439863920645423D+0
|
||
|
V=0.3541854792663162D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.5645346989813992D+0
|
||
|
B=0.3815229456121914D+0
|
||
|
V=0.3565995517909428D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.5988181252159848D+0
|
||
|
B=0.4175752420966734D+0
|
||
|
V=0.3578802078302898D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.2850425424471603D+0
|
||
|
B=0.3562149509862536D-1
|
||
|
V=0.2958644592860982D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.3324619433027876D+0
|
||
|
B=0.7330318886871096D-1
|
||
|
V=0.3119548129116835D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.3785848333076282D+0
|
||
|
B=0.1123226296008472D+0
|
||
|
V=0.3250745225005984D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.4232891028562115D+0
|
||
|
B=0.1521084193337708D+0
|
||
|
V=0.3355153415935208D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.4664287050829722D+0
|
||
|
B=0.1921844459223610D+0
|
||
|
V=0.3435847568549328D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.5078458493735726D+0
|
||
|
B=0.2321360989678303D+0
|
||
|
V=0.3495786831622488D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.5473779816204180D+0
|
||
|
B=0.2715886486360520D+0
|
||
|
V=0.3537767805534621D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.5848617133811376D+0
|
||
|
B=0.3101924707571355D+0
|
||
|
V=0.3564459815421428D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6201348281584888D+0
|
||
|
B=0.3476121052890973D+0
|
||
|
V=0.3578464061225468D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.3852191185387871D+0
|
||
|
B=0.3763224880035108D-1
|
||
|
V=0.3239748762836212D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.4325025061073423D+0
|
||
|
B=0.7659581935637135D-1
|
||
|
V=0.3345491784174287D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.4778486229734490D+0
|
||
|
B=0.1163381306083900D+0
|
||
|
V=0.3429126177301782D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.5211663693009000D+0
|
||
|
B=0.1563890598752899D+0
|
||
|
V=0.3492420343097421D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.5623469504853703D+0
|
||
|
B=0.1963320810149200D+0
|
||
|
V=0.3537399050235257D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6012718188659246D+0
|
||
|
B=0.2357847407258738D+0
|
||
|
V=0.3566209152659172D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6378179206390117D+0
|
||
|
B=0.2743846121244060D+0
|
||
|
V=0.3581084321919782D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.4836936460214534D+0
|
||
|
B=0.3895902610739024D-1
|
||
|
V=0.3426522117591512D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.5293792562683797D+0
|
||
|
B=0.7871246819312640D-1
|
||
|
V=0.3491848770121379D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.5726281253100033D+0
|
||
|
B=0.1187963808202981D+0
|
||
|
V=0.3539318235231476D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6133658776169068D+0
|
||
|
B=0.1587914708061787D+0
|
||
|
V=0.3570231438458694D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6515085491865307D+0
|
||
|
B=0.1983058575227646D+0
|
||
|
V=0.3586207335051714D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.5778692716064976D+0
|
||
|
B=0.3977209689791542D-1
|
||
|
V=0.3541196205164025D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6207904288086192D+0
|
||
|
B=0.7990157592981152D-1
|
||
|
V=0.3574296911573953D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6608688171046802D+0
|
||
|
B=0.1199671308754309D+0
|
||
|
V=0.3591993279818963D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6656263089489130D+0
|
||
|
B=0.4015955957805969D-1
|
||
|
V=0.3595855034661997D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
N=N-1
|
||
|
RETURN
|
||
|
END
|
||
|
SUBROUTINE LD3470(X,Y,Z,W,N)
|
||
|
DOUBLE PRECISION X(3470)
|
||
|
DOUBLE PRECISION Y(3470)
|
||
|
DOUBLE PRECISION Z(3470)
|
||
|
DOUBLE PRECISION W(3470)
|
||
|
INTEGER N
|
||
|
DOUBLE PRECISION A,B,V
|
||
|
CVW
|
||
|
CVW LEBEDEV 3470-POINT ANGULAR GRID
|
||
|
CVW
|
||
|
chvd
|
||
|
chvd This subroutine is part of a set of subroutines that generate
|
||
|
chvd Lebedev grids [1-6] for integration on a sphere. The original
|
||
|
chvd C-code [1] was kindly provided by Dr. Dmitri N. Laikov and
|
||
|
chvd translated into fortran by Dr. Christoph van Wuellen.
|
||
|
chvd This subroutine was translated using a C to fortran77 conversion
|
||
|
chvd tool written by Dr. Christoph van Wuellen.
