mirror of
https://github.com/QuantumPackage/qp2.git
synced 2024-12-08 04:33:30 +01:00
6952 lines
252 KiB
Fortran
6952 lines
252 KiB
Fortran
|
subroutine gen_oh(code, num, x, y, z, w, a, b, v)
|
||
|
implicit logical(a-z)
|
||
|
double precision x(*),y(*),z(*),w(*)
|
||
|
double precision a,b,v
|
||
|
integer code
|
||
|
integer num
|
||
|
double precision c
|
||
|
chvd
|
||
|
chvd This subroutine is part of a set of subroutines that generate
|
||
|
chvd Lebedev grids [1-6] for integration on a sphere. The original
|
||
|
chvd C-code [1] was kindly provided by Dr. Dmitri N. Laikov and
|
||
|
chvd translated into fortran by Dr. Christoph van Wuellen.
|
||
|
chvd This subroutine was translated from C to fortran77 by hand.
|
||
|
chvd
|
||
|
chvd Users of this code are asked to include reference [1] in their
|
||
|
chvd publications, and in the user- and programmers-manuals
|
||
|
chvd describing their codes.
|
||
|
chvd
|
||
|
chvd This code was distributed through CCL (http://www.ccl.net/).
|
||
|
chvd
|
||
|
chvd [1] V.I. Lebedev, and D.N. Laikov
|
||
|
chvd "A quadrature formula for the sphere of the 131st
|
||
|
chvd algebraic order of accuracy"
|
||
|
chvd Doklady Mathematics, Vol. 59, No. 3, 1999, pp. 477-481.
|
||
|
chvd
|
||
|
chvd [2] V.I. Lebedev
|
||
|
chvd "A quadrature formula for the sphere of 59th algebraic
|
||
|
chvd order of accuracy"
|
||
|
chvd Russian Acad. Sci. Dokl. Math., Vol. 50, 1995, pp. 283-286.
|
||
|
chvd
|
||
|
chvd [3] V.I. Lebedev, and A.L. Skorokhodov
|
||
|
chvd "Quadrature formulas of orders 41, 47, and 53 for the sphere"
|
||
|
chvd Russian Acad. Sci. Dokl. Math., Vol. 45, 1992, pp. 587-592.
|
||
|
chvd
|
||
|
chvd [4] V.I. Lebedev
|
||
|
chvd "Spherical quadrature formulas exact to orders 25-29"
|
||
|
chvd Siberian Mathematical Journal, Vol. 18, 1977, pp. 99-107.
|
||
|
chvd
|
||
|
chvd [5] V.I. Lebedev
|
||
|
chvd "Quadratures on a sphere"
|
||
|
chvd Computational Mathematics and Mathematical Physics, Vol. 16,
|
||
|
chvd 1976, pp. 10-24.
|
||
|
chvd
|
||
|
chvd [6] V.I. Lebedev
|
||
|
chvd "Values of the nodes and weights of ninth to seventeenth
|
||
|
chvd order Gauss-Markov quadrature formulae invariant under the
|
||
|
chvd octahedron group with inversion"
|
||
|
chvd Computational Mathematics and Mathematical Physics, Vol. 15,
|
||
|
chvd 1975, pp. 44-51.
|
||
|
chvd
|
||
|
cvw
|
||
|
cvw Given a point on a sphere (specified by a and b), generate all
|
||
|
cvw the equivalent points under Oh symmetry, making grid points with
|
||
|
cvw weight v.
|
||
|
cvw The variable num is increased by the number of different points
|
||
|
cvw generated.
|
||
|
cvw
|
||
|
cvw Depending on code, there are 6...48 different but equivalent
|
||
|
cvw points.
|
||
|
cvw
|
||
|
cvw code=1: (0,0,1) etc ( 6 points)
|
||
|
cvw code=2: (0,a,a) etc, a=1/sqrt(2) ( 12 points)
|
||
|
cvw code=3: (a,a,a) etc, a=1/sqrt(3) ( 8 points)
|
||
|
cvw code=4: (a,a,b) etc, b=sqrt(1-2 a^2) ( 24 points)
|
||
|
cvw code=5: (a,b,0) etc, b=sqrt(1-a^2), a input ( 24 points)
|
||
|
cvw code=6: (a,b,c) etc, c=sqrt(1-a^2-b^2), a/b input ( 48 points)
|
||
|
cvw
|
||
|
goto (1,2,3,4,5,6) code
|
||
|
write (6,*) 'Gen_Oh: Invalid Code'
|
||
|
stop
