mirror of
https://github.com/QuantumPackage/qp2.git
synced 2024-12-07 20:23:30 +01:00
190 lines
6.6 KiB
Fortran
190 lines
6.6 KiB
Fortran
|
|
||
|
subroutine give_n2_ii_val_ab(r1,r2,two_bod_dens)
|
||
|
implicit none
|
||
|
BEGIN_DOC
|
||
|
! contribution from purely inactive orbitals to n2_{\Psi^B}(r_1,r_2) for a CAS wave function
|
||
|
END_DOC
|
||
|
double precision, intent(in) :: r1(3),r2(3)
|
||
|
double precision, intent(out):: two_bod_dens
|
||
|
integer :: i,j,m,n,i_m,i_n
|
||
|
integer :: i_i,i_j
|
||
|
double precision, allocatable :: mos_array_inact_r1(:),mos_array_inact_r2(:)
|
||
|
double precision, allocatable :: mos_array_basis_r1(:),mos_array_basis_r2(:)
|
||
|
double precision, allocatable :: mos_array_r1(:) , mos_array_r2(:)
|
||
|
! You get all orbitals in r_1 and r_2
|
||
|
allocate(mos_array_r1(mo_num) , mos_array_r2(mo_num) )
|
||
|
call give_all_mos_at_r(r1,mos_array_r1)
|
||
|
call give_all_mos_at_r(r2,mos_array_r2)
|
||
|
! You extract the inactive orbitals
|
||
|
allocate(mos_array_inact_r1(n_inact_orb) , mos_array_inact_r2(n_inact_orb) )
|
||
|
do i_m = 1, n_inact_orb
|
||
|
mos_array_inact_r1(i_m) = mos_array_r1(list_inact(i_m))
|
||
|
enddo
|
||
|
do i_m = 1, n_inact_orb
|
||
|
mos_array_inact_r2(i_m) = mos_array_r2(list_inact(i_m))
|
||
|
enddo
|
||
|
|
||
|
! You extract the orbitals belonging to the space \mathcal{B}
|
||
|
allocate(mos_array_basis_r1(n_basis_orb) , mos_array_basis_r2(n_basis_orb) )
|
||
|
do i_m = 1, n_basis_orb
|
||
|
mos_array_basis_r1(i_m) = mos_array_r1(list_basis(i_m))
|
||
|
mos_array_basis_r2(i_m) = mos_array_r2(list_basis(i_m))
|
||
|
enddo
|
||
|
|
||
|
two_bod_dens = 0.d0
|
||
|
! You browse all OCCUPIED ALPHA electrons in the \mathcal{A} space
|
||
|
do m = 1, n_inact_orb ! electron 1
|
||
|
! You browse all OCCUPIED BETA electrons in the \mathcal{A} space
|
||
|
do n = 1, n_inact_orb ! electron 2
|
||
|
! two_bod_dens(r_1,r_2) = n_alpha(r_1) * n_beta(r_2)
|
||
|
two_bod_dens += mos_array_inact_r1(m) * mos_array_inact_r1(m) * mos_array_inact_r2(n) * mos_array_inact_r2(n)
|
||
|
enddo
|
||
|
enddo
|
||
|
end
|
||
|
|
||
|
|
||
|
subroutine give_n2_ia_val_ab(r1,r2,two_bod_dens,istate)
|
||
|
BEGIN_DOC
|
||
|
! contribution from inactive and active orbitals to n2_{\Psi^B}(r_1,r_2) for the "istate" state of a CAS wave function
|
||
|
END_DOC
|
||
|
implicit none
|
||
|
integer, intent(in) :: istate
|
||
|
double precision, intent(in) :: r1(3),r2(3)
|
||
|
double precision, intent(out):: two_bod_dens
|
||
|
integer :: i,orb_i,a,orb_a,n,m,b
|
||
|
double precision :: rho
|
||
|
double precision, allocatable :: mos_array_r1(:) , mos_array_r2(:)