|
||
|
chvd
|
||
|
chvd Users of this code are asked to include reference [1] in their
|
||
|
chvd publications, and in the user- and programmers-manuals
|
||
|
chvd describing their codes.
|
||
|
chvd
|
||
|
chvd This code was distributed through CCL (http://www.ccl.net/).
|
||
|
chvd
|
||
|
chvd [1] V.I. Lebedev, and D.N. Laikov
|
||
|
chvd "A quadrature formula for the sphere of the 131st
|
||
|
chvd algebraic order of accuracy"
|
||
|
chvd Doklady Mathematics, Vol. 59, No. 3, 1999, pp. 477-481.
|
||
|
chvd
|
||
|
chvd [2] V.I. Lebedev
|
||
|
chvd "A quadrature formula for the sphere of 59th algebraic
|
||
|
chvd order of accuracy"
|
||
|
chvd Russian Acad. Sci. Dokl. Math., Vol. 50, 1995, pp. 283-286.
|
||
|
chvd
|
||
|
chvd [3] V.I. Lebedev, and A.L. Skorokhodov
|
||
|
chvd "Quadrature formulas of orders 41, 47, and 53 for the sphere"
|
||
|
chvd Russian Acad. Sci. Dokl. Math., Vol. 45, 1992, pp. 587-592.
|
||
|
chvd
|
||
|
chvd [4] V.I. Lebedev
|
||
|
chvd "Spherical quadrature formulas exact to orders 25-29"
|
||
|
chvd Siberian Mathematical Journal, Vol. 18, 1977, pp. 99-107.
|
||
|
chvd
|
||
|
chvd [5] V.I. Lebedev
|
||
|
chvd "Quadratures on a sphere"
|
||
|
chvd Computational Mathematics and Mathematical Physics, Vol. 16,
|
||
|
chvd 1976, pp. 10-24.
|
||
|
chvd
|
||
|
chvd [6] V.I. Lebedev
|
||
|
chvd "Values of the nodes and weights of ninth to seventeenth
|
||
|
chvd order Gauss-Markov quadrature formulae invariant under the
|
||
|
chvd octahedron group with inversion"
|
||
|
chvd Computational Mathematics and Mathematical Physics, Vol. 15,
|
||
|
chvd 1975, pp. 44-51.
|
||
|
chvd
|
||
|
N=1
|
||
|
V=0.2040382730826330D-4
|
||
|
Call GEN_OH( 1, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
V=0.3178149703889544D-3
|
||
|
Call GEN_OH( 3, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.1721420832906233D-1
|
||
|
V=0.8288115128076110D-4
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.4408875374981770D-1
|
||
|
V=0.1360883192522954D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.7594680813878681D-1
|
||
|
V=0.1766854454542662D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.1108335359204799D+0
|
||
|
V=0.2083153161230153D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.1476517054388567D+0
|
||
|
V=0.2333279544657158D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.1856731870860615D+0
|
||
|
V=0.2532809539930247D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.2243634099428821D+0
|
||
|
V=0.2692472184211158D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.2633006881662727D+0
|
||
|
V=0.2819949946811885D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.3021340904916283D+0
|
||
|
V=0.2920953593973030D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.3405594048030089D+0
|
||
|
V=0.2999889782948352D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.3783044434007372D+0
|
||
|
V=0.3060292120496902D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.4151194767407910D+0
|
||
|
V=0.3105109167522192D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.4507705766443257D+0
|
||
|
V=0.3136902387550312D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.4850346056573187D+0
|
||
|
V=0.3157984652454632D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.5176950817792470D+0
|
||
|
V=0.3170516518425422D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.5485384240820989D+0
|
||
|
V=0.3176568425633755D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6039117238943308D+0
|
||
|
V=0.3177198411207062D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6279956655573113D+0
|
||
|
V=0.3175519492394733D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6493636169568952D+0
|
||
|
V=0.3174654952634756D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6677644117704504D+0
|
||
|
V=0.3175676415467654D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6829368572115624D+0
|
||
|
V=0.3178923417835410D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6946195818184121D+0
|
||
|
V=0.3183788287531909D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.7025711542057026D+0
|
||
|
V=0.3188755151918807D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.7066004767140119D+0
|
||
|
V=0.3191916889313849D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.5132537689946062D-1
|
||
|
V=0.1231779611744508D-3
|
||
|
Call GEN_OH( 5, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.1297994661331225D+0
|
||
|
V=0.1924661373839880D-3
|
||
|
Call GEN_OH( 5, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.2188852049401307D+0
|
||
|
V=0.2380881867403424D-3
|