|
||
|
1 continue
|
||
|
a=1.0d0
|
||
|
x(1) = a
|
||
|
y(1) = 0.0d0
|
||
|
z(1) = 0.0d0
|
||
|
w(1) = v
|
||
|
x(2) = -a
|
||
|
y(2) = 0.0d0
|
||
|
z(2) = 0.0d0
|
||
|
w(2) = v
|
||
|
x(3) = 0.0d0
|
||
|
y(3) = a
|
||
|
z(3) = 0.0d0
|
||
|
w(3) = v
|
||
|
x(4) = 0.0d0
|
||
|
y(4) = -a
|
||
|
z(4) = 0.0d0
|
||
|
w(4) = v
|
||
|
x(5) = 0.0d0
|
||
|
y(5) = 0.0d0
|
||
|
z(5) = a
|
||
|
w(5) = v
|
||
|
x(6) = 0.0d0
|
||
|
y(6) = 0.0d0
|
||
|
z(6) = -a
|
||
|
w(6) = v
|
||
|
num=num+6
|
||
|
return
|
||
|
cvw
|
||
|
2 continue
|
||
|
a=sqrt(0.5d0)
|
||
|
x( 1) = 0d0
|
||
|
y( 1) = a
|
||
|
z( 1) = a
|
||
|
w( 1) = v
|
||
|
x( 2) = 0d0
|
||
|
y( 2) = -a
|
||
|
z( 2) = a
|
||
|
w( 2) = v
|
||
|
x( 3) = 0d0
|
||
|
y( 3) = a
|
||
|
z( 3) = -a
|
||
|
w( 3) = v
|
||
|
x( 4) = 0d0
|
||
|
y( 4) = -a
|
||
|
z( 4) = -a
|
||
|
w( 4) = v
|
||
|
x( 5) = a
|
||
|
y( 5) = 0d0
|
||
|
z( 5) = a
|
||
|
w( 5) = v
|
||
|
x( 6) = -a
|
||
|
y( 6) = 0d0
|
||
|
z( 6) = a
|
||
|
w( 6) = v
|
||
|
x( 7) = a
|
||
|
y( 7) = 0d0
|
||
|
z( 7) = -a
|
||
|
w( 7) = v
|
||
|
x( 8) = -a
|
||
|
y( 8) = 0d0
|
||
|
z( 8) = -a
|
||
|
w( 8) = v
|
||
|
x( 9) = a
|
||
|
y( 9) = a
|
||
|
z( 9) = 0d0
|
||
|
w( 9) = v
|
||
|
x(10) = -a
|
||
|
y(10) = a
|
||
|
z(10) = 0d0
|
||
|
w(10) = v
|
||
|
x(11) = a
|
||
|
y(11) = -a
|
||
|
z(11) = 0d0
|
||
|
w(11) = v
|
||
|
x(12) = -a
|
||
|
y(12) = -a
|
||
|
z(12) = 0d0
|
||
|
w(12) = v
|
||
|
num=num+12
|
||
|
return
|
||
|
cvw
|
||
|
3 continue
|
||
|
a = sqrt(1d0/3d0)
|
||
|
x(1) = a
|
||
|
y(1) = a
|
||
|
z(1) = a
|
||
|
w(1) = v
|
||
|
x(2) = -a
|
||
|
y(2) = a
|
||
|
z(2) = a
|
||
|
w(2) = v
|
||
|
x(3) = a
|
||
|
y(3) = -a
|
||
|
z(3) = a
|
||
|
w(3) = v
|
||
|
x(4) = -a
|
||
|
y(4) = -a
|
||
|
z(4) = a
|
||
|
w(4) = v
|
||
|
x(5) = a
|
||
|
y(5) = a
|
||
|
z(5) = -a
|
||
|
w(5) = v
|
||
|
x(6) = -a
|
||
|
y(6) = a
|
||
|
z(6) = -a
|
||
|
w(6) = v
|
||
|
x(7) = a
|
||
|
y(7) = -a
|
||
|
z(7) = -a
|
||
|
w(7) = v
|
||
|
x(8) = -a
|
||
|
y(8) = -a
|
||
|
z(8) = -a
|
||
|
w(8) = v
|
||
|
num=num+8
|
||
|
return
|
||
|
cvw
|
||
|
4 continue
|
||
|
b = sqrt(1d0 - 2d0*a*a)
|
||
|
x( 1) = a
|
||
|
y( 1) = a
|
||
|
z( 1) = b
|
||
|
w( 1) = v
|
||
|
x( 2) = -a
|
||
|
y( 2) = a
|
||
|
z( 2) = b
|
||
|
w( 2) = v
|
||
|
x( 3) = a
|
||
|
y( 3) = -a
|
||
|
z( 3) = b
|
||
|
w( 3) = v
|
||
|
x( 4) = -a
|
||
|
y( 4) = -a
|
||
|
z( 4) = b
|
||
|
w( 4) = v
|
||
|
x( 5) = a
|
||
|
y( 5) = a
|
||
|
z( 5) = -b
|
||
|
w( 5) = v
|
||
|
x( 6) = -a
|
||
|
y( 6) = a
|
||
|
z( 6) = -b
|
||
|
w( 6) = v
|
||
|
x( 7) = a
|
||
|
y( 7) = -a
|
||
|
z( 7) = -b
|
||
|
w( 7) = v
|
||
|
x( 8) = -a
|
||
|
y( 8) = -a
|
||
|
z( 8) = -b
|
||
|
w( 8) = v
|
||
|
x( 9) = a
|
||
|
y( 9) = b
|
||
|
z( 9) = a
|
||
|
w( 9) = v
|
||
|
x(10) = -a
|
||
|
y(10) = b
|
||
|
z(10) = a
|
||
|
w(10) = v
|
||
|
x(11) = a
|
||
|
y(11) = -b
|
||
|
z(11) = a
|
||
|
w(11) = v
|
||
|
x(12) = -a
|
||
|
y(12) = -b
|
||
|
z(12) = a
|
||
|
w(12) = v
|
||
|
x(13) = a
|
||
|
y(13) = b
|
||
|
z(13) = -a
|
||
|
w(13) = v
|
||
|
x(14) = -a
|
||
|
y(14) = b
|
||
|
z(14) = -a
|
||
|
w(14) = v
|
||
|
x(15) = a
|
||
|
y(15) = -b
|
||
|
z(15) = -a
|
||
|
w(15) = v
|
||
|
x(16) = -a
|
||
|
y(16) = -b
|
||
|
z(16) = -a
