mirror of
https://github.com/QuantumPackage/qp2.git
synced 2024-12-22 03:23:29 +01:00
372 lines
12 KiB
Fortran
372 lines
12 KiB
Fortran
|
! ---
|
||
|
|
||
|
BEGIN_PROVIDER [ double precision, j1b_gauss_nonherm, (ao_num,ao_num)]
|
||
|
|
||
|
BEGIN_DOC
|
||
|
!
|
||
|
! j1b_gauss_nonherm(i,j) = \langle \chi_j | - grad \tau_{1b} \cdot grad | \chi_i \rangle
|
||
|
!
|
||
|
END_DOC
|
||
|
|
||
|
implicit none
|
||
|
|
||
|
integer :: num_A, num_B
|
||
|
integer :: power_A(3), power_B(3)
|
||
|
integer :: i, j, k, l, m
|
||
|
double precision :: alpha, beta, gama, coef
|
||
|
double precision :: A_center(3), B_center(3), C_center(3)
|
||
|
double precision :: c1, c
|
||
|
|
||
|
integer :: dim1
|
||
|
double precision :: overlap_y, d_a_2, overlap_z, overlap
|
||
|
|
||
|
double precision :: int_gauss_deriv
|
||
|
|
||
|
PROVIDE j1b_type j1b_pen j1b_coeff
|
||
|
|
||
|
! --------------------------------------------------------------------------------
|
||
|
! -- Dummy call to provide everything
|
||
|
dim1 = 100
|
||
|
A_center(:) = 0.d0
|
||
|
B_center(:) = 1.d0
|
||
|
alpha = 1.d0
|
||
|
beta = 0.1d0
|
||
|
power_A(:) = 1
|
||
|
power_B(:) = 0
|
||
|
call overlap_gaussian_xyz( A_center, B_center, alpha, beta, power_A, power_B &
|
||
|
, overlap_y, d_a_2, overlap_z, overlap, dim1 )
|
||
|
! --------------------------------------------------------------------------------
|
||
|
|
||
|
|
||
|
j1b_gauss_nonherm(1:ao_num,1:ao_num) = 0.d0
|
||
|
|
||
|
if(j1b_type .eq. 1) then
|
||
|
! \tau_1b = \sum_iA -[1 - exp(-alpha_A r_iA^2)]
|
||
|
|
||
|
!$OMP PARALLEL &
|
||
|
!$OMP DEFAULT (NONE) &
|
||
|
!$OMP PRIVATE (i, j, k, l, m, alpha, beta, gama, &
|
||
|
!$OMP A_center, B_center, C_center, power_A, power_B, &
|
||
|
!$OMP num_A, num_B, c1, c) &
|
||
|
!$OMP SHARED (ao_num, ao_prim_num, ao_expo_ordered_transp, &
|
||
|
!$OMP ao_power, ao_nucl, nucl_coord, &
|
||
|
!$OMP ao_coef_normalized_ordered_transp, &
|
||
|
!$OMP nucl_num, j1b_pen, j1b_gauss_nonherm)
|
||
|
!$OMP DO SCHEDULE (dynamic)
|
||
|
do j = 1, ao_num
|
||
|
num_A = ao_nucl(j)
|
||
|
power_A(1:3) = ao_power(j,1:3)
|
||
|
A_center(1:3) = nucl_coord(num_A,1:3)
|
||
|
|
||
|
do i = 1, ao_num
|
||
|
num_B = ao_nucl(i)
|
||
|
power_B(1:3) = ao_power(i,1:3)
|
||
|
B_center(1:3) = nucl_coord(num_B,1:3)
|
||
|
|
||
|
do l = 1, ao_prim_num(j)
|
||
|
alpha = ao_expo_ordered_transp(l,j)
|
||
|
|
||
|
do m = 1, ao_prim_num(i)
|
||
|
beta = ao_expo_ordered_transp(m,i)
|
||
|
|
||
|
c = 0.d0
|
||
|
