9
1
mirror of https://github.com/QuantumPackage/qp2.git synced 2024-12-02 01:48:24 +01:00
qp2/src/davidson/u0_wee_u0.irp.f

495 lines
16 KiB
Fortran
Raw Normal View History

2019-01-25 11:39:31 +01:00
BEGIN_PROVIDER [ double precision, psi_energy_two_e, (N_states) ]
implicit none
BEGIN_DOC
! Energy of the current wave function
END_DOC
integer :: i,j
call u_0_H_u_0_two_e(psi_energy_two_e,psi_coef,N_det,psi_det,N_int,N_states,psi_det_size)
do i=N_det+1,N_states
psi_energy(i) = 0.d0
enddo
END_PROVIDER
subroutine H_S2_u_0_two_e_nstates_openmp(v_0,s_0,u_0,N_st,sze)
use bitmasks
implicit none
BEGIN_DOC
2019-01-29 15:40:00 +01:00
! Computes $v_0 = H | u_0\rangle$ and $s_0 = S^2 | u_0\rangle$
2019-01-25 11:39:31 +01:00
!
! Assumes that the determinants are in psi_det
!
! istart, iend, ishift, istep are used in ZMQ parallelization.
END_DOC
integer, intent(in) :: N_st,sze
double precision, intent(inout) :: v_0(sze,N_st), s_0(sze,N_st), u_0(sze,N_st)
integer :: k
double precision, allocatable :: u_t(:,:), v_t(:,:), s_t(:,:)
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: u_t
allocate(u_t(N_st,N_det),v_t(N_st,N_det),s_t(N_st,N_det))
do k=1,N_st
call dset_order(u_0(1,k),psi_bilinear_matrix_order,N_det)
enddo
v_t = 0.d0
s_t = 0.d0
call dtranspose( &
u_0, &
size(u_0, 1), &
u_t, &
size(u_t, 1), &
N_det, N_st)
call H_S2_u_0_two_e_nstates_openmp_work(v_t,s_t,u_t,N_st,sze,1,N_det,0,1)
deallocate(u_t)
call dtranspose( &
v_t, &
size(v_t, 1), &
v_0, &
size(v_0, 1), &
N_st, N_det)
call dtranspose( &
s_t, &
size(s_t, 1), &
s_0, &
size(s_0, 1), &
N_st, N_det)
deallocate(v_t,s_t)
do k=1,N_st
call dset_order(v_0(1,k),psi_bilinear_matrix_order_reverse,N_det)
call dset_order(s_0(1,k),psi_bilinear_matrix_order_reverse,N_det)
call dset_order(u_0(1,k),psi_bilinear_matrix_order_reverse,N_det)
enddo
end
subroutine H_S2_u_0_two_e_nstates_openmp_work(v_t,s_t,u_t,N_st,sze,istart,iend,ishift,istep)
use bitmasks
implicit none
BEGIN_DOC
2019-01-29 15:40:00 +01:00
! Computes $v_t = H | u_t\rangle$ and $s_t = S^2 | u_t\rangle$
2019-01-25 11:39:31 +01:00
!
! Default should be 1,N_det,0,1
END_DOC
integer, intent(in) :: N_st,sze,istart,iend,ishift,istep
double precision, intent(in) :: u_t(N_st,N_det)
double precision, intent(out) :: v_t(N_st,sze), s_t(N_st,sze)
PROVIDE ref_bitmask_energy N_int
select case (N_int)
case (1)
call H_S2_u_0_two_e_nstates_openmp_work_1(v_t,s_t,u_t,N_st,sze,istart,iend,ishift,istep)
case (2)
call H_S2_u_0_two_e_nstates_openmp_work_2(v_t,s_t,u_t,N_st,sze,istart,iend,ishift,istep)
case (3)
call H_S2_u_0_two_e_nstates_openmp_work_3(v_t,s_t,u_t,N_st,sze,istart,iend,ishift,istep)
case (4)
call H_S2_u_0_two_e_nstates_openmp_work_4(v_t,s_t,u_t,N_st,sze,istart,iend,ishift,istep)
case default
call H_S2_u_0_two_e_nstates_openmp_work_N_int(v_t,s_t,u_t,N_st,sze,istart,iend,ishift,istep)
end select
end
BEGIN_TEMPLATE
subroutine H_S2_u_0_two_e_nstates_openmp_work_$N_int(v_t,s_t,u_t,N_st,sze,istart,iend,ishift,istep)
use bitmasks
implicit none
BEGIN_DOC
2019-01-29 15:40:00 +01:00
! Computes $v_t = H | u_t \\rangle$ and $s_t = S^2 | u_t \\rangle$
2019-01-25 11:39:31 +01:00
!