|
||
|
w(16) = v
|
||
|
x(17) = b
|
||
|
y(17) = a
|
||
|
z(17) = a
|
||
|
w(17) = v
|
||
|
x(18) = -b
|
||
|
y(18) = a
|
||
|
z(18) = a
|
||
|
w(18) = v
|
||
|
x(19) = b
|
||
|
y(19) = -a
|
||
|
z(19) = a
|
||
|
w(19) = v
|
||
|
x(20) = -b
|
||
|
y(20) = -a
|
||
|
z(20) = a
|
||
|
w(20) = v
|
||
|
x(21) = b
|
||
|
y(21) = a
|
||
|
z(21) = -a
|
||
|
w(21) = v
|
||
|
x(22) = -b
|
||
|
y(22) = a
|
||
|
z(22) = -a
|
||
|
w(22) = v
|
||
|
x(23) = b
|
||
|
y(23) = -a
|
||
|
z(23) = -a
|
||
|
w(23) = v
|
||
|
x(24) = -b
|
||
|
y(24) = -a
|
||
|
z(24) = -a
|
||
|
w(24) = v
|
||
|
num=num+24
|
||
|
return
|
||
|
cvw
|
||
|
5 continue
|
||
|
b=sqrt(1d0-a*a)
|
||
|
x( 1) = a
|
||
|
y( 1) = b
|
||
|
z( 1) = 0d0
|
||
|
w( 1) = v
|
||
|
x( 2) = -a
|
||
|
y( 2) = b
|
||
|
z( 2) = 0d0
|
||
|
w( 2) = v
|
||
|
x( 3) = a
|
||
|
y( 3) = -b
|
||
|
z( 3) = 0d0
|
||
|
w( 3) = v
|
||
|
x( 4) = -a
|
||
|
y( 4) = -b
|
||
|
z( 4) = 0d0
|
||
|
w( 4) = v
|
||
|
x( 5) = b
|
||
|
y( 5) = a
|
||
|
z( 5) = 0d0
|
||
|
w( 5) = v
|
||
|
x( 6) = -b
|
||
|
y( 6) = a
|
||
|
z( 6) = 0d0
|
||
|
w( 6) = v
|
||
|
x( 7) = b
|
||
|
y( 7) = -a
|
||
|
z( 7) = 0d0
|
||
|
w( 7) = v
|
||
|
x( 8) = -b
|
||
|
y( 8) = -a
|
||
|
z( 8) = 0d0
|
||
|
w( 8) = v
|
||
|
x( 9) = a
|
||
|
y( 9) = 0d0
|
||
|
z( 9) = b
|
||
|
w( 9) = v
|
||
|
x(10) = -a
|
||
|
y(10) = 0d0
|
||
|
z(10) = b
|
||
|
w(10) = v
|
||
|
x(11) = a
|
||
|
y(11) = 0d0
|
||
|
z(11) = -b
|
||
|
w(11) = v
|
||
|
x(12) = -a
|
||
|
y(12) = 0d0
|
||
|
z(12) = -b
|
||
|
w(12) = v
|
||
|
x(13) = b
|
||
|
y(13) = 0d0
|
||
|
z(13) = a
|
||
|
w(13) = v
|
||
|
x(14) = -b
|
||
|
y(14) = 0d0
|
||
|
z(14) = a
|
||
|
w(14) = v
|
||
|
x(15) = b
|
||
|
y(15) = 0d0
|
||
|
z(15) = -a
|
||
|
w(15) = v
|
||
|
x(16) = -b
|
||
|
y(16) = 0d0
|
||
|
z(16) = -a
|
||
|
w(16) = v
|
||
|
x(17) = 0d0
|
||
|
y(17) = a
|
||
|
z(17) = b
|
||
|
w(17) = v
|
||
|
x(18) = 0d0
|
||
|
y(18) = -a
|
||
|
z(18) = b
|
||
|
w(18) = v
|
||
|
x(19) = 0d0
|
||
|
y(19) = a
|
||
|
z(19) = -b
|
||
|
w(19) = v
|
||
|
x(20) = 0d0
|
||
|
y(20) = -a
|
||
|
z(20) = -b
|
||
|
w(20) = v
|
||
|
x(21) = 0d0
|
||
|
y(21) = b
|
||
|
z(21) = a
|
||
|
w(21) = v
|
||
|
x(22) = 0d0
|
||
|
y(22) = -b
|
||
|
z(22) = a
|
||
|
w(22) = v
|
||
|
x(23) = 0d0
|
||
|
y(23) = b
|
||
|
z(23) = -a
|
||
|
w(23) = v
|
||
|
x(24) = 0d0
|
||
|
y(24) = -b
|
||
|
z(24) = -a
|
||
|
w(24) = v
|
||
|
num=num+24
|
||
|
return
|
||
|
cvw
|
||
|
6 continue
|
||
|
c=sqrt(1d0 - a*a - b*b)
|
||
|
x( 1) = a
|
||
|
y( 1) = b
|
||
|
z( 1) = c
|
||
|
w( 1) = v
|
||
|
x( 2) = -a
|
||
|
y( 2) = b
|
||
|
z( 2) = c
|
||
|
w( 2) = v
|
||
|
x( 3) = a
|
||
|
y( 3) = -b
|
||
|
z( 3) = c
|
||
|
w( 3) = v
|
||
|
x( 4) = -a
|
||
|
y( 4) = -b
|
||
|
z( 4) = c
|
||
|
w( 4) = v
|
||
|
x( 5) = a
|
||
|
y( 5) = b
|
||
|
z( 5) = -c
|
||
|
w( 5) = v
|
||
|
x( 6) = -a
|
||
|
y( 6) = b
|
||
|
z( 6) = -c
|
||
|
w( 6) = v
|
||
|
x( 7) = a
|
||
|
y( 7) = -b
|
||
|
z( 7) = -c
|
||
|
w( 7) = v
|
||
|
x( 8) = -a
|
||
|
y( 8) = -b
|
||
|
z( 8) = -c
|
||
|
w( 8) = v
|
||
|
x( 9) = a
|
||
|
y( 9) = c
|
||
|
z( 9) = b
|
||
|
w( 9) = v
|
||
|
x(10) = -a
|
||
|
y(10) = c
|
||
|
z(10) = b
|
||
|
w(10) = v
|
||
|
x(11) = a
|
||
|
y(11) = -c
|
||
|
z(11) = b
