mirror of
https://github.com/QuantumPackage/qp2.git
synced 2025-01-22 09:31:38 +01:00
586 lines
21 KiB
Fortran
586 lines
21 KiB
Fortran
|
subroutine orb_range_2_trans_rdm_openmp(big_array,dim1,norb,list_orb,ispin,u_0,N_st,sze)
|
||
|
use bitmasks
|
||
|
implicit none
|
||
|
BEGIN_DOC
|
||
|
! if ispin == 1 :: alpha/alpha 2_rdm
|
||
|
! == 2 :: beta /beta 2_rdm
|
||
|
! == 3 :: alpha/beta + beta/alpha 2trans_rdm
|
||
|
! == 4 :: spin traced 2_rdm :: aa + bb + ab + ba
|
||
|
!
|
||
|
! notice that here it is the TRANSITION RDM THAT IS COMPUTED
|
||
|
!
|
||
|
! THE DIAGONAL PART IS THE USUAL ONE FOR A GIVEN STATE
|
||
|
! Assumes that the determinants are in psi_det
|
||
|
!
|
||
|
! istart, iend, ishift, istep are used in ZMQ parallelization.
|
||
|
END_DOC
|
||
|
integer, intent(in) :: N_st,sze
|
||
|
integer, intent(in) :: dim1,norb,list_orb(norb),ispin
|
||
|
double precision, intent(inout) :: big_array(dim1,dim1,dim1,dim1,N_st,N_st)
|
||
|
double precision, intent(in) :: u_0(sze,N_st)
|
||
|
|
||
|
integer :: k
|
||
|
double precision, allocatable :: u_t(:,:)
|
||
|
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: u_t
|
||
|
PROVIDE mo_two_e_integrals_in_map
|
||
|
allocate(u_t(N_st,N_det))
|
||
|
do k=1,N_st
|
||
|
call dset_order(u_0(1,k),psi_bilinear_matrix_order,N_det)
|
||
|
enddo
|
||
|
call dtranspose( &
|
||
|
u_0, &
|
||
|
size(u_0, 1), &
|
||
|
u_t, &
|
||
|
size(u_t, 1), &
|
||
|
N_det, N_st)
|
||
|
|
||
|
call orb_range_2_trans_rdm_openmp_work(big_array,dim1,norb,list_orb,ispin,u_t,N_st,sze,1,N_det,0,1)
|
||
|
deallocate(u_t)
|
||
|
|
||
|
do k=1,N_st
|
||
|
call dset_order(u_0(1,k),psi_bilinear_matrix_order_reverse,N_det)
|
||
|
enddo
|
||
|
|
||
|
end
|
||
|
|
||
|
subroutine orb_range_2_trans_rdm_openmp_work(big_array,dim1,norb,list_orb,ispin,u_t,N_st,sze,istart,iend,ishift,istep)
|
||
|
use bitmasks
|
||
|
implicit none
|
||
|
BEGIN_DOC
|
||
|
! Computes two-trans_rdm
|
||
|
!