do k = 1, nucl_num
|
||
|
gama = j1b_pen(k)
|
||
|
C_center(1:3) = nucl_coord(k,1:3)
|
||
|
|
||
|
! \langle \chi_A | exp[-gama r_C^2] r_C \cdot grad | \chi_B \rangle
|
||
|
c1 = int_gauss_deriv( A_center, B_center, C_center &
|
||
|
, power_A, power_B, alpha, beta, gama )
|
||
|
|
||
|
c = c + 2.d0 * gama * c1
|
||
|
enddo
|
||
|
|
||
|
j1b_gauss_nonherm(i,j) = j1b_gauss_nonherm(i,j) &
|
||
|
+ ao_coef_normalized_ordered_transp(l,j) &
|
||
|
* ao_coef_normalized_ordered_transp(m,i) * c
|
||
|
enddo
|
||
|
enddo
|
||
|
enddo
|
||
|
enddo
|
||
|
!$OMP END DO
|
||
|
!$OMP END PARALLEL
|
||
|
|
||
|
elseif(j1b_type .eq. 2) then
|
||
|
! \tau_1b = \sum_iA [c_A exp(-alpha_A r_iA^2)]
|
||
|
|
||
|
!$OMP PARALLEL &
|
||
|
!$OMP DEFAULT (NONE) &
|
||
|
!$OMP PRIVATE (i, j, k, l, m, alpha, beta, gama, coef, &
|
||
|
!$OMP A_center, B_center, C_center, power_A, power_B, &
|
||
|
!$OMP num_A, num_B, c1, c) &
|
||
|
!$OMP SHARED (ao_num, ao_prim_num, ao_expo_ordered_transp, &
|
||
|
!$OMP ao_power, ao_nucl, nucl_coord, &
|
||
|
!$OMP ao_coef_normalized_ordered_transp, &
|
||
|
!$OMP nucl_num, j1b_pen, j1b_gauss_nonherm, &
|
||
|
!$OMP j1b_coeff)
|
||
|
!$OMP DO SCHEDULE (dynamic)
|
||
|
do j = 1, ao_num
|
||
|
num_A = ao_nucl(j)
|
||
|
power_A(1:3) = ao_power(j,1:3)
|
||
|
A_center(1:3) = nucl_coord(num_A,1:3)
|
||
|
|
||
|
do i = 1, ao_num
|
||
|
num_B = ao_nucl(i)
|
||
|
power_B(1:3) = ao_power(i,1:3)
|
||
|
B_center(1:3) = nucl_coord(num_B,1:3)
|
||
|
|
||
|
do l = 1, ao_prim_num(j)
|
||
|
alpha = ao_expo_ordered_transp(l,j)
|
||
|
|
||
|
do m = 1, ao_prim_num(i)
|
||
|
beta = ao_expo_ordered_transp(m,i)
|
||
|
|
||
|
c = 0.d0
|
||
|
do k = 1, nucl_num
|
||
|
gama = j1b_pen (k)
|
||
|
coef = j1b_coeff(k)
|
||
|
C_center(1:3) = nucl_coord(k,1:3)
|
||
|
|
||
|
! \langle \chi_A | exp[-gama r_C^2] r_C \cdot grad | \chi_B \rangle
|
||
|
c1 = int_gauss_deriv( A_center, B_center, C_center &
|
||
|
, power_A, power_B, alpha, beta, gama )
|
||
|
|
||
|
c = c + 2.d0 * gama * coef * c1
|
||
|
enddo
|
||
|
|
||
|
j1b_gauss_nonherm(i,j) = j1b_gauss_nonherm(i,j) &
|
||
|
+ ao_coef_normalized_ordered_transp(l,j) &
|
||
|
* ao_coef_normalized_ordered_transp(m,i) * c
|
||
|
enddo
|
||
|
enddo
|
||
|
enddo
|
||
|
enddo
|
||
|
!$OMP END DO
|
||
|
!$OMP END PARALLEL
|
||
|
|
||
|
endif
|
||
|
|
||
|
END_PROVIDER
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
!_____________________________________________________________________________________________________________
|
||
|
!