|
||
|
double precision, allocatable :: mos_array_inact_r1(:),mos_array_inact_r2(:)
|
||
|
double precision, allocatable :: mos_array_basis_r1(:),mos_array_basis_r2(:)
|
||
|
double precision, allocatable :: mos_array_act_r1(:),mos_array_act_r2(:)
|
||
|
|
||
|
two_bod_dens = 0.d0
|
||
|
! You get all orbitals in r_1 and r_2
|
||
|
allocate(mos_array_r1(mo_num) , mos_array_r2(mo_num) )
|
||
|
call give_all_mos_at_r(r1,mos_array_r1)
|
||
|
call give_all_mos_at_r(r2,mos_array_r2)
|
||
|
|
||
|
! You extract the inactive orbitals
|
||
|
allocate( mos_array_inact_r1(n_inact_orb) , mos_array_inact_r2(n_inact_orb) )
|
||
|
do i = 1, n_inact_orb
|
||
|
mos_array_inact_r1(i) = mos_array_r1(list_inact(i))
|
||
|
enddo
|
||
|
do i= 1, n_inact_orb
|
||
|
mos_array_inact_r2(i) = mos_array_r2(list_inact(i))
|
||
|
enddo
|
||
|
|
||
|
! You extract the active orbitals
|
||
|
allocate( mos_array_act_r1(n_basis_orb) , mos_array_act_r2(n_basis_orb) )
|
||
|
do i= 1, n_act_orb
|
||
|
mos_array_act_r1(i) = mos_array_r1(list_act(i))
|
||
|
enddo
|
||
|
do i= 1, n_act_orb
|
||
|
mos_array_act_r2(i) = mos_array_r2(list_act(i))
|
||
|
enddo
|
||
|
|
||
|
! You extract the orbitals belonging to the space \mathcal{B}
|
||
|
allocate( mos_array_basis_r1(n_basis_orb) , mos_array_basis_r2(n_basis_orb) )
|
||
|
do i= 1, n_basis_orb
|
||
|
mos_array_basis_r1(i) = mos_array_r1(list_basis(i))
|
||
|
enddo
|
||
|
do i= 1, n_basis_orb
|
||
|
mos_array_basis_r2(i) = mos_array_r2(list_basis(i))
|
||
|
enddo
|
||
|
|
||
|
! Contracted density : intermediate quantity
|
||
|
! rho_tilde(i,a) = \sum_b rho(b,a) * phi_i(1) * phi_j(2)
|
||
|
allocate(rho_tilde(n_inact_orb,n_act_orb))
|
||
|
two_bod_dens = 0.d0
|
||
|
do a = 1, n_act_orb
|
||
|
do i = 1, n_inact_orb
|
||
|
rho_tilde(i,a) = 0.d0
|
||
|
do b = 1, n_act_orb
|
||
|
rho = one_e_act_dm_beta_mo_for_dft(b,a,istate) + one_e_act_dm_alpha_mo_for_dft(b,a,istate)
|
||
|
two_bod_dens += mos_array_inact_r1(i) * mos_array_inact_r1(i) * mos_array_act_r2(a) * mos_array_act_r2(b) * rho
|
||
|
rho_tilde(i,a) += rho * mos_array_inact_r1(i) * mos_array_act_r2(b)
|
||
|
enddo
|
||
|
enddo
|
||
|
enddo
|
||
|
end
|
||
|
|
||
|
|
||
|
subroutine give_n2_aa_val_ab(r1,r2,two_bod_dens,istate)
|
||
|
BEGIN_DOC
|
||
|
! contribution from purely active orbitals to n2_{\Psi^B}(r_1,r_2) for the "istate" state of a CAS wave function
|
||
|
END_DOC
|
||
|
implicit none
|
||
|
integer, intent(in) :: istate
|
||
|
double precision, intent(in) :: r1(3),r2(3)
|
||
|
double precision, intent(out):: two_bod_dens
|
||
|
integer :: i,orb_i,a,orb_a,n,m,b,c,d
|
||
|
double precision :: rho
|
||
|
