mirror of
https://github.com/QuantumPackage/qp2.git
synced 2024-11-19 20:02:20 +01:00
108 lines
2.5 KiB
Fortran
108 lines
2.5 KiB
Fortran
|
|
||
|
! ---
|
||
|
|
||
|
BEGIN_PROVIDER [ double precision, good_hermit_tc_fock_mat, (mo_num, mo_num)]
|
||
|
|
||
|
BEGIN_DOC
|
||
|
! good_hermit_tc_fock_mat = Hermitian Upper triangular Fock matrix
|
||
|
!
|
||
|
! The converged eigenvectors of such matrix yield to orthonormal vectors satisfying the left Brillouin theorem
|
||
|
END_DOC
|
||
|
implicit none
|
||
|
integer :: i, j
|
||
|
|
||
|
good_hermit_tc_fock_mat = Fock_matrix_tc_mo_tot
|
||
|
do j = 1, mo_num
|
||
|
do i = 1, j-1
|
||
|
good_hermit_tc_fock_mat(i,j) = Fock_matrix_tc_mo_tot(j,i)
|
||
|
enddo
|
||
|
enddo
|
||
|
|
||
|
END_PROVIDER
|
||
|
|
||
|
BEGIN_PROVIDER [ double precision, hermit_average_tc_fock_mat, (mo_num, mo_num)]
|
||
|
|
||
|
BEGIN_DOC
|
||
|
! hermit_average_tc_fock_mat = (F + F^\dagger)/2
|
||
|
END_DOC
|
||
|
implicit none
|
||
|
integer :: i, j
|
||
|
|
||
|
hermit_average_tc_fock_mat = Fock_matrix_tc_mo_tot
|
||
|
do j = 1, mo_num
|
||
|
do i = 1, mo_num
|
||
|
hermit_average_tc_fock_mat(i,j) = 0.5d0 * (Fock_matrix_tc_mo_tot(j,i) + Fock_matrix_tc_mo_tot(i,j))
|
||
|
enddo
|
||
|
enddo
|
||
|
|
||
|
END_PROVIDER
|
||
|
|
||
|
|
||
|
! ---
|
||
|
BEGIN_PROVIDER [ double precision, grad_hermit]
|
||
|
implicit none
|
||
|
BEGIN_DOC
|
||
|
! square of gradient of the energy
|
||
|
END_DOC
|
||
|
if(symetric_fock_tc)then
|
||
|
grad_hermit = grad_hermit_average_tc_fock_mat
|
||
|
else
|
||
|
grad_hermit = grad_good_hermit_tc_fock_mat
|
||
|
endif
|
||
|
|
||
|
END_PROVIDER
|
||
|
|
||
|
BEGIN_PROVIDER [ double precision, grad_good_hermit_tc_fock_mat]
|
||
|
implicit none
|
||
|
BEGIN_DOC
|
||
|
! grad_good_hermit_tc_fock_mat = norm of gradients of the upper triangular TC fock
|
||
|
END_DOC
|
||
|
integer :: i, j
|
||
|
grad_good_hermit_tc_fock_mat = 0.d0
|
||
|
do i = 1, elec_alpha_num
|
||
|
do j = elec_alpha_num+1, mo_num
|
||
|
grad_good_hermit_tc_fock_mat += dabs(good_hermit_tc_fock_mat(i,j))
|
||
|
enddo
|
||
|
enddo
|
||
|
END_PROVIDER
|
||
|
|
||
|
! ---
|
||
|
|
||
|
BEGIN_PROVIDER [ double precision, grad_hermit_average_tc_fock_mat]
|
||
|
implicit none
|
||
|
BEGIN_DOC
|
||
|
! grad_hermit_average_tc_fock_mat = norm of gradients of the upper triangular TC fock
|
||
|
END_DOC
|
||
|
integer :: i, j
|
||
|
grad_hermit_average_tc_fock_mat = 0.d0
|
||
|
do i = 1, elec_alpha_num
|
||
|
do j = elec_alpha_num+1, mo_num
|
||
|
grad_hermit_average_tc_fock_mat += dabs(hermit_average_tc_fock_mat(i,j))
|
||
|
enddo
|
||
|
enddo
|
||
|
END_PROVIDER
|
||
|
|
||
|
|
||
|
! ---
|
||
|
|
||
|
subroutine save_good_hermit_tc_eigvectors()
|
||
|
|
||
|
implicit none
|
||
|
integer :: sign
|
||
|
character*(64) :: label
|
||
|
logical :: output
|
||
|
|
||
|
sign = 1
|
||
|
label = "Canonical"
|
||
|
output = .False.
|
||
|
|
||
|
if(symetric_fock_tc)then
|
||
|
call mo_as_eigvectors_of_mo_matrix(hermit_average_tc_fock_mat, mo_num, mo_num, label, sign, output)
|
||
|
else
|
||
|
call mo_as_eigvectors_of_mo_matrix(good_hermit_tc_fock_mat, mo_num, mo_num, label, sign, output)
|
||
|
endif
|
||
|
end subroutine save_good_hermit_tc_eigvectors
|
||
|
|
||
|
! ---
|
||
|
|