|
||
|
! < XA | exp[-gama r_C^2] r_C \cdot grad | XB >
|
||
|
!
|
||
|
double precision function int_gauss_deriv(A_center, B_center, C_center, power_A, power_B, alpha, beta, gama)
|
||
|
|
||
|
! for max_dim
|
||
|
include 'constants.include.F'
|
||
|
|
||
|
implicit none
|
||
|
|
||
|
double precision, intent(in) :: A_center(3), B_center(3), C_center(3)
|
||
|
integer , intent(in) :: power_A(3), power_B(3)
|
||
|
double precision, intent(in) :: alpha, beta, gama
|
||
|
|
||
|
integer :: i, power_C, dim1
|
||
|
integer :: iorder(3), power_D(3)
|
||
|
double precision :: AB_expo
|
||
|
double precision :: fact_AB, center_AB(3), pol_AB(0:max_dim,3)
|
||
|
double precision :: cx, cy, cz
|
||
|
|
||
|
double precision :: overlap_gaussian_x
|
||
|
|
||
|
dim1 = 100
|
||
|
|
||
|
int_gauss_deriv = 0.d0
|
||
|
|
||
|
! ===============
|
||
|
! term I:
|
||
|
! \partial_x
|
||
|
! ===============
|
||
|
|
||
|
if( power_B(1) .ge. 1 ) then
|
||
|
|
||
|
power_D(1) = power_B(1) - 1
|
||
|
power_D(2) = power_B(2)
|
||
|
power_D(3) = power_B(3)
|
||
|
|
||
|
call give_explicit_poly_and_gaussian( pol_AB, center_AB, AB_expo, fact_AB &
|
||
|
, iorder, alpha, beta, power_A, power_D, A_center, B_center, dim1)
|
||
|
power_C = 1
|
||
|
cx = 0.d0
|
||
|
do i = 0, iorder(1)
|
||
|
cx = cx + pol_AB(i,1) * overlap_gaussian_x( center_AB(1), C_center(1), AB_expo, gama, i, power_C, dim1)
|
||
|
enddo
|
||
|
power_C = 0
|
||
|
cy = 0.d0
|
||
|
do i = 0, iorder(2)
|
||
|
cy = cy + pol_AB(i,2) * overlap_gaussian_x( center_AB(2), C_center(2), AB_expo, gama, i, power_C, dim1)
|
||
|
enddo
|
||
|
power_C = 0
|
||
|
cz = 0.d0
|
||
|
do i = 0, iorder(3)
|
||
|
cz = cz + pol_AB(i,3) * overlap_gaussian_x( center_AB(3), C_center(3), AB_expo, gama, i, power_C, dim1)
|
||
|
enddo
|
||
|
|
||
|
int_gauss_deriv = int_gauss_deriv + fact_AB * dble(power_B(1)) * cx * cy * cz
|
||
|
endif
|
||
|
|
||
|
! ===============
|
||
|
|
||
|
power_D(1) = power_B(1) + 1
|
||
|
power_D(2) = power_B(2)
|
||
|
power_D(3) = power_B(3)
|
||
|
|
||
|
call give_explicit_poly_and_gaussian( pol_AB, center_AB, AB_expo, fact_AB &
|
||
|
, iorder, alpha, beta, power_A, power_D, A_center, B_center, dim1)
|
||
|
power_C = 1
|
||
|
cx = 0.d0
|
||
|
do i = 0, iorder(1)
|
||
|
cx = cx + pol_AB(i,1) * overlap_gaussian_x( center_AB(1), C_center(1), AB_expo, gama, i, power_C, dim1)
|
||
|
enddo
|
||
|
power_C = 0
|
||
|
cy = 0.d0
|
||
|
do i = 0, iorder(2)
|
||
|