|
||
|
! Default should be 1,N_det,0,1
|
||
|
END_DOC
|
||
|
integer, intent(in) :: N_st,sze,istart,iend,ishift,istep
|
||
|
integer, intent(in) :: dim1,norb,list_orb(norb),ispin
|
||
|
double precision, intent(inout) :: big_array(dim1,dim1,dim1,dim1,N_st,N_st)
|
||
|
double precision, intent(in) :: u_t(N_st,N_det)
|
||
|
|
||
|
integer :: k
|
||
|
|
||
|
PROVIDE N_int
|
||
|
|
||
|
select case (N_int)
|
||
|
case (1)
|
||
|
call orb_range_2_trans_rdm_openmp_work_1(big_array,dim1,norb,list_orb,ispin,u_t,N_st,sze,istart,iend,ishift,istep)
|
||
|
case (2)
|
||
|
call orb_range_2_trans_rdm_openmp_work_2(big_array,dim1,norb,list_orb,ispin,u_t,N_st,sze,istart,iend,ishift,istep)
|
||
|
case (3)
|
||
|
call orb_range_2_trans_rdm_openmp_work_3(big_array,dim1,norb,list_orb,ispin,u_t,N_st,sze,istart,iend,ishift,istep)
|
||
|
case (4)
|
||
|
call orb_range_2_trans_rdm_openmp_work_4(big_array,dim1,norb,list_orb,ispin,u_t,N_st,sze,istart,iend,ishift,istep)
|
||
|
case default
|
||
|
call orb_range_2_trans_rdm_openmp_work_N_int(big_array,dim1,norb,list_orb,ispin,u_t,N_st,sze,istart,iend,ishift,istep)
|
||
|
end select
|
||
|
end
|
||
|
|
||
|
|
||
|
BEGIN_TEMPLATE
|
||
|
subroutine orb_range_2_trans_rdm_openmp_work_$N_int(big_array,dim1,norb,list_orb,ispin,u_t,N_st,sze,istart,iend,ishift,istep)
|
||
|
use bitmasks
|
||
|
use omp_lib
|
||
|
implicit none
|
||
|
BEGIN_DOC
|
||
|
! Computes the two trans_rdm for the N_st vectors |u_t>
|
||
|
! if ispin == 1 :: alpha/alpha 2trans_rdm
|
||
|
! == 2 :: beta /beta 2trans_rdm
|
||
|
! == 3 :: alpha/beta 2trans_rdm
|
||
|
! == 4 :: spin traced 2trans_rdm :: aa + bb + 0.5 (ab + ba))
|
||
|
! The 2trans_rdm will be computed only on the list of orbitals list_orb, which contains norb
|
||
|
! Default should be 1,N_det,0,1 for istart,iend,ishift,istep
|
||
|
END_DOC
|
||
|
integer, intent(in) :: N_st,sze,istart,iend,ishift,istep
|
||
|
double precision, intent(in) :: u_t(N_st,N_det)
|
||
|
integer, intent(in) :: dim1,norb,list_orb(norb),ispin
|
||
|
double precision, intent(inout) :: big_array(dim1,dim1,dim1,dim1,N_st,N_st)
|
||
|
|
||
|
integer(omp_lock_kind) :: lock_2trans_rdm
|
||
|
integer :: i,j,k,l
|
||
|
integer :: k_a, k_b, l_a, l_b
|
||
|
integer :: krow, kcol
|
||
|
integer :: lrow, lcol
|
||
|
integer(bit_kind) :: spindet($N_int)
|
||
|
integer(bit_kind) :: tmp_det($N_int,2)
|
||
|
integer(bit_kind) :: tmp_det2($N_int,2)
|
||
|
integer(bit_kind) :: tmp_det3($N_int,2)
|
||
|
integer(bit_kind), allocatable :: buffer(:,:)
|
||
|
integer :: n_doubles
|
||
|
integer, allocatable :: doubles(:)
|
||
|
integer, allocatable :: singles_a(:)
|
||
|
integer, allocatable :: singles_b(:)
|
||
|
integer, allocatable :: idx(:), idx0(:)
|
||
|
integer :: maxab, n_singles_a, n_singles_b, kcol_prev
|
||
|
|
||
|
logical :: alpha_alpha,beta_beta,alpha_beta,spin_trace
|
||
|
integer(bit_kind) :: orb_bitmask($N_int)
|
||
|
integer :: list_orb_reverse(mo_num)
|
||
|
integer, allocatable :: keys(:,:)
|
||
|
double precision, allocatable :: values(:,:,:)
|
||
|
integer :: nkeys,sze_buff
|
||
|
integer :: ll
|
||
|
alpha_alpha = .False.
|
||
|
beta_beta = .False.
|
||
|
alpha_beta = .False.
|
||
|
spin_trace = .False.
|
||
|
if( ispin == 1)then
|
||
|
alpha_alpha = .True.
|
||
|
else if(ispin == 2)then
|
||
|
beta_beta = .True.
|
||
|
else if(ispin == 3)then
|
||
|
alpha_beta = .True.