|
||
|
w(11) = v
|
||
|
x(12) = -a
|
||
|
y(12) = -c
|
||
|
z(12) = b
|
||
|
w(12) = v
|
||
|
x(13) = a
|
||
|
y(13) = c
|
||
|
z(13) = -b
|
||
|
w(13) = v
|
||
|
x(14) = -a
|
||
|
y(14) = c
|
||
|
z(14) = -b
|
||
|
w(14) = v
|
||
|
x(15) = a
|
||
|
y(15) = -c
|
||
|
z(15) = -b
|
||
|
w(15) = v
|
||
|
x(16) = -a
|
||
|
y(16) = -c
|
||
|
z(16) = -b
|
||
|
w(16) = v
|
||
|
x(17) = b
|
||
|
y(17) = a
|
||
|
z(17) = c
|
||
|
w(17) = v
|
||
|
x(18) = -b
|
||
|
y(18) = a
|
||
|
z(18) = c
|
||
|
w(18) = v
|
||
|
x(19) = b
|
||
|
y(19) = -a
|
||
|
z(19) = c
|
||
|
w(19) = v
|
||
|
x(20) = -b
|
||
|
y(20) = -a
|
||
|
z(20) = c
|
||
|
w(20) = v
|
||
|
x(21) = b
|
||
|
y(21) = a
|
||
|
z(21) = -c
|
||
|
w(21) = v
|
||
|
x(22) = -b
|
||
|
y(22) = a
|
||
|
z(22) = -c
|
||
|
w(22) = v
|
||
|
x(23) = b
|
||
|
y(23) = -a
|
||
|
z(23) = -c
|
||
|
w(23) = v
|
||
|
x(24) = -b
|
||
|
y(24) = -a
|
||
|
z(24) = -c
|
||
|
w(24) = v
|
||
|
x(25) = b
|
||
|
y(25) = c
|
||
|
z(25) = a
|
||
|
w(25) = v
|
||
|
x(26) = -b
|
||
|
y(26) = c
|
||
|
z(26) = a
|
||
|
w(26) = v
|
||
|
x(27) = b
|
||
|
y(27) = -c
|
||
|
z(27) = a
|
||
|
w(27) = v
|
||
|
x(28) = -b
|
||
|
y(28) = -c
|
||
|
z(28) = a
|
||
|
w(28) = v
|
||
|
x(29) = b
|
||
|
y(29) = c
|
||
|
z(29) = -a
|
||
|
w(29) = v
|
||
|
x(30) = -b
|
||
|
y(30) = c
|
||
|
z(30) = -a
|
||
|
w(30) = v
|
||
|
x(31) = b
|
||
|
y(31) = -c
|
||
|
z(31) = -a
|
||
|
w(31) = v
|
||
|
x(32) = -b
|
||
|
y(32) = -c
|
||
|
z(32) = -a
|
||
|
w(32) = v
|
||
|
x(33) = c
|
||
|
y(33) = a
|
||
|
z(33) = b
|
||
|
w(33) = v
|
||
|
x(34) = -c
|
||
|
y(34) = a
|
||
|
z(34) = b
|
||
|
w(34) = v
|
||
|
x(35) = c
|
||
|
y(35) = -a
|
||
|
z(35) = b
|
||
|
w(35) = v
|
||
|
x(36) = -c
|
||
|
y(36) = -a
|
||
|
z(36) = b
|
||
|
w(36) = v
|
||
|
x(37) = c
|
||
|
y(37) = a
|
||
|
z(37) = -b
|
||
|
w(37) = v
|
||
|
x(38) = -c
|
||
|
y(38) = a
|
||
|
z(38) = -b
|
||
|
w(38) = v
|
||
|
x(39) = c
|
||
|
y(39) = -a
|
||
|
z(39) = -b
|
||
|
w(39) = v
|
||
|
x(40) = -c
|
||
|
y(40) = -a
|
||
|
z(40) = -b
|
||
|
w(40) = v
|
||
|
x(41) = c
|
||
|
y(41) = b
|
||
|
z(41) = a
|
||
|
w(41) = v
|
||
|
x(42) = -c
|
||
|
y(42) = b
|
||
|
z(42) = a
|
||
|
w(42) = v
|
||
|
x(43) = c
|
||
|
y(43) = -b
|
||
|
z(43) = a
|
||
|
w(43) = v
|
||
|
x(44) = -c
|
||
|
y(44) = -b
|
||
|
z(44) = a
|
||
|
w(44) = v
|
||
|
x(45) = c
|
||
|
y(45) = b
|
||
|
z(45) = -a
|
||
|
w(45) = v
|
||
|
x(46) = -c
|
||
|
y(46) = b
|
||
|
z(46) = -a
|
||
|
w(46) = v
|
||
|
x(47) = c
|
||
|
y(47) = -b
|
||
|
z(47) = -a
|
||
|
w(47) = v
|
||
|
x(48) = -c
|
||
|
y(48) = -b
|
||
|
z(48) = -a
|
||
|
w(48) = v
|
||
|
num=num+48
|
||
|
return
|
||
|
end
|
||
|
SUBROUTINE LD0006(X,Y,Z,W,N)
|
||
|
DOUBLE PRECISION X( 6)
|
||
|
DOUBLE PRECISION Y( 6)
|
||
|
DOUBLE PRECISION Z( 6)
|
||
|
DOUBLE PRECISION W( 6)
|
||
|
INTEGER N
|
||
|
DOUBLE PRECISION A,B,V
|
||
|
CVW
|
||
|
CVW LEBEDEV 6-POINT ANGULAR GRID
|
||
|
CVW
|
||
|
chvd
|
||
|
chvd This subroutine is part of a set of subroutines that generate
|
||
|
chvd Lebedev grids [1-6] for integration on a sphere. The original
|
||
|
chvd C-code [1] was kindly provided by Dr. Dmitri N. Laikov and
|
||
|
chvd translated into fortran by Dr. Christoph van Wuellen.