cy = cy + pol_AB(i,2) * overlap_gaussian_x( center_AB(2), C_center(2), AB_expo, gama, i, power_C, dim1)
|
||
|
enddo
|
||
|
power_C = 0
|
||
|
cz = 0.d0
|
||
|
do i = 0, iorder(3)
|
||
|
cz = cz + pol_AB(i,3) * overlap_gaussian_x( center_AB(3), C_center(3), AB_expo, gama, i, power_C, dim1)
|
||
|
enddo
|
||
|
|
||
|
int_gauss_deriv = int_gauss_deriv - 2.d0 * beta * fact_AB * cx * cy * cz
|
||
|
|
||
|
! ===============
|
||
|
! ===============
|
||
|
|
||
|
|
||
|
! ===============
|
||
|
! term II:
|
||
|
! \partial_y
|
||
|
! ===============
|
||
|
|
||
|
if( power_B(2) .ge. 1 ) then
|
||
|
|
||
|
power_D(1) = power_B(1)
|
||
|
power_D(2) = power_B(2) - 1
|
||
|
power_D(3) = power_B(3)
|
||
|
|
||
|
call give_explicit_poly_and_gaussian( pol_AB, center_AB, AB_expo, fact_AB &
|
||
|
, iorder, alpha, beta, power_A, power_D, A_center, B_center, dim1)
|
||
|
power_C = 0
|
||
|
cx = 0.d0
|
||
|
do i = 0, iorder(1)
|
||
|
cx = cx + pol_AB(i,1) * overlap_gaussian_x( center_AB(1), C_center(1), AB_expo, gama, i, power_C, dim1)
|
||
|
enddo
|
||
|
power_C = 1
|
||
|
cy = 0.d0
|
||
|
do i = 0, iorder(2)
|
||
|
cy = cy + pol_AB(i,2) * overlap_gaussian_x( center_AB(2), C_center(2), AB_expo, gama, i, power_C, dim1)
|
||
|
enddo
|
||
|
power_C = 0
|
||
|
cz = 0.d0
|
||
|
do i = 0, iorder(3)
|
||
|
cz = cz + pol_AB(i,3) * overlap_gaussian_x( center_AB(3), C_center(3), AB_expo, gama, i, power_C, dim1)
|
||
|
enddo
|
||
|
|
||
|
int_gauss_deriv = int_gauss_deriv + fact_AB * dble(power_B(2)) * cx * cy * cz
|
||
|
endif
|
||
|
|
||
|
! ===============
|
||
|
|
||
|
power_D(1) = power_B(1)
|
||
|
power_D(2) = power_B(2) + 1
|
||
|
power_D(3) = power_B(3)
|
||
|
|
||
|
call give_explicit_poly_and_gaussian( pol_AB, center_AB, AB_expo, fact_AB &
|
||
|
, iorder, alpha, beta, power_A, power_D, A_center, B_center, dim1)
|
||
|
power_C = 0
|
||
|
cx = 0.d0
|
||
|
do i = 0, iorder(1)
|
||
|
cx = cx + pol_AB(i,1) * overlap_gaussian_x( center_AB(1), C_center(1), AB_expo, gama, i, power_C, dim1)
|
||
|
enddo
|
||
|
power_C = 1
|
||
|
cy = 0.d0
|
||
|
do i = 0, iorder(2)
|
||
|
cy = cy + pol_AB(i,2) * overlap_gaussian_x( center_AB(2), C_center(2), AB_expo, gama, i, power_C, dim1)
|
||
|
enddo
|
||
|
power_C = 0
|
||
|
cz = 0.d0
|
||
|
do i = 0, iorder(3)
|
||
|
cz = cz + pol_AB(i,3) * overlap_gaussian_x( center_AB(3), C_center(3), AB_expo, gama, i, power_C, dim1)
|
||
|
enddo
|
||
|
|
||
|
int_gauss_deriv = int_gauss_deriv - 2.d0 * beta * fact_AB * cx * cy * cz
