mirror of
https://github.com/QuantumPackage/qp2.git
synced 2024-12-14 07:33:31 +01:00
156 lines
4.1 KiB
Fortran
156 lines
4.1 KiB
Fortran
|
|
||
|
BEGIN_PROVIDER [ double precision, ao_abs_int_grid, (ao_num)]
|
||
|
implicit none
|
||
|
BEGIN_DOC
|
||
|
! ao_abs_int_grid(i) = \int dr |phi_i(r) |
|
||
|
END_DOC
|
||
|
integer :: i,j,ipoint
|
||
|
double precision :: contrib, weight,r(3)
|
||
|
ao_abs_int_grid = 0.D0
|
||
|
do ipoint = 1,n_points_final_grid
|
||
|
r(:) = final_grid_points(:,ipoint)
|
||
|
weight = final_weight_at_r_vector(ipoint)
|
||
|
do i = 1, ao_num
|
||
|
contrib = dabs(aos_in_r_array(i,ipoint)) * weight
|
||
|
ao_abs_int_grid(i) += contrib
|
||
|
enddo
|
||
|
enddo
|
||
|
|
||
|
END_PROVIDER
|
||
|
|
||
|
BEGIN_PROVIDER [ double precision, ao_overlap_abs_grid, (ao_num, ao_num)]
|
||
|
implicit none
|
||
|
BEGIN_DOC
|
||
|
! ao_overlap_abs_grid(j,i) = \int dr |phi_i(r) phi_j(r)|
|
||
|
END_DOC
|
||
|
integer :: i,j,ipoint
|
||
|
double precision :: contrib, weight,r(3)
|
||
|
ao_overlap_abs_grid = 0.D0
|
||
|
do ipoint = 1,n_points_final_grid
|
||
|
r(:) = final_grid_points(:,ipoint)
|
||
|
weight = final_weight_at_r_vector(ipoint)
|
||
|
do i = 1, ao_num
|
||
|
do j = 1, ao_num
|
||
|
contrib = dabs(aos_in_r_array(j,ipoint) * aos_in_r_array(i,ipoint)) * weight
|
||
|
ao_overlap_abs_grid(j,i) += contrib
|
||
|
enddo
|
||
|
enddo
|
||
|
enddo
|
||
|
|
||
|
END_PROVIDER
|
||
|
|
||
|
BEGIN_PROVIDER [ double precision, ao_prod_center, (3, ao_num, ao_num)]
|
||
|
implicit none
|
||
|
BEGIN_DOC
|
||
|
! ao_prod_center(1:3,j,i) = \int dr |phi_i(r) phi_j(r)| x/y/z / \int |phi_i(r) phi_j(r)|
|
||
|
!
|
||
|
! if \int |phi_i(r) phi_j(r)| < 1.d-10 then ao_prod_center = 10000.
|
||
|
END_DOC
|
||
|
integer :: i,j,m,ipoint
|
||
|
double precision :: contrib, weight,r(3)
|
||
|
ao_prod_center = 0.D0
|
||
|
do ipoint = 1,n_points_final_grid
|
||
|
r(:) = final_grid_points(:,ipoint)
|
||
|
weight = final_weight_at_r_vector(ipoint)
|
||
|
do i = 1, ao_num
|
||
|
do j = 1, ao_num
|
||
|
contrib = dabs(aos_in_r_array(j,ipoint) * aos_in_r_array(i,ipoint)) * weight
|
||
|
do m = 1, 3
|
||
|
ao_prod_center(m,j,i) += contrib * r(m)
|
||
|
enddo
|
||
|
enddo
|
||
|
enddo
|
||
|
enddo
|
||
|
do i = 1, ao_num
|
||
|
do j = 1, ao_num
|
||
|
if(dabs(ao_overlap_abs_grid(j,i)).gt.1.d-10)then
|
||
|
do m = 1, 3
|
||
|
ao_prod_center(m,j,i) *= 1.d0/ao_overlap_abs_grid(j,i)
|
||
|
enddo
|
||
|
else
|
||
|
do m = 1, 3
|
||
|
ao_prod_center(m,j,i) = 10000.d0
|
||
|
enddo
|
||
|
endif
|
||
|
enddo
|
||
|
enddo
|
||
|
|
||
|
END_PROVIDER
|
||
|
|
||
|
BEGIN_PROVIDER [ double precision, ao_prod_abs_r, (ao_num, ao_num)]
|
||
|
implicit none
|
||
|
BEGIN_DOC
|
||
|
! ao_prod_abs_r(i,j) = \int |phi_i(r) phi_j(r)| dsqrt((x - <|i|x|j|>)^2 + (y - <|i|y|j|>)^2 +(z - <|i|z|j|>)^2) / \int |phi_i(r) phi_j(r)|
|
||
|
!
