mirror of
https://github.com/QuantumPackage/qp2.git
synced 2024-11-07 22:13:38 +01:00
72 lines
1.4 KiB
Fortran
72 lines
1.4 KiB
Fortran
|
double precision function knowles_function(alpha,m,x)
|
||
|
implicit none
|
||
|
BEGIN_DOC
|
||
|
! Function proposed by Knowles (JCP, 104, 1996) for distributing the radial points :
|
||
|
! the Log "m" function ( equation (7) in the paper )
|
||
|
END_DOC
|
||
|
double precision, intent(in) :: alpha,x
|
||
|
integer, intent(in) :: m
|
||
|
!print*, x
|
||
|
knowles_function = -alpha * dlog(1.d0-x**m)
|
||
|
end
|
||
|
|
||
|
double precision function derivative_knowles_function(alpha,m,x)
|
||
|
implicit none
|
||
|
BEGIN_DOC
|
||
|
! Derivative of the function proposed by Knowles (JCP, 104, 1996) for distributing the radial points
|
||
|
END_DOC
|
||
|
double precision, intent(in) :: alpha,x
|
||
|
integer, intent(in) :: m
|
||
|
double precision :: f
|
||
|
f = x**(m-1)
|
||
|
derivative_knowles_function = alpha * dble(m) * f / (1.d0 - x*f)
|
||
|
end
|
||
|
|
||
|
BEGIN_PROVIDER [double precision, alpha_knowles, (100)]
|
||
|
implicit none
|
||
|
integer :: i
|
||
|
BEGIN_DOC
|
||
|
! Recommended values for the alpha parameters according to the paper of Knowles (JCP, 104, 1996)
|
||
|
! as a function of the nuclear charge
|
||
|
END_DOC
|
||
|
|
||
|
! H-He
|
||
|
alpha_knowles(1) = 5.d0
|
||
|
alpha_knowles(2) = 5.d0
|
||
|
|
||
|
! Li-Be
|
||
|
alpha_knowles(3) = 7.d0
|
||
|
alpha_knowles(4) = 7.d0
|
||
|
|
||
|
! B-Ne
|
||
|
do i = 5, 10
|
||
|
alpha_knowles(i) = 5.d0
|
||
|
enddo
|
||
|
|
||
|
! Na-Mg
|
||
|
do i = 11, 12
|
||
|
alpha_knowles(i) = 7.d0
|
||
|
enddo
|
||
|
|
||
|
! Al-Ar
|
||
|
do i = 13, 18
|
||
|
alpha_knowles(i) = 5.d0
|
||
|
enddo
|
||
|
|
||
|
! K-Ca
|
||
|
do i = 19, 20
|
||
|
alpha_knowles(i) = 7.d0
|
||
|
enddo
|
||
|
|
||
|
! Sc-Zn
|
||
|
do i = 21, 30
|
||
|
alpha_knowles(i) = 5.d0
|
||
|
enddo
|
||
|
|
||
|
! Ga-Kr
|
||
|
do i = 31, 36
|
||
|
alpha_knowles(i) = 7.d0
|
||
|
enddo
|
||
|
|
||
|
END_PROVIDER
|