|
||
|
chvd This subroutine was translated using a C to fortran77 conversion
|
||
|
chvd tool written by Dr. Christoph van Wuellen.
|
||
|
chvd
|
||
|
chvd Users of this code are asked to include reference [1] in their
|
||
|
chvd publications, and in the user- and programmers-manuals
|
||
|
chvd describing their codes.
|
||
|
chvd
|
||
|
chvd This code was distributed through CCL (http://www.ccl.net/).
|
||
|
chvd
|
||
|
chvd [1] V.I. Lebedev, and D.N. Laikov
|
||
|
chvd "A quadrature formula for the sphere of the 131st
|
||
|
chvd algebraic order of accuracy"
|
||
|
chvd Doklady Mathematics, Vol. 59, No. 3, 1999, pp. 477-481.
|
||
|
chvd
|
||
|
chvd [2] V.I. Lebedev
|
||
|
chvd "A quadrature formula for the sphere of 59th algebraic
|
||
|
chvd order of accuracy"
|
||
|
chvd Russian Acad. Sci. Dokl. Math., Vol. 50, 1995, pp. 283-286.
|
||
|
chvd
|
||
|
chvd [3] V.I. Lebedev, and A.L. Skorokhodov
|
||
|
chvd "Quadrature formulas of orders 41, 47, and 53 for the sphere"
|
||
|
chvd Russian Acad. Sci. Dokl. Math., Vol. 45, 1992, pp. 587-592.
|
||
|
chvd
|
||
|
chvd [4] V.I. Lebedev
|
||
|
chvd "Spherical quadrature formulas exact to orders 25-29"
|
||
|
chvd Siberian Mathematical Journal, Vol. 18, 1977, pp. 99-107.
|
||
|
chvd
|
||
|
chvd [5] V.I. Lebedev
|
||
|
chvd "Quadratures on a sphere"
|
||
|
chvd Computational Mathematics and Mathematical Physics, Vol. 16,
|
||
|
chvd 1976, pp. 10-24.
|
||
|
chvd
|
||
|
chvd [6] V.I. Lebedev
|
||
|
chvd "Values of the nodes and weights of ninth to seventeenth
|
||
|
chvd order Gauss-Markov quadrature formulae invariant under the
|
||
|
chvd octahedron group with inversion"
|
||
|
chvd Computational Mathematics and Mathematical Physics, Vol. 15,
|
||
|
chvd 1975, pp. 44-51.
|
||
|
chvd
|
||
|
N=1
|
||
|
V=0.1666666666666667D+0
|
||
|
Call GEN_OH( 1, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
N=N-1
|
||
|
RETURN
|
||
|
END
|
||
|
SUBROUTINE LD0014(X,Y,Z,W,N)
|
||
|
DOUBLE PRECISION X( 14)
|
||
|
DOUBLE PRECISION Y( 14)
|
||
|
DOUBLE PRECISION Z( 14)
|
||
|
DOUBLE PRECISION W( 14)
|
||
|
INTEGER N
|
||
|
DOUBLE PRECISION A,B,V
|
||
|
CVW
|
||
|
CVW LEBEDEV 14-POINT ANGULAR GRID
|
||
|
CVW
|
||
|
chvd
|
||
|
chvd This subroutine is part of a set of subroutines that generate
|
||
|
chvd Lebedev grids [1-6] for integration on a sphere. The original
|
||
|
chvd C-code [1] was kindly provided by Dr. Dmitri N. Laikov and
|
||
|
chvd translated into fortran by Dr. Christoph van Wuellen.
|
||
|
chvd This subroutine was translated using a C to fortran77 conversion
|
||
|
chvd tool written by Dr. Christoph van Wuellen.
|
||
|
chvd
|
||
|
chvd Users of this code are asked to include reference [1] in their
|
||
|
chvd publications, and in the user- and programmers-manuals
|
||
|
chvd describing their codes.
|
||
|
chvd
|
||
|
chvd This code was distributed through CCL (http://www.ccl.net/).
|
||
|
chvd
|
||
|
chvd [1] V.I. Lebedev, and D.N. Laikov
|
||
|
chvd "A quadrature formula for the sphere of the 131st
|
||
|
chvd algebraic order of accuracy"
|
||
|
chvd Doklady Mathematics, Vol. 59, No. 3, 1999, pp. 477-481.