|
||
|
|
||
|
! ===============
|
||
|
! ===============
|
||
|
|
||
|
! ===============
|
||
|
! term III:
|
||
|
! \partial_z
|
||
|
! ===============
|
||
|
|
||
|
if( power_B(3) .ge. 1 ) then
|
||
|
|
||
|
power_D(1) = power_B(1)
|
||
|
power_D(2) = power_B(2)
|
||
|
power_D(3) = power_B(3) - 1
|
||
|
|
||
|
call give_explicit_poly_and_gaussian( pol_AB, center_AB, AB_expo, fact_AB &
|
||
|
, iorder, alpha, beta, power_A, power_D, A_center, B_center, dim1)
|
||
|
power_C = 0
|
||
|
cx = 0.d0
|
||
|
do i = 0, iorder(1)
|
||
|
cx = cx + pol_AB(i,1) * overlap_gaussian_x( center_AB(1), C_center(1), AB_expo, gama, i, power_C, dim1)
|
||
|
enddo
|
||
|
power_C = 0
|
||
|
cy = 0.d0
|
||
|
do i = 0, iorder(2)
|
||
|
cy = cy + pol_AB(i,2) * overlap_gaussian_x( center_AB(2), C_center(2), AB_expo, gama, i, power_C, dim1)
|
||
|
enddo
|
||
|
power_C = 1
|
||
|
cz = 0.d0
|
||
|
do i = 0, iorder(3)
|
||
|
cz = cz + pol_AB(i,3) * overlap_gaussian_x( center_AB(3), C_center(3), AB_expo, gama, i, power_C, dim1)
|
||
|
enddo
|
||
|
|
||
|
int_gauss_deriv = int_gauss_deriv + fact_AB * dble(power_B(3)) * cx * cy * cz
|
||
|
endif
|
||
|
|
||
|
! ===============
|
||
|
|
||
|
power_D(1) = power_B(1)
|
||
|
power_D(2) = power_B(2)
|
||
|
power_D(3) = power_B(3) + 1
|
||
|
|
||
|
call give_explicit_poly_and_gaussian( pol_AB, center_AB, AB_expo, fact_AB &
|
||
|
, iorder, alpha, beta, power_A, power_D, A_center, B_center, dim1)
|
||
|
power_C = 0
|
||
|
cx = 0.d0
|
||
|
do i = 0, iorder(1)
|
||
|
cx = cx + pol_AB(i,1) * overlap_gaussian_x( center_AB(1), C_center(1), AB_expo, gama, i, power_C, dim1)
|
||
|
enddo
|
||
|
power_C = 0
|
||
|
cy = 0.d0
|
||
|
do i = 0, iorder(2)
|
||
|
cy = cy + pol_AB(i,2) * overlap_gaussian_x( center_AB(2), C_center(2), AB_expo, gama, i, power_C, dim1)
|
||
|
enddo
|
||
|
power_C = 1
|
||
|
cz = 0.d0
|
||
|
do i = 0, iorder(3)
|
||
|
cz = cz + pol_AB(i,3) * overlap_gaussian_x( center_AB(3), C_center(3), AB_expo, gama, i, power_C, dim1)
|
||
|
enddo
|
||
|
|
||
|
int_gauss_deriv = int_gauss_deriv - 2.d0 * beta * fact_AB * cx * cy * cz
|
||
|
|
||
|
! ===============
|
||
|
! ===============
|
||
|
|
||
|
return
|
||
|
end function int_gauss_deriv
|
||
|
!_____________________________________________________________________________________________________________
|
||
|
!_____________________________________________________________________________________________________________
|
||
|
|
||
|
|