2020-04-07 11:03:19 +02:00
|
|
|
|
|
|
|
BEGIN_PROVIDER [double precision, ecmd_lda_mu_of_r, (N_states)]
|
|
|
|
BEGIN_DOC
|
|
|
|
! ecmd_lda_mu_of_r = multi-determinantal Ecmd within the LDA approximation with mu(r) ,
|
|
|
|
!
|
|
|
|
! see equation 40 in J. Chem. Phys. 149, 194301 (2018); https://doi.org/10.1063/1.5052714
|
|
|
|
END_DOC
|
|
|
|
implicit none
|
|
|
|
integer :: ipoint,istate
|
|
|
|
double precision :: rho_a, rho_b, ec
|
|
|
|
double precision :: wall0,wall1,weight,mu
|
2020-04-14 17:45:01 +02:00
|
|
|
logical :: dospin
|
2020-04-07 11:03:19 +02:00
|
|
|
dospin = .true. ! JT dospin have to be set to true for open shell
|
|
|
|
print*,'Providing ecmd_lda_mu_of_r ...'
|
|
|
|
|
|
|
|
ecmd_lda_mu_of_r = 0.d0
|
|
|
|
call wall_time(wall0)
|
|
|
|
do istate = 1, N_states
|
|
|
|
do ipoint = 1, n_points_final_grid
|
|
|
|
! mu(r) defined by Eq. (37) of J. Chem. Phys. 149, 194301 (2018)
|
|
|
|
mu = mu_of_r_prov(ipoint,istate)
|
|
|
|
weight = final_weight_at_r_vector(ipoint)
|
|
|
|
rho_a = one_e_dm_and_grad_alpha_in_r(4,ipoint,istate)
|
|
|
|
rho_b = one_e_dm_and_grad_beta_in_r(4,ipoint,istate)
|
|
|
|
! Ecmd within the LDA approximation of PRB 73, 155111 (2006)
|
|
|
|
call ESRC_MD_LDAERF (mu,rho_a,rho_b,dospin,ec)
|
|
|
|
if(isnan(ec))then
|
|
|
|
print*,'ec is nan'
|
|
|
|
stop
|
|
|
|
endif
|
|
|
|
ecmd_lda_mu_of_r(istate) += weight * ec
|
|
|
|
enddo
|
|
|
|
enddo
|
|
|
|
call wall_time(wall1)
|
|
|
|
print*,'Time for ecmd_lda_mu_of_r :',wall1-wall0
|
|
|
|
END_PROVIDER
|
|
|
|
|
|
|
|
|
|
|
|
BEGIN_PROVIDER [double precision, ecmd_pbe_ueg_mu_of_r, (N_states)]
|
|
|
|
BEGIN_DOC
|
|
|
|
! ecmd_pbe_ueg_mu_of_r = multi-determinantal Ecmd within the PBE-UEG approximation with mu(r) ,
|
|
|
|
!
|
|
|
|
! see Eqs. 13-14b in Phys.Chem.Lett.2019, 10, 2931 2937; https://pubs.acs.org/doi/10.1021/acs.jpclett.9b01176
|
|
|
|
!
|
|
|
|
! Based on the PBE-on-top functional (see Eqs. 26, 27 of J. Chem. Phys.150, 084103 (2019); doi: 10.1063/1.5082638)
|
|
|
|
!
|
|
|
|
! but it the on-top pair density of the UEG as an approximation of the exact on-top pair density
|
|
|
|
END_DOC
|
|
|
|
implicit none
|
|
|
|
double precision :: weight
|
|
|
|
integer :: ipoint,istate
|
|
|
|
double precision :: eps_c_md_PBE,mu,rho_a,rho_b,grad_rho_a(3),grad_rho_b(3),on_top
|
|
|
|
double precision :: g0_UEG_mu_inf
|
|
|
|
|
|
|
|
ecmd_pbe_ueg_mu_of_r = 0.d0
|
|
|
|
|
|
|
|
print*,'Providing ecmd_pbe_ueg_mu_of_r ...'
|
|
|
|
call wall_time(wall0)
|
|
|
|
do istate = 1, N_states
|
|
|
|
do ipoint = 1, n_points_final_grid
|
|
|
|
weight=final_weight_at_r_vector(ipoint)
|
|
|
|
|
|
|
|
! mu(r) defined by Eq. (37) of J. Chem. Phys. 149, 194301 (2018)
|
|
|
|
mu = mu_of_r_prov(ipoint,istate)
|
|
|
|
|
|
|
|
rho_a = one_e_dm_and_grad_alpha_in_r(4,ipoint,istate)
|
|
|
|
rho_b = one_e_dm_and_grad_beta_in_r(4,ipoint,istate)
|
|
|
|
grad_rho_a(1:3) = one_e_dm_and_grad_alpha_in_r(1:3,ipoint,istate)
|
|
|
|
grad_rho_b(1:3) = one_e_dm_and_grad_beta_in_r(1:3,ipoint,istate)
|
|
|
|
|
|
|
|
! We take the on-top pair density of the UEG which is (1-zeta^2) rhoc^2 g0 = 4 rhoa * rhob * g0
|
|
|
|
on_top = 4.d0 * rho_a * rho_b * g0_UEG_mu_inf(rho_a,rho_b)
|
|
|
|
|
|
|
|
! The form of interpolated (mu=0 ---> mu=infinity) functional originally introduced in JCP, 150, 084103 1-10 (2019)
|
|
|
|
call ec_md_pbe_on_top_general(mu,rho_a,rho_b,grad_rho_a,grad_rho_b,on_top,eps_c_md_PBE)
|
|
|
|
ecmd_pbe_ueg_mu_of_r(istate) += eps_c_md_PBE * weight
|
|
|
|
enddo
|
|
|
|
enddo
|
|
|
|
double precision :: wall1, wall0
|
|
|
|
call wall_time(wall1)
|
|
|
|
print*,'Time for the ecmd_pbe_ueg_mu_of_r:',wall1-wall0
|
|
|
|
|
|
|
|
END_PROVIDER
|