||
|
Call GEN_OH( 5, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.3123174824903457D+0
|
||
|
V=0.2693100663037885D-3
|
||
|
Call GEN_OH( 5, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.4064037620738195D+0
|
||
|
V=0.2908673382834366D-3
|
||
|
Call GEN_OH( 5, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.4984958396944782D+0
|
||
|
V=0.3053914619381535D-3
|
||
|
Call GEN_OH( 5, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.5864975046021365D+0
|
||
|
V=0.3143916684147777D-3
|
||
|
Call GEN_OH( 5, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6686711634580175D+0
|
||
|
V=0.3187042244055363D-3
|
||
|
Call GEN_OH( 5, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.8715738780835950D-1
|
||
|
B=0.2557175233367578D-1
|
||
|
V=0.1635219535869790D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.1248383123134007D+0
|
||
|
B=0.5604823383376681D-1
|
||
|
V=0.1968109917696070D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.1638062693383378D+0
|
||
|
B=0.8968568601900765D-1
|
||
|
V=0.2236754342249974D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.2035586203373176D+0
|
||
|
B=0.1254086651976279D+0
|
||
|
V=0.2453186687017181D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.2436798975293774D+0
|
||
|
B=0.1624780150162012D+0
|
||
|
V=0.2627551791580541D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.2838207507773806D+0
|
||
|
B=0.2003422342683208D+0
|
||
|
V=0.2767654860152220D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.3236787502217692D+0
|
||
|
B=0.2385628026255263D+0
|
||
|
V=0.2879467027765895D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.3629849554840691D+0
|
||
|
B=0.2767731148783578D+0
|
||
|
V=0.2967639918918702D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.4014948081992087D+0
|
||
|
B=0.3146542308245309D+0
|
||
|
V=0.3035900684660351D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.4389818379260225D+0
|
||
|
B=0.3519196415895088D+0
|
||
|
V=0.3087338237298308D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.4752331143674377D+0
|
||
|
B=0.3883050984023654D+0
|
||
|
V=0.3124608838860167D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.5100457318374018D+0
|
||
|
B=0.4235613423908649D+0
|
||
|
V=0.3150084294226743D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.5432238388954868D+0
|
||
|
B=0.4574484717196220D+0
|
||
|
V=0.3165958398598402D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.5745758685072442D+0
|
||
|
B=0.4897311639255524D+0
|
||
|
V=0.3174320440957372D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.1723981437592809D+0
|
||
|
B=0.3010630597881105D-1
|
||
|
V=0.2182188909812599D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.2149553257844597D+0
|
||
|
B=0.6326031554204694D-1
|
||
|
V=0.2399727933921445D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.2573256081247422D+0
|
||
|
B=0.9848566980258631D-1
|
||
|
V=0.2579796133514652D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.2993163751238106D+0
|
||
|
B=0.1350835952384266D+0
|
||
|
V=0.2727114052623535D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.3407238005148000D+0
|
||
|
B=0.1725184055442181D+0
|
||
|
V=0.2846327656281355D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.3813454978483264D+0
|
||
|
B=0.2103559279730725D+0
|
||
|
V=0.2941491102051334D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.4209848104423343D+0
|
||
|
B=0.2482278774554860D+0
|
||
|
V=0.3016049492136107D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.4594519699996300D+0
|
||
|
B=0.2858099509982883D+0
|
||
|
V=0.3072949726175648D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.4965640166185930D+0
|
||
|
B=0.3228075659915428D+0
|
||
|
V=0.3114768142886460D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.5321441655571562D+0
|
||
|
B=0.3589459907204151D+0
|
||
|
V=0.3143823673666223D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.5660208438582166D+0
|
||
|
B=0.3939630088864310D+0
|
||
|
V=0.3162269764661535D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.5980264315964364D+0
|
||
|
B=0.4276029922949089D+0
|
||
|
V=0.3172164663759821D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.2644215852350733D+0
|
||
|
B=0.3300939429072552D-1
|
||
|
V=0.2554575398967435D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.3090113743443063D+0
|
||
|
B=0.6803887650078501D-1
|
||
|
V=0.2701704069135677D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.3525871079197808D+0
|
||
|
B=0.1044326136206709D+0
|
||
|
V=0.2823693413468940D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.3950418005354029D+0
|
||
|
