mirror of
https://github.com/QuantumPackage/qp2.git
synced 2024-12-22 03:23:29 +01:00
94 lines
3.1 KiB
Fortran
94 lines
3.1 KiB
Fortran
|
! Providers for the dipole moments along x,y,z and the total dipole
|
|||
|
! moments.
|
|||
|
|
|||
|
! The dipole moment along the x axis is:
|
|||
|
! \begin{align*}
|
|||
|
! \mu_x = < \Psi_m | \sum_i x_i + \sum_A Z_A R_A | \Psi_n >
|
|||
|
! \end{align*}
|
|||
|
! where $i$ is used for the electrons and $A$ for the nuclei.
|
|||
|
! $Z_A$ the charge of the nucleus $A$ and $R_A$ its position in the
|
|||
|
! space.
|
|||
|
|
|||
|
! And it can be computed using the (transition, if n /= m) density
|
|||
|
! matrix as a expectation value
|
|||
|
! \begin{align*}
|
|||
|
! <\Psi_n|x| \Psi_m > = \sum_p \gamma_{pp}^{nm} < \phi_p | x | \phi_p >
|
|||
|
! + \sum_{pq, p \neq q} \gamma_{pq}^{nm} < \phi_p | x | \phi_q > + < \Psi_m | \sum_A Z_A R_A | \Psi_n >
|
|||
|
! \end{align*}
|
|||
|
|
|||
|
|
|||
|
|
|||
|
BEGIN_PROVIDER [double precision, multi_s_dipole_moment, (N_states, N_states)]
|
|||
|
&BEGIN_PROVIDER [double precision, multi_s_x_dipole_moment, (N_states, N_states)]
|
|||
|
&BEGIN_PROVIDER [double precision, multi_s_y_dipole_moment, (N_states, N_states)]
|
|||
|
&BEGIN_PROVIDER [double precision, multi_s_z_dipole_moment, (N_states, N_states)]
|
|||
|
|
|||
|
implicit none
|
|||
|
|
|||
|
BEGIN_DOC
|
|||
|
! Providers for :
|
|||
|
! <\Psi_m|\mu_x|\Psi_n>
|
|||
|
! <\Psi_m|\mu_y|\Psi_n>
|
|||
|
! <\Psi_m|\mu_z|\Psi_n>
|
|||
|
! ||\mu|| = \sqrt{\mu_x^2 + \mu_y^2 + \mu_z^2}
|
|||
|
!
|
|||
|
! <\Psi_n|x| \Psi_m > = \sum_p \gamma_{pp}^{nm} \bra{\phi_p} x \ket{\phi_p}
|
|||
|
! + \sum_{pq, p \neq q} \gamma_{pq}^{nm} \bra{\phi_p} x \ket{\phi_q}
|
|||
|
! \Psi: wf
|
|||
|
! n,m indexes for the states
|
|||
|
! p,q: general spatial MOs
|
|||
|
! gamma^{nm}: density matrix \bra{\Psi^n} a^{\dagger}_a a_i \ket{\Psi^m}
|
|||
|
END_DOC
|
|||
|
|
|||
|
integer :: istate,jstate ! States
|
|||
|
integer :: i,j ! general spatial MOs
|
|||
|
double precision :: nuclei_part_x, nuclei_part_y, nuclei_part_z
|
|||
|
|
|||
|
multi_s_x_dipole_moment = 0.d0
|
|||
|
multi_s_y_dipole_moment = 0.d0
|
|||
|
multi_s_z_dipole_moment = 0.d0
|
|||
|
|
|||
|
do jstate = 1, N_states
|
|||
|
do istate = 1, N_states
|
|||
|
|
|||
|
do i = 1, mo_num
|
|||
|
do j = 1, mo_num
|
|||
|
multi_s_x_dipole_moment(istate,jstate) -= one_e_tr_dm_mo(j,i,istate,jstate) * mo_dipole_x(j,i)
|
|||
|
multi_s_y_dipole_moment(istate,jstate) -= one_e_tr_dm_mo(j,i,istate,jstate) * mo_dipole_y(j,i)
|
|||
|
multi_s_z_dipole_moment(istate,jstate) -= one_e_tr_dm_mo(j,i,istate,jstate) * mo_dipole_z(j,i)
|
|||
|
enddo
|
|||
|
enddo
|
|||
|
|
|||
|
enddo
|
|||
|
enddo
|
|||
|
|
|||
|
! Nuclei part
|
|||
|
nuclei_part_x = 0.d0
|
|||
|
nuclei_part_y = 0.d0
|
|||
|
nuclei_part_z = 0.d0
|
|||
|
|
|||
|
do i = 1,nucl_num
|
|||
|
nuclei_part_x += nucl_charge(i) * nucl_coord(i,1)
|
|||
|
nuclei_part_y += nucl_charge(i) * nucl_coord(i,2)
|
|||
|
nuclei_part_z += nucl_charge(i) * nucl_coord(i,3)
|
|||
|
enddo
|
|||
|
|
|||
|
! Only if istate = jstate, otherwise 0 by the orthogonality of the states
|
|||
|
do istate = 1, N_states
|
|||
|
multi_s_x_dipole_moment(istate,istate) += nuclei_part_x
|
|||
|
multi_s_y_dipole_moment(istate,istate) += nuclei_part_y
|
|||
|
multi_s_z_dipole_moment(istate,istate) += nuclei_part_z
|
|||
|
enddo
|
|||
|
|
|||
|
! d = <Psi|r|Psi>
|
|||
|
do jstate = 1, N_states
|
|||
|
do istate = 1, N_states
|
|||
|
multi_s_dipole_moment(istate,jstate) = &
|
|||
|
dsqrt(multi_s_x_dipole_moment(istate,jstate)**2 &
|
|||
|
+ multi_s_y_dipole_moment(istate,jstate)**2 &
|
|||
|
+ multi_s_z_dipole_moment(istate,jstate)**2)
|
|||
|
enddo
|
|||
|
enddo
|
|||
|
|
|||
|
END_PROVIDER
|