! Default should be 1,N_det,0,1
END_DOC
integer, intent(in) :: N_st,sze,istart,iend,ishift,istep
double precision, intent(in) :: u_t(N_st,N_det)
double precision, intent(out) :: v_t(N_st,sze), s_t(N_st,sze)
double precision :: hij, sij
integer :: i,j,k,l
integer :: k_a, k_b, l_a, l_b, m_a, m_b
integer :: istate
integer :: krow, kcol, krow_b, kcol_b
integer :: lrow, lcol
integer :: mrow, mcol
integer(bit_kind) :: spindet($N_int)
integer(bit_kind) :: tmp_det($N_int,2)
integer(bit_kind) :: tmp_det2($N_int,2)
integer(bit_kind) :: tmp_det3($N_int,2)
integer(bit_kind), allocatable :: buffer(:,:)
integer :: n_doubles
integer, allocatable :: doubles(:)
integer, allocatable :: singles_a(:)
integer, allocatable :: singles_b(:)
integer, allocatable :: idx(:), idx0(:)
integer :: maxab, n_singles_a, n_singles_b, kcol_prev
integer*8 :: k8
maxab = max(N_det_alpha_unique, N_det_beta_unique)+1
allocate(idx0(maxab))
do i=1,maxab
idx0(i) = i
enddo
! Prepare the array of all alpha single excitations
! -------------------------------------------------
PROVIDE N_int nthreads_davidson
!$OMP PARALLEL DEFAULT(NONE) NUM_THREADS(nthreads_davidson) &
!$OMP SHARED(psi_bilinear_matrix_rows, N_det, &
!$OMP psi_bilinear_matrix_columns, &
!$OMP psi_det_alpha_unique, psi_det_beta_unique, &
!$OMP n_det_alpha_unique, n_det_beta_unique, N_int, &
!$OMP psi_bilinear_matrix_transp_rows, &
!$OMP psi_bilinear_matrix_transp_columns, &
!$OMP psi_bilinear_matrix_transp_order, N_st, &
!$OMP psi_bilinear_matrix_order_transp_reverse, &
!$OMP psi_bilinear_matrix_columns_loc, &
!$OMP psi_bilinear_matrix_transp_rows_loc, &
!$OMP istart, iend, istep, irp_here, v_t, s_t, &
!$OMP ishift, idx0, u_t, maxab) &
!$OMP PRIVATE(krow, kcol, tmp_det, spindet, k_a, k_b, i, &
!$OMP lcol, lrow, l_a, l_b, &
!$OMP buffer, doubles, n_doubles, &
!$OMP tmp_det2, hij, sij, idx, l, kcol_prev, &
!$OMP singles_a, n_singles_a, singles_b, &
!$OMP n_singles_b, k8)
! Alpha/Beta double excitations
! =============================
allocate( buffer($N_int,maxab), &
singles_a(maxab), &
singles_b(maxab), &
doubles(maxab), &
idx(maxab))
kcol_prev=-1
ASSERT (iend <= N_det)
ASSERT (istart > 0)
ASSERT (istep > 0)
!$OMP DO SCHEDULE(dynamic,64)
do k_a=istart+ishift,iend,istep
krow = psi_bilinear_matrix_rows(k_a)
ASSERT (krow <= N_det_alpha_unique)
kcol = psi_bilinear_matrix_columns(k_a)
ASSERT (kcol <= N_det_beta_unique)
tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
if (kcol /= kcol_prev) then
call get_all_spin_singles_$N_int( &
psi_det_beta_unique, idx0, &
tmp_det(1,2), N_det_beta_unique, &
singles_b, n_singles_b)
endif
kcol_prev = kcol
! Loop over singly excited beta columns
! -------------------------------------
do i=1,n_singles_b
lcol = singles_b(i)
tmp_det2(1:$N_int,2) = psi_det_beta_unique(1:$N_int, lcol)
l_a = psi_bilinear_matrix_columns_loc(lcol)
ASSERT (l_a <= N_det)
do j=1,psi_bilinear_matrix_columns_loc(lcol+1) - l_a
lrow = psi_bilinear_matrix_rows(l_a)
ASSERT (lrow <= N_det_alpha_unique)
buffer(1:$N_int,j) = psi_det_alpha_unique(1:$N_int, lrow)
ASSERT (l_a <= N_det)
idx(j) = l_a
l_a = l_a+1
enddo
j = j-1
call get_all_spin_singles_$N_int( &
buffer, idx, tmp_det(1,1), j, &
singles_a, n_singles_a )
! Loop over alpha singles
! -----------------------
do k = 1,n_singles_a
l_a = singles_a(k)