|
||
|
else if(ispin == 4)then
|
||
|
spin_trace = .True.
|
||
|
else
|
||
|
print*,'Wrong parameter for ispin in general_2_trans_rdm_state_av_openmp_work'
|
||
|
print*,'ispin = ',ispin
|
||
|
stop
|
||
|
endif
|
||
|
|
||
|
|
||
|
PROVIDE N_int
|
||
|
|
||
|
call list_to_bitstring( orb_bitmask, list_orb, norb, N_int)
|
||
|
sze_buff = 6 * norb + elec_alpha_num * elec_alpha_num * 60
|
||
|
list_orb_reverse = -1000
|
||
|
do i = 1, norb
|
||
|
list_orb_reverse(list_orb(i)) = i
|
||
|
enddo
|
||
|
maxab = max(N_det_alpha_unique, N_det_beta_unique)+1
|
||
|
allocate(idx0(maxab))
|
||
|
|
||
|
do i=1,maxab
|
||
|
idx0(i) = i
|
||
|
enddo
|
||
|
call omp_init_lock(lock_2trans_rdm)
|
||
|
|
||
|
! Prepare the array of all alpha single excitations
|
||
|
! -------------------------------------------------
|
||
|
|
||
|
PROVIDE N_int nthreads_davidson elec_alpha_num
|
||
|
!$OMP PARALLEL DEFAULT(NONE) NUM_THREADS(nthreads_davidson) &
|
||
|
!$OMP SHARED(psi_bilinear_matrix_rows, N_det,lock_2trans_rdm,&
|
||
|
!$OMP psi_bilinear_matrix_columns, &
|
||
|
!$OMP psi_det_alpha_unique, psi_det_beta_unique,&
|
||
|
!$OMP n_det_alpha_unique, n_det_beta_unique, N_int,&
|
||
|
!$OMP psi_bilinear_matrix_transp_rows, &
|
||
|
!$OMP psi_bilinear_matrix_transp_columns, &
|
||
|
!$OMP psi_bilinear_matrix_transp_order, N_st, &
|
||
|
!$OMP psi_bilinear_matrix_order_transp_reverse, &
|
||
|
!$OMP psi_bilinear_matrix_columns_loc, &
|
||
|
!$OMP psi_bilinear_matrix_transp_rows_loc,elec_alpha_num, &
|
||
|
!$OMP istart, iend, istep, irp_here,list_orb_reverse, n_states, dim1, &
|
||
|
!$OMP ishift, idx0, u_t, maxab, alpha_alpha,beta_beta,alpha_beta,spin_trace,ispin,big_array,sze_buff,orb_bitmask) &
|
||
|
!$OMP PRIVATE(krow, kcol, tmp_det, spindet, k_a, k_b, i,c_1, &
|
||
|
!$OMP lcol, lrow, l_a, l_b, &
|
||
|
!$OMP buffer, doubles, n_doubles, &
|
||
|
!$OMP tmp_det2, idx, l, kcol_prev, &
|
||
|
!$OMP singles_a, n_singles_a, singles_b, &
|
||
|
!$OMP n_singles_b, nkeys, keys, values)
|
||
|
|
||
|
! Alpha/Beta double excitations
|
||
|
! =============================
|
||
|
nkeys = 0
|
||
|
allocate( keys(4,sze_buff), values(n_st,n_st,sze_buff))
|
||
|
allocate( buffer($N_int,maxab), &
|
||
|
singles_a(maxab), &
|
||
|
singles_b(maxab), &
|
||
|
doubles(maxab), &
|
||
|
idx(maxab))
|
||
|
|
||
|
kcol_prev=-1
|
||
|
|
||
|
ASSERT (iend <= N_det)
|
||
|
ASSERT (istart > 0)
|
||
|
ASSERT (istep > 0)
|
||
|
|
||
|
!$OMP DO SCHEDULE(dynamic,64)
|
||
|
do k_a=istart+ishift,iend,istep
|
||
|
|
||
|
krow = psi_bilinear_matrix_rows(k_a)
|
||
|
ASSERT (krow <= N_det_alpha_unique)
|
||
|
|
||
|
kcol = psi_bilinear_matrix_columns(k_a)
|
||
|
ASSERT (kcol <= N_det_beta_unique)