|
||
|
chvd
|
||
|
chvd [2] V.I. Lebedev
|
||
|
chvd "A quadrature formula for the sphere of 59th algebraic
|
||
|
chvd order of accuracy"
|
||
|
chvd Russian Acad. Sci. Dokl. Math., Vol. 50, 1995, pp. 283-286.
|
||
|
chvd
|
||
|
chvd [3] V.I. Lebedev, and A.L. Skorokhodov
|
||
|
chvd "Quadrature formulas of orders 41, 47, and 53 for the sphere"
|
||
|
chvd Russian Acad. Sci. Dokl. Math., Vol. 45, 1992, pp. 587-592.
|
||
|
chvd
|
||
|
chvd [4] V.I. Lebedev
|
||
|
chvd "Spherical quadrature formulas exact to orders 25-29"
|
||
|
chvd Siberian Mathematical Journal, Vol. 18, 1977, pp. 99-107.
|
||
|
chvd
|
||
|
chvd [5] V.I. Lebedev
|
||
|
chvd "Quadratures on a sphere"
|
||
|
chvd Computational Mathematics and Mathematical Physics, Vol. 16,
|
||
|
chvd 1976, pp. 10-24.
|
||
|
chvd
|
||
|
chvd [6] V.I. Lebedev
|
||
|
chvd "Values of the nodes and weights of ninth to seventeenth
|
||
|
chvd order Gauss-Markov quadrature formulae invariant under the
|
||
|
chvd octahedron group with inversion"
|
||
|
chvd Computational Mathematics and Mathematical Physics, Vol. 15,
|
||
|
chvd 1975, pp. 44-51.
|
||
|
chvd
|
||
|
N=1
|
||
|
V=0.6666666666666667D-1
|
||
|
Call GEN_OH( 1, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
V=0.7500000000000000D-1
|
||
|
Call GEN_OH( 3, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
N=N-1
|
||
|
RETURN
|
||
|
END
|
||
|
SUBROUTINE LD0026(X,Y,Z,W,N)
|
||
|
DOUBLE PRECISION X( 26)
|
||
|
DOUBLE PRECISION Y( 26)
|
||
|
DOUBLE PRECISION Z( 26)
|
||
|
DOUBLE PRECISION W( 26)
|
||
|
INTEGER N
|
||
|
DOUBLE PRECISION A,B,V
|
||
|
CVW
|
||
|
CVW LEBEDEV 26-POINT ANGULAR GRID
|
||
|
CVW
|
||
|
chvd
|
||
|
chvd This subroutine is part of a set of subroutines that generate
|
||
|
chvd Lebedev grids [1-6] for integration on a sphere. The original
|
||
|
chvd C-code [1] was kindly provided by Dr. Dmitri N. Laikov and
|
||
|
chvd translated into fortran by Dr. Christoph van Wuellen.
|
||
|
chvd This subroutine was translated using a C to fortran77 conversion
|
||
|
chvd tool written by Dr. Christoph van Wuellen.
|
||
|
chvd
|
||
|
chvd Users of this code are asked to include reference [1] in their
|
||
|
chvd publications, and in the user- and programmers-manuals
|
||
|
chvd describing their codes.
|
||
|
chvd
|
||
|
chvd This code was distributed through CCL (http://www.ccl.net/).
|
||
|
chvd
|
||
|
chvd [1] V.I. Lebedev, and D.N. Laikov
|
||
|
chvd "A quadrature formula for the sphere of the 131st
|
||
|
chvd algebraic order of accuracy"
|
||
|
chvd Doklady Mathematics, Vol. 59, No. 3, 1999, pp. 477-481.
|
||
|
chvd
|
||
|
chvd [2] V.I. Lebedev
|
||
|
chvd "A quadrature formula for the sphere of 59th algebraic
|
||
|
chvd order of accuracy"
|
||
|
chvd Russian Acad. Sci. Dokl. Math., Vol. 50, 1995, pp. 283-286.
|
||
|
chvd
|
||
|
chvd [3] V.I. Lebedev, and A.L. Skorokhodov
|
||
|
chvd "Quadrature formulas of orders 41, 47, and 53 for the sphere"
|
||
|
chvd Russian Acad. Sci. Dokl. Math., Vol. 45, 1992, pp. 587-592.
|
||
|
chvd
|
||
|
chvd [4] V.I. Lebedev
|
||
|
chvd "Spherical quadrature formulas exact to orders 25-29"
|
||
|
chvd Siberian Mathematical Journal, Vol. 18, 1977, pp. 99-107.
|
||
|
chvd
|
||
|
chvd [5] V.I. Lebedev
|
||
|
chvd "Quadratures on a sphere"
|
||
|
chvd Computational Mathematics and Mathematical Physics, Vol. 16,
|
||
|
chvd 1976, pp. 10-24.
|
||
|
chvd
|
||
|
chvd [6] V.I. Lebedev
|
||
|
chvd "Values of the nodes and weights of ninth to seventeenth
|
||
|
chvd order Gauss-Markov quadrature formulae invariant under the
|
||
|
chvd octahedron group with inversion"
|
||
|
chvd Computational Mathematics and Mathematical Physics, Vol. 15,
|
||
|
chvd 1975, pp. 44-51.