ASSERT (l_a <= N_det)
lrow = psi_bilinear_matrix_rows(l_a)
ASSERT (lrow <= N_det_alpha_unique)
tmp_det2(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, lrow)
call i_H_j_double_alpha_beta(tmp_det,tmp_det2,$N_int,hij)
call get_s2(tmp_det,tmp_det2,$N_int,sij)
do l=1,N_st
v_t(l,k_a) = v_t(l,k_a) + hij * u_t(l,l_a)
s_t(l,k_a) = s_t(l,k_a) + sij * u_t(l,l_a)
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP DO SCHEDULE(dynamic,64)
do k_a=istart+ishift,iend,istep
! Single and double alpha excitations
! ===================================
! Initial determinant is at k_a in alpha-major representation
! -----------------------------------------------------------------------
krow = psi_bilinear_matrix_rows(k_a)
ASSERT (krow <= N_det_alpha_unique)
kcol = psi_bilinear_matrix_columns(k_a)
ASSERT (kcol <= N_det_beta_unique)
tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
! Initial determinant is at k_b in beta-major representation
! ----------------------------------------------------------------------
k_b = psi_bilinear_matrix_order_transp_reverse(k_a)
ASSERT (k_b <= N_det)
spindet(1:$N_int) = tmp_det(1:$N_int,1)
! Loop inside the beta column to gather all the connected alphas
lcol = psi_bilinear_matrix_columns(k_a)
l_a = psi_bilinear_matrix_columns_loc(lcol)
do i=1,N_det_alpha_unique
if (l_a > N_det) exit
lcol = psi_bilinear_matrix_columns(l_a)
if (lcol /= kcol) exit
lrow = psi_bilinear_matrix_rows(l_a)
ASSERT (lrow <= N_det_alpha_unique)
buffer(1:$N_int,i) = psi_det_alpha_unique(1:$N_int, lrow)
idx(i) = l_a
l_a = l_a+1
enddo
i = i-1
call get_all_spin_singles_and_doubles_$N_int( &
buffer, idx, spindet, i, &
singles_a, doubles, n_singles_a, n_doubles )
! Compute Hij for all alpha singles
! ----------------------------------
tmp_det2(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
do i=1,n_singles_a
l_a = singles_a(i)
ASSERT (l_a <= N_det)
lrow = psi_bilinear_matrix_rows(l_a)
ASSERT (lrow <= N_det_alpha_unique)
tmp_det2(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, lrow)
2019-02-04 23:51:09 +01:00
call i_Wee_j_single( tmp_det, tmp_det2, $N_int, 1, hij)
2019-01-25 11:39:31 +01:00
do l=1,N_st
v_t(l,k_a) = v_t(l,k_a) + hij * u_t(l,l_a)
! single => sij = 0
enddo
enddo
! Compute Hij for all alpha doubles
! ----------------------------------
do i=1,n_doubles
l_a = doubles(i)
ASSERT (l_a <= N_det)
lrow = psi_bilinear_matrix_rows(l_a)
ASSERT (lrow <= N_det_alpha_unique)
call i_H_j_double_spin( tmp_det(1,1), psi_det_alpha_unique(1, lrow), $N_int, hij)
do l=1,N_st
v_t(l,k_a) = v_t(l,k_a) + hij * u_t(l,l_a)
! same spin => sij = 0
enddo
enddo
! Single and double beta excitations
! ==================================
! Initial determinant is at k_a in alpha-major representation
! -----------------------------------------------------------------------
krow = psi_bilinear_matrix_rows(k_a)
kcol = psi_bilinear_matrix_columns(k_a)
tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
spindet(1:$N_int) = tmp_det(1:$N_int,2)
! Initial determinant is at k_b in beta-major representation
! -----------------------------------------------------------------------
k_b = psi_bilinear_matrix_order_transp_reverse(k_a)
ASSERT (k_b <= N_det)
! Loop inside the alpha row to gather all the connected betas