|
||
|
|
||
|
tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
|
||
|
tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
|
||
|
|
||
|
if (kcol /= kcol_prev) then
|
||
|
call get_all_spin_singles_$N_int( &
|
||
|
psi_det_beta_unique, idx0, &
|
||
|
tmp_det(1,2), N_det_beta_unique, &
|
||
|
singles_b, n_singles_b)
|
||
|
endif
|
||
|
kcol_prev = kcol
|
||
|
|
||
|
! Loop over singly excited beta columns
|
||
|
! -------------------------------------
|
||
|
|
||
|
do i=1,n_singles_b
|
||
|
lcol = singles_b(i)
|
||
|
|
||
|
tmp_det2(1:$N_int,2) = psi_det_beta_unique(1:$N_int, lcol)
|
||
|
|
||
|
l_a = psi_bilinear_matrix_columns_loc(lcol)
|
||
|
ASSERT (l_a <= N_det)
|
||
|
|
||
|
do j=1,psi_bilinear_matrix_columns_loc(lcol+1) - l_a
|
||
|
lrow = psi_bilinear_matrix_rows(l_a)
|
||
|
ASSERT (lrow <= N_det_alpha_unique)
|
||
|
|
||
|
buffer(1:$N_int,j) = psi_det_alpha_unique(1:$N_int, lrow)
|
||
|
|
||
|
ASSERT (l_a <= N_det)
|
||
|
idx(j) = l_a
|
||
|
l_a = l_a+1
|
||
|
enddo
|
||
|
j = j-1
|
||
|
|
||
|
call get_all_spin_singles_$N_int( &
|
||
|
buffer, idx, tmp_det(1,1), j, &
|
||
|
singles_a, n_singles_a )
|
||
|
|
||
|
! Loop over alpha singles
|
||
|
! -----------------------
|
||
|
|
||
|
if(alpha_beta.or.spin_trace)then
|
||
|
do k = 1,n_singles_a
|
||
|
l_a = singles_a(k)
|
||
|
ASSERT (l_a <= N_det)
|
||
|
|
||
|
lrow = psi_bilinear_matrix_rows(l_a)
|
||
|
ASSERT (lrow <= N_det_alpha_unique)
|
||
|
|
||
|
tmp_det2(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, lrow)
|
||
|
! print*,'nkeys before = ',nkeys
|
||
|
do ll = 1, N_states
|
||
|
do l= 1, N_states
|
||
|
c_1(l,ll) = u_t(ll,l_a) * u_t(l,k_a)
|
||
|
enddo
|
||
|
enddo
|
||
|
if(alpha_beta)then
|
||
|
! only ONE contribution
|
||
|
if (nkeys+1 .ge. sze_buff) then
|
||
|
call update_keys_values_n_states_trans(keys,values,nkeys,dim1,n_st,big_array,lock_2trans_rdm)
|
||
|
nkeys = 0
|
||
|
endif
|
||
|
else if (spin_trace)then
|
||
|
! TWO contributions
|
||
|
if (nkeys+2 .ge. sze_buff) then
|
||
|
call update_keys_values_n_states_trans(keys,values,nkeys,dim1,n_st,big_array,lock_2trans_rdm)
|
||
|
nkeys = 0
|
||
|
endif
|
||
|
endif
|
||
|
call orb_range_off_diag_double_to_all_states_ab_trans_rdm_buffer(tmp_det,tmp_det2,c_1,N_st,list_orb_reverse,ispin,sze_buff,nkeys,keys,values)
|
||
|
|
||
|
enddo
|
||
|
endif
|
||
|
|
||
|
call update_keys_values_n_states_trans(keys,values,nkeys,dim1,n_st,big_array,lock_2trans_rdm)
|
||
|
nkeys = 0
|
||
|
enddo
|
||
|
|
||
|
enddo
|
||
|
!$OMP END DO
|
||
|
|
||
|
!$OMP DO SCHEDULE(dynamic,64)
|
||
|
do k_a=istart+ishift,iend,istep
|
||
|
|
||
|
|
||
|
! Single and double alpha exitations
|
||
|
! ===================================