double precision, allocatable :: mos_array_r1(:) , mos_array_r2(:)
|
||
|
double precision, allocatable :: mos_array_basis_r1(:),mos_array_basis_r2(:)
|
||
|
double precision, allocatable :: mos_array_act_r1(:),mos_array_act_r2(:)
|
||
|
|
||
|
two_bod_dens = 0.d0
|
||
|
! You get all orbitals in r_1 and r_2
|
||
|
allocate(mos_array_r1(mo_num) , mos_array_r2(mo_num) )
|
||
|
call give_all_mos_at_r(r1,mos_array_r1)
|
||
|
call give_all_mos_at_r(r2,mos_array_r2)
|
||
|
|
||
|
! You extract the active orbitals
|
||
|
allocate( mos_array_act_r1(n_basis_orb) , mos_array_act_r2(n_basis_orb) )
|
||
|
do i= 1, n_act_orb
|
||
|
mos_array_act_r1(i) = mos_array_r1(list_act(i))
|
||
|
enddo
|
||
|
do i= 1, n_act_orb
|
||
|
mos_array_act_r2(i) = mos_array_r2(list_act(i))
|
||
|
enddo
|
||
|
|
||
|
! You extract the orbitals belonging to the space \mathcal{B}
|
||
|
allocate( mos_array_basis_r1(n_basis_orb) , mos_array_basis_r2(n_basis_orb) )
|
||
|
do i= 1, n_basis_orb
|
||
|
mos_array_basis_r1(i) = mos_array_r1(list_basis(i))
|
||
|
enddo
|
||
|
do i= 1, n_basis_orb
|
||
|
mos_array_basis_r2(i) = mos_array_r2(list_basis(i))
|
||
|
enddo
|
||
|
|
||
|
! Contracted density : intermediate quantity
|
||
|
! rho_tilde(i,a) = \sum_b rho(b,a) * phi_i(1) * phi_j(2)
|
||
|
allocate(rho_tilde(n_act_orb,n_act_orb))
|
||
|
two_bod_dens = 0.d0
|
||
|
rho_tilde = 0.d0
|
||
|
do a = 1, n_act_orb ! 1
|
||
|
do b = 1, n_act_orb ! 2
|
||
|
do c = 1, n_act_orb ! 1
|
||
|
do d = 1, n_act_orb ! 2
|
||
|
rho = mos_array_act_r1(c) * mos_array_act_r2(d) * act_2_rdm_ab_mo(d,c,b,a,istate)
|
||
|
rho_tilde(b,a) += rho
|
||
|
two_bod_dens += rho * mos_array_act_r1(a) * mos_array_act_r2(b)
|
||
|
enddo
|
||
|
enddo
|
||
|
enddo
|
||
|
enddo
|
||
|
|
||
|
end
|
||
|
|
||
|
subroutine give_n2_cas(r1,r2,istate,n2_psi)
|
||
|
implicit none
|
||
|
BEGIN_DOC
|
||
|
! returns mu(r), f_psi, n2_psi for a general cas wave function
|
||
|
END_DOC
|
||
|
integer, intent(in) :: istate
|
||
|
double precision, intent(in) :: r1(3),r2(3)
|
||
|
double precision, intent(out) :: n2_psi
|
||
|
double precision :: two_bod_dens_ii
|
||
|
double precision :: two_bod_dens_ia
|
||
|
double precision :: two_bod_dens_aa
|
||
|
! inactive-inactive part of n2_psi(r1,r2)
|
||
|
call give_n2_ii_val_ab(r,r,two_bod_dens_ii)
|
||
|
! inactive-active part of n2_psi(r1,r2)
|
||
|
call give_n2_ia_val_ab(r,r,two_bod_dens_ia,istate)
|
||
|
! active-active part of n2_psi(r1,r2)
|
||
|
call give_n2_aa_val_ab(r,r,two_bod_dens_aa,istate)
|
||
|
|
||
|
n2_psi = n2_ii_val_ab + n2_ia_val_ab + n2_aa_val_ab
|
||
|
n2_psi = two_bod_dens_ii + two_bod_dens_ia + two_bod_dens_aa
|
||
|
|
||
|
end
|