lrow = psi_bilinear_matrix_transp_rows(k_b)
l_b = psi_bilinear_matrix_transp_rows_loc(lrow)
do i=1,N_det_beta_unique
if (l_b > N_det) exit
lrow = psi_bilinear_matrix_transp_rows(l_b)
if (lrow /= krow) exit
lcol = psi_bilinear_matrix_transp_columns(l_b)
ASSERT (lcol <= N_det_beta_unique)
buffer(1:$N_int,i) = psi_det_beta_unique(1:$N_int, lcol)
idx(i) = l_b
l_b = l_b+1
enddo
i = i-1
call get_all_spin_singles_and_doubles_$N_int( &
buffer, idx, spindet, i, &
singles_b, doubles, n_singles_b, n_doubles )
! Compute Hij for all beta singles
! ----------------------------------
tmp_det2(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
do i=1,n_singles_b
l_b = singles_b(i)
ASSERT (l_b <= N_det)
lcol = psi_bilinear_matrix_transp_columns(l_b)
ASSERT (lcol <= N_det_beta_unique)
tmp_det2(1:$N_int,2) = psi_det_beta_unique (1:$N_int, lcol)
2019-02-04 23:51:09 +01:00
call i_Wee_j_single( tmp_det, tmp_det2, $N_int, 2, hij)
2019-01-25 11:39:31 +01:00
l_a = psi_bilinear_matrix_transp_order(l_b)
ASSERT (l_a <= N_det)
do l=1,N_st
v_t(l,k_a) = v_t(l,k_a) + hij * u_t(l,l_a)
! single => sij = 0
enddo
enddo
! Compute Hij for all beta doubles
! ----------------------------------
do i=1,n_doubles
l_b = doubles(i)
ASSERT (l_b <= N_det)
lcol = psi_bilinear_matrix_transp_columns(l_b)
ASSERT (lcol <= N_det_beta_unique)
call i_H_j_double_spin( tmp_det(1,2), psi_det_beta_unique(1, lcol), $N_int, hij)
l_a = psi_bilinear_matrix_transp_order(l_b)
ASSERT (l_a <= N_det)
do l=1,N_st
v_t(l,k_a) = v_t(l,k_a) + hij * u_t(l,l_a)
! same spin => sij = 0
enddo
enddo
! Diagonal contribution
! =====================
! Initial determinant is at k_a in alpha-major representation
! -----------------------------------------------------------------------
krow = psi_bilinear_matrix_rows(k_a)
ASSERT (krow <= N_det_alpha_unique)
kcol = psi_bilinear_matrix_columns(k_a)
ASSERT (kcol <= N_det_beta_unique)
tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
double precision, external :: diag_wee_mat_elem, diag_S_mat_elem
hij = diag_wee_mat_elem(tmp_det,$N_int)
sij = diag_S_mat_elem(tmp_det,$N_int)
do l=1,N_st
v_t(l,k_a) = v_t(l,k_a) + hij * u_t(l,k_a)
s_t(l,k_a) = s_t(l,k_a) + sij * u_t(l,k_a)
enddo
end do
!$OMP END DO
deallocate(buffer, singles_a, singles_b, doubles, idx)
!$OMP END PARALLEL
end
SUBST [ N_int ]
1;;
2;;
3;;
4;;
N_int;;
END_TEMPLATE
subroutine u_0_H_u_0_two_e(e_0,u_0,n,keys_tmp,Nint,N_st,sze)
use bitmasks
implicit none
BEGIN_DOC
2019-01-29 15:40:00 +01:00
! Computes $E_0 = \frac{ \langle u_0 | H | u_0\rangle}{\langle u_0 | u_0 \rangle}$.
2019-01-25 11:39:31 +01:00
!
! n : number of determinants
!
END_DOC
integer, intent(in) :: n,Nint, N_st, sze
double precision, intent(out) :: e_0(N_st)
double precision, intent(inout) :: u_0(sze,N_st)
integer(bit_kind),intent(in) :: keys_tmp(Nint,2,n)
double precision, allocatable :: v_0(:,:), s_0(:,:), u_1(:,:)
double precision :: u_dot_u,u_dot_v,diag_H_mat_elem
integer :: i,j
allocate (v_0(n,N_st),s_0(n,N_st),u_1(n,N_st))
u_1(1:n,:) = u_0(1:n,:)
call H_S2_u_0_two_e_nstates_openmp(v_0,s_0,u_1,N_st,n)
u_0(1:n,:) = u_1(1:n,:)
deallocate(u_1)
double precision :: norm
do i=1,N_st
norm = u_dot_u(u_0(1,i),n)
if (norm /= 0.d0) then
e_0(i) = u_dot_v(v_0(1,i),u_0(1,i),n)/u_dot_u(u_0(1,i),n)
else
e_0(i) = 0.d0
endif
enddo
deallocate (s_0, v_0)
end