|
||
|
|
||
|
|
||
|
! Initial determinant is at k_a in alpha-major representation
|
||
|
! -----------------------------------------------------------------------
|
||
|
|
||
|
krow = psi_bilinear_matrix_rows(k_a)
|
||
|
ASSERT (krow <= N_det_alpha_unique)
|
||
|
|
||
|
kcol = psi_bilinear_matrix_columns(k_a)
|
||
|
ASSERT (kcol <= N_det_beta_unique)
|
||
|
|
||
|
tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
|
||
|
tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
|
||
|
|
||
|
! Initial determinant is at k_b in beta-major representation
|
||
|
! ----------------------------------------------------------------------
|
||
|
|
||
|
k_b = psi_bilinear_matrix_order_transp_reverse(k_a)
|
||
|
ASSERT (k_b <= N_det)
|
||
|
|
||
|
spindet(1:$N_int) = tmp_det(1:$N_int,1)
|
||
|
|
||
|
! Loop inside the beta column to gather all the connected alphas
|
||
|
lcol = psi_bilinear_matrix_columns(k_a)
|
||
|
l_a = psi_bilinear_matrix_columns_loc(lcol)
|
||
|
do i=1,N_det_alpha_unique
|
||
|
if (l_a > N_det) exit
|
||
|
lcol = psi_bilinear_matrix_columns(l_a)
|
||
|
if (lcol /= kcol) exit
|
||
|
lrow = psi_bilinear_matrix_rows(l_a)
|
||
|
ASSERT (lrow <= N_det_alpha_unique)
|
||
|
|
||
|
buffer(1:$N_int,i) = psi_det_alpha_unique(1:$N_int, lrow)
|
||
|
idx(i) = l_a
|
||
|
l_a = l_a+1
|
||
|
enddo
|
||
|
i = i-1
|
||
|
|
||
|
call get_all_spin_singles_and_doubles_$N_int( &
|
||
|
buffer, idx, spindet, i, &
|
||
|
singles_a, doubles, n_singles_a, n_doubles )
|
||
|
|
||
|
! Compute Hij for all alpha singles
|
||
|
! ----------------------------------
|
||
|
|
||
|
tmp_det2(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
|
||
|
do i=1,n_singles_a
|
||
|
l_a = singles_a(i)
|
||
|
ASSERT (l_a <= N_det)
|
||
|
|
||
|
lrow = psi_bilinear_matrix_rows(l_a)
|
||
|
ASSERT (lrow <= N_det_alpha_unique)
|
||
|
|
||
|
tmp_det2(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, lrow)
|
||
|
do ll= 1, N_states
|
||
|
do l= 1, N_states
|
||
|
c_1(l,ll) = u_t(ll,l_a) * u_t(l,k_a)
|
||
|
enddo
|
||
|
enddo
|
||
|
if(alpha_beta.or.spin_trace.or.alpha_alpha)then
|
||
|
! increment the alpha/beta part for single excitations
|
||
|
if (nkeys+ 2 * elec_alpha_num .ge. sze_buff) then
|
||
|
call update_keys_values_n_states_trans(keys,values,nkeys,dim1,n_st,big_array,lock_2trans_rdm)
|
||
|
nkeys = 0
|
||
|
endif
|
||
|
call orb_range_off_diag_single_to_all_states_ab_trans_rdm_buffer(tmp_det, tmp_det2,c_1,N_st,orb_bitmask,list_orb_reverse,ispin,sze_buff,nkeys,keys,values)
|
||
|
! increment the alpha/alpha part for single excitations
|
||
|
if (nkeys+4 * elec_alpha_num .ge. sze_buff ) then
|
||
|
call update_keys_values_n_states_trans(keys,values,nkeys,dim1,n_st,big_array,lock_2trans_rdm)