|
||
|
chvd
|
||
|
N=1
|
||
|
V=0.4761904761904762D-1
|
||
|
Call GEN_OH( 1, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
V=0.3809523809523810D-1
|
||
|
Call GEN_OH( 2, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
V=0.3214285714285714D-1
|
||
|
Call GEN_OH( 3, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
N=N-1
|
||
|
RETURN
|
||
|
END
|
||
|
SUBROUTINE LD0038(X,Y,Z,W,N)
|
||
|
DOUBLE PRECISION X( 38)
|
||
|
DOUBLE PRECISION Y( 38)
|
||
|
DOUBLE PRECISION Z( 38)
|
||
|
DOUBLE PRECISION W( 38)
|
||
|
INTEGER N
|
||
|
DOUBLE PRECISION A,B,V
|
||
|
CVW
|
||
|
CVW LEBEDEV 38-POINT ANGULAR GRID
|
||
|
CVW
|
||
|
chvd
|
||
|
chvd This subroutine is part of a set of subroutines that generate
|
||
|
chvd Lebedev grids [1-6] for integration on a sphere. The original
|
||
|
chvd C-code [1] was kindly provided by Dr. Dmitri N. Laikov and
|
||
|
chvd translated into fortran by Dr. Christoph van Wuellen.
|
||
|
chvd This subroutine was translated using a C to fortran77 conversion
|
||
|
chvd tool written by Dr. Christoph van Wuellen.
|
||
|
chvd
|
||
|
chvd Users of this code are asked to include reference [1] in their
|
||
|
chvd publications, and in the user- and programmers-manuals
|
||
|
chvd describing their codes.
|
||
|
chvd
|
||
|
chvd This code was distributed through CCL (http://www.ccl.net/).
|
||
|
chvd
|
||
|
chvd [1] V.I. Lebedev, and D.N. Laikov
|
||
|
chvd "A quadrature formula for the sphere of the 131st
|
||
|
chvd algebraic order of accuracy"
|
||
|
chvd Doklady Mathematics, Vol. 59, No. 3, 1999, pp. 477-481.
|
||
|
chvd
|
||
|
chvd [2] V.I. Lebedev
|
||
|
chvd "A quadrature formula for the sphere of 59th algebraic
|
||
|
chvd order of accuracy"
|
||
|
chvd Russian Acad. Sci. Dokl. Math., Vol. 50, 1995, pp. 283-286.
|
||
|
chvd
|
||
|
chvd [3] V.I. Lebedev, and A.L. Skorokhodov
|
||
|
chvd "Quadrature formulas of orders 41, 47, and 53 for the sphere"
|
||
|
chvd Russian Acad. Sci. Dokl. Math., Vol. 45, 1992, pp. 587-592.
|
||
|
chvd
|
||
|
chvd [4] V.I. Lebedev
|
||
|
chvd "Spherical quadrature formulas exact to orders 25-29"
|
||
|
chvd Siberian Mathematical Journal, Vol. 18, 1977, pp. 99-107.
|
||
|
chvd
|
||
|
chvd [5] V.I. Lebedev
|
||
|
chvd "Quadratures on a sphere"
|
||
|
chvd Computational Mathematics and Mathematical Physics, Vol. 16,
|
||
|
chvd 1976, pp. 10-24.
|
||
|
chvd
|
||
|
chvd [6] V.I. Lebedev
|
||
|
chvd "Values of the nodes and weights of ninth to seventeenth
|
||
|
chvd order Gauss-Markov quadrature formulae invariant under the
|
||
|
chvd octahedron group with inversion"
|
||
|
chvd Computational Mathematics and Mathematical Physics, Vol. 15,
|
||
|
chvd 1975, pp. 44-51.
|
||
|
chvd
|
||
|
N=1
|
||
|
V=0.9523809523809524D-2
|
||
|
Call GEN_OH( 1, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
V=0.3214285714285714D-1
|
||
|
Call GEN_OH( 3, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.4597008433809831D+0
|
||
|
V=0.2857142857142857D-1
|
||
|
Call GEN_OH( 5, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
N=N-1
|
||
|
RETURN
|
||
|
END
|
||
|
SUBROUTINE LD0050(X,Y,Z,W,N)
|
||
|
DOUBLE PRECISION X( 50)
|
||
|
DOUBLE PRECISION Y( 50)
|
||
|
DOUBLE PRECISION Z( 50)
|
||
|
DOUBLE PRECISION W( 50)
|
||
|
INTEGER N
|
||
|
DOUBLE PRECISION A,B,V
|
||
|
CVW
|
||
|
CVW LEBEDEV 50-POINT ANGULAR GRID
|
||
|
CVW
|
||
|
chvd
|
||
|
chvd This subroutine is part of a set of subroutines that generate
|
||
|
chvd Lebedev grids [1-6] for integration on a sphere. The original
|
||
|
chvd C-code [1] was kindly provided by Dr. Dmitri N. Laikov and
|
||
|
chvd translated into fortran by Dr. Christoph van Wuellen.
|
||
|
chvd This subroutine was translated using a C to fortran77 conversion
|
||
|
chvd tool written by Dr. Christoph van Wuellen.
|
||
|
chvd
|
||
|
chvd Users of this code are asked to include reference [1] in their
|
||
|
chvd publications, and in the user- and programmers-manuals
|
||
|
chvd describing their codes.
|
||
|
chvd
|
||
|
chvd This code was distributed through CCL (http://www.ccl.net/).
|
||
|
chvd
|
||
|
chvd [1] V.I. Lebedev, and D.N. Laikov
|
||
|
chvd "A quadrature formula for the sphere of the 131st
|
||
|
chvd algebraic order of accuracy"
|
||
|
chvd Doklady Mathematics, Vol. 59, No. 3, 1999, pp. 477-481.
|
||
|
chvd
|
||
|
chvd [2] V.I. Lebedev
|
||
|
chvd "A quadrature formula for the sphere of 59th algebraic
|
||
|
chvd order of accuracy"
|
||
|
chvd Russian Acad. Sci. Dokl. Math., Vol. 50, 1995, pp. 283-286.