|
||
|
END_DOC
|
||
|
ao_prod_abs_r = 0.d0
|
||
|
integer :: i,j,m,ipoint
|
||
|
double precision :: contrib, weight,r(3),contrib_x2
|
||
|
do ipoint = 1,n_points_final_grid
|
||
|
r(:) = final_grid_points(:,ipoint)
|
||
|
weight = final_weight_at_r_vector(ipoint)
|
||
|
do i = 1, ao_num
|
||
|
do j = 1, ao_num
|
||
|
contrib = dabs(aos_in_r_array(j,ipoint) * aos_in_r_array(i,ipoint)) * weight
|
||
|
contrib_x2 = 0.d0
|
||
|
do m = 1, 3
|
||
|
contrib_x2 += (r(m) - ao_prod_center(m,j,i)) * (r(m) - ao_prod_center(m,j,i))
|
||
|
enddo
|
||
|
contrib_x2 = dsqrt(contrib_x2)
|
||
|
ao_prod_abs_r(j,i) += contrib * contrib_x2
|
||
|
enddo
|
||
|
enddo
|
||
|
enddo
|
||
|
|
||
|
|
||
|
END_PROVIDER
|
||
|
|
||
|
BEGIN_PROVIDER [double precision, ao_prod_sigma, (ao_num, ao_num)]
|
||
|
implicit none
|
||
|
BEGIN_DOC
|
||
|
! Gaussian exponent reproducing the product |chi_i(r) chi_j(r)|
|
||
|
!
|
||
|
! Therefore |chi_i(r) chi_j(r)| \approx e^{-ao_prod_sigma(j,i) (r - ao_prod_center(1:3,j,i))**2}
|
||
|
END_DOC
|
||
|
integer :: i,j
|
||
|
double precision :: pi,alpha
|
||
|
pi = dacos(-1.d0)
|
||
|
do i = 1, ao_num
|
||
|
do j = 1, ao_num
|
||
|
! if(dabs(ao_overlap_abs_grid(j,i)).gt.1.d-5)then
|
||
|
alpha = 1.d0/pi * (2.d0*ao_overlap_abs_grid(j,i)/ao_prod_abs_r(j,i))**2
|
||
|
ao_prod_sigma(j,i) = alpha
|
||
|
! endif
|
||
|
enddo
|
||
|
enddo
|
||
|
END_PROVIDER
|
||
|
|
||
|
BEGIN_PROVIDER [ double precision, ao_prod_dist_grid, (ao_num, ao_num, n_points_final_grid)]
|
||
|
implicit none
|
||
|
BEGIN_DOC
|
||
|
! ao_prod_dist_grid(j,i,ipoint) = distance between the center of |phi_i(r) phi_j(r)| and the grid point r(ipoint)
|
||
|
END_DOC
|
||
|
integer :: i,j,m,ipoint
|
||
|
double precision :: distance,r(3)
|
||
|
do ipoint = 1, n_points_final_grid
|
||
|
r(:) = final_grid_points(:,ipoint)
|
||
|
do i = 1, ao_num
|
||
|
do j = 1, ao_num
|
||
|
distance = 0.d0
|
||
|
do m = 1, 3
|
||
|
distance += (ao_prod_center(m,j,i) - r(m))*(ao_prod_center(m,j,i) - r(m))
|
||
|
enddo
|
||
|
distance = dsqrt(distance)
|
||
|
ao_prod_dist_grid(j,i,ipoint) = distance
|
||
|
enddo
|
||
|
enddo
|
||
|
enddo
|
||
|
|
||
|
END_PROVIDER
|
||
|
|
||
|
|
||
|
!BEGIN_PROVIDER [ double precision, ao_abs_prod_j1b, (ao_num, ao_num)]
|
||
|
! implicit none
|
||
|
!
|
||
|
!END_PROVIDER
|