|
||
|
nkeys = 0
|
||
|
endif
|
||
|
call orb_range_off_diag_single_to_all_states_aa_trans_rdm_buffer(tmp_det,tmp_det2,c_1,N_st,orb_bitmask,list_orb_reverse,ispin,sze_buff,nkeys,keys,values)
|
||
|
endif
|
||
|
|
||
|
enddo
|
||
|
|
||
|
call update_keys_values_n_states_trans(keys,values,nkeys,dim1,n_st,big_array,lock_2trans_rdm)
|
||
|
nkeys = 0
|
||
|
|
||
|
! Compute Hij for all alpha doubles
|
||
|
! ----------------------------------
|
||
|
|
||
|
if(alpha_alpha.or.spin_trace)then
|
||
|
do i=1,n_doubles
|
||
|
l_a = doubles(i)
|
||
|
ASSERT (l_a <= N_det)
|
||
|
|
||
|
lrow = psi_bilinear_matrix_rows(l_a)
|
||
|
ASSERT (lrow <= N_det_alpha_unique)
|
||
|
|
||
|
do ll= 1, N_states
|
||
|
do l= 1, N_states
|
||
|
c_1(l,ll) = u_t(ll,l_a) * u_t(l,k_a)
|
||
|
enddo
|
||
|
enddo
|
||
|
if (nkeys+4 .ge. sze_buff) then
|
||
|
call update_keys_values_n_states_trans(keys,values,nkeys,dim1,n_st,big_array,lock_2trans_rdm)
|
||
|
nkeys = 0
|
||
|
endif
|
||
|
call orb_range_off_diag_double_to_all_states_aa_trans_rdm_buffer(tmp_det(1,1),psi_det_alpha_unique(1, lrow),c_1,N_st,list_orb_reverse,ispin,sze_buff,nkeys,keys,values)
|
||
|
enddo
|
||
|
endif
|
||
|
call update_keys_values_n_states_trans(keys,values,nkeys,dim1,n_st,big_array,lock_2trans_rdm)
|
||
|
nkeys = 0
|
||
|
|
||
|
|
||
|
! Single and double beta excitations
|
||
|
! ==================================
|
||
|
|
||
|
|
||
|
! Initial determinant is at k_a in alpha-major representation
|
||
|
! -----------------------------------------------------------------------
|
||
|
|
||
|
krow = psi_bilinear_matrix_rows(k_a)
|
||
|
kcol = psi_bilinear_matrix_columns(k_a)
|
||
|
|
||
|
tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
|
||
|
tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
|
||
|
|
||
|
spindet(1:$N_int) = tmp_det(1:$N_int,2)
|
||
|
|
||
|
! Initial determinant is at k_b in beta-major representation
|
||
|
! -----------------------------------------------------------------------
|
||
|
|
||
|
k_b = psi_bilinear_matrix_order_transp_reverse(k_a)
|
||
|
ASSERT (k_b <= N_det)
|
||
|
|
||
|
! Loop inside the alpha row to gather all the connected betas
|
||
|
lrow = psi_bilinear_matrix_transp_rows(k_b)
|
||
|
l_b = psi_bilinear_matrix_transp_rows_loc(lrow)
|
||
|
do i=1,N_det_beta_unique
|
||
|
if (l_b > N_det) exit
|
||
|
lrow = psi_bilinear_matrix_transp_rows(l_b)
|
||
|
if (lrow /= krow) exit
|
||
|
lcol = psi_bilinear_matrix_transp_columns(l_b)
|
||
|
ASSERT (lcol <= N_det_beta_unique)
|
||
|
|
||
|
buffer(1:$N_int,i) = psi_det_beta_unique(1:$N_int, lcol)
|
||
|
idx(i) = l_b
|
||
|
l_b = l_b+1
|
||
|
enddo
|
||
|
i = i-1
|
||
|