B=0.1416751597517679D+0
|
||
|
V=0.2922898463214289D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.4362475663430163D+0
|
||
|
B=0.1793408610504821D+0
|
||
|
V=0.3001829062162428D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.4760661812145854D+0
|
||
|
B=0.2170630750175722D+0
|
||
|
V=0.3062890864542953D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.5143551042512103D+0
|
||
|
B=0.2545145157815807D+0
|
||
|
V=0.3108328279264746D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.5509709026935597D+0
|
||
|
B=0.2913940101706601D+0
|
||
|
V=0.3140243146201245D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.5857711030329428D+0
|
||
|
B=0.3274169910910705D+0
|
||
|
V=0.3160638030977130D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6186149917404392D+0
|
||
|
B=0.3623081329317265D+0
|
||
|
V=0.3171462882206275D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.3586894569557064D+0
|
||
|
B=0.3497354386450040D-1
|
||
|
V=0.2812388416031796D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.4035266610019441D+0
|
||
|
B=0.7129736739757095D-1
|
||
|
V=0.2912137500288045D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.4467775312332510D+0
|
||
|
B=0.1084758620193165D+0
|
||
|
V=0.2993241256502206D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.4883638346608543D+0
|
||
|
B=0.1460915689241772D+0
|
||
|
V=0.3057101738983822D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.5281908348434601D+0
|
||
|
B=0.1837790832369980D+0
|
||
|
V=0.3105319326251432D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.5661542687149311D+0
|
||
|
B=0.2212075390874021D+0
|
||
|
V=0.3139565514428167D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6021450102031452D+0
|
||
|
B=0.2580682841160985D+0
|
||
|
V=0.3161543006806366D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6360520783610050D+0
|
||
|
B=0.2940656362094121D+0
|
||
|
V=0.3172985960613294D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.4521611065087196D+0
|
||
|
B=0.3631055365867002D-1
|
||
|
V=0.2989400336901431D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.4959365651560963D+0
|
||
|
B=0.7348318468484350D-1
|
||
|
V=0.3054555883947677D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.5376815804038283D+0
|
||
|
B=0.1111087643812648D+0
|
||
|
V=0.3104764960807702D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.5773314480243768D+0
|
||
|
B=0.1488226085145408D+0
|
||
|
V=0.3141015825977616D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6148113245575056D+0
|
||
|
B=0.1862892274135151D+0
|
||
|
V=0.3164520621159896D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6500407462842380D+0
|
||
|
B=0.2231909701714456D+0
|
||
|
V=0.3176652305912204D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.5425151448707213D+0
|
||
|
B=0.3718201306118944D-1
|
||
|
V=0.3105097161023939D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.5841860556907931D+0
|
||
|
B=0.7483616335067346D-1
|
||
|
V=0.3143014117890550D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6234632186851500D+0
|
||
|
B=0.1125990834266120D+0
|
||
|
V=0.3168172866287200D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6602934551848843D+0
|
||
|
B=0.1501303813157619D+0
|
||
|
V=0.3181401865570968D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6278573968375105D+0
|
||
|
B=0.3767559930245720D-1
|
||
|
V=0.3170663659156037D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6665611711264577D+0
|
||
|
B=0.7548443301360158D-1
|
||
|
V=0.3185447944625510D-3
|
||
|
Call GEN_OH( 6, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
N=N-1
|
||
|
RETURN
|
||
|
END
|
||
|
SUBROUTINE LD3890(X,Y,Z,W,N)
|
||
|
DOUBLE PRECISION X(3890)
|
||
|
DOUBLE PRECISION Y(3890)
|
||
|
DOUBLE PRECISION Z(3890)
|
||
|
DOUBLE PRECISION W(3890)
|
||
|
INTEGER N
|
||
|
DOUBLE PRECISION A,B,V
|
||
|
CVW
|
||
|
CVW LEBEDEV 3890-POINT ANGULAR GRID
|
||
|
CVW
|
||
|
chvd
|
||
|
chvd This subroutine is part of a set of subroutines that generate
|
||
|
chvd Lebedev grids [1-6] for integration on a sphere. The original
|
||
|
chvd C-code [1] was kindly provided by Dr. Dmitri N. Laikov and
|
||
|
chvd translated into fortran by Dr. Christoph van Wuellen.
|
||
|
chvd This subroutine was translated using a C to fortran77 conversion
|
||
|
chvd tool written by Dr. Christoph van Wuellen.
|
||
|
chvd
|
||
|
chvd Users of this code are asked to include reference [1] in their
|
||
|
chvd publications, and in the user- and programmers-manuals
|
||
|
chvd describing their codes.
|
||
|
chvd
|
||
|
chvd This code was distributed through CCL (http://www.ccl.net/).