|
||
|
chvd
|
||
|
chvd [3] V.I. Lebedev, and A.L. Skorokhodov
|
||
|
chvd "Quadrature formulas of orders 41, 47, and 53 for the sphere"
|
||
|
chvd Russian Acad. Sci. Dokl. Math., Vol. 45, 1992, pp. 587-592.
|
||
|
chvd
|
||
|
chvd [4] V.I. Lebedev
|
||
|
chvd "Spherical quadrature formulas exact to orders 25-29"
|
||
|
chvd Siberian Mathematical Journal, Vol. 18, 1977, pp. 99-107.
|
||
|
chvd
|
||
|
chvd [5] V.I. Lebedev
|
||
|
chvd "Quadratures on a sphere"
|
||
|
chvd Computational Mathematics and Mathematical Physics, Vol. 16,
|
||
|
chvd 1976, pp. 10-24.
|
||
|
chvd
|
||
|
chvd [6] V.I. Lebedev
|
||
|
chvd "Values of the nodes and weights of ninth to seventeenth
|
||
|
chvd order Gauss-Markov quadrature formulae invariant under the
|
||
|
chvd octahedron group with inversion"
|
||
|
chvd Computational Mathematics and Mathematical Physics, Vol. 15,
|
||
|
chvd 1975, pp. 44-51.
|
||
|
chvd
|
||
|
N=1
|
||
|
V=0.1269841269841270D-1
|
||
|
Call GEN_OH( 1, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
V=0.2257495590828924D-1
|
||
|
Call GEN_OH( 2, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
V=0.2109375000000000D-1
|
||
|
Call GEN_OH( 3, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
A=0.3015113445777636D+0
|
||
|
V=0.2017333553791887D-1
|
||
|
Call GEN_OH( 4, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
N=N-1
|
||
|
RETURN
|
||
|
END
|
||
|
SUBROUTINE LD0074(X,Y,Z,W,N)
|
||
|
DOUBLE PRECISION X( 74)
|
||
|
DOUBLE PRECISION Y( 74)
|
||
|
DOUBLE PRECISION Z( 74)
|
||
|
DOUBLE PRECISION W( 74)
|
||
|
INTEGER N
|
||
|
DOUBLE PRECISION A,B,V
|
||
|
CVW
|
||
|
CVW LEBEDEV 74-POINT ANGULAR GRID
|
||
|
CVW
|
||
|
chvd
|
||
|
chvd This subroutine is part of a set of subroutines that generate
|
||
|
chvd Lebedev grids [1-6] for integration on a sphere. The original
|
||
|
chvd C-code [1] was kindly provided by Dr. Dmitri N. Laikov and
|
||
|
chvd translated into fortran by Dr. Christoph van Wuellen.
|
||
|
chvd This subroutine was translated using a C to fortran77 conversion
|
||
|
chvd tool written by Dr. Christoph van Wuellen.
|
||
|
chvd
|
||
|
chvd Users of this code are asked to include reference [1] in their
|
||
|
chvd publications, and in the user- and programmers-manuals
|
||
|
chvd describing their codes.
|
||
|
chvd
|
||
|
chvd This code was distributed through CCL (http://www.ccl.net/).
|
||
|
chvd
|
||
|
chvd [1] V.I. Lebedev, and D.N. Laikov
|
||
|
chvd "A quadrature formula for the sphere of the 131st
|
||
|
chvd algebraic order of accuracy"
|
||
|
chvd Doklady Mathematics, Vol. 59, No. 3, 1999, pp. 477-481.
|
||
|
chvd
|
||
|
chvd [2] V.I. Lebedev
|
||
|
chvd "A quadrature formula for the sphere of 59th algebraic
|
||
|
chvd order of accuracy"
|
||
|
chvd Russian Acad. Sci. Dokl. Math., Vol. 50, 1995, pp. 283-286.
|
||
|
chvd
|
||
|
chvd [3] V.I. Lebedev, and A.L. Skorokhodov
|
||
|
chvd "Quadrature formulas of orders 41, 47, and 53 for the sphere"
|
||
|
chvd Russian Acad. Sci. Dokl. Math., Vol. 45, 1992, pp. 587-592.
|
||
|
chvd
|
||
|
chvd [4] V.I. Lebedev
|
||
|
chvd "Spherical quadrature formulas exact to orders 25-29"
|
||
|
chvd Siberian Mathematical Journal, Vol. 18, 1977, pp. 99-107.
|
||
|
chvd
|
||
|
chvd [5] V.I. Lebedev
|
||
|
chvd "Quadratures on a sphere"
|
||
|
chvd Computational Mathematics and Mathematical Physics, Vol. 16,
|
||
|
chvd 1976, pp. 10-24.
|
||
|
chvd
|
||
|
chvd [6] V.I. Lebedev
|
||
|
chvd "Values of the nodes and weights of ninth to seventeenth
|
||
|
chvd order Gauss-Markov quadrature formulae invariant under the
|
||
|
chvd octahedron group with inversion"
|
||
|
chvd Computational Mathematics and Mathematical Physics, Vol. 15,
|
||
|
chvd 1975, pp. 44-51.
|
||
|
chvd
|
||
|
N=1
|
||
|
V=0.5130671797338464D-3
|
||
|
Call GEN_OH( 1, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||
|
V=0.1660406956574204D-1
|
||
|
Call GEN_OH( 2, N, X(N), Y(N), Z(N), W(N), A, B, V)
|
||