|
||
|
call get_all_spin_singles_and_doubles_$N_int( &
|
||
|
buffer, idx, spindet, i, &
|
||
|
singles_b, doubles, n_singles_b, n_doubles )
|
||
|
|
||
|
! Compute Hij for all beta singles
|
||
|
! ----------------------------------
|
||
|
|
||
|
tmp_det2(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
|
||
|
do i=1,n_singles_b
|
||
|
l_b = singles_b(i)
|
||
|
ASSERT (l_b <= N_det)
|
||
|
|
||
|
lcol = psi_bilinear_matrix_transp_columns(l_b)
|
||
|
ASSERT (lcol <= N_det_beta_unique)
|
||
|
|
||
|
tmp_det2(1:$N_int,2) = psi_det_beta_unique (1:$N_int, lcol)
|
||
|
l_a = psi_bilinear_matrix_transp_order(l_b)
|
||
|
do ll= 1, N_states
|
||
|
do l= 1, N_states
|
||
|
c_1(l,ll) = u_t(ll,l_a) * u_t(l,k_a)
|
||
|
enddo
|
||
|
enddo
|
||
|
if(alpha_beta.or.spin_trace.or.beta_beta)then
|
||
|
! increment the alpha/beta part for single excitations
|
||
|
if (nkeys+2 * elec_alpha_num .ge. sze_buff ) then
|
||
|
call update_keys_values_n_states_trans(keys,values,nkeys,dim1,n_st,big_array,lock_2trans_rdm)
|
||
|
nkeys = 0
|
||
|
endif
|
||
|
call orb_range_off_diag_single_to_all_states_ab_trans_rdm_buffer(tmp_det, tmp_det2,c_1,N_st,orb_bitmask,list_orb_reverse,ispin,sze_buff,nkeys,keys,values)
|
||
|
! increment the beta /beta part for single excitations
|
||
|
if (nkeys+4 * elec_alpha_num .ge. sze_buff) then
|
||
|
call update_keys_values_n_states_trans(keys,values,nkeys,dim1,n_st,big_array,lock_2trans_rdm)
|
||
|
nkeys = 0
|
||
|
endif
|
||
|
call orb_range_off_diag_single_to_all_states_bb_trans_rdm_buffer(tmp_det, tmp_det2,c_1,N_st,orb_bitmask,list_orb_reverse,ispin,sze_buff,nkeys,keys,values)
|
||
|
endif
|
||
|
enddo
|
||
|
call update_keys_values_n_states_trans(keys,values,nkeys,dim1,n_st,big_array,lock_2trans_rdm)
|
||
|
nkeys = 0
|
||
|
|
||
|
! Compute Hij for all beta doubles
|
||
|
! ----------------------------------
|
||
|
|
||
|
if(beta_beta.or.spin_trace)then
|
||
|
do i=1,n_doubles
|
||
|
l_b = doubles(i)
|
||
|
ASSERT (l_b <= N_det)
|
||
|
|
||
|
lcol = psi_bilinear_matrix_transp_columns(l_b)
|
||
|
ASSERT (lcol <= N_det_beta_unique)
|
||
|
|
||
|
l_a = psi_bilinear_matrix_transp_order(l_b)
|
||
|
do ll= 1, N_states
|
||
|
do l= 1, N_states
|
||
|
c_1(l,ll) = u_t(ll,l_a) * u_t(l,k_a)
|
||
|
enddo
|
||
|
enddo
|
||
|
if (nkeys+4 .ge. sze_buff) then
|
||
|
call update_keys_values_n_states_trans(keys,values,nkeys,dim1,n_st,big_array,lock_2trans_rdm)
|
||
|
nkeys = 0
|
||
|
endif
|
||
|
call orb_range_off_diag_double_to_all_states_trans_rdm_bb_buffer(tmp_det(1,2),psi_det_beta_unique(1, lcol),c_1,N_st,list_orb_reverse,ispin,sze_buff,nkeys,keys,values)
|
||
|
! print*,'to do orb_range_off_diag_double_to_2_trans_rdm_bb_dm_buffer'
|