|
||
|
chvd
|
||
|
chvd [1] V.I. Lebedev, and D.N. Laikov
|
||
|
chvd "A quadrature formula for the sphere of the 131st
|
||
|
chvd algebraic order of accuracy"
|
||
|
chvd Doklady Mathematics, Vol. 59, No. 3, 1999, pp. 477-481.
|
||
|
chvd
|
||
|
chvd [2] V.I. Lebedev
|
||
|
chvd "A quadrature formula for the sphere of 59th algebraic
|
||
|
chvd order of accuracy"
|
||
|
chvd Russian Acad. Sci. Dokl. Math., Vol. 50, 1995, pp. 283-286.
|
||
|
chvd
|
||
|
chvd [3] V.I. Lebedev, and A.L. Skorokhodov
|
||
|
chvd "Quadrature formulas of orders 41, 47, and 53 for the sphere"
|
||
|
chvd Russian Acad. Sci. Dokl. Math., Vol. 45, 1992, pp. 587-592.
|
||
|
chvd
|
||
|
chvd [4] V.I. Lebedev
|
||
|
chvd "Spherical quadrature formulas exact to orders 25-29"
|
||
|
chvd Siberian Mathematical Journal, Vol. 18, 1977, pp. 99-107.
|
||
|
chvd
|
||
|
chvd [5] V.I. Lebedev
|
||
|
chvd "Quadratures on a sphere"
|
||
|
chvd Computational Mathematics and Mathematical Physics, Vol. 16,
|
||
|
chvd 1976, pp. 10-24.
|
||
|
chvd
|
||
|
chvd [6] V.I. Lebedev
|
||
|
chvd "Values of the nodes and weights of ninth to seventeenth
|
||
|
chvd order Gauss-Markov quadrature formulae invariant under the
|
||
|
chvd octahedron group with inversion"
|
||
|
chvd Computational Mathematics and Mathematical Physics, Vol. 15,
|
||
|
chvd 1975, pp. 44-51.
|
||
|
chvd
|
||
|
N=1
|
||
|
V=0.1807395252196920D-4
|
||
|
Call GEN_OH( 1, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
V=0.2848008782238827D-3
|
||
|
Call GEN_OH( 2, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
V=0.2836065837530581D-3
|
||
|
Call GEN_OH( 3, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.1587876419858352D-1
|
||
|
V=0.7013149266673816D-4
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.4069193593751206D-1
|
||
|
V=0.1162798021956766D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.7025888115257997D-1
|
||
|
V=0.1518728583972105D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.1027495450028704D+0
|
||
|
V=0.1798796108216934D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.1371457730893426D+0
|
||
|
V=0.2022593385972785D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.1727758532671953D+0
|
||
|
V=0.2203093105575464D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.2091492038929037D+0
|
||
|
V=0.2349294234299855D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.2458813281751915D+0
|
||
|
V=0.2467682058747003D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.2826545859450066D+0
|
||
|
V=0.2563092683572224D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.3191957291799622D+0
|
||
|
V=0.2639253896763318D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.3552621469299578D+0
|
||
|
V=0.2699137479265108D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.3906329503406230D+0
|
||
|
V=0.2745196420166739D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.4251028614093031D+0
|
||
|
V=0.2779529197397593D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.4584777520111870D+0
|
||
|
V=0.2803996086684265D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.4905711358710193D+0
|
||
|
V=0.2820302356715842D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.5212011669847385D+0
|
||
|
V=0.2830056747491068D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.5501878488737995D+0
|
||
|
V=0.2834808950776839D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6025037877479342D+0
|
||
|
V=0.2835282339078929D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6254572689549016D+0
|
||
|
V=0.2833819267065800D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6460107179528248D+0
|
||
|
V=0.2832858336906784D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6639541138154251D+0
|
||
|
V=0.2833268235451244D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6790688515667495D+0
|
||
|
V=0.2835432677029253D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6911338580371512D+0
|
||
|
V=0.2839091722743049D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.6999385956126490D+0
|
||
|
V=0.2843308178875841D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.7053037748656896D+0
|
||
|
V=0.2846703550533846D-3
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.4732224387180115D-1
|
||
|
V=0.1051193406971900D-3
|
||
|
Call GEN_OH( 5, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.1202100529326803D+0
|
||
|
V=0.1657871838796974D-3
|
||
|
Call GEN_OH( 5, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.2034304820664855D+0
|
||
|
V=0.2064648113714232D-3
|
||
|
Call GEN_OH( 5, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|