||
|
ASSERT (l_a <= N_det)
|
||
|
|
||
|
enddo
|
||
|
endif
|
||
|
call update_keys_values_n_states_trans(keys,values,nkeys,dim1,n_st,big_array,lock_2trans_rdm)
|
||
|
nkeys = 0
|
||
|
|
||
|
|
||
|
! Diagonal contribution
|
||
|
! =====================
|
||
|
|
||
|
|
||
|
! Initial determinant is at k_a in alpha-major representation
|
||
|
! -----------------------------------------------------------------------
|
||
|
|
||
|
krow = psi_bilinear_matrix_rows(k_a)
|
||
|
ASSERT (krow <= N_det_alpha_unique)
|
||
|
|
||
|
kcol = psi_bilinear_matrix_columns(k_a)
|
||
|
ASSERT (kcol <= N_det_beta_unique)
|
||
|
|
||
|
tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
|
||
|
tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
|
||
|
|
||
|
double precision, external :: diag_wee_mat_elem, diag_S_mat_elem
|
||
|
|
||
|
double precision :: c_1(N_states,N_states)
|
||
|
do ll = 1, N_states
|
||
|
do l = 1, N_states
|
||
|
c_1(l,ll) = u_t(ll,k_a) * u_t(l,k_a)
|
||
|
enddo
|
||
|
enddo
|
||
|
|
||
|
call update_keys_values_n_states_trans(keys,values,nkeys,dim1,n_st,big_array,lock_2trans_rdm)
|
||
|
nkeys = 0
|
||
|
call orb_range_diag_to_all_states_2_rdm_trans_buffer(tmp_det,c_1,N_states,orb_bitmask,list_orb_reverse,ispin,sze_buff,nkeys,keys,values)
|
||
|
call update_keys_values_n_states_trans(keys,values,nkeys,dim1,n_st,big_array,lock_2trans_rdm)
|
||
|
nkeys = 0
|
||
|
|
||
|
end do
|
||
|
!$OMP END DO
|
||
|
deallocate(buffer, singles_a, singles_b, doubles, idx, keys, values)
|
||
|
!$OMP END PARALLEL
|
||
|
|
||
|
end
|
||
|
|
||
|
SUBST [ N_int ]
|
||
|
|
||
|
1;;
|
||
|
2;;
|
||
|
3;;
|
||
|
4;;
|
||
|
N_int;;
|
||
|
|
||
|
END_TEMPLATE
|
||
|
|
||
|
subroutine update_keys_values_n_states_trans(keys,values,nkeys,dim1,n_st,big_array,lock_2rdm)
|
||
|
use omp_lib
|
||
|
implicit none
|
||
|
integer, intent(in) :: n_st,nkeys,dim1
|
||
|
integer, intent(in) :: keys(4,nkeys)
|
||
|
double precision, intent(in) :: values(n_st,n_st,nkeys)
|
||
|
double precision, intent(inout) :: big_array(dim1,dim1,dim1,dim1,n_st,n_st)
|
||
|
|
||
|
integer(omp_lock_kind),intent(inout):: lock_2rdm
|
||
|
|
||
|
integer :: i,h1,h2,p1,p2,istate,jstate
|
||
|
call omp_set_lock(lock_2rdm)
|
||
|
|
||
|
! print*,'*************'
|
||
|
! print*,'updating'
|
||
|
! print*,'nkeys',nkeys
|
||
|
do i = 1, nkeys
|
||
|
h1 = keys(1,i)
|
||
|
h2 = keys(2,i)
|
||
|
p1 = keys(3,i)
|
||
|
p2 = keys(4,i)
|
||
|
do jstate = 1, N_st
|
||
|
do istate = 1, N_st
|
||
|
!! print*,h1,h2,p1,p2,values(istate,i)
|
||
|
big_array(h1,h2,p1,p2,istate,jstate) += values(istate,jstate,i)
|
||
|
enddo
|
||
|
enddo
|
||
|
enddo
|
||
|
call omp_unset_lock(lock_2rdm)
|
||
|
|
||
|
